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Flexible Bipolar Querying of Uncertain
Data Using an Ontology
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Rallou Thomopoulos

Abstract In this chapter, we propose an approach to query a database where the
user preferences can be bipolar (i.e., express both constraints and wishes about the
desired result) and the data stored in the database can be uncertain. Query results are
then completely ordered with respect to these bipolar preferences, giving priority to
constraints over wishes. Furthermore, we consider user preferences expressed on a
domain of values which is not “flat”, but contains values that are more specific than
others according to the “kind of” relation. These preferences are represented by spe-
cific fuzzy sets, called “Hierarchical Fuzzy Sets” and defined over a simple ontology.
We propose a use of “Hierarchical Fuzzy Sets” for query enlargement purposes. The
approach is illustrated on a real-world problem concerning the selection of optimal
packaging material for fresh fruits and vegetables.
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1 Introduction

In some applications, there may be a need to differentiate, within queries, between
negative preferences and positive ones. Negative preferences correspond to con-
straints, as they specify which values or objects have to be rejected (i.e., those that
do not satisfy constraints), while positive preferences correspond to wishes, as they
specify which objects are more desirable than others (i.e., satisfy user wishes) without
rejecting those that do not meet the wishes. Indeed, while the first type of prefer-
ences should be satisfied by query results, satisfying the second type of preferences
can be considered as optional, as the user does not consider them to be necessary
requirements.

Also, preferences may be expressed over elements organized into a hierarchy
rather than on a ‘flat’ domain. This kind of hierarchy is typically modeled as a
simple ontology in which concepts are partially-ordered by the ‘kind of’ relation.
Considering these two extensions (i.e., allowing bipolar preferences expressed over
hierarchies) answers a bipolar query enlargement purpose, as the resulting query will
send back more results than classical bipolar ones.

Finally, there may be uncertainty in the available data, and there is a need to
integrate this uncertainty in the query processing. In this chapter, we propose to
consider these three problems in a common framework, using the notion of bipolar
information and of fuzzy pattern matching.

The notions of bipolar preferences and of bipolar information in general have
recently received increasing attention [1, 21]. Roughly speaking, information is said
to be bipolar when there is a positive and a negative part of the information. These
negative and positive parts of the information may have different natures, and should
therefore be processed in parallel, and not as a single piece of information. This
kind of bipolarity [11], coined as asymmetric, is the one we are concerned with. For
example, we may feel both positive and negative about something, without being
able to fuse these two feelings in a unique one (for example, eating ice cream gives
a gustative pleasure, but one can also feel guilty about it).

In the case of database queries, asymmetric bipolarity is useful to distinguish
negative preferences or constraints (i.e. criteria that a good answer must satisfy)
from positive preferences or wishes (i.e. criteria that a good answer should satisfy,
if possible). For example, in the query “a new car not too expensive and if possible
red”, “not too expensive” is clearly a requirement while “red” merely expresses a
wish.

Some preliminary studies of this work have already been published in [16] and
[28]. In this chapter, we provide a synthetic overview of a method to treat bipolar
preferences in databases where data can be uncertain and expressed on a hierarchical
domain. In particular, this method uses the bipolar nature of preferences to induce
an (pre-)ordering between query results, so that priority is given to those instances
that are the most likely to satisfy all expressed constraints and wishes. Section 2
describes the method, while Sect. 3 illustrates the approach on a use case coming
from a new decision support system (DSS) currently developed in IATE laboratory
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where a (industrial/researcher) user wants to select a packaging material that best
suits his/her needs. Finally, we give some elements of comparison with previous
works in Sect. 4.

2 Method

This section first recalls some basic tools that will be used in the method, before
describing the method itself.

2.1 Preliminaries: Fuzzy Pattern Matching

In this chapter, we use fuzzy sets [33] to represent preferences in our queries and
possibility distributions [19] to represent uncertainty in the data. A normalized fuzzy
set μ over a variable X assuming its value on DX is a mapping μ : DX → [0, 1]
with at least one x ∈ DX such that μ(x) = 1. Here, we assume that DX is either
a finite set of elements (e.g., the colour of a car), possibly partially ordered by the
‘kind of’ relation (see Sect. 2.3), or a subset of the real line (e.g., the maximal speed
of a car).

Here, fuzzy sets are used to express preferences provided by a user in a query.
That is, for a given variable X , the fuzzy value μ(x) expresses to what degree the
value x satisfies the preference represented by μ, with μ(x) = 1 meaning that the
preference is fully satisfied and μ(x) = 0 that it is completely unsatisfied.

Example 1 Consider again our car example “a new car not too expensive and if
possible red”. Assume the user has specified that “not too expensive” means that
any price over 18,000 $ is unacceptable, while any price lower than 14,000 $ can
be considered as totally satisfactory. The corresponding preference is represented by
the fuzzy set μN T E in Fig. 1. Given this representation, we have, for example, that a
price of 15,000 $ fulfils the user preferences at a degree μN T E (15, 000) = 0.75.

Possibility distributions, on the other hand, are simple uncertainty representations
allowing to model the ill-known value of some variable. A possibility distribution π

over a variable X is also a mapping π : DX → [0, 1] with at least one x ∈ DX such

1
μNTE

18,00014,000

Fig. 1 Fuzzy set μN T E describing “Not Too Expensive”
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that π(x) = 1. They are therefore equivalent to fuzzy sets from a formal point of
view, but possess different semantics. Indeed, they describe our knowledge about the
potential value of X . Two measures or set-functions can be derived from a possibility
distribution, namely the necessity and possibility measures, which are such that, for
every event A ⊆ DX ,

�(A) = sup
x∈A

π(x); N (A) = inf
x∈Ac

(1 − π(x)) = 1 − �(Ac),

where �(A) and N (A) express to what extent it is respectively plausible and certain
that the actual value of X lies in A.

Note that possibility distributions can model both precisely known values (X = x
corresponds to the distribution π(x) = 1 and zero everywhere else) and set-valued
variables (X ∈ A corresponds to the distribution π(x) = 1 if x ∈ A, zero otherwise).
In the same way, fuzzy sets can model crisp preferences (i.e., those used in classical
queries).

In the rest of the chapter, we consider that each query (or preference) P on an
attribute X assuming its value on DX is expressed by a fuzzy set μP (possibly
degenerated into a crisp preference). Our knowledge D about the attribute value for
a particular tuple is given by a possibility distribution πD (also possibly degenerated
in a crisp set). Our knowledge about the imprecise evaluation of P given uncertainty
D is summarised by the following lower and upper values [19, 20]:

�(P; D) = sup
x∈DX

min(μP (x), πD(x)), (1)

N (P; D) = inf
x∈DX

max(μP (x), 1 − πD(x)).

