
Chapter 12
Fuzzy Cardinalities as a Basis
to Cooperative Answering

Grégory Smits, Olivier Pivert and Allel Hadjali

Abstract Cooperative approaches to relational database querying help users retrieve
the tuples that are the most relevant with respect to their information needs. In this
chapter we propose a unified framework that relies on a fuzzy cardinality-based
summary of the database. We show how this summary can be efficiently used to
explain failing queries or to revise queries returning a plethoric answer set.

1 Introduction

The paradigm of cooperative answering is originated from the works in the context of
natural-language question-answering done by Kaplan [20] in the end of the seventies.
One of the aims of such works is to avoid natural-language query systems to produce
“there is zero result” when a query fails. Cooperative intelligent systems should
rather correct any false presupposition of the user, anticipate follow-up queries and
provide information not explicitly requested by the user.

Cooperative responses to a query are indirect responses that are more helpful to
the user than direct, literal responses would be. Interest in cooperative responses
in the database field arises in the middle of the eighties [13, 14, 17, 25, 31]. In
this context, cooperative answering represents intensional, qualified or approximate
answers. They may explain the failure of a query to produce results, build queries that
are related to the original one and re-submit them for an evaluation. Most cooperative
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techniques proposed in the literature deal with the empty answer problem in a crisp
query setting.

In this chapter, we consider fuzzy queries which express preferences modeled
using fuzzy set membership functions (that describe the preference profiles of the
user on each attribute domain involved in the query). We address two problematic
situations users can be faced with when querying relational databases: their query
returns (i) an empty set of answers or, (ii) a plethoric answer set. We propose a uniform
solution to these two symmetrical problematic situations. This solution relies on the
precomputation of a summary of the queried database according to a predefined
shared vocabulary. This summary provides information about the distribution of the
data over the definition domains of the different target attributes. This summarization
strategy efficiently computes fuzzy cardinalities using a single scan of the database.

Recall that with respect to Boolean queries, fuzzy queries reduce the risk of
obtaining an empty set of answers since the use of a finer discrimination scale—
[0, 1] instead of {0, 1}—increases the chance for an element to be considered some-
what satisfactory. Nevertheless, the situation may occur where none of the elements
of the target database satisfies the query even to a low degree.

In the context of fuzzy queries, beside the empty answer set (EAS) problem,
another situation deserves attention: that where the answer set is not empty but
only contains elements which satisfy to a low degree the preferences specified in
the user query. We show in this chapter that a generic—and very efficient—type of
approach that leverages fuzzy cardinalities may be employed to provide explanations
for both types of situations (empty or unsatisfactory answer set). Minimal failing
subqueries [24] constitute useful explanations about the conflicts in a failing query.
These explanations may (i) help the user revise or reformulate his/her initial query
or (ii) be used to set up an automatic and targeted relaxation strategy.

As for the symmetrical problem, i.e. the plethoric answer set (PAS) problem,
it has been intensively addressed by the information retrieval community and two
main approaches have been proposed for Boolean queries. The first one, that may be
called data-oriented, aims at ranking the answers in order to return the best k ones to
the user. However, this strategy is often faced with the difficulty of comparing and
distinguishing among tuples that satisfy the initial query. In this data-oriented type
of approach, we can also mention works which aim at summarizing the answer set
to a query [36].

The second type of approach may be called query-oriented as it performs a mod-
ification of the initial query in order to make it more selective. For instance, a strat-
egy consists in strengthening the specified predicates (as an example, a predicate
A ∈ [a1, a2] becomes A ∈ [a1 + γ, a2 − γ ]) [6]. However, for some predicates,
this strengthening (if applied in an interated way) can lead to a deep modification of
the meaning of the initial predicate. Another type of approach advocates the use of
user-defined preferences on attributes which are not involved in the initial query
[3, 12, 21]. Such a subjective knowledge can then be used to select the most
preferred items among the initial answer set. Still another category of query-
oriented approaches [26, 27] aims at automatically completing the initial query with
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additional predicates to make it more demanding. Our work belongs to this last family
of approaches but its specificity concerns the way additional predicates are selected.

Indeed, we consider that the predicates added to the query must respect two
properties: (i) they must reduce the size of the initial answer set, (ii) they must modify
the semantic scope of the initial query as little as possible. Based on a predefined
vocabulary materialized by fuzzy partitions that linguistically describes the attribute
domains, we propose to identify the predicates which are the most correlated to
the initial query. Moreover, we consider that the queries involve a user-specified
quantitative threshold k corresponding to the approximate number of expected results
(the best ones). To assist the user through the reduction of a plethoric answer set
to a subset containing approximately k results, we again propose to make use of
precomputed fuzzy cardinalities that constitute useful knowledge about the data
distributions.

The remainder of the chapter is structured as follows. Section 2 provides a concise
reminder about fuzzy sets and fuzzy queries. In Sect. 3, we present the context of our
work and especially the fuzzy cardinality-based summarization process. Sections 4
and 5 respectively deal with the two symmetrical problems, i.e. the PAS problem and
the explanation of failing queries. We address these issues using a uniform framework
based on the notion of fuzzy cardinalities. Experimental results are presented and
analyzed in Sect. 6. Section 7 discusses related work, whereas Sect. 8 recalls the main
contributions and outlines perspectives for future work.

2 Preliminaries

2.1 Fuzzy Sets

Fuzzy set theory was introduced by Zadeh [22] for modeling classes or sets whose
boundaries are not clear-cut. For such objects, the transition between full membership
and full mismatch is gradual rather than crisp. Typical examples of such fuzzy classes
are those described using adjectives of the natural language, such as young, cheap,
fast, etc. Formally, a fuzzy set F on a referential U is characterized by a membership
function μF : U → [0, 1] where μF (u) denotes the grade of membership of u in
F . In particular, μF (u) = 1 reflects full membership of u in F , while μF (u) = 0
expresses absolute non-membership. When 0 < μF (u) < 1, one speaks of partial
membership.

Two crisp sets are of particular interest when defining a fuzzy set F :

• the core C(F) = {u ∈ U | μF (u) = 1}, which gathers the prototypes of F ,
• the support S(F) = {u ∈ U | μF (u) > 0}.
The notion of an α-cut encompasses both these concepts. The α-cut (resp. strict
α-cut) Fα (resp. Fα) of a fuzzy set F is defined as the set of elements from the
referential which have a degree of membership to F at least equal to (resp. strictly
greater than) α:
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Fα = {u ∈ U | μF (u) ≥ α}

Fα = {u ∈ U | μF (u) > α}.

Straightforwardly, one has: C(F) = F1 and S(F) = F 0.
In practice, the membership function associated with F is often of a trapezoidal

shape. Then, F is expressed by the quadruplet (A, B, a, b) where C(F) = [A, B]
and S(F) = [A − a, B + b], see Fig. 1.

Let F and G be two fuzzy sets on the universe U , we say that F ⊆ G iff
μF (u) ≤ μG(u), ∀u ∈ U . The complement of F , denoted by Fc, is defined by
μFc(u) = 1 − μF (u). Furthermore, F ∩ G (resp. F ∪ G) is defined the following
way: μF∩G(u) = min(μF (u), μG(u)) (resp. μF∪G(u) = max(μF (u), μG(u))).

