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Abstract. In this paper we develop our previously presented studies, where adap-
tation of the Levenshtein method in a signature recognition process is proposed.
Three methods based on the normalized Levenshtein measure were taken into con-
sideration. The studies included an analysis and selection of appropriate signature
features, on the basis of which the authenticity of a signature was verified later. A
statistical apparatus was used to perform a comprehensive analysis. Results obrained
were tested by means of χ2 independence test. It allowed determining the relation-
ship between signature features and the errors of classifier.

1 Introduction

In the modern world security problems are increasingly very important, because
safety of goods, resources and data should be procected. In order to protect them,
common methods based on human knowledge are used, for example: passwords and
PIN codes, as well as methods based on identifiers, e.g. identity cards and credit
cards. These methods may not be able to serve their purpose for various reasons,
such as forgetting a password or a PIN code, giving it to another person, or identi-
fier loss, theft or forgery. In the era of computerization and automation, the gap in
the problems related to protections is filled by biometric techniques. One of the most
popular biometric techniques is a handwritten signature. Signature verification from
biometric features point of view presents some advantages, such as: non invasive,
intuitive and fast, well accepted socially and legally. Additionally, signature verifi-
cation generally has a low storage requirements. The effectiveness of the use of an
analysis of handwritten signatures as a biometric technique is very high. The main
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factor affecting the effectiveness is selection of an appropriate signature recognition
method. Currently a lot of different approaches have been proposed for signature
verification in the literature [2], [3], [6], [7]. It should be noted that verification and
identification of objects is also proposed in other scientific problems [4], [8].

This study presents a method of comparing signatures with the use of the normal-
ized Levenshtein metrics [9], [13]. The effectiveness of these metrics in the process
of signature recognition has been examined. A large number of results was obtained,
which made an analysis more difficult. Therefore, the presented method includes a
detailed statistical analysis, which allows approach to selects features of the signa-
tures being adequately compared.

2 Feature Preparation

Biometrics signature is one of the longest-known security techniques invented by
humans. Signature has for many years adopted a form of determining the credibility
(such as during operations related to running a bank account). Data collection pro-
cess within a signature recognition process can be divided into two categories: static
and dynamic. The static system collects data using off-line devices. A signature is
put on paper and then is converted into a digital form with the use of a scanner or
a digital camera. In this case, the shape of the signature is the only data source,
without the possibility of using dynamic data. Signature recognition on the basis
of photos does not protect against fraud. On the other hand, dynamic systems use
on-line devices, which register, apart from the image of the signature, also dynamic
data connected with it. The most popular on-line devices are graphics tablets. By us-
ing tablet, a signature can be recorded in the form of an n-point set. Fig 1. presents
an example of signature Si, captured by tablet.

Fig. 1 An example of signature Si
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Signature Si can be represented by the vector of points:

Si =

⎡
⎢⎢⎢⎣

si (1)
si (2)

...
si (n)

⎤
⎥⎥⎥⎦ , (1)

where:

si ( j) – the j-th point of signature Si.

The tablet, during signing, is capable to measure many dynamics parameters, such
as a pressure pen on tablet surface, position of pen, the angles at which the person
holds a pen. This implies that there is a dynamic feature vector ci (u) associated with
each point si (u) of signature Si:

si (u)→ ci (u) . (2)

The local position (xi,yi) of the pen is given directly by a graphics tablet, while
speed and acceleration can be obtained from this device or can be calculated on
the basis of the position parameter. In presented work, following signature features
were used:

X = {x1,x2, ...,xn}, Y = {y1,y2, ...,yn} - sets of coordinates of n signature points,
P = {p1, p2, ..., pn} - set of pressure in particular points of signature,

Having the sets of mentioned features it is possible to determine, basing on them,
additional features like as:

V = {v1,v2, ...,vn} - set of the speed of the pen in successive signature points [3],
Vup =

{
vup1 ,vup2 , ...,vupn

}
- set of the positive velocity values of the pen in succes-

sive signature points [5],
Vdown =

{
vdown1 ,vdown2 , ...,vdownn

}
- set of the negative velocity values of the pen

in successive signature points [5],
Vx = {vx1 ,vx2 , ...,vxn} - set of the horizontal speed of the pen in successive signature
points [3],
Vy =

{
vy1 ,vy2 , ...,vyn

}
- set of the vertical speed of the pen in successive signature

points [3],
Pch =

{
pch1 , pch2 , ..., pchn

}
- ses of the change in the pen pressure in successive sig-

nature points [5],
K = {k1,k2, ...,kn} - set of the inverse of the radius of the curve in successive signa-
ture points [12].

