Chapter 5
On the Top-k Retrieval Problem
for Ontology-Based Access to Databases

Umberto Straccia

Abstract The chapter is a succinct summary on the problem of evaluating ranked
top-k queries in the context of ontology-based access over relational databases. An
ontology layer is used to define the relevant abstract concepts and relations of the
application domain, while facts with associated score are stored into a relational data-
base. Queries are conjunctive queries with ranking aggregates and scoring functions.
The results of a query may be ranked according to the score and the problem is to
find efficiently the top-k ranked query answers.

1 Introduction

Managing uncertainty and fuzziness is starting to play an important role in Semantic
Web (SW) research, and has been recognised by a large number of research efforts
in this direction (see, e.g., [59, 62] for a concise overview).

We recall for the inexpert reader that there has been a long-lasting misunderstand-
ing in the literature of artificial intelligence and uncertainty modelling, regarding the
role of probability/possibility theory and vague/fuzzy theory. A clarifying chapter
is [21]. Specifically, under uncertainty theory fall all those approaches in which state-
ments rather than being either true or false, are true or false to some probability or
possibility (for example, “it will rain tomorrow”). That is, a statement is true or false
in any world/interpretation, but we are “uncertain” about which world to consider
as the right one, and thus we speak about e.g. a probability distribution or a pos-
sibility distribution over the worlds. On the other hand, under fuzzy theory fall all
those approaches in which statements (for example,“the hotel is cheap”) are true to
some degree, which is taken from a truth space (usually [0, 1]). That is, an interpre-
tation maps a statement to a truth degree, since we are unable to establish whether a
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statement is entirely true or false due to the involvement of vague concepts, such as
“cheap” (we cannot always say whether a hotel is cheap or not). Here, we will focus
on fuzzy logic only.

In the SW, the standard Semantic Web Languages (SWLs) such as triple languages
RDF & RDEFS [9], conceptual languages or frame-based languages of the OWL 2
family [43] and rule languages such as RIF [50] are playing a dominant role. It
also emerges that often in SW contexts, data are typically very large and dominate
the intentional level of the ontologies. Hence, in that case one could still accept
reasoning, specifically query answering, that is exponential on the intentional part,
but it is mandatory that reasoning and query answering is polynomial in the data size,
i.e. in data complexity [67].

In this chapter, we will briefly discuss arelatively novel issue for SWLs with ahuge
data repository, namely the problem of evaluating ranked top-k queries. Usually, an
answer to a query is a set of tuples that satisfy a query. Each tuple does or does not
satisfy the predicates in the query. However, very often the information need of a user
involves so-called fuzzy predicates [32]. For instance, a user may need: “Find cheap
hotels near to the conference location”. Here, cheap and near are scoring predicates.
Unlike the classical case, tuples satisfy now these predicates to a degree. In the former
case the degree depends, e.g., on the price, while in the latter case it depends e.g. on
the distance between the hotel location and the conference location. Therefore, a
major problem we have to face with in such cases is that now an answer is a set
of tuples ranked according to their degree. This poses a non-negligible challenge in
case we have to deal with a huge amount of data records. Indeed, virtually every tuple
may satisfy a query with a non-zero degree and, thus, has to be ranked. Computing
all these degrees, ranking them and then selecting the top-k ones is not feasible in
practice for large size databases [32].

