
Studies in Computational Intelligence 497

Flexible Approaches
in Data, Information
and Knowledge
Management

Olivier Pivert
Sławomir Zadrożny (Eds.)

Studies in Computational Intelligence

Volume 497

Series Editor

J. Kacprzyk, Warsaw, Poland

For further volumes:
http://www.springer.com/series/7092

http://www.springer.com/series/7092

Olivier Pivert • Sławomir Zadro _zny
Editors

Flexible Approaches in
Data, Information and
Knowledge Management

123

Editors
Olivier Pivert
IRISA/ENSSAT
Université de Rennes 1
Lannion Cedex
France

Sławomir Zadro _zny
Systems Research Institute
Polish Academy of Sciences
Warsaw
Poland

ISSN 1860-949X ISSN 1860-9503 (electronic)
ISBN 978-3-319-00953-7 ISBN 978-3-319-00954-4 (eBook)
DOI 10.1007/978-3-319-00954-4
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013946319

� Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

1 Introduction

Nowadays, data management constitutes a blossoming domain that expands rap-
idly: the development of numeric applications and mobile devices generates a
profusion of data in numerous activity areas. Data sources multiply at a sustained
pace: social networks, sensor networks, user data, business data, web data. Data
sets are getting huge, more and more open, often pervasive, and their exploitation
becomes a major societal challenge.

In this context, research issues are numerous and diverse, in particular those
concerning access to information: customization, preference queries, data sum-
maries, database mining, heterogeneous and complex data handling, data inte-
gration, uncertain data management.

A crucial issue in database research these days is how to make systems more
flexible and more human-centric. This implies, among other aspects, taking into
account the preferences of the users as well as their context, to be able to deal with
uncertain data, to exploit metadata such as ontologies in order to answer queries, to
devise systems that exhibit a cooperative behavior, etc. Notice that similar prob-
lems arise in information retrieval as well. Besides classical database tools that
need to be extended, knowledge discovery techniques can also be leveraged to
make the content (and the structure) of a database more intelligible to users.

The application of fuzzy set theory to the database domain is an already old
story that started in the late 1970s. Indeed, it appeared very early that fuzzy sets
constitute an intuitive and powerful tool to model and handle gradual concepts in
the context of databases (e.g., vague predicates involved in flexible queries,
approximate functional dependencies, imprecise values, user profiles). Pioneering
works are those by V. Tahani, H. Prade, P. Bosc, B. Buckles and F. Petry, M.
Zemankova and A. Kandel, M. Umano, J. Kacprzyk, to cite a few.

Patrick Bosc played a leading role in this community from the very beginning.
His position is confirmed with many publications, plenary Lectures at many
prestigious conferences, but also with the response we have received while sending
invitations to contribute to this volume dedicated to Patrick, to celebrate his
retirement. Patrick, an expert in database theory, quickly recognized a potential of
fuzzy set theory to make standard database concepts and tools closer to human way

v

of thinking. One of his great achievements was the development of the SQLf
language, which combined a highly popular query language with elements of fuzzy
logic in a very comprehensive way, covering all the details of SQL.

The topics listed above (preference queries, uncertainty management, cooper-
ative answering, etc.) are now recognized in mainstream database research, but
there is still some effort to make in order to convince the researchers from that
community that fuzzy sets are an appropriate tool for tackling these issues. This
volume is hopefully a step toward that goal.

2 Structure of the Volume

2.1 Bipolar Preference Queries

Bipolarity refers to the propensity of the human mind to reason and make decisions
on the basis of positive and negative affects. Positive information states what is
possible, satisfactory, permitted, desired, or considered as being acceptable. On the
other hand, negative statements express what is impossible, rejected, or forbidden.

The first part of the volume, devoted to bipolar preference queries, includes four
chapters. The first, by D. Dubois and H. Prade, revisits the modeling of the
connective if possible in requirements of the form ‘‘A and if possible B.’’ The
authors mainly distinguish between two types of understanding: either (i) A and
B are requirements of the same nature and are viewed as constraints with different
levels of priority, or (ii) they are of different nature (only A induces constraint(s)
and B is only used for breaking ties among items that are equally satisfying A). The
authors show that the two views are related to different types of bipolarity, and
discuss them in relation with possibilistic logic. The disjunctive dual of the first
view (‘‘A or at least B’’) is then presented in this logical setting.

The second chapter, by T. Matthé, J. Nielandt, S. Zadro _zny, and G. De Tré,
provides an overview of two approaches to bipolar preferences. Both approaches
use pairs of satisfaction degrees as an underlying framework, but have different
semantics, and hence lead to different operators for criteria evaluation, ranking,
aggregation, etc.

In the third chapter, by L. Liétard, D. Rocacher, and N. Tamani, the authors also
consider two different types of bipolar preferences: conjunctive ones (if possible)
and disjunctive ones (or else) and show that both of them can be interpreted in a
hierarchical way. They then introduce a general form of fuzzy bipolar conditions
and extend the operators of relational algebra so as to give them a bipolar
semantics and make them work on bipolar fuzzy relations.

In the fourth chapter, J. Kacprzyk and S. Zadro _zny investigate different aspects
and interpretations of bipolarity in database querying. The authors analyze various
ways to deal with bipolarity, recast them in a unified perspective, and clarify them
with respect to conceptual, algorithmic, and implementation related aspects.

vi Preface

See also the chapter by Buche et al. in the third part of the volume (cf. Sect. 2.3)
that deals with bipolar queries to uncertain databases using ontologies.

2.2 Ontology-Based Data Access

The second part of the volume, made of two chapters, is devoted to Ontology
Based Data Access (OBDA), whose aim is to use an ontology to mediate the
access to data sources. The added value of OBDA, w.r.t. accessing a data source
directly, is, on the one hand, that the ontology provides a semantic account of the
information stored in the data source. On the other hand, the answer to user queries
may be enriched by exploiting the constraints expressed by the ontology, thus
overcoming incompleteness that may be present in the data.

The first chapter, by U. Straccia, discusses the problem of evaluating ranked
top-k queries in the context of ontology mediated access over relational databases.
An ontology layer is used to define the relevant abstract concepts and relations of
the application domain, while facts with associated score are stored into a rela-
tional database. Queries are conjunctive queries with ranking aggregates and
scoring functions. The results of a query may be ranked according to the score and
the problem is to find efficiently the top-k ranked query answers.

The second chapter, by J. R. Campana, J. M. Medina, and M. A. Vila, presents a
schema and a transformation algorithm to store OWL ontologies in Object Rela-
tional Databases. The database schema makes it possible to represent an ontology
structure, while the transformation algorithm creates an appropriate schema to
store its instances preserving all information. The approach presented enables
using instance data of imprecise nature, mostly fuzzy numerical data.

2.3 Uncertain Databases

In the late 1970s, Database Researchers (notably E. F. Codd and W. Lipski) started
investigating the issue of extending the relational database model so as to represent
unknown (null) values. Since then, many authors have proposed diverse approa-
ches to the modeling and handling of databases involving uncertain or incomplete
data. In particular, the last two decades have witnessed an explosion of research on
this topic, with many chapters devoted to probabilistic databases (and also a few
dealing with possibilistic databases, notably by Bosc et al.).

This third part of the volume, devoted to uncertain databases, includes three
chapters. The first, by T. Beaubouef and F. Petry, discusses rough set, fuzzy rough
set, and intuitionistic rough set approaches and how to incorporate uncertainty
management using them in the relational database model.

The second chapter, by P. Buche, S. Destercke, O. Haemmerlé, and R.
Thomopoulos, proposes an approach to query a database where the user

Preface vii

preferences can be bipolar (cf. Sect. 2.1 above) and the data stored in the database
can be uncertain. Query results are then completely ordered with respect to these
bipolar preferences, giving priority to constraints over wishes. Furthermore, the
authors consider user preferences expressed on a domain of values which is not
‘‘flat,’’ but contains values that are more specific than others according to the kind
of relation.

The third chapter, by J. Pons, C. Billiet, O. Pons and G. De Tré, deals with
imperfect data in temporal databases. The authors first provide an overview of the
basic concepts and issues related to the modeling of time as such or in relational
database models and the imperfections that may arise during or as a result of this
modeling. Then, they present a novel technique for handling some of these
imperfections.

2.4 Flexible Queries over Nonstandard Data

The notion of fuzziness in information retrieval has been long recognized. Indeed,
broadly meant fuzziness may be existent in representing documents, in repre-
senting queries, in matching the representations of documents to the representa-
tions of queries, in evaluating the retrieved documents by users, and even in
evaluation of the performance of the retrieval system. The first chapter of this
fourth part of the volume, by G. Pasi, G. Bordogna, and G. Psaila, presents a
unifying model of flexible queries with distinct semantics of search terms weights.
When querying documents archives, there is often the need to specify importance
weights of the search terms that define flexible selection conditions on documents
representation. Several interpretations of the semantics of these weights have been
proposed within distinct information retrieval models. In this contribution, the
authors define a unifying model of information retrieval based on a vector p-norm,
where importance weights with distinct semantics can be specified in flexible
queries.

Social networks have rapidly become an important technology in our digital-
based information intense world. In addition to enabling people from all over the
world to connect with each other, they provide vast sources of information about
the individual participants in the network. Each of these participants can view a
kind of database containing information about themselves. Thus, a social network
can be viewed as a kind of network of databases. The second chapter of this fourth
part of the volume, by R. Yager, discusses fuzzy relationships and their role in
modeling weighted social relational networks. The author describes how the idea
of ‘‘computing with words’’ can provide a bridge between a network analyst’s
linguistic description of social network concepts and the formal model of the
network. The idea of vector-valued nodes is introduced and then the basic ele-
ments of a technology of social network database theory are presented.

viii Preface

2.5 Fuzzy Knowledge Discovery and Exploitation

The paradigm of cooperative answering originated from the works concerning
natural-language question-answering in the early 1980s. One of the aims of such
works is to prevent systems from producing ‘‘there is no result’’ when a query fails.
In the first chapter of this fifth part, G. Smits, O. Pivert, and A. Hadjali propose a
unified framework for cooperative answering, that relies on a fuzzy-cardinality-
based summary of the database. The authors show how this type of summary can
be efficiently used to explain failing queries or to revise queries returning a ple-
thoric answer set.

The last chapter, by M. Q. Flores, F. Del Razo, A. Laurent, and N. Sicard deals
with the parallelization of fuzzy database mining algorithms. The authors discuss
why a parallel approach is crucial to tackle the problem of scalability and optimal
performance in the context of database mining. They then present parallel algo-
rithms on multi-core architectures devoted to four knowledge discovery para-
digms, namely fuzzy association rules, fuzzy clustering, fuzzy gradual
dependencies, and fuzzy tree mining.

The editors wish to thank the following reviewers for their invaluable help:
Troels Andreasen, Isabelle Bloch, Gloria Bordogna, Patrice Buche, Jesus Roque
Campana, Davide Ciucci, Sébastien Destercke, Guy De Tré, Didier Dubois,
Michel Grabisch, Allel Hadjali, Olgierd Hryniewicz, Hélène Jaudoin, Janusz
Kacprzyk, Donald Kraft, Ludovic Liétard, Zongmin Ma, Christophe Marsala,
Arnaud Martin, Adam Niewiadomski, Henri Prade, Grégory Smits, Umberto
Straccia, Eulalia Szmidt, Laurent Ughetto, Peter Vojtas.

Olivier Pivert
Sławomir Zadro _zny

Preface ix

Contents

Part I Bipolar Preference Queries

1 Modeling ‘‘and if possible’’ and ‘‘or at least’’: Different
Forms of Bipolarity in Flexible Querying 3
Didier Dubois and Henri Prade

2 Constraint-Wish and Satisfied-Dissatisfied: An Overview
of Two Approaches for Dealing with Bipolar Querying 21
Tom Matthé, Joachim Nielandt, Sławomir Zadro _zny
and Guy De Tré

3 A Relational Algebra for Generalized Fuzzy
Bipolar Conditions . 45
Ludovic Liétard, Daniel Rocacher and Nouredine Tamani

4 Bipolarity in Database Querying: Various Aspects
and Interpretations. 71
Sławomir Zadro _zny and Janusz Kacprzyk

Part II Ontology-based Data Access

5 On the Top-k Retrieval Problem for Ontology-Based
Access to Databases . 95
Umberto Straccia

6 Semantic Data Management Using Fuzzy Relational
Databases . 115
Jesús R. Campaña, Juan M. Medina and Maria A. Vila

xi

http://dx.doi.org/10.1007/978-3-319-00954-4_1
http://dx.doi.org/10.1007/978-3-319-00954-4_1
http://dx.doi.org/10.1007/978-3-319-00954-4_1
http://dx.doi.org/10.1007/978-3-319-00954-4_1
http://dx.doi.org/10.1007/978-3-319-00954-4_1
http://dx.doi.org/10.1007/978-3-319-00954-4_1
http://dx.doi.org/10.1007/978-3-319-00954-4_2
http://dx.doi.org/10.1007/978-3-319-00954-4_2
http://dx.doi.org/10.1007/978-3-319-00954-4_3
http://dx.doi.org/10.1007/978-3-319-00954-4_3
http://dx.doi.org/10.1007/978-3-319-00954-4_4
http://dx.doi.org/10.1007/978-3-319-00954-4_4
http://dx.doi.org/10.1007/978-3-319-00954-4_5
http://dx.doi.org/10.1007/978-3-319-00954-4_5
http://dx.doi.org/10.1007/978-3-319-00954-4_6
http://dx.doi.org/10.1007/978-3-319-00954-4_6

Part III Uncertain Databases

7 Information Systems Uncertainty Design and Implementation
Combining: Rough, Fuzzy, and Intuitionistic Approaches 143
Theresa Beaubouef and Frederick Petry

8 Flexible Bipolar Querying of Uncertain Data
Using an Ontology . 165
Patrice Buche, Sébastien Destercke, Valérie Guillard,
Ollivier Haemmerlé and Rallou Thomopoulos

9 Aspects of Dealing with Imperfect Data
in Temporal Databases . 189
José Pons, Christophe Billiet, Olga Pons and Guy De Tré

Part IV Flexible Queries Over Nonstandard Data

10 A Unifying Model of Flexible Queries with Distinct Semantics
of Search Term Weights . 223
Gloria Bordogna, Gabriella Pasi and Giuseppe Psaila

11 Social Network Database Querying Based on Computing
with Words . 241
Ronald R. Yager

Part V Fuzzy Knowledge Discovery and Exploitation

12 Fuzzy Cardinalities as a Basis to Cooperative Answering 261
Grégory Smits, Olivier Pivert and Allel Hadjali

13 Scalability and Fuzzy Systems: What Parallelization Can Do 291
Malaquias Q. Flores, Federico Del Razo,
Anne Laurent and Nicolas Sicard

xii Contents

http://dx.doi.org/10.1007/978-3-319-00954-4_7
http://dx.doi.org/10.1007/978-3-319-00954-4_7
http://dx.doi.org/10.1007/978-3-319-00954-4_8
http://dx.doi.org/10.1007/978-3-319-00954-4_8
http://dx.doi.org/10.1007/978-3-319-00954-4_9
http://dx.doi.org/10.1007/978-3-319-00954-4_9
http://dx.doi.org/10.1007/978-3-319-00954-4_10
http://dx.doi.org/10.1007/978-3-319-00954-4_10
http://dx.doi.org/10.1007/978-3-319-00954-4_11
http://dx.doi.org/10.1007/978-3-319-00954-4_11
http://dx.doi.org/10.1007/978-3-319-00954-4_12
http://dx.doi.org/10.1007/978-3-319-00954-4_13

Part I
Bipolar Preference Queries

Chapter 1
Modeling “and if possible” and “or at least”:
Different Forms of Bipolarity in Flexible
Querying

Didier Dubois and Henri Prade

Abstract This research note revisits an important issue with respect to the
representation of preference queries, namely the modeling of “if possible” in require-
ments of the form “A and if possible B”. We mainly distinguish between two types of
understanding: either (i) A and B are requirements of the same nature and are viewed
as constraints with different levels of priority, or (ii) they are of different nature (only
A induces constraint(s) and B is only used for breaking ties among items that are
equally satisfying A). We indicate that the two views are related to different types of
bipolarity, and discuss them in relation with possibilistic logic. The disjunctive dual
of the first view (“A or at least B”) is then presented in this logical setting. We also
briefly mention the idea of an extension of the second view where B may refer both
to bonus conditions or malus conditions that may increase or decrease respectively
the interest in an item satisfying A.

1 Introduction

Preference and flexible queries have attracted a considerable interest in different
circles and at different epochs among databases researchers [5, 6, 13, 14, 20, 29,
30, 32–35, 38, 39]. There may exist slightly different motivations for using flexible
queries. One may want to introduce some tolerance by tacitly enlarging crisp queries
to similar requested items. One may more often try to express preferences. The expec-
tation is then to both (i) rank-order retrieved items according to the extent to which
they are satisfactory, and (ii) try to avoid empty answers by not restricting the query

D. Dubois (B) · H. Prade
IRIT, Université Paul Sabatier, Toulouse Cedex 09,
Toulouse 31062, France
e-mail: dubois@irit.fr

H. Prade
e-mail: prade@irit.fr

O. Pivert and S. Zadrożny (eds.), Flexible Approaches in Data, Information 3
and Knowledge Management, Studies in Computational Intelligence 497,
DOI: 10.1007/978-3-319-00954-4_1, © Springer International Publishing Switzerland 2014

4 D. Dubois and H. Prade

to the profile of the most preferred items (which may not exist in the database). The
interested reader may consult [28] for a comparative overview of different approaches
to preference queries in database systems, ranging from early mainstream databases
proposals that distinguish between mandatory conditions and secondary conditions,
or use similarity relations, to fuzzy set-based approaches involving gradual mem-
bership functions and priorities, to Pareto ordering-based preference models (where
no commensurability hypothesis between the satisfaction degrees pertaining to the
different attributes involved is needed), and finally to conditional ceteris paribus pref-
erences (where the request may take the form of comparative preferences stated in
specific contexts). More generally, a broad panorama of approaches to the represen-
tation and the handling of preferences in operations research, databases, and artificial
intelligence can be found in [16].

In the following, we focus the discussion on issues related to the idea of bipolarity
in the expression of preference queries, an idea that has been developed in Patrick
Bosc’s group [1, 7, 9, 31] in the recent years. The idea of bipolarity refers to the
distinction between what is regarded as positive and what is regarded as negative, or
in other words, between what is found satisfactory and what is rejected. Bipolarity
may be encountered in preference (or in knowledge) representation under different
forms [24]. One may use bipolar univariate scales ranging from what is completely
bad to what is completely good. Another form of bipolarity takes place when items
are judged according to two independent evaluations on unipolar scales, a positive
one for grading what is in favor of the items, and a negative one for what is in disfavor
of them. The evaluations may play a symmetric role or not. In the asymmetric case
[25], the evaluations are not based on specifications of the same nature.

More specifically, we examine the problem of modeling requests looking for items
that satisfy “A and if possible B”. Such requirements have been considered early
by database researchers in order to introduce some hierarchy between requested
conditions [30]. In such a basic query, A stands for a (possibly compound) condition
that should be imperatively satisfied. Thus, (at least) the items for which A is satisfied
are “acceptable”, but if they also satisfy B, they are considered as being “better”
answers. Thus, the requirement “A and if possible B” has a bipolar flavor, since on
the one hand the items not satisfying A are rejected, while on the other hand those
satisfying A and B are positively favored among the items satisfying A.

This chapter is organized as follows. The next section recalls what the conjunctive
condition “A and if possible B” may mean precisely, when A and B are of the same
nature, i.e. play the role of constraints; we also study the disjunctive condition “A
or at least B”. In Sect. 3 we discuss another view of “A and if possible B” where
B is no longer of the same nature as A, and is only expressing a wish that is used
for breaking ties among items that equally satisfy A. This latter view appears to be
more refined. Moreover, we briefly suggest that wishes may be graded on a bipolar
univariate scale (rather than on a positive scale), thus allowing either a positive or
a negative impact on the ranking of items satisfying a set of constraints equally.
In Sect. 4 we relate the previous concerns to artificial intelligence works and more
particularly to possibilistic logic, and enlarge the discussion from conjunctive and
disjunctive forms to hybrid forms.

1 Modeling “and if possible” and “or at least” 5

2 Modeling “and if possible” and “or at least” in Terms
of Weighted Constraints

In the following, conditions “A and if possible B” and “A or at least B” are considered
as expressing a hierarchy of constraints. We first examine the case where A and B
are crisp, then we show how a set of nested conditions “An and possibly An−1 and
... and possibly A1”, where the Ai ’s are crisp, is naturally associated with a fuzzy
set. Lastly, the approach is extended to when A and B are fuzzy. Moreover, another
view where “if possible” is understood as “if consistent” is also addressed.

2.1 “If possible”: Crisp Case

Consider for the moment that A and B are crisp conditions that can be modeled
by classical subsets. Thus A and B are sets of interpretations that correspond to
configurations of attribute values describing potential items.

With a condition of the form “A and if possible B” where A and B are classical
subsets we introduce a hierarchy between three sets of (potential) items, namely

i. those that satisfy A ∩ B, i.e. the preferred ones,
ii. those in A ∩ B, which are still acceptable, and

iii. those in A, which are fully rejected.

The condition “A and if possible B” could be stated otherwise as “B provided that
A”. It is clear that in this approach, the condition “A and if possible B” is equivalent
to the condition “A and if possible A ∩ B”.

We could then assume without loss of generality that A ⊇ B, since what is
better should be normally inside what is acceptable. In case A and B are general
unconstrained requests and if B ∩ A �= ∅ (where A denotes the complement of A),
it is thus possible to revise B into Brevised = A ∩ B in order to have A ⊇ Brevised

since we are only interested in items satisfying A. In case Brevised = ∅, no further
discrimination can be made among the items satisfying A since no item satisfying A
is fully satisfactory. If Brevised = A, no discrimination takes place either since all
items satisfying A are fully satisfactory.

Then we may think of interpreting the condition “A and if possible B” as a pair of
nested sets (A, B), with A, B �= ∅, representing the support and the core of a fuzzy
set F respectively, where for an item x with description ∂(x) in terms of attribute
values, we have the following membership grades: F(∂(x)) = 1 if ∂(x) ∈ A ∩ B;
1 > F(∂(x)) > 0 if ∂(x) ∈ A ∩ B; and F(∂(x)) = 0 if ∂(x) �∈ A. Thus,
F(∂(x)) > 0 iff ∂(x) ∈ A. For simplicity we write F(x) instead of F(∂(x)) in the
following.

When x ∈ A ∩ B we can prescribe some value λ ∈ [0, 1] such that F(x) = λ.
Then it can be checked that F is defined by

6 D. Dubois and H. Prade

F(x) = min(A(x),max(λ, B(x))) (1)

where λ is a discounting factor (A has weight 1, and B has weight λ) and A(·), B(·)
are characteristic functions of A and B. When λ = 0 (no discounting), we are
back to a classical conjunction while if λ = 1 (total discounting of B) we get A,
i.e., B is forgotten. This expression comes from the prioritized fusion of possibility
distributions, and is a weighted conjunction first suggested by Dubois and Prade [18].
Interpreting 1 − λ as the degree of priority of B, it means A must be satisfied with
full priority (1) and B with priority 1− λ, so x ∈ A is satisfactory to degree λ if B
is violated. This view has been exploited for the possibilistic approach to prioritized
constraints [17]. The above equation can also be read as a formal translation of “A
and if possible B” (where max(λ, B(y)) can be seen as an implication connective
a → b = max(1 − a, b), viewing λ as the complement to 1 of the extent to which
it is possible to consider B).

2.2 “Or at least”: Crisp Case

Dual to the conjunctive “and if possible” conditions are disjunctive “or at least” con-
ditions. Several authors [8, 31] write “or else” in place of “or at least”, but we prefer
this latter phrase which is better suggesting the idea of a hierarchy. It corresponds
to the ordered disjunction in qualitative choice logic [12]. With a condition of the
form “A or at least B” where A and B are classical subsets we introduce another
hierarchy between three sets of (potential) items, namely

i. those that satisfy A, which are the preferred ones,
ii. those in B ∩ A, which are still acceptable, and

iii. those in A ∪ B, which are fully rejected.

The condition “A or at least B” could be stated otherwise as “B or better A”. It
is clear that in this approach, the condition “A or at least B” is equivalent to the
condition “A or at least A ∪ B”. Again, it is then possible to change B into A ∪ B
without harming the condition, which means we could assume A ⊆ B without loss
of generality. Again we need to define a membership grade μ if ∂(x) ∈ B ∩ A. We
obtain a fuzzy set G defined by:

G(x) = max(A(x),min(μ, B(x))) (2)

so that μ is the degree of preference of B rather than its priority. It is clear that this
is the so-called weighted disjunction [18], that can be read as a formal translation of
“B, or at least B”. Indeed, one may either insist that “(at least) B and if possible B”
is required, or one may state that one would prefer A, or if not possible one would
accept at least B by default. This expression entertains a close relationship with the
weighted minimum.

1 Modeling “and if possible” and “or at least” 7

Some properties are worth noticing. First, it is clear that “A and if possible B” is
equivalent to “A∩B or at least A”, and “A or at least B” is equivalent to “A∪B and
if possible A” (if μ = λ). This is clear, from Eqs. (1) and (2), and mutual distributivity
between union and intersection.

So, if A ⊇ B it holds that “A or at least B" is equivalent to “B and if possible A”
since then:

F(x) = max(B(x),min(λ, A(x))) = min(A(x),max(λ, B(x))) (3)

Moreover some De Morgan-type laws are valid as follows: “not (A or at least B)”
means “not A and if possible not B” (if μ = 1 − λ, using the negation 1 − (·)
for negating fuzzy set G in (2)). Indeed, 1 − max(a, min(1 − λ, b)) = min(1 −
a, max(λ, 1− b)).

2.3 Fuzzy Case

We may more generally consider pairs (A, B) where A and B are normalized fuzzy
sets, such that ∃x, y, A(x) = B(y) = 1. The above results and definitions carry over
to this context using idempotent connectives such as the fuzzy weighted minimum
and maximum [18]. Namely the fuzzy and if possible and or at least conditions yield
fuzzy sets F and G defined by Eqs. (1) and (2) respectively, with all membership
grades in the unit interval. The fact that we can restrict to nested fuzzy sets A ⊇ B,
i.e., ∀y A(y) ≥ B(y) is due to the following equalities: ∀α,β,λ,μ ∈ R,

min(α, max(β,λ)) = min(α, max(min(α,β),λ)) = max(min(α,β), min(α,λ));
max(α, min(β,μ)) = max(α, min(max(α,β),μ)) = min(max(α,β), max(α,μ));

that ensure the validity of fuzzy extensions of Eqs. (1), and (2) and the equivalence
between the following statements in the fuzzy case :

• “A and if possible B” ⇐⇒ “A and if possible A ∩ B” ⇐⇒ “A ∩ B or at least
A”;
• “A or at least B” ⇐⇒ “A or at least A ∪ B” ⇐⇒ “A ∪ B and if possible A”.

In particular, if A ⊇ B, i.e., ∀y A(y) ≥ B(y), then we retrieve fuzzy extensions
of Eq. (3), which is the median med(A(x),λ, B(x)). So,“A and if possible B” can be
turned into “B or at least A” (under the condition A ⊇ B of fuzzy inclusion). Note
that if B = A, we get F = A (whatever the value of λ), as expected since “A and if
possible A” means “A” indeed, even if A is fuzzy.

Both “and if possible” conjunctions and “or at least” disjunctions are studied in
detail by Bosc and Pivert [8] in a more general axiomatic setting.

8 D. Dubois and H. Prade

2.4 “If possible” as “if consistent”

In the case of fuzzy bipolar queries “A and if possible B”, the importance coeffi-
cient λ may reflect the consistency between A and B, interpreting the constraint as
“A and, if B is consistent with A, B”. Then, one may choose λ = cons(A, B) =
supy min(A(y), B(y)), which estimates the consistency of A and B. This is what
has been proposed in [19, 36] for the purpose of information fusion. It applies when
one of the pieces of information is certain, while the other is a piece of default infor-
mation. Expressions formally similar to Eqs. (1) and (2) then express the prioritized
conjunction and disjunction of A with B (where A has priority over B):

(A ∩ B)(y) = min(A(y), max(1− cons(A, B), B(y))); (4)

(A ∪ B)(y) = max(A(y), min(cons(A, B), B(y))). (5)

As can be seen, when cons(A, B) = 1, regular conjunctions and disjunctions are
retrieved. When, cons(A, B) = 0, A is obtained in both cases. In flexible querying,
the possible conflict between A and B does not come only from the specifications as
in information fusion, but also from the fact that maybe there does not exist items in
the database satisfying B (and then A). Note that cons(A, B) accounts only for the
extensions of A and B on an attribute domain. Taking the supremum on the items
x’s such as y = ∂(x) may make cons(A, B) smaller since there may exist values
y of the attribute domain that are not reached by any item x in the database. The
second equation is a prioritized disjunction that becomes all the more restrictive as B
becomes incompatible with A, in which case only A remains. It means that if B is in
slight conflict with A, then the objects for which B is true are less preferred, although
not fully rejected. De Morgan laws hold between these prioritized conjunctions and
disjunction. However, this approach becomes trivial if there is an inclusion relation
between normalized A and B.