As usual, the logical counterparts of the theoretical set operators ∩, ∪ and the
complementation operator correspond respectively to the conjunction ∧, disjunction
∨ and negation ¬. See [16] for more details.

2.2 Fuzzy Queries and SQLf

Fuzzy sets are convenient tools to model vague criteria and user’s preferences. The
underlying fuzzy set theory offers a large panoply of connectives to aggregate these
preferences following different semantics. Fuzzy sets are used to model and rep-
resent common sense properties like ‘recent’, ‘low’, ‘very cheap’, ‘large’, ..., that
correspond to familiar and easily understandable notions for end users. Moreover, in
accordance with the imprecise nature of the concepts they represent, the fuzzy sets
behind these properties introduce some graduality when checking the satisfaction of
the items wrt. the user’s preferences. This gradual satisfaction provides the necessary
information to rank order the items that somewhat satisfy the user’s requirements.

The language called SQLf described in [8, 29] extends SQL so as to support fuzzy
queries. The general principle consists in introducing gradual predicates wherever
it makes sense. The three clauses select, from and where of the base block of SQL
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are kept in SQLf and the from clause remains unchanged. The principal differences
affect mainly two aspects :

• the calibration of the result since it is made with discriminated elements, which
can be achieved through a number of desired answers (k), a minimal level of
satisfaction (α), or both, and
• the nature of the authorized conditions as mentioned previously.

Therefore, the base block is expressed as:
select [distinct] [k | α | k, α] attributes
from relations
where fuzzy-condition
where fuzzy-condition may involve both Boolean and fuzzy predicates. This expres-
sion is interpreted as:

• the fuzzy selection of the Cartesian product of the relations appearing in the from
clause,
• a projection over the attributes of the select clause (duplicates are kept by default,

and if distinct is specified the maximal degree is attached to the representative in
the result),
• the calibration of the result (top k elements and/or those whose score is over the

user-specified threshold αu).

The operations from relational algebra—on which SQLf is based—are extended to
fuzzy relations by considering fuzzy relations as fuzzy sets on the one hand and by
introducing gradual predicates in the appropriate operations (selections and joins
especially) on the other hand. The definitions of these extended relational operators
can be found in [4]. As an illustration, we give the definitions of the fuzzy selection
and join operators hereafter, where r and s denote two fuzzy relations defined on the
sets of attributes X and Y .

• μselect (r, cond)(t) = �(μr (t), μcond(t)) where cond is a fuzzy predicate and� is
a triangular norm (most usually, min is used),
• μ join(r, s, A θ B)(tu) = �(μr (t), μs(u), μθ (t.A, u.B)) where A (resp. B) is a

subset of X (resp. Y ), A and B are defined over the same domains, and θ is a
binary relational operator (possibly fuzzy).

A typical example of a fuzzy query is: “retrieve the recent and low-mileage cars”,
where recent and low-mileage are gradual predicates represented by means of fuzzy
sets as illustrated in Fig. 2.
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Fig. 2 Predicates: a recent and b low-mileage

3 Fuzzy-Cardinality-Based Database Summaries

3.1 A Fuzzy-Partition-Based Predefined Vocabulary

Fuzzy sets constitute an interesting framework for extracting knowledge on data that
can be easily comprehensible by humans. Indeed, associated with a membership
function and a linguistic label, a fuzzy set is a convenient way to formalize a gradual
property. As noted in some previous works, especially in [27], such prior knowledge
can be used to represent what the authors call a “macro expression of the database".
Contrary to the approach presented in [27] where this knowledge is computed by
means of a fuzzy classification process, it is, in our approach, defined a priori by
means of a partition in the sense of Ruspini [33] of each attribute domain. These
partitions form a predefined and shared vocabulary and it is assumed that the fuzzy
sets involved in users’ flexible queries are taken from this vocabulary.

Let R be a relation containing w tuples {t1, t2, . . . , tw} defined on a set Z of q
categorical or numerical attributes {Z1, Z2, . . . , Zq}. A shared predefined vocab-
ulary on R is defined by means of fuzzy partitions of the q domains. A partition
Pi associated with the domain of attribute Zi is composed of mi fuzzy predicates
{Pi,1, Pi,2, . . . , Pi,mi }, such that for all Zi and for all t ∈ R :

mi∑

j=1

μPi j (t) = 1.

As mentioned above, we consider Ruspini partitions for numerical attributes (Fig. 3),
i.e., fuzzy partitions composed of fuzzy sets, where a set, say Pi , can only overlap
with its predecessor Pi−1 or/and its successor Pi+1 (when they exist). For categorical
attributes, we simply impose that for each tuple the sum of the satisfaction degrees
on all elements of a partition is equal to 1. These partitions are specified by an expert
during the database design step and represent “common sense partitions” of the
domains. Each Pi is associated with a set of linguistic labels {L p

i,1, L p
i,2, . . . , L p

i,mi
},

each of them corresponding to an adjective which gives the meaning of the fuzzy
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Fig. 3 A partition over the domain of attribute year

Table 1 A partition over the domain of attribute make
make

dodge jeep ... honda ... nissan renault peugeot dacia ... ARO oltcit ... vw Lamborghini Skoda ...

‘American’ 1 1 ... 0 ... 0 0 0 0 ... 0 0 ... 0 0 0 ...

‘Asian’ 0 0 ... 1 ... 0.6 0 0 0 ... 0 0 ... 0 0 0 ...

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

‘French’ 0 0 ... 0 ... 0.4 1 1 0.4 ... 0 0 ... 0 0 0 ...

‘East-european’ 0 0 ... 0 ... 0 0 0 0.6 ... 1 1 ... 0 0 0 ...

‘German’ 0 0 ... 0 ... 0 0 0 0 ... 0 0 ... 1 0.5 0.6 ...

... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...

predicate. A query Q to this relation R is a conjunction of fuzzy predicates chosen
among the predefined ones which form the partitions.

As an example, let us consider a database containing ads about second hand cars
and a view named secondHandCars of schema (id , model, description, year, mileage,
price, make, length, height, nbseats, consumption, acceleration, co2emission) as the
result of a join-query over the database. A common sense partition and labelling of
the domain of attribute year is illustrated in Fig. 3. Table 1 shows a possible common
sense partition and labelling of the domain of the categorical attribute make.

3.2 About Fuzzy Cardinalities and Their Computation

Hereafter, we describe a technique aimed at building fuzzy database summaries that
can be helpful in a cooperative answering perspective.

