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    Abstract  

  Immunotherapy has been a trusted therapy for 
centuries to eliminate infectious diseases. 
However, the successful immunotherapy 
depends on several factors such as nature of 
pathogen, vaccine delivery system, route of 
administration, and immune system of the 
host. With the advances in nanotechnology, 
immunotherapy is now targeting different 
challenging disorders including cancer as well 
as infectious diseases. Along with the evolu-
tion of several adjuvants to enhance immune 
response to vaccines, nanotechnology plays 
an important role by acting as self-adjuvant in 
form of particles.  

45.1      Introduction 

 Advances in nanotechnology have led to innu-
merable ways for prevention or treatment of vari-
ous diseases. Its impact on immunotherapy 
potentiates the vaccine delivery and effi cacy. 

 Immunotherapy is a specialized way of elimi-
nating diseases, where it prepares the immune 
system to combat the attack of foreign antigens 
(in case of infectious diseases) or self-antigens 
(in case of cancer). It has been proved very well 
for centuries that immunotherapy has been a 
cost-effective tool to prevent the disease. 

 With the evolution of different challenging 
diseases, there is an urgent need of vaccine devel-
opment against them to save lives of millions all 
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throughout the world. Moreover, in case of exist-
ing vaccines, there is still a need to address issues 
with respect to safety, effectiveness, ease of 
administration, time of preparation, and, most 
importantly, the cost. 

 Recent developments in immunology and 
molecular biology explore new vaccine materials 
and aim at triggering memory response to vac-
cines, which protect host’s immune system 
against the disease attack for a longer period of 
time. Vaccine effi cacy depends on its ability to 
induce memory T-cells and B-cells through Th1 
and Th2 immune pathways, respectively. 
Conventional vaccine materials include whole 
foreign organism vaccine (live/attenuated/killed/
lysate), cellular fragments of pathogens such as 
bacterial polysaccharides, and bacterial toxins 
[ 1 ]. On the other hand, development of recombi-
nant technology and RT-PCR allows to obtain 
specifi c antigen expression or synthetic peptide 
on larger scale and to use as vaccines. DNA vac-
cines are recently developed type of immunother-
apy which has shown encouraging results in 
some clinical trials [ 2 – 4 ]. 

 There are two major approaches for vaccina-
tion: prophylactic or therapeutic. Prophylactic 
vaccines fi nd their applications in the prevention 
of viral, bacterial, or parasitic infectious diseases 
such as infl uenza, HIV, tuberculosis, malaria, 
pneumonia, polio, and smallpox, which are caused 
by foreign antigens. However, in case of cancer 
which is caused by self-altered cells, vaccine for-
mulation is a challenging task as it requires 
immune response against self-cell antigens with-
out causing autoimmune response. There are very 
few prophylactic cancer vaccines available on 
market such as Gardasil® (Merck) and Cervarix® 
(GSK) vaccine for human papillomavirus infec-
tion causing cervical cancer. Prophylactic cancer 
vaccines can prevent the tumor development 
based on the use of overexpressed or mutated pro-
teins, mutated oncogenic growth factor receptors, 
heat-shock proteins, or other tumor-associated 
antigens [ 5 ]. In case of therapeutic approach, vac-
cines are given in order to trigger immune response 
against existing residual tumor cells mostly in 
combination with surgery or  chemotherapy and 
thus aiming at preventing or prolonging the 

relapse [ 6 ]. Currently, there is only one therapeu-
tic cancer vaccine, Provenge® (Dendreon), 
approved recently by FDA for treatment of pros-
tate cancer. On the other hand, studies are being 
carried out for melanoma and colorectal cancer 
[ 7 ]. Various other clinical trials have been reported 
utilizing DNA/dendritic cell (DC)/viral vector-
based vaccines depicting the continuous growth in 
the fi eld of cancer immunotherapy [ 8 ,  9 ]. 