While there are many works addressing the top-k problem for vague queries in
databases (cf. [10, 14, 22, 23, 30, 31, 34, 35, 39)), little is known for the corre-
sponding problem in knowledge representation and reasoning and specifically for
SWLs. For instance, [68] considers non-recursive logic programs in which the score
combination function is a function of the score of the atoms in the body. The work
[55] considers non-recursive logic programs as well, though the score combination
function is more expressive and may consider so-called expensive fuzzy relations
(the score may depend on the value of an attribute, see [14]). However, a score com-
bination function is allowed in the query rule only. We point out that in the case
of non-recursive rules, we may rely on a query rewriting mechanism, which, given
an initial query, rewrites it, using rules and/or axioms of the KB, into a set of new
queries until no new query rule can be derived (this phase may require exponential
time relative to the size of the KB, but is polynomial in the size of the facts). The
obtained queries may then be submitted directly to a top-k retrieval database engine.
The answers to each query are then merged using the disjunctive threshold algo-
rithm (DTA) given in [55]. The works [54, 56, 58, 63] (see also [61]) address the
top-k retrieval problem for the description logic DL-Lite/DLR-Lite [7, 12], though
recursion is allowed among the axioms. Again, the score combination function may
consider expensive fuzzy relations. However, a score combination function is allowed
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in the query only. The work [60] shows an application of top-k retrieval to the case
of multimedia information retrieval by relying on a fuzzy variant of DLR-Lite. [57]
addresses the top-k retrieval for general (recursive) LPs and is closest to this work.
[37] slightly extends [57] as it allows also DLR-Lite axioms to occur and tries to
rely as much as possible on current top-k database technology. However, these two
works exhibits incorrect algorithms, which have been corrected in [64]. In this lat-
ter work, it is additionally shown that we can smoothly extend the top-k problem
to the top-k-n problem. This latter problem has been shown to be fundamental in
electronic Matchmaking [47, 48]. Moreno et al. [45] uses a threshold mechanism in
the query for reducing the amount of computation needed to answer a propositional
query in a tabulation-based procedure for propositional multi-adjoint logic programs
and, thus, does not address the top-k retrieval problem. Chortaras et al. and Damasio
et al. [15, 16, 18, 19] propose query answering procedures, which are based on
unification to compute answers, but do not address the top-k retrieval problem. It is
unclear yet whether unification-based query driven query answering procedures can
be combined with a threshold mechanism in such a way to compute top-k answers.

In this chapter, we will provide the basic notions and salient references to be
known concerning the top-k retrieval problem for Semantic Web languages.

In the following, we will proceed as follows. We overview briefly SWLs and
relate them to their logical counterpart. Then, we briefly sketch a general frame-
work for ontology-based access to databases, the related top-k retrieval problem and
algorithmic solutions to this problem.

2 Semantic Web Languages: Overview

Semantic Web Languages (SWL) are standard languages used to provide a formal
description of concepts, terms, and relationships within a given knowledge domain.
There are essentially three family of languages: namely, triple languages RDF &
RDFS [9] (Resource Description Framework), conceptual languages of the OWL 2
family (Ontology Web Language) [43] and rule languages of the RIF family (Rule
Interchange Format) [50]. While their syntactic specification is based on XML [69],
their semantics is based on logical formalisms, which will be the focus here: briefly,

e RDFS is a logic having intensional semantics and the logical counterpart is
pdf [41].

e OWL 2 is a family of languages that relate to Description Logics (DLs) [7].

e RIF relates to the Logic Programming (LP) paradigm [36].

e Both OWL 2 and RIF have an extensional semantics.

1 By purpose we will neglect the details of these works (including description of algorithms and
implementations).
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2.1 RDF and RDFS

The basic ingredients of RDF are triples, which are of the form

(S7 pa 0) k)

such as (umberto, likes, tomato), stating that subject s has property p with value
0. In RDF Schema (RDFS), which is an extension of RDF, additionally some spe-
cial keywords (subclass, subproperty, property domain and range and instance of
specifications) may be used as properties to further improve the expressivity of the
language. For instance we may also express that the class of tomatoes is a subclass
of the class of vegetables’, (fomato, SC, vegetables), while Zurich is an instance of
the class of cities, (zurich, type, city).

From a computational point of view, one computes the so-called closure (denoted
cl(X)) of a set of triples .%#". That is, one infers all possible triples using inference
rules [40, 41, 49], such as

(A, sc, B), (X, type, A)
(X, type, B)

if A subclass of B and X instance of A then infer that X is instance of B,

and then store all inferred triples into a relational database to be used then for query-
ing. Note that making all implicit knowledge explicit is viable due to the low com-
plexity of the closure computation, which is &'(|.#'|?) in the worst case.