In the following, we will speak of evaluations of a fuzzy preference when talking
about the interval [N (P; D),�(P; D)].
Example 2 Consider the preference of Example 1, and a car for which the price
is known to belong to the interval [14, 500; 16, 000], with 15, 500 the most likely
value. Figure 2 illustrates both the preference and the knowledge about the price.
From this information, we have (using Eq. (1)) that

�(P; D) = 0.7 and N (P; D) = 0.55.

1

μNTE = μP

18,00014,000

πD

15,500

Π(P;D)= 0.7

N(P;D)= 5/9

1−πD

Fig. 2 Evaluation of a fuzzy preference with uncertain data
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2.2 Notations and Problem

The problem we consider is as follows: we assume that we have a database consisting
of a set T of T objects ot , t = 1, . . . , T , with each object taking its values on
the Cartesian product ×N

i=1 DXi of N domains DX1 , . . . , DX N . An object ot is here
described by a set of N possibility distributions π i

t , i = 1, . . . , N , where π i
t : DXi →

[0, 1] is the possibility distribution describing our knowledge about the value of the
i th attribute of object t . When DXi is finite, its elements are partially ordered in an
ontology according to the ‘kind of’ relation (classical finite sets are retrieved when
all elements are incomparable w.r.t. this order, see Sect. 2.3). We also assume that
the user provides the following information:

• a set C = {Ci1
1 , . . . , C

iNc
Nc

} of Nc constraints (Nc ≤ N ) to be satisfied by the

retrieved objects, where C
i j
j : DXi j

→ [0, 1] is a normalised fuzzy set defined on
the attribute i j (1 ≤ i j ≤ N ).

• a set W = {W i1
1 , . . . , W

iNw

Nw
} of Nw wishes (Nw ≤ N ) that the retrieved objects

should satisfy if possible, where W
i j
j : DXi j

→ [0, 1] is a normalised fuzzy set
defined on the attribute i j (1 ≤ i j ≤ N ).

• complete pre-orderings ≤c and ≤w between the constraints to be satisfied and
between the wishes, respectively. These pre-orderings take account of the fact
that some constraints may be considered as more important to satisfy than others
(and similarly for wishes). In the following, we denote by C(i) (resp. W(i)) the
constraints (resp. the wishes) that have rank i w.r.t. to the pre-ordering1 ≤c (resp.
≤w). We denote by | ≤c | and | ≤w | the total number of ranks (i.e., of equivalence
classes) induced by the two orderings.

Note that constraints and wishes may well be defined on the same attribute. For
example, having an acceptable price may be considered as a constraint, but since
a lower price (all other things being equal) is always preferable, lowering the price
may become a wish for prices lower than completely satisfying prices (in Example 1,
one can define a wish that would start from 14, 000 $).

The problem we consider now is how to retrieve from a set T of objects, those
that primarily satisfy the constraints, and among the latter, those that fulfill the most
wishes. Of course, the querying approach has to take account of the bipolar nature of
the information, of the possible uncertainty in the data, and of the user’s preferences
among the constraints and wishes. The next section presents how user preferences
are handled when defined over a domain of elements partially ordered by the “kind
of” relation. In this latter case, a special kind of fuzzy sets, called hierarchical fuzzy
sets, will be used.

1 Note that since ≤c and ≤w are complete pre-orderings, each constraint/wish has a well-defined
rank.
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2.3 Fuzzy Sets Defined on a Hierarchical Domain

The notion of hierarchical fuzzy set rose from our need to express fuzzy values
in the case where elements receiving a membership value are part of an ontology
domain (e.g., packaging material components). First (Sect. 2.3.1), a fuzzy set is cre-
ated directly by the user and defined on a part of the hierarchy (only some elements are
given membership values). Second, for reasons explained in Sect. 2.3.2, we extend
the fuzzy set to the whole hierarchy, thus obtaining the closure of the fuzzy set.
Section 2.3.3 defines how we extend the evaluation of fuzzy preferences when clas-
sic fuzzy sets are extended to hierarchical fuzzy sets.

2.3.1 Presentation

The definition domains of the fuzzy sets that we define below are subsets of hierar-
chies composed of elements partially ordered by the “kind of” relation, i.e. they are
defined over a subset B ⊆ DX of the domain of attribute X . An element x ∈ DX is
more general than an element x ′ ∈ DX (denoted x ′ ≺ x), if x ′ is a predecessor of x
in the partial order induced by the “kind of” relation (denoted ≺) of the hierarchy.
An example of such a hierarchy is given in Fig. 3. A hierarchical fuzzy set is then
defined as follows.

Definition 1 A hierarchical fuzzy set is a fuzzy set whose definition domain B ⊆
DX is a subset of the elements of a finite hierarchy partially ordered by the “kind
of” relation ≺.

Styrenic 
Resin

Polyolefin

Thermoplastic

Packaging

Cellulosic Plastic

Biopolymers

Polystyrene

Polyester

Polyethylen 
Naphthalate

Rubbers

Polyethylen 
Terephthalate

Low Density 
Polyethylene

Polypropylene

Polyvinyl 
Chloride

Cellophane 
Film

Polysaccharides

Proteins

Wheat
gluten

Cellulose
Starch Bilayer wheat 

gluten LDPE

Fig. 3 Example of a hierarchy
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Biopolymers Cellulose
0

0,9

1

Wheat gluten Biopolymers
0

0,9

1

HFS1 HFS2

Fig. 4 Fuzzy sets HFS1 and HFS2

For example, the fuzzy sets HFS1 and HFS2 represented in Fig. 4 conform to
Definition 1. Their definition domains are subsets of the hierarchy given in Fig. 3.

We can note that no restriction has been imposed concerning the elements that
compose the definition domain of a hierarchical fuzzy set and their membership
values. Therefore, the user may associate a given degree d with an element x and
another degree d ′ with an element x ′ more specific than x . d ′ ≤ d represents a
semantic of restriction for x ′ compared to x , whereas d ′ ≥ d represents a semantic
of reinforcement for x ′ compared to x .