2.5 Nested “if possible” Conditions

Let a fuzzy set F be defined on a finite scale α1 = 1 > α2 > . . . > αn > αn+1 = 0,
and consider its level cuts Fαi = {y|F(y) ≥ αi }. Clearly, Fα1 is the core and Fαn

the support of F , and Fαn ⊇ Fαn−1 . . . ⊇ Fα1 . The membership function of F is
then obtained from its level cuts as

F(y) = max
i=1,n

min(αi , Fαi (y)) = min
i=1,n

max(αi+1, Fαi (y)) (6)

where Fαi (y) = 1 if y ∈ Fαi and Fαi (y) = 0 otherwise. The first equality is just
Zadeh’s representation of a fuzzy set in terms of its cuts [37]. It can be viewed
as requesting “Fα1 or at least Fα2 or ... or at least Fαn ”. The other one is the
decomposition of a fuzzy constraint into crisp prioritized ones [17]. Then it is clear

1 Modeling “and if possible” and “or at least” 9

that such a fuzzy set can also be seen as a representation of “Fαn and if possible Fαn−1

and ... and if possible Fα1 ”. Indeed an item x will be all the better as its description
∂(x) has a greater degree of membership in F , i.e. according to Eq. (6), belongs to a
level cut with a higher value of αi , which means that more “if possible” conditions
are satisfied by x .

When n = 2, we get

F(y) = max(Fα1(y), min(α2, Fα2(y)) = min(Fα2(y), max(α2, Fα1(y)) (7)

which returns 1 if y ∈ Fα2 ∩ Fα1 = Fα1 , 1 > α2 > 0 if y ∈ Fα2 ∩ Fα1 , and 0 if
Fα2 , in agreement with the above representations of “A and if possible B” and “B
or at least A” with A = Fα2 and B = Fα1 .

3 Modeling “and if possible” in Terms of Constraints and Wishes

In [21, 23], we have proposed and advocated another view of “A and if possible B”
where A is still a constraint, while B is only used for breaking ties between items
having the same evaluation w.r.t. A.

3.1 Asymmetric Handling of Bipolar Queries

In this approach, the condition “A and if possible B” means that B can be used
only if the condition A leaves indifferent options. Considering the pair of valuations
(A(x), B(x)) ∈ [0, 1]2 qualifying the merit of object x , the preference on the set of
objects is defined by means of the lexicographic ranking of these pairs. Namely

(α,β) � (γ, δ) ⇐⇒ either α > γ or (α = γ > 0 and β > δ). (8)

Note that the requirement (A, B) is not the same as (A, A ∩ B) since if B(x1) >

A(x1) > 0, B(x2) > A(x2) > 0, and A(x1) = A(x2), B(x1) > B(x2), it is clear that
x1 is preferred to x2 under request (A, B) while they are indifferent with (A, A∩ B).
However, objects x such that A(x) = 0 are rejected whatever the value of B(x).
Moreover, it is not clear how to model “B or at least A” in the lexicographic approach,
unless we directly define it as “A∪B and if possible B”, and compute a lexicographic
ranking of the pairs (max(A(x), B(x)), B(x)). But again, it is no longer equivalent
to “B or at least A” using a lexicographic ranking of the pairs (B(x), A(x)). The
latter option is proposed by Liétard et al. [31] (see also their chapter in this book),
under the condition A ⊇ B. But while under this condition, “A and if possible B”
is equivalent to “B or at least A” in the weighted constraint approach, as intuitively
expected, this is no longer true in the lexicographic approach, since even if A ⊇ B,

10 D. Dubois and H. Prade

the lexicographic ranking of the pairs (B(x), A(x)) is not the same as lexicographic
ranking of the pairs (A(x), B(x)).

Yet another idea for further study could be to replace ∩ and ∪ by leximin and
leximax in the processing of (A, A ∩ B) and (A ∪ B, B).

It is important to notice that this approach where wishes are used for breaking ties
between the items that satisfy the constraints only makes sense when the possible
levels of satisfaction of the constraints belong to a discrete chain (as it is the case
when dealing with nested requirements such as “An and if possible An−1 and ... and
if possible A1” and the Ai ’s are crisp). In case of a continuum of objects valued on
[0,1], preferring, e.g., an item x such that A(x) = 0.85 and B(x) = 0 to an item
x ′ such that A(x) = 0.84 and B(x) = 1 would sound highly debatable. Still, in
practice, it would be possible to accommodate a request such as “a reasonably priced
apartment, if possible close to the train station” with this approach, by discretizing
the scale [0,1] into a finite set of levels corresponding to significantly different prices,
which requires a granulation step.

3.2 Comparing the Two Approaches

In the elementary case, where A and B are both crisp conditions, the views of B
as a weighted constraint, as discussed in the previous section, or as a criterion for
breaking ties lead to the same ranking of the considered items, namely first those
that satisfy both A and B, then those that satisfy A without B, and finally those that
do not satisfy A.

When A and B become fuzzy, the two views are no longer equivalent. This
point can be checked by taking A(y) = max(A1(y), min(α, A2(y)) and B(y) =
max(B1(y), min(α′, B2(y)), the Ai ’s and B j ’s being crisp subsets. The condition
A ⊇ B means here A1 ⊇ B1 A2 ⊇ B2 and α ≥ α′ assuming B2

⋂
A2 �= ∅. Then,

by applying Eq. (3), the view of A and B as constraints yields:

F(y) = max(B(y), min(λ, max(A1(y), min(α, A2(y)))

= max(B1(y), min(α′, B2(y), min(λ, A1(y)), min(α,λ, A2(y))))

Note that A ⊇ B means here A2 ⊇ A1 ⊇ B1, A2 ⊇ B2 ⊇ B1 and when
α′ < α < λ, we get the following evaluations F(∂(x)) for items x :

• 1 if ∂(x) ∈ A1
⋂

B1
• λ if ∂(x) ∈ A1

⋂
B1

• α if ∂(x) ∈ A2
⋂

A1
⋂

B2
• 0 if ∂(x) ∈ A2

The other view, where B is used to break ties among items that satisfy A to some
extent, leads to rank-order the items in the following way:

1 Modeling “and if possible” and “or at least” 11

(1st) those that satisfy A1 (and thus A2) and B1
(2nd) those that satisfy A1 (and A2) and not B1 but B2,
(3rd) those that satisfy A1 (and A2) and not B2 (and thus not B1),
(4th) those that satisfy A2 (but not A1) and B2,
(5th) those that satisfy A2 but neither A1 nor B2,
(6th) those that do not satisfy A2.

It is clear that this second view is more refined, since we now have 6 distinct
layers of items in the above example, instead of 4 with the hierarchically organized
constraints approach. Another more sophisticated example illustrating the difference
between the two views can be found in [23, 25].

3.3 Positive and Negative Wishes

In often found examples of constraints with wishes (e.g., [21, 23]), wishes have a
positive flavor: if a wish is satisfied, it provides a bonus in favor of the item satisfying it
against other items that have similar levels of satisfaction with respect to constraints,
but do not satisfy this wish. Still, there may exist a negative counterpart to wishes.
For instance, a request such as “a reasonably priced apartment, if possible not on
the groundfloor” may not just mean that “not being on the groundfloor” provides a
bonus, but rather that “being on the groundfloor” has a negative flavor. In fact, one
may have both positive and negative wishes, as in “a reasonably priced apartment, if
possible close to the train station, and if possible not on the groundfloor”.

This calls for the use of a bipolar univariate scale where a neutral level separates
the positive grades from the negative ones, and where the positive wishes and the
negative wishes are handled separately. Then, one may for instance give priority to
negative wishes, and use the negative wishes for breaking ties between items hav-
ing similar levels of satisfaction with respect to constraints, and then use positive
wishes for breaking further ties if any left. One may also think of combining eval-
uations pertaining to the positive wishes and the negative wishes, thus introducing
compensation between them.

Another simpler option, already discussed in [2], would be to rank-order the items
on the basis of the constraints and then for a given constraint satisfaction level to
use the number of wishes satisfied (for instance the positive ones) for each item,
providing the user with arguments pro and con respectively corresponding to the
positive and to the negative wishes fulfilled by the item.

4 Possibilistic Logic Modeling

In this section, we reexamine the modeling of “and if possible” in a logical setting
and enlarge the discussion to non conjunctive queries. We consider different forms of
queries asking for items satisfying conditions C1, C2, C3, with the information that
C1 is more important than C2, which is itself more important than C3. Conditions

12 D. Dubois and H. Prade

are supposed to be binary. They are not necessarily nested. They may be logically
independent or not. For the sake of simplicity, we use here three conditions only,
but what follows would straightforwardly extend to n conditions. We denote [Ci],
[Ci ∧ C j], the set of items (if any) satisfying condition Ci , the set of items (if any)
satisfying Ci and C j , and so on. We first consider conjunctive queries.

4.1 Conjunctive Queries

Consider the query of the type “C1 is required and if possible C2 also and if possible
C3 too”, with the following intended meaning (� reads “is preferred to") in terms
of items:

[C1 ∧ C2 ∧ C3] � [C1 ∧ C2 ∧ ¬C3] � [C1 ∧ ¬C2] � [¬C1] (9)

i.e., one prefers to have the three conditions satisfied rather than the two first ones
only, which is itself better than having just the first condition satisfied (which in turn
is better than not having even the first condition satisfied).

This may be described in possibilistic logic [22] (see Appendix) in differ-
ent ways. First, it can be expressed as the conjunction of prioritized goals C =
{(C1, γ1), (C2, γ2), (C3, γ3)} with 1 = γ1 > γ2 > γ3 > 0. Indeed, this possibilistic
logic base is associated with the possibility distribution

πC(ω) =1 if ω ∈ [C1 ∧ C2 ∧ C3]
1− γ3 if ω ∈ [C1 ∧ C2 ∧ ¬C3]
1− γ2 if ω ∈ [C1 ∧ ¬C2]
0 if ω ∈ [¬C1].

which fully agrees with the ordering (9).
Besides, in a logical encoding, a query such as “find the x’s such that condition

Q is true”, i.e., ∃x Q(x)? is usually processed by refutation. Using a small old trick
due to Green [27], it amounts to adding the formula(s) corresponding to ¬Q(x) ∨
answer(x), expressing that if item x satisfies condition Q it belongs to the answer,
to the logical base describing the content of the database. It enables theorem-proving
by resolution to be applied to question-answering. This idea extends to preference
queries expressed in a possibilistic logic setting [10]. The expression of the query Q
corresponding to the above set of prioritized goals is then of the form

Q ={(¬C1(x) ∨ ¬C2(x) ∨ ¬C3(x) ∨ answer(x), 1),

(¬C1(x) ∨ ¬C2(x) ∨ answer(x), 1− γ3),

(¬C1(x) ∨ answer(x), 1− γ2)}.

1 Modeling “and if possible” and “or at least” 13

where 1 > 1− γ3 > 1− γ2. Then, the levels associated with the possibilistic logic
formulas expressing the preference query are directly associated with the possibility
levels of the possibility distribution πC providing its semantics.

4.2 The Two Bipolar Approaches in Possibilistic Logic

Let us go back to the example considered in Sect. 3.2. We considered a request of
the form “A and if possible B”, where both A and B correspond to sets of prioritized
goals, namely and respectively:

A ={(A2, 1), (A1, 1− α)}with 1 > 1− α > 0, and

B ={(B2, 1), (B1, 1− α′)}with 1 > 1− α′ > 0.

Remember we assumed A2 ⊇ A1 ⊇ B1, A2 ⊇ B2 ⊇ B1 and took α′ < α < λ, with
B2

⋂
A2 �= ∅. Then, when both A and B are viewed as constraints, with priority to

the ones associated with A, the request “A and if possible B” translates into a unique
set G of prioritized goals, where the goals in B are discounted by 1− λ:

G = {(A2, 1), (A1, 1− α), (B2, min(1, 1− λ)), (B1, min(1− α′, 1− λ))}

This possibilistic logic base is associated with the possibility distribution

πG(ω) =1 if ω ∈ [A1 ∧ B1]
λ if ω ∈ [A1 ∧ ¬B1]
α if ω ∈ [A2 ∧ ¬A1 ∧ B2]
0 if ω ∈ [¬A2].

This corresponds exactly to the membership function of F in Sect. 3.2.
Let us now consider the second view where onlyA is regarded as a set of prioritized

constraints, while B is a set of prioritized wishes. Now we keep A and B separate.
Each interpretation ω is the associated with a pair of values: the first (resp. the second)
value is equal to 1−γ∗ (resp. 1−δ∗) where γ∗ (resp. δ∗) is the priority of the formula
violated by ω having the highest priority in A (resp. B). We obtain, the following
vector-valued possibility distribution:

π(A,B)(ω) =(1, 1) if ω ∈ [A1 ∧ B1]
(1,α′) if ω ∈ [A1 ∧ ¬B1 ∧ B2]
(1, 0) iff ω ∈ [A1 ∧ ¬B2]
(α,α′) if ω ∈ [A2 ∧ ¬A1 ∧ B2]
(α, 0) if ω ∈ [A2 ∧ ¬A1 ∧ ¬B2]
(0, 0) if ω ∈ [¬A2].

14 D. Dubois and H. Prade

Note the lexicographic ordering of the evaluation vectors. This corresponds to the
6 layers of interpretations found in 3.2, and makes it clear that this second view is
(trivially) more refined.

4.3 Disjunctive Queries

We now consider disjunctive queries of the form “at least C3 is required, or better C2,
or still better C1”, as discussed in [10] and in Sect. 2.2. It can be equivalently stated
starting with what is preferred: “C1 is required with priority, or failing this C2, or still
failing this C3”. It has the following intended meaning in terms of interpretations:

[C1] � [¬C1 ∧ C2] � [¬C1 ∧ ¬C2 ∧ C3] � [¬C1 ∧ ¬C2 ∧ ¬C3]. (10)

As can be checked, it corresponds to the following possibilistic logic base repre-
senting a conjunction of prioritized goals:

D = {(C1 ∨ C2 ∨ C3, 1), (C1 ∨ C2, γ2), (C1, γ3)}.

(with γ1 = 1 > γ2 > γ3) whose associated possibility distribution is

πD(ω) =1 if ω ∈ [C1]
1− γ3 if ω ∈ [¬C1 ∧ C2]
1− γ2 if ω ∈ [¬C1 ∧ ¬C2 ∧ C3]
0 if ω ∈ [¬C1 ∧ ¬C2 ∧ ¬C3],

which is clearly in agreement with the ordering (10). It can be also equivalently
expressed in a question-answering perspective by the possibilistic logic base:

Q′ ={(¬C1(x) ∨ answer(x), 1),

(¬C2(x) ∨ answer(x), 1− γ3),

(¬C3(x) ∨ answer(x), 1− γ2)}.

which states that if an item x satisfies C1, then it belongs to the answer to degree 1,
and if it satisfies C2 (resp. C3), then it belongs to the answer to a degree at least equal
to 1− γ3 (resp 1− γ2).

Let us also explain the relation between the possibilistic representation and qual-
itative choice logic (QCL) [12]. Indeed QCL introduces a new connective denoted
×, where C1×C2 means “if possible C1, but if C1 is impossible then (at least) C2”.
This corresponds to a disjunctive preference of the above type. Then, the query “C1,
or at least C2, or at least C3”, which, as already explained, corresponds to stating
that C1 is fully satisfactory, C2 instead is less satisfactory, and C3 instead is still less

1 Modeling “and if possible” and “or at least” 15

satisfactory, can be directly represented in a non classical possibilistic logic (see
Appendix and [3]) based on guaranteed possibility measures, rather than on neces-
sity measures. Using the notation in the Appendix, the corresponding weighted base
simply writes D� = {[C1, 1], [C2, 1− γ3], [C3, 1− γ2]}, which clearly echoes Q′,
and encodes the same possibility distributions on models as D.

Note that in Q′, as in Q, the weights of the possibilistic logic formulas express
a priority among the answers x that may be obtained. They may be also viewed as
representing the levels of satisfaction of the answers obtained.

4.4 Relation Between Conjunctive and Disjunctive Queries

The linguistic expression of conjunctive queries may suggest that C1, C2, C3 are
logically independent conditions that one would like to cumulate, as in the query “I
am looking for a reasonably priced hotel, if possible downtown, and if possible not
far from the station”, while in disjunctive queries one may think of C3 as a relaxation
of C2, itself a relaxation of C1. In fact there is no implicit limitation on the type of
conditions involved in conjunctive or disjunctive queries. For instance, a conjunctive
query such as “I am looking for a hotel less than 2 km from the beach, if possible
less than 1 km from the beach, and if possible on the beach”, corresponds to the idea
of approximating a fuzzy requirement, such as “close to the beach” by three of its
level cuts, which are then relaxation or strengthening of one another.

As noticed in [10] and in Sect. 2.3, there is a perfect duality between conjunctive
and disjunctive queries. Indeed the disjunctive query “C3 is required, or better C2,
or still better C1” can be also equivalently expressed under the conjunctive form “C1
or C2 or C3 is required and if possible C1 or C2, and if possible C1”. This can be
checked by noticing that changing C1 into C1∨C2∨C3, C2 into C1∨C2, and C3 in
C1, (9) is changed into (10). Conversely, the conjunctive query “C1 is required and
if possible C2 and if possible C3” can be equivalently stated as the disjunctive query
“C1 is required, or better C1 and C2, or still better C1 and C2 and C3”. It can be
checked that changing C1 into C1 ∧C2 ∧C3, C2 into C1 ∧C2 and C3 in C1, (10) is
changed into (9). The duality between the two types of queries, laid bare in Sect. 2.3,
can be checked as well on their respective possibilistic logic representations.

4.5 Hybrid Queries

When considering the two above types of queries, Bosc et al. [11], while discussing
extended divisions for fuzzy queries (in a non logical setting), have also introduced
a mutual refinement of both queries, called “full discrimination-based queries”. It
amounts to a lexicographic ordering of the different worlds (here 23 = 8 with 3
conditions), under the tacit, default assumption that it is always better to have a
condition fulfilled rather than not, even if a more important condition is not satisfied.

16 D. Dubois and H. Prade

However, it is clear that sometimes satisfying an auxiliary condition while failing to
satisfy the main condition may be of no interest, as in the example “I would like a
coffee if possible with sugar”, where having sugar or not, if no coffee is available,
makes no difference. There are even situations, in case of a conditional preference,
where it is worse to have C2 satisfied than not when C1 cannot be satisfied, as in the
example “I would like a Ford car if possible black” (if one prefers any other color
for non Ford cars).

Full discrimination-based queries are thus associated with the following prefer-
ence ordering [10]:

[C1 ∧ C2 ∧ C3] � [C1 ∧ C2 ∧ ¬C3] � [C1 ∧ ¬C2 ∧ C3]
� [C1 ∧ ¬C2 ∧ ¬C3] �

[¬C1 ∧ C2 ∧ C3] � [¬C1 ∧ C2 ∧ ¬C3] � [¬C1 ∧ ¬C2 ∧ C3]
� [¬C1 ∧ ¬C2 ∧ ¬C3]

It can be checked that it can be encoded in possibilistic logic under the form (we
only give the question-answering form here):

Q" = {(¬C1(x) ∨ ¬C2(x) ∨ ¬C3(x) ∨ answer(x), 1),

(¬C1(x) ∨ ¬C2(x) ∨ answer(x), α), (¬C1(x) ∨ ¬C3(x) ∨ answer(x), α′),
(¬C1(x) ∨ answer(x), α′′), (¬C2(x) ∨ ¬C3(x) ∨ answer(x), β),

(¬C2(x) ∨ answer(x), β′), (¬C3(x) ∨ answer(x), γ)}

with 1 > α > α′ > α′′ > β > β′ > γ.
Thus, possibilistic logic offers a convenient language for the representation of

preferences and the encoding of preference queries; see also [28] in that respect.
Conjunctive, disjunctive or hybrid queries can be also processed in the setting of
answer set programming, as discussed in [15].

5 Concluding Remarks

This chapter presents a detailed study of an issue closely related to the ideas of
gradualness and bipolarity [26], namely the representation of requirements of the
form “A and if possible B” or of a related form. We have emphasized the existence
of two different views, according to whether B plays, or does not play, the role of a
constraint of the same kind as A. We have discussed the logical expression of such
requirements, and provided a unified presentation of a fuzzy logic-based approach
together with other approaches to preference queries.

We are happy to publish this discussion in a book edited in honor of Patrick Bosc,
at the time of his retirement, on a topic to which he contributed much. This is an
opportunity to celebrate Patrick as one of the very few researchers to believe in the

1 Modeling “and if possible” and “or at least” 17

interest of fuzzy logic methods in flexible querying and imperfect data modeling since
the early eighties. He successfully managed to progressively build a high quality team
around him. This group has gained international recognition under his leadership,
and developed important and seminal contributions to the fuzzy databases field over
three decades. Patrick can be proud of what he has achieved. He can be confident
that his team, and other ones as well, will continue to develop valuable and original
pieces of work in the same vein. Congratulations to him!

Appendix

In a propositional possibilistic logic base B = {(pi ,αi)|i = 1, n}, each formula
(pi ,αi) is a pair made of a classical logic proposition pi and a weight αi ∈ [0, 1]
expressing a certainty level. It is semantically associated with the possibility distri-
bution

πB(ω) = min
i=1,n

π(pi ,αi)(ω)

with π(pi ,αi)(ω) = 1 if ω ∈ [pi], and π(pi ,αi)(ω) = 1 − αi if ω �∈ [pi]. Thus,
πB is obtained as the min-based conjunctive combination of the representations of
each formula in B. Note that the possibility πB(ω) that an interpretation ω violates
pi is upper bounded by 1 − αi and the necessity of pi , N ([pi]) = 1 −�([pi]) =
1−maxω �∈[pi] πB(ω) ≥ αi , i.e., pi is certain at least at level αi .

There exists another type of possibilistic base, denoted P = {[q j , γ j]| j = 1, k}
sometimes called positive possibilistic logic base. Its semantics is also given by a
possibility distribution, namely

δP (ω) = max
j=1,k

δ[q j ,γ j](ω)

with δ[q j ,γ j](ω) = 0 if ω �∈ [q j], and δ[q j ,γ j](ω) = γ j if ω ∈ [q j]. Note that
δP is obtained as the max-based disjunctive combination of the representation of
each formula in P . Thus, the guaranteed possibility measure of q j , �([q j]) =
minω∈[q j] δP (ω) is lower bounded by γ j . See [4] for a detailed introduction. Note
that the same possibility distribution can be associated both to a possibilistic logic
base with a reading in terms of necessity measures, and a possibilistic logic base
with a reading in terms of guaranteed possibility measures.

18 D. Dubois and H. Prade

References

1. Abbaci, K., Lemos, F., Hadjali, A., Grigori, D., Liétard, L., Rocacher, D., Bouzeghoub, M.:
A bipolar approach to the handling of user preferences in business processes retrieval. In:
Proceedings of the 14th International Conference on Information Processing and Management
of Uncertainty in Knowledge-based Systems (IPMU’12), Catania, 9–13 July , 2012, to appear

2. Amgoud, L., Prade, H., Serrut, M.: Flexible querying with argued answers. In: Proceedings of
the 14th IEEE International Conference on Fuzzy Systems (FUZZ’05), pp. 573–578 (2005)

3. Benferhat, S., Brewka, G., Le Berre, D.: On the relation between qualitative choice logic
and possibilistic logic. In: Proceedings of the 10th International Conference on Information
Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’04), pp.
951–957, Perugia, 4–9 July 2004

4. Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Modeling positive and negative information in
possibility theory. Int. J. Intell. Syst. 23(10), 1094–1118 (2008)

5. Bosc, P., Pivert, O.: Some approaches for relational databases flexible querying. J. Intell. Inf.
Syst. 1(3/4), 323–354 (1992)

6. Bosc, P., Pivert, O.: SQLf: a relational database language for fuzzy querying. IEEE Trans.
Fuzzy Syst. 3, 1–17 (1995)

7. Bosc, P., Pivert, O.: On diverse approaches to bipolar division operators. Int. J. Intell. Syst.
26(10), 911–929 (2011)

8. Bosc, P., Pivert, O.: On four noncommutative fuzzy connectives and their axiomatization. Fuzzy
sets and Systems, to appear, 2012

9. Bosc, P., Pivert, O., Mokhtari, A., Liétard, L.: Extending relational algebra to handle bipolarity.
In: Shin, S.Y., Ossowski, S., Schumacher, M., Palakal, M.J., Hung, C.-C. (eds.) Proceedings
of the 2010 ACM Symposium on Applied Computing (SAC), Sierre, pp. 1718–1722, 22–26
March 2010

10. Bosc, P., Pivert, O., Prade, H.: A possibilistic logic view of preference queries to an uncertain
database. In: Proceedings of the 19th IEEE International Conference on Fuzzy Systems (FUZZ-
IEEE’10), Barcelona, pp. 1–6, 18–23 July 2010

11. Bosc, P., Pivert, O., Soufflet, O.: On three classes of division queries involving ordinal prefer-
ences. J. Intell. Inf. Syst. 37(3), 315–331 (2011)

12. Brewka, G., Benferhat, S., Le Berre, D.: Qualitative choice logic. Artif. Intell. 157(1–2), 203–
237 (2004)

13. Chomicki, J.: Preference formulas in relational queries. ACM Trans. Database Syst. 28, 1–40
(2003)

14. de Calmès, M., Dubois, D., Hüllermeier, E., Prade, H., Sèdes, F.: Flexibility and fuzzy case-
based evaluation in querying: an illustration in an experimental setting. Int. J. Uncertainty
Fuzziness Knowl. Based Syst. 11(1), 43–66 (2003)

15. Confalonieri, R., Prade, H.: Encoding preference queries to an uncertain database in possibilistic
answer set programming. In: Proceedings of the 14th International Conference on Information
Processing and Management of Uncertainty in Knowledge-based Systems (IPMU’12), Catania,
9–13 July 2012, to appear

16. Domshlak, C., Hüllermeier, E., Kaci, S., Prade, H.: Preferences in AI: an overview. Artif. Intell.
175(7–8), 1037–1052 (2011)

17. Dubois, D., Fargier, H., Prade, H.: Possibility theory in constraint satisfaction problems: han-
dling priority, preference and uncertainty. Appl. Intell. 6, 287–309 (1996)

18. Dubois, D., Prade, H.: Weighted minimum and maximum operations. Inform. Sci. 39, 205–210
(1986)

19. Dubois, D., Prade, H.: Default reasoning and possibility theory. Artif. Intell. 35(2), 243–257
(1988)

20. Dubois, D., Prade, H.: Using fuzzy sets in flexible querying: why and how? In: Andreasen, T.,
Christiansen, H., Larsen, H.L. (eds.) Flexible Query Answering Systems, pp. 45–60. Kluwer
Academic Publishers, Dordrecht (1997)

1 Modeling “and if possible” and “or at least” 19

21. Dubois, D., Prade, H.: Bipolarity in flexible querying. In: Andreasen, T., Motro, A., Chris-
tiansen, H.H., Larsen, L. (eds.) Proceedings of the 5th International Conference on Flexible
Query Answering Systems (FQAS’02), pp. 174–182. Springer, LNCS 2522, Copenhagen, 27–
29 Oct 2002

22. Dubois, D., Prade, H.: Possibilistic logic: a retrospective and prospective view. Fuzzy Sets Syst.
144(1), 3–23 (2004)

23. Dubois, D., Prade, H.: Handling bipolar queries in fuzzy information processing. In: Galindo,
J. (ed.) Handbook of Research on Fuzzy Information Processing in Databases, pp. 97–114. IGI
Global, Hershey (2008)

24. Dubois, D., Prade, H.: An introduction to bipolar representations of information and preference.
Int. J. Intell. Syst. 23(8), 866–877 (2008)

25. Dubois, D., Prade, H.: An overview of the asymmetric bipolar representation of positive and
negative information in possibility theory. Fuzzy Sets Syst. 160(10), 1355–1366 (2009)

26. Dubois, D., Prade, H.: Gradualness, uncertainty and bipolarity: making sense of fuzzy sets.
Fuzzy Sets Syst. 192, 3–24 (2012)

27. Green, C.: Theorem-proving by resolution as a basis for question-anwering systems. In: Michie,
D., Meltzer, B. (eds.) Machine Intelligence, vol. 4, pp. 183–205. Edinburgh University Press,
Edinburgh (1969)

28. Hadjali, A., Kaci, S., Prade, H.: Database preference queries—a possibilistic logic approach
with symbolic priorities. (Preliminary version in Proceedings of the 5th International Sym-
posium on Foundations of Information and Knowledge Systems (FolKS 2008), Pisa, 11–14
Feb (S. Hartmann, G. Kern-Isberner, eds.), Springer, LNCS 4932, 291–310, 2008). Annals of
Mathematics and Artificial Intelligence 63(3–4), 357–383 (2011)

29. Kiessling, W.: Foundations of preferences in database systems. In: Proceedings of the 28th
International Conference on Very Large Data Bases (VLDBO02), pp. 311–322 (2002)

30. Lacroix, M., Lavency, P.: Preferences: putting more knowledge into queries. In: Proceedings
of the 13th Conference on Very Large Data Bases (VLDBO87), pp. 217–225 (1987)

31. Liétard, L., Tamani, N., Rocacher, D.: Fuzzy bipolar conditions of type or else. In: Proceedings
of the 20th IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’11), pp. 2546–
2551. Taipei, 27–30 June 2011

32. Lukasiewicz, T., Schellhase, J.: Variable-strength conditional preferences for ranking objects
in ontologies. J. Web Semant. 5(3), 180–194 (2007)

33. Motro, A.: A user interface to relational databases that permits vague queries. ACM Trans. Inf.
Syst. 6, 187–214 (1988)

34. Pivert, O., Bosc, P.: Fuzzy Preference Queries to Relational Databses. Imperial College Press,
London (2012)

35. Tahani, V.: A conceptual framework for fuzzy query processing—a step toward very intelligent
database systems. Inf. Process. Manage. 12, 289–303 (1977)

36. Yager, R.R.: Non-monotonic set theoretic operations. Fuzzy Sets Syst. 42, 173–190 (1991)
37. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
38. Zadrozny, S., Kacprzyk, J.: Bipolar queries using various interpretations of logical connectives.