In the context of flexible querying, fuzzy cardinalities appear to be a convenient
formalism to represent how many tuples from a relation satisfy a fuzzy predicate to
various degrees. We assume in the following that these various membership degrees
are defined by a finite scale 1 = σ1 > σ2 > · · · > σ f > 0. Such fuzzy cardinalities
can be incrementally computed and maintained for each linguistic label and for the
diverse conjunctive combinations of these labels. Fuzzy cardinalities are represented
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by means of a possibility distribution [15] like

FPa = 1/0+ · · ·1/(n − 1)+ 1/n + λ1/(n + 1)+ · · ·+
λk/(n + k)+ 0/(n + k + 1)+ · · · ,

where 1 > λ1 ≥ · · · ≥ λk > λk+1 = 0 for a predicate Pa . This expression represents
a cardinality that possibly equals at least n to degree 1 and possibly equals at least
(n + k) to degree λk . In this chapter, without loss of information, we use a more
compact representation:

FPa = σ1/c1 + σ2/c2 + · · · + σ f /c f ,

where ci , i = 1.. f is the number of tuples in the concerned relation that are Pa

with a degree at least equal to σi . For the computation of cardinalities concerning
a conjunction of q fuzzy predicates, like FPa∧Pb∧···∧Pq , one takes into account the
minimal satisfaction degree obtained by each tuple t for the concerned predicates,
min(μPa (t), μPb (t), . . . , μPq (t)).

As illustrated by Algorithm 1, the computation of the fuzzy cardinalities relies on
a single scan of the database but for each tuple, one has to compute its satisfaction
degree regarding every possible conjunction of the fuzzy predicates involved in the
query. The number of all possible conjunctions to consider is equal to 2q where
q is the number of predicates in the query, but the computation has a linear data
complexity and the process remains tractable as soon as q is reasonably small, which
is the case in practice (in general, q ≤ 10). Indeed, even though databases are getting
larger and larger, the number of predicates involved in users queries remains stable
around half a dozen of predicates. Section 6 illustrates this observation in a concrete
applicative context.

The computation of fuzzy cardinalities relies on two steps. First a lattice is gener-
ated to store the fuzzy cardinalities according to all the possible conjunctions of pred-
icates. Figure 4 shows the lattice generated for a set of three predicates {Pa, Pb, Pc}.

Then, for each tuple t from the concerned database D , one computes its perfor-
mance vector 〈μPa (t), μPb (t), . . . , μPq (t)〉 that stores the satisfaction degrees of t

Fig. 4 Lattice of possible
conjunctions for a set of three
predicates {Pa, Pb, Pc}

Pa P b P c

Pa P b P a P c P b P c

P a P b P c



12 Fuzzy Cardinalities as a Basis to Cooperative Answering 269

wrt. the atomic predicates {Pa, Pb, . . . , Pq} involved in the query. Using a depth or
breadth first exploration of the lattice, one updates the fuzzy cardinalities according
to the performance vector of the tuple. Thus, according to the currently analyzed
predicate or conjunction of predicates P and a tuple t , if t satisfies P with a degree
greater or equal than αu then the function updateCardinality simply increments the
stored fuzzy cardinality of P for each α ≥ αu . A t-norm, here the minimum, is used
by the function computeSatisDegree to compute the satisfaction degree of a tuple
according to a conjunction of predicates. This satisfaction degree is directly com-
puted on the performance vector associated with the currently analyzed tuple (line
1.6). During the exploration of the lattice, for a tuple t , a path is discarded as soon
as t does not satisfy at all the query, say Q, composed of the current conjunction of
predicates since

μQ(t) = 0⇒ ∀Q′ such that pred(Q) ⊆ pred(Q′), μQ′(t) = 0

where pred(Q) denotes the set of predicates involved in Q.

Input: a failing query Q = Pa ∧ . . . ∧ Pn ; a scale of degrees
A = α f < ... < α2 < (α1 = 1); a user-defined qualitative
threshold αu ;

Output: L a lattice of fuzzy cardinalitites for Q;
begin1.1

R ← execute(Pa ∨ . . . ∨ Pn);1.2

L ← generateLattice({Pa, . . . , Pn});1.3

//L points to the entry node (∅) of the lattice1.4

foreach t ∈ R do1.5

〈μPa (t), μPb (t), ..., μPq (t)〉 ← computePer f V ector(t, {Pa, . . . , Pn});1.6

updateLattice(L , 〈μPa (t), μPb (t), ..., μPq (t)〉);1.7

end1.8

end1.9

Algorithm 1: Fuzzy Cardinalities Computation

Two strategies can be envisaged to compute the fuzzy cardinalities: dynamically
or a priori. The dynamic computation of fuzzy cardinalities allows for the use of user
defined fuzzy predicates inside queries. However, to perform an efficient dynamic
computation of the fuzzy cardinalities, it would be necessary to modify the optimizer
of the DBMS so as to integrate this process in their execution plan.
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Input: a lattice of fuzzy cardinalities L; a performance vector
V = 〈μPa (t), μPb (t), ..., μPq (t)〉; a scale of degrees
A = α f < ... < α2 < (α1 = 1); a user-defined qualitative
threshold αu ;

begin2.1

N ← Parent (L);2.2

foreach node ∈ N do2.3

let P be the predicate associated with the node N ;2.4

μP(t) = computeSatis Degree(V, P);2.5

if μP(t) ≥ αu then2.6

updateCardinali t y(N , μP(t));2.7

updateLattice(N , V, A, αu);2.8

end2.9

end2.10

end2.11

Algorithm 2: Recursive function updateLattice

In the following, we assume that a shared vocabulary is a priori defined by means
of fuzzy partitions over the domain of each searchable attribute. Thus, fuzzy cardi-
nalities can be pre-computed for each possible conjunction of predicates taken from
the shared vocabulary. More precisely, one computes the fuzzy cardinalities for all
the possible conjunctions of predicates containing no more than one predicate of
each attribute partition. Indeed, we consider that it does not make sense to explore
conjunctions of predicates from the same attribute partition like ‘year is young and
year is old’. Fuzzy cardinalities associated with conjunctions which are somewhat
satisfied by at least one tuple are stored in a dedicated table of the database. This table
can be easily maintained as the fuzzy cardinalities can be updated incrementally [5].

An index computed on the string representation of each conjunction makes it
possible to efficiently access the different fuzzy cardinalities.

3.3 A Semantic Correlation Measure

In this subsection, we introduce a measure aimed at assessing the extent to which
two fuzzy predicates are semantically correlated. This measure will be used in the
approach presented in Sect. 5 as a basis to the augmentation of a query leading to a
plethoric answer set.

Given two predicates Pa and Pb, an association rule denoted by Pa ⇒ Pb

expresses that tuples which are Pa are also Pb (Pa and Pb can be replaced by any
conjunction of predicates). As suggested in [9], the confidence of such an association
may be quantified by means of a scalar or by a fuzzy (relative) cardinality. The first
representation (as a scalar) is used in our approach as it appears more convenient and
easier to interpret. Thus, the confidence of an association rule Pa ⇒ Pb, denoted
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by con f (Pa ⇒ Pb), is computed as follows:

con f (Pa ⇒ Pb) = ΓPa∧Pb

ΓPb
. (1)

Here, ΓPa∧Pb and ΓPa correspond to scalar cardinalities, which are computed as
the weighted sum of the elements belonging to the associated fuzzy cardinalities.
For example, the scalar version of Γrecent = 1/6 + 0.6/7 + 0.2/8 is Γrecent =
1× 6+ 0.6× (7− 6)+ 0.2× (8− 7) = 6.8.