For example, if there is particular interest in wheat gluten because the user
is studying the properties of wheat chain by-products to design packaging, but
also wants to retrieve complementary information about other kinds of biopoly-
mers, these preferences can be expressed using for instance the following fuzzy
set2: {(W heatgluten, 1), (Biopolymers, 0.9)}. In this example, the element Wheat
gluten has a larger degree than the more general element Biopolymers, which corre-
sponds to a semantic of reinforcement for Wheat gluten compared to Biopolymers.
On the contrary, if the user is interested in all kinds of biopolymers to design packag-
ing, but to a lesser extent in Cellulose because of its higher value to make bioethanol
rather than packaging, the preferences can be expressed using the following fuzzy
set: {(Biopolymers, 1), (Cellulose, 0.9)}. In this case, the element Cellulose has a
smaller degree than the more general element Biopolymers, which corresponds to a
semantic of restriction for Cellulose compared to Biopolymers.

2.3.2 Closure of a Hierarchical Fuzzy Set

We can make two remarks concerning the use of hierarchical fuzzy sets:

• the first one is semantic. Let {(Polysaccharides, 1), (Biopolymers, 0.9)} be an
expression of preferences in a query. We can note that this hierarchical fuzzy set
implicitly gives information about elements of the hierarchy other than Polysac-
charides and Biopolymers. For instance, it can be deduced that the user does not

2 Here, we adopt the usual notation (x, y) for specifying fuzzy sets over symbolic variables, where
(x, y) means that modality x has membership value y.
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expect results concerning packagings like Rubber or Polyolefin, even if the degree
0 has not explicitly been associated with these packagings. It is also possible to
assume that any kind of Polysaccharides (Cellulose and Starch for example) interests
the user with the degree 1;

• the second one is operational. The problem rising from Definition 1 is that two
different fuzzy sets on the same hierarchy do not necessarily have the same def-
inition domain, which means they cannot be compared using the classic com-
parison operations of fuzzy set theory (see for example Eq. (1)). For instance,
{(W heat gluten, 1), (Biopolymers, 0.9)} and {(Biopolymers, 1), (Cellulose, 0.9)} are
defined on two different subsets of the hierarchy of Fig. 3, respectively
{W heat gluten, Biopolymers} and {Biopolymers, Cellulose}, and thus are not com-
parable.

From these remarks can be defined the concept of closure of a hierarchical fuzzy set,
which is a developed form of the hierarchical fuzzy set defined on the whole hierarchy.
The closure of a hierarchical fuzzy set is computed by propagating the degree of an
element according to the “kind of” relation: the degree associated with an element
is propagated to its sub-elements (more specific elements) in the hierarchy, provided
the latter have no degree yet. For instance, in a query, if the user is interested in
the element Biopolymers, we consider that all kinds of Biopolymers—Polysaccharides,
Proteins, etc.—are of interest. On the other hand, we consider that the super-elements
(more general elements) of Biopolymers in the hierarchy— Thermoplastic, Packaging,
...—are too general to be relevant for the user’s query.

Definition 2 Let F be a hierarchical fuzzy set defined on a subset B of the elements of a
hierarchy DX . Its membership function is denoted μF . The closure+ and the closure− of
F, denoted μclos+(F) and μclos−(F), are two hierarchical fuzzy sets defined on the whole set
of elements DX .

For each element x of DX , let Ex = {x1, . . . , xn} be the set of the smallest super-elements
of x in B, i.e. elements such that for any i = 1, . . . , n, x 	 xi (x ∈ Ex if x ∈ B) and there is
no x ′ ∈ B such that x ≺ x ′ ≺ xi . Then:

• if Ex is not empty,

μclos+(F)(x) = max
1≤i≤n

(μF (xi )) (2)

and

μclos−(F)(x) = min
1≤i≤n

(μF (xi )); (3)

• otherwise μclos+(F)(x) = μclos−(F)(x) = 0.

In other words, the closure+ and the closure− of a hierarchical fuzzy set F are built
according to the following rules. For each element x of DX :

1. if x ∈ B, then x keeps the same degree in both closures of F , i.e., μclos+(F)(x) =
μclos−(F)(x) = μF (x) (case where Ex = {x});
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2. if Ex has a unique smallest super-element x1 in B, then the degree associated with
x1 is propagated to x in both closures of F , i.e., μclos+(F)(x) = μclos−(F)(x) =
μF (x1) (case where Ex = {x1} with x ≺ x1);

3. if x has several smallest super-elements {x1, . . . , xn} in B, with different degrees,
the proposition made in Definition 2 consists in choosing the maximal degree
associated with x1, . . . , xn in the closure+, and the minimal degree in the
closure−;

4. all the other elements of DX , i.e., those that are more general than, or not com-
parable with the elements of B according to ≺ are considered as non-relevant.
The degree 0 is associated with them (case where Ex = ∅).

Example 1 Figure5 shows the two closures of the hierarchical fuzzy set
{(W heatgluten, 1), (Biopolymers, 0.8), (Cellulose, 0.3), (LowDensity
Polyethylene, 0.2)}.

The use of both a permissive (closure+) and a restrictive (closure−) closure is
due to the bipolar nature of the preferences involved. In the case of a wish, Eq. (2)
ensures a semantic of reinforcement by the use of the max operator (i.e., an element
outside B is at least as desirable as its most desirable super-element in B), while the
use of min operator in Eq. (3) ensures a semantic of restriction for constraints (i.e., an
element outside B is at most as desirable as its least desirable super-element in B).

Styrenic 
Resin

Polyolefin

Thermoplastic

Packaging

Cellulosic Plastic

Biopolymers

Polystyrene

Polyester

Polyethylen 
Naphthalate

Rubbers

Polyethylen 
Terephthalate

Low Density 
Polyethylene

Polypropylene

Polyvinyl 
Chloride

Cellophane 
Film

Polysaccharides

Proteins

Wheat
gluten

Cellulose
Starch

0.8

1

0.3

0.8

0.8

0.8

0

0

0

0

0

0

0

0.2

0

0

0

0

0

0

Bilayer wheat 
gluten LDPE

0.2/1

Fig. 5 Closures of a hierarchical fuzzy set: closure+ and closure− only differ for the element
Bilayer wheat gluten LDPE for which μclos+(F)(x) = 1 and μclos−(F)(x) = 0.2
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2.3.3 Pattern Matching for Hierarchical Fuzzy Sets

Using the concept of closure, all fuzzy sets defined on a given hierarchy can be
extended to the same definition domain (the whole hierarchy DX ) and thus can be
compared using the classical comparisons and operations between fuzzy sets (e.g.,
those presented in Eq. (1)).