Because in proposed approach 10 signature features have been selected the extracted
features form the vector:

ci (u) =
[
c1

i (u) ,c
2
i (u) , ...,c

10
i (u)

]
, (3)
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namely:
ci (u) = [xi (u) ,yi (u) , ...,ki (u)] . (4)

Finally, the signature can be described by the matrix Si:

Si =

⎡
⎢⎢⎢⎣

xi (1) yi (1) · · · ki (1)
xi (2) yi (2) · · · ki (2)

...
...

. . .
...

xi (n) yi (n) · · · ki (n)

⎤
⎥⎥⎥⎦ . (5)

3 Normalization of the Levenshtein Distance

The Levenshtein distance is the number of certain operations, called elementary
operations, which must be performed to transform one character string into another
one [2], [13].
Let ∑ define an alphabet of characters and a set containing all character sub-strings
from this alphabet ∑

′
. Then, let’s define two character strings and belonging to ∑

′
,

where n and m are the lengths of these strings. Let TA,B = T1,T2, ...,Tl stand for
the transformation of A character string into B character string with the use of the
finite number l of elementary operations. Elementary operations are performed on
the pair of characters (a,b), where a,b �= λ described more often as (a→ b). The
sign λ represents an empty character, which does not belong to the alphabet. Three
elementary operations can be distinguished:

• D – deleting a character (a→ λ ), (b→ λ ),
• I – inserting a character (λ → a), (λ → b),
• R – replacing a character (a→ b), (b→ a).

Each elementary operation has a specific cost of its performance, which is called a
weight of a given elementary operation. The weighting function δ assigns a non-
negative real number to the i-th elementary operation (a→ b):

δ (Ti) = δ (a→ b) . (6)

The weight of the TA,B transformation can be calculated using the following formula:

δ (TA,B) =
l

∑
i=1

δ (Ti) . (7)

The TA,B transformation can be defined for a specific path of transition from the

A character string into the B character string. Let the PA,B =
{

P1
A,B,P

2
A,B, ...,P

h
A,B

}

set contain all possible paths of transitions from the A character string into the B
character string, where h is the number of all possible transition paths.
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Let W (PA,B) be a function calculating weights of individual paths from the PA,B

set:
W (PA,B) = δ (TA,B) . (8)

The General Levenshtein Distance (GLD) for the two character strings A,B being
compared can be defined as follows:

GLD(A,B) = min{δ (TA,B)}= min{W (PA,B)} . (9)

As the final value of the Levenshtein distance calculated for two character strings
is included in the [0,∞) interval, it is not possible on this basis to determine the
percentage similarity of the strings being compared. This considerably hinders the
evaluation of similarity of the strings being compared. Ned1 metric is defined by
the formula:

Ned1(A,B) = min

{
W (PA,B)

|PA,B|
}
, (10)

where:
|PA,B| – the number of elementary operations in an individual path. Another pro-
posed measure is the Ned2 metric described by the following formula:

Ned2(A,B) = min

{
W (PA,B)

|A|+ |B|
}
=

GLD(A,B)
|A|+ |B| , (11)

where:
|A|+ |B| – is the sum of lengths of the A and B strings.

Third modification of the Levenshtein distance, used in this study, is the dN−GLD

distance. This distance is expressed by the formula:

dN−GLD (A,B) =
2 ·GLD(A,B)

max(D, I) · (|A|+ |B|)+GLD(A,B)
, (12)

where:
D – the cost of deleting a character,
I – the cost of inserting a character.

All presented metrics: Ned1, Ned2, dN−GLD return results from the [0,1] interval. If
two strings being compared are the same, the metrics return the 0 value. For further
assessment of their effectiveness with the use of EER coefficient, the metrics (13),
(14) and (15) were adequately modified, so that the result of the comparison of two
identical strings was the value 1:

NED1(A,B) = 1−Ned1(A,B) , (13)

NED2(A,B) = 1−Ned2(A,B) , (14)

NGLD(A,B) = 1− dN−GLD (A,B) . (15)
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4 The Use of Normalized Levenshtein Metrics in the Process of
Recognition of Handwritten Signatures

Levenshtein distance calculates the distances between two strings. In the presented
method the values of individual feature of signatures Si and S j are compared. In
order to use of normalized Levenshtein metrics in the process of recognition of
handwritten signatures, new signature similarity measure LMt

i j has been introduced.
This measure is based on similarity metrics between two features t signature being
compared. It will be described on the example of the NED1 metric:

LMt
i j = NED1(Si (t) ,S j (t)) , (16)

where:
Si (t) –t-th column (feature) of signature matrix Si.