In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds.) Proceedings of the
12th International Fuzzy Systems Association World Congress on Foundations of Fuzzy Logic
and Soft Computing(IFSA’07), Cancun, pp. 181–190. Springer Verlag, LNCS 4529, 18–21
June 2007

39. Zadrozny, S., De Tré, G., De Caluwe, R., Kacprzyk, J.: An overview of fuzzy approaches to
flexible database querying. In: Erickson, J. (ed.) Database Technologies: Concepts, Method-
ologies, Tools, and Applications, 4 Vol., pp. 135–156. IGI Global, Barcelona (2009)

Chapter 2
Constraint-Wish and Satisfied-Dissatisfied: An
Overview of Two Approaches for Dealing with
Bipolar Querying

Tom Matthé, Joachim Nielandt, Sławomir Zadrożny and Guy De Tré

Abstract In recent years, there has been an increasing interest in dealing with user
preferences in flexible database querying, expressing both positive and negative infor-
mation in a heterogeneous way. This is what is usually referred to as bipolar database
querying. Different frameworks have been introduced to deal with such bipolarity.
In this chapter, an overview of two approaches is given. The first approach is based
on mandatory and desired requirements. Hereby the complement of a mandatory
requirement can be considered as a specification of what is not desired at all. So,
mandatory requirements indirectly contribute to negative information (expressing
what the user does not want to retrieve), whereas desired requirements can be seen
as positive information (expressing what the user prefers to retrieve). The second
approach is directly based on positive requirements (expressing what the user wants
to retrieve), and negative requirements (expressing what the user does not want
to retrieve). Both approaches use pairs of satisfaction degrees as the underlying
framework but have different semantics, and thus also different operators for criteria
evaluation, ranking, aggregation, etc.

T. Matthé · J. Nielandt · G. De Tré (B)

Department of Telecommunications and Information Processing, Ghent University,
Sint-Pietersnieuwstraat 41, B-9000 Ghent, Belgium
e-mail: Tom.Matthe@UGent.be

J. Nielandt
e-mail: Joachim.Nielandt@UGent.be

G. De Tré
e-mail: Guy.DeTre@UGent.be

S. Zadrożny
Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6,01-447 Warsaw, Poland
e-mail: Slawomir.Zadrozny@ibspan.waw.pl

O. Pivert and S. Zadrożny (eds.), Flexible Approaches in Data, Information 21
and Knowledge Management, Studies in Computational Intelligence 497,
DOI: 10.1007/978-3-319-00954-4_2, © Springer International Publishing Switzerland 2014

22 T. Matthé et al.

1 Introduction

In daily life, it can be observed that people, whilst communicating their preferences,
tend to use vague or fuzzy terms in expressing their desires. A typical example is
a recruitment office that, e.g., is searching for young people with a high score in
math. A lot of research has been done to translate this ‘fuzziness’ to the domain
of database querying, resulting in ‘fuzzy’ querying of regular databases, where the
queries are composed of several ‘fuzzy’ query conditions, interconnected by logical
connectives. Indeed, the main lines of research in this area include the study of
modeling linguistic terms (like, e.g., young or high) in the specification of elementary
query conditions using elements of fuzzy logic [38] and the enhancement of fuzzy
query formalism with soft aggregation operators [6, 15, 22, 23]. Both linguistic
terms and soft aggregations model user’s preferences [4] and, as such, require a query
satisfaction modeling framework that supports rank-ordering the records retrieved
in response to a query according to the degree to which they satisfy all conditions
imposed by the query. Usually, query satisfaction in ‘fuzzy’ querying of regular
databases is modelled by associating a satisfaction degrees with each record in the
answer set of the query. These satisfaction degrees take values in the unit interval
[0, 1] and are computed during query processing. The value 0 means complete lack
of satisfaction and implies that the associated record does not belong to the query’s
answer set. The value 1 expresses full satisfaction, while all other, intermediate,
values denote partial query satisfaction. Records with a satisfaction degree s that is
lower than a given threshold value δ, i.e., for which s < δ, are usually discarded
from the query answer set.

A more advanced aspect of specifying user preferences in database queries con-
cerns the handling of bipolarity. Bipolarity hereby refers to the fact that users might
distinguish between positive and negative aspects (or between constraints and wishes)
while specifying their query preferences. Positive statements may be used to express
what is possible, satisfactory, permitted, desired or acceptable, whereas negative
statements may express what is impossible, unsatisfactory, not permitted, rejected,
undesired or unacceptable. Likewise, constraints express what is accepted, whereas
wishes are used to specify which of the accepted values are really desired by the user.
Bipolarity is inherent to human communication and natural language and should
hence be reflected and dealt with in any querying system that aims to support human
interaction as adequate as possible.

For example, consider the specification of user preferences in the context of select-
ing a car, more specifically concerning the color of a car. A positive statement is ‘I
like black or dark blue cars’, while ‘I do not want a white car’ is a negative state-
ment. In terms of constraints and desires, similar preferences might be expressed
by ‘I want a dark colored car’ and ‘if possible, I really prefer a black or dark blue
car’. Remark that often, negative conditions might be translated to constraints, while
positive conditions might be seen as wishes.

Depending on the situation, it may be more natural for a user to use negative
conditions or positive conditions. Sometimes one can use both positive and negative

2 Constraint-Wish and Satisfied-Dissatisfied 23

conditions at the same time. This is especially the case if the user does not have
complete knowledge of the domain on which the criterion is specified, or if this
domain is too large to completely specify the user’s preferences for every value in
the domain, as can for example be the case with available car colors.

In standard approaches to regular ‘fuzzy’ querying it is explicitly assumed that
a record that satisfies a query condition to a degree s, at the same time dissatisfies
it, i.e., satisfies its negation, to a degree 1 − s. This assumption does not generally
hold when dealing with bipolar query criteria specifications as positive and negative
conditions comprising a query are assumed to be independent, i.e., may assume
any value from the interval [0,1]. In such situations of heterogeneous bipolarity, a
semantically richer query satisfaction modeling approach, which is more consistent
with human reasoning and is able to model this bipolarity, is preferred.

In this chapter, two such approaches to bipolar database querying are discussed.
On the one hand, the constraint-wish (or mandatory-desired) approach will be
presented, used amongst others by Dubois and Prade [16, 17] and Bosc et al.
[10, 26, 27, 29, 39], and on the other hand, the satisfied-dissatisfied (or positive-
negative) approach will be discussed, used amongst others by Zadrożny et al. [47]
and De Tré et al. [13, 30, 33]. For both approaches, an overview is given, which con-
secutively handles the semantics of the actual framework, the evaluation of query
conditions within this framework, the ranking of query results and the aggregation
of compound query conditions.

The remainder of this chapter has been organised as follows: first, some pre-
liminaries on bipolar query conditions will be presented in Sect. 2, explaining the
two approaches that will be discussed in this chapter in more detail, together with
their semantics. The next Sect. 3 discusses the ranking of the results of a bipolar
query. Next, in Sect. 4, different techniques to aggregate the results of multiple query
conditions are presented. Finally, Sect. 5 states some conclusions.

2 Bipolar Query Conditions

Pioneering work in the area of heterogeneous bipolar database querying has been
done in [25], which seems to be the first approach where a distinction has been made
between mandatory query conditions and desired query conditions. As mentioned
earlier, desired and mandatory conditions can be viewed as specifying positive and
negative information, respectively. Indeed, the opposite of a mandatory condition
specifies what must be rejected and thus what is considered as being negative with
respect to the query result, whereas desired conditions specify what is considered as
being positive.

Later on, this idea has been further developed and adapted to be used in ‘fuzzy’
querying techniques. The use of the twofold fuzzy sets (TFS) to represent a bipolar
elementary query condition with respect to a given attribute A is reported, e.g.,
in [16, 17]. A twofold fuzzy set expresses which domain values are accepted by
the user and which among these accepted values are really desired by her or him.

24 T. Matthé et al.

An alternative approach, based on the concept of an Atanassov (intuitionistic) fuzzy
set (AFS) and departing from the specification of which values are desired and which
values are undesired, is presented in [12, 30]. Both approaches have in common that
they deal with bipolarity that is specified inside elementary query conditions, i.e.,
in the domain of an attribute three subsets, in general fuzzy, are distinguished: of
positively, negatively and neutrally evaluated elements.

Other approaches study bipolarity that is specified between elementary query con-
ditions, meaning that these conditions are assigned different semantics. In particular,
a distinction can be made between mandatory and desired query conditions. These
conditions can still contain vague terms modelled by fuzzy sets as in regular ‘fuzzy’
querying [4, 5, 7, 21, 22, 38, 46]. For example, in [48] an approach is presented
where bipolar queries are represented as a special case of the fuzzy ‘winnow’ oper-
ator. Bipolarity is thus studied considering queries with preferences as in [25]. An
alternative assumption that can be made, is considering queries that consist of a
number of ‘positive’ and ‘negative’ elementary conditions [13, 33].

In this chapter, only bipolarity that is specified inside elementary query conditions
will be considered. In the following subsections, two approaches will be discussed
in more detail: the constraint-wish and the satisfied-dissatisfied approach.

2.1 Constraint-Wish Approach

Consider a universe of discourse U corresponding to the domain of an attribute in
question. In the constraint-wish approach (referred to elsewhere in this volume also
as ‘required-desired semantics’), the bipolar query condition consists of two parts:
a constraint C , which describes the set of acceptable values of U , and a wish W ,
which defines the set of wished-for (or desired) values of U . In general, the constraint
and the wish are specified using fuzzy sets C and W , defined on U [44], identified
by their respective membership functions μC and μW . Because it is not coherent to
wish something that is rejected (where the rejected values are represented by the
complement of the fuzzy set C), a consistency condition is imposed. Two forms of
consistency conditions may be considered:

• Strong consistency,

∀x ∈ U : μC (x) < 1⇒ μW (x) = 0. (1)

In this case, the support of the wish W is required to be a subset of the core of
the constraint C , which means that the wish can play any role in evaluating only
those records which fully satisfy the constraint. The pair of fuzzy sets C and W
then form a twofold fuzzy set [11].
• Weak consistency,

∀x ∈ U : μW (x) ≤ μC (x). (2)

2 Constraint-Wish and Satisfied-Dissatisfied 25

In this case, the wish is required to be more specific than the constraint what
represents the fact that it is harder to satisfy a wish than to satisfy a constraint, but
the wish can also play a role in evaluating the records which do not fully satisfy
the constraint. The pair of fuzzy sets C and W then form an interval-valued fuzzy
set (IVFS) [19, 20, 36, 45].

Because a twofold fuzzy set is formally a special case of an interval-valued fuzzy
set, the bipolar query condition can in both cases be modelled by means of an IVFS,
which is defined by

F = {(x, [μF∗(x),μF∗(x)])|(x ∈ U) ∧ (0 ≤ μF∗(x) ≤ μF∗(x) ≤ 1)}. (3)

Thus, a bipolar query condition is modelled by means of an IVFS, where the upper
membership function μF∗ models the constraint, i.e., μF∗ = μC , and the lower
membership function μF∗ models the wish, i.e., μF∗ = μW .

An important feature of this semantics is that the wish plays somehow a secondary
role in the query. A bipolar query condition in the constraint-wish approach should
be interpreted as ‘satisfy C and, if possible, satisfy W ’ [16].

Summarising, in this approach the evaluation of a record R against an elementary
bipolar query condition ‘A IS F’ with F composed of a couple (C, W) of fuzzy sets
C and W results in a pair of satisfaction degrees (c(R), w(R)) ∈ [0, 1]2 such that

c(R) = μC (R[A]) (4)

w(R) = μW (R[A]) (5)

where R[A] denotes the value of record R for attribute A.

2.2 Satisfied-Dissatisfied Approach

In the satisfied-dissatisfied approach, the bipolar query condition also consists of two
parts. One part specifies the values of an attribute A which are positively evaluated
by the user with respect to her or his preferences and, independently, another part
specifies the values for A which are negatively evaluated by the user. A pair of fuzzy
sets, F+ and F−, expressing the respective parts of the query condition may be
treated as a bipolar extension to the concept of fuzzy set. Atanassov (intuitionistic)
Fuzzy Sets (AFSs) [1] are an example of such an extension. An AFS F over a universe
U is formally defined by

F = {(x,μF (x), νF (x))|(x ∈ U) ∧ (0 ≤ μF (x)+ νF (x) ≤ 1)}. (6)

where μF : U → [0, 1] and νF : U → [0, 1] are respectively called the membership
and non-membership degree functions and 0 ≤ μF (x) + νF (x) ≤ 1, ∀x ∈ U
reflects the consistency condition of the AFS. In the context of database querying, this

26 T. Matthé et al.

consistency condition can be interpreted as stating that the degree of non-preference
νF (x) for a given value x can never be larger than the complement 1−μF (x) of the
degree of preference for that value (or, equivalently, that the degree of preference
μF (x) for a value x can never be larger than the complement 1−νF (x) of the degree
of non-preference for that value.)

Formally, in their basic form, AFSs are operationally equivalent to IVFSs and
thus may be also used to represent preferences in the constraint-wish approach, but
their intended semantics is closer to the idea of the satisfied-dissatisfied approach.
However, in the satisfied-dissatisfied approach the total independence of positive and
negative condition is assumed and the AFS’s consistency condition does not meet
this assumption. Thus, in what follows we will use the concept bipolar AFS which
follows the two membership functions structure of AFSs but drops the consistency
condition. In this respect, the presented approach is similar to the neutrosophic logic
[35, 37]. It is also similar to a fuzzy version of Belnap’s logic [2], proposed by Öztürk
and Tsoukias [34] and further developed by Turunen et al. [40]; cf. also a study on
links between Belnap’s logic and bipolarity by Konieczny et al. [24]. However, it
should be stressed that the degrees of satisfaction and dissatisfaction do not have
any epistemic flavour here, i.e., e.g., they do not form an interval containing a ‘true’
degree to which the user likes the given value of an attribute in question. Instead,
these degrees respectively express the genuine liking and disliking of the value which
are assumed to occur simultaneously and independently of each other.

In what follows, we will thus often adopt the notation μF and νF instead of,
respectively μF+ and μF− , while referring to the sets of positively and negatively
evaluated values of an attribute under consideration.

We have thus a couple (μF (x), νF (x)) which is referred to as the bipolar satisfac-
tion degree (BSD) and represents the suitability of x ∈ dom A with respect to a con-
dition A IS F , where A is an attribute and F is a bipolar AFS representing preferences
of the user. Now, the question is how these couples are to be processed, i.e., used to
order the records in an answer to the query and aggregated with the couples related
to other elementary conditions. We discuss these issues in the following sections. An
elementary bipolar query condition ‘A IS F’ in the satisfied-dissatisfied approach
should be interpreted as ‘preferably satisfy F+ and preferably do not satisfy F−’
[30].

Summarising, in this approach the evaluation of a record R against an elementary
bipolar query condition ‘A IS F’ with F a bipolar AFS characterized by a pair (μ, ν)

of membership functions μ and ν results in a pair (s(R), d(R)) ∈ [0, 1]2 of values,
referred to as satisfaction degree (s) and dissatisfaction degree (d), jointly called a
Bipolar Satisfaction Degree (BSD) [30], such that

s(R) = μF (R[A]) (7)

d(R) = νF (R[A]) (8)

where R[A] is the value of record R for attribute A. The set of all possible BSDs
will be denoted as B̃.

2 Constraint-Wish and Satisfied-Dissatisfied 27

Fig. 1 Examples: a μF− : ‘too large’, μF+ : ‘large’; b μC : ‘not too large’, μW : ‘large’

2.3 Examples

As an example of an elementary bipolar query condition, consider the case of a real
estate application and a user who wants to find a suitable house to buy. An important
criterion may be the size of the garden. The user may have a number of criteria
in mind when judging which ranges of values of this attribute she or he prefers.
For example, considering garden as a playground for children the user may use a
positive unipolar scale to measure its suitability—the larger the size the better. On
the other hand, taking into account the maintenance costs of the garden the user may
use a negative unipolar scale—the larger the garden size the higher the costs.1 Let us
assume that the terms ‘large’ and ‘too large’, respectively, represent the preferences
of the user along these two criteria and thus describe the sets F+ and F− of positive
and negative parts of the bipolar condition.

Figure 1a shows how such preferences may be represented in the framework of the
satisfied-dissatisfied approach. It is worth noticing that, for example, a garden size of
550 sq. m. is totally negatively evaluated from the point of view of the maintenance
costs and, at the same time, totally positively evaluated from the point of view of fun
for the children.

Looking for a counterpart in the constraint-wish approach we would like to inter-
pret the positive condition as a wish and the negative condition as the complement
of the constraint. However, this is not possible as the consistency condition implied
by the semantics of the constraint-wish approach is not met, what is illustrated in
Fig. 1b, i.e., there are some values x where, μW (x) > μC (x).

In order to illustrate the constraint-wish approach at work let us assume the fol-
lowing scenario. The user may look for a ‘large’ garden but she or he would be
most happy with a garden of size around 400–500 sq. m. Thus, the former may be
interpreted as a constraint (‘not large’ garden is excluded) while the latter is just a
desired size. Figure 2b shows an example of membership functions which may serve
to represent such preferences in the framework of the constraint-wish approach.

1 We are slightly simplifying the situation here as with respect to both criteria the user may have in
mind two separate bipolar scales, but still it will result in sets of aggregated positively and negatively
evaluated garden size values.

28 T. Matthé et al.

Fig. 2 Examples: a μF− : ‘not large’, μF+ : ‘around 400–500 sq. m.’; b μC : ‘large’, μW : ‘around
400–500 sq. m’

Fig. 3 Examples: a μF− : ‘not large’, μF+ : ‘around 400–500 sq. m. or slightly less’; b μC : ‘large’,
μW : ‘around 400–500 sq. m. or slightly less’

It should be stressed that the satisfied-dissatisfied approach is not suitable to
represent such preferences. One can consider a kind of representation shown in
Fig. 2a which is obtained by treating the wish and the constraint as, respectively,
the positive evaluation and the complement of the negative evaluation. However,
in the framework of the satisfied-dissatisfied approach Fig. 2a should be actually
interpreted as representing the following preferences: the user has positive feelings
about the garden size being ca. 400–500 sq. m. and does not like small gardens (more
precisely: not large gardens).

Figure 3b shows a slightly different wish which may be expressed as ‘preferred
size of the garden is ca. 400–500 sq. m. or slightly less’. This case is still well suited
to be represented in the constraint-wish based approach although only the weak
consistency is preserved.

A kind of the counterpart of the above in the framework of the satisfied-dissatisfied
approach, again in the spirit of Fig. 2a, is shown in Fig. 3a.

2 Constraint-Wish and Satisfied-Dissatisfied 29

3 Ranking of Query Results

After evaluating a bipolar query condition for all potential query results, every result-
ing record Ri will have an associated pair of calculated satisfaction degrees, either
a pair (c(Ri), w(Ri)) or a BSD (s(Ri), d(Ri)). Now, we will deal with the question
how the records should be ranked in the response to a query using these pairs of
degrees.

3.1 Ranking in the Constraint-Wish Approach

In this approach it is assumed that constraints and wishes are not compensatory [10,
26], i.e., a higher satisfaction of a wish can not compensate a lower satisfaction of
a constraint. Therefore, ranking is done primarily on the constraint satisfaction, and
secondly, in case of ties, on the wish satisfaction. In general, one has [18]:

R1 	 R2 ⇔ (c(R1) > c(R2)) ∨ (c(R1) = c(R2) ∧ w(R1) > w(R2)) (9)

where R1 	 R2 means that R1 is preferred to R2. Thus, this is the lexicographical
ordering with respect to the pairs (c, w).

Another possibility is scalarization: a real function may be applied to the pairs
(c(Ri), w(Ri)) and the records are then ranked according to the values obtained.
Zadrożny and Kacprzyk [48], following Lacroix and Lavency [25], propose the aggre-
gation of both degrees in the spirit of the ‘and possibly’ operator. In this approach the
wish is taken into account only ‘if possible’, i.e., if its satisfaction does not interfere
with the satisfaction of the constraint what is determined with respect to the content
of the whole database. The same idea, applied in a different context, may be found
in some earlier work of Bordogna and Pasi [3], Dubois and Prade [14] or Yager [41].
Recently, a lot of work has been done on the study of different interpretations of
the ‘and possibly’ as well as its dual ‘or at least’ operators by Bosc, Pivert, Tamani,
Hadjali (see, e.g., [8, 9, 28]) and by Dubois and Prade in this volume.

3.2 Ranking in the Satisfied-Dissatisfied Approach

Because, in the satisfied-dissatisfied approach, the satisfaction degree and the dis-
satisfaction degree are assumed to be totally independent, both should have an equal
impact on the ranking [30]. Naturally, the higher the satisfaction degree, the higher
the ranking should be, and dually, the higher the dissatisfaction degree, the lower
the ranking should be. A possible ranking function r for BSDs (s, d), with a com-
plete symmetrical impact of both the satisfaction and dissatisfaction degrees, is the
following:

30 T. Matthé et al.

r(s, d) = s + (1− d)

2
. (10)

This ranking function produces values in [0, 1]. Three special cases can be distin-
guished:

• r(s, d) = 1: in this case it must be that s = 1 and d = 0, so this is the case of full
global satisfaction.
• r(s, d) = 0: in this case it must be that s = 0 and d = 1, so this is the case of full

global dissatisfaction.
• r(s, d) = 0.5: in this case it must be that s = d and the ranking can be considered

neutral. The condition is as satisfied as it is dissatisfied.

Remark that both degrees equally matter when ranking the records, as expected. For
example, records for which the evaluation leads to a dissatisfaction degree d = 1,
or dually a satisfaction degree of s = 0, should not a priori be excluded as being
totally unsatisfactory. Indeed, e.g., the BSDs (1, 1) and (0, 0), although having d = 1
(respectively s = 0), both have neutral ranking (r(s, d) = 0.5) and are hence situated
in the middle of the ranking spectrum.

Other ranking functions are also possible, e.g., assigning more importance to either
the satisfaction degree or the dissatisfaction degree. In general, a suitable ranking
function r for BSDs should meet the following minimal requirements:

1. 0 ≤ r(x, y) ≤ 1, with (x, y) a BSD, i.e., r : B̃→ [0, 1].
2. r(1, 0) = 1, i.e., the BSD with full satisfaction and no dissatisfaction should be

ranked the highest.
3. r(0, 1) = 0, i.e., the BSD with full dissatisfaction and no satisfaction should be

ranked the lowest.
4. ∀x, y ∈ [0, 1] : r(x, x) = r(y, y), i.e., for all BSDs with equal satisfaction degree

and dissatisfaction degree, the ranking should also be equal. The reason for this
requirement is that, ranking wise, it is impossible to make a sensible distinction
between the cases of total indifference (i.e., BSD (0, 0)) and total conflict (i.e.,
BSD (1, 1)), and also all other intermediate cases where s = d (i.e., BSD (x, x),
x ∈ [0, 1]).

5. monotonicity: r(x, y) ≤ r(x + ε, y) and r(x, y) ≥ r(x, y + ε).

These minimal requirements eliminate the use of ranking functions which solely
rank on either the satisfaction degree s or the dissatisfaction degree d, and use the
other degree (d or s respectively) only as a ‘tiebreaker’, because they would vio-
late the fourth requirement. Thus, for example, the lexicographical ordering, mean-
ingfully used in the constraint-wish approach (see Eq. (9)), is not suitable for the
satisfied-dissatisfied approach because of the assumed total independence between,
and equally important role of, the satisfaction and dissatisfaction degrees.

A list of useful ranking functions for BSDs is listed below:

2 Constraint-Wish and Satisfied-Dissatisfied 31

r1 = s + (1− d)

2
(11)

r2 = s

s + d
(12)

r3 = 1− d

(1− s)+ (1− d)
(13)

r4 = s

s + d
· 1− d

(1− s)+ (1− d)
(14)

r5 = max{0, s − d} (15)

r6 = min{1+ s − d, 1}. (16)

Ranking function r2 is discontinuous in BSD (0, 0), r3 is undefined for BSD (1, 1),
while r4 is undefined for BSDs (0, 0) and (1, 1). More information on the behaviour
and properties of these ranking functions can be found in [32].

3.3 Comparison and Discussion

The lexicographical ordering used in the constraint-wish approach makes wishes
(positive information) rather secondary in comparison to the constraints (negative
information), according to the assumed semantics. This may be, however, counter-
intuitive in some cases. Let us consider two pairs of degrees (c(R1), w(R1)) and
(c(R2), w(R2)) such that c(R1) = c(R2) + ε, while w(R1) = 0 and w(R2) = 1.
In such a case R1 will be ranked before R2, even for ε very close to 0 what may
be disputable. A possible escape is to assume a discrete scale for c’s and w’s with
a small number of levels and to claim that the smallest difference in levels of the
constraint satisfaction is large enough to justify its definite role in establishing the
ranking of records whatever their satisfaction of wishes is.

A scalarization in the spirit of the ‘and possibly’ operator is an interesting option
but it adopts a specific semantics of constraints and wishes.

Ranking in the satisfied-dissatisfied approach is based on the ranking of the BSDs.
Due to their specific semantics and the total independence of the satisfaction and
dissatisfaction degrees, BSDs can be ranked in different ways. A ranking function
for BSDs should satisfy the requirements specified in Sect. 3.2. The selection of a
ranking function depends on the requirements of the application.

• If it is necessary to assign an equal weight to s(R) and d(R), then the ranking
function r1 (cf. Eq. (11)) can be used. In this approach, query conditions are inter-
preted as preferences because records with d(R) = 1 or s(R) = 0 are not a priori
excluded from the result, i.e., they do not necessarily result in a ranking value 0.
• If the non-zero satisfaction degree should be interpreted as an absolute requirement,

i.e., if s(R) = 0 has to imply that the ranking value is 0, then the ranking function
r2 (cf. Eq. (12)) can be used.

32 T. Matthé et al.

• Dually, if avoiding the total dissatisfaction should be interpreted as an absolute
requirement, i.e., if d(R) = 1 has to imply a ranking value 0, then the ranking
function r3 (cf. Eq. (13)) can be used.
• Ranking function r4 (cf. Eq. (14)) can be used if both non-zero satisfaction degree

is required and total dissatisfaction should be avoided.
• Finally, if the ranking should be based on the best of s(R) and d(R), then either

ranking function r5 (cf. Eq. (15)) or ranking function r6 (cf. Eq. (16)) can be used.
Hereby, r5 = 0 if s(R) ≤ d(R) and r6 = 1 if s(R) ≥ d(R).

