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Abstract. In this paper we present a new method of reconstruction of vector-valued
images with additive Gaussian noise. In order to solve this inverse problem we use
stochastic differential equations with reflecting boundary. The reconstruction algo-
rithm is based on Euler’s approximations of solutions of such equations. We con-
sider Euler scheme with random terminal time and controlled parameter of diffusion
which is driven by geometry of Rn- valued noisy image. Our numerical experiments
show that the new approach gives very good results and compares favourably with
deterministic partial differential equation methods.

1 Introduction

Let D be a bounded, convex domain in R2, u : D→ Rn be an original image and
u0 : D→ Rn be the observed image of the form u0 = u+η , where η stands for a
white Gaussian noise (added independently to all coordinates). We assume that u
and u0 are appropriately regular. We are given u0, the problem is to reconstruct u.
This is a typical example of an inverse problem [1].

Stochastic methods of image reconstruction are generally based on the Markov
field theory, however some papers [3,4,7,13,14] involve advanced tools of stochas-
tic analysis such as stochastic differential equations. The weakest point of this ap-
proach in the case of image denoising is the necessity of using Monte Carlo method.
In particular, we have to do multiple simulations of trajectories of the diffusion
process. Euler’s approximation [11] is a classical method of diffusion simulations.
This scheme gives good results only for small time-step discretization, but unfortu-
nately reconstruction takes a very long time. In [3] the Euler scheme was improved
for applications to image processing by adding a controlled parameter. This new
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numerical scheme considered for a constant terminal time T is called a modified
diffusion (in short MD) and gives good results for long time-step discretization and
reconstruction is about 50 times faster than with the Euler’s approximation. In [4]
the authors introduced a numerical scheme based on Euler’s approximations with
random terminal time. They considered the modified diffusion method with termi-
nal time which depends on the geometry of the reconstructed image and therefore
it is random. These modifications of the classical Euler scheme lead to the algo-
rithm of denoising gray level images: modified diffusion with random terminal time
(in short MDRTT), which compares favourably with modified diffusion method [3]
and other classical denoising PDE filters.

A novel look in [4] on the reconstruction problem with the use of stochastic
Euler approximation was fruitful and gave encouraging results for gray level images.
The idea of this paper is to generalize these results to images with values in Rn, in
particular to colour images.

2 Mathematical Preliminaries

The reconstruction of images is based on two advanced tools of stochastic analysis:
stochastic differential equations (in order to model image diffusion) and Skorokhod
problem (in order to constrain the diffusion to image domain).

First we will define the Skorokhod problem. Let D⊂Rn be a domain with closure
D and boundary ∂D. Let T > 0 and by C([0,T ];Rn) we denote a set of continuous
functions f : [0,T ]→ Rn.

Definition 1. Let y ∈ C([0,T ];Rn), y0 ∈ D. A pair (x,k) ∈ C([0,T ];R2n) is said to
be a solution to the Skorokhod problem associated with y and D if

1. xt = yt + kt , t ∈ [0,T ],
2. xt ∈ D, t ∈ [0,T ],
3. k is a function with bounded variation |k| on [0,T ], k0 = 0 and

kt =

∫ t

0
ns d|k|s, |k|t =

∫ t

0
1{xs∈∂D} d|k|s, t ∈ [0,T ],

where ns = n(xs) is an inward normal unit vector at xs ∈ ∂D.

It is known that if D is a convex set, then there exists a unique solution to the Sko-
rokhod problem [12].

Definition 2. Let (Ω ,F ,P) be a probability space.

1. An n-dimensional stochastic process X = {Xt ; t ∈ [0,T ]} is a parametrised col-
lection of random variables defined on a probability space (Ω ,F ,P) with val-
ues in Rn.
For each fixed ω ∈ Ω the function Xt(ω), t ∈ [0,T ] is called a trajectory of X
and is denoted by X(ω).
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2. A filtration (Ft) = {Ft ;t ∈ [0,T ]} is a nondecreasing family of sub-σ -fields of
F , i.e. Fs ⊆Ft ⊆F for 0≤ s < t ≤ T .
By (FX

t ) we denote a filtration generated by process X , i.e.
FX

t = σ(Xs;0≤ s≤ t).
3. A stochastic process X is adapted to the filtration (Ft ) (X is (Ft ) adapted) if

for each t ∈ [0,T ], Xt is a Ft - measurable random variable.