At the beginning the values of signature features were normalized to the [0,1] range,
so they can take indefinitely many values from this range [1], [10]. Therefore, the
probability of occurrence of two identical feature values in two compared strings is
near zero. In order to eliminate this situation, the additional parameter ϑ was in-
troduced. It determines, to what maximum extent the two values being compared
can differ from each other in order to be treated as equal. The features values
cr

i (u) = cr
j (u), if it fulfils the following condition:

∣∣cr
i (u)− cr

j (u)
∣∣< ϑ , (17)

where:
ϑ – the maximum difference between the values of the features that allows recog-
nizing them as equal,
cr

i (u) – the u-th element of r-th feature of the signature Si,
cr

j (u) – the u-th element of r-th feature of the signature S j.

The evaluation of the similarity of individual signatures was performed on the ba-
sis of an analysis of ten signature features and their combination. In order to specify
the influence of a given feature on the result of the comparison, the weights w1,
w2, w3 of the features were introduced. Thus, 35 different values were obtained as
the result of the comparison, and each of them described the similarity of a differ-
ent combination of signature feature. The formula for determining the WLM (Si,S j)
similarity value of the two signatures Si and S j, taking into account combination of
signature feature, is as follows:

WLM (Si,S j) =

{
LMi j (w1,w2,w3) : w1,w2,w3 ∈ N ∧

3

∑
i=1

wi = 1

}
, (18)
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where:

∀
k, l,m ∈ F
k �= l �= m

LMi j (w1,w2,w3) = LMk
i j ·w1 +LMl

i j ·w2 +LMm
i j ·w3 (19)

N - weight of the signature feature, N = {0,0.2,0.4,0.6,0.8,1},
F - number of feature, F = {1,2, ...,10}.
The individual element of the set F correspond to the number of columns of matrix
Si. For example, F = 1 means the feature X .

5 The Course and Results of the Studies

The studies were conducted for 50 signatures coming from different persons. The
set of test signatures used in the studies comes from the SVC2004 database. The
signatures were divided into 10 groups. Each group contained 4 original signatures
of one person and 1 forged signature. In order to assess, which combination of
signature feature has the greatest impact on EER values, the χ2 test was applied.
It allows determining whether there is a relationship between feature combinations
and EER values.
In order to perform the χ2 test, two hypotheses should be made: H0 and H1. The null
hypothesis H0 assumes that selection of features does not affect the effectiveness of
signature comparison using the Levenshtein method:

H0 : P(Z = zk ·U = um) = P(Z = zk) ·P(U = um) . (20)

The alternative hypothesis H1 shows a relationship between the Z and U :

H1 : P(Z = zk ·U = um) �= P(Z = zk) ·P(U = um) , (21)

where the variable Z is a combination of the signature features:

Z = {X ,Y,P,V,Vup,Vdown,Vx,Vy,Pch,K,XY,XP,XV,XVup,XVdown,

XVy,XVx,XPch,XK,YP,YV,YVup,YVdown,YVy,YVx,Y Pch,YK,

XYP,XYV,XYVup,XYVdown,XYVy,XYVx,XYPch,XYK}.

The variable U is a range of EER values. As the number of results for each of the
three analysed measures was very high (1736733), the analysed data were divided
into 7 subsets. Each subset was assigned to a different EER range. Boundaries of
division are determined by dividing the range between the highest and lowest value
into 7 equal parts. Each range was named depending on the value of the errors it
contained. For example, for the NED1 measure (in which the lowest value of EER
= 1.161%, and the highest value of EER = 54.918%), the determined ranges are
presented in Table 1 .
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Table 1 Table of ranges of EER values determined for the NED1 measure

Name of range Range EER [ % ]

Excellent [1.161-8.841)
Very good [8.841-16.521)
Good [16.521-24.201)
Average [24.201-31.881)
Poor [31.881-39.561)
Bad [39.561-47.241)
Very bad [47.241-54.921)

Basing on the assumptions presented in Table 1 , the quantity table was prepared,
which contains the quantity of EER values obtained for different combinations of
signature features. Then the expected quantities was calculated [11]. The seven fea-
ture combinations of the largest differences calculated between actual quantities and
expected quantities were presented in Table 2 .