To quantify the semantic link between a query Q and a predicate P , one computes
a correlation degree denoted by μcor (P, Q), as:

μcor (P, Q) = �(con f (Q ⇒ P), con f (P ⇒ Q)) (2)

where � stands for a t-norm and the minimum is used in our experimentation
(Sect. 6.3). One can easily check that this correlation degree is both reflexive
μcor (Q, Q) = 1 and symmetric μcor (P, Q) = μcor (Q, P).

4 Query Failure Explanation

In this section, we show how fuzzy cardinalities can be used inside a cooperative
system to explain failing queries. We still assume that the queries are composed of
fuzzy predicates chosen in a predefined vocabulary. Let us first recall the formal
definition of the EAS problem.

Definition 1 Let Q be a fuzzy query and ΣQ = {t ∈ D | μQ(t) > 0} the set of
answers to Q against a given database D. We say that Q results in the EAS problem
if ΣQ = ∅.

4.1 About Minimal Failing and Unsatisfactory Subqueries

An empty set of answers associated with a fuzzy query Q = P1 ∧ P2 ∧ · · · ∧ Pn

is necessarily due to an empty support (w.r.t. the current state of the database) for
at least one of the subqueries of Q. The notion of an unsatisfactory set of answers
generalizes this problem by considering an empty α-cut of Q where α is a user-
defined qualitative threshold. As explained in Sect. 2.1, the support and the core of
a fuzzy set are particular cases of α-cuts where α is respectively equal to 0+ and 1.
In the rest of the chapter we only use the notion of an empty α-cut to refer to failing
queries as well as unsatisfactory ones.

Thus, an extreme case of a failing query corresponds to an empty 1-cut for Q only.
The opposite extreme is when one or several predicates Pi have an empty 0+-cut.
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Between these two situations, it is of interest to detect the subqueries composed of
more than one predicate and less than n predicates, which have an empty 0+-cut.
From an empty to an unsatisfactory set of answers, the problem defined above just
has to be slightly revisited, where the condition of an empty 0+-cut is transposed to
α-cuts, where α is taken from a predefined scale of membership degrees S : 1 =
α1 > α2 > · · · > α f = 0+.

Definition 2 Let us consider a query Q = P1 ∧ P2 ∧ · · · ∧ Pn , and let S and S′ be
two subsets of predicates such that S′ ⊂ S ⊆ {P1, P2, . . . , Pn}. A conjunction of
elements from S (resp. S′) is a subquery (resp. strict subquery) of Q.

If one wants to explain why the result of the initial query is empty (resp. unsat-
isfactory), and/or weaken the query by identifying the subqueries whose α-cut is
empty, one must naturally require that such subqueries be minimal: a subquery Q′ of
a query Q constitutes a minimal explanation if the considered α-cut is empty and if
no (strict) subquery of Q′ has an empty α-cut. This corresponds to a generalization
of the concept of a Minimal Failing Subquery (MFS) [18].

Let us denote by Σα
Q the set of answers to the α-cut of a query Q against a given

database D: Σα
Q = {t ∈ D | μQ(t) ≥ α}.

Definition 3 A Minimal Failing Subquery of a query Q = P1 ∧ P2 ∧ · · · ∧ Pn for
a given α is any subquery Q′ of Q such that Σα

Q′ = ∅ and for all strict subquery Q′′
of Q′, Σα

Q′′ �= ∅.
When faced with an empty set of answers for a user-defined threshold α, the

explanation process that we propose in this chapter generates layered MFSs for
different satisfaction degrees αi ∈ S , αi ∈ [α, 1].

Obviously, due to the monotonicity of inclusion of α-cuts, one has Σ
αi
Q ⊆ Σ

α j
Q

if αi ≥ α j . Therefore, a query Q that fails for a given α j also fails for higher
satisfaction degrees αi > α j . However, this property is not satisfied by minimal
failing subqueries. Indeed, a subquery Q′ can be an MFS of Q for a given α j without
being minimal for higher satisfaction degrees αi > α j as a strict subquery of Q′, say
Q′′, may fail for αi and not for α j .

During the layered MFS detection step (Sect. 4.2), when a subquery Q′ of an
initial failing or unsatisfactory query Q is detected for a degree α j , one has to check
for each higher level αi > α j if Q′ is also minimal at the level αi before considering
Q′ as an MFS for this level.

4.2 Cardinality-Based MFS Detection

Using the precomputed fuzzy cardinalities, one can detect the MFSs for different
empty α-cuts of Q, starting from a user-defined qualitative threshold up to the highest
satisfaction degree 1.
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In the manner of Apriori [1], Algorithm 3 starts with atomic predicates and the
first αi -cut of interest, the one corresponding to the user-defined qualitative threshold
αu . To determine if an atomic predicate Pa is a failing subquery of Q, one just has to
check the associated precomputed fuzzy cardinality. If no tuple satisfies Pa at least
with the degree αi then Pa , as an atomic predicate, is by definition an MFS of Q
and is also an MFS for α j > αi . Then, for the second round of the loop (line 3.7 of
Algorithm 3), conjunctions containing two non failing predicates are generated and
for each of them (line 3.11) one checks the fuzzy cardinalities so as to determine
if it is an MFS. If one of these conjunctions, say Pa ∧ Pb ∧ Pc, is an MFS for a
degree αi one tries to propagate it to higher satisfaction degrees (see Algorithm 4
where isMFS(L ,M F Sα j (Q)) returns true if L ∈ M F Sα j (Q), false otherwise). As
the MFS property is not monotonic with respect to α-cuts, one checks with Algorithm
4 for each α j > αi if a subquery of Pa∧Pb∧Pc corresponds to a previously detected
MFS for degree α j ; if it is not the case Pa ∧ Pb ∧ Pc is stored as an MFS of Q for
α j . Obviously, an atomic failing query is an MFS for all α-cuts. Then, the algorithm
goes back to the main loop (line 3.7) and conjunctions containing three predicates
are generated for each considered satisfaction degree (line 3.8) taking care that these
conjunctions do not contain an already identified MFS. This recursive process goes
on until candidate conjunctions cannot be generated anymore.

The complexity of this algorithm is obviously exponential in the number of pred-
icates involved in the failing query to explain, where the worst case corresponds
to a single MFS Q for the maximal satisfaction degree of 1. In this case, the fore-
ach loop (line 3.11) makes 2n iterations where n is the number of predicates in
Q. For a complete gradual explanation from α = 0+ to 1, the 2n iterations are
repeated f times, where f is the number of considered satisfaction degrees in
S : 1 = α1 > α2 > · · · > α f = 0+. Thus, the final complexity in the worst
case is f × 2n ∈ θ(2n). As we said previously, this is not a problem in practice as
the number of predicates specified by a user is rather low (≤ 10) in most applicative
contexts. Therefore, this process remains tractable as we will show experimentally
in Sect. 6.

