
Chapter 11
Social Network Database Querying Based
on Computing with Words

Ronald R. Yager

Abstract Fuzzy relationships and their role in modeling weighted social relational
networks are discussed. We describe how the idea of computing with words can
provide a bridge between a network analyst’s linguistic description of social network
concepts and the formal model of the network. We then turn to some examples of
taking an analyst’s network concepts and formally representing them in terms of
network properties. We first do this for the concept of clique and then for the idea
of node importance. Finally we introduce the idea of vector–valued nodes and begin
developing a technology of social network database theory.

1 Introduction

Social relational networks have rapidly become an important technology in our dig-
ital based information intense world [1–8]. Among the notable examples of social
network sites are Facebook and LinkedIn. In addition to providing an ability for
enabling people from all over the world to connect with each other each they provide
a vast source of information about the individual participants in the network, the so
called nodes. Each of these participants can be viewed as a kind of database contain-
ing information about themselves. We see here that a social network can be viewed
as kind of network of databases. This leads us to understand that the development
of appropriate technologies to manage social networks requires a combination of
the use of network technologies, graph theory and database technologies [9]. Fur-
thermore the development of intelligent social network management requires the
extension of these two technologies by the introduction of ideas from soft and granu-
lar computing, computational intelligence [8]. In addition to the intelligent extension
of these two technologies with soft computing an important task on the road map
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of developing intelligent social networks is the combining of network theory with
database theory. Since many advances have been made toward the development of
intelligent database technologies, especially by contributors to this volume, here we
shall take some steps in the other two tasks, the intelligent extension of social network
theory and the combining of social networks with databases. We note that one area
that has received a considerable amount of research is the mining of social networks
[4, 5]. We emphasize that our interest here is not on this problem but we shall be
more interested in the issue of querying the social network with its nodes seen as
individual databases. We shall refer to this as SONDAB-Q as an acronym for SOcial
Network DAtaBase Querying.

The current social network technology can be extended and enriched to help in
modeling these newly emerging applications by introducing ideas from fuzzy sets
and related granular computing technologies [10–16]. We can provide this exten-
sion and enrichment in two ways. The first is with the introduction of fuzzy graphs
representing the networks [17–19]. This allows a generalization of the types of con-
nection between nodes in a network from simply connected or not to weighted or
fuzzy connections. Here the idea of strength of connection becomes important. The
second and perhaps more interesting extension is the use of Zadeh’s fuzzy set based
paradigm of computing with words [10–12] to provide a bridge between a human
network analyst’s linguistic description of social network concepts and the formal
model of the network. Fundamental to this capability is the realization that both
formal network models and the paradigm of computing with words are built upon
set based technologies. More specifically, the formal representation of a social net-
work is in terms of a mathematical set object called a relationship [1] and computing
with words uses a set object, fuzzy subsets, to formally represent the semantics of
linguistic terms. This common underlying set based technology allows us to take
human concepts and formally represent them in terms of network properties. This in
turn allows an analyst to estimate the truth or falsity of observations about a network
as well helps in the mining of social relation networks. In an attempt to help the
reader get an understanding of the technology useful in this approach we provide
few examples of how we would model some social network concepts.

Another useful idea we discuss is vector-valued nodes. Here we associate with
each node a vector whose components are the attribute values of the node. Com-
bining this with the machinery of Zadeh’s computing with words we are then able
to intelligently query the network with questions that involve both attributes and
connections. We see this as the basis of an emerging discipline of social network
database querying, SONDAB-Q

2 Fuzzy Graphs

Since a social network can be formally viewed as graph whose nodes represent the
members of the social network we begin by introducing some ideas from fuzzy
graphs. Here we first describe the idea of a fuzzy relationship. The concept of a
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fuzzy relationship plays a fundamental role in modeling a type of weighted graph
called a fuzzy graph [17–19]. Let X be a set of elements. A fuzzy relationship on X
is a mapping R : X × X → [0, 1] where R(x, y) indicates the degree of relationship
between x and y. We note that we can view a fuzzy relationship as a fuzzy subset on
X × X. This allows us to use much of the formalism of fuzzy sets. For example we
can say that R1 ⊆ R2 if R1(x, y) ≤ R2(x, y) for all (x, y). We note that R1 ⊆ R2
means that R1 is a subset of R2. We shall also use the terminology R1 ≤ R2.