It is worth noting that modelling bipolarity inside an elementary query condition
using the constraint-wish approach (cf. Sect. 2.1) makes the ranking problem some-
how trivial. Namely, it is easy to verify that due to the consistency condition, it is
impossible to have two pairs of degrees (c(R1), w(R1)) and (c(R2), w(R2)) such
that c(R1) < c(R2) and at the same time w(R1) > w(R2). This further justifies the
primary role of the constraint satisfaction degree in the ranking process, as defined
in (9). On the other hand, this is not the case in the satisfied-dissatisfied approach
what makes room for more possible definitions of ranking.

4 Aggregation in Bipolar Query Processing

So far we have focused on bipolar queries comprising one elementary bipolar con-
dition with respect to an attribute. In what follows we consider a compound bipolar
query composed of many elementary bipolar conditions, possibly combined using
explicit logical connectives of conjunction, disjunction and negation. The evalua-
tion of an elementary bipolar query condition A IS F results in a pair of degrees
(either (c(R), w(R)) or (s(R), d(R))) for every database record R. Now, consider
the evaluation of an entire query composed of n elementary query conditions. First,
for each relevant database record R, each elementary condition need to be evaluated
resulting in n individual pairs of satisfaction degrees. Second, all these individual
pairs must be aggregated to come up with a global result reflecting the extent to
which R satisfies the entire bipolar query. The basic aggregation techniques in case
of the constraint-wish approach and the satisfied-dissatisfied approach are presented
in the two subsections below. A distinction has been made between techniques where
the pairs of degrees are treated as a whole and techniques where these degrees are
treated individually.

4.1 Aggregation in the Constraint-Wish Approach

Consider n elementary bipolar query conditions, the evaluation of which for a record
R leads to a set of n pairs (ci (R), wi (R)), i = 1, . . . , n. This set of n pairs needs to
be aggregated to obtain the global satisfaction degree.

2 Constraint-Wish and Satisfied-Dissatisfied 33

4.1.1 Treating c(R) and w(R) Individually

In this approach a bipolar query is meant as a list of elementary bipolar conditions
and their conjunction is tacitly assumed. The ci (R)’s and wi (R)’s are separately
aggregated [16, 17]. Both aggregations are guided appropriately by the semantics of
the constraints and of the wishes. Namely, it is assumed that, if a record R does not
satisfy a constraint then it should be rejected overall. Therefore, the degrees ci (R) are
aggregated in a conjunctive way. On the other hand, if a record is desirable according
to one wish then it is desirable overall. Therefore, the degrees wi (R) are aggregated
in a disjunctive way. This then leads to a global pair (c(R), w(R)) expressing the
satisfaction of the whole bipolar query by a record R:

(c(R), w(R)) = (min
i

ci (R), max
i

wi (R)). (17)

Besides the minimum and maximum, other aggregation operators, based on triangular
norms and co-norms, can also be used if a reinforcement effect is needed or desired.

Remark that, in general, this aggregation technique will not preserve consistency,
i.e., it is possible that w(R) > c(R). This can be solved by treating the ‘global wish’
not just as the mere disjunction of all wishes, but by also taking the conjunction of
this disjunction with all the constraints [17]:

(c(R), w(R)) = (min
i

ci (R), min(max
i

wi (R), min
i

ci (R))). (18)

4.1.2 Treating (c(R), w(R)) as a Whole

This approach, followed amongst others by Bosc et al. [10, 26], does not look at
the ci (R)’s and wi (R)’s separately, but treats them as a whole. In contrast with
Dubois and Prade, Bosc et al. consider both conjunction and disjunction of bipolar
query conditions. As it is usually done in regular ‘fuzzy’ querying, conjunction
is translated to a minimum operator and disjunction is translated to a maximum
operator. In order to take the minimum or maximum, the set of (ci (R), wi (R)) pairs
must be ordered. In this approach, a lexicographical ordering is assumed (see above,
in Sect. 3.1) and the operators lmin and lmax are introduced as aggregation operators
for respectively conjunction and disjunction of bipolar query conditions [10, 17, 26].
Let us assume that two elementary bipolar queries Ai IS Fi , i = 1, 2, result in two
pairs of satisfaction degrees for a record R: (ci (R), wi (R)), i = 1, 2. Then, the
pair of satisfaction degrees for the conjunction and disjunction of these elementary
queries is defined as follows:

34 T. Matthé et al.

(c(A1ISF1)∧(A2ISF2)(R), w(A1ISF1)∧(A2ISF2)(R)) =
= lmin((c1(R), w1(R)), (c2(R), w2(R)) =

=
{

(c1(R), w1(R)) if (c1(R) < c2(R)) ∨ (c1(R) = c2(R) ∧ w1(R) < w2(R))

(c2(R), w2(R)) otherwise
(19)

(c(A1ISF1)∨(A2ISF2)(R), w(A1ISF1)∨(A2ISF2)(R)) =
= lmax((c1(R), w1(R)), (c2(R), w2(R)) =

=
{

(c1(R), w1(R)) if (c1(R) > c2(R) ∨ (c1(R) = c2(R) ∧ w1(R) > w2(R))

(c2(R), w2(R)) otherwise.
(20)

Due to the associativity of the operators lmin and lmax formulas (19) and (20)
may be easily extended to the case of a conjunction and disjunction, respectively, of
n elementary bipolar queries.

By definition both lmin and lmax return one of the input pairs as the result.
As all arguments are assumed to be consistent so is also the result of this type of
aggregation.

4.2 Aggregation in the Satisfied-Dissatisfied Approach

Consider again n bipolar query conditions, evaluation of which for record R leads to
a set {(si (R), di (R)), i = 1, . . . , n} of n BSDs. This set of n pairs needs to be aggre-
gated to a BSD (s(R), d(R)) representing the global satisfaction and dissatisfaction
when taking into account all imposed query conditions.

4.2.1 Treating s and d Individually

In this approach, as in the approach by Dubois and Prade, the BSDs are not aggregated
as a whole but the lists of si (R)’s and di (R)’s are aggregated separately [30, 33]. But,
unlike the Dubois and Prade approach, both conjunction and disjunction of bipolar
query conditions are considered, as well as the negation. Moreover, this approach
also allows to take into account weights to distinguish important from less important
query conditions.

Because the bipolar query conditions in this approach are inspired by AFSs, the
basic aggregation of BSDs (which are the result of the evaluation of such bipolar
query conditions) is also inspired by the aggregation of AFSs. This means that the
conjunction (respectively disjunction) of two BSDs is calculated in the same sense
as the intersection (respectively union) of two AFSs. Moreover, these operations also

2 Constraint-Wish and Satisfied-Dissatisfied 35

coincide with those proposed in a continuous extension of Belnap’s four-valued logic
proposed by Öztürk and Tsoukiàs [34].

Non-Weighted Aggregation

Let us consider two elementary bipolar conditions: ‘A1 IS F1’ and ‘A2 IS F2’, and
their conjunction and disjunction.

Conjunction.

The satisfaction and dissatisfaction degrees, i.e., a BSD, for the query ‘(A1 IS F1) ∧
(A2 IS F2)’ is computed as follows:

(s(A1 IS F1)∧(A2 IS F2)(R), d(A1 IS F1)∧(A2 IS F2)(R)) =
= (min(sA1 IS F1(R), sA2 IS F2(R)), max(dA1 IS F1(R), dA2 IS F2(R))).

(21)

An intuitive justification for this formula is as follows:

• For the conjunction of two conditions to be satisfied, both conditions have to be
satisfied. Therefore the minimum of both individual satisfaction degrees is taken
as the satisfaction degree of their conjunction.
• For the conjunction to be dissatisfied, it is enough if one of them is dissatisfied.

Therefore the maximum of both individual dissatisfaction degrees is taken as the
dissatisfaction degree of their conjunction.

Besides the minimum and maximum, other aggregation operators based on triangular
norms and co-norms can also be used if a reinforcement effect is needed or desired.

It should be noted that the formulas (17) and (21) although similar on the surface,
are quite different. In both cases we have the minimum operator applied to the first
components of the aggregated pairs and the maximum operator applied to the second
components of these pairs. However, in the former case the minimum and maximum
operators are applied to the complements of the negative evaluations and the positive
evaluations, respectively, while in the latter case these are positive and negative
evaluations, respectively.

Disjunction.

The satisfaction and dissatisfaction degrees, i.e., a BSD, for the query ‘(A1 IS F1) ∨
(A2 IS F2)’ is computed as follows:

36 T. Matthé et al.

(s(A1 IS F1)∨(A2 IS F2)(R), d(A1 IS F1)∨(A2 IS F2)(R)) =
= (max(sA1 IS F1(R), sA2 IS F2(R)), min(dA1 IS F1(R), dA2 IS F2(R))). (22)

Similarly to the case of conjunction, an intuitive justification for this formula is as
follows:

• For the disjunction of two conditions to be satisfied, it is enough for one of them
to be satisfied. Therefore the maximum of both individual satisfaction degrees is
taken as the satisfaction degree of their disjunction.
• For the disjunction of two conditions to be dissatisfied, both of them have to be

dissatisfied. Therefore the minimum of both individual dissatisfaction degrees is
taken as the dissatisfaction degree of their disjunction.

Negation.

The satisfaction and dissatisfaction degrees, i.e., a BSD, for the query ‘¬ (A IS F)’
is computed as follows:

(s¬(A IS F)(R), d¬(A IS F)(R)) = (dA IS F (R), sA IS F (R)). (23)

The same effect of negation can also be achieved by swapping fuzzy sets of
positively (F+) and negatively (F−) evaluated elements of dom A composing F ,
F = (F+, F−) in ‘¬ (A IS F)’, i.e., ‘¬(A IS F)’ is thus equivalent to ‘A IS F ′’,
where F ′ = (F−, F+).

Weighted Aggregation

When expressing queries (bipolar or not), one way to model the difference in impor-
tance between different elementary (bipolar) query conditions is by using weights.
Also in the framework of BSDs, it is possible to deal with such weights [31]. The
underlying aggregation operators are still appropriate basic aggregation operators,
but a premodification step is performed on the elementary criteria evaluation results
to take into account the impact of the weights. It is assumed that the importance of a
condition, with respect to the final result, is linked with the condition itself, not with
the degree to which the condition is satisfied. So weights wi ∈ [0, 1] can be attached
to the individual elementary bipolar conditions. The semantics of the weights is as
follows: wi = 1 denotes that the condition is fully important, while wi = 0 denotes
that the condition is not important at all. Such a condition can be neglected (and
hence should have no impact on the result). Conditions with intermediate weights
should still be taken into account, but to a lesser extent than conditions with weight
wi = 1. In order to have an appropriate scaling, it is assumed that maxi wi = 1 [15].

To reflect the impact of a weight on the evaluation of a condition, a premodification
is performed on the initial BSDs, taking into account the weights. This means that,

2 Constraint-Wish and Satisfied-Dissatisfied 37

before aggregating the individual BSDs, the impact of the weights on these BSDs
is calculated first. Afterwards, the modified BSDs are aggregated using the regular
aggregation techniques, as if they were regular, non-modified, BSDs. Let g be the
operator that models this weight influence on the individual BSDs:

g : [0, 1] × B̃→ B̃ : (w, (s, d)) �→ g(w, (s, d)). (24)

It has been shown that implication functions fim and co-implication functions
f co
im can be used to model the impact of weights, where fim and f co

im are [0, 1]-valued
extensions of Boolean implication and co-implication functions. As an example,
consider the Kleene-Dienes implication and co-implication:

fimK D (x, y) = max(1− x, y)

f co
imK D

(x, y) = min(1− x, y). (25)

The impact of a weight on a BSD, in case of conjunction, can be defined as
follows:

g∧ : [0, 1] × B̃→ B̃ : (w, (s, d)) �→ g∧(w, (s, d)) = (
sg∧(w,(s,d)), dg∧(w,(s,d))

)

(26)
where

sg∧(w,(s,d)) = fim(w, s)

dg∧(w,(s,d)) = f co
im (1− w, d).

As an example, consider the weight operator for conjunction based on the Kleene-
Dienes implication:

g∧(w, (s, d)) = (max(1− w, s), min(w, d)) . (27)

Consider the basic conjunction operator ∧ for BSDs, which is defined by

∧ : (B̃)2 → B̃ : ((s1, d1), (s2, d2)) �→ (min(s1, s2), max(d1, d2)) (28)

(cf. Eq. (21)). Using this definition and the definition of the weight impact operator
g∧, a definition of an extended operator for weighted conjunction ∧w of BSDs can
now be given as follows:

∧w : ([0, 1] × B̃)2 → B̃ (29)

((w1, (s1, d1)), (w2, (s2, d2))) �→ g∧(w1, (s1, d1)) ∧ g∧(w2, (s2, d2)).

An extended operator for weighted disjunction can be defined analogously.
Indeed, the impact of a weight on a BSD, in case of disjunction, can be defined
by:

38 T. Matthé et al.

g∨ : [0, 1] × B̃→ B̃ : (w, (s, d)) �→ g∨(w, (s, d)) = (
sg∨(w,(s,d)), dg∨(w,(s,d))

)

(30)
where

sg∨(w,(s,d)) = f co
im (1− w, s)

dg∨(w,(s,d)) = fim(w, d).

Using the Kleene-Dienes implication, the following weight operator for disjunction
is for example obtained:

g∨(w, (s, d)) = (min(w, s), max(1− w, d)) . (31)

Consider the basic disjunction operator ∨ for BSDs, which is defined by

∨ : (B̃)2 → B̃ : ((s1, d1), (s2, d2)) �→ (max(s1, s2), min(d1, d2)) (32)

(cf. Eq. (22)). Using this definition and the definition of the weight impact operator
g∨, a definition of an extended operator for weighted conjunction ∨w of BSDs can
then be given as follows:

∨w : ([0, 1] × B̃)2 → B̃ (33)

((w1, (s1, d1)), (w2, (s2, d2))) �→ g∨(w1, (s1, d1)) ∧ g∨(w2, (s2, d2)).

Averaging

Besides the basic aggregation operators based on the aggregation of AFSs, using
triangular norms and co-norms, BSDs can also be aggregated using other operators,
like averaging operators [31]. Some averaging operators that could be used are the
arithmetic mean (AM), geometric mean (G M) or harmonic mean (H M). As an
example, consider the traditional arithmetic mean:

AM(x1, . . . , xn) = 1

n

n∑

i=1

xi . (34)

Such averaging operators cannot be applied on BSDs as such, because a BSD consists
of a pair of values. So again, the satisfaction degrees and dissatisfaction degrees need
to be treated separately. An extended version of the above regular averaging operator
can be defined, where this regular averaging operator is applied for the satisfaction
degrees, and, separately, for the dissatisfaction degrees:

AM((s1, d1), . . . , (sn, dn)) =
(

1

n

n∑

i=1

si ,
1

n

n∑

i=1

di

)

. (35)

2 Constraint-Wish and Satisfied-Dissatisfied 39

A similar extension can be defined for other averaging operators (G M , H M , …).

Weighted Averaging

In the case of weighted averaging, it is again assumed that the importance of a con-
dition, with respect to the final result, is linked with the condition itself, not with the
degree to which the condition is satisfied. So weights wi ∈ [0, 1] can be connected
with the individual bipolar conditions. Again, in order to have an appropriate scaling,
it is assumed that maxi wi = 1. Weighted counterparts of the above averaging oper-
ators for BSDs (e.g., weighted arithmetic mean (AMw), weighted geometric mean
(G Mw), or weighted harmonic mean (H Mw)) can be used, where the satisfaction
degrees on the one hand, and the dissatisfaction degrees on the other hand, are again
aggregated separately using regular weighted averaging operators. As an example,
consider the weighted arithmetic mean AMw for BSDs:

AMw : ([0, 1] × B̃)n → B̃ (36)

((w1, (s1, d1)), . . . , (wn, (sn, dn))) �→
(∑n

i=1 wi · si
∑n

i=1 wi
,

∑n
i=1 wi · di
∑n

i=1 wi

)

.

4.2.2 Treating (s, d) as a Whole

Aggregating BSDs as a whole can be done by using Ordered Weighted Averaging
(OWA) operators for BSDs [31]. Ordered weighted averaging of BSDs can be based
on the traditional OWA operators [42, 43] as done in the case of aggregating regular
satisfaction degrees. The OWA operator of dimension n, i.e., accepting n arguments
x1, . . . , xn is defined by:

OW AW (x1, . . . , xn) =
n∑

i=1

wi · x ′i (37)

where x ′i is the i th largest value of x1, . . . , xn and W = [w1, . . . , wn]; ∑n
i=1 wi = 1

is a parameter of the OWA operator, referred to as the vector of weights.
This traditional OWA operator can also be extended to work with BSDs. To this

aim, the BSDs are first rank ordered, for example by using one of the ranking functions
presented in Sect. 3.2:

OW AW : Bn → B (38)

((s1, d1), . . . , (sn, dn)) �→
(

n∑

i=1

wi · s′i ,
n∑

i=1

wi · d ′i
)

40 T. Matthé et al.

where (s′i , d ′i) is the i th largest BSD of (s1, d1), . . . , (sn, dn), according to the ranking
function used.

Depending on the weight vector that is used, this extended OWA operator will
behave differently (just like the regular OWA operator). In special cases, it can, e.g.,
act as a maximum function for BSDs (w1 = 1, wi = 0 for i > 1), a minimum
function for BSDs (wn = 1, wi = 0 for i < n), or a median function for BSDs (for
odd n: w� n

2 � = 1, wi = 0 for i �= ⌈ n
2

⌉
, where � � denotes the ceiling function; for

even n: w n
2
= 1

2 , w n
2+1 = 1

2 , wi = 0 for i �= n
2 and i �= n

2 + 1).
Remark that the exact behaviour of the maximum, minimum and median function

for BSDs (and also for all other OWA operators) depends on the specific ranking
function employed.

4.3 Comparison and Discussion

The aggregation of pairs of satisfaction degrees of elementary bipolar conditions
should follow and reflect the semantics of the querying approach. This is why, for
both approaches, specific aggregation techniques have been presented, hereby distin-
guishing techniques to aggregate both satisfaction degrees separately and to aggregate
the satisfaction degree pairs as a whole.

In the constraint-wish approach, handling both satisfaction degrees separately
boils down to treating all constraints together as a global constraint and treating
all wishes together as a global wish, hereby preserving the applicable consistency
condition, which requires some additional effort. Handling both satisfaction degrees
as a whole boils down to lexicographical ordering. In both kinds of aggregation the
semantics of constraints and wishes is retained.

In the satisfied-dissatisfied approach the satisfaction and dissatisfaction degrees
are completely independent of each other. This characteristic offers more freedom
to develop aggregation operators that treat both degrees separately.

• Basic aggregation operators, inspired by the aggregation of AFSs and based on the
minimum triangular norm and maximum triangular co-norm, have been defined for
non-weighted conjunction and disjunction. These operators retain the semantics
of positive and negative information.
• To handle elementary query conditions of different importance, extended counter-

parts of the basic aggregation operators have been presented in literature. These
operators use associated weights to model the relative importance of a query con-
dition. First, the elementary conditions are evaluated as if there are no weights.
Second, the impact of a weight on the evaluation of a condition is modelled in a
premodification step using an implication and co-implication function.
• Instead of being based on a triangular norm and a triangular co-norm, an aggre-

gation function can also be based on an averaging operator like the arithmetic,
geometric or harmonic mean or on the weighted extension of such an averaging
operator.

2 Constraint-Wish and Satisfied-Dissatisfied 41

Choosing which aggregation operator to use depends on the requirements of the
application. Aspects that may be considered in the selection of an adequate oper-
ator are: the need to better distinguish among the resulting records, the need for a
reinforcement effect and the computation time.

BSDs can also be treated as a whole and aggregated based on their ranking. For
that purpose, an OWA operator for BSDs has been presented in the literature. As
is the case with regular OWA operators, the behaviour of the aggregation will then
strongly depend on the used weight vector. Special cases are the minimum, maximum
and median function for BSDs. Whether to use this kind of aggregation or not, and
which weight vector should be chosen, again depend on the requirements of the
application under consideration. Results obtained from an aggregation based on the
ranking of BSDs are in general less informative to the user, because they do not
provide independent information about the satisfaction of the positive and negative
conditions in the user preferences. However, if a quantifier-based aggregation is
required by the application, where at least (or at most) a specified (fuzzy) number of
elementary conditions should be satisfied in order to satisfy the query, an OWA-based
aggregation can be used.

5 Conclusions

In this chapter, an overview and comparison of two commonly known approaches to
bipolar querying of databases have been presented: the constraint-wish approach and
the satisfied-dissatisfied approach. The specification of bipolar query conditions and
different aspects of query handling, including the evaluation of elementary condi-
tions, their aggregation, as well as ranking of the query results have been described.

The constraint-wish approach has been specifically designed to cope with sit-
uations where user preferences express requirements—called constraints—which
should be satisfied (at least to some extent) by the retrieved database records, and
other, optional conditions—called wishes—which serve to distinguish among those
records that satisfy the constraints to the same extent. Slightly different semantics
is modelled by the ‘and possibly’ based approach to constraints and wishes, where
the influence of the wishes on the results of a query depends on the existence of the
records satisfying constraints and wishes at the same time.

The motivation for the satisfied-dissatisfied approach is to cope with user prefer-
ences that are composed of positive conditions—expressing what the user likes—and
negative conditions—expressing what the user wants to avoid. The positive and neg-
ative conditions do not necessarily have to be complementary to each other.

Although both approaches result in pairs of satisfaction degrees (constraint sat-
isfaction and wish satisfaction, or satisfaction degree and dissatisfaction degree),
the semantics are quite different. In the constraint-wish approach, ‘true’ constraints,
i.e., mandatory requirements, are treated as more important in a specific sense. In the
satisfied-dissatisfied approach, the positive and negative requirements are considered
in general as being equally important and independent. Due to this assumed indepen-

42 T. Matthé et al.

dence, it is also possible to model inconsistent or conflicting situations in the satisfied-
dissatisfied approach, which is not possible in the constraint-wish approach, where
either strong or weak consistency must apply. Moreover, in the satisfied-dissatisfied
approach, the set of operators that can be used for ranking or aggregating is more
elaborate than in the constraint-wish approach (e.g., weighted aggregation opera-
tors). On the other hand, a complete ‘bipolar’ relational algebra has been proposed
for the constraint-wish approach, i.e., an extension of traditional relational algebra
to handle bipolarity [10].

References

1. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)
2. Belnap, N.D.: Modern Uses of Multiple-Valued Logic, chap. A useful four-valued logic, pp.

8–37. Reidel, Dordrecht (1977)
3. Bordogna, G., Pasi, G.: Linguistic aggregation operators of selection criteria in fuzzy informa-

tion retrieval. Int. J. Intell. Syst. 10(2), 233–248 (1995)
4. Bosc, P., Kraft, D., Petry, F.: Fuzzy sets in database and information systems: status and oppor-

tunities. Fuzzy Sets Syst. 156, 418–426 (2005)
5. Bosc, P., Pivert, O.: Some approaches for relational databases flexible querying. Int. J. Intell.

Inf. Syst. 1, 323–354 (1992)
6. Bosc, P., Pivert, O.: An approach for a hierarchical aggregation of fuzzy predicates. In: Pro-

ceedings of the 2nd IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’93), pp.
1231–1236. San Francisco, USA (1993)

7. Bosc, P., Pivert, O.: Sqlf: a relational database language for fuzzy querying. IEEE Trans. Fuzzy
Syst. 3(1), 1–17 (1995)

8. Bosc, P., Pivert, O.: On three fuzzy connectives for flexible data retrieval and their axiomati-
zation. In: Proceedings of the SAC’11 Conference, pp. 1114–1118. Taiwan (2011)

9. Bosc, P., Pivert, O.: On four noncommutative fuzzy connectives and their axiomatization. Fuzzy
Sets Syst. 202, 42–60 (2012)

10. Bosc, P., Pivert, O., Mokhtari, A., Liétard, L.: Extending relational algebra to handle bipolarity.
In: Proceedings of the 2010 ACM Symposium on Applied Computing (SAC ’10), pp. 1718–
1722. Sierre, Switzerland (2010)

11. De Calmès, M., Dubois, D., Hüllermeier, E., Prade, H., Sèdes, F.: A fuzzy set approach to flex-
ible case-based querying: methodology and experimentation. In: Proceedings of the 8th Inter-
national Conference on Principles of Knowledge Representation and Reasoning (KR2002), pp.
449–458. Toulouse, France (2002)

12. De Tré, G., De Caluwe, R., Kacprzyk, J., Zadrożny, S.: On flexible querying via extensions to
fuzzy sets. In: Proceedings of the EUSFLAT’05 and LFA’05 Joint Conference, pp. 1225–1230.
Barcelona, Spain (2005)

13. De Tré, G., Zadrożny, S., Matthé, T., Kacprzyk, J., Bronselaer, A.: Dealing with positive and
negative query criteria in fuzzy database querying : bipolar satisfaction degrees. In: Troels, A.
(ed.) Lecture Notes in Computer Science, vol. 5822, pp. 593–604. Springer (2009)

14. Dubois, D., Prade, H.: Default reasoning and possibility theory. Artif. Intell. 35(2), 243–257
(1988)

15. Dubois, D., Prade, H.: Using fuzzy sets in flexible querying: why and how?, pp. 45–60. Kluwer
Academic Publishers, Norwell (1997)

16. Dubois, D., Prade, H.: Bipolarity in flexible querying. Lect. Notes Artif. Intell. 2522, 174–182
(2002)

2 Constraint-Wish and Satisfied-Dissatisfied 43

17. Dubois, D., Prade, H.: Handbook of Research on Fuzzy Information Processing in Databases,
chap. Handling bipolar queries in Fuzzy Information Processing, pp. 97–114. Information
Science Reference, New York (2008)

18. Dubois, D., Prade, H.: Gradualness, uncertainty and bipolarity: making sense of fuzzy sets.
Fuzzy Sets Syst. 192, 3–24 (2012)

19. Grattan-Guinness, I.: Fuzzy membership mapped onto intervals and many-valued quantities.
Math. Logic Q. 22(1), 149–160 (1976)

20. Jahn, K.U.: Intervall-wertige mengen. Mathematische Nachrichten 68(1), 115–132 (1975)
21. Kacprzyk, J., Zadrożny, S.: Fuzziness in database management systems, chap. FQUERY for

access: fuzzy querying for windows-based DBMS, pp. 415–433. Physica-Verlag, Heidelberg
(1995)

22. Kacprzyk, J., Zadrożny, S., Ziólkowski, A.: Fquery iii+: a human-consistent database querying
system based on fuzzy logic with linguistic quantifiers. Inf. Syst. 14(6), 443–453 (1989)

23. Kacprzyk, J., Ziólkowski, A.: Database queries with fuzzy linguistic quantifiers. IEEE Trans.
Syst. Man Cybern. 16, 474–479 (1986)

24. Konieczny, S., Marquis, P., Besnard, P.: Bipolarity in bilattice logics. Int. J. Intell. Syst. 23(10),
1046–1061 (2008)

25. Lacroix, M., Lavency, P.: Preferences: Putting more knowledge into queries. In: Proceedings
of the VLDB’87 Conference, pp. 217–225. Brighton, UK (1987)

26. Liétard, L., Rocacher, D.: On the definition of extended norms and co-norms to aggregate
fuzzy bipolar conditions. In: Proceedings of the 2009 IFSA/EUSFLAT Conference, pp. 513–
518. Lisbon, Portugal (2009)

27. Liétard, L., Rocacher, D., Bosc, P.: On the extension of sql to fuzzy bipolar conditions. In:
Proceedings of the 28th North American Information Processing Society Annual Conference
(NAFIPS ’09). Cincinnati, Ohio, USA (2009)

28. Liétard, L., Tamani, N., Rocacher, D.: Fuzzy bipolar conditions of type or else. In: Proceedings
of the 2011 FUZZ-IEEE Conference, pp. 2546–2551. Taipei, Taiwan (2011)

29. Liétard, L., Tamani, N., Rocacher, D.: Linguistic quantifiers and bipolarity. In: Proceedings of
the 2011 IFSA World Congress and the 2011 AFSS International Conference. Surabaya and
Bali Island, Indonesia (2011)

30. Matthé, T., De Tré, G.: Bipolar query satisfaction using satisfaction and dissatisfaction degrees:
bipolar satisfaction degrees. In: Proceedings of the ACM Symposium on Applied Computing
(ACM SAC’09), pp. 1699–1703. Honolulu, Hawaii (2009)