 Vaccine effi cacy depends mainly on the 
immunogenicity of antigen. It can further be 
enhanced by the use of vaccine adjuvants which 
activate immune cells. Various adjuvants are 
being explored for their effectiveness to trigger 
humoral, cellular, and/or mucosal immunity 
against several antigens. Humoral immune 
response was found to be elicited mostly with the 
use of protein adjuvants. Cytotoxic T-cell 
responses were found to be triggered by ISCOMs, 
Montanide TM , Montanide ISA720, ISA 51, and 
viral vectors. MF59 and MPL® (monophosphoryl 
lipid) were shown to enhance Th1 responses. 
Viruslike particles, nondegradable nanoparticles, 
and liposomes produced cellular immunity. 
Douglas et al. incorporated Montanide ISA720 as 
an adjuvant to obtain both T-cell and B-cell 
response equal or higher than the response 
obtained with viral or protein adjuvants alone 
against Plasmodium falciparum MSP1. In case of 
commercially available cancer vaccines, mono-
phosphoryl lipid A (MPL) is being used in 
Cervarix® as a TLR-4-targeted adjuvant, while 
Gardasil® contains alum as an adjuvant. 
Compound AS04 (a combination of alum and 
monophosphoryl lipid A) has also been used in 
human vaccines against hepatitis B virus. 

 Adjuvants which are approved for human use 
include alum, compound AS04 (a combination of 
alum and monophosphoryl lipid A), AS03, and 
MF59. Among these, alum is used in many vac-
cines such as HAV, HBV, HPV, diphtheria, teta-
nus, Haemophilus infl uenzae type B, and 
pneumococcal conjugate vaccines. However, 
alum is a poor adjuvant for triggering Th1 
response. A list of adjuvants tested in animal 
models includes bacterial toxins such as cholera 
toxin, heat-labile enterotoxin of E. coli, nontoxic 
B subunit of cholera toxin, Toll-like receptor 
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(TLR) 9 agonist, and cytosine phosphoguanosine 
(CpG) dinucleotides [ 10 ]. Montanide, PLG, fl a-
gellin, QS21, AS01, AS02, RC529, ISCOM, 
IC31, CpG, MF59 with MTP-PE, immunostimu-
latory sequences (ISS), and 1018 ISS are some of 
the adjuvants which are in clinical trials against 
various disorders such as malaria, cancer, fl u, hep-
atitis B, hepatitis C, HIV, and TB [ 11 ]. Heffernan 
et al. found that the co-formulation of chitosan 
and IL-12 induced Th1, IgG2a, and IgG2b anti-
body immune response to a model protein vac-
cine. Denisov et al. evaluated various adjuvants 
(larifan, polyoxidonium, natrium thiosulphate, 
TNF-β, and Ribi adjuvant system) for their ability 
to enhance immune responses to the live brucel-
losis vaccine, Brucella abortus strain 82-PS (peni-
cillin sensitive) in guinea pigs, and they found that 
the highest protection was offered by combining 
TNF-β or polyoxidonium with S82-PS. The 
recent fi ndings by Chen et al. inferred that a com-
pound 3′ 5′-cyclic diguanylic acid (c-di-GMP), 
which is a bacterial intracellular signaling mole-
cule, can act as a vaccine adjuvant and has shown 
immunostimulatory properties. In a study by 
Skountzou et al., bacterial fl agellins from 

  Escherichia coli  and  Salmonella , coadminis-
tered intranasally with inactivated A/PR/8/34 
(PR8) virus, were found to be enhancing the effi -
cacy of infl uenza vaccines in mice. Thus, they 
can be termed as good candidates as mucosal 
vaccine adjuvants to improve protection against 
infl uenza epidemics as well as other infectious 
diseases. On the other hand, cancer vaccine effi -
cacy has also been enhanced by the use of cyto-
kines as adjuvants such as interleukins, IL-2, 
IL-12, and GM-CSF [ 12 – 15 ]. 

 Another way of enhancing vaccine effi cacy is 
with the use of nanotechnology. Nanotechnology 
has been explored for its different applications in 
delivering small molecules, proteins, and pep-
tides. Recently, vaccine delivery has been 
achieved through various pharmaceutical appro-
aches to establish enhanced effi cacy and ease of 
delivery and to address the issues related to sta-
bility. Vaccine material has been formulated into 
nanocarriers such as liposomes, polymeric 
nanoparticles, ISCOMs, dendrimers, micelles, 
VLPs, and carbon nanotubes.  