Once the MFSs have been detected, it is possible to inform the user about the
conflicts in his/her query, which should help him/her revise the selection condition
of the failing query.

5 Plethoric Answer Set Reduction

In this section, we address the problem symmetrical to that studied in Sect. 4: the
Plethoric Answer Sets (PAS) problem. Let Q be a fuzzy query and ΣQ (denoted
also by Σ0+

Q ) its set of answers against the database D. One can write Σ0+
Q =

{μ1/t1, μ2/t2, . . . , μn/tn} where ti is a tuple of D and μi its satisfaction degree
w.r.t. Q. Assume that a user provides a number k of desired answers along with the
query Q.
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Input: a failing query Q = P1 ∧ . . . ∧ Pn ;
a scale of degrees A = 0 < α f < ... < α2 < (α1 = 1);
a user-defined qualitative threshold αu ;

Output: M F S(Q) ordered sets of MFS’s of Q, one set for each α-cut of Q.
begin3.1

foreach αi ∈ A | αi ≥ αu do3.2

M F Sαi (Q)← ∅; Eαi ← {P1, . . . , Pn};3.3

Candαi ← Eαi ;3.4

end3.5

nbPred ← 1;3.6

while Candα1 �= ∅ do3.7

foreach αi ∈ A | αi ≥ αu do3.8

// generation of the candidates of size nbPred3.9

Candαi ← {M composed of nbPred predicates present in Eαi such3.10

that ∀M ′ ⊂ M, M ′ /∈ M F Sαi (Q)};
foreach L in Candαi do3.11

if card(Lαi ) = 0 then3.12

M F Sαi (Q)← M F Sαi (Q) ∪ {L};3.13

//EL contains the atomic predicates that compose L3.14

Eαi ← Eαi − EL ;3.15

//Propagate L to higher satisfaction degrees3.16

// E = ∪i Eαi and M F S = ∪i M F Sαi (Q)3.17

propagate(αi , A, L , M F S, E);3.18

end3.19

end3.20

end3.21

nbPred → nbPred + 1;3.22

end3.23

end3.24

Algorithm 3: Gradual MFS computation

Definition 4 We say that a PAS problem occurs for Q if
∣∣∣Σμmax(Q)

Q

∣∣∣� k.

Where μmax(Q) = sup
ti∈Σ0+

Q
μi and Σ

μmax(Q)

Q = {ti ∈ Σ0+
Q | μi = μmax(Q)}.

This definition means that the set of answers Σ0+
Q contains a large number of

answers (with a maximal satisfaction degree) w.r.t. the number k of desired answers.
The general idea of our solution is to augment a user query Q with predefined
predicates which are semantically correlated with those present in Q, in order to
reduce the initial answer set and get an answer subset whose cardinality is as close
to k (the user-specified quantitative threshold) as possible.
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Input: a satisfaction degree: αi ; a scale of degrees: A; detected MFS for αi : L;
a reference to the array of layered MFS: M F S; a reference to the array
of predicates used for the generation of candidates: E ;

procedure propagate(αi , A, L , M F S, E) begin4.1

foreach α j ∈ A | α j ≥ αi do4.2

if isAtomic(L) or isMFS(L,M F Sα j (Q)) then4.3

M F Sα j (Q)← M F Sα j (Q) ∪ {L};4.4

Eα j ← Eα j − EL ;4.5

else4.6

break;4.7

end4.8

end4.9

end4.10

end4.11

Algorithm 4: Procedure that propagates an MFS to higher satisfaction degrees

5.1 Correlation-Based Ranking

In the approach we propose, the new conjuncts to be added to the initial query are
chosen among a set of possible predicates pertaining to the attributes of the schema
of the database queried (see Sect. 3.1). This choice is mainly made according to their
correlation with the initial query. A user query Q is composed of n (≥ 1) specified
fuzzy predicates, denoted by Ps1 , Ps2 , . . . , Psn , which come from the predefined
vocabulary associated with the database (Sect. 3.1). The first step of the query aug-
mentation process is to identify the predefined predicates most correlated to the initial
query Q.

The notion of correlation introduced in Sect. 3.3 is used to qualify and quantify
the extent to which two fuzzy sets (one associated with a predefined predicate P p

i, j ,
the other associated with the initial query Q) are somewhat “semantically” linked.

Using the fuzzy-cardinality-based measure of correlation (cf. Formula 2), we can
identify the predefined predicates most correlated to an under-specified query Q. In
practice, we only consider the η most correlated predicates to a query, where η is a
technical parameter which has been set to 5 in our experimentation. This limitation is
motivated by the fact that an augmentation process involving more than η iterations,
i.e., the addition of more than η predicates, could lead to important modifications of
the scope of the initial query. Those η predicates most correlated to Q are denoted
by Pc1

Q , Pc2

Q , . . . , Pcη

Q .
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5.2 Reduction-Based Reranking

The second step of the query augmentation process aims at reranking the η predicates
most correlated to the query according to their “reduction capability”. It is assumed
that the user specifies a value for the parameter k which defines the number of answers
he/she expects. Let FQ ∧Pcr

Q
, r = 1..η, be the fuzzy cardinality of the answer set

when Q is augmented with Pcr

Q . Pcr

Q is all the more interesting for augmenting Q as

Q∧Pcr

Q contains a σi -cut (σi ∈ S and σi ≥ αu) with a cardinality ci close to k and σi

close to 1. To quantify how interesting Pcr

Q is, we compute for each σi -cut of FQ ∧Pcr
Q

a “strengthening degree” which represents a compromise between its membership
degree σi and its associated cardinality ci . The global degree assigned to FQ ∧Pcr

Q
,

denoted by μstren(FQ ∧Pcr
Q

), is the maximum of its strengthening degrees over the

different σi -cuts:

μstren(FQ ∧Pcr
Q

) = sup1≤i≤ f �
(

1− |ci − k|
max(k, |ΣQ | − k)

, σi

)

where � stands for a t-norm and the minimum is used in our experimentation. This
reranking of the predicates the most correlated to Q can be carried out using the
fuzzy cardinalities associated with each conjunction Q ∧ Pcr

Q , r = 1..η.

Example 1 To illustrate this reranking strategy, let us consider a user query Q result-
ing in a PAS problem (|Σ∗Q | = 123 and |ΣQ | = 412), where k has been set to 50.

As an example, let us consider the following candidates Pc1

Q , Pc2

Q , Pc3

Q , Pc4

Q , Pc5

Q and
the respective fuzzy cardinalities:

• F
Q∧Pc1

Q
= {1/72 + 0.8/74 + 0.6/91+ 0.4/92+ 0.2/121}, μstren(F

Q∧Pc1
Q

) � 0, 94

• F
Q∧Pc2

Q
= {1/89 + 0.8/101 + 0.6/135+ 0.4/165+ 0.2/169}, μstren(F

Q∧Pc2
Q

) � 0, 9

• F
Q∧Pc3

Q
= {1/24 + 0.8/32 + 0.6/39+ 0.4/50+ 0.2/101}, μstren(F

Q∧Pc3
Q

) � 0, 93

• F
Q∧Pc4

Q
= {1/37 + 0.8/51 + 0.6/80+ 0.4/94+ 0.2/221} , μstren(F

Q∧Pc4
Q

) � 0, 96

• F
Q∧Pc5

Q
= {1/54 + 0.8/61 + 0.6/88+ 0.4/129+ 0.2/137}, μstren(F

Q∧Pc5
Q

) � 0, 99.