31. Matthé, T., De Tré, G.: Weighted aggregation of bipolar satisfaction degrees. In: Proceedings
of the 2011 IFSA World Congress and the 2011 AFSS International Conference. Surabaya and
Bali Island, Indonesia (2011)

32. Matthé, T., De Tré, G.: Ranking of bipolar satisfaction degrees. In: Proceedings of the IPMU
2012 Conference on Communications in Computer and Information Sciences, vol. 298, pp.
461–470. Catania, Italy (2012)

33. Matthé, T., De Tré, G., Zadrożny, S., Kacprzyk, J., Bronselaer, A.: Bipolar database querying
using bipolar satisfaction degrees. Int. J. Intell. Syst. 26(10), 890–910 (2011)

34. Öztürk, M., Tsoukiàs, A.: Modelling uncertain positive and negative reasons in decision aiding.
Decis. Support Syst. 43(4), 1512–1526 (2007)

35. Rivieccio, U.: Neutrosophic logics: prospects and problems. Fuzzy Sets Syst. 159(14), 1860–
1868 (2008)

36. Sambuc, R.: Fonctions φ-floues. application à l’aide au diagnostic en pathologie thyroidienne.
Ph.D. thesis, Université de Marseille, France (1975)

37. Smarandache, F.: A Unifying Field in Logics: Neutrosophic Logic. Neutrosophy, Neutrosophic
Set, Neutrosophic Probability. American Research Press, Rehoboth (1999)

38. Tahani, V.: A conceptual framework for fuzzy query processing: a step toward very intelligent
database systems. Inf. Process. Manage. 13, 289–303 (1977)

39. Tamani, N., Liétard, L., Rocacher, D.: Bipolarity and the relational division. In: Proceedings of
the 7th conference of the European Society for Fuzzy Logic and Technology (EUSFLAT-2011).
Aix-les-Bains, France (2011)

44 T. Matthé et al.

40. Turunen, E., Öztürk, M., Tsoukiàs, A.: Paraconsistent semantics for Pavelka style fuzzy sen-
tential logic. Fuzzy Sets Syst. 161(14), 1926–1940 (2010)

41. Yager, R.: Fuzzy logic in the formulation of decision functions from linguistic specifications.
Kybernetes 25(4), 119–130 (1996)

42. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision-
making. IEEE Trans. Syst. Man Cybern. 18(1), 183–190 (1988)

43. Yager, R.R., Kacprzyk, J.: The Ordered Weighted Averaging Operators : Theory and Applica-
tions. Kluwer Academic Publishers, Boston (1997)

44. Zadeh, L.A.: Fuzzy sets. Inf. Control. 8(3), 338–353 (1965)
45. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—

I. Inf. Sci. 8(3), 199–249 (1975)
46. Zadrożny, S., De Tré, G., De Caluwe, R., Kacprzyk, J.: Handbook of Research on Fuzzy

Information Processing in Databases, chap. An Overview of Fuzzy Approaches to Flexible
Database Querying, pp. 34–54. Information Science Reference, New York (2008)

47. Zadrożny, S., De Tré, G., Kacprzyk, J.: Remarks on various aspects of bipolarity in database
querying. In: Proceedings of the 2010 International Workshop on Database and Expert Systems
Applications Proceedings (DEXA ’10), pp. 323–327. Bilbao, Spain (2010)

48. Zadrożny, S., Kacprzyk, J.: Bipolar queries and queries with preferences. In: Proceedings of
the DEXA’06 Conference, pp. 415–419. Kraków, Poland (2006)

Chapter 3
A Relational Algebra for Generalized Fuzzy
Bipolar Conditions

Ludovic Liétard, Daniel Rocacher and Nouredine Tamani

Abstract Flexible querying of regular databases consists in expressing user’s
preferences (fuzzy conditions) inside queries instead of Boolean requirements. Fuzzy
bipolar conditions are particular cases of fuzzy conditions which are made of two
components, a mandatory fuzzy condition and an optional fuzzy condition. They
define two different types of complex preferences which can be either of a conjunc-
tive nature or of a disjunctive nature (both of them being interpreted in a hierarchical
way). The first case leads to define fuzzy bipolar conditions of type and if possible,
the second case leads to define fuzzy bipolar conditions of type or else. This chapter
shows that a general form of fuzzy bipolar conditions having a hierarchical interpre-
tation can be considered since these two forms are compatible. As a consequence,
fuzzy bipolar conditions of both types can be used together in a single bipolar query
and all the algebraic operators are extended to this generalization. The particular case
(non algebraic) of the use of linguistic quantifiers is also studied.

1 Introduction

We consider the relational model of data and the integration of user’s preferences
inside queries which defines the flexible querying of relational databases (since the
expression of user’s preferences introduces a kind of flexibility). In this context,
atomic conditions express preferences instead of Boolean requirements (as it is the

L. Liétard (B)

IRISA/IUT/University Rennes 1, Rue Edouard Branly, BP 80519, 22305 Lannion Cedex, France
e-mail: ludovic.lietard@univ-rennes1.fr

D. Rocacher · N. Tamani
IRISA/ENSSAT/University Rennes 1, rue de Kerampont, BP 80518, 22305 Lannion
Cedex, France
e-mail: rocacher@enssat.fr

N. Tamani
e-mail: tamani@enssat.fr

O. Pivert and S. Zadrożny (eds.), Flexible Approaches in Data, Information 45
and Knowledge Management, Studies in Computational Intelligence 497,
DOI: 10.1007/978-3-319-00954-4_3, © Springer International Publishing Switzerland 2014

46 L. Liétard et al.

case for the ordinary querying) and a set of ranked answers from the most to the
least preferred is obtained (instead of a set of indistinguishable answers). It has been
shown that the fuzzy sets theory [15] provides a general framework for the definition
and the interpretation of conditions expressing preferences. Atomic conditions are
defined by fuzzy sets (to define fuzzy predicates also called fuzzy conditions) and
the relational algebra has been extended to such conditions to propose the SQLf
language [1, 10].

It is also possible to consider fuzzy bipolar conditions to model complex prefer-
ences [6, 8]. In this context, a fuzzy bipolar condition is made of two fuzzy predicates
(two poles), the first one expressing a constraint to define the elements to be retrieved,
the other one expressing a more restrictive attitude to define the best elements (among
the ones satisfying the constraint). Obviously, the negation of a constraint is a set of
values to be rejected. The advantage of this type of condition can be illustrated by
the querying of a database containing cars to be sold by a company. A fuzzy bipolar
condition can be useful to take into consideration two aspects: the requirement of
the client (a red car with a low price) and those of the company (to sell in priority
the oldest cars). A car which does not satisfy the conditions of the client is rejected,
in other words the requirements of the client are defining a constraint. The best cars
being the ones satisfying the two requirements, the conjunction of conditions stated
by the client and the company is a wish (an old red car with a low price).

These two poles can been interpreted in a conjunctive way to define fuzzy bipolar
conditions of type “and if possible” (fuzzy and-if-possible-bipolar conditions) and
the algebraic operators (selection, projection, join, union, intersection) have been
extended to this type of fuzzy bipolar conditions [3, 10]. These two poles can also be
interpreted in a disjunctive way to define fuzzy bipolar conditions of type “or else”
(fuzzy or-else-bipolar conditions)[11].

In this chapter, we aim at defining the basis of a general algebra extended to
fuzzy bipolarity to express complex flexible queries. It is worth mentioning that
this new type of flexible querying is a generalization of the one based on simple
fuzzy predicates (non bipolar i.e. SQLf) which is also a generalization of Boolean
querying (SQL). More precisely, we show that the two interpretations of fuzzy bipolar
conditions can be generalized in an unique framework and we define the extension of
the algebraic operators to this framework. The particular case of linguistic quantifiers
is also studied since they provide a very powerful (non algebraic) aggregation of fuzzy
bipolar conditions.

The remainder of this chapter is organized as follows. Section 2 introduces the
fuzzy bipolar conditions of type “and if possible” and of type “or else”. These two
types of fuzzy bipolar conditions are not equivalent and can be interpreted in a hier-
archical way. The differences between these two types are stressed and it is shown
in Sect. 3 that they are mutually compatible (in particular the negation of a fuzzy
bipolar condition of type “and if possible” is a fuzzy bipolar condition of type “or
else” and vice versa) and can be generalized. The extension of the algebraic opera-
tors (complement, intersection, union, Cartesian product, selection, join, difference,
projection) to this generalization is introduced in Sect. 4. Section 5 deals with the

3 A Relational Algebra for Generalized Fuzzy Bipolar Conditions 47

extension of linguistic quantifiers which allow to represent an intermediate attitude
between the conjunction and the disjunction. Section 6 recalls our contribution and
draws some lines for future works.

2 Fuzzy Bipolar Conditions

A bipolar condition is an association of a negative condition (negative pole) and
positive condition (positive pole). In this chapter, a bipolar condition is made of two
conditions defined on the same universe: (i) a constraint c, which describes the set of
acceptable elements, (ii) a wish w which defines the set of desired or wished elements.
The negation of c is the set of rejected elements since it describes non-acceptable
elements. It is not coherent to wish a rejected element, consequently the following
property of coherence holds: w ⊆ c.

In addition, condition c is mandatory since an element which does not satisfy
c is rejected; ¬c is then considered as the negative pole of the bipolar condition.
Condition w is optional because its non-satisfaction does not automatically mean the
rejection; w is then considered as the positive pole of the bipolar condition. Being of
different nature, we propose not to allow the aggregation of these two poles because
they convey different semantics. More precisely, one (the constraint c) is used to
reject elements while it is not the case for the other (the wish w). As a consequence,
we think it is important to keep these two poles separately because their aggregation
leads to loose their different semantics. However, some authors consider that these
two poles can be aggregated, as Dubois and Prade [5–7], de Tré et al. [4] and Zadrozny
and Kacprzyk [17, 18].

If c and w are boolean conditions, the satisfaction with respect to a bipolar con-
dition is a couple from {0, 1}2. If c and w are fuzzy conditions defined on the same
universe U (U can be a domain of an attribute or a Cartesian product of domains
of attributes), the property of coherence becomes: ∀u ∈ U,µw(u) ≤ µc(u) (it is
the inclusion in the sense of Zadeh [15]). The satisfaction with respect to a bipolar
condition is then a couple of degrees from the unit interval [0, 1]2.

These two poles can been interpreted in a conjunctive way to define fuzzy bipolar
conditions of type “and if possible” (called fuzzy and-if-possible-bipolar conditions)
introduced in Sect. 2.1 and in a disjunctive way to define fuzzy bipolar conditions of
type “or else” (called fuzzy or-else-bipolar conditions) introduced in Sect. 2.2.

2.1 Fuzzy and-if-possible-Bipolar Conditions

A bipolar condition of type “and if possible” (a fuzzy and-if-possible-bipolar condi-
tion) is denoted (c, w) and means, “to satisfy c and if possible to satisfy w”. When
c and w are Boolean and when querying a database with such a condition, tuples
satisfying the constraint and the wish and tuples satisfying only the constraint are
returned (tuples satisfying the constraint and the wish are ranked before the tuples

48 L. Liétard et al.

satisfying only the constraint). When querying a relation R with a fuzzy and-if-
possible-bipolar condition, each tuple t from R is then attached with a pair of grades
denoted (µc(t),µw(t)) that expresses the degrees of its satisfaction respectively to
the constraint c and the wish w (and a so-called fuzzy and-if-possible-bipolar rela-
tion is obtained). A tuple t is then denoted (µc(t),µw(t))/t . Any tuple t such that
µc(t) = 0 does not appear in the fuzzy and-if-possible-bipolar relation.

In such a context, since c is the most important pole, tuples can be ranked using
the lexicographical order. In other words, tuple t1 is preferred to tuple t2 if and only
if:

μc(t1) > μc(t2) or ((µc(t1) = µc(t2)) ∧ (µw(t1) > µw(t2)),

which is denoted (µc(t1),µw(t1)) � (µc(t2),µw(t2)).
We note (µc(t1),µw(t1)) � (µc(t2),µw(t2))when (µc(t1),µw(t1)) � (µc(t2),
µw(t2)) or (µc(t1),µw(t1)) = (µc(t2),µw(t2)).

In this case, the satisfaction with respect to the constraint is firstly used to discriminate
between answers (the constraint being the most important pole). The satisfaction with
respect to the wish being less important, it can only be used to discriminate between
answers having the same evaluation with respect to the constraint (thus we obtain a
hierarchical interpretation of c and w). A total order (lexicographical order) is then
obtained on µc and µw (with (1, 1) as the greatest element and (0, 0) as the least
element).

A fuzzy bipolar condition of type “and if possible” is a generalization of a fuzzy
predicate. More precisely, when defining a fuzzy predicate, the set of rejected ele-
ments is the complement of the set of desired elements. As a consequence, a fuzzy
predicate C can be rewritten “C and if possible C” (denoted (C,C)).

2.2 Fuzzy or-else-Bipolar Conditions

A bipolar condition of type “or else” (a fuzzy or-else-bipolar condition) is denoted
[w, c] and means, “to satisfy w or else to satisfy c” [11], where w and c are respec-
tively a wish and a constraint. When querying a relation R with a fuzzy or-else-
bipolar condition, each tuple t from R is then attached with a pair of grades denoted
[µw(t),µc(t)] that expresses the degrees of its satisfaction respectively to the wish
w and to the constraint c (and a so-called fuzzy or-else-bipolar relation is obtained).
A tuple t is then denoted [µw(t),µc(t)]/t and any tuple t such that µc(t) = 0 does
not appear in the fuzzy or-else-bipolar relation.

As for bipolar conditions of type “and if possible”, since condition w represents
the most important pole, tuples can be ranked using the lexicographical order. In
other words, tuple t1 is preferred to tuple t2 if and only if:

µw(t1) > µw(t2)or(µw(t1) = µw(t2)) ∧ (µc(t1) > µc(t2)),

3 A Relational Algebra for Generalized Fuzzy Bipolar Conditions 49

which is denoted [µw(t1),µc(t1)] � [µw(t2),µc(t2)].
We denote [µw(t1),µc(t1)] � [µw(t2),µc(t2)]when [µw(t1),µc(t1)] � [µw(t2),µc

(t2)] or[µw(t1),µc(t1)] = [µw(t2),µc(t2)].

In this case, the satisfaction with respect to the wish is firstly used to discriminate
between answers (the wish being the most important pole). The satisfaction with
respect to the constraint being less important, it can only be used to discriminate
between answers having the same evaluation with respect to the wish. A total order
is then obtained on µw and µc (with [1, 1] as the greatest element and [0, 0] as the
least element).

Fuzzy bipolar conditions of type “or else” are a generalization of fuzzy predicate
since a fuzzy predicate C can be rewritten “C or else C” ([C,C]). In this case, the set
of rejected elements is the complement of the set of desired elements.

3 A Generalization for Fuzzy Bipolar Conditions

Section 3.1 recalls the main features of the two kinds of fuzzy bipolar conditions and
it is shown that they can be unified within a general form. An operator of conjunction
(lexmin) and of disjunction (lexmax) are also proposed. The next Sect. 3.2 defines
a negation operator for this general form of bipolar fuzzy conditions. Section 3.3
shows that the lexmin and the lexmax operators satisfy the De Morgan’s laws.

3.1 A General Form for Fuzzy Bipolar Conditions

Bipolar conditions of the form “c and if possible w” (denoted (c, w)) can be defined
with the following properties:

1. ¬c corresponds to the rejection (c denotes acceptable elements),
2. w corresponds to the optimal values,
3. The acceptability condition c is more important than the optimality (the condition

w),
4. The set of optimal values is included in the set of acceptable values (w ⊆ c).

The property 3 means that the non-rejection (or the acceptability) is more important
than the optimality, therefore, the lexicographical order can be used to rank between
elements.

Similarly, a fuzzy bipolar conditions of the form “e or else f ”, denoted [e, f],
satisfies the following properties:

1. ¬ f corresponds to the rejection (f denotes acceptable elements),
2. e corresponds to the optimal values,
3. The optimality condition e is more important than the acceptability condition f,

50 L. Liétard et al.

Table 1 Example of behavior
of bipolar conditions

Formalism (c, w)

µc(xi) µw(xi)

t1 1 1
t2 0.8 0.2
t3 0.7 0.5
t4 0.4 0.3

Formalism [w, c]
µw(xi) µc(xi)

t1 1 1
t3 0.5 0.7
t4 0.3 0.4
t2 0.2 0.8

4. The set of optimal values is included in the set of acceptable values (e ⊆ f):
∀x,µe(x) ≤ µ f (x).

We notice strong similarities between these two formalisms, since in both cases
we have:

• c and f express the acceptable values (or non rejected values) (cf. point 1),
• ¬c and ¬ f correspond to the discarded values (cf. point 1),
• w and e express the perfect or optimal values (cf. point 2),
• the set of perfect values is included in the set of acceptable values (cf. point 4).

Moreover, these two conditions generalize fuzzy conditions in the same way: a fuzzy
condition C is expressed (C, C) or [C, C]. These two types of conditions only differ
on point 3 which gives different importance to the two poles.

Since w (resp. c) plays the same role as e (resp. f), it is interesting to study the
behavior of (c, w) and [w, c]. First of all, we notice that in the boolean case, both
formalisms have the same meaning, as shown in the following example.
Example 1. Let x, y and z be three elements attached respectively to the following
pair of grades: (1, 1), (1, 0) and (0, 0) with respect to conditions c and w (the pair
(0,1) is discarded because it does not satisfy the coherence property; the pair (0,0) is
kept to show that such a—null— satisfaction leads to the least position when using
the lexicographical order). The lexicographical order delivers the same order in both
situations (c, w) and [w, c]: x > y > z. •

However, when c and w are fuzzy conditions, the two formalisms do not express
the same semantics because the lexicographical order does not deliver the same order
(cf. Example 2).
Example 2. Table 1 shows that tuples t1, t2, t3 and t4 are not sorted according to the
same order, depending on whether the formalism (c, w) or [w, c] is used. •

The basic difference between these two formalisms is the fact that the formalism
“c, and if possible w” gives more importance to the non rejected elements (which
means that satisfaction with respect to the condition of acceptance c is privileged),

3 A Relational Algebra for Generalized Fuzzy Bipolar Conditions 51

whereas the formalism “e, or else f ” gives more importance to the optimal elements
(i.e. the satisfaction with respect to the optimal condition e is privileged).

In this context, a fuzzy bipolar condition of the form (c, w) can be defined as a pair
of fuzzy conditions, which define a set of optimal values (w) and a set of acceptable
values (c) under the consideration that the non-rejection is more important than the
optimality; and a fuzzy bipolar condition of the form [e, f] is defined as a pair of
fuzzy conditions, which define a set of optimal values (e) and a set of acceptable
values (f) under the consideration that the optimality is more important than the
non-rejection.

Fuzzy bipolar conditions of types “and if possible” and “or else” consists of two
parts: the former is the most important concept (the concept attached to c for the fuzzy
bipolar condition (c, w) and the concept attached to e for the fuzzy bipolar condition
[e, f]), the latter is the least important concept of the bipolar condition. This means
that it is possible to use the lexicographical order to compare and to handle couples of
scores of these two types of fuzzy bipolar conditions. In so doing, the first choice is
made on the condition which corresponds to the most important concept in the fuzzy
bipolar condition, and the second choice is made on the condition which corresponds
to the least important concept of the same fuzzy bipolar condition. In other words, it
becomes possible to express fuzzy bipolar conditions of both forms “and if possible”
and “or else” together in the single bipolar query.

In other words, the satisfaction with respect to a fuzzy bipolar condition can be
rewritten using the same syntax (<a,b> to denote either [a,b] or (a,b)):

• <a,b> with a < b represents the satisfaction with respect to a fuzzy bipolar con-
dition of type “or else”,
• <a,b> with a = b represents the satisfaction with respect to a fuzzy condition,
• <a,b> with a > b represents the satisfaction with respect to a fuzzy bipolar con-

dition of type “and if possible”.

When querying a relation R with a fuzzy bipolar condition, each tuple t from R is
then attached with a pair of grades denoted < a, b > that expresses the degrees of
its satisfaction to the wish w and to the constraint c, or to the constraint c and to the
wish w (and a so-called fuzzy bipolar relation is obtained). A tuple t is then denoted
< µa(t),µb(t) > /t and any tuple t such that < µa(t),µb(t) >=< 0, 0 > does
not appear in the fuzzy bipolar relation. Fuzzy bipolar relations are generalizations
of fuzzy and-if-possible-bipolar relations and fuzzy or-else-bipolar relations.

Couples <a,b> can be ranked using the lexicographical order to state that tuple
t1 is preferred to tuple t2 if and only if:

(µa(t1) > µa(t2))or((µa(t1) = µa(t2)) ∧ (µb(t1) > µb(t2))),

which is noted < µa(t1),µb(t1) >�< µa(t2),µb(t2) >.

We note (< µa(t1),µb(t1) >�< µa(t2),µb(t2) >) when (< µa(t1),µb(t1) >�
< µa(t2),µb(t2) >) or (< µa(t1),µb(t1) >=< µa(t2),µb(t2) >).

52 L. Liétard et al.

Table 2 Example of extension of the relation R

#Journey From To Duration Departure Mode ...

10 Paris Brest 1h30 9h30 am Plane ...
11 Paris Brest 2h30 6h30 am Plane ...
12 Paris Brest 3h50 8h am Car ...
13 Paris Brest 3h10 9h15 am Train ...
14 Paris Brest 3h15 8h15 am Train ...

Based on the lexicographical order, the conjunction (resp. disjunction) of bipolar
conditions and the intersection (resp. union) of bipolar relations can be defined by the
lmin (resp. lmax) operator [3, 9]. They are respectively defined as follows (where
(µ, η) and (µ′, η′) are two pairs of satisfaction degrees with respect to fuzzy bipolar
conditions):

lmin(< µ, η >,< µ′, η′ >) = < µ, η >

i f µ < µ′ ∨ (µ = µ′ ∧ η < η′),
= < µ′, η′ > otherwise.

lmax(< µ, η >,< µ′, η′ >) = < µ, η >

i f µ > µ′ ∨ (µ = µ′ ∧ η > η′),
= < µ′, η′ > otherwise.

The lmin (resp. lmax) operator is commutative, associative, idempotent and
monotonic. The pair of grades < 1, 1 > is the neutral (resp. absorbing) element
of the operator lmin (resp. lmax) and the pair < 0, 0 > is the absorbing (resp.
neutral) element of the operator lmin (resp. lmax).
Example 3. Let R be a relational table about journeys from Paris to Brest (see Table
2), derived from a transport information system. A user can express a bipolar query
as in the following query:
“Find journeys from Paris to Brest which are (fast, and if possible very fast) or
journeys which have (an early departure, or else a morning departure)” .
To evaluate this query, we define the following fuzzy predicates and their membership
functions respectively:

• fast: is a fuzzy predicate defined by the following membership function:
i f d ∈ [0, 2], µFast (d) = 1; i f d ∈ [2, 5], µFast (d) = −d

3 + 5
3 ; otherwise

µFast (d) = 0,

where d is the journey time expressed in hours. It defines a fuzzy relation of fast
journeys, where:

3 A Relational Algebra for Generalized Fuzzy Bipolar Conditions 53

µFast Journey(t) = µFast (t.duration).

We define a fuzzy predicate very fast by:

µV er y_Fast (d) = (µFast (d))2.

• early: is a fuzzy predicate defined by the following membership function:
i f d ∈ [5h am, 7h am], µEarly(d) = 1; i f d ∈ [7h am, 10h am], µEarly(d) =
−d
3 + 10

3 ; otherwise, µEarly(d) = 0,

where d is the journey departure. It defines a fuzzy relation of early departure
journeys, where:

µEarly Journey(t) = µEarly(t.departure).

• morning: is a fuzzy predicate defined by the following membership function:
i f d ∈ [5h am, 9h am], µMorning(d) = 1; i f d ∈ [9h am, 12h], µMorning(d) =
−d
3 + 4; otherwise, µMorning(d) = 0,

where d is the journey departure. It defines a fuzzy relation of morning departure
journeys, where:

µMorning Journey(t) = µMorning(t.departure).

The above fuzzy predicates allow us to define from the relation R the following
bipolar relations Journey(f ast,V er yFast) and Journey[Early,Morning] (see Table 3).

Table 3 The obtained fuzzy
bipolar relations

Fuzzy bipolar relation Journey(Fast,V er yFast)

#Journey µFast (#Journey) µV er yFast (#Journey)

10 1 1
11 0.8 0.64
12 0.4 0.16
13 0.6 0.36
14 0.58 0.33

Fuzzy bipolar relation Journey[Early,Morning]
#Journey µEarly(#Journey) µMorning(#Journey)

10 0.33 0.83
11 1 1
12 0.66 1
13 0.25 0.91
14 0.58 1

54 L. Liétard et al.

The set of answers to the query is obtained by using the lmax operator for each
tuple of both fuzzy bipolar relations as follows:

• #journey = 10: lmax((1, 1), [0.33, 0.83]) = (1, 1),
• #journey = 11: lmax((0.8, 0.64), [1, 1]) = [1, 1],
• #journey = 12: lmax((0.4, 0.16), [0.66, 1]) = [0.66, 1],
• #journey = 13: lmax((0.6, 0.36), [0.25, 0.9]) = (0.6, 0.36),
• #journey = 14: lmax((0.58, 0.33), [0.58, 1]) = [0.58, 1],
We notice that journeys are retrieved depending on the degree of satisfaction to
the most important fuzzy condition: fast for the fuzzy bipolar condition (Fast,
V er yFast) and early for the fuzzy bipolar condition [Early, Morning]. Indeed,
in the case of tuples #10 and #11, the maximal couple of degrees is attached to
answers because they fully satisfy the requirement of the query. In the case of tuples
#12 and #13, the returned couple of degrees corresponds to the couple in which the
satisfaction with respect to the most important fuzzy condition is the highest. In the
case of tuple #14, the satisfaction is the same with regard to the most important fuzzy
condition in both fuzzy bipolar conditions; therefore, the least important condition
is used to determine which couple of degrees to attach to the resulting tuple. •

3.2 The Negation Operator

To be consistent, any negation operator of a bipolar condition < a, b > must verify
the following properties [2]:
Property 1 (Order reversing). The negation operator must deliver a reverse order:

< a, b >�< c, d >⇔ ¬ < c, d >� ¬ < a, b > .

Property 2 (Consistency). The negation of a bipolar condition must also be a bipolar
condition.
Property 3 (Involutivity). The negation operator must be an involutive operator:

¬(¬ < a, b >) =< a, b > .

In the next subsection, we show that the negation of the fuzzy bipolar condition
(c, w) is the fuzzy bipolar condition [¬c,¬w] and, reciprocally, the negation of
the fuzzy bipolar condition [w, c] is the fuzzy bipolar condition (¬w,¬c). Then, a
negation operator is proposed for the general case.

3.2.1 Negation of (c, w)

We recall that a bipolar condition (c, w) is defined by the following properties:

3 A Relational Algebra for Generalized Fuzzy Bipolar Conditions 55

Table 4 Example of tuples with their couple of grades for the fuzzy bipolar condition
(Y oung, Y oung ∧W ell Paid)

#Employee µY oung(#Employee) µY oung(#Employee)∧
µW ell Paid (#Employee)

10 1 1
11 0.75 0.56
12 0.6 0.36
13 0.5 0.25

1. ¬c corresponds to the rejection (c denotes acceptable elements),
2. w corresponds to the optimal values,
3. The acceptability condition c is more important than the optimality condition w.

In addition, the set of optimal values is included in the set of acceptable values
(w ⊆ c).

If we express these properties in the context of a negation ¬(c, w), we obtain:

1. ¬c corresponds to the optimal values (c contains rejected and acceptable ele-
ments),

2. w corresponds to the rejected values (¬w denotes acceptable elements),
3. The optimality condition ¬c is more important than the acceptability condition
¬w.

In addition, since w ⊆ c, we have ¬c ⊆ ¬w.
Therefore, we obtain a fuzzy bipolar condition which fits within the definition of

the “or else” fuzzy bipolar conditions and we denote it by [¬c,¬w]. That means:

¬(c, w) = [¬c,¬w].

It is important to notice that in (c, w), the importance is put on c and the concept
attached to c is still the most important for ¬(c, w). As example, when considering
“young and if possible young and well-paid employees”, the importance is put on
the age (young). In its negation, the age is still the most important aspect to consider.
Example 4. Let (Y oung, Y oung ∧W ell Paid) be a fuzzy bipolar condition of type
“and if possible” which defines young and if possible young and well-paid employ-
ees. Let Table 4 be a set of returned tuples from a relational table. The negation
of the fuzzy bipolar condition (Y oung, Y oung ∧ W ell Paid) is defined as [notY-
oung,not(Young ∧ WellPaid)], which corresponds to “employees which are not
young, or else are not (young and well-paid)”. We notice that concepts used to define
the fuzzy bipolar condition (Y oung, Y oung∧W ell Paid) are the same ones used to
express its negation [notYoung,not(Young ∧WellPaid)]. More precisely, the concept
age is used to define the most important fuzzy condition in both fuzzy bipolar con-
dition (Y oung, Y oung ∧ W ell Paid) and [notY oung, not (Y oung ∧ W ell Paid)].