2.2 OWL Family

The Web Ontology Language OWL [42] and its successor OWL 2 [17, 43] are “object
oriented” languages for defining and instantiating ontologies. An OWL ontology may
include descriptions of classes, properties and their instances, such as

class Personpartial Human
restriction (hasName somevValuesFrom String)

restriction (hasBirthPlace somevaluesFrom Geoplace)

The class Person is a subclass of class Human and has two attributes: hasName having a
string as value, and hasBirthPlace whose value is an instance of the class Geoplace.

Given such an ontology, the OWL formal semantics specifies how to derive its logical
consequences. For example, if an individual Peter is an instance of the class Student,
and Studentis a subclass of Person, then one can derive that Peter is also an instance
of Person in a similar way as it happens for RDFS. However, let us note that OWL
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is more expressive than RDFS, as the decision problems for OWL are in higher
complexity classes [46] than for RDFS.

OWL 2 [17, 43] is an update of OWL 1 adding several new features, including an
increased expressive power. OWL 2 also defines several OWL 2 profiles, i.e. OWL
2 language subsets that may better meet certain computational complexity require-
ments or may be easier to implement. The choice of which profile to use in practice
will depend on the structure of the ontologies and the reasoning tasks at hand. The
OWL 2 profiles are:

OWL 2 EL. It is particularly useful in applications employing ontologies that
contain very large numbers of properties and/or classes (basic reasoning prob-
lems can be performed in time that is polynomial with respect to the size of the
ontology [4]). The EL acronym reflects the profile’s basis in the &.Z family of
description logics [4].

OWL 2 QL. Itis aimed at applications that use very large volumes of instance
data, and where query answering is the most important reasoning task. In OWL
2 QL, conjunctive query answering can be implemented using conventional rela-
tional database systems. Using a suitable reasoning technique, sound and com-
plete conjunctive query answering can be performed in LOGSPACE with respect
to the size of the data (assertions) [3, 13]. The QL acronym reflects the fact that
query answering in this profile can be implemented by rewriting queries into a
standard relational Query Language such as SQL [66].

OWL 2 RL. It is aimed at applications that require scalable reasoning with-
out sacrificing too much expressive power. OWL 2 RL reasoning systems can be
implemented using rule-based reasoning engines as a mapping to Logic Program-
ming [36], specifically Datalog [66], exists. The RL acronym reflects the fact that
reasoning in this profile can be implemented using a standard rule language [24].
The computational complexity is the same as for Datalog [20] (polynomial in the
size of the data, EXPTIME w.r.t. the size of the knowledge base).

2.3 RIF Family

The Rule Interchange Format (RIF) aims at becoming a standard for exchanging
rules, such as

Forall?Buyer ?tem ?Seller
buy(?Buyer ?Item ?Seller): —sell(?Seller ?Item ?Buyer)

Someone buys an item from a seller if the seller sells that item to the buyer

among rule systems, in particular among Web rule engines. RIF is in fact a family
of languages, called dialects, among which the most significant are:
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RIF-BLD. The Basic Logic Dialect is the main logic-based dialect. Techni-
cally, this dialect corresponds to Horn logic with various syntactic and semantic
extensions. The main syntactic extensions include the frame syntax and predi-
cates with named arguments. The main semantic extensions include datatypes
and externally defined predicates.

RIF-PRD. The Production Rule Dialect aims at capturing the main aspects of
various production rule systems. Production rules, as they are currently practiced
in mainstream systems like Jess” or JRules,’ are defined using ad hoc computa-
tional mechanisms, which are not based on a logic. For this reason, RIF-PRD is
not part of the suite of logical RIF dialects and stands apart from them. However,
significant effort has been extended to ensure as much sharing with the other
dialects as possible. This sharing was the main reason for the development of the
RIF Core dialect;

RIF-Core. The Core Dialect is a subset of both RIF-BLD and RIF-PRD, thus
enabling limited rule exchange between logic rule dialects and production rules.
RIF-Core corresponds to Horn logic without function symbols (i.e., Datalog)
with a number of extensions to support features such as objects and frames as in
F-logic [33].

RIF-FLD. The Framework for Logic Dialects is not a dialect in its own right,
but rather a general logical extensibility framework. It was introduced in order
to drastically lower the amount of effort needed to define and verify new logic
dialects that extend the capabilities of RIF-BLD.