According to the problem definition (k = 50) and the fuzzy cardinalities above, the
following ranking is suggested to the user: 1) Pc5

Q , 2) Pc4

Q , 3) Pc1

Q , 4) Pc3

Q , 5) Pc2

Q . Of
course, to make this ranking more intelligible to the user, the candidates are proposed
with their associated linguistic labels (cf. the concrete example about used cars given
in Sect. 6.3).�
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5.3 Query Augmentation Process

Precomputed Knowledge

As the predicates specified by the user and those that we propose to add to the initial
query are chosen among the predefined vocabulary, one can precompute some useful
knowledge that will make the augmentation process faster. We propose to compute
and maintain precomputed knowledge which is stored in two tables. The first one con-
tains the precomputed fuzzy cardinalities introduced in Sect. 3.2, whereas the second
one stores the correlation degrees between sets of predefined predicates (correspond-
ing to the initial query) and any other predefined predicate. Using these correlation
degrees, one can also determine and store, for each conjunction of predefined pred-
icates, the most correlated predefined atomic predicates ranked in decreasing order
of their correlation degrees. Both tables have to be updated after each (batch of)
modification(s) performed on the data but these updates imply a simple incremental
computation.

Interactive Augmentation Mechanism

The query augmentation process consists of the following steps. One first checks the
table of fuzzy cardinalities in order to determine whether the user is faced with a
PAS problem according to the value he/she has assigned to k. If so, one retrieves—
still in constant time—up to η candidates that are then reranked according to k and
presented to the user. Finally, as it is illustrated in Sect. 6.3, the user can decide to
process the initial query, to process one of the suggested augmented queries, or to
ask for another augmentation iteration of one of the augmented queries.

6 Experimentation

6.1 Context

The fuzzy-cardinality-based summarization process as well as the cooperative
approaches described in Sects. 4 and 5 have been tested on a concrete database
containing ads about second hand cars. This database is composed of a single rela-
tion named secondHandCars and contains 46,089 tuples with the following schema:
{idads, year, mileage, price, make, length, height, nbseats, acceleration, consump-
tion, co2emission}.

Common sense fuzzy partitions have been defined on the attributes of this relation,
which led to a shared vocabulary made of 59 fuzzy predicates. Figure 5 illustrates
the way users may employ this vocabulary to construct their fuzzy queries.
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Fig. 5 Query interface relying on the shared vocabulary

Fig. 6 Evolution of the processing time and space wrt. the number of tuples

Using this predefined vocabulary, we have first evaluated the time needed to
compute a complete fuzzy-cardinality-based summary and also its evolution with
respect to the size of the database. Figure 6 (left) shows the evolution of the time
needed to compute the fuzzy cardinalities for a database whose size varies from
5000 to 45,000. Figure 6 (right) shows the evolution of the memory space needed
to store the computed fuzzy-cardinality-based summary. These results have been
obtained on a basic computer configuration (Intel Core 2 Duo 2.53GHz with 4Go
1067 MHz of DDR3 ram) and Postgresql as the RDBMS for the storage of the relation
secondHandCars and its summary.

As expected, the time needed to compute the fuzzy cardinality-based summary
linearly increases wrt. the size of the database. The most interesting phenomenon
that can be observed in Fig. 6 is that the size of the memory used to store the fuzzy
cardinalities is very reasonable and increases in a logarithmic way according to
the number of tuples. Indeed, the number of fuzzy cardinalities that have to be
stored increases quickly from 0 to 15,000 tuples, then very slowly to 35,000 and is
almost stable from 35,000 to 45,000. This phenomenon was predictable and can be
explained by the fact that whatever the number of tuples, the possible combinations of
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Fig. 7 Evolution of the
processing time wrt. the
number of predicates

properties to describe them is finite and can quickly be enumerated. As an example,
let us consider the failing fuzzy query Q composed of 8 predicates: “year is recent
and mileage is low and price is low and acceleration is very_high and consumption
is very_low and co2emission is very_low”. Whatever the number of tuples in the
database, some combinations of properties are not observed, such as: “year is recent
and mileage is low and price is low”, “acceleration is very_high and consumption
is very_low”, “acceleration is very_high and co2emission is very_low”,etc. So, one
can expect that the size of the memory used to store the fuzzy cardinalities will not
increase significantly in general, even when the database grows a lot.

To complete these observations, Fig. 7 shows the evolution of the time needed to
compute a complete summary of the database (with 46.089 tuples) with respect to
the number of predicates in the vocabulary.

This first experimentation clearly shows that this fuzzy-cardinality-based sum-
mary can be considered even for large databases as long as the vocabulary contains
a reasonably small number of fuzzy predicates. It is worth noticing that this char-
acteristics correspond to most of the applicative contexts, especially for web sites
proposing a query interface to their database.

6.2 A Prototype for Explaining Failing Queries

The query interface illustrated in Fig. 5 has been completed with the cooperative
approach described in Sect. 4 in order to provide the users with some explanations
about the failure of their queries [30]. In the first part of this experimentation, we have
used the fuzzy cardinalities precomputed according to the predefined vocabulary and
estimated the time needed to generate the explanations of failing queries. For this
purpose, we have submitted 50 failing or unsatisfactory queries containing various
numbers of predicates, from 1 up to 10. Figure 8 illustrates the explanations of the
failing query “year is vintage and price is low”, whereas Fig. 9 shows the evolution
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Fig. 8 Explanations for the failing query “year is vintage and price is low”

of the average time needed to compute these explanations for failing queries whose
number of predicates varies from 1 to 10. These results have been observed on three
queries containing a single predicate, six containing two predicates and ten for other
numbers of predicates. Despite the exponential aspect of the curve, these results
show that for a reasonable number of predicates involved in the query, the time
needed to compute the MFSs is very limited. Moreover, it is worth noticing that the
performances of this explanation process could certainly be improved using parallel
programming and a compiled language such as C instead of PHP.

To complete this first experimentation, we have also implemented the “naive”
approach studied in [18], which does not make use of a summary but processes every
possible subquery. To make the comparison meaningful, we have implemented a
version of our approach where a fuzzy-cardinality-based summary is dynamically
computed for each submitted query. In this case, the sole predicates involved in the
query are concerned by the summarization process. Figure 10 graphically shows the
difference in computation time for these two approaches and empirically shows the
benefits of a single scan of the database. This comparison is performed for queries
with at most six predicates, as the time needed to compute the MFSs for longer
queries is prohibitive with the technique proposed in [18].