56 L. Liétard et al.

Table 5 Obtained tuples with their couple of degrees for the fuzzy bipolar condition
[notY oung, not (Y oung ∧W ell Paid)]
#Employee µnotY oung(#Employee) µnot (Young and WellPaid)(#Employee)

13 0.5 0.75
12 0.4 0.64
11 0.25 0.44

Table 5 shows obtained couples of degrees for the fuzzy bipolar condition
[notY oung, not (Y oung ∧W ell Paid)]. The tuple #10 is completely discarded and
the order reversing can be checked. •

3.2.2 Negation of [w, c]

We recall that a fuzzy bipolar condition [w, c] is defined by the following properties:

• ¬c corresponds to the rejection (c denotes the acceptable elements),
• w corresponds to the optimal values,
• The optimality condition w is more important than the acceptability.

In addition, the set of optimal values is included in the set of acceptable values
(w ⊆ c).

If we express these properties in the context of a negation, we obtain:

• ¬c corresponds to the optimal values,
• w corresponds to the rejected values (¬w denotes the acceptable elements),
• The acceptability condition ¬w is the more important condition.

In addition, since w ⊆ c, we have ¬c ⊆ ¬w. This property states that, in the context
of negation of a fuzzy bipolar condition of the form [w, c], the set of optimal values
is included in the set of acceptable values.

Therefore, we obtain a fuzzy bipolar condition, which fits within the definition of
the “and if possible” fuzzy bipolar conditions and we denote it by (¬w,¬c). That
means:

¬[w, c] = (¬w,¬c).

As for bipolar conditions of type “and if possible”, we notice that in [w, c], the
importance is put on w and the concept attached to w is still the most important for
¬[w, c].

3.2.3 The Negation of the General Form

From the previous two subsections, we get:

3 A Relational Algebra for Generalized Fuzzy Bipolar Conditions 57

¬ < a, b >=< ¬a,¬b > .

This form of negation is involutive and reverses the lexicographical order.
Proof. Reversing of the lexicographical order.

Let x1, x2, y1 and y2 be four values from [0, 1]. We have to prove that :
< x1, y1 >�< x2, y2 >⇔< 1− x2, 1− y2 >�< 1− x1, 1− y1 > .

< x1, y1 >�< x2, y2 >

⇔ (x1 > x2) or ((x1 = x2) and (y1 > y2))

⇔ (1− x1 < 1− x2) or ((x1 = x2) and (1− y1 < 1− y2))

⇔ < 1− x2, 1− y2 >�< 1− x1, 1− y1 >

⇔¬ < x2, y2 >� ¬ < x1, y1 >

Endproof.
Proof. Involutivity.
¬(¬ < a, b >) = ¬ < ¬a,¬b >=< ¬¬a,¬¬b >=< a, b >.

Endproof.

3.3 The Satisfaction of De Morgan’s Laws

In the context of fuzzy bipolar conditions, the two De Morgan’s laws holds (where <

a, b > and < a′, b′ > are two satisfactions with respect to fuzzy bipolar conditions):

lexmax(¬ < a, b >,¬ < a′, b′ >) = ¬lexmin(< a, b >,< a′, b′ >),

lexmin(¬ < a, b >,¬ < a′, b′ >) = ¬lexmax(< a, b >,< a′, b′ >).

Proof. It is assumed that < a, b >�< a′, b′ > (the proof is obvious in the case of
the equality).
If < a, b >�< a′, b′ > and since the negation reverses the order we get the values
for the left parts of the equalities:

lexmax(¬ < a, b >,¬ < a′, b′ >) = ¬ < a′, b′ >,

lexmin(¬ < a, b >,¬ < a′, b′ >) = ¬ < a, b > .

And it is obvious that same results are obtained for the right parts:

¬lexmin(< a, b >,< a′, b′ >) = ¬ < a′, b′ >,

¬lexmax(< a, b >,< a′, b′ >) = ¬ < a, b > .

Endproof.

58 L. Liétard et al.

4 The Extension of Algebraic Operators

The extended algebraic operators to bipolarity apply on regular relations or on rela-
tions issued from a querying with bipolar conditions. As a consequence, the concept
of fuzzy bipolar relation is introduced in Sect. 4.1. As pointed out, they are a gen-
eralization of regular and fuzzy relations. Then, the extended algebraic operators
(the complement, the intersection, the union, the Cartesian product, the selection,
the joint operator, the difference and the projection) are introduced in Sect. 4.2.

4.1 Fuzzy Bipolar Relations and Bipolar Queries

A bipolar query is a query expressing at least one fuzzy bipolar condition. As a
consequence, the satisfaction with respect to a fuzzy bipolar query is a pair of degrees.

We recall that a fuzzy bipolar relation R is defined as a relation where each
tuple t is attached with a pair of degrees denoted < µR1(t),µR2(t) > reflecting its
satisfaction with respect to a bipolar query. As a consequence, for a given tuple t of
R:

• < µR1(t),µR2(t) > with µR1(t) < µR2(t) represents a satisfaction of type “or
else”,
• < µR1(t),µR2(t) > with µR1(t) = µR2(t) represents a satisfaction with respect

to a fuzzy condition,
• < µR1(t),µR2(t) > with µR1(t) > µR2(t) represents a satisfaction of type “and

if possible”.

A fuzzy bipolar relation is denoted R = {< µR1(t),µR2(t) > /t}. Obviously,
regular relations (initial relations) can be expressed with couple < 1, 1 > to state a
maximum satisfaction.

4.2 Extended Algebraic Operators

The complement. The complement of a fuzzy bipolar relation R = {< µR1(t),µR2
(t) > /t} is a fuzzy bipolar relation ¬R computed using the negation operator. We
get:

¬R = {< 1− µR1(t), 1− µR2(t) > /t}.

It is important to notice that tuples t such that < µR1(t),µR2(t) >=< 0, 0 >

should be considered to apply this definition.
The intersection of fuzzy bipolar relations. The intersection of two fuzzy bipolar
relations R = {< µR1(t),µR2(t) > /t} and S = {< µS1(t ′),µS2(t ′) > /t ′} is a
fuzzy bipolar relation computed with the lmin operator:

3 A Relational Algebra for Generalized Fuzzy Bipolar Conditions 59

R ∩ S = {lmin(< µR1(t
′′),µR2(t

′′) >,< µS1(t
′′),µS2(t

′′) >)/t ′′

|< µR1(t
′′),µR2(t

′′) > /t ′′ ∈ R∧ < µS1(t
′′),µS2(t

′′) > /t ′′ ∈ S}.

The union. The union of two fuzzy bipolar relations R = {< µR1(t),µR2(t) > /t}
and S = {< µS1(t ′),µS2(t ′) > /t ′} is a fuzzy bipolar relation computed with the
lmax operator:

R ∪ S = {lmax(< µR1(t
′′),µR2(t

′′) >,< µS1(t
′′),µS2(t

′′) >)/t ′′

|< µR1(t
′′),µR2(t

′′) > /t ′′ ∈ R∨ < µS1(t
′′),µS2(t

′′) > /t ′′ ∈ S}.

The Cartesian product. The Cartesian product of two fuzzy bipolar relations R =
{< µR1(t),µR2(t) > /t} and S = {< µS1(t ′),µS2(t ′) > /t ′} is a fuzzy bipolar
relation computed with the lmin operator:

R × S = {lmin(< µR1(t),µR2(t) >,< µS1(t
′),µS2(t

′) >)/t ⊕ t ′

|< µR1(t),µR2(t) > /t ∈ R∧ < µS1(t
′),µS2(t

′) > /t ′ ∈ S}

where ⊕ denotes the concatenation of tuples.
The selection. The selection of a fuzzy bipolar relation R = {< µR1(t),µR2(t) >

/t} by a fuzzy bipolar predicate φ =< µ,µ′ > is a fuzzy bipolar relation defined
by:

R : φ = {lmin(< µR1(t),µR2(t) >,< µ(t),µ′(t) >)/t

|< µR1(t),µR2(t) > /t ∈ R}.

The join operator. The θ-join of two fuzzy bipolar relations R = {< µR1(t),µR2(t)
> /t} and S = {< µS1(t ′),µS2(t ′) > /t ′} is defined as a selection on a Cartesian
product.

The comparator θ applies on attribute A of R and B of S. It can be regu-
lar (∈ {<,>,≤,≥,=, �=}) or fuzzy (around, much greater than, . . .). In both
cases, the satisfaction with respect to θ can be represented in a bipolar way
(< θ(R.A, S.B), θ(R.A, S.B) >). The θ-join of R and S is defined by:

�� (R, S, θ, A, B) = {lmin(< µR1(t),µR2(t) >,< µS1(t
′),µS2(t

′) >,

< θ(R.A, S.B), θ(R.A, S.B) >)/t ⊕ t ′

|< µR1(t),µR2(t) > /t ∈ R∧ < µS1(t
′),µS2(t

′) > /t ′ ∈ S},

where ⊕ denotes the concatenation of tuples and the lmin operator is extended to
three arguments (lmin(a, b, c) = lmin(a, lmin(b, c))).

60 L. Liétard et al.

The difference. The difference of two fuzzy bipolar relations R = {< µR1(t),µR2(t)
> /t} and S = {< µS1(t),µS2(t) > /t} is a fuzzy bipolar relation which can be
computed with the previously extended operators:

R − S = R ∩ ¬S.

We get:

R − S = {lmin(< µR1(t
′′),µR2(t

′′) >,< 1− µS1(t
′′), 1− µS2(t

′′) >)/t ′′

|< µR1(t
′′),µR2(t

′′) > /t ′′ ∈ R∧ < µS1(t
′′),µS2(t

′′) > /t ′′ ∈ S}.

The projection. The projection of a fuzzy bipolar relation R = {< µR1(t),µR2(t) >

/t} on the set of attributes AT T from R is defined by:

R[AT T] = {< µR[AT T]1(att),µR[AT T]2(att) > /att

|< µR[AT T]1(att),µR[AT T]2(att) >

= lmaxt∈R,t[AT T]=att < µR1(t),µR2(t) >}.

For a given att , we keep the highest value < µR1(t),µR2(t) > among tuples t from
R such that t[AT T] = att .

5 Linguistic Quantifiers Extended to Fuzzy Bipolar Conditions

Linguistic quantifiers [16] describe an intermediate attitude between the universal
quantifier ∀ and the existential quantifier ∃ and they correspond to linguistic expres-
sions as almost all, around 4, few etc. They provide an interesting trade-off between
the conjunction and the disjunction and they are used to build complex fuzzy con-
ditions called quantified statements. As a consequence, the extension of linguistic
quantifiers to bipolar conditions provides an aggregation of such conditions sets
between the lexmin and the lexmax operators. Section 5.1 is a recall about linguis-
tic quantifiers and quantified statements while Sect. 5.2 introduces our propositions
to apply linguistic quantifiers to fuzzy bipolar conditions.

5.1 Linguistic Quantifiers

A linguistic quantifier [16] can be relative (it refers to a proportion, as in around the
half) or absolute (it refers to a number, as in about 2). A relative (resp. absolute)
linguistic quantifier Q is defined by a fuzzy set with a membership function µQ

from [0, 1] to [0, 1] (resp. from the set of real numbers to [0, 1]). The value µQ(x)

3 A Relational Algebra for Generalized Fuzzy Bipolar Conditions 61

Fig. 1 The linguistic quanti-
fier most of

1

mostof
(p)µ

0 0.5 1 p (proportion)

expresses the extent to which proportion x (resp. the cardinality x) is in agreement
with the quantifier. As a consequence, linguistic quantifiers can be considered as
fuzzy conditions which are defined on cardinalities or proportions.
Example 5. The relative linguistic quantifier most of is given by Fig. 1. According to
this linguistic quantifier, a proportion less than 50 % cannot be considered in agree-
ment with most of (since µmosto f (p) is 0 for p ≤ 0.5). In other words, when less than
50% of the elements from a given referential X satisfy a property A, the statement
“most of elements in X satisfy A” is entirely false. For a proportion between 50 and
100%, the closer to 100 % the proportion, the more it is in agreement with most of.
As example, when 75 % of a given referential X satisfy a property A, the statement
“most of the elements in X satisfy A” is true at degree 0.5 (since µmosto f (0.75) =
0.5). •

It is also possible to distinguish increasing quantifiers from decreasing ones. The
representation of an increasing linguistic quantifier Q satisfies: (1) µQ(0) = 0, (2)
∃k such that µQ(k) = 1, (3) ∀a, b if a > b then µQ(a) ≥ µQ(b). Figure 1 provides
an example of an increasing relative quantifier.

A decreasing linguistic quantifier Q is defined by: (1) µQ(0) = 1, (2) ∃k such that
µQ(k) = 0, (3) ∀a, b if a > b then µQ(a) ≤ µQ(b).

Two types of quantified statements can be distinguished, quantified statements of
type “Q X are A” and of type “Q B X are A” where Q is a linguistic quantifier, A
and B are two gradual predicates defined by fuzzy sets. In this article, we restrict
ourselves to the first type since it is the most useful.

A quantified statement of the type “Q X are A” means that, among the elements
of set X, a quantity Q satisfies the fuzzy predicate A. Such a statement can be more
or less true and many approaches can be used to compute the degree of truth of such
a quantified statement (i.e. to interpret the quantified statement). Examples of inter-
pretation are provided by the use of OWA operators [14] or Yager’s decomposition
based approach [13] (among others). The one we retain is the decomposition-based
approach because it relies only on operators already extended to bipolarity. This
approach considers an increasing quantifier Q and the truth value for “Q X are A”
is given by the following expression (where Q is an absolute quantifier):

maxi=1,...,nmin(µA(xσ(i)),µQ(i))

62 L. Liétard et al.

where n is the cardinality of set X = {x1, x2, . . . , xn} and σ a permutation of {1, 2,
…, n} such that µA(xσ(i)) ≥ µA(xσ(i+1)), for i in {1, 2, . . . , n − 1}.
If Q is an increasing relative quantifier, it is necessary to replace each µQ(i) by
µQ(i

n).

5.2 Quantified Statements and Bipolarity

We consider three types of quantified statements involving bipolarity (bipolar quan-
tified statements).

In the type 1, the linguistic quantifier is fuzzy while the predicate is bipolar. Such
statements are denoted “Q X are < a, b >” where Q is a quantifier, X a set of
elements and < a, b > a fuzzy bipolar condition (either of type “and if possible”
or of type “or else”). The statement “Q X are < a, b >” means that, among the
elements of set X, a quantity Q satisfy the bipolar condition < a, b >. An example
is provided by the following condition “at least half X are (young and if possible
young and well paid)” where X is a set of employees. This statement means that
among the employees in X, a quantity of at least half are (young and if possible
young and well paid). This example uses an “and if possible” condition but a "or
else" bipolar condition can also be considered.

The second type (type 2) concerns statements where the linguistic quantifier is
bipolar while the predicate is a fuzzy predicate as in “(at least half and if possible
most of) X are well-paid”, X being a set made of employees. These statements can
be expressed “< Q1, Q2 > X are A” and the linguistic quantifier is bipolar since it
is a bipolar condition defined on a cardinality or a proportion. When the linguistic
quantifier is a and-if-possible bipolar condition, we should have (Q2 ⊆ Q1) as in
“at least half and if possible most of”. When it is an or-else bipolar condition, we
should have (Q1 ⊆ Q2) as in “most of or else at least half”.

The last type (type 3) concerns statements where both the linguistic quantifier
and the condition are bipolar. It is written “< Q1, Q2 > X are < a, b >” and an
example is provided by “(at least half and if possible most of) X are (young and if
possible young and well paid)”.

Section 5.2.1 (resp. 5.2.2) is devoted to the evaluation of bipolar quantified
propositions of the three types according to a decomposition-based approach (resp.
a distribution-based approach). The decomposition-based approach is similar to
Yager’s decomposition based approach to interpret quantified statements, while the
distribution-based approach leads to transform the quantified statement into a bipolar
condition.

5.2.1 Fuzzy Bipolar Quantified Statements and the Decomposition-Based
Approach

Let “Q X are < a, b >” be a bipolar quantified proposition such that Q is an
increasing quantifier. Since Q is increasing, we propose an interpretation similar to

3 A Relational Algebra for Generalized Fuzzy Bipolar Conditions 63

the decomposition based approach of Yager [13]. More precisely, the interpretation
of this proposition delivers a pair of grades of satisfaction (where Q is an absolute
quantifier):

lmaxi=1,...,nlmin(< µa(xσ(i)),µb(xσ(i)) >,< µQ(i),µQ(i) >)

where n is the cardinality of set X = {x1, x2, . . . , xn} and σ a permutation of {1, 2,
…, n} such that < µa(xσ(i)),µb(xσ(i)) > � < µa(xσ(i+1)),µb(xσ(i+1)) >, for i in
{1, 2, . . . , n − 1}. A proof of the validity of this expression is given hereafter.
If Q is an increasing relative quantifier, it is necessary to replace each µQ(i) by
µQ(i

n).
Proof. Validity of this interpretation.

Since Q is an increasing quantifier, the evaluation of the quantified proposition
can be based on the evaluation of the best subset E of X which satisfies at most the
following two conditions:

1. each element in E satisfies the bipolar condition < a, b >,
2. the cardinality of E satisfies the linguistic quantifier Q.

Let E ⊆ X , the satisfaction with respect to the first condition is:

lminx∈E < µa(x),µb(x) >,

and the satisfaction with respect to the second condition is:

µQ(|E |).

This latter is rewritten < µQ(|E |),µQ(|E |) > in the context of bipolarity. The
satisfaction of the set E to both conditions is then:

lmin(lminx∈E < µa(x),µb(x) >,µQ(|E |)).

The evaluation of the bipolar quantified proposition is the best satisfaction with
respect to the different sets E :

δ = lmaxE⊆Xlmin(lminx∈E < µa(x),µb(x) >,µQ(|E |)).

It is possible to simplify this expression. First it is necessary to distinguish the
different cardinalities i ∈ {1, 2, ..., n} and to denote Ei the different subsets of X
having the same cardinality i . We get:

δ = lmaxi=1,2,...,n(lmaxEi⊆Xlmin(lminx∈Ei < µa(x),µb(x) >,µQ(i))).

Obviously, for a given i , the maximal value lminx∈Ei < µa(x),µb(x) > among sets
Ei is obtained for the set {xσ(1), xσ(2), . . . , xσ(i)}when denoting X = {x1, x2, . . . , xn}

64 L. Liétard et al.

and σ a permutation of {1, 2, …, n} such that < µa(xσ(i)),µb(xσ(i)) > �
< µa(xσ(i+1)),µb(xσ(i+1)) >, for i in {1, 2, . . . , n − 1}. As a consequence, we
obtain the final result:

lmaxi=1,...,nlmin(< µa(xσ(i)),µb(xσ(i)) >,< µQ(i),µQ(i) >)

where X = {x1, x2, . . . , xn} and σ a permutation of {1, 2, …, n} such that <

µa(xσ(i)),µb(xσ(i)) > � < µa(xσ(i+1)),µb(xσ(i+1)) >, for i in {1, 2, . . . , n − 1}.
Endproof.
Example 6. We consider the linguistic quantifier most of of Fig. 1 and the following
bipolar query:
find journeys where most of their steps are situated in a “cultural and if possible
big” city with a “comfortable or else a cheap” hotel.
Each journey is an answer to the query with a satisfaction expressed by the truth
value of the following fuzzy bipolar quantified statement:

“most o f X are < a, b >”,

where X is the set made of steps of the journey, < a, b > being the conjunction of
the two bipolar conditions “situated in a cultural and if possible big” city and with
a “comfortable or else a cheap” hotel.

We consider a journey with 5 steps: X={x1, x2, x3, x4, x5} such that:

< µa(x1),µb(x1) >=< 1, 1 >,< µa(x2),µb(x2) >

=< 1, 0.9 >,< µa(x3),µb(x3) >=< 0.9, 1 >,< µa(x4),µb(x4) >

=< 0.9, 0.6 >,< µa(x5),µb(x5) >=< 0.7, 0.6 > .

Satisfactions with respect to < a, b > are already ordered (to simplify the presenta-
tion) and the satisfaction of the bipolar quantified statement “most of X are < a, b >”
is:

lmax

lmin(< µa(x1),µb(x1) >,< µmosto f (1/5),µmosto f (1/5) >)

lmin(< µa(x2),µb(x2) >,< µmosto f (2/5),µmosto f (2/5) >)

lmin(< µa(x3),µb(x3) >,< µmosto f (3/5),µmosto f (3/5) >)

lmin(< µa(x4),µb(x4) >,< µmosto f (4/5),µmosto f (4/5) >)

lmin(< µa(x5),µb(x5) >,< µmosto f (1),µmosto f (1) >).

We get:

3 A Relational Algebra for Generalized Fuzzy Bipolar Conditions 65

lmax

lmin(< 1, 1 >,< 0, 0 >), lmin(< 1, 0.9 >,< 0, 0 >),

lmin(< 0.9, 1 >,< 0.2, 0.2 >), lmin(< 0.9, 0.6 >,< 0.6, 0.6 >),

lmin(< 0.7, 0.6 >,< 1, 1 >)

=< 0.7, 0.6 > .

This journey satisfies the query at a rather high level (< 0.7, 0.6 >). It can be checked
that 4 (out of 5) steps highly satisfy the constraint < a, b > and the result is close to
µmosto f (4/5) = 0.6 (< 0.6, 0.6 >). •

A similar approach can be used to interpret fuzzy bipolar quantified statement of
the type “< Q1, Q2 > X are A” (where Q1 and Q2 are both increasing). The truth
value of such a statement is then:

lmaxi=1,...,nlmin(< µA(xσ(i)),µA(xσ(i)) >,< µQ1(i),µQ2(i) >)

where n is the cardinality of set X = {x1, x2, . . . , xn} and σ a permutation of {1, 2,
…, n} such that < µa(xσ(i)),µb(xσ(i)) > � < µa(xσ(i+1)),µb(xσ(i+1)) >, for i in
{1, 2, . . . , n − 1}.
If Q1 and Q2 are increasing relative quantifiers, it is necessary to replace each µQ1(i)
by µQ1(

i
n) and each µQ2(i) by µQ2(

i
n). Obviously, the proof of the validity of this

interpretation is similar to the previous one.
Example 7. We consider the linguistic quantifier most of of Fig. 1 and the increasing
quantifier at least hal f such that µatleasthal f (1/4) = 0.5 and µatleasthal f (2/4) =
µatleasthal f (3/4) = µatleasthal f (1/4) = 1. They can be used to express a bipolar
query such that:
find journeys where “at least half and if possible most of” their steps have a comfort-
able hotel.
Each journey is an answer to the query with a satisfaction expressed by the truth
value of the following fuzzy bipolar quantified statement:

“at least half and if possible most of X are A”,
where X is the set made of the steps of the journey and A the fuzzy predicate “with a
comfortable hotel”. We consider a journey with four steps: X={x1, x2, x3, x4} such
that:

µA(x1) = 1, µA(x2) = 0.8, µA(x3) = 0.3, µA(x4) = 0.1.

Satisfactions with respect to A are already ordered (to simplify the presentation) and
the satisfaction of the bipolar quantified statement “at least half and if possible most
of X are A” is:

lmax

lmin(< µA(x1),µA(x1) >,< µatleasthal f (1/4),µmosto f (1/4) >)

lmin(< µA(x2),µA(x2) >,< µatleasthal f (2/4),µmosto f (2/4) >)

66 L. Liétard et al.

lmin(< µA(x3),µA(x3) >,< µatleasthal f (3/4),µmosto f (3/4) >)

lmin(< µA(x4),µA(x4) >,< µatleasthal f (1),µmosto f (1) >).

We get:

lmax

lmin(< 1, 1 >,< 0.5, 0 >), lmin(< 0.8, 0.8 >,< 1, 0 >),

lmin(< 0.3, 0.3 >,< 1, 0.5 >), lmin(< 0.1, 0.1 >,< 1, 1 >)

=< 0.8, 0.8 > .

This journey satisfies the query at a rather high level (< 0.8, 0.8 >). It can be checked
that the statement “at least half X are A” is intuitively rather true while “most of X
are A” is intuitively rather false. As a consequence, we obtain a result (< 0.8, 0.8 >)
for the statement “at least half and if possible most of X are A” which is rather close
to < 1, 0 > (when the lexicographical order is considered).•

A similar approach can be used to interpret a fuzzy bipolar quantified statement
of type “< Q1, Q2 > X are < a, b >” (where Q1 and Q2 are both increasing). The
truth value of such a statement is then:

lmaxi=1,...,nlmin(< µa(xσ(i)),µb(xσ(i)) >,< µQ1(i),µQ2(i) >)

where n is the cardinality of set X = {x1, x2, . . . , xn} and σ a permutation of {1, 2,
…, n} such that < µa(xσ(i)),µb(xσ(i)) > � < µa(xσ(i+1)),µb(xσ(i+1)) >, for i in
{1, 2, . . . , n − 1}.
If Q1 and Q2 are increasing relative quantifiers, it is necessary to replace each µQ1(i)
by µQ1(

i
n) and each µQ2(i) by µQ2(

i
n). Obviously, the proof of the validity of this

interpretation is similar to the previous one.

5.2.2 Fuzzy Bipolar Quantified Statements and the Distribution-Based
Approach

Let “Q X are < a, b >” be a bipolar quantified proposition such that Q is an
increasing quantifier. The idea of the distribution-based approach is to evaluate the
bipolar quantified statement “Q X are < a, b >” as the condition <“Q X are a”,“Q
X are b”>. As example, the bipolar condition “at least half X are (young and if
possible young and well paid)” (where X is a set of employees) is evaluated by “(at
least half X are young) and if possible (at least half X are young and well paid)”.

More precisely, “Q X are < a, b >” is evaluated by the bipolar satisfaction:

< δ, γ >,

3 A Relational Algebra for Generalized Fuzzy Bipolar Conditions 67

where δ and γ are respectively the evaluation of “Q X are a” and “Q X are b” (both
computed by the same approach, and we propose either an OWA operator [14] or
Yager’s decomposition-based approach [13]).

It is easy to see that the obtained result is coherent (in the sense of the inclusion
of the wished values in the constrained values) since the linguistic quantifier Q is
increasing and since an OWA operator or Yager’s decomposition-based approach is
used to compute δ and γ.

Similarly, the linguistic statement “< Q1, Q2 > X are A” (where Q1 and Q2 are
both increasing) is evaluated by the bipolar satisfaction:

< δ′, γ′ >,

where δ′ and γ′ are respectively the evaluation of “Q1 X are A” and “Q2 X are A”
(both computed by the same approach, and we propose either an OWA operator [14]
or Yager’s decomposition-based approach [13]). The bipolar linguistic quantifier
< Q1, Q2 > being coherent, it is easy to see that the obtained result is also coherent
(in the sense of the inclusion of the wished values in the constrained values). This is
due to the monotonicity property of the OWA operator and Yager’s decomposition-
based approach used to compute δ′ and γ′.

The distribution-based approach to evaluate < Q1, Q2 > X are < a, b >" leads
to evaluate four quantified statements: (1) “Q1 X are a”, (2) “Q1 X are b”, (3) “Q2
X are a”, (4) “Q2 X are b”. How to get a bipolar evaluation < δ′′, γ′′ > from these
four quantified statements is out of the scope of this chapter and is left for future
work.

6 Conclusion

This chapter has proposed a generalization for fuzzy bipolar conditions of type “if
possible” and “or else” based on a hierarchical interpretation of these two different
types of fuzzy bipolar conditions. This generalization is an extension of fuzzy con-
ditions and a conjunction (lexmin) and a disjunction (lexmax) of such generalized
conditions have been proposed (these two operators are extensions of the triangular
norm min and the triangular co-norm max). All the algebraic operators have been
extended to this generalization and is has been shown that the definition of the com-
plement (negation) satisfies the De Morgan’s law. In addition three types of quantified
statements involving bipolarity have been distinguished and two different types of
evaluation have been proposed. As a consequence, we have at our disposal several
aggregations of bipolar conditions which aim at delivering a result sets between the
lexmin and the lexmax operator. Their comparison is planned as future work.