Some notable properties that can be associated with fuzzy relationships are

(1) Reflexivity: R(x, x) = 1 for all x
(2) Symmetry: R(x, y) = R(y, x)
(3) Transitivity: R(x, z) ≥ Maxy[R(x, y) ∧ R(y, z)]
An important operation on fuzzy relations is composition. Assume R1 and R2 are
two relations on X. The composition R = R1 � R2 is also a relationship on X such
that

R(x, z) = Maxy[R1(x, y) ∧ R2(y, z)]

The composition operation can be shown to be associative

(R1 � R2) � R3 = R1 � (R2 � R3)

The associativity property allows us to use the notation Rk = R � R � . . . � R for
the composition of R with itself k times. In addition we shall define R0 to be such
that R0(x, y) = 0 for all x and y.

If R is reflexive then Rk2 ⊇ Rk1 for k2 > k1. On the other hand if R is transitive,
it can be shown that Rk2 ⊆ Rk1 if k2 > k1. From this we see that if R is reflexive
and transitive then Rk2 = Rk1 for all k1 and k2 �= 0.

We shall now define various types of fuzzy graphs. Let X be a set of elements,
which we shall refer to using graph terminology as nodes or vertices. We shall further
assume R is a reflexive fuzzy relationship on X. The pair <X, R> can be seen as
defining a fuzzy or weighted graph in which R(x, y) is the weight associated with
the arc x → y, (x, y). More generally if F is a fuzzy subset of X we can also define a
fuzzy graph as <X, F, R>. Here in addition to having degrees of connection we also
have a degree to which each of the nodes belongs to the network. In this case we let
R.F be a relationship on X defined such that R.F(x, y) = R(x, y) ∧ F(x) ∧ F(y) and
say that R.F is the relationship R on F. We note here that R.F(x, x) = F(x). If F = X
then R.F(x, y) = R(x, y). It can be shown here that R.Fk1 ⊆ R.Fk2 if k2 > k1. We
note that if F = X then <X, F, R> = <X, R>.

If R is symmetric we shall say <X, F, R> is an undirected fuzzy graph. We note
that if R is symmetric then R.F is also symmetric. If R is not symmetric we shall
refer to <X, F, R> as a directed graph and we refer to a pair (x, y) as an arc. Here
the weight on the arc (x, y) and arc (y, x) may be different. In the case of where R
symmetric we shall refer to the pair (x, y) as an edge. Since we shall primarily be
concerned with undirected graphs, we shall simply use the unmodified term graph
or network to refer to this case where R is symmetric.
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At times, especially when working with undirected graphs, we shall find it
convenient to consider the space U which consists of all unordered pairs of dis-
tinct elements which we denote as {x, y}. In this case we can refer to RU as the
reflection of R on U. In this RU({x, y}) = R(x, y) = R(y, x). We note that at a
formal level we can also view U as consisting of all subsets of X consisting of two
elements.

Assume G = <X, F, R> is a fuzzy graph. A path ρ in G is a sequence of distinct
nodes x0x1 · · · xn. The number of links in the path is n. The strength of the path is
defined as

ST(ρ) = Min
i=1 to n

[R.F(xi−1, xi)].

If F = X then ST(ρ) = Min
i=1 to n

[R(xi−1, xi)].
Two nodes for which there is a path ρ with ST(ρ) > 0 between them are called

connected. We call ρ a cycle if n ≥ 2 and x0 = xn
Consider the graph G = <X, R> let us now consider Rk. We can show that

Rk(x, y) is the strength of the strongest path from x to y containing at most k links.

We see that if X has n nodes then Rn−1 provides the strongest connection between two
nodes using any number of links. If Rk(x, y) �= 0 we can say x and y are connected
at least of order k.

We note that if G = <X, F, R> we can make statements similar to the above
about R.F.