3 Ontology-Based Databases

We illustrate here a simple, though general enough framework to present the top-k
retrieval problem for the various SWLs sketched in the previous section.
To start with, the scoring space is the set (n positive integer)

1 n—2
Ln= 0,_,..., ,1 .
n n—1

Then a Knowledge Base (KB) % = (%, O, /) consists of a facts component .7 ,
an Ontology component O and an mapping component ./ , which are defined below.
Informally, the facts component is the relational database in which the extensional
data is stored, the ontology component is the intentional level and describes the
important relations about the world we are modelling and the mapping component
defines the bridge between the low-level database schema vocabulary and the abstract
ontology vocabulary. While the facts and mapping component is syntactically equal
for all SWLs, the ontology component is language dependent. The same applies for

2 http://www.jessrules.com/
3 http://www.ilog.com/products/jrules/
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the query language. It is also assumed that relations occurring in .% do not occur in
O (so, we do not allow that database relation names occur in ).

3.1 The Facts Layer

Z1s a finite set of expressions of the form

R(ci,...,cp):i s,
where R is an n-ary relation, every c¢; is a constant, and s is a degree in L.
For each relation R, we represent the facts R(c1, ..., c,): s in % by means of a
relational n + 1-ary table Tk, containing the records {(c, ..., ¢;, s). We assume that
there cannot be two records (cy, ..., ¢y, s1) and {(cy, ..., ¢y, $2) in T with 51 # s

(if there are, then we remove the one with the lower degree). Each table is sorted
in descending order with respect to the degrees. For ease, we may omit the degree
component and in such case the value 1 is assumed.

3.2 The Mapping Layer

The mapping component is a set of “mapping statements” that allow to connect
classes and properties to physical relational tables. Essentially, this component is
used as a wrapper to the underlying database and, thus, prevents that relational table
names occur in the ontology. Formally, a mapping statement (see [63]) is of the form

R (c1,...,¢n): Cscore-sql

where sq/ is a SQL statement returning n-ary tuples (cy, ..., c,) (n = 1,2) with
score determined by the c¢score column. The tuples have to be ranked in decreasing
order of score and, as for the fact component, we assume that there cannot be two
records (¢, s1) and (¢, s7) in the result set of sql with s; # s> (if there are, then we
remove the one with the lower score). The score c¢score may be omitted and in that
case the score 1 is assumed for the tuples. We assume that R occurs in &, while all
of the relational tables occurring in the SQL statement occur in .%.

3.3 An RDFS Ontology Layer

The ontology component is used to define the relevant abstract concepts and relations
of the application domain by means of axioms and defines the so-called intentional
level. To what concerns us here, we will consider the essential features of RDFS only
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and follow [25, 40, 41] by considering the “core” part of RDFS, called pdf [41] (read
rho-df, the p from restricted RDF). Specifically, & is a finite set of axioms having
the form

(s, p,0),
where p is a property that may belong to pdf ~:
pdf ™ = pdf \ {type} = {sp, sc, dom, range} ,

The keywords in pdf ~ may be used in triples as properties. Informally,

e (p, Sp, g) means that property p is a sub-property of property q;
e (c, SC,d) means that class c is a subclass of class d;

e (p,dom, c¢) means that the domain of property p is c; and

e (p, range, c¢) means that the range of property p is c.

Note that we don’t allow the use of pdf triples of the form (a, type, b) with meaning
“a is of type b* in the intentional level.

3.4 An OWL 2 Ontology Layer

The OWL 2 ontology layer & consists of a finite set of OWL 2 class and property
axioms (see, [43]) of the form

where C, D are OWL 2 classes (concepts) and R and P are OWL 2 properties . The
intuition of an axiom of the form C T D (resp. R CT P) is that any instance of
class C (resp. role R) is an instance of class D (resp. P) as well. For computational
reasons (to have a query answering procedure that is worst case polynomial), we will
consider here specifically the case of the logical counterpart of the three main OWL
2 profiles, namely OWL 2 EL, OWL 2 QL and OWL 2 RL only.