45.2    Need for Particulate Vaccines 

 Currently, there are no particulate vaccines avail-
able in the market, but extensive research is going 
on in this fi eld that would eventually bring par-
ticulate vaccine approach from bench to clinical 
interphase. Nanovaccine against notorious dis-
eases is an attractive option as it can elicit both 
humoral and cellular immunity [ 16 ]. Nano-
technology has also proven to offer mucosal 
immunity which can be targeted for infectious 
diseases caused by mucosal entry of pathogen 
[ 17 ]. These nanovectors bear the advantage of 
being similar to a pathogen in terms of size; thus, 
they are effi ciently recognized by antigen- 
presenting cells (APCs) of skilled immune sys-
tem [ 18 ]. Further, they will be drained into the 
nearby lymph nodes where they can activate the 
immune cells of the body. These immune cells 
are drained towards the epithelial gatekeeper 
cells receiving various chemokine signals [ 19 ]. 

 In contrast to natural infections, vaccines 
alone are incapable of producing a high antibody 
response [ 20 ]. The approach of using nanoparti-
cles as vaccines which can incorporate multiple 
antigens in a single entity will lead to an enhanced 
humoral response as well as provide cellular 
immunity [ 16 ,  21 – 24 ]. Uddin, Lai, and Yeboah 
et al. have successfully formulated and tested oral 
vaccines using the particulate vaccine delivery 
system for typhoid, melanoma, and tuberculosis, 
respectively [ 25 – 27 ]. In all these studies, signifi -
cantly higher mucosal and serum antibody titers 
(IgA and IgG) were obtained for orally adminis-
tered particulate vaccine than those observed for 
the oral solution vaccine. The duration of antigen 
presentation also plays an important role to 
enhance the immune response [ 28 ]. The release 
of antigen must be in a pulsatile fashion to 
decrease the number of booster doses required. 
The persistence of antigens can be obtained only 
if the particles are remaining intact and are 
 protected from degradation in the harsh acidic 
gastric conditions. 

 Also, it is possible to modify the outer sur-
face of the nanoparticles to increase its uptake 
by the APCs. It can be conjugated with either an 
immunostimulatory or targeting moiety; else the 
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 inherent property of the surface itself can be 
modifi ed. Surface charge also plays a vital role 
in uptake of the particles and affects the levels 
of immune response. It is shown that cationic 
particles are promising for uptake into macro-
phages and dendritic cells (DCs) [ 29 ]. 

 Another useful property of nanoparticles is 
incorporation of various immunopotentiators to 
enhance the immune response to a further extent. 
This also includes targeting ligands, which can 
help to minimize the adverse effects of the vac-
cines. Some of the examples of these targeting 
ligands include aleuria aurantia lectin (AAL), 
ulex europaeus agglutinin 1 lectin (UEA-I), and 
wheat germ agglutinin (WGA) which act as tar-
geting ligand to the M-cells present in Peyer’s 
patches. This will eventually help to increase the 
uptake of particles through small intestine and 
bypass oral tolerance [ 30 ,  31 ]. Various co- 

stimulatory molecules like interleukins or cyto-
kines can be included in the formulation to 
increase the immune response. It has been shown 
that DCs have receptors for both IL-2 and IL-12; 
hence, they have the capacity to present exoge-
nous antigens and activate both MHC class I 
(cross-presentation) and MHC class II pathways 
by vaccination [ 32 ,  33 ]. 

 This review aims to discuss the role of these 
nanocarriers as potential vaccine delivery vehi-
cles as shown in Fig.  45.1 . A brief description of 
each one is as follows:

45.3       Polymeric Nanoparticles 

 Polymeric nanoparticles (as shown in Fig.  45.1a ) 
as vaccine delivery vehicles have been explored 
widely as they can act as adjuvants themselves. 