Definition 3. Let Y be (Ft ) adapted process with continuous trajectories,
Y0 ∈D. We say that a pair (X ,K) of (Ft) adapted processes is a solution to the Sko-
rokhod problem associated with Y and D, if for almost every ω ∈Ω , (X(ω),K(ω))
is a solution to the Skorokhod problem associated with Y (ω) and D.

In what follows, by W = {Wt ;t ∈ [0,T ]} we shall denote a Wiener process starting
from zero. We assume that we are given a point x0 ∈D and some function σ : Rn →
Rn×Rm.

Definition 4. Let Y be an (Ft) adapted process. A pair (X ,KD) of (Ft ) adapted
processes is called a solution to reflected SDE

Xt = x0 +

∫ t

0
σ(Xs)dWs +KD

t , t ∈ [0,T ], (1)

if (X ,KD) is a solution to the Skorokhod problem associated with

Yt = x0 +

∫ t

0
σ(Xs)dWs, t ∈ [0,T ] and D.

The process X is called the process with reflection. The proof of existence and
uniqueness of the solution to reflected SDEs can be found in [12].

3 Reconstruction of Gray Level Images

We suppose for a while that the image is given by a function defined on the whole
plane. Put Xt =W x

t , t ∈ [0,T ], where W x is a two-dimensional Wiener process start-
ing from x ∈D. Then

E[u0(XT )] =
∫

R2

1
2πT

e−
|x−y|2

2T u0(y)dy =
∫

R2
G√T (x− y)u0(y)dy, (2)

where G√T (x) =
1

2πT e−
|x|2
2T is a two-dimensional Gaussian mask.

The reconstructed pixel u(x) is defined as the mean value E[u0(XT )]. Therefore,
by (2) the image is the convolution of the noise image with the two-dimensional
Gaussian mask.
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Since we want to consider the image as a function defined on the bounded convex
set, we have to introduce a new assumption on the process X . It is natural to assume
that the process X is a stochastic process with reflection with values in D. In this
case the process X is given by a Wiener process with reflection, i.e. it can be written
as Xt =W x

t +KD
t (see Definition 4).

The above model removes noise and blurs edges. Following [8,16] we provide a
construction of an anisotropic diffusion model, where noise is removed and image
has sharp edges. These conditions may be achieved by imposing

Xt = x+
∫ t

0

⎡
⎣−

(Gγ∗u0)x2 (Xs)

|∇(Gγ∗u0)(Xs)| , 0
(Gγ∗u0)x1 (Xs)

|∇(Gγ∗u0)(Xs)| , 0

⎤
⎦ dWs +KD

t , (3)

where uxi(y) =
∂u
∂xi

(y) and
u(x) = E [u0(XT )] .

To avoid false detections due to noise, u0 is convolved with a Gaussian kernel

Gγ(x) = 1
2πγ2 e

− |x|2
2γ2 (in practice a 3× 3 Gaussian mask).

3.1 Euler’s Approximation

Consider the following numerical scheme

Xm
0 = X0, Xm

tk = ΠD[X
m
tk−1

+σ(Xm
tk−1

)(Wtk −Wtk−1)], k = 1,2, ...,m, (4)

where tk = kh, h = T
m , k = 0,1, ...,m and ΠD(x) denotes a projection of x on the set

D. Since D is convex, the projection is unique.

Theorem 1. Let (X ,KD) be the solution to the reflected SDE (1). If there exists C > 0
such that ‖σ(x)−σ(y)‖2 ≤C|x− y|2, then

lim
m→+∞

|Xm
T −XT |= 0 almost surely.

The proof of the above theorem can be found in [11].

3.2 Modified Diffusion

The numerical scheme (4) gives good results, but only with a small value of the
time-step parameter h= T

m (for example h= 0.05). Calculating the mean value using
Monte Carlo method for small h is not effective and takes a long time. To omit this
problem, we improve the scheme (4) by adding a controlled parameter p [3].
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Xm
0 = X0, Hm

tk
= ΠD[X

m
tk−1

+σ(Xm
tk−1

)(Wtk −Wtk−1)],

Xm
tk

=

⎧
⎨
⎩

Hm
tk , if Θ ,

Xm
tk−1

, elsewhere,
k = 1,2, ...,m,

(5)

where by Θ we mean the condition |(Gγ ∗ u0)(Hm
tk )− (Gγ ∗ u0)(Xm

tk−1
)|< p.