3.4.1 The Case of OWL 2 EL
The importance of the &% DL family [4, 6, 26] is due to the fact that it is the logical

counterpart of the OWL 2 EL profile [44], i.e. OWL 2 EL constructs can be mapped
into the DL &.2 7 (d). We recall that it enables polynomial time algorithms for all
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the standard reasoning tasks* and, thus, it is particularly suitable for applications
where very large ontologies are needed.

For illustrative purposes, we consider here the following sublanguage of
&L (d) together with its FOL reading [4—6]:

Concept expressions FOL-reading

A A(x)
cnbD C(x) A D(x)
3R.C dy.R(x,y) A C(x)
Axioms FOL-reading
CCD Vx.C(x) = D(x)

RioRyC R VxVyVz.R1(x,z) A Ra(z,y) = R(x,y)
dom(R)C C Vx.R(x,y) = C(x)
ran(R) C C Vy.R(x,y) = C(y)

ref(R) Vx.R(x, x).

3.4.2 The Case of OWL 2 QL

The importance of the DL-Lite DL family [3, 11-13] is due to the fact that it is the
logical counterpart of the OWL 2 QL profile [44], i.e.OWL 2 QL constructs can be
mapped into the DL DL-Liteg (d), which, we recall, was designed so that sound and
complete query answering is in LOGSPACE (more precisely, in AC?) with respect to
the size of the data, while providing many of the main features necessary to express
conceptual models such as UML class diagrams and ER diagrams.

We next recap succinctly the DL-Lite DL family [13]. We start with the language
DL-Lite,,. that is the core language for the whole family. Concepts and roles are
formed according to the following syntax (A is an atomic concept, P is an atomic
role and P~ is its inverse):>

B— A|3R
C — B|—-B
R— P | P~
E— R|—R.

B denotes a basic concept, that is, a concept that can be either an atomic concept or
a concept of the form IR, where R denotes a basic role, that is, a role that is either
an atomic role or the inverse of an atomic role. C denotes a concept, which can be
a basic concept or its negation, whereas E denotes a role, which can be a basic role
or its negation. Sometimes we write =C (resp., —E) with the intended meaning that

4 That is, the ontology satisfiability problem, the subsumption problem and the instance checking
problem.

3 The FOL-reading of concept 3R is: set of x such that 3y.R(x, ).
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—C =—-AifC = A (resp., " E = —-Rif E = R),and =C = A, if C = —A (resp.,
—E = R,if E==R).°
Inclusion axioms are of the form

BEC

We might include B LI B> (FOL-reading: set of x such that Bi(x) VvV B>(x)) in the
constructs for the left-hand side of inclusion axioms and Ci M C; in the constructs
for the right-hand side. In this way, however, we would not extend the expressive
capabilities of the language, since these constructs can be simulated by considering
that By U By C C is equivalent to the pair of assertions B; C C and B, C C, and
that B © C 11 Cy is equivalent to By © Cy and B C C,. Similarly, we might add L
to the constructs for the left-hand side and T to those for the right-hand side.

Eventually, DL-Liter is now obtained by extending DL-Lite .. with the ability
of specifying inclusion axioms between roles of the form

RCE.

where R and E are defined as above.

3.4.3 The Case of OWL 2 RL

The importance of the Horn-DL family [24, 65] is due to the fact that it is the
logical counterpart of the OWL 2 RL profile [44], i.e.OWL 2 RL constructs can be
mapped into Horn-DL. This is achieved by defining a syntactic subset of OWL 2,
which is amenable to implementation using rule-based technologies. Essentially, the
restrictions are designed so as to avoid the need to infer the existence of individuals not
explicitly present in the knowledge base, and to avoid the need for nondeterministic
reasoning. Here we report a subset of the DL specification of OWL 2 RL. Specifically,
concepts are formed according to the following syntax (the FOL-reading of concept
VR.C is: set of x such that Vy.R(x, y) = C(y)):

B—> A|BiNBy| BiuB,|3R.B
C—> A|CiNCy|—B|VR.C|
R—s P| P

Inclusion axioms have the form

© Of course, for any interpretation .#, (=R)* = A¥ x A \ R
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B CC
Ry C R
R =Ry

dom(R) CC
ran(R) cCC
RoRCR.