Similarly to preferences, our knowledge about data will usually be expressed on
a subset B of DX , here by a possibility distribution π (note that here, we assume that
the ontology structure and concepts are certain, only the actual value of some data on
this ontology is uncertain). Computing the closure of π over DX is slightly different,
as we do not consider bipolarity in the information (only negative information in the
form of π is given) and as the semantic of possibility distributions is different.

Let us define, for an element x ∈ DX , the set E(x) = {y1, . . . , ym} of the biggest
sub-elements of x in B, i.e. elements such that for any i = 1, . . . , m, yi ≺ x and there
is no y ∈ B such that yi ≺ y ≺ x . The closure clos(π)(x) of π is defined as follows:

• if x ∈ B, then clos(π)(x) = π(x);
• if Ex = {x1, . . . , xn} is not empty, then clos(π)(x) = max1≤i≤n(π(xi ));
• if Ex is empty and E(x) = {y1, . . . , ym} is not, then clos(π)(x) = max1≤i≤m(π(yi ));
• else clos(π)(x) = 0.

This procedure may give quite imprecise possibilities, but it corresponds to the desire
not to miss any interesting data. It is also consistent with usual procedures modi-
fying uncertainty models in the case of refinement or coarsening of an initial non-
hierarchical space (in the example of Fig. 4, Biopolymers can be seen as a coarsening
of the elements Polysaccahrides, Proteins and as an element of the refinement of
T hermoplastic).

Definition 3 Let π and F be two hierarchical fuzzy sets defined on the same hierarchy,
respectively defining some knowledge about the variable value and some preferences about
these values. Then:

1. the possibility degree of matching between π and F a positive preference (resp. a negative
one) �(π; F) is defined as
�(clos(π); clos+(F)) = supx∈DX

min(clos(π)(x), μclos+(F)(x))

(resp. �(clos(π); clos−(F)) = supx∈DX
min(clos(π)(x), μclos−(F)(x)));

2. the necessity degree of matching between π and F a positive preference (resp. a negative
one) , N (π; F), is defined as
N (clos(π); clos+(F)) = infx∈DX max(μclos+(F)(x), 1 − clos(π)(x))

(resp. N (clos(π); clos−(F) = infx∈DX max(μclos−(F)(x), 1 − clos(π)(x)))).

We will see in the next section how bipolar preferences, including positive and
negative preferences defined by hierarchical fuzzy sets, are used to query uncertain
data.
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2.4 From Bipolar Querying with Imprecise
Data to Answer Ordering

Previous sections have dealt with the problem of modeling and specifying bipolar
preferences and uncertain data over hierarchies defined by simple ontologies. We now
detail methods allowing the retrieval and ordering of answers from these preferences
and propose some elements explaining this ordering to the users.

2.4.1 Ordering Answers

As underlined by [1], when bipolar information concerns preferences, satisfying
constraints should be a primary aim, while satisfying wishes remains secondary. To
do this, a solution is to first retain all the objects that may satisfy the constraints,
order them w.r.t. the degree to which they satisfy these constraints, and then refine
this order by using degrees to which objects satisfy those wishes. If the user has
specified preferences between constraints (resp. between wishes)3, we also provide
a means to take these preferences into account.

We propose, for constraints C(i) of rank i , to summarise the way an object ot sat-

isfies these constraints by an aggregated interval [N (i)
t , �

(i)
t ]c given by the following

formula:

N (i)
t = �

C
jk
k ∈C(i)

N (C jk
k ; π

jk
t ), and �

(i)
t = �

C
jk
k ∈C(i)

�(C jk
k ;π

jk
t ), (4)

with N (C jk
k ; π

jk
t ), �(C jk

k ; π
jk

t ) given by Eq. (1) or definition 3 if the domain associated

with C jk
k is a hierarchy, and � a t-norm4 [23]. T-norms are conjunctive aggregation

operators and are chosen here for the reason that ALL constraints have to be satisfied
simultaneously. Here, we take � = min, the minimum operator.

Similarly, we build, for each W(i) and object ot satisfying the constraints, the

interval [N (i)
t , �

(i)
t ]w, such that

N (i)
t = ⊕

W
jk

k ∈W(i)
N (W jk

k ;π
jk

t ), and �
(i)
t = ⊕

W
jk

k ∈W(i)
�(W jk

k ; π
jk

t ), (5)

where ⊕ is an aggregation operator that can be a t-norm, an averaging operator such
as an OWA [32] operator or a t-conorm, depending on the behaviour we want to adopt
w.r.t. the satisfaction of wishes. Indeed, since satisfying wishes is not compulsory,
we can adopt different attitudes [1]. For instance, using a t-conorm means that we
are satisfied as soon as one wish is fulfilled, while using a t-norm means that we still

3 No preferences means here that all constraints (or wishes) have the same rank, i.e., are of equal
importance.
4 A T-norm � : [0, 1]2 to [0, 1] is an associative, commutative operator that has 1 for neutral element
and 0 for absorbing element.
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want all the wishes to be satisfied to increase our overall satisfaction. In this chapter,
we consider the latter case, and will take ⊕ = min.

It is necessary then to order objects that could satisfy the constraints and some
wishes, according to the previous evaluations. To do so, we will use a lexicographic
order and a dominance relation ≤[N (i),�(i)] between objects such that, for two interval

evaluations [N (i)
t , �

(i)
t ], [N (i)

t ′ ,�
(i)
t ′ ] related to objects ot and ot ′ and to a group of

constraints C(i) or a group of wishes W(i), ot ≤[N (i),�(i)] ot ′ if N (i)
t ≤ N (i)

t ′ and

�
(i)
t ≤ �

(i)
t ′ (with ot <[N (i),�(i)] ot ′ if at least one inequality is strict). That is, an

object ot ′ dominates another one ot if its satisfaction bounds are pair-wise higher than
the satisfaction bounds of ot . The lexicographic order is then used to take account
of the difference between negative and positive preferences and of the orderings ≤c

and ≤w (i.e. objects are first ordered using constraints of rank one, then two, …).
Note that, although ≤[N (i),�(i)] is a partial order, we will induce from it a complete

pre-order that refines ≤[N (i),�(i)], for the reason that users are more at ease with
complete orderings. However, we will use the fact that ≤[N (i),�(i)] is a partial order
to differentiate negative and positive preferences. The procedure consists in building
iteratively an ordered partition {T0, . . . ,TM } of T . Rejected objects that do not
satisfy all constraints are put in T0, while objects in TM can be considered as the
most satisfactory.

In a preliminary step, Algorithm 1 rejects those objects of T that do not at all
satisfy some constraints.