  Fig. 45.1    Different nanocarriers for vaccine delivery: ( a ) 
TEM image of PEG-PLGA nanoparticle (scale bar corre-
sponds to 500 nm) (Reproduced from Bharali et al. [ 34 ] 
with permission from Elsevier). ( b ) Cryo-EM image of 
cationic liposomes entrapping DNA (scale bar corre-
sponds to 200 nm) (Reproduced from Perrie et al. [ 35 ] 
with permission from Elsevier). ( c ) TEM image of 
ISCOMs of different types such as typical cage-like ( solid 
arrow ), helices ( dashed arrow ), and double helices ( dot-
ted arrows ) (scale bar corresponds to 200 nm) (Reproduced 
from Sun et al. [ 36 ] with permission from Elsevier). ( d ) 
EM image of infl uenza H1N1 viruslike particles (scale 

corresponds to 100 nm) (Reproduced from Quan et al. 
[ 37 ], open-access article). ( e ) SEM image of PEG-PEI-
PBLG copolymeric micelles (scale corresponds to 
200 nm) (Reproduced from Tian et al. [ 38 ] with permis-
sion from Elsevier). ( f ) TEM image of PAMAM den-
drimer (Reproduced from Jackson et al. [ 39 ] with 
permission from ACS). (G, H) TEM images of single-
walled ( g ) and multi- walled ( h ) carbon nanotubes (scale 
bar corresponds to 1 μm and 250 nm, respectively) 
(Reproduced from Klumpp et al. [ 40 ] with permission 
from Elsevier)         

a b c d

hgfe
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Polymeric nanoparticles can offer the protection 
to proteins and peptides against gastric degrada-
tion upon oral administration and therefore vac-
cines are defi nitely one of the major applications 
for such particles [ 41 ]. The particles of size less 
than 1 μm offer adaptive immunity by facilitating 
their targeted uptake and extended presentation 
by APCs [ 42 ]. Nevertheless, the immune 
response also depends on rate of dissolution, sur-
face morphology, charge, and size [ 43 ]. 

 Oral administration is the most preferred route 
of administration as it is more patient compliant. 
Intestinal uptake of these particles is the key fac-
tor for determining the effi ciency of oral vac-
cines. The usage of nanoparticles versus the use 
of microparticles as vaccine carriers for oral 
delivery is always debatable. There are confl ict-
ing reports as to which size can be considered as 
the optimum size range for eliciting a stronger 
and lasting immune response [ 44 ]. 

 In this study by Desai et al., it was shown that 
particles of 100 nm showed increased uptake 
across the intestine in a rat model when com-
pared to particles of 500, 1, and 10 μm size. 
These particles were prepared of polylactic/poly-
glycolic acid copolymer (50:50). Conventional 
nanoparticles are susceptible for entrapment in 
mucus due to steric as well as adhesive interac-
tions. These interactions can be overwhelmed by 
tailoring the size of nanoparticles, which allows 
the particles to diffuse through mucus [ 45 ]. Here, 
Primard et al. reported that nanoparticles of size 
greater than 300 nm are less effective to move 
across the mucus lining of the intestine, when 
given orally. Therefore, particles in size range 
200–250 nm were found to be taken up in M-cells 
of Peyer’s patch of small intestine. 

 In contrast, a study conducted by Gutierro 
et al. showed that 1,000 nm particles of bovine 
serum albumin as a model protein incorporated in 
PLGA elicited higher IgG response when com-
pared to 200 and 500 nm particles, and the 
immune response induced by 200 and 500 nm 
particles was comparable to each other by oral 
and subcutaneous route of administration [ 46 ]. 

 However, in a contradictory study by Wendorf 
et al., poly(lactide-co-glycolide) nanoparticles 
of size 110 and 800–900 nm were compared for 
their effi cacy and were found to be offering 

 comparable immune response [ 47 ]. In a study by 
van den Berg J. et al., cationic nanoparticles con-
taining DNA vaccines were evaluated via dermal 
route. It was seen that these cationic nanoparti-
cles blocked vaccination-induced antigen 
expression in mice and ex vivo human skin due 
to immobilization of the nanoparticles in 
extracelvlular matrix caused by electrostatic 
interactions. Therefore, shielding the surface 
charge of the nanoparticles by PEGylation 
improved in vivo antigen expression [ 48 ]. 
Polylactic acid is one of the widely used biode-
gradable polymers in vaccine delivery. However, 
the use is restricted due to hydrophobic nature 
and generation of acidic microenvironment upon 
its degradation, rendering it unfavorable to the 
encapsulated antigen. In a study by Jain et al., 
PEG-derivatized block copolymers of PLA were 
used for development of nanoparticles encapsu-
lating HBsAg for mucosal vaccination against 
hepatitis B. These polymers were found to pro-
duce better sIgA mucosal immune response [ 49 ], 
while in case of cancer, T-cell immune response 
can also be altered with the use of nanoparticles 
[ 50 ]. Several other polymers have been tried to 
formulate vaccine nanoparticles as listed in 
Table  45.1 . Interesting uptake study performed 
by Primard et al. showed the poly(lactic acid) 
nanoparticles traversed from intestinal mucosa 
to Peyer’s patch and then interacted with under-
lying B-cells and dendritic cells upon oral 
administration [ 45 ]. Due to all these advantages 
of polymeric nanoparticles, they remain a poten-
tial vaccine delivery system. 