Note that the parameter p > 0 guarantees that if the image exhibits a strong gra-
dient then the process Xm diffuses as a process with small value of the parameter
h and at locations where variations of the brightness are small, the process Xm can
diffuse with a large value of h (for example h = 4).

For small h or p = +∞ (in practice p > 255) the numerical scheme (5) is equiv-
alent to the scheme (4).

3.3 Modified Diffusion with Random Terminal Time

At locations where gradient is large in all directions it is possible that condition Θ
does not hold as many times as we would expect. To avoid this we propose the fol-
lowing modification [4]:

Xm
0 = X0, Hm

tk
= ΠD[X

m
tk−1

+σ(Xm
tk−1

)(Wtk −Wtk−1)],

Xm
tk =

⎧⎨
⎩

Hm
tk
, if Θ ,

Xm
tk−1

, elsewhere,
k = 1,2, ...,τm,

(6)

where τm = min{k;k ≥ mand Θ is true m times}.
Terminal time τm guarantees that the numerical simulation of the diffusion tra-

jectory gives at least m values of Xm
tk which differ from the value in the previous

step. Observe that the scheme (6) works well only if the model of the digital image
Gγ ∗ u0 is continuous. In practice, we can use a linear interpolation to get the value
of the image Gγ ∗ u0, for any point x ∈D.

4 Reconstruction of Vector-Valued Images

Now we concentrate on images with values in R3. A very common idea to restore
vector-valued images is to use scalar diffusion on each channel of a noisy image. But
one quickly notices that this scheme is useless, since each image channel evolves
independently with different smoothing geometries. To avoid this blending effect,
the regularization process has to be driven in a common and coherent way for all the
vector image channels. In order to execute that we use Di Zenzo geometry [5, 6].
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Let u : D→R3 be a vector-valued image and x ∈ D be fixed. Consider the func-

tion Fx : V →R, Fx(v) =
∣∣∣ ∂u

∂v (x)
∣∣∣
2
, where V = {v ∈ R2; |v|= 1}. We are interested

in finding the arguments θ+(u,x),θ−(u,x) and corresponding values λ+(u,x) =
Fx(θ+(u,x)), λ−(u,x) = Fx(θ−(u,x)) which maximize and minimize the function
Fx, respectively.

Note that Fx can be rewritten as Fx(v) = Fx([v1,v2]
T ) = vT G(x)v, where

G(x) =

⎡
⎢⎢⎢⎢⎢⎣

3

∑
i=1

(
∂ui

∂x1
(x)

)2

,
3

∑
i=1

∂ui

∂x1
(x)

∂ui

∂x2
(x)

3

∑
i=1

∂ui

∂x1
(x)

∂ui

∂x2
(x),

3

∑
i=1

(
∂ui

∂x2
(x)

)2

⎤
⎥⎥⎥⎥⎥⎦
.

The interesting point about G(x) is that its positive eigenvalues λ+(u,x), λ−(u,x)
are the maximum and the minimum of Fx while the orthogonal eigenvectors θ+(u,x)
and θ−(u,x) are the corresponding variation orientations.

Three different choices of vector gradient norms N(u,x) have been proposed
in the literature N1(u,x) =

√
λ+(u,x), N2(u,x) =

√
λ+(u,x)−λ−(u,x), N3(u,x) =√

λ (u,x)+λ−(u,x). In presented examples we have used N(u,x) =
√

λ+(u,x) as
a natural extension of the scalar gradient norm viewed as the value of maximum
variations.

Replacing in equation (3) |∇(u,x)| and [ux1(x),ux2(x)]
T respectively by N(x,u)

and θ+(u,x) = [θ 1
+(u,x),θ 2

+(u,x)]
T we obtain the following model of anisotropic

diffusion for vector-valued images:

Xt = x+
∫ t

0

⎡
⎣−

θ 1
+(Gγ∗u0,Xs)

N((Gγ∗u0)(Xs))
, 0

θ 2
+(Gγ∗u0,Xs)

N((Gγ ∗u0)(Xs))
, 0

⎤
⎦ dWs +KD

t , (7)

where
u(x) = E [u0(XT )] .