Assume G = <X, R> is a fuzzy graph. Let ρ = x0 x1 · · · xn be a path in X. A
concept introduced by Rosenfeld [17] is the length of the path. He defined

L(ρ) =
n∑

i=1

1

R(xi−1, xi)

Clearly L(ρ) ≥ n. We note that if there exists one R(xi−1, xi) = 0 then L(ρ) = ∞
and St(ρ) = 0. We note that if R is crisp and St(ρ) �= 0 then L(ρ) = n. Using this
idea we can define the distance between two nodes x and y in the graph G as

δ(x, y) = Min
all paths x to y

[L(ρ)]

It is the length of the shortest path from x to y. It can be shown that δ is a metric [17],
δ(x, x) = 0, δ(x, y) = δ(y, x) and δ(x, z) ≤ δ(x, y) + δ(y, z). Using the termino-
logy common in social network analysis [1, 2] we can refer to the path ρ such that
L(ρ) = δ(x, y) as the geodesic between x and y and refer to δ(x, y) as the geodesic
distance.

While there appears to be some inverse connection between strength of a path and
its length as for example in the case where ST(ρ) = 0 implies L(ρ) = ∞ this is not a
strict correlation. Consider for example the two paths ρ1 and ρ2 shown in Fig. 1. We
see that ST(ρ1) = 0.75 > Str(ρ2) = 0.5. On the other hand L(ρ1) = 4

3 + 4
3 + 4

3 =
4 ≥ L(ρ2) = 1
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Fig. 1 Two paths
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Let <X, R> be a weighted graph. At times it can be useful to view this from
the level set point of view [20]. This will allow us to make use of the representation
theorem [20] to extend operations to these fuzzy relationships. We recall that if R is
a fuzzy relationship on X × X then Rα = {(x, y)/R(x, y) ≥ α} is called the α level
set of R. We see that each Rα is a crisp relationship on X.

We note that if Rk is the k composition of R then Rk
α = {(x, y)/Rk(x, y) ≥ α}. It

can also be shown that [21]

Rk
α = Rα � Rα � � Rα,

the k composition of Rα is also Rk
α .

The representation theorem allows us to represent fuzzy relationship in terms
of the collection of its level sets. This can be used to extend operations that are
well defined on crisp sets to be defined on fuzzy sets. Using this we can express

Rk = 1
�

α=0
{ α

Rk
α
}, here we are using the standard fuzzy set notation where α

Rk
α

indicates

that α is the membership grade of Rk
α .

Undirected fuzzy graphs, which are also transitive, provide a very interesting class
of graph. In these graphs if x is related to y and y is related to z then x is related to z.
In social networks transitivity captures the property “friend of a friend is a friend”.

Many of the concepts introduced in the preceding are valid for both directed and
undirected graphs. A fundamental difference is the following. Assume x0x1 · · · xn
is a sequence of points that constitute a path. In an undirected graph its transpose
xnxn−1 · · · x0 is a path having the same strength and length. In a directed graph we
can’t say anything about the transpose sequence. Whenever possible in an undirected
graph we shall refer a path as between x0 and xn while in a directed graph we shall
refer to the path from x0 to xn.

3 Computing with Words

Our goal here is to extend our capabilities for analyzing social relational networks
by associating with these networks concepts with which human beings view social
network relationships in such a way that they are comprehensible to both humans
and machines. On one hand human beings predominantly use linguistic terms in
which to communicate, reason and understand the world. Machines on the other hand
require much more formal symbols. One of the most useful approaches to providing a
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bridge between man and machine comprehension is the general framework provided
by granular computing [8] and more specifically Zadeh’s fuzzy set based paradigm
of computing with words. This technology allows for a high level of man-machine
cooperation by providing a framework in which concepts can be modeled in a manner
amenable to both. The potential for applying fuzzy set based technologies within the
domain of social network analysis is particularly promising given that the computer
modeling of these networks is in terms of mathematical relationships which as we
already noted are equivalent to fuzzy sets.

In the following we introduce some ideas from the fuzzy set based approach to
computing with words. Let U be some attribute that takes its value in the space Y. An
example of such an attribute is age, which, for human beings takes its value in the
set Y = {0, . . . , 100}. A fundamental concept in computing with words is the idea
of linguistic value [22]. A linguistic value is some word used to express the value of
U. In the case of age, some examples of linguistic values are “old”, “young”, “about
30”, A linguistic value can be seen as a granule, it is a collection of values from the
space Y. As we noted it is with the aid of linguistic values that human beings best
understand and reason about their environment.