45.4      Liposomes 

 Although there are various nanocarriers avail-
able for vaccine delivery, liposomes play a 
prominent role as drug and potential vaccine 
delivery vehicles. Liposomes were introduced 
by Bangham et al. in 1960s [ 51 ], almost a decade 
later Allison et al. elicited their role as an immu-
nological adjuvant [ 52 ], and since then, many 
studies have been done to exploit this approach. 
These are  nanostructures (as shown in Fig.  45.1b ) 
composed of phospholipids having a capacity to 
encapsulate both hydrophilic and hydrophobic 
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drugs as well as vaccine antigens of various ori-
gins. They not only act as carriers to protect these 
bioactive moieties but also possess immunogenic 
properties, thus acting as a potential adjuvant [ 35 , 
 60 – 62 ]. Conventional liposomes have been 
unsuccessful as vaccine particles due to their 
rapid clearance from the body because of their 
uptake by reticuloendothelial system [ 63 ], 
although, with the advent of stealth/PEGylated 
liposomes, increased half-life of these circulating 
nanocarriers has been achieved [ 64 ]. Doxil®, a 
PEGylated liposome of doxorubicin, is a mar-
keted product utilizing this application and is 
used for the treatment of cancers. Other liposo-
mal marketed formulations include Ambisome® 
(Gilead), Myocet® (Elan), and Depocyt® 
(SkyePharma). 

 To enhance the immunogenicity of these carri-
ers, various other approaches have been 
employed. Mohammed et al. describe the use of 
cationic liposomes leading to improved stability 
and sustained immunological effects against 
Mycobacterium tuberculosis [ 65 ]. Further the 
use of adjuvants incorporated in the liposome has 
been explored to provide immune-stimulant 
effect; recently, the effi cacy of monophosphoryl 
lipid A integrated dimethyldioctadecylammo-
nium (DDA) and trehalose 6,6′-dibehenate 
(TDB) liposomes has been shown to induce cel-
lular immunity along with the humoral response 
[ 66 ,  67 ]. Altin et al. further review the use of 
liposomes and plasma membrane vesicles (PMV) 
as a carrier for targeted delivery of antigens [ 63 ]. 
There are various other forms of liposomes which 
have been found to be promising as antigen carri-
ers such as virosomes, archaesomes, and proteo-
somes [ 68 – 70 ]. 

 Apart from imparting immunomodulatory 
properties, the physical properties of these nano-
carriers are also important to act as a potent vac-
cine delivery vehicle. Xiang et al. discuss the role 
of size in development of particulate vaccines 
and describe various particle size range and their 
respective uptake mechanism; this can be useful 
as smaller liposomes mimic the uptake mecha-
nisms of viruses whereas larger liposomes can 
follow a pathway as used by the bacteria [ 43 ]. As 
discussed previously, surface charge of these spe-

cies also dictates their effi cacy as a particulate 
vaccine; for example, cationic liposomes have 
shown better effi cacy than others [ 71 ]. Such 
modifi cations in physical properties, use of 
immunoadjuvants, and stealth properties of these 
carriers potentiate their use as a particulate vac-
cine [ 72 ]. Considering the success of liposomal 
products in the market, it is promising to have a 
liposomal vaccine soon.  