Algorithm 1: Determination of T0, the set of rejected objects which will not
belong to the query result

Input: The set of objects T = {o1, . . . , oT }
Output: Ordered partition{T0, T \ T0} of T
T0 = ∅;1
foreach ot ∈ T do2

if �
(i)
t = 0 for some i = 1, . . . , | ≤c | then3

T0 = T0 ∪ {ot } ;4

Algorithm 2 describes how results are ordered within a subset of T \ T0 (called
T ′), according to constraints of a given rank. The whole procedure consists in build-
ing a partition of T \T0. The partition is refined iteratively by applying, at every rank
i (i ∈ [1, | ≤c |]), Algorithm 2 within each equivalence class of objects obtained at the
previous rank i − 1. When i = 1, the unique initial equivalence class T ′ is T \T0. In
every run of Algorithm 2, equivalence classes {T ′

1 , . . . , T ′
n } are incrementally built,

starting from the worst (T ′
1 ) and ending with the best (T ′

n ). At each step, the objects
included and then suppressed from T ′ are those objects that do not dominate other
objects (line 4), in the sense of ≤[N (i),�(i)]. This means that objects with imprecise

evaluations (i.e., [N (i)
t ,�

(i)
t ] with larger width) will be in lower classes, along with

objects having low evaluations (i.e., low �
(i)
t ). This corresponds to a pessimistic
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attitude towards imprecision, since imprecise evaluations are associated with poorly
satisfying objects. Such an attitude is coherent with negative preferences, as the
possibility of not satisfying a constraint is penalised.

Algorithm 2: Query result ordering for constraints of rank (i)
Input: T ′ ⊆ T \ T0 with T ′ an element of the partition issued from rank (i − 1),

[N (i)
t ,�

(i)
t ]c for each ot ∈ T ′

Output: Ordered partition{T ′
1 , . . . , T ′

n } of T ′
K = T ′; j=1;1
while K �= ∅ do2

foreach ot ∈ K do3
if � ∃o j ∈ K s.t. ot ≥[N (i),�(i)] o j then4

Put ot in T ′
j5

K = K \ T ′
j ;6

j = j + 1;7

After having applied Algorithm 1 once and Algorithm 2 | ≤c | times, the complete
pre-order is further refined according to wishes by using Algorithm 3. There are two
main differences with Algorithm 1 and Algorithm 2. First, no objects are rejected,
as we are dealing with positive preferences (satisfying them is not compulsory).
Second, we start here from the best equivalence class and finish with the worst5, and
at each step the objects included and then suppressed from T ′ are those objects that
are not dominated by other objects (line 7), in the sense of ≤[N (i),�(i)]. Contrary to
Algorithm 2, objects with imprecise evaluations will be in the upper classes. This
corresponds to an optimistic attitude towards imprecision, which is coherent with
positive preferences, as it promotes the possibility of satisfying more wishes. Note
that inconsistency problems between positive and negative information [1] do not
occur here, since constraints and wishes are treated separately and lexicographically.

The knowledge uncertainty is fully acknowledged through the use of the partial
order ≤[N (i),�(i)] (which considers both end-points of intervals [N (i), �(i)]) in algo-
rithms 2 and 3 which allow us to make a clear distinction in the treatment of negative
and positive aspects of bipolar preferences. However, a possible drawback for huge
databases is the complexity that the use of these algorithms represents. Indeed, each
run of Algorithms 2 and 3 requires comparing each object with all the other objects
of a same equivalence class. If n objects have to be ordered, then in the worst case
(| ≤c |+| ≤w |)n2 comparisons are performed, assuming that no object strictly domi-
nates another for any rank of constraints or wishes. In the best case, i.e. when objects
are completely ordered after a first run, n2 comparisons have to be made. It must
be noted that n is reduced to |T \ T0| thanks to Algorithm 1. Such complexities are
quite acceptable for most databases, but could be problematic for databases counting
billions of objects. In such a case, it is possible to use other propositions presenting

5 The shift loop (Lines 3-5) is there to keep the same indexing of subsets T j
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Algorithm 3: Query result ordering for wishes of rank (i)
Input: T ′ ⊆ T \ T0 with T ′ an element of a partition issued from rank (i − 1),

[N (i)
t ,�

(i)
t ]w for each ot ∈ T ′

Output: Ordered partition{T ′
1 , . . . , T ′

m} of T ′
K = T ′; j=0;1
while K �= ∅ do2

for i = j, . . . , 1 (skip if j = 0) do3
T ′

j+1 = T ′
j4

T ′
1 = ∅;5

foreach ot ∈ K do6
if � ∃o j ∈ K s.t. ot ≤[N (i),�(i)] o j then7

Put ot in T ′
18

K = K \ T ′
1 ;9

j = j + 1;10

a lower complexity where object ordering is solely based on one of the two numbers
N (i) or �(i) [20]. However, using orderings based on single numbers means that the
imprecision in [N (i), �(i)] is not fully taken into account and some of the information
contained in the interval is lost.

Example 3 Let us consider a set T of six objects o1, . . . , o6, two ranks of constraints and only

one rank of wish. The intervals [N (i)
t , �

(i)
t ]c (i = {1, 2}) and [N (1)

t , �
(1)
t ]w are summarized

in Table 1.
Running Algorithm 1 gives T0 = {o4}. o4 is the only rejected object, because �

(2)
4 =

0, even if it satisfies rank one constraints necessarily to a high degree. After a first run of
Algorithm 2, we obtain the following partition:

T0 = {o4} < T1 = {o1, o6} < T2 = {o2, o3} < T3 = {o5}.

All elements potentially satisfy constraints in C(1) (although o6 does not necessarily satisfy
them). Note that o6, for which information is fully imprecise, is at the end of the ordering
(whereas it would have been at the front if we used Algorithm 3). Since there are two ranks
of constraints, a second run of Algorithm 2 gives

T0 = {o4} < T1 = {o6} < T2 = {o1} < T3 = {o2, o3} < T4 = {o5}.

Table 1 Example 3
evaluations for constraints
and wishes

[N (1)
t ,�

(1)
t ]c [N (2)

t ,�
(2)
t ]c [N (1)

t ,�
(1)
t ]w

o1 [0.1,0.4] [0.8,1] [1,1]
o2 [0.5,0.8] [0.5,0.6] [0.6,0.9]
o3 [0.3,1] [0.4,0.8] [0.2,0.5]
o4 [0.8,1] [0,0] [0.5,0.7]
o5 [1,1] [0.2,0.4] [0,0]
o6 [0,1] [0.6,0.9] [0.3,0.7]
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This second run refined the ordering between o1 and o6. Also note that the bad scores of o5
w.r.t. constraints of rank two do not change its order, due to the constraint preferences and the
use of a lexicographic order. Finally, a run of Algorithm 3 gives

T0 = {o4} < T1 = {o6} < T2 = {o1} < T3 = {o3} < T4 = {o2} < T5 = {o5}.