By a vocabulary we shall mean a collection of commonly understood words that
are used to express the linguistic values associated with an attribute. These are the
words that people use to communicate with each other. They are also the words
people use to reason with about the attribute. Fuzzy sets provide a useful tool for
formalizing the idea of a vocabulary in a way that allows machine computation and
understanding. If W is a word in the vocabulary associated with the variable U we
can express W as a fuzzy subset W of the domain of U. Here then for any element
y ∈ Y the membership grade of y in W, W(y), indicates the compatibility of the
value y with the linguistic value W . Thus the fuzzy subset W provides a machine
comprehensible interpretation of the word W .

We are now in a position to bridge the gap in man-machine communication with
respect to the analysis of social relational network by allowing the human to build
a vocabulary of linguistic terms associated with an attribute and then provide a
representation for these terms by fuzzy sets (see Fig. 2). Thus here now we have a
communal vocabulary coherent to both the human and the machine.

What must be emphasized here is that the choice of the vocabulary as well as the
associated meaning of the words in terms of fuzzy sets is completely in the hands
of the human partner. This greatly simplifies this task. The vocabulary that will be
used is imposed, we are giving the computer meaning. Particularly noteworthy is the
fact that learning algorithms need not necessarily be required, the computer is told
these are the terms I will be using and this is what they mean in your language, fuzzy

HUMAN MACHINE

Words Vocabulary
Fuzzy
Sets Numbers

Fig. 2 Paradigm of man-machine understanding
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sets. This is not to say that the construction of the communal vocabulary is not an
important and complex task to which future research must be dedicated so that it is
thoughtfully and appropriately done but only to reflect the fact that it is within our
power to impose what we have decided. This situation allows us in the following
to assume the availability of a communal vocabulary associated with attributes of
interest.

In analyzing weighted relational networks there are a number of attributes about
which it will be useful to have a vocabulary of commonly accepted terms. One such
attribute is strength of connection. This is an attribute whose domain is the unit
interval, I = [0, 1]. Terms like strong, weak, none would be part of a vocabulary
associated with this attribute. In this case we would define the word strong as a fuzzy
subset S of [0, 1] such that for any y ∈ [0, 1] the value S(y) would indicate the
degree to which y satisfies the working definition of the concept strong connection.
We would assume that S would be such that S(0) = 0, S(1) = 1 and S is monotonic,
S(y1) ≥ S(y2) if y1 ≥ y2. A prototypical example of the definition of the term strong
would be the piecewise linear fuzzy subset shown in Fig. 3.

Another attribute for which it will be useful to have a communal vocabulary is
the number of links in a path, path length. Some words in such a vocabulary would
be short and long. In the case of this attribute we would provide a semantics for the
words of the vocabulary, in terms of fuzzy subsets of the domain H = {0, 1, . . . , n}
when n is the number of vertices in the network.

Concepts, in addition to actual physical objects, can provide attributes of interest.
One such concept that we shall find useful are proportions. Here U is an attribute
that takes its value in the set I = [0, 1] where r ∈ [0, 1] is a proportion. Examples of
linguistic values that could be part of a communal vocabulary associated with this
attribute are many, most and about half. As noted by Zadeh these terms provide a
generalization of the quantifiers “all” and “none” that are used in logic. We can refer
to these as linguistic quantifiers.
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4 Clusters and Cliques

An important idea in classical graph theory is the concept of a cluster; here we want to
extend this to weighted graphs. Let us first review the ideas from crisp graph theory.
Let <X, R> be a graph where R is a crisp relationship. We are implicitly assuming
our graph is undirected so R is symmetric. One approach is to call a subset C of X a
cluster of order k if

(a) For all node pairs x and y in C we have Rk(x, y) = 1
(b) For all nodes z /∈ C there is some x ∈ C such that Rk(x, z) = 0.

Note: When k = 1 we call C a clique.
Note: The order k of the cluster is reflected in the term Rk.

In [17] Rosenfeld suggested extending these ideas to fuzzy graphs. Here we let
<X, R> be a fuzzy graph where R is a symmetric fuzzy relationship. A crisp subset
C ⊂ X is called a fuzzy cluster of order k if

Minx,y∈C[Rk(x, y)] > Supz/∈C[Infw∈CRk(w, z)].