It is then possible to define a query language expressing preferences defined by
bipolar conditions. This new approach to flexible querying can be considered as an
extension of the approach based on fuzzy conditions. It presents the advantage to
offer a more powerful flexible querying, still in the context of an algebraic language.

68 L. Liétard et al.

However, a particular case appears when the fuzzy bipolar condition is made of a
fuzzy condition and a Boolean condition included in the core of this fuzzy condition
(as in “cheap price and if possible a price <100” or “price <100 or else a cheap
price” assuming that the interval [0, 100[is included in the core of the fuzzy set
“cheap price”). One may wonder if such a fuzzy bipolar condition is different from
the fuzzy condition (is “cheap price and if possible a price <100” really different
from “cheap price” ?). However, we think that these two conditions are clearly
different since the fuzzy condition describes the best elements and its negation the
rejected elements while it is not the case for the fuzzy bipolar condition. As an
example, when considering the fuzzy condition “cheap price”, the perfect elements
are described by this fuzzy set, while when considering “cheap price and if possible
a price <100” (or “price <100 or else a cheap price”) the best elements are the
prices under 100. As a consequence, the use of “cheap price” or “cheap price and if
possible a price <100” (respectively “price <100 or else a cheap price”) in a query
does not lead to the same order of the answers. To illustrate this behaviour, we can
consider the query: retrieve the trips having a “cheap price” and a “departure in the
morning and if possible an early departure”. The trip t1 (respectively t2) satisfies
“cheap price” at degree 0.7 (respectively 0.8) while its satisfaction with respect to “a
departure in the morning if possible an early departure” is < 0.9, 0.5 > (respectively
< 0.2, 0.1 >). As a consequence, trip t1 has a satisfaction of lmin(< 0.7, 0.7 >

,< 0.9, 0.5 >) =< 0.7, 0.7 > and is preferred to trip t2 whose satisfaction is
lmin(< 0.8, 0.8 >,< 0.2, 0.1 >) =< 0.2, 0.1 >. When replacing “cheap price”
by “price <100 or else a cheap price" in the previous query the order is inverted
since the satisfaction of t1 is lmin(< 0, 0.7 >,< 0.9, 0.5 >) =< 0, 0.7 > while
that of t2 is lmin(< 0, 0.8 >,< 0.2, 0.1 >) =< 0, 0.8 >.

As future work, we aim to define an extension of the SQLf language to generalized
fuzzy bipolar conditions (it has been already made for “and if possible” conditions
[12]). Other approaches for the definition of fuzzy bipolar quantified propositions
can also be studied.

References

1. Bosc, P., Pivert, O.: SQLf: A relational database langage for fuzzy querying. IEEE Trans. Fuzzy
Syst. 3(1), 1–17 (Feb 1995)

2. Bosc, P., Pivert, O.: A propos de la négation de conditions bipolaires floues. On the negation
of fuzzy bipolar conditions. In: Rencontre francophone sur la logique floue et ses applications,
pp. 21–28 (2010)

3. Bosc, P., Pivert, O., Liétard, L., Mokhtari, A.: Extending relational algebra to handle bipolarity.
In: 25th ACM Symposium on Applied Computing, SAC’10, pp. 1717–1721 (2010)

4. de Tré, G., Zadrozny, S., Matthé, T., Kacprzyk, J., Bronselaer, A.: Dealing with positive and
negative query criteria in fuzzy database quering bipolar satisfaction degrees. LNAI FQAS
5822, 593–604 (2009)

5. Dubois, D., Prade, H.: Bipolarité dans un processus d’interrogation flexible. In: Actes des
Rencontres Francophones sur la Logique Floue et ses Applications (LFA’02), pp. 127–134
(2002)

3 A Relational Algebra for Generalized Fuzzy Bipolar Conditions 69

6. Dubois, D., Prade, H.: Bipolarity in flexible querying. LNAI 2522, 174–182 (2002)
7. Dubois, D., Prade, H.: Handling bipolar queries in fuzzy information processing. In: Galindo,

J. (ed.) Handbook of Research on Fuzzy Information Processing in Databases, pp. 97–114.
Information Science Reference, Hershey (2008)

8. Dubois, D., Prade, H.: An introduction to bipolar representations of information and preference.
Int. J. Intell. Syst. 23, 866–877 (2008)

9. Liétard, L., Rocacher, D.: On the definition of extended norms and co-norms to aggregate fuzzy
bipolar conditions. In: IFSA/EUSFLAT, pp. 513–518 (2009)

10. Liétard, L., Rocacher, D., Bosc, P.: On the extension of SQL to fuzzy bipolar conditions. In:
The 28th North American Information Processing Society Annual Conference (NAFIPS’09)
(2009)

11. Liétard, L., Tamani, N., Rocacher, N.: Fuzzy bipolar conditions of type “or else”. In: The 20th
IEEE International Conference on Fuzzy Systems (FUZZZ-IEEE’11), pp. 2546–2551 (2011)

12. Tamani, N., Liétard, L., Rocacher, D.: Bipolar SQLf: A flexible querying language for rela-
tional databases. In: The 9th International Conference on Flexible Query Answering Systems
(FQAS’11), LNAI, vol. 7022, Springer, pp. 472–484 (2011)

13. Yager, R.R.: Quantifiers in the formulation of multiple objective decision functions. Inf. Sci.
31, 107–139 (1983)

14. Yager, R.R.: On ordered weighted averaging aggregation operators in multicriteria decision-
making. IEEE Trans. Syst. Man Cybern. 18, 183–190 (1988)

15. Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
16. Zadeh, L.: A computational approach to fuzzy quantifiers in natural languages. Comput. Math.

Appl. 9, 149–184 (1983)
17. Zadrozny, S.: Bipolar queries revisited. LNAI MDAI 3558, 387–398 (2005)
18. Zadrozny, S., Kacprzyk, J.: Bipolar queries and queries with preferences (invited paper). In:

DEXA’06: 17th International Conference on Database and Expert Systems Applications (2006)

Chapter 4
Bipolarity in Database Querying: Various
Aspects and Interpretations

Sławomir Zadrożny and Janusz Kacprzyk

Abstract A crucial problem in database querying is how to devise a query to best
reflect the very intentions and preferences of the user. A new line of research in this
area aims at taking into account the polarity of preferences what should consider-
ably enhance the functionality and usefulness of flexible database querying systems.
Bipolar queries constitute an important concept in this area. They are meant here, in
general, as queries involving negative and positive information. In a special, promis-
ing interpretation they can be viewed in terms of necessary and possible conditions.
The purpose of this paper is to critically analyze, recast in a unified perspective and
clarify with respect to conceptual, algorithmic and implementation related aspects of
various ways to deal with bipolarity. This should open new perspectives for research
and commercial applications of bipolar and related queries which should provide
more comprehensive, enhanced and more human consistent querying capabilities.

1 Introduction

A crucial problem in database querying is how to formulate, and then represent and
process a query to best reflect the very intentions and preferences of the user. Tra-
ditionally, databases are meant to store highly structured information and to support

To Patrick, Professor Patrick Bosc, a friend and peer, who has been for a long time stimulating
and amplifying our interest in flexible database querying.

S. Zadrożny (B) · J. Kacprzyk
Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland
e-mail: Slawomir.Zadrozny@ibspan.waw.pl

J. Kacprzyk
e-mail: Janusz.Kacprzyk@ibspan.waw.pl

S. Zadrożny
Kazimierz Pulaski University of Technologies and Humanities in Radom, Radom, Poland

O. Pivert and S. Zadrożny (eds.), Flexible Approaches in Data, Information 71
and Knowledge Management, Studies in Computational Intelligence 497,
DOI: 10.1007/978-3-319-00954-4_4, © Springer International Publishing Switzerland 2014

72 S. Zadrożny and J. Kacprzyk

equally highly structured and precise query languages. However, nowadays databases
find their application in many various settings and are expected to provide information
to growing population of end users without a relevant IT/ICT training. Moreover, a
growing complexity of application domains requires some more sophisticated forms
of queries to make it possible to reflect the real users’ intentions, preferences and inter-
ests, the semantics of which is not obvious and straightforward. Advanced graphical
user interfaces (GUIs) alleviate to some extent the problem of man-machine commu-
nication, but, alone, do not help much with respect to the semantic representation of
the users’ information needs. Thus, some more conceptually advanced and sophis-
ticated information access methods are needed to make a full use of the potential
brought by the vast amount of information gathered in modern databases. First of all,
a query is usually first conceived in natural language—the primary, maybe the only
fully natural way of articulation, communication and “information processing” for
the human being. Then, it has to be translated to a form required by a given database
management system (DBMS). This translation is often lossy and thus those users are
in need of another access path. This need is addressed by the traditional research on
query answering systems which ultimately aims at providing the users with a fully
natural language based query interface. An important issue is the very modeling of
linguistic terms which may be used in queries and here many interesting approaches
have been developed by the fuzzy logic community.

An important novel line of research concerning advanced querying of databases
addresses the issue of the bipolar nature of conditions describing data sought by the
user. Namely, the user looking for data usually can specify some disqualifying (nega-
tive information) and some desired (positive information) features of data. Classical
query formalisms do not allow to express such requirements. The problem becomes
particularly complex when these features are specified in an imprecise way. There
is quite a rich literature dealing with this problem in the framework of fuzzy logic
in general, or for some specific applications, notably decision making. A few other
chapters in this volume also belong to this direction.

Various existing approaches to the representation and processing of such bipolar
queries are based on different assumptions, paradigms and formal tools. As always in
such a case, there is an acute need for some deeper analysis of views and perspectives
within which various authors deal with the problem so that crucial differences and
similarities be discovered. Such a comprehensive study of many various possible
interpretations of bipolarity related to database queries seems to be missing. This
is the purpose of this chapter in which we first provide a quick review of known
approaches and interpretations and then propose our own contribution to the under-
standing of this phenomenon with special emphasis on the discussion of various
scales of bipolarity which play a particular role for our purpose.

4 Bipolarity in Database Querying: Various Aspects and Interpretations 73

2 Background

2.1 Basic Concepts

The starting point for our considerations is the seminal Zadeh’s concept of a fuzzy set
[44] which may be conveniently identified with its membership function. Namely,
a fuzzy set A in a universe U will be in what follows usually identified with its
membership function:

μA : U → [0, 1]

such that μA(x) denotes degree to which element x ∈ U is a member of the fuzzy
set A.

We will skip most of the basic concepts related to fuzzy sets as they are clearly
superfluous in this volume. We will just remind briefly a few concepts which will be
important for the further discussion. We refer an interested reader to a vast literature,
notably to the recent paper by Dubois and Prade [26] who provide a perspective on
the notions of fuzziness, uncertainty and bipolarity which are all very important in
the context of data modeling and database querying.

The support and the core of a fuzzy set A in universe U , denoted Support (A)

and Core(A) respectively, are “classical” (crisp) sets defined as follows:

x ∈ Support (A)⇔ μA(x) > 0 (1)

x ∈ Core(A)⇔ μA(x) = 1 (2)

The concept of the twofold fuzzy set is an extension of the concept of the regular
fuzzy set [21]. A twofold fuzzy set A over a given universe of discourse U is defined
by two membership functions πA : U → [0, 1] and ηA : U → [0, 1] such that:

ηA(x) > 0⇒ πA(x) = 1 ∀x ∈ U (3)

Intuition behind the condition (3) is such that πA(x) may denote the degree to which
it is possible that x belongs to A, while ηA(x) may denote the degree to which it is
necessary that x belongs to A, and then (3) is a natural consequence of the essence
of possibility theory. This condition may also be expressed in the following way.
Assuming that both membership functions specify regular fuzzy sets, it is required
that the support of the fuzzy set defined by ηA must be contained in the core of the
fuzzy set defined by πA.

Another extension of the concept of the regular fuzzy set is Atanassov’s intu-
itionistic fuzzy set (AIFS, for short) [1]; for a debate about the appropriateness of
the term “intuitionistic”, cf. Dubois et al. [20]. An AIFS A over a given universe of
discourse U is defined by two functions: a membership function μA : U → [0, 1]
and a non-membership function νA : U → [0, 1] such that:

74 S. Zadrożny and J. Kacprzyk

μA(x)+ νA(x) ≤ 1 ∀x ∈ U (4)

Thus in this approach the membership and the non-membership of an element to
an AIFS may be determined to some extent independently. The consistency condition
(4) finds an interesting interpretation in the context of the bipolar queries against the
database, discussed in this paper, cf. [23].

2.2 Classical and Flexible Queries: A Brief Overview

We adopt the basic terminology of the relational data model. In particular, we will
mainly refer to a single relation (or, more precisely, relational variable), comprising
a set of tuples T = {ti }, characterized by a set of attributes At = {X, Y, . . .}.

In this chapter we focus on the conditions in a query which specify which data
is sought. Looking from the perspective of the SQL language, we are concerned
with the WHERE clause of a simple SELECT-FROM-WHERE query. Some aspects
discussed here may be further extended to the case of more complex SQL queries,
e.g., involving the join operator though this goes beyond the scope of the current
paper. Our study concerns the following scenario. A classical (“crisp”) relational
database is considered, against which queries of the SELECT-FROM-WHERE type
are addressed. However, these queries may contain some non-standard conditions in
their WHERE clause. First, some imprecision (fuzziness) may be present, exemplified
by a query “Find all middle-aged employees”, which is meant to express in a better
and more direct way the user requirements than, e.g., a query “Find all employees
whose age falls in the interval between 35 and 45”. We follow here the line of research
of Bosc and Pivert [3, 4, 6–8, 10, 12–14, 16, 17] and Kacprzyk et al. [30–35, 46,
47, 51] in which it is assumed that such imprecise conditions are construed using
some linguistic terms as, e.g., “middle-aged” in the previous example, which are
modeled using fuzzy logic. Second, we assume that the condition may be composed
of some positive and negative components, what is meant to reflect bipolarity of user
preferences. A study of the latter feature is the main topic of this chapter.

The simplest form of bipolarity may be ascribed to any classical “crisp” query
against a database. Let us consider a simple query involving just one atomic condition
concerning one attribute. Let this condition be:

price ≤ USD 500K, (5)

as in Example 1 (cf. p. 7). Then, the values in the domain of the attribute price
which are above 500 K are rejected (i.e., treated as “negative”), while the values lower
or equal than that are accepted (“positive”). This is however a very specific type of
bipolarity which is of a lesser interest, at least due to the two following reasons:

4 Bipolarity in Database Querying: Various Aspects and Interpretations 75

1. the rejection/acceptance is binary
2. there is no notion of “neutrality”, and, what is closely related, an element of the

domain under consideration which is not “negative” is necessarily “positive” and
vice versa.

The classical fuzzy approach to querying obviously alleviates the first limitation but
not the second: still, if an element x of the domain is indicated as “positive” to a
degree μ(x), then it is automatically treated as “negative” to the degree 1−μ(x). This
type of bipolarity may be referred to, after Dubois and Prade [24, 26], a symmetric
univariate bipolarity. There is still another feature of the bipolarity which is not
properly addressed by the classical, either crisp or fuzzy, approaches to the querying.
Namely, there should be available for the user some specific aggregation operators,
which take into account the bipolarity of preferences while computing the overall
matching degree. In order to be in accord with psychological observations, such
operators should make it possible to treat negative and positive preferences in a
different way [29].

3 Unipolar and Bipolar Fuzzy Conditions

3.1 Classical Fuzzy Approach to the Modeling of Query Conditions
and Bipolarity

A fuzzy logic based perspective has been adopted to model conditions of a query
against a database since the early days; cf., e.g., Tahani [40]. The flexibility of mod-
eling provided by the concept of a fuzzy set finds an immediate application for the
purposes of query conditions specification. Here we will only very briefly summarize
the advantages of the classical fuzzy logic based approach so as to clearly show later
the difference that taking into account of bipolarity makes.

Let us consider a database of real-estate properties offer for sale by a real estate
agency. Let the particular houses be characterized by some attributes exemplified
by: price, location, and size (in square meters). Let us further assume that a
customer of the agency is looking for a house of a low price (usually a customer will
require a few conditions that should be met by the house he or she is looking for, but
here for the sake of presentation clarity we will focus on one attribute). Using, e.g.,
a flexible querying interface provided by Kacprzyk and Zadrożny’s FQUERY for
Access [32, 33], he or she can form a query using the linguistic term “low” directly
to express the constraint on the price. The set of acceptable prices will be modeled
by a fuzzy set A in a universe U , characterized by its membership function:

μA : U → [0, 1] (6)

76 S. Zadrożny and J. Kacprzyk

In our example, the term “low” will be modeled by such a fuzzy set A (in the
universe U which is identified then with the domain of given attribute; here: price)
that μA(x) denotes to which degree a given price x is low, and this degree will be
treated as the matching degree of a house with the given price against the query
under consideration. Thus the user is released from artificially distinguishing the
prices which (fully) are low from those which are not. This way of modeling is
clearly more human consistent, i.e., more in line with human perception of such
linguistic terms as “low”, “moderate”, “high”, etc. A direct consequence is then the
possibility to order the tuples of a database (real estate properties, in the case of our
example) according to their matching degrees of the query condition.

We will denote a classical fuzzy query concerning attribute X and using a linguistic
term modeled by a fuzzy set A as:

X is A (7)

Referring to our previous example, X in (7) denotes the attribute price, while fuzzy
set A represents the linguistic term “low”.

From the point of view of this chapter the interpretation of the membership degrees
related to (6) is the most interesting. It is worthwhile to note that in the classical fuzzy
approach a unipolar scale is tacitly associated with (6). Namely, μA(x) denotes the
degree to which a given attribute value is compatible with the meaning of a given
linguistic term and, in consequence, the degree to which this value satisfies query
condition. There is no explicit distinction between “negative” (“rejected”, “bad”)
and “positive” (“accepted”, “good”) values. It may be argued that such a distinction
is usually made by the user in the framework of the classical fuzzy approach but it
is of a slightly different nature than the one considered here. Namely, usually the
query languages and interfaces proposed (c.f., e.g., [14, 33]) presume the use of a
threshold in a query which indicates that only tuples matching the query to a degree
higher than this threshold are shown to the user. Thus, in a sense, the mechanism
related to such a threshold makes the distinction between “negative” and “positive”
tuples which may be further interpreted as the distinction concerning the attribute
values—if the query condition is atomic and refers to just one attribute (there are also
approaches in which such a threshold may be associated with each atomic condition
separately [39]). However, this is a binary distinction and is made externally with
respect to the query condition, and thus of a lesser interest to us here.

Following the arguments mentioned in the introduction we assume that very often
the user preferences are inherently bipolar. This bipolarity may manifest itself at the
level of each attribute domain or at the level of the comprehensive evaluation [29]
of the whole tuple. In the former case, the user may see particular elements of the
domain as “negative”, “positive” or “neutral”, to a degree. This classification should,
of course, influence the matching degree of a tuple having a particular element of the
domain as the value of the attribute under consideration. In the latter case the user is
expected to express some conditions, involving possibly many attributes, which when
satisfied by a tuple (to a degree) make it “negative” or “positive” (to a degree). Thus,
effectively, in the latter case some combinations of multiple attributes values are seen

4 Bipolarity in Database Querying: Various Aspects and Interpretations 77

as “negative”/“positive”. The former case may be seen as a special case of the latter,
when both the “negative” and “positive” conditions concern the same attribute and
thus demarcate the “negative” and “positive” values of a given attribute. However,
the distinguishing of the former case is worthwhile as it is somehow less intuitive
but still practically useful and there do exist some formal means which provide for
its elegant formal representation which will be discussed later on. Moreover, the
distinguishing of this case makes it easier to study various approaches known in the
literature. Let us illustrate that on two examples.

Example 1 Let us consider a customer of our real-estate property agency. He or she
may have the following view on the domain of the price attribute:

(a) the price above USD 500 K is definitely negative,
(b) the price below USD 300 K is definitely positive,
(c) the remaining prices are neither negative nor positive, i.e., are neutral.

In Example 1 the bipolarity is defined in the crisp way on the level of the attribute
domain. Now let us consider more complex preferences of the user.

Example 2 Let us consider another customer of our real-estate property agency. He
or she finds:

(a) the properties more expensive than USD 500 K and, at the same time, of the size
less than 100 sq. m. as definitely negative,

(b) the properties located in Waterfront as definitely positive,
(c) the remaining properties as neither negative nor positive, i.e., as neutral.

In Example 2 the bipolarity concerns a combination of attribute values, or, equiva-
lently the whole tuples (here: the real-estate properties) possessing these combina-
tions of values. In this example (and also in Example 1, which is however possibly
less obvious) the point (b) requires some discussion concerning the compatibility of
condition given there with the condition given in the point (a)—such a discussion
will be provided later on while presenting alternative ways to formally represent the
bipolarity in query conditions.

Both Examples 1 and 2 are crisp, however may be easily “fuzzified” in practi-
cal scenarios by using such (subjectively defined) linguistic terms as “very expen-
sive”, “rather cheap”, “small” instead of the numbers expressing the price and size
of the property. What is worth noting is that the user preferences expressed both in
the crisp and fuzzy versions of these examples cannot be properly expressed using
the classical crisp or fuzzy approaches to database querying. On the other hand, one
may argue that some special cases of such preferences are representable using the
classical approaches. Namely, while considering a modification of the first example,
one can claim that the condition “price <USD 500 K” properly represents such bipo-
lar preferences if the values of the price higher than USD 500 K are “negative” and
the values below or equal to the same threshold are “positive”. More generally, in the
specific case where the subset of “positive” values in the domain of given attribute is
the complement of the subset of “negative” values, it may be seen as corresponding

78 S. Zadrożny and J. Kacprzyk

to the bipolarity defined by using the symmetric bipolar univariate scale (called a
symmetric univariate bipolarity by Dubois and Prade [25]).

Example 1 clearly explains the terminology often used in the literature (cf., e.g.,
[23, 48]) when referring to the negative and positive parts of the scale: the former is
used as the scale for the required conditions and the latter as the scale for the desired
conditions.

Thus, the classical fuzzy approach makes it possible for the user to clearly specify
in the query a distinction between the “negative” data he or she rejects (to a degree)
and the “positive” data he or she accepts (to a degree). It is worth to emphasize this
concept of the negative/positive traits of data the user has in mind, which is, of course,
relative to a given query, and which is accompanied with some affect. This distinction
between the negative and positive traits of data should then be properly taken into
account during the computation of the overall matching degree using appropriate
aggregation operators—we will discuss this in more detail later on. Without this
distinction one can argue that already in the traditional, “crisp” approaches a query
defines the set of rejected and accepted data.

3.2 Bipolarity: Which Scale to Use

3.2.1 Bipolarity in the Query Condition via a Univariate Bipolar Scale

In this case it is assumed that for the data under consideration, being either an
attribute domain element or the whole tuple, the user may evaluate its “negative”
and “positive” sides and he or she is in a position to combine these evaluations and
expresses an overall evaluation on one univariate bipolar scale. It may be instructive
to consider two cases, depending on the level at which this bipolarity is expressed.

Univariate bipolarity at the level of an attribute domain element

Here we assume that the user has a bipolar evaluation of each element of a domain
dom X of a given attribute X . For convenience, we assume that such an evaluation is
of the form (cf., e.g., [29] for a discussion):

ξX : dom X → [−1, 1] (8)

and for x ∈ dom X the value ξX (x) > 0 denotes x’s degree of “positiveness”,
ξX (x) < 0 denotes its degree of “negativeness” and ξX (x) = 0 means that x is
neutral from the point of view of the user, concerning given query.

In such a case, the user preferences may be properly modeled using a twofold
fuzzy set (3) in dom X . Thus in (7) fuzzy set A will be now replaced by a twofold
fuzzy set. This twofold fuzzy set will be interpreted as follows:

4 Bipolarity in Database Querying: Various Aspects and Interpretations 79

• the membership function πA is used to represent the negative evaluations of the
elements of dom X ; its values equal the evaluation for these elements plus 1:

πA(x) = min(1+ ξX (x), 1) (9)

More precisely, the values of πA(x) form a reversed negative scale: value 1 denotes
no negative evaluation, value 0 the strongest negative evaluation, while interme-
diate values represent some degrees of negative evaluation—the closer to 0 they
are the stronger negative evaluation it is.
• the membership function ηA is used to represent the positive evaluations of the

elements of dom X :
ηA(x) = max(ξX (x), 0) (10)

i.e., the value 0 of ηA(x) denotes no positive evaluation, the value 1 the strongest
positive evaluation, while intermediate values represent some degrees of positive
evaluation—the closer to 1 they are the stronger positive evaluation it is.

The idea is illustrated in Fig. 1. Thanks to the very property of the twofold fuzzy
set (3) there is a one-to-one mapping between the degrees of evaluation ξX given
by (8) and the membership functions of the corresponding twofold fuzzy set. The
mapping from ξX (x) to a pair (πA(x), ηA(x)) is given by Eqs. (9)–(10). The reverse
transformation is given by the following formula:

(πA(x), ηA(x))→ ξX (x) (11)

ξX (x) =
{

ηA(x) for πA(x) = 1
πA(x)− 1 otherwise

(12)

In this scenario the user is assumed to express his or her bipolar preferences with
respect to an attribute X using a univariate bipolar scale. In order to do so one can
choose two linguistic terms from the dictionary (or define them; cf., e.g., details of the
user interface of the FQUERY for Access system [32, 33]) which are represented by
fuzzy sets forming together a twofold fuzzy sets, i.e., whose membership functions
satisfy condition (3). An illustration is shown in Example 3.

Example 3 Let us consider a customer who does not like small houses and would be
most satisfied with a house of the size around 350 sq. m. Then he or she may express
his or her preferences defining or choosing from the dictionary two linguistic terms
“small” and “around 350 sq. m.” and form a twofold fuzzy set A with the following
membership functions (πA(x), ηA(x)):

πA(x) = μ“not small”(x)

ηA(x) = μ“around 350 sq. m.”(x)

80 S. Zadrożny and J. Kacprzyk

1.0

domX

ηA(x)

πA(x)

ηA(x)

πA(x) − 1

1.0

domX

-1.0

A
 t

w
of

ol
d

fu
zz

y
se

t
It

s
co

rr
es

po
nd

in
g

bi
po

la
r

un
iv

ar
ia

te
sc

al
e

Fig. 1 Illustration of the bipolar univariate scale representation using the twofold fuzzy set

assuming that the support of the fuzzy set representing “around 350 sq. m.” is a
subset of the core of the complement of the fuzzy set representing the linguistic term
“small”, i.e., the fuzzy set representing the linguistic term “not small”.

Note, that in this case it may be fairly easily checked that the membership functions
πA(x) and ηA(x) really form a twofold fuzzy set, i.e., satisfy the condition (3). Thus,
it is reasonable to assume that the user, properly supported by the user interface,
picks up an appropriate pair of fuzzy sets.

4 Bipolarity in Database Querying: Various Aspects and Interpretations 81

Univariate bipolarity at the level of a tuple (at the comprehensive evaluation level)

This is a more general case than the previous one as now it is assumed that the user has
a comprehensive evaluation of the whole tuple expressed using a univariate bipolar
scale. Thus, as previously, we assume an evaluation ξT ranging over the interval
[−1, 1] but this time its domain is the set of tuples T :

ξT : T → [−1, 1] (13)

Again, a formal representation of this evaluation is obtained using a twofold fuzzy
set denoted by a pair of membership functions (πT (t), ηT (t)). Now we will assume
that the user defines two conditions denoted C(t) and P(t), respectively, that will in
turn define these membership functions, i.e.,

πT (t) = C(t) (14)

ηT (t) = P(t) (15)

Here, and in what follows, we will denote by C and P both fuzzy predicates
identified by the respective conditions and the fuzzy sets of tuples satisfying, to a
degree, these predicates. Moreover, by C(t) and P(t) we will denote the membership
function values of the particular tuples t ∈ T to these fuzzy sets. Let us illustrate
that with a “fuzzified” version of Example 2, which is given below as Example 4.

In this case the link between (13), and (14) and (15) is analogous as in the case of
univariate bipolarity at the level of an attribute domain elements as discussed earlier.

Example 4 Let us consider a customer of our real-estate property agency. He or she
finds:

(a) very expensive and, at the same time, small properties as definitely negative,
(b) properties located in eastern districts of the city as definitely positive.