Note that o5 is not rejected, since satisfying wishes is not a requirement.

2.4.2 Explaining the Ordering

Answers provided by DSS, expert systems or multi-criteria decision making methods
can be hard to interpret for end-users. It is therefore useful to provide them with simple
and understandable (e.g., expressed in natural language) elements of explanation
[24].

We therefore propose such explanations of our ordering. As Algorithms 1- 3 use a
lexicographic ordering implicitly based on pair-wise comparisons, such explanations
can only concern a single rank of constraint or wish and will therefore remain simple.
These explanations can be stored in an n×n matrix Expl where the element Expl(�, k)

will contain the explanation of why object � has been judged better/worse than
object k. This matrix is somehow anti-symmetric, as the reason Expl(�, k) will be the
opposite of Expl(k, �). Note that we do not need to consider objects in T0, as such
objects will not be part of the answer received by the user.

Consider first Algorithm 2 and assume that we are running it on the i th rank of
constraints and that loop of lines 3-4 has just ended for the j th time (i.e., the set T ′

j
has just been built). Then, for each o�, ok such that o� ∈ T ′

j and ok ∈ K \ T ′
j , we

propose the following explanation in Expl(�, k):

• if N (i)
k > �

(i)
�

, then Expl(�, k) = {o� is judged worse than ok because it is certainly
worse on constraints of priority i , and they are indistinguishable on more important
constraints};

• else, Expl(�, k) = {o� is judged worse than ok because it is possibly worse on
constraints of priority i , and they are indistinguishable on more important con-
straints}.

Note that explanations make a distinction between the relation ≥[N (i),�(i)] and the
more constraining (but stronger) relation (known as interval dominance) that consists
in saying that ok > o� if and only if N (i)

k > �
(i)
�

.
Proposed explanations are similar for Algorithm 3, except that users should be

informed that wishes are now considered. Assume that we look at the i th rank of
wishes and that loop of lines 3-9 has just finished (the new set T ′

1 has just been built).
Then, for each o�, ok such that o� ∈ K \ T ′

1 and ok ∈ T ′
1 , we propose the following

explanation in Expl(�, k):
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• if N (i)
k > �

(i)
�

, then Expl(�, k) = {o� is judged worse than ok because it is certainly
worse on wishes of priority i , and both satisfy constraints in an indistinguishable
way};

• else, Expl(�, k) = {o� is judged worse than ok because it is possibly worse on
wishes of priority i , and both satisfy constraints in an indistinguishable way}.

For instance, in Example 3, the element Expl(6, 1) would have been “Object 6 is
judged worse than Object 1 because it is possibly worse on constraints of priority
2, and they are indistinguishable on more important constraints”. In practical appli-
cations, the names of attributes concerned by the constraints or wishes separating
two objects can be explicitly cited rather than giving ranks, as they will be more
meaningful to the user.

A possible inconvenience of this method is that values of Eq. (4) and (5) are
aggregated on many attributes, meaning that a detailed explanation on each attribute
of rank i cannot be given. Possible solutions to solve this issue are (1) to consider
complete orderings for ≤c and ≤w (i.e., | ≤c | = Nc and | ≤w | = Nw) or (2) to
use decision strategies not based on aggregated values (e.g., a voting rule on each
constraint/wish of the same rank).

3 A New Decision Support System for Food Packaging Design

In this section, we present a new decision support system (DSS) for fresh fruit and
vegetable packaging design in which the flexible bipolar querying approach plays a
central role. To the best of our knowledge, only one DSS for fresh fruits and vegeta-
bles packaging already exists (see [25]), but it does not take into account the criteria
ensuring a sustainable design (a critical issue in food science). Such a sustainable
design must satisfy, at least, three kinds of criteria: economic, environmental and
societal. An example of the economic aspect may be the cost of the packaging mate-
rial. Concerning environmental aspects, important criteria are the biodegradability
of the package or the optimization of product preservation at ambient temperature
(in order to decrease the use of the energy-greedy cold chain). Societal aspects can
concern the fact that consumers may reject the use of some additives or of nano-
technology in the packaging material because of the unknown consequences on their
health, or more simply they may prefer transparent rather than opaque packaging.

In our DSS, starting from a given fruit or vegetable, the user specifies his/her
needs in terms of several criteria (e.g., conservation temperature, transparency, mate-
rial cost, …) in order to determine a list of packaging. These types of packaging are
ordered according to their degree of satisfaction of the criteria. The bipolar approach
gives the user the possibility to specify in a flexible way what criteria must be con-
sidered as constraints and what other criteria will be used to refine the ranking of
packaging satisfying the constraints. Starting from the user specifications, a flexible
bipolar query is executed against a database containing information about packaging
materials. This information has been collected from different sources which may
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be technical descriptions of commercial packaging materials or data extracted from
scientific publications concerning new packaging materials. This information may
be uncertain, due to the variability of engineered packaging and the biological vari-
ability of vegetables. The bipolar approach proposed in this chapter deals with this
uncertainty. In Sect. 3.1, we present the global architecture of the DSS. A use case
concerning endive packaging will be presented in Sect. 3.2.

3.1 Decision Support System Architecture

Starting from the name of the vegetable/fruit of interest specified by the user (see
Fig. 6), the system scans in the first step the vegetable/fruit database in order to retrieve
the O2 respiration rate (and associated parameters) of the studied vegetable/fruit. In
the second step, the optimal O2 permeance6 of the targeted packaging is computed
thanks to a model of gas exchanges inside the package called PassiveMap (see [12]
for more details about the model). In the third step, using the targeted optimal O2
permeance and the other user requirements about criteria of various types (econom-
ical, environmental or societal), a query is executed against the packaging database
using the flexible bipolar querying engine, which is the central part of the DSS. A list
of packaging materials ordered according to the method presented in the previous
sections is finally presented to the user. The use case presented in the next section
focuses on the DSS flexible bipolar querying engine.