In the following we suggest an alternative, more human meaningful, definition
of a clique and then using the paradigm of computing with words we can provide a
procedure for evaluating how well a subset of nodes satisfies our definition.

Let A be a subset of elements from X. We shall define A to be a clique if

C1: All elements in A are connected by a short strong path.
C2: No element not in A is connected to an element in A by a strong path.

Here then we have two criteria that need to be satisfied for a subset A ⊂ X to be
considered as a clique, C1 and C2. If we let C1(A) ∈ [0, 1] be the degree to which it
is true that A satisfies C1 and C2(A) ∈ [0.1] be the degree to which it is true that A
satisfies C2 then C(A) = Min[C1(A), C2(A)] is the degree to which it is true that A
is a clique.

We must now formulate the two criteria in terms of features from the network
<X, R>. Here we shall make use of the communal vocabularies for the attributes
strength of connection and path length. We shall assume the availability of the word
strong for strength of connection and short for length of path in the vocabulary, that
is we have expressions for the meaning, semantics, of these words as fuzzy subsets.

We first focus on C1. Here we will make use of the term “strong connection”
which we will represent as a fuzzy subset S of the unit interval I. In addition we need
use the linguistic term “short path” which we represent as a fuzzy subset SH of the
space N.

Assume xi and xj are two nodes in the proposed clique A. Here Rk(xi, xj) indicates
the strength of connection of xi and xj for a path of at most k links. For any Rk(xi, xj)

the value S(Rk(xi, xj)) is the degree to which Rk(xi, xj) is a strong connection.
We recall that Rk(xi, xj) is monotonic in k, that is if k2 > k1 then Rk2(xi, xj) ≥
Rk1(xi, xj). In addition as we noted earlier S, strong connection, is also monotonic
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in strength, S(a) ≥ S(b) if a > b. From this we can conclude that for k2 > k1 then
S(Rk2(xi, xj)) ≥ S(Rk1(xi, xj)).

The concept short path with respect to the number of links it contains can be
defined as a fuzzy subset SH of N = {1, 2, . . . , n}. Here we can observe that
generically SH should have the following properties; SH(1) = 1, SH(n) = 0 and
SH(k1) ≥ SH(k2) if k1 < k2. Here it is monotonic decreasing in k, increasing
k leads to decrease the satisfaction. A prototypical example of this concept is the
piecewise linear fuzzy subset as shown in Fig. 4.

Using these ideas we can determine the degree to which there exists a short-strong
connection between xi and xj. We define this using a form of the Sugeno integral
[23] as

C1(xi, xj) = Max
k=1 to n

[SH(k) ∧ S(Rk(xi, xj))]

In the above ∧ is the Min operator. We see that as k increases SH(k) tends to get
smaller while S(Rk(xi, xj) tends to get bigger.

We now can use this to determine the degree to which all elements in A are
connected by a short-strong path,

C1(A) = Min
xi,xj∈A

xi �=xj

[C1(xi, xj)].

It is very important to observe the marriage of different types of set objects used
in making up the definition of C1(xi, xj). We first see that we have used Rk(xi, xj),
which is essentially the set–based definition of the network. In addition we have used
the fuzzy sets SH and S, which are the fuzzy set definitions of the words short and
strong. Here we have taken advantage of the fact that both the basic representation
of a graph (network) and the meaning of words can be formulated using a set-based
formulation to mix language and network representation. In [8] we referred to this
approach as PISNA, the Paradigm for Intelligent Social Network Analysis.

We now consider the second criteria, C2, no element not in A has a strong con-
nection with an element in A. In the following we shall let x ∈ A and z /∈ A. For
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these elements Rn(x, z) is the strength of the strongest path between x and z of
any length. Here then S(Rn(x, z)) is the degree to which there exists a strong path
between x and z. If we calculate Max

x∈A,z/∈A
[S(Rn(x, z))] we obtain the degree to which

there exists a strong path between an element in A and an element not in A. Using
this can calculate C2(A) as

C2(A) = 1 − Max
x∈A,z/∈A

[S(Rn(x, z))]

We now can use these formulations to determine the degree to which a subset A is a
clique.