4.1 Vector-Valued Modified Diffusion with Random Terminal
Time

Considering in condition Θ the L2 norm we have the following numerical scheme
for vector-valued images (in short VMDRTT):

Xm
0 = X0, Hm

tk = ΠD[X
m
tk−1

+σ(Xm
tk−1

)(Wtk −Wtk−1)],

Xm
tk

=

⎧
⎨
⎩

Hm
tk , if Θ ,

Xm
tk−1

, elsewhere,
k = 1,2, ...,τm,

(8)
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where

σ(Xm
tk−1

) =

⎡
⎢⎣
− θ 1

+(Gγ∗u0,X
m
tk−1

)

N((Gγ∗u0)(X
m
tk−1

)) , 0

θ 2
+(Gγ∗u0,X

m
tk−1

)

N((Gγ∗u0)(Xm
tk−1

)) , 0

⎤
⎥⎦ ,

τm = min{k;k≥ mand Θ is true m times} and by Θ we mean the condition

|(Gγ ∗ u0)(H
m
tk
)− (Gγ ∗ u0)(X

m
tk−1

)|< p,

where |(x1,x2,x3)|=
√

x2
1 + x2

2 + x2
3.

The picture in Fig. 1 presents a comparison of reconstruction results received
with using the classical Euler’s approximation [11] with long and short time-step
discretization and VMDRTT (8). Figures c) d) e) are results of the reconstruction
with the same value of diffusion parameter T . The reconstruction time of VMDRTT

Fig. 1 a) Original image: 50× 50 pixels b) Noisy image: standard deviation of the noise
ρ = 30 c) Euler’s scheme: T = 56, h = 0.1 (540 seconds) d) Euler’s scheme: T = 56, h = 4
(13 seconds) e) VMDRTT: T = 56, h = 4 (16 seconds), p = 30 f) VMDRTT: T = 16, h = 4,
p = 30 (5 seconds).

Table 1 SSIM

Standard deviation ρ = 20 ρ = 30 ρ = 40
PM 0.8630 0.8105 0.7713
TV 0.8792 0.8335 0.7986
VMDRTT 0.8826 0.8438 0.8056
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Fig. 2 a) Original image: 512×512 pixels b) Noisy image: ρ = 20 c) PM: SSIM=0.8630 d)
TV: SSIM=0.8792 e) VMDRTT: SSIM=0.8826. Left: full images; right: a fragment chosen
around the two windows surrounded by the darkest red wall.
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was substantially reduced and the result is much better. The image c) is comparable
to f) which is a result of VMDRTT with short diffusion parameter T . Note that we
can obtain comparable results while reducing the time of the reconstraction by two
orders – it is about 100 times faster.

5 Experimental Results

Some measures of quality for our evaluation experiments regarding VMDRTT and
classic PDE methods: total variation [9] (in short TV) and Perona-Malik [8] (in
short PM) for colour images [5, 10] are presented in Table 1 and Fig. 2. The results
refer to RGB image portofino corrupted (channels independently) with the Gaussian
noise with standard deviation ρ . Noisy images have been reconstructed with vector
analysis in RGB space. The maximum values of Structural Similarity Index (in short
SSIM) are given in the table. Definition of SSIM error in gray scale can be found
in [15]. In order to count SSIM in RGB color space we apply SSIM measure to each
individual color component and next we average the result [2]. Parameters of SSIM
were set to the default values as recommended by [15].

When comparing the figures one can observe that the image created by the
stochastic method is visually more pleasant. The reason for this is that PDE meth-
ods show clear evidence of a block image, but this stair-case effect is reduced in
our algorithm. Moreover, an analysis of the measures of image quality shows that
VMDRTT method performs better.

6 Conclusion

In this paper we have presented a new colour denoising method based on Euler’s
approximation of reflected SDEs. The obtained results demonstrate the efficiency
of the proposed approach, compared with the classical Euler scheme.
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