Fig. 6 Global architecture of
the DSS

Packaging
database

Vegetable
database

PassiveMap 
simulation

Flexible bipolar 
querying

User’s 
specif

Ranked list of 
pertinent

packagings

6 A measure of the ability of a package to conduct gas fluxes.
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3.2 Endive Packaging Use Case

In this section, we present a use case of the DSS concerning the choice of a
packaging material for endives. The user has to specify a set of parameters needed by
the DSS to determine the optimal O2 permeance of the targeted packaging: the mass
of the vegetable (500 grams), the surface, the volume and the thickness of the tar-
geted packaging (respectively 0.14 m2, 0.002 m3 and 5e-5 m), the shelf life of the
vegetable (7 days) and the storage temperature (20 ◦C). Using the O2 respiration
rate (and associated parameters) retrieved from the vegetable database, an optimal
O2 permeance of 3.65E-11 mol.m−2.s−1.Pa−1 is computed. The optimal permeance
and the temperature will be considered as criteria to scan the package database.

We consider in this use case that the user is also interested in two other criteria: the
biodegradability and the transparency of the package. An extract of the packaging
database content is presented in Tables 2 and 3 and will be used to illustrate the flexible
bipolar querying process. Note that imprecise data are here reduced to degenerated
possibility distributions (given by the min–max permeance span), since currently
there is no possibilistic uncertainty in the database (however, such uncertainty will
be integrated in future evolutions of the DSS including robust design methods [17]).

We will consider two examples of queries expressed by the user (in the current
case, they were given by one of the co-authors, V. Guillard). In the first one, the
user specifies one constraint and two wishes. The user first requires the package
to be transparent in order to be accepted by the consumer who wants to see the
endive through the package. It will be expressed as the first and unique constraint.
Concerning his/her wishes, the user would like to maximize the shelf life of the
product at an ambient temperature (and consequently to select a packaging whose
oxygen permeance is close to the optimal one). It will be expressed as the wishes,
here of equal rank.

Table 2 Permeance at a given temperature for an extract of the packaging database

oid Packaging type Permeancemin Permeancemax Temperature
(mol.m−2.s−1.Pa−1) (mol.m−2.s−1.Pa−1) (◦C)

o1 Polyolefin 1,29E-13 1,29E-13 23
o2 Polyolefin 4,05E-11 4,05E-11 23
o3 Cellophane 1,55E-14 1,55E-14 23
o4 Polyolefin 1,96E-11 2,39E-11 20
o5 Cellulose 1,55E-14 1,55E-14 23
o6 Polyester 4,46E-12 4,46E-12 23
o7 Polyolefin 1,50E-11 1,50E-11 23
o8 Polyester 1,55E-13 1,55E-13 23
o9 Polystyrene 1,03E-12 1,03E-12 23
o10 Polyester 6,23E-12 6,23E-12 23
o11 Wheat gluten 1,55E-11 1,67E-11 25
o12 PolyVinyl Chloride 7,47E-11 7,47E-11 25
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Table 3 Transparency and biodegradability for the same extract of the packaging database

oid PackagingType Transparency Biodegradability

o1 Polyolefin Transparent no
o2 Polyolefin Transparent no
o3 Cellophane Transparent yes
o4 Polyolefin Transparent no
o5 Cellulose Transparent yes
o6 Polyester Transparent yes
o7 Polyolefin Transparent no
o8 Polyester Translucent yes
o9 Polystyrene Translucent no
o10 Polyester Translucent yes
o11 Wheat gluten Translucent yes
o12 PolyVinyl Chloride Transparent no

In the second query, the user specifies two constraints and two wishes. To design a
sustainable package, the user expresses that the packaging must be biodegradable as
a first constraint (rank one) and must be made of renewable resources (i.e. constraint
of rank two on the packaging type). Then, the user expresses as first wish that the
packaging should be transparent in order to be accepted by the consumer and as
second wish that it should maximize the shelf life of the product at an ambient
temperature for economic reasons.

As already said in Sect. 2.1, the user preferences are, for each criterion, expressed
by a fuzzy set used as a general formalism which enables the representation of fuzzy,
interval or crisp values. Concerning the permeance criterion, 60 % of variation is
authorized around the optimal value computed by the PassiveMap subsystem, with
decreasing degrees of preferences. For the temperature, a total variation of 100 %
is authorized, with no preference for the different values. The fuzzy sets associated
with the permeance and temperature preferences are presented in Fig. 7.

The fuzzy set associated with the transparency (resp. biodegradability) criterion
is Pre ftransparency={(transparent,1),(translucent,0),(opaque,0)} (resp. the fuzzy set
Pre fbiodegradabili t y={(yes,1),(no,0)}). They correspond to crisp requirements pro-
vided by the user, as the concept of graded biodegradability made little sense to the
user, while translucency is not graded in our current data. The hierarchical fuzzy
set associated with the packaging type is Pre f packagingT ype={(Biopolymers,1)}.

3.65E-110

1

permeance

10 20 300

1

temperature

1.46E-11 5.84E-11

Fig. 7 Preferences for permeance and temperature
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Table 4 Evaluations for the
constraint and the wishes of
the first query

[N (1)
t ,�

(1)
t ]c [N (1)

t ,�
(1)
t ]w

o1 [1,1] [0,0]
o2 [1,1] [0,817,0,817]
o3 [1,1] [0,0]
o4 [1,1] [0,228,0,427]
o5 [1,1] [0,0]
o6 [1,1] [0,0]
o7 [1,1] [0,021,0,021]
o8 [0,0] [0,0]
o9 [0,0] [0,0]
o10 [0,0] [0,0]
o11 [0,0] [0,043,0,098]
o12 [1,1] [0,0]

It expresses that the user preferences are for renewable resources but without speci-
fying a specific type of biopolymer.

Using the notations introduced in Sect. 2.1, the first query is built as follows:
C(1) = {Pre ftransparency} and W(1) = {Pre f permeance, Pre ftemperature}.

Let us consider the set T = {o1, . . . , o12} of the twelve packages whose character-
istics are given in Tables 2 and 3 and whose evaluations for the constraint and wishes
of query 1 are given in Table 4 (as the two wishes are of the same rank, they have
been aggregated in [N (1)

t , �
(1)
t ]w according to Eq. (5)). After running Algorithm 1,

we obtain T0 = {o8, o9, o10, o11}. After running Algorithm 2 with C(1), we obtain the
following partition:

T0 = {o8, o9, o10, o11} < T1 = {o1, o2, o3, o4, o5, o6, o7, o12}.