In Sect. 6, we have seen that the size of a fuzzy-cardinality-based summary is
very limited, and that it is not linearly related to the size of the database but rather
depends on the applicative context and on the correlations between the attributes.
Indeed, Fig. 6 shows that the size of the summary quickly converges as soon as all
the “plausible combinations” of predicates have been enumerated.

The experimentations that we carried out show the benefits of an approach whose
complexity is not very sensitive to the number of tuples in the database. However,
such an approach can only be used when the queries involve a relatively small num-
ber of predicates. As said previously, this is not a problem in practice as the number
of predicates specified by a user is rather low (≤ 10) in most applicative contexts. To
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Fig. 9 MFS computation
time using precomputed fuzzy
cardinalities

Fig. 10 Naive method versus
dynamic computation of the
summary

support this assertion, we have analyzed the query interface of 12 web sites1 propos-
ing an access to ads about second hand cars. The maximum number of constraints
(i.e. predicates) a user can specify through these interfaces varies from 5 to 12 with
an average of 8.8 predicates.

MFSs-Based Failing Queries Revision

When faced with a failing query, the explanations given by the layered MFSs help the
user revise his/her initial query. Depending on the nature of the conflicts underlined
in the MFSs, a user may:

• reconsider the qualitative threshold αu specified in the query,

1 Examples of web portals to databases containing ads about second hand cars: http://
www.annoncesauto.com, http://www.paruvendu.fr, http://www.auroreflex.com, http://www.ebay.
fr, http://www.lacentrale.fr, ...

http://www.annoncesauto.com
http://www.annoncesauto.com
http://www.paruvendu.fr
http://www.auroreflex.com
http://www.ebay.fr
http://www.ebay.fr
http://www.lacentrale.fr
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Fig. 11 Example of an MFS-guided revision of an initial failing query

• remove one or several predicates involved in a conflict,
• replace one or several predicates involved in an MFS by predicates from the shared

vocabulary that appear less conflicting,
• apply a repair step which aims at relaxing the definition of some predicates [7]

or replace the conjunctive query Q by a fuzzy quantified statement of the type
Q∗ = most (P1, P2, . . . , Pn) [37].

Figure 8 illustrates a failing situation for an initial query “year is vintage and
price is low” and a user-defined qualitative threshold αu = 0.2. The explanation
related to this failure clearly point out that the predicate “price is low” is in conflict
with the property “year is vintage”. Guided with this explanation, one may replace
the conflicting predicate “price is low” by a less demanding one such as “price is
medium” (Fig. 11).

Thanks to the gradual MFSs, the user knows that it is useless to expect answers
with a high level of satisfaction if he/she keeps the predicate “year is vintage” which
constitutes an atomic MFS for α = 0.6.

6.3 A Prototype for Reducing Plethoric Answer Sets

To help users revise their queries when they return a plethoric answer set, we have
augmented the query interface illustrated in Fig. 5 with a cooperative functionality
that implements the approach described in Sect. 5 [10]. Using this interface, users
may define their fuzzy queries and specify a quantitative threshold k corresponding
to the number of answers they expect.

A concrete example given below illustrates the relevance of the predicates sug-
gested by the system for augmenting the initial query.

Example 2 Let us consider the following query Q composed of fuzzy predicates
chosen among the shared vocabulary (Fig. 5):

Q = select ∗ from second Hand Cars where year is very_old with k = 50.
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Executed on the second hand cars DB, Q returns an answer set whose cardinality is:
FQ = {1/179 + 0.8/179 + 0.6/179+ 0.4/323+ 0.2/323}. We are faced with a
PAS problem, which means that the query augmentation process is triggered.

The following candidates are suggested along with the fuzzy cardinality of the
corresponding augmented queries:

1. mileage is medium (μcor (Q, P p
mileage, medium) = 0.11)

FQ∧P p
mileage, medium

= {1/24 + 0.8/27 + 0.6/28+ 0.4/72+ 0.2/77}

2. mileage is very high (μcor (Q, P p
mileage, ver yhigh) = 0.19)

FQ∧P p
mileage, ver y high

= {1/7 + 0.8/7 + 0.6/8 + 0.4/18+ 0.2/19}

3. mileage is high (μcor (Q, P p
mileage, high) = 0.37)

FQ∧P p
mileage, high

= {1/101 + 0.8/106 + 0.6/110+ 0.4/215+ 0.2/223}.

For each candidate query Q′, the user may decide to process Q′ (i.e. retrieve the
results) or to repeat the augmentation process on Q′. If the latter option is chosen,
the table of fuzzy cardinalities is checked in order to retrieve relevant predicates for
augmenting Q′ (i.e. properties correlated to Q′) along with their associated fuzzy
cardinalities that are ranked according to k. Let us assume that the user selects

Q′ = year is very_old and mileage is medium

for a second augmentation step. The following candidates are suggested along with
their fuzzy cardinalities:

1. price is low (μcor (Q′, P p
price, low) = 0.34)

FQ′∧P p
price, low

= {1/18 + 0.8/20 + 0.6/21+ 0.4/46+ 0.2/51}

2. price is medium (μcor (Q′, P p
price, medium) = 0.15)

FQ′∧P p
price, medium

= {1/6 + 0.8/7 + 0.6/7+ 0.4/22+ 0.2/22}.�

From this experimentation on a real-world database, one may observe that query
augmentation based on semantic correlation provides the users with useful infor-
mation about data distributions and the possible queries that can be formulated in
order to retrieve coherent answer sets. By coherent answer set, we mean a group of
items that share correlated properties and that may correspond to what the user was
looking for without knowing initially how to retrieve them. Moreover, thanks to the
precomputed knowledge tables, it is not necessary to process the candidate queries
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to inform the user about the size of their answer sets and the predicates that can be
used to augment them.

This experimentation shows that the predicates suggested to augment the queries
are meaningful and coherent according to the initial underspecified queries. One
can find below some examples of suggested augmented queries Q′ starting from
underspecified queries Q:

• Q = year is old and mileage is high and price is very_low
intensified after two iterations into:
Q′ = year is old and mileage is high and price is very_low and acceleration is
slow and consumption is high
with |Σ∗Q | = 63 and |Σ∗Q′ | = 26.
• Q = year is recent

intensified after two iterations into:
Q′ = year is recent and mileage is low and price is medium
with |Σ∗Q | = 4.060 and |Σ∗Q′ | = 199.
• Q = price is high

intensified after two iterations into:
Q′ = price is high and year is last_model and co2emission is low
with |Σ∗Q | = 180 and |Σ∗Q′ | = 45.

7 Related Work

The practical need for endowing intelligent information systems with the ability to
exhibit cooperative behavior has been recognized since the early ’90s. As pointed
out in [13, 17], the main intent of cooperative systems is to provide correct, non-
misleading and useful answers, rather than literal answers to user queries. During the
last two decades, several cooperative approaches have been proposed for different
aspects related to the problems dealt with here. In this section, we first recall the main
existing approaches for database summarization. Then, we situate the uniform fuzzy-
cardinality-based cooperative approach we propose with respect to work related to
failing queries and plethoric answers respectively.