In the following we will make some observations regarding the preceding
approach to defining the concept of clique.

In the preceding we defined the concept of short path in an absolute way as a fuzzy
subset SH of the set of number of elements in a graph. It is possible to express short
in a more universal way as a subset of the proportion of the number of elements in
the graph. Thus here we can define “short path” as a fuzzy subset SHp defined on the
unit interval where for any r ∈ [0, 1] the value SHp(r) indicates the degree to which
the proportion r of elements in the network constitute a “short path.” Thus here we
are defining “short path” as a proportion of number of vertices in the network. This
allows us to have a universal definition of the concept of “short path” independent
of the number of nodes in the network. In this case where we have SHp we calculate

C1(xi, xj) = Max
k=1 to n

[
SHp

(
k

n

)
∧ S(Rk(xi, xj))

]

We note that SHp will have the same form as SH, SHp(r) decreases as r increases.
We also note that it is possible to somewhat relax the second criteria. Instead of

having
C2 = no element, not in A, is connected to an element in A by a strong path.

We can say that
C2 = no element not in A is connected to an element in A by a strong path that is

not long.
Here we need obtain the word Long from our communal vocabulary. A typical

example of a fuzzy subset representing such a definition is shown in Fig. 5.
If L is the fuzzy subset defined on N corresponding to Long then not Long is a

fuzzy subset N.L defined such that N.L(k) = 1 − L(k). Using this we obtain

Max
k=1 to n

[N.L(k) ∧ S(Rk(x, z))]

as the degree to which there is a strong and not long path between x and z. Finally
from this we obtain

C2(A) = 1 − Max
x∈A,z/∈A

(
Max

k=1 to n

[
N.L(k) ∧ S

(
Rk(x, z)

)])
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We now consider the situation in what we allow the set A to be a fuzzy set. Thus
we want to determine if A is a fuzzy clique. We shall consider the same two original
conditions C1 and C2 as defining a clique. We shall use Ã to indicate our fuzzy
Clique.

Here we first look at C1. In this case we still get for any two nodes x and y ∈ X.

C1(x, y) = Max
k=1 to n

[SH(k) ∧ S(Rk(x, y))]

as the degree to which there is a short and strong path between the nodes x and y.
Using this we obtain

C1(Ã) = Min
x �=y∈X

[(1 − Ã(x)) ∨ (1 − Ã(y)) ∨ C1(x, y))]

We note that in the case where Ã is crisp this reduces to our original definition of
C1. For if x or y are in Ã then the disjunction reduces to for C1(x, y) while if either
x or y is not in Ã then the argument becomes 1.

In this case of C2, for a fuzzy clique we get

C2(Ã) = 1 − Max
x,z∈X

x �=z

[Ã(x) ∧ (1 − Ã(z)) ∧ S(Rn(x, z))]

We note that if Ã is crisp this reduces to our previous definition. For if x ∈ Ã
and if z /∈ Ã then it becomes the original format. If either x /∈ Ã or z ∈ Ã then
Ã(x) ∧ (1 − Ã(z)) ∧ S(Rn(x, z)) = 0 and it doesn’t effect the calculation of C2(Ã).
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5 Centrality

An important concept in social network analysis is centrality [1, 2]. The centrality
of a node is closely related to its importance in the network. Assume <X, R> is a
relational network where R is a crisp relation. The measure of centrality of node xi

is the number of nodes connected to it by at most k links. In this case

Ck(xi) =
n∑

j=1
j �=i

Rk(xi, xj)

is the measure of the centrality of node xi.
If we have a network where R is a weighted graph a straightforward way to extend

this is to calculate Ck(xi) as in the above. One problem that can arise here is that a
large number of weak connections, small values of Rk(xi, xj), can add up to appear
as a strong connection. Here we can suggest some other alternative methods for
obtaining this measure of centrality.