After running Algorithm 3 with W(1), we obtain the following partition:

T0 = {o8, o9, o10, o11} < T1 = {o1, o3, o5, o6, o12} <

T2 = {o7} < T3 = {o4} < T4 = {o2}.

The second query is built as follows:
C(1) = {Pre fbiodegradabili t y}, C(2) = {Pre f packagingT ype}, W(1) =

{Pre ftransparency}, W(2) = {Pre f permeance, Pre ftemperature}. The first constraint is
judged more important than the second one: one wants biodegradable packaging to
preserve the environment (first constraint) which is sustainable, thus made of renew-
able resource (second constraint).The first wish is judged more important than the
second one: one wants transparent packaging to fulfill consumers’ preferences (first
wish) and optimized shelf life of the packed food thanks to a fine control of O2
permeance (second wish).
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Table 5 Evaluations for the constraints and the wish of the second query

[N (1)
t ,�

(1)
t ]c [N (2)

t ,�
(2)
t ]c [N (1)

t ,�
(1)
t ]w [N (2)

t ,�
(2)
t ]w

o1 [0,0] [0,0] [1,1] [0,0]
o2 [0,0] [0,0] [1,1] [0,817,0,817]
o3 [1,1] [0,0] [1,1] [0,0]
o4 [0,0] [0,0] [1,1] [0,228,0,427]
o5 [1,1] [1,1] [1,1] [0,0]
o6 [1,1] [0,0] [1,1] [0,0]
o7 [0,0] [0,0] [1,1] [0,021,0,021]
o8 [1,1] [0,0] [0,0] [0,0]
o9 [0,0] [0,0] [0,0] [0,0]
o10 [1,1] [0,0] [0,0] [0,0]
o11 [1,1] [1,1] [0,0] [0,043,0,098]
o12 [0,0] [0,0] [1,1] [0,0]

Consider again the set T of packages described in Tables 2 and 3 and whose eval-
uations for the constraints and the wish of query 2 are given in Table 5. After running
Algorithm 1, we obtain T0 = {o1, o2, o3, o4, o6, o7, o8, o9, o10, o12}. Packaging which
are not biodegradable have been discarded. Moreover, the hierarchical fuzzy set
associated with the packaging type, Pre f packagingT ype, permits to express a generic
constraint in a simple way: packaging which are not bio-sourced have been discarded
too. It must be noticed that the use of a classical fuzzy set for Pre f packagingT ype
instead of a hierarchical fuzzy set would have delivered an empty set of answers (all
the objects in T0) after running Algorithm 1. After the first run of Algorithm 2 with
C(1), we obtain the following partition:

T0 = {o1, o2, o3, o4, o6, o7, o8, o9, o10, o12} < T1 = {o5, o11}.

The second run of Algorithm 2 with C(2) ([N (2)
t , �

(2)
t ]c) keeps the partition

unchanged. After the first run of Algorithm 3 with W(1), we obtain the following
partition:

T0 = {o1, o2, o3, o4, o6, o7, o8, o9, o10, o12} < T1 = {o11} < T2 = {o5}.

The second run of Algorithm 3 with W(2) keeps the partition unchanged.
We can see with the result obtained for the second query, from which only two

results are retrieved, that the constraints may be very restrictive compared to the
content of the database. In those cases where no answer is found, we have proposed
in [16] an approach to provide to the users “best” answers among all the rejected
ones (i.e., answers that are the closest to satisfying the constraints).
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4 Related Works

There exist many works that propose to use fuzzy sets to introduce graded preferences
and possibility distributions to handle uncertainty in databases. Our work can be
related to these two complementary propositions.

The fuzzy set framework has been shown to be a sound scientific choice to model
flexible queries [4]. It is a natural way of representing the notion of preference using
a gradual scale. In [7], the semantics of a language called SQLf has been proposed to
extend the well-known SQL language by introducing fuzzy predicates processed on
crisp information. Other approaches have also been proposed to introduce preferences
into queries in the database community [8, 13, 22]. However, in all these approaches,
preferences are of the same nature. It is only recently that the concept of bipolarity
and its potential use in flexible queries has been studied [18, 21]. This extended
approach discriminates between two types of preferences, one acting as compulsory
constraints, the other acting as optional wishes. Several works have recently been
proposed in order to extend the relational algebra with this concept of bipolarity
[6, 5]or to propose a framework to deal with bipolarity in regular relational databases
[30]. It should be noticed that, to the best of our knowledge, the introduction in bipolar
flexible querying of preferences expressed on a hierarchical domain is an original
point of our approach.

The second proposition is to use possibility distributions (whose formalism is
mathematically equivalent to that of fuzzy set) to represent uncertain values [34].
Several authors have developed this approach in the context of databases [2, 3, 10, 26,
27, 29]. To the best of our knowledge, the only other work dealing with the concept
of bipolarity in flexible querying of databases including uncertain values, outside
some research perspectives in [21], is that of G. De Tré et al. [31]. However, they
deal with a different aspect of bipolar preferences, as they mainly consider the use
of interval-valued fuzzy sets (or similar models) to cope with imprecisely defined
preferences, and treat positive and negative preferences in a common framework,
rather than considering them separately (as we do here).

5 Conclusion and Perspectives

In this Chapter, we have introduced a method for querying a database when prefer-
ences are bipolar (contains both constraints and wishes), data are uncertain and can
be expressed on a hierarchical domain. We use fuzzy sets and possibility distributions
to model preferences and uncertainty, respectively.

Using basic tools to evaluate query satisfaction, we have proposed methods allow-
ing us to (1) extend fuzzy sets to hierarchical fuzzy sets which put in adequacy
two order relations (the preference order relation and the ‘kind of’ relation) to per-
mit a query enlargement (2) consider orderings between constraints or wishes and



8 Flexible Bipolar Querying of Uncertain Data Using an Ontology 187

(3) pre-order the results according to the bipolar preferences, thus presenting a list
of equivalence classes to the user.

The proposed approach is applied in a real-case problem, and is included in a
new support decision tool aiming at designing (optimal) packages for fresh fruits
and vegetables.

Concerning the method, perspectives include the handling of more generic kinds
of uncertainty models [14, 15] that could be included in the database, as well as
methods that would allow to extract information concerning packages from the web
automatically [9], since manually entering this information is time-consuming and
can only be done by an expert.

Concerning the support decision tool, we are planning to link it with a preliminary
step which will combine preferences expressed by the actors of the food packaging
chain, which can be potentially in conflict, using argumentation methods.

Acknowledgments The research leading to these results has received funding from the European
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265669-EcoBioCAP project.
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