3.5 A RIF Ontology Layer

A RIF ontology layer & consists of a finite set of RIF rules. For illustrative purposes,
we consider here RIF-Core rules only and recall that RIF-Core corresponds to Horn
logic without function symbols (i.e., Datalog [66]) with a number of extensions to
support features such as objects and frames as in F-logic [33]. To what concerns us,
arule is of the form

p(x) < Jy.ox,y),

where ¢(Xx,y) is a conjunction7 of n-ary predicates p;(z;) and z; is a vector of
distinguished or non-distinguished variables. Specifically, we say that p(x) is the
head and Jy.(X, y) is the body of the rule, x is a vector of variables occurring in the
body, called the distinguished variables, y are so-called non-distinguished variables
and are distinct from the variables in X, each variable occurring in p; is either a
distinguished or a non-distinguished variable. If clear from the context, we may omit
the existential quantification dy. The intended meaning of a rule such as (3.5) is that
the head p(x) is true whenever the body Jy.p (X, y) is true.

4 Top-k Queries

Having defined how extensional data (a database) and intentional data (an ontology)
may be represented, it remains to define how we may query the data. To this end, we
define the notion of conjunctive query, which is at the heart of the standard Semantic
Web query language SPARQL [52, 53]. Strictly speaking, SPARQL is a query
language for data that is stored natively as RDFS or viewed as RDF via middleware.
From a logical point of view, its logical counterpart are the well-known notions of
conjunctive/disjunctive queries. As such, we may see SPARQL essentially as a query
language for databases and, indeed, has much in common with SQL.

While SPARQL has originally been proposed to query RDFS graphs only, in the
meanwhile, by relying on the representation of OWL and RIF in RDFS, SPARQL
is being used to query OWL 2 and RIF ontologies as well, via the definition of
the so-called entailment regimes. In fact, what correct answers to a SPARQL query

7 We use the symbol *,” to denote conjunction in the rule body.
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are depends on the used entailment regime [51] and the vocabulary from which the
resulting answers can be taken.

To what concerns our presentation here, we will consider the essential logical
counterpart of SPARQL: namely, conjunctive queries. Specifically, a simple query
is of the rule-like form

q(x) < 3Jy.o(x,y)

where ¢(X, y) is aconjunction of atoms whose notion is SWL dependent. Specifically,
For RDFS, an atom is a triple in which variables and constants may occur; for OWL
2, an atom is n-ary FOL atom (n = 1, 2) in which variables and constants may occur;
while for RIF, an atom is an n-ary FOL atom in which variables and constants may
occur.

We additionally allow built-in atoms involving build-in predicates (properties)
having a fixed interpretation. For instance, an RDFS query is

q(x1,x2) < (x, worksFor, google), (x, hasSalary, s), (s, <, 23000)

and is asking for Google employees earning less than 23000. Here < is a build-in
predicate.

For convenience, we write “functional built-in predicates”8 as assignments of the
form x: = f(z).

As next, we extend the query language by allowing so-called aggregates to occur
in a query. Essentially, aggregates may be like the usual SQL aggregate functions
such as SUM, AVG, MAX, MIN.

For instance, suppose we are looking for employees that work for some company.
We would like to know the average salary of their employment. Such a query may
be expressed as

q(x,avgS) < (x,worksFor,y), (x, hasSalary,s),
GroupedBy (x),
avgS: =AVG([s] .

Essentially, we group by the employee, consider for each employee the salaries, and
compute the average salary value for each group. That is, if g = {(¢, t1), ..., (¢, tx)}
is a group of tuples with the same value ¢ for employee x, and value #; for s, then the
value of avg L for the group g is (3, 1;)/n.

Formally, let @ be an aggregate function with

@ e {SUM, AVG, MAX, MIN, COUNT}

then a query with aggregates is of the form

8 A predicate p(x, y) is functional if for any t there is unique t' for which p(t, t') is true.
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q(x, @) < Jy.oX,y),
GroupedBy(w), (1

a:=@[f(z)]

where w are variables in x or y, each variable in X occurs in w and any variable in z
occurs in y.