One method is to use the level set representation and obtain a fuzzy set represen-
tation for the centrality. Here we can express

Ck
α(xi) =

n∑

j=1
j �=i

Rk
α(xi, xj)

Thus here Ck
α(xi) is the number of nodes connected to xi with strength of at least α

using at most k links. Using this we can define

C̃k(xi) = �
α∈[0,1]

{
α

Ck
α(xi)

}
,

here we are using the standard fuzzy notation indicating that α is the membership
grade of Ck

α(xi).
In this case C̃k(xi) is a fuzzy number. We should note that since for α2 > α1 we

have Rk
α2 ⊆ Rk

α1 then Ck
α1Ck

α2.
Let us consider another way to extend the concept of centrality to the case of a

weighted graph. An alternative and perhaps more appropriate definition of centrality
would be the “number of strong connections using at most k links.” Here we shall
define the concept “strong” as a fuzzy subset of unit interval. For example see Fig. 3.
Using this definition we can obtain

C̃k(xi) =
n∑

j=1
j �=i

Strong Rk(xi, xj)

Thus here we transform the scores via the concept strong.
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6 Social Network Databases

In the following we shall consider a weighted network <X, R> where each of the
nodes has an associated vector of attribute (feature) values. In these types of networks
each of the node objects have various attributes, properties and features. This structure
can be viewed as the combination of a network and database.

In these networks we have a collection of q attributes U1, . . . , Uq. In the case where
the nodes are people, examples of attributes could be nationality, age or income. Each
of the attributes takes a value from a domain Yi. In this situation, each node has an
associated q vector whose i th component is the value of the i th attribute for that
node.

We shall use the notation Ui(xj) to indicate the variable corresponding to the
attribute Ui in the case of node xj. For example with Ui being the attribute age then
Ui(xj) would indicate the variable age of xj. If Ui is the attribute country of birth then
Yi would be a list of countries and Ui(xj) would be the variable corresponding the
country of birth of xj. We shall let vij indicate the value of the variable Ui(xj), thus
Ui(xj) = vij. Thus in this case any node in our network has an associated vector Vj
whose i component vij corresponds to the value of attribute Ui for node xj. We should
observe the above network could in some ways be viewed as a kind of database.

In the following we shall begin to describe techniques that can be used to analyze,
investigate and question networks with vector-valued nodes. Here we shall be using
flexible/fuzzy-querying techniques [9, 24].

In the following we shall assume that country of residence is one of the attributes,
we shall denote this as U1. Thus U1(xj) is the variable denoting the country of
residence of xj. In this case the domain Y1 associated with U1 is the set of countries.
In addition, a communal vocabulary associated with this attribute would consist of
terms such as “Middle East”, “North America”, “South America” and “Southeast
Asia”. Other terms such as “mountainous country”, “Spanish speaking”, and “Oil
producing” can also be part of the vocabulary. Each of the terms in the vocabulary
would be defined in terms of subsets of Y1. Some of these terms can be defined using
crisp subsets while others will require fuzzy subsets.

In addition we shall assume age is another of the attributes associated with the
network nodes. We shall denote this as U2 with its domain Y2 being the set of
non-negative integers. Here we shall also assume the availability of mutually under-
standable vocabulary of commonly used linguistic terms to describe a person’s age.
These terms will be defined in terms of subsets of Y2.

Assume xj is some node in our network. We can ask “To what extent is xj strongly
connected to a person residing in South America?” In the following we shall let SA
indicate the subset of Y1 corresponding to South America. Using this we can obtain
as the answer to our question

Max
i,i �=j

[SA(U1(Xi)) ∧ Rn(xi, xj)]
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More specifically we can ask “To what extent is xj strongly connected to a young
person residing in South America?” In this case with U2 being the attribute age and
Young being the subset corresponding concept young person we get as the answer

Max
i,i �=j

[SA(U1(Xi)) ∧ Young(U2(Xi)) ∧ Rn(xi, xj)]

We note this value is also the truth of the question “Does xj have a connection to a
Young South American”.

We note that if we want to find out “does xj have a strong connection to a Young
South American” then we obtain the truth of this as

Max
i,i �=j

[SA(U1(Xi)) ∧ Young(U2(Xi)) ∧ Strong(Rn(xi, xj)))]

Here we have replaced the predicate Rn(xi, xj) with Strong (Rn(xi, xj))

A related question is the following. Let B be some crisp subset of X. We now
ask what is the strongest connection between an element in B and a Young South
American not in B. The answer is then obtained from the following

Max
Xi∈B

[
Max

xj
[SA(U1(Xi)) ∧ Young(U2(Xj)) ∧ Rn(xi, xj) ∧ B(Xj)]

]

If in the above we are interested in only direct connections rather than any connection
we replace Rn by R.