45.5     Immunostimulatory 
Complexes (ISCOMs) 

 ISCOMs (immunostimulatory complexes), as 
shown in Fig.  45.1c , are particulate vaccine 
nanocarriers of 40 nm size which are made up of 
cholesterol, phospholipid, and saponin along 
with antigen/s. However, ISCOMATRIX TM  is 
now available without antigen and having the 
same composition as ISCOMs. This matrix pro-
vides incorporation of antigen which can be 
used as ISCOMATRIX TM  vaccine with similar 
immunostimulatory activity as seen with 
ISCOMs. The immunostimulatory property is 
imparted to these complexes due to Quil A 
which is a purifi ed less toxic extract from 
Quillaja saponin. These complexes have been 
reported to produce immune responses against 
variety of antigens such as viral, bacterial, 
 parasitic, or tumor antigens [ 73 ,  74 ]. 

 Some researchers have tried to enhance the 
immunostimulatory properties of these com-
plexes by varying or replacing some of the com-
ponents such as phospholipids or Quil A [ 36 ]. 
Several ISCOM TM  and ISCOMATRIX TM  vac-
cines have shown to induce humoral and cellular 
response in animal models (as shown in 
Table  45.2 ). These systems can access both the 
MHC I and MHC II pathways and act as a potent 
immunomodulator of both the innate and adap-
tive immune systems. Intranasal delivery of infl u-
enza ISCOMATRIX TM  vaccine in humans has 
shown to induce systemic and mucosal responses, 
and therefore the ISCOMATRIX TM  adjuvant can 
be used as a mucosal adjuvant [ 75 ]. Antigen- 
specifi c CTL, T-helper cells, and antibodies can 
be induced by ISCOM and ISCOMATRIX TM  
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vaccines for cancer and infectious diseases [ 36 ]. 
Another modifi cation of ISCOM with regard to 
charge resulted in cationic ISCOM derivatives 
(PLUSCOMs), which offered high anionic anti-
gen loading and therefore enhanced T-cell 
response in comparison to classic anionic 
ISCOMs against a model protein antigen (oval-
bumin) [ 84 ]. Moreover, these complexes can 
reduce the dose of antigen required to induce 
immune response [ 85 ]. Table  45.2  lists different 
ISCOMs and ISCOMATRIX TM  which have been 
studied in vivo against various infections.

45.6       Virus-like Particles 

 Along with a range of nanocarriers available for 
the vaccine delivery, viruslike particles (VLPs), as 
shown in Fig.  45.1d , are one of the most potent 
ones [ 86 ]. As the name indicates, these are 

 particles resembling size range of a virus from 22 
to 150 nm and contain self-assembled envelopes/
proteins of various viruses. As they lack the 
genetic material, they are regarded noninfectious. 
Noad et al. detail that for more than 30 different 
infectious viruses, VLPs have been produced, 
eliciting the need of this approach [ 87 ]. Due to 
various advantages of this delivery system, cur-
rently there are VLP-based vaccines commer-
cially available against two diseases—HBV and 
HPV [ 88 ,  89 ]. Also, various clinical trials are in 
progress utilizing this particulate delivery system. 
Recently, Buonaguro et al. discussed the role of 
VLPs as particulate vaccines, their contribution to 
current vaccines and clinical trials, and also the 
immune response elicited by these particles [ 90 ]. 
Also, a detailed review by Grgacic et al. describes 
the role of VLPs as vaccine particles to elicit 
immune response [ 91 ]. Structurally, VLPs can be 
defi ned as enveloped or non- enveloped depending 

    Table 45.2    Summary of various Immunostimulatory Complexes (ISCOMs) based vaccines under research using 
 animal models   

 Vaccine delivery 
system 

 Vaccine 
preparation  Immune response 

 Route of 
administration  Animal model  Reference 

 ISCOM  Infl uenza viruses, 
H3N2 

 Humoral and 
cellular immunity 

 NA   Cynomolgus  
  Macaques  

 [ 76 ] 

 ISCOM  Used as a 
adjuvant for 
human norovirus 
GII.4 HS66 strain 
vaccine 

 Th2 biased responses 
with signifi cantly 
elevated IgM, IgA 
and IgG antibody-
secreting cells 

 Oral/IN  Gnotobiotic pigs  [ 77 ] 

 ISCOM  Avian infl uenza 
A viruses of the 
H5N1 subtype 

 Strong antibody 
responses 

 IM  Roosters  [ 78 ] 