Eventually, we further allow to order answers according to some ordering func-
tions. For instance, assume that additionally we would like to order the employee
according to the average salary of employment. Then such a query will be expressed

as
q(x,avgS) < (x,worksFor,y), (x, hasSalary, s),

GroupedBy(x),
avgS: =AVG[s],
OrderBy(avgs) .

Formally, a query with ordering is of the form
q(x,z) < 3y.p(x,y), OrderBy(z)
or, in case grouping is allowed as well, it is of the form

q(x,z,a) < Jy.p(x,y),
GroupedBy(w),
a:=@[f(z)],
OrderBy(z) .

@)

Eventually, we define a top-k query as a query limiting the result to the top-k
scoring answers, i.e.
q(x,z, ) < Jy.o(x,y),
GroupedBy(w),
a:=@[f(2)], 3)
OrderBy(z),
Limit(k)

We refer the reader to e.g. [2] for an exact formal definition in case of RDFS, to [63]
for the case of OWL 2 and to [64] for the case of RIF.

5 Top-k Query Answering Methods

Having now illustrated what a top-k query is, it remains to illustrate the basic methods
in computing the top-k answers efficiently. The methods depend on the chosen SWL.
In the following, let % = (%, O, .#) be a KB.
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5.1 The RDFS Case

So far, we have here essentially two options. The first option is as follows.

1. Convert all facts in .% into a set T# of triples, by using the mapping layer .Z .
Consequently, # = (%, U, /') can be mapped into a pure RDFS triple set

Ty=0UTgz,

called RDFS graph, which has the same order of size.

2. Given Ty, we then compute its closure c/(T ), whose size is bounded by
O(T x |2) and store it into a relational database. Note that there are several ways
to store the closure in a database (see [1, 28]). Essentially, either we may store
all the triples in table with four columns subject, predicate, object, score, or we
use a table for each predicate, where each table has columns subject, object,
score. The latter approach seems to be better for query answering purposes.
Top-k query answering for RDFS reduces then to top-k query answering over
relational databases for which efficient solutions exists already.

Another option consists in using top-k retrieval technologies for rule-based KBs and
is defined as follows.

1. Compute the closure c/(0) of 0.
2. Map all the triples in ¢/(€) into Datalog rules using e.g. the mapping rules below
(see also e.g. [27-29])

(p.sp,q) — q(x) < p(x)
(c,sC,d) — d(x) < c(x)
(p,dom, ¢) = c(x) < p(x,y)
(p,range, c) > c(y) < p(x,y).
obtaining the rule layer & . Let #7 = (%, Oy, .#) be the resulting rule-

based KB.
3. Apply a top-k procedure for rule-based KBs to 7 (see, e.g. [64] and Sect. 5.3).

5.2 The OWL 2 Profile Cases

5.2.1 OWL EL

An option consists in relying on the query reformulation method proposed in [38]
to answer conjunctive queries by making use of standard relational database man-
agement systems (RDBMSs), and has some commonalities to the OWL QL case
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(next section). The central idea is to incorporate the consequences of ¢ into the facts
component .7 .

To capture this formally, the notion of combined first-order (FO) rewritability
has been introduced. A DL enjoys combined FO rewritability if it is possible to
effectively rewrite

1. % and 0 into an FO structure (independently of the query ¢); and

2. ¢ and (possibly) € into a FO query ¢’ (independently of .%#) such that query
answers are preserved, i.e., the answers to g’ over the FO structure is the same
as the answers to ¢ over .% and O .

The connection to RDBMSs then relies on the well-known equivalence between FO
structures and relational databases, and FO queries and SQL queries. The notion
of combined FO rewritability generalises the notion of FO reducibility, where & is
incorporated into the query ¢ rather than into .%#, as it happens for the OWL QL
case, while the facts component .% itself is used as a relational instance without any
modification [13].

Hence, a top-k query answering procedure for OWL EL may consists of

1. rewriting, once for all, .# and &, using ./, into an relational database DB
2. rewriting a top-k query ¢ using (possibly) & and .# into a top-k SQL query to
be submitted to the RDBMS containing DB .