We now consider the question: Do all people residing in South America have a
strong connection with each other? We shall denote the truth of this question Tr[Q]
We calculate this truth-value as

Tr(Q) = Min
xi,xj∈X

[(1 − SA(U1(xi)) ∨ (1 − SA(U1(xj)) ∨ Strong(Rn(xi, xj))]

Let us look at this for the special case where SA is a crisp set. We first see that in
the case of a pair (xi, xj) in which at least one of the elements do not reside in South
America then either SA(U1(xi)) = 0orSA(U1(xj)) = 0 and therefore

(1 − SA(U1(xi)) ∨ (1 − SA(U1(xj)) ∨ Strong(Rn(xi, xj)) = 1.

This case will not be the min. For the case in which both xi and xj reside in South
America then SA(U1(xi)) = SA(U1(xj)) = 1 and hence

(1 − SA(U1(xi)) ∨ (1 − SA(U1(xj)) ∨ Strong(Rn(xi, xj)) = Strong(Rn(xi, xj))

From this we get as expected Tr(Q) = Min
xixj∈SA

[Strong(Rn(xi, xj))]
Now we shall consider the slightly more complicated question of whether “most

of the people residing in western countries have strong connections with each other?”
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We shall here assume the term most is available in our common vocabulary where it
is defined as a fuzzy subset over the unit interval. In addition we shall assume that
the concept western country, is a concept that is defined by the fuzzy subset W over
the domain Y1. In this case for each xi ∈ X we have W(U1(xi)) indicates the degree
to which it is true that xi is from a western country. In the following we shall set P
to be the set of all unordered pairs of distinct elements from X. P is the set of all the
subsets of X consisting of two elements. We see that the number of elements in P,
nP = (n)(n−1)

2 where n is the number of elements in X. We shall denote an element
{xi, xj} in P as pk. Here then k goes from 1 to nP.

For each pair pk = {xi, xj} we obtain two values. The first Vk = Min(W(U1(xi)),

W(U1(xj))) indicates the degree to which pk consists of pair of elements both from a
western country. The second value is Sk = Strong(Rn(xi, xj)), indicates the degree
to which there is a strong connection between the pair {xi, xj}. We shall use the
technology of OWA operators to answer our question [25]. We proceed to obtain the
answer as follows:

(1) Order the Sk and let ind(j) be the index of the j th largest of the Sk. Thus here
Sind(j) is the j th largest of the Sk and Vind(j) is its associated V value.

(2) We next calculate

R =
np∑

j = 1

Vind(j)

(3) We next obtain a set of weight wj for j = 1 to np where

wj = Most(
Rj

R
) − Most(

Rj − 1

R
)

here Rj = ∑j
i=1 Vind(i)

(4) We finally calculate the truth of the question as

Tr(q) =
np∑

j = 1

wjSind(j)

An interesting special case of the preceding occurs if the subset W, Western Country,
is a crisp set. In this case Vk = Min(W(U1(xi)), W(U1(xj))) is a binary value, either
one or zero. It is one if both xi and xj are from western countries and zero of either
is not from a western country.

Another question we can ask is whether the young people form a clique. Since
the young people provide a fuzzy subset over the space X and we have previously
indicated a process for determining whether a fuzzy set is a clique we can answer
this question.
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7 Conclusion

We discussed the idea of fuzzy relationships and their role in modeling weighted
social relational networks. The paradigm of computing with words was introduced
and the role that fuzzy sets play in representing linguistic concepts was described. We
discussed how these technologies can provide a bridge between a network analyst’s
linguistic description of social network concepts and the formal model of the network.
Some examples of taking an analyst’s network concepts and formally representing
them in terms of network properties were provided. We applied this to the concept
of clique and then to the idea of node centrality. Finally we introduced the idea of
vector–valued nodes and began developing a technology of social network database
theory. Clearly this newly introduced idea of social network database theory will
provide many applications and will need a more formal mathematical framework, a
task for future research.
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