Table 2 Table showing the difference between the actual quantities and expected quantities
of EER values for the NED1 measure

XY XV XPch XYP XYVup XYVy XYVx

Excellent 1366.90 -1033.10 -1038.83 3611.10 1265.38 1008.65 1931.93
Very good 64.54 -139.46 -501.12 80.22 342.56 -5.10 82.25
Good -642.35 440.65 93.87 -1530.14 -619.92 -618.69 -770.47
Average -488.51 534.49 596.59 -1227.37 -529.27 -338.17 -720.07
Poor -228.56 170.44 634.48 -691.33 -331.29 -90.24 -413.20
Bad -69.06 28.94 210.95 -232.12 -126.11 36.90 -107.08
Very bad -2.95 -1.95 4.05 -10.36 -1.36 6.65 -3.35

For the NED1 measure, the calculated statistic is χ2 = 32356.1. The critical value
χ2

α =238.32 was taken from the distribution tables χ2 for the adopted level of signifi-
cance α = 0.05. The quantity table has 7 rows and 35 columns, so s=(7−1)(35−1)
= 204 degrees of freedom. The calculated statistic belongs to the critical area ( χ2

> χ2
α ). Therefore the null hypothesis should be rejected in favour of the alternative

hypothesis that assumes that these combinations affect the range of EER values. In
addition, basing on Table 2 , it can be stated that the greatest impact on the EER
value in the Levenshtein method has a combination of XY P features, and there-
fore the use of this combination will allow increasing the effectiveness of signature
comparison by this method.
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A similar analysis was carried out for the NED2 and NGLD measures. Table 3
showing the difference between the actual quantities and expected quantities of EER
values for the NED2 measure whereas Table 4 for the NGLD measure.

Table 3 Table showing the difference between the actual quantities and expected quantities
of EER values for the NED2 measure

XY XVdown XVy XK XYP XYVup XYVx

Excellent 1749.63 -1199.49 -1218.34 -1199.14 4622.21 1619.68 2472.87
Very good 86.48 168.22 -67.16 168.68 97.86 417.92 100.34
Good -610.23 546.87 249.73 547.08 -1912.67 -774.90 -963.09
Average -561.78 172.60 242.39 171.87 -1595.58 -688.05 -936.09
Poor -205.71 53.44 442.82 53.52 -394.06 -188.83 -235.52
Bad -110.50 -8.10 205.78 24.87 -336.58 -182.86 -155.27
Very bad -2.39 -0.77 10.57 -0.80 -8.70 -1.14 -2.82

Table 4 Table showing the difference between the actual quantities and expected quantities
of EER values for the NGLD measure

XY XVup XPch Y Pch XYP XYVup XYVx

Excellent 2152.04 -1333.68 -1595.64 -1335.05 5546.65 1943.62 2967.44
Very good 76.97 116.32 -765.51 -810.91 111.56 476.43 114.39
Good -488.19 213.29 71.34 32.92 -1472.76 -960.87 -1194.23
Average -449.43 202.96 425.61 796.12 -1818.96 -784.38 -1067.14
Poor -242.73 275.70 1272.77 434.33 -464.99 -171.84 -214.33
Bad -114.92 68.12 571.41 607.07 -400.53 -217.60 -184.77
Very bad -2.49 5.09 3.41 2.38 -6.09 -1.31 -3.24

Statistics for the NED2 and NGLD measures are respectively χ2 = 96432.7 and
χ2 = 78784.6. Thus, they belong to the same critical area as the NED1 measure.
Similarly as the NED1 measure, it has been found that the XYP feature had the
greatest impact on the EER value in signature recognition with the use of the Lev-
enshtein method.

6 Conclusions

In this paper the method of feature selection with statistical significance testing was
proposed. The study focused on determinating a combination of dynamic features
of signatures which allows obtaining the lowest error in signature recognition. The
analysis proves that there is a statistical relationship between signature features and
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the error returned by the classifier based on the normalized Levenshtein method.
From obtained results follow that the best features selection is given by combination
of feature XYP. For these parameters the EER coefficient achieves the lowest values.
In the future the result obtained by means of the test χ2 will be compared with other
tests known from the literature. Also other features of signatures will be taken into
account.
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