5.2.2 OWL QL

The OWL QL case proceeds similarly as for the OWL EL case, as DL-Lite [3, 13]
enjoys the FO reducibility property. Specifically, a top-k query answering procedure
for OWL QL may consists of (see [63]) rewriting a top-k query ¢ using (possibly)
O and ./ into a top-k SQL query to be submitted to the RDBMS containing DB .

5.2.3 OWL RL

Concerning OWL RL, we employ the close connection between Horn-DL and Dat-
alog. Specifically, an option to compute the top-k answers consist in using top-k
retrieval technologies for rule-based KBs. To this end, we now define a recursive
mapping function o which takes a set of inclusion axioms and maps them into the
following expressions:’

9 For the sake of ease of presentation, we are not going to present the whole mapping for Horn-DL,
but for a significant subset only that is sufficient to illustrate the main idea behind this translation.
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c(R1 CE Ry) —
Orole(R, x,y)

or(R™,x,y) —

c(BCEC) +—~
on(A, x) —
op(C1 N Cay,x) —
opn(VR.C, x)
op(A, x) —~
op(C1 M Car,x)
op(C1UCo, x) >
op(AR.C, x)

where y is a new variable.
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Orole(R2, X, y) < Orole(R1, X, y)
R(x,y)
R(y,x)

op(C, x) < op(B)

A(x)

ap(Cr, x) A op(Ca, x)
on(C,x) <= orote(R, x,y)
A(x)

ap(C1, x) A op(Ca, x)
op(C1, x) V 0p(Ca, x)
Trole(R, x, y) A op(C,y)

We then transform the above generated expressions into rules by applying recur-

sively the following mapping:

or((HAH'") < B)+ 0,(H < B),0,(H < B)
0,(H < H) < B) v+ o,(H < (BAH"))
or(H < (B1V By)) — o0,(H < By),0,(H < By)

Eventually, if none of the above three rules can be applied then

o,(H<«< B)—~ H <« B.

Therefore, a top-k retrieval method of OWL RL is as follows:

1. Map & into Datalog rules using e.g. the mapping rules above obtaining the rule
layer O . Let #' = (F, O, /) be the resulting rule-based KB.
2. Apply a top-k procedure for rule-based KBs to %"/ (see, e.g. [64] and Sect. 5.3).

5.3 The RIF case

Concerning the RIF case, by exploiting the relationship to Datalog (specifically of
RIF-Core), we may opt for a solution inherited from the logic programming context.
We have already reported in Sect. 1 about various proposal developed so far. We
recap here the main principle behind the so far most general approach [64].

The basic reasoning idea stems from the database literature (see, e.g. [35]) and con-
sists in retrieving iteratively query answers and simultaneously computing a threshold
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0. The threshold ¢ has the fundamental property that any newly retrieved tuple will
have a score less or equal than §. As a consequence, as soon as we have retrieved k
tuples greater or equal to §, we may stop. Note that a distinguishing feature of this
query answering procedure is that it does not determine all answers, but collects,
during the computation, answers incrementally together and stops as soon as it has
gathered k answers greater or equal than a computed threshold 6. The finiteness of
the truth space guarantees the termination of this process, which otherwise may not
terminate.

6 Conclusions

In this work, we briefly discussed about a relatively novel issue for SWLs with a
huge data repository, namely the problem of evaluating ranked top-k queries. We
have illustrated how this problem may be currently approached within the context of
RDFS (the triple language), OWL 2 Profiles (frame-based languages) and RIF (rule
language).

While for relational databases a non negligible amount of solutions have been
proposed so far, in the context of knowledge representation and reasoning, the devel-
opment is still in its infancy, both from an algorithmic and implementation point of
view. So far, for the languages RDFS, OWL QL, OWL EL and RIF ad hoc solution
have been worked out, while for OWL RL a reduction to RIF is required. Note that
for RDFS and OWL QL, a reduction to RIF exists as well and, thus, top-k techniques
for this latter can be applied.

We believe that with the growth in size of data repositories accessible via SWLs,
the top-k retrieval problem will emerge as a significant problem, as much as the top-k
retrieval problem is for current Information Retrieval Systems [8].
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