 ISCOM  A/PR8/34 
Infl uenza virus 

 Strong mucosal as well 
as systemic antibody 
and cytotoxic 
T-lymphocyte responses 

 IN  BALB/c mice  [ 79 ] 

 ISCOM  Virosomal 
infl uenza A 
H5N1 

 Th1 CD4+ cells 
and strong antibody 
responses 

 IM  BALB/c mice  [ 80 ] 

 ISCOMATRIX™  MEM infl uenza 
antigen 

 Mucosal and serum 
antibody response 

 IN  BALB/c mice  [ 81 ] 

 ISCOMATRIX TM  
and ISCOM TM  

  H .  pylori   Reduction in  H .  pylori  
colonization 

 IN/SC  mice  [ 82 ] 

 ISCOM  Recombinant 
NcSRS2, of the 
intracellular 
protozoan parasite 
 Neospora caninum  

  N .  caninum  specifi c 
antibodies and 
cellular response 

 SC  BALB/c mice  [ 83 ] 

   IM  intramuscular,  SC  subcutaneous,  IN  intranasal,  NA  not available  
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upon the presence or absence of their lipid 
 envelope, surrounding the capsid protein. 

 VLPs of human papillomaviruses (HPV) are a 
good example of single-capsid non-enveloped 
VLPs consisting of L1 as major capsid protein. 
These VLPs can be produced in yeast (Gardasil) 
as well as in insect cells infected with baculovi-
rus (Cervarix). Schiller et al. review the clinical 
trials performed using these HPV-VLPs and 
describe the effi cacy of these systems against 
HPV [ 92 ]. The review also emphasizes that there 
are limited safety issues related to the vaccine as 
seen during the clinical trials. 

 On the other hand, various enveloped VLPs 
are available against infl uenza A, hepatitis B, 
hepatitis C, and several retroviruses. Recently, 
Kang et al. showed the possibility of infl uenza A 
vaccination through transdermal route using 
VLP-coated microneedle, thus enhancing the 
compliance towards these nanocarriers [ 93 ]. 
Considering the wide applications of these VLPs 
and their success as a commercial particulate 
vaccine, they continue to remain potential nano-
carriers for future vaccines [ 37 ,  94 – 99 ].  

45.7    Polymeric Micelles 

 Polymeric micelles (as shown in Fig.  45.1e ) are a 
well-organized nano-sized assembly of synthetic 
polymers. These fall in the category of associa-
tion colloids that are formed spontaneously when 
the amphiphilic molecules or hydrophilic regions 
are maintained at an appropriate concentration 
and temperature [ 38 ,  100 ]. They are not held 
together by covalent bonds and hence can be dis-
sociated easily. This property of micelles can be 
exploited as per their applications [ 17 ]. They 
have shown high stability in vitro as well as in 
vivo [ 101 ]. Physical and chemical properties of 
polymeric micelles can be manipulated by selec-
tion of suitable hydrophilic and hydrophobic 
polymers [ 102 ]. In a study by Morein et al., a 30S 
protein subunit micellar vaccine induced a detect-
able antibody titer as well as protective immunity 
in a challenge study against pneumonia caused 
by the PI-3 virus [ 103 ]. Prabakaran et al. per-
formed similar studies where they used soya 

phosphatidylcholine micelles against H5N1 
 infection [ 104 ]. Higher levels of serum IgG, 
mucosal IgA, and HI titers were observed when 
compared to the free antigen. Hence, micelles 
can serve as a promising carrier for vaccine 
antigens.  

45.8    Dendrimers 

 Dendrimers (as shown in Fig.  45.1f ) are highly 
branched, monodispersed polymeric nanoparti-
cles. Dendrimers are composed of three different 
components: an initiator core, branches, and ter-
minal functional groups. The initiator core is the 
main component of dendrimers and the branches 
extend in the outer directions. The terminal 
groups can be modifi ed based on charge/hydro-
philic/lipophilic properties [ 105 ]. They are simi-
lar to polymeric micelles but are linked covalently 
unlike micelles and thus have more stronger 
bonds and do not tend to dissociate easily [ 106 ]. 
The external surface can be easily modifi ed and 
alterations of the internal cavity make dendrimers 
a promising carrier for various biomedical and 
industrial applications [ 107 ]. Recent work by 
Baker et al. involves coupling of various func-
tional molecules including sensing units, MRI 
contrast agents, triggering devices, and targeting 
molecules to the surface of a generation 5 den-
dritic polymer (MW 25,000 Da, diameter 5 nm) 
[ 108 ]. A specifi c class of dendrimers called as 
multiple antigenic peptide (MAP) systems has 
been used widely for the vaccine purposes. MAP- 
based malaria vaccine has been tested in phase I 
clinical trials [ 109 – 111 ]. Having the potential to 
enter the clinical trials, these delivery systems are 
expected to be available on market shortly. 
Table  45.3  lists some of the dendrimeric systems 
currently under research.