Database Summarization

In [34], Saint-Paul et al. propose an approach to the production of linguistic sum-
maries structured in a hierarchy, i.e., a summarization tree where the tuples from
the database are rewritten using the linguistic variables involved in fuzzy partitions
of the attribute domains. The deeper the summary in the tree, the finer its granu-
larity. First, the tuples from the database are rewritten using the linguistic variables
involved in fuzzy partitions of the attribute domains. Then, each candidate tuple is
incorporated into the summarization tree and reaches a leaf node (which can be seen
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as a classification of the tuple). In the hierarchical structure, a level is associated with
the relative proportion of data that is described by the associated summary. However,
the relative semantic poorness of these summaries in terms of cardinality-related
information makes its interest limited when it comes to helping the user reformulate
his/her query in an EAS or PAS situation.

Developed by Rasmussen and Yager, SummarySQL [32] is a fuzzy query language
which can evaluate the truth degree of a summary guessed by the user. A summary
expresses knowledge about the database in a statement under the form “Q objects
in DB are S” or “Q R objects in DB are S” where DB stands for the database,
Q is a linguistic quantifier (almost all, about half, etc.) and R and S are linguistic
terms (young, well-paid, and so on). The expression is evaluated for each tuple
and the associated truth values are later used to obtain a truth value for the whole
summary. A similar type of approach is proposed in [28]. Anyway, this view of
database summarization is purely oriented toward knowledge discovery, and does
not aim at providing tools to support database querying/browsing.

Failing Queries

We discuss here only some studies that are most related to the approach proposed.
For a complete and rich synthesis of works about failing queries, the reader can refer
to [6, 7]. Jannach [19] proposes an algorithm which is somewhat similar to ours,
but which does not precompute the cardinalities. Instead, it builds a binary matrix
containing the satisfaction degrees obtained by each tuple for each atomic predicate,
and combines these degrees in order to detect the MFSs. The main problems with
this technique are that (i) such a table can be very large to the point of not fitting in
memory (cf. the experimental results reported in [30]), and (ii) a query is processed
for each atomic predicate on the whole dataset.

The algorithm proposed in [18] processes every query corresponding to a can-
didate MFS, which is obviously quite expensive. Similarly, the approach described
in [23, 24], processes every maximally successful subquery of a failing query in
order to retrieve what the author calls a recovery set. Compared to these works, the
major interest of our approach is that the determination of the MFSs does not imply
any additional query processing, thanks to the precomputation of fuzzy cardinalities.
Thus, the complexity of our algorithm is linear in the size of the data (cf. Sect. 6.2).

Finally, apart from the study done in [7] and to the best of our knowledge, there
is no other work that has addressed the problem of MFS detection in the context
of preference queries, which covers an application context that goes beyond failing
queries stricto sensu.

Plethoric Answer Sets

In their probabilistic ranking model, Chaudhuri et al. [11] also propose to use a
correlation property between attributes and to take it into account when computing
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ranking scores. However, correlation links are identified between attributes and not
predicates, and the identification of these correlations relies on a workload of past
submitted queries.

Su et al. [35] have emphasized the difficulty to manage such a workload of previ-
ously submitted queries or users feedbacks. This is why they have proposed to learn
attribute importances regarding a price attribute and to rank retrieved items accord-
ing to their commercial interest. Nevertheless, this method is domain-dependent and
can only be applied for e-commerce databases.

The approach advocated by Ozawa et al. [26, 27] is also based on the analysis
of the database itself, and aims at providing the user with information about the
data distributions and the most efficient constraints to add to the initial query in
order to reduce the initial set of answers. The approach we propose in this chapter
is somewhat close to that introduced in [26], but instead of suggesting an attribute
on which the user should specify a new constraint, our method directly suggests
a set of fuzzy predicates along with some information about their relative interest
with respect to the user needs. The main limitation of the approach advocated in
[26] is that the attribute chosen is the one which maximizes the dispersion of the
initial set of answers, whereas most of the time, it does not have any semantic link
with the predicates that the user specified in his/her initial query. To illustrate this,
let us consider again the relation secondHandCars introduced in Sect. 3.1. Let Q be
a fuzzy query on secondHandCars: “select * from secondhandcars where type =
‘estate’ and year is recent” resulting in a PAS problem. In such a situation, Ozawa
et al. [26] first apply a fuzzy c-means algorithm [2] to classify the data, and each
fuzzy cluster is associated with a predefined linguistic label. After having attributed
a weight to each cluster according to its representativity of the initial set of answers,
a global dispersion degree is computed for each attribute. The user is then asked
to add new predicates on the attribute for which the dispersion of the initial set of
answers is maximal. In this example, this approach may have suggested that the user
should add a condition on the attributes mileage or brand, on which the recent estate
cars are probably the most dispersed. We claim that it is more relevant to reduce the
initial set of answers with additional conditions which are in the semantic scope of
the initial query. Here for instance, it would be more judicious to focus on cars with
a high level of security and comfort as well as a low mileage, which are features
usually related to recent estate cars. This issue has been illustrated in Sect. 6.3.

The problem of plethoric answers to fuzzy queries has been addressed in [6]
where a query strengthening mechanism is proposed. Let us consider a fuzzy set
F = (A, B, a, b) representing a fuzzy query Q. The authors of [6] define a
fuzzy tolerance relation E which can be parameterized by a tolerance indicator Z ,
where Z is a fuzzy interval centered in 0 that can be represented in terms of a
trapezoidal membership function by the quadruplet Z = (−z, z, δ, δ). From a
fuzzy set F = (A, B, a, b) and a tolerance relation E(Z), the erosion operator
builds a set FZ such that FZ ⊆ F and FZ = F � Z = (A+ z, B− z, a− δ, b− δ).
However, such an erosion-based approach can lead to a deep modification of the
meaning of the user query, if the erosion process is not correctly controlled.
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8 Conclusion

This chapter is a synthesis of several works that we have carried out in the context of
cooperative query answering. The main originality of our approach is that it addresses
symmetrical problems with a unified framework based the notion of a database fuzzy
summary. The type of summary we consider is based on fuzzy cardinalities and offers
a concise formalism to represent the data distributions over a predefined vocabulary
composed of fuzzy partitions. We have empirically shown on a concrete applicative
context that this method is efficient and that it provides meaningful information that
may help the user retrieve the items he/she is looking for. An important point is
that the summarization process has a linear data complexity. On the other hand, this
fuzzy-cardinality-based cooperative approach is realistic only when the number of
predicates that compose the predefined fuzzy vocabulary is reasonably small. An
interesting perspective would be to study the benefits of an incremental computation
of the summaries bootstrapped with correlation between attributes or predicates that
can be identified in a workload of previously submitted queries.

Concerning the failing query problem, we have proposed an approach that pro-
vides informative explanations about the reasons of the failure. A perspective is to
define a strategy that automatically repairs the failing queries, the goal being to sug-
gest a relaxed query that returns a non-empty set of answers and, if possible, whose
cardinality is as close as possible to the quantitative parameter k. As mentioned
above, an interesting solution could be to consider reformulations involving fuzzy
quantified statements.
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