45.9       Carbon Nanotubes 

 Recently, inorganic nanomaterials such as nano-
crystals, nanowires, and nanotubes have been 
receiving an increasing amount of attention for 
vaccine delivery. Carbon nanotubes (as shown in 
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Fig.  45.1g–h ) are explored as a vehicle for vaccines 
because of their capacity to link to an antigen while 
maintaining their conformation and thus inducing 
antigen-specifi c antibody response. They can also 
be modifi ed in a non-immunogenic material [ 115 ]. 
Functionalized carbon nanotubes can be used as 
nanovectors for the delivery of antigen/s by form-
ing covalent bonds or supramolecular assemblies 
based on non-covalent interactions [ 40 ]. Though 
carbon nanotubes remain an area of interest for cur-
rent researchers, still extensive work is required 
before they can enter the clinical trials.  

45.10     Challenges and Future 
Directions 

 With a wide range of nanocarriers available for 
vaccine delivery, nanotechnology not only gets 
the well-deserved limelight but also attracts 
attention of regulatory bodies and bears certain 
challenges that need to be considered before mar-
keting these nanocarriers. 

45.10.1    Advantages and 
Disadvantages of 
Nanoparticles as Vaccines 

 Nanovaccines have its own pros and cons as a 
delivery system. They are made up of biode-
gradable polymers and hence are considered 
safe for administration. Nanoparticulate vaccine 
can be administered easily by different routes 
such as parenteral, oral, transdermal, nasal, and 
even pulmonary route. Thus, being noninvasive, 
delivery systems other than parenteral allow 
pain-free delivery of vaccines over conventional 
vaccines [ 116 ]. They can trigger the immune 
system effi ciently as described earlier. Moreover, 
release of antigen at a controlled rate and time 
in a desirable fashion can be achieved by 
nanoparticles [ 117 ]. 

 The cost of production and storage of these 
vaccines is a basic concern. But the reproducibil-
ity of nanovaccines is a greater question [ 70 ]. On 

the other hand, nanoparticles of size larger than 
300 nm are reported to be less effi cient to traverse 
across the mucosal lining of intestine and hence 
result in lower particle uptake through Peyer’s 
patches in the intestine and lesser immune 
response for vaccine particles [ 45 ]. Thus, size 
and charge of the nanoparticles play a critical 
role in determining the effi cacy of vaccine for-
mulation. Therefore, the reproducibility of vac-
cines during manufacturing should be ensured, 
which needs critical evaluation of the particles. 
Another issue is to address the sterilization 
 performed by nonthermal methods needs to be 
taken care of [ 118 ]. Also, small nanoparticles are 
cleared rapidly from the body, whereas the larger 
aggregates might get accumulated in the organs 
and cause toxicity issues. 

 The “nano” size which makes these carriers 
so promising is also the reason behind the con-
cerns of these delivery systems. Researchers pro-
pose that the smaller the carrier, the better it 
functions and remains protected by the body’s 
RES system; also ways have been devised to 
impart stealth properties to these carriers to 
avoid their uptake by such phagocytic cells. 
Although all these properties make the nanocar-
rier a potential delivery system, it also makes it 
harder to be cleared from the body, thus adding 
to “nanotoxicity.” Comparatively extensive stud-
ies have been done to determine the toxicity pro-
fi le of nano-sized molecules than nanocarriers. 
Little is known about the toxic effects of such 
nanocarriers which have been used for vaccine 
delivery. Even though the use of these carriers 
remains questionable, various researches are 
being done to answer these concerns and regula-
tory authorities remain to be a part of these 
hassles.      
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