In Example 4 the fuzzy predicates C and P are defined as “not (very expensive and
small)”, and “located in eastern districts”, respectively (we assume that “eastern dis-
tricts” is a gradual notion, well represented by a fuzzy predicate). Note that in the case
of a comprehensive evaluation it is rather unreasonable to expect that the respective
membership functions satisfy condition (3), or—to put that more precisely—that the
user may be somehow aware if they do or do not. For example, there may exist a
property located in the “totally eastern” (i.e., to the degree 1) district but very expen-
sive and small. Thus, in fact, (15) has to be modified so as to force the satisfaction
of (3). The simplest way to do that is to use the following variant of (15):

ηT (t) =
{

P(t) for C(t) = 1
0 otherwise

(16)

82 S. Zadrożny and J. Kacprzyk

3.2.2 Bipolarity in the Query Condition via a Bivariate Bipolar Scale

In this approach the user is assumed to define separately positive and negative traits
of the data sought. This may be done again, as in the previous case, at the level of
an attribute domain element or at the level of a tuple. However, here still another
distinction should be made regarding the semantics of these separate positive and
negative evaluations. Namely, we will distinguish two cases in which:

1. the negative evaluation is treated as related to the violation (to a degree) of a
constraint and the positive evaluation is treated as related to the satisfaction of
a desire, i.e., of a somehow supplementary condition; thus the positive evalua-
tion plays here a subsidiary role—the elements violating the constraint are thus
treated as rejected (to a degree); in what follows we will refer to this case as the
“required/desired semantics”,

2. both evaluations are treated “equally”.

Thus, in the first case a specific semantics of “positive” and “negative” evaluations is
assumed. This implies a need for some consistency conditions which express the fact
that something may be desired at most to a degree to which it satisfies the constraints,
i.e., to a degree to which it is not rejected. We will discuss that issue in Sect. 4 in a
more detailed way. It should be noted that this semantics is adopted in most of the
works related to bipolar queries; cf., e.g. [23, 48]. It is definitely very intuitive and
of a high practical value. However, second case, in which the treatment of bipolarity
is more general in the sense of just reflecting the existence of a positive and negative
condition without any specific interpretation of their relations and interplay, deserves
more attention and research.

Bivariate bipolarity at the level of an attribute domain element—the general case

Here it is assumed that the user has a bipolar evaluation of each element of a given
attribute X domain dom X and can separately evaluate its positive and negative traits
(his “liking” and “disliking” of an element). For convenience, we assume that such
an evaluation is expressed via two functions and such that

ξ+X : dom X → [0, 1] (17)

ξ−X : dom X → [0, 1] (18)

where ξ+X and ξ−X denote how “good” and “bad”, respectively, the element x is. Let
us illustrate this case with the following example.

Example 5 Let us consider a customer, who especially cares for the location of a
house which is given in the database by the name of the district of a city. For each
district he can list some “pros” and “cons” (possibly, of varying importance/strength).
For example, district D is well communicated with the rest of the city but is known

4 Bipolarity in Database Querying: Various Aspects and Interpretations 83

for its relatively high crime level. The user is able to separately aggregate the lists
of the arguments and to come up with a separate positive and negative evaluation of
each location.

It should be noted that such a bipolar bivariate evaluation makes sense basically
only in the case when there is a set of criteria that may be related to the elements of
the domain in question but are not directly represented in a database. If the locations
of the houses were represented in the database of Example 5 at a more detailed level
(including the communication convenience, crime level etc.), then the preferences
of the user would probably be better expressed using the bipolar univariate or even
just unipolar scale, with respect to the domains of attributes comprising this more
detailed representation.

Bivariate bipolarity at the level of an attribute domain element—the
required/desired semantics

Here it is assumed that the user has a bipolar evaluation of each element of a given
attribute X domain dom X in the sense that he or she can distinguish a (fuzzy) set R
of rejected elements and the (fuzzy) set P of really desired (preferred) elements. For
convenience, such an evaluation may be expressed by two (membership) functions:

ξR
X : dom X → [0, 1] (19)

ξP
X : dom X → [0, 1] (20)

and for x ∈ dom X the value ξR
X (x) denotes degree to which x is rejected, while

ξP
X (x) denotes degree to which it is desired. It should be noticed that if the sets R and

P are complements of each other then only one of them have to be specified, i.e., it
refers to the case of the classical fuzzy logic based querying: ξP

X may be identified
with (6). Thus, this case is interesting only if C = R̄ �= P and such a bipolar query
may be represented equivalently by the pairs of (fuzzy) sets (R, P) or (C, P).

Due to the postulated required/desired semantics it is rational to impose a con-
sistency condition P ⊆ C , which states that an element has first to be non-rejected
before it can be desired (preferred). Thus, the user preferences may be here properly
modeled using an AIFS (4) in dom X . Thus in (7) fuzzy set A will be now replaced
by an AIFS which will be interpreted as follows:

• the membership function μA is used to define the degree to which a particular
element is desired:

μA(x) = ξP
X (x)

• the non-membership function νA is used to define the degree to which a particular
element is rejected:

84 S. Zadrożny and J. Kacprzyk

νA(x) = ξR
X (x)

The consistency condition P ⊆ C , which may be expressed equivalently as P ⊆ R̄
or ξP

X (x) ≤ 1− ξR
X (x) coincides with the condition (4) characteristic for the AIFS’s.

Thus, in this scenario the user is assumed to express his or her bipolar preferences
with respect to an attribute X using a bivariate bipolar scale. In order to do that
one can choose two linguistic terms from the dictionary, representing sets R and P ,
respectively, the membership functions of which have to satisfy condition (4). An
illustration is shown in Example 6 which is a modified version of Example 3.

Example 6 Let us consider a customer who does not like small houses and would
be most satisfied with a house of the size around 350 sq. m. Then, he or she may
expresses his or her preferences by defining or choosing from the dictionary two
linguistic terms “small” and “around 350 sq. m.” and by forming the following AIFS
A (μA(x), νA(x)):

νA(x) = μ“small”(x)

μA(x) = μ“around 350 sq. m.”(x)

assuming that for all values representing the size the sum of its membership degrees
to these two fuzzy sets is not larger than 1.0.

Note, that in this case the preferences of the user may be expected to be consistent
and, if the two above mentioned fuzzy sets adequately represent his or her subjective
understanding of the linguistic terms “small” and “around 350 sq. m”, then the query
formed in such a way will represent the user’s preferences in a fair way.

4 Semantics of the Bipolar Bivariate Conditions:
An Aggregation Perspective

In the previous sections we were mainly concerned with the identification of various
forms of bipolarity in queries and their representations. Here we discuss an interpre-
tation of bipolar queries in terms of an ordering of tuples they imply. In particular, we
focus on a specific semantics of bipolar conditions, referred to as “required/desired”
semantics in the previous section. Here we will discuss this semantics in a more
detailed way, in a specific perspective.

4.1 A General View

The most general interpretation of the bivariate bipolarity in queries is the one men-
tioned in Sect. 3.2.2—with the positive and negative conditions treated as equally

4 Bipolarity in Database Querying: Various Aspects and Interpretations 85

important and independent. Thus, we have two conditions and each tuple is eval-
uated against them yielding a pair of satisfaction (matching) degrees. The natural
question is then how to order data in an answer to such a query.

Basically, while doing that we should take into account the very nature of both
matching degrees, i.e., the fact that they correspond to the positive and negative
conditions. The situation here may be compared to that of decision making under
risk. Namely, in the latter context a decision maker who is risk-averse may not accept
actions leading with some non-zero probability to a loss. On the other hand, a risk-
prone decision maker may ignore risk of an even serious loss as long as there are
prospects for a high gain. Similar considerations apply in the case of bipolar queries.
Some users may be more concerned about negative aspects and will reject a piece
of data with a non-zero matching degree of the negative condition. Some other users
may be more oriented towards the satisfaction of the positive conditions and may be
ready to accept the fact that a given piece of data satisfies to some extent the negative
conditions.

The conclusion from the above considerations is such that the bipolar query meant
in such a general sense should be evaluated in a database in a way strongly dependent
on the specific attitude of the user. In the extreme cases, the above-mentioned analogs
of “risk-averse” and “risk-prone” attitudes would be represented by lexicographic
orders. In the former case the lexicographic ordering would be first non-decreasing
with respect to the negative condition matching degree and then non-increasing with
respect to the positive condition matching degree. The less extreme attitudes of the
users may be represented by various aggregation operators producing a scalar overall
matching degree of a bipolar query.

An approach to a comprehensive treatment of such generally meant bipolar queries
has been proposed by De Tré and Matthé [38], and further developed in [19, 37]. In
this approach a pair of matching degrees of the positive and negative conditions is
referred to as a bipolar satisfaction degree (BSD). The respective matching degrees
are denoted as s and d, and called the satisfaction degree and the dissatisfaction
degree, respectively. The ranking of data retrieved against a bipolar query in this
approach may be obtained in various ways. One of the options is based on the
difference s − d of the two matching degrees. In this case a “risk-neutral” attitude
of the user is modeled: he or she does not favor neither the positive nor the negative
evaluation.

The BSDs are assumed to be assigned at the attribute level and then are aggregated
so that an overall BSD for the whole query is obtained. In [19, 37] it is proposed how
such an aggregation should be carried out in case of the standard logical connectives.
See also a paper by Matthé et al. in this volume which reports on further developments
in this research direction.

86 S. Zadrożny and J. Kacprzyk

4.2 The Required/Desired Semantics Once Again

The semantics in question supports the following interpretation of the positive and
negative conditions in the bipolar query: the data items sought have to satisfy the
complement of the latter conditions unconditionally while the former conditions is
of somehow secondary importance. For example, a house the user is looking for may
have to be cheap and then among cheap houses those which are closer to a railway
station are preferred. The negative condition is here “not being cheap” while the
positive condition is “being close to the railway station”. Usually, the complement
of the negative condition will be specified in such a query (denoted C), which may
therefore be interpreted as a required condition. On the other hand, the positive
condition is expressed directly and may be referred to as a desired condition (denoted
C). It is worth noting that this interpretation is close to the mode of aggregation of a
hierarchy of conditions proposed in 1987 in a seminal work of Lacroix and Lavency
[36], of course without any reference to the notion of bipolarity at that time. This
type of aggregation may be seen as based on the “and possibly” operator: to satisfy
the required conditions and if possible also the desired conditions. We develop this
idea further in the following sections.

Whatever the interpretation of the positive and negative conditions is adopted, the
main practical problem is how to order the tuples based on their satisfaction degrees
of these conditions. In case of the “required/desired” semantics we denote a pair of
these conditions as (C, P). The problem mentioned may be solved in many ways.

The simplest approach is to use the matching degree with respect to the desired
condition just to order the data items which satisfy the required condition. This idea
leads to the use of the lexicographic order which is promoted by many authors,
notably Dubois and Prade; cf., e.g., [23]. This interpretation is in fact predominant
in the literature dealing with bipolar queries. The early works of Bosc and Pivert
[9, 11] which aim at introducing a fuzzified version of the operator for aggregating
the conditions in the spirit of Lacroix and Lavency also belong to this category. In
those papers, as well as in the sophisticated possibility theory based interpretations
by Dubois and Prade [24, 25] focus is on a proper treatment of multiple required
and preferred conditions, basically assuming the lexicographic order as the way of
combining the required (negative) and desired (positive) conditions, cf. also Bosc
et al. [18]. However, if a fine (detailed) scale for the satisfaction of the required
condition is adopted then a smallest possible dominance of one tuple over another
with respect to the satisfaction of the required condition makes it “better” even if
the other tuple is much better with respect to the desired condition. The solution
proposed is to use a coarser scale of required condition satisfaction degrees but still
it is a rather artificial solution.

Another approach consists in employing an aggregation operator which combines
the degrees of matching (satisfaction) of conditions C and P and yields an overall
matching degree which is then used to order tuples in the usual way. In particular
the operator introduced by Lacroix and Lavency [36] may be used. Then, the whole
query may be interpreted as expressing the following condition:

4 Bipolarity in Database Querying: Various Aspects and Interpretations 87

C and possibly P (21)

In the literature such aggregation operators have been studied by many authors under
different names, and sometimes in slightly different contexts. However, in the frame-
work of database querying Lacroix and Lavency proposed first such an approach.
Zadrożny [45] proposed a direct “fuzzification” of the approach by Lacroix and
Lavency, Zadrożny and Kacprzyk [49, 52] studied some properties of that solution.

4.3 The “and possibly” Operator Based Aggregation

The essence of the “and possibly” operator consists in taking into account the whole
dataset while combining the matching degrees related to the required and desired
conditions. Namely, if there is a piece of data which satisfies both conditions, then
and only then it is actually possible to satisfy both of them and each piece of data
has to meet both of them. Thus, the (C, P) query reduces to the usual conjunction
C ∧ P . On the other hand, if there is no such a piece of data, then it is not possible
to satisfy both conditions and the desired one can be disregarded. Thus, the (C, P)

query reduces to C . These are however two extreme cases and actually it may be the
case that the two conditions may be simultaneously satisfied to some degree. Then,
the matching degree of the (C, P) query against a piece of data lies somewhere
between its matching degrees of C ∧ P and C . This may be formally written for the
crisp case as [36]:

C(t) and possibly P(t) ≡ C(t) ∧ ∃s(C(s) ∧ P(s))⇒ P(t) (22)

and for the fuzzy case as [45, 48]:

C(t) and possibly P(t) ≡ min
(

C(t), max(1−max
s∈T

min(C(s), P(s)), P(t))
)

(23)

where T denotes the whole dataset being queried.
The formula (23) is derived from (22) using the classic fuzzy interpretation of

the logical connectives via the maximum and minimum operators. In Zadrożny and
Kacprzyk [49, 50, 52] we analyze the properties of the counterparts of (23) obtained
by using a broader class of operators modeling the logical connectives.

The “and possibly” aggregation operator that is implicit in the Lacroix and
Lavency’s proposal [36] has been later proposed independently by Dubois and Prade
[22] in the context of default reasoning and by Yager [42, 43] in the context of multi-
criteria decision making for the case of so-called possibilistically qualified criteria.
Yager [43] intuitively characterizes a possibilistically quantified criterion as such

88 S. Zadrożny and J. Kacprzyk

which should be satisfied unless it interferes with the satisfaction of other criteria.
This is in fact the essence of the aggregation operator “and possibly” as we under-
stand it here. The concept of this operator was also used by Bordogna and Pasi [2]
in the context of textual information retrieval.

Recently, the modeling of the aggregations operators in the spirit of the “and
possibly” operator is gaining a broad interest. Usually, they lack the dependence on
the whole data set what is a distinguishing characteristic feature of the operator based
on the Lacroix and Lavency approach. However, they may have some importance
for the implementation of bipolar queries and some of them are proposed to this
aim. Dujmović [27] already in 1979 defined an aggregation operator combining two
arguments in such a way that one of them controls the influence of the other ones on
the result of their combination. Bosc and Pivert [15] also consider similar operators.
Tudorie [41] introduced the “among” operator which is similar to the “and possibly”
operator and is used to form queries such as “find data satisfying a condition P
among those satisfying a condition C”. The evaluation of a query with the “among”
operator is expressed in terms of the rescaling of fuzzy predicates used to specify
condition P .

5 Concluding Remarks

The idea of taking into account bipolarity of user preferences expressed in the form of
database queries is gaining a growing popularity. However, there are still some basic
questions open. This paper is an attempt to describe the very essence of bipolarity
in the considered context, in a slightly more general way by concentrating on the
presentation of various possible views and perspectives, and then attempting to find
a unifying view. We also briefly review relevant literature to support our line of
reasoning and views, and to show a line of logical developments which have occurred
in the research efforts related to bipolar queries. In particular, we distinguish various
possible approaches depending on the following aspects:

1. the type of a bipolar scale used to express preferences,
2. the existence (and type of) or lack of consistency constraints imposed on the

positive and negative preferences, and
3. the level of data at which these evaluations are given.

We hope that this provides a better perspective on the research on bipolar queries. In
particular, it shows that the approaches currently predominant in the literature cover
only a part of the spectrum of possible interpretations.

The concepts and relations developed have been illustrated by numerous partial
examples. However, due to space limitation, it has been impossible to present an
in-depth analysis of one of many applications of the method proposed, notably in
the area of querying real estate databases. Basically, due to the very essence of this
domain and a relevance of interaction with the human customer, the presentation to

4 Bipolarity in Database Querying: Various Aspects and Interpretations 89

be meaningful would have required a detailed coverage of many aspects exemplified
by dictionaries of terms, analyses of preferences, multicriteria choice processes, etc.

Acknowledgments This contribution is partially supported by the Foundation for Polish Science
under International PhD Projects in Intelligent Computing. Project financed from The European
Union within the Innovative Economy Operational Programme (2007–2013) and European Regional
Development Fund.

References

1. Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)
2. Bordogna, G., Pasi, G.: Linguistic aggregation operators of selection criteria in fuzzy informa-

tion retrieval. Int. J. Intel. Syst. 10(2), 233–248 (1995)
3. Bosc, P., Galibourg, M.: Flexible selection among objects: A framework based on fuzzy sets.

In: Proceedings of the SIGIR Conference, Grenoble, France (1988)
4. Bosc, P., Galibourg, M., Hamon, G.: Fuzzy querying with SQL: extensions and implementation

aspects. Fuzzy Sets Syst. 28, 333–349 (1988)
5. Bosc, P., Kacprzyk, J. (eds.): Fuzziness in Database Management Systems. Physica, Heidelberg

(1995)
6. Bosc, P., Lietard, L.: Quantified statements and some interpretations for the OWA operators.

In: Yager, R., Kacprzyk, J. (eds.) The Ordered Weighted Averaging Operators: Theory and
Applications, pp. 241–257. Kluwer, Boston (1997)

7. Bosc, P., Lietard, L., Pivert, O.: Quantified statements and database fuzzy querying. In: Bosc,
Kacprzyk [5], pp. 275–308

8. Bosc, P., Lietard, L., Prade, H.: An ordinal approach to the processing of fuzzy queries with
flexible quantifiers. In: Hunter, A., Parsons, S. (eds.) Applications of Uncertainty Formalisms,
LNAI, vol. 1455, pp. 58–75. Springer, Berlin (1998)

9. Bosc, P., Pivert, O.: Discriminated answers and databases: fuzzy sets as a unifying expression
means. In: Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
pp. 745–752, San Diego, USA (1992)

10. Bosc, P., Pivert, O.: Fuzzy querying in conventional databases. In: Zadeh, L., Kacprzyk, J.(eds.)
Fuzzy Logic for the Management of Uncertainty, pp. 645–671. Wiley, New York (1992)

11. Bosc, P., Pivert, O.: An approach for a hierarchical aggregation of fuzzy predicates. In: Pro-
ceedings of the Second IEEE International Conference on Fuzzy Systems (FUZZ-IEEE’93),
pp. 1231–1236, San Francisco, USA (1993)

12. Bosc, P., Pivert, O.: Flexible queries, discriminated answers and fuzzy sets. In: Proceedings of
the Fifth IFSA World Congress, pp. 525–528. Seoul, Korea (1993).

13. Bosc, P., Pivert, O.: On the evaluation of simple fuzzy relational queries: principles and mea-
sures. In: Lowen, R., Roubens, M. (eds.) Fuzzy Logic: State of the Art, pp. 355–364. Kluwer
Academic Publishers, Boston (1993)

14. Bosc, P., Pivert, O.: SQLf: a relational database language for fuzzy querying. IEEE Trans.
Fuzzy Syst. 3(1), 1–17 (1995)

15. Bosc, P., Pivert, O.: On three fuzzy connectives for flexible data retrieval and their axiomatiza-
tion. In: Chu, W.C., Wong, W.E., Palakal, M.J., Hung, C.C. (eds.) SAC, pp. 1114–1118. ACM
(2011)

16. Bosc, P., Pivert, O., Farquhar, K.: Integrating fuzzy queries into an existing database manage-
ment system: an example. Int. J. Intel. Syst. 9, 475–492 (1994)

17. Bosc, P., Pivert, O., Lietard, L.: Aggregate operators in database flexible querying. In: Pro-
ceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2001), pp.
1231–1234, Melbourne, Australia (2001)

90 S. Zadrożny and J. Kacprzyk

18. Bosc, P., Pivert, O., Mokhtari, A., Lietard, L.: Extending relational algebra to handle bipolar-
ity. In: Shin, S.Y., Ossowski, S., Schumacher, M., Palakal, M.J., Hung, C.C. (eds.) SAC, pp.
1718–1722. ACM (2010)

19. De Tré, G., Zadrożny, S., Matthe, T., Kacprzyk, J., Bronselaer, A.: Dealing with positive and
negative query criteria in fuzzy database querying. Lect. Notes Comput. Sci. 5822, 593–604
(2009)

20. Dubois, D., Gottwald, S., Hájek, P., Kacprzyk, J., Prade, H.: Terminological difficulties in fuzzy
set theory—the case of “intuitionistic fuzzy sets”. Fuzzy Sets Syst. 156(3), 485–491 (2005)

21. Dubois, D., Prade, H.: Twofold fuzzy sets and rough sets—some issues in knowledge repre-
sentation. Fuzzy Sets Syst. 23, 3–18 (1987)

22. Dubois, D., Prade, H.: Default reasoning and possibility theory. Artif. Intel. 35(2), 243–257
(1988)

23. Dubois, D., Prade, H.: Bipolarity in flexible querying. In: Andreasen, T., Motro, A., Chris-
tiansen, H., Larsen, H.L. (eds.) FQAS 2002, LNAI, vol. 2522, pp. 174–182. Springer, Berlin
(2002)

24. Dubois, D., Prade, H.: Handling bipolar queries in fuzzy information processing. In: Galindo
[28], pp. 97–114

25. Dubois, D., Prade, H.: An overview of the asymmetric bipolar representation of positive and
negative information in possibility theory. Fuzzy Sets Syst. 160(10), 1355–1366 (2009)

26. Dubois, D., Prade, H.: Gradualness, uncertainty and bipolarity: Making sense of fuzzy sets.
Fuzzy Sets Syst. 192, 3–24 (2012)

27. Dujmović, J.: Partial absorption function. J. teh Univ. Belgrade EE Dept. 659, 156–163 (1979)
28. Galindo, J. (ed.): Handbook of Research on Fuzzy Information Processing in Databases. Infor-

mation Science Reference, New York (2008)
29. Grabisch, M., Greco, S., Pirlot, M.: Bipolar and bivariate models in multicriteria decision

analysis: descriptive and constructive approaches. Int. J. Intel. Syst. 23, 930–969 (2008)
30. Kacprzyk, J.: Fuzzy logic in DBMSs and querying. In: Proceedings of Second New Zealand

International Two-Stream Conference on Artificial Neural Networks and Expert Systems,
Dunedin, New Zealand, pp. 106–109. IEEE Computer Society Press, Los Alamitos (1995)

31. Kacprzyk, J., Zadrożny, S.: Fuzzy querying for Microsoft Access. In: Proceedings of the Third
IEEE Conference on Fuzzy Systems (FUZZ-IEEE’94), vol. 1, pp. 167–171, Orlando, USA
(1994)

32. Kacprzyk, J., Zadrożny, S.: FQUERY for access: fuzzy querying for a windows-based DBMS.
In: Bosc and Kacprzyk [5], pp. 415–433

33. Kacprzyk, J., Zadrożny, S.: Computing with words in intelligent database querying: standalone
and internet-based applications. Inf. Sci. 134(1–4), 71–109 (2001)

34. Kacprzyk, J., Zadrożny, S.: SQLf and FQUERY for access. In: Proceedings of the Conference
IFSA/NAFIPS 2001, pp. 2464–2469, Vancouver, Canada (2001)

35. Kacprzyk, J., Zadrożny, S., Ziółkowski, A.: FQUERY III+: a “human consistent” database
querying system based on fuzzy logic with linguistic quantifiers. Inf. Syst. 14(6), 443–453
(1989)

36. Lacroix, M., Lavency, P.: Preferences: putting more knowledge into queries. In: Proceedings of
the 13 International Conference on Very Large Databases, pp. 217–225, Brighton, UK (1987)

37. Matthé, T., De Tré, G., Zadrożny, S., Kacprzyk, J., Bronselaer, A.: Bipolar database querying
using bipolar satisfaction degrees. Int. J. Intel. Syst. 26(10), 890–910 (2011)

38. Matthé, T., Tré, G.D.: Bipolar query satisfaction using satisfaction and dissatisfaction degrees:
bipolar satisfaction degrees. In: Shin, S.Y., Ossowski, S. (eds.) SAC, pp. 1699–1703. ACM
(2009)

39. Medina, J.M., Pons, O., Miranda, M.A.V.: Gefred: a generalized model of fuzzy relational
databases. Inf. Sci. 76(1–2), 87–109 (1994)

40. Tahani, V.: A conceptual framework for fuzzy query processing: a step toward very intelligent
database systems. Inf. Proces. Manage. 13(5), 289–303 (1977)

41. Tudorie, C.: Qualifying objects in classical relational database querying. In: Galindo [28], pp.
218–245

4 Bipolarity in Database Querying: Various Aspects and Interpretations 91

42. Yager, R.: Higher structures in multi-criteria decision making. Int. J. Man Mach. Stud. 36,
553–570 (1992)

43. Yager, R.: Fuzzy logic in the formulation of decision functions from linguistic specifications.
Kybernetes 25(4), 119–130 (1996)

44. Zadeh, L.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)
45. Zadrożny, S.: Bipolar queries revisited. In: Torra, V., Narukawa, Y., Miyamoto, S. (eds.) Mod-

elling Decisions for Artificial Intelligence (MDAI 2005), LNAI, vol. 3558, pp. 387–398.
Springer, Berlin (2005)

46. Zadrożny, S., Kacprzyk, J.: Fuzzy querying using the ’query-by-example’ option in a windows-
based DBMS. In: Proceedings of Third European Congress on Intelligent Techniques and Soft
Computing EUFIT’95, vol. 2, pp. 733–736, Aachen, Germany (1995)

47. Zadrożny, S., Kacprzyk, J.: Multi-valued fields and values in fuzzy querying via FQUERY
for access. In: Proceedings of the Fifth International Conference on Fuzzy Systems (FUZZ-
IEEE’96), vol. 2, pp. 1351–1357, New Orleans, USA (1996)

48. Zadrożny, S., Kacprzyk, J.: Bipolar queries and queries with preferences. In: Proceeding of the
17th International Conference on Database and Expert Systems Applications (DEXA’06), pp.
415–419. IEEE Computer Society, Krakow, Poland (2006)

49. Zadrożny, S., Kacprzyk, J.: Bipolar queries using various interpretations of logical connectives.
In: Melin, P., Castillo, O., Aguilar, L., Kacprzyk, J., Pedrycz, W. (eds.) Foundations of Fuzzy
Logic and Soft Computing, Lecture Notes in Computer Science, pp. 181–190. Springer (2007)

50. Zadrożny, S., Kacprzyk, J.: Bipolar queries: an approach and its various interpretations. In: Car-
valho, J.P., Dubois, D., Kaymak, U., da Costa Sousa, J.M. (eds.) IFSA/EUSFLAT Conference,
pp. 1288–1293 (2009)

51. Zadrożny, S., Kacprzyk, J.: Issues in the practical use of the OWA operators in fuzzy querying.
J. Intel. Inf. Syst. 33(3), 307–325 (2009)

52. Zadrozny, S., Kacprzyk, J.: Bipolar queries: an aggregation operator focused perspective. Fuzzy
Sets Syst. 196, 69–81 (2012)

Part II
Ontology-based Data Access

Chapter 5
On the Top-k Retrieval Problem
for Ontology-Based Access to Databases

Umberto Straccia

Abstract The chapter is a succinct summary on the problem of evaluating ranked
top-k queries in the context of ontology-based access over relational databases. An
ontology layer is used to define the relevant abstract concepts and relations of the
application domain, while facts with associated score are stored into a relational data-
base. Queries are conjunctive queries with ranking aggregates and scoring functions.
The results of a query may be ranked according to the score and the problem is to
find efficiently the top-k ranked query answers.

1 Introduction

Managing uncertainty and fuzziness is starting to play an important role in Semantic
Web (SW) research, and has been recognised by a large number of research efforts
in this direction (see, e.g., [59, 62] for a concise overview).

We recall for the inexpert reader that there has been a long-lasting misunderstand-
ing in the literature of artificial intelligence and uncertainty modelling, regarding the
role of probability/possibility theory and vague/fuzzy theory. A clarifying chapter
is [21]. Specifically, under uncertainty theory fall all those approaches in which state-
ments rather than being either true or false, are true or false to some probability or
possibility (for example, “it will rain tomorrow”). That is, a statement is true or false
in any world/interpretation, but we are “uncertain” about which world to consider
as the right one, and thus we speak about e.g. a probability distribution or a pos-
sibility distribution over the worlds. On the other hand, under fuzzy theory fall all
those approaches in which statements (for example,“the hotel is cheap”) are true to
some degree, which is taken from a truth space (usually [0, 1]). That is, an interpre-
tation maps a statement to a truth degree, since we are unable to establish whether a

U. Straccia (B)

ISTI-CNR, Via G. Moruzzi 1, 56124 Pisa, PI, Italy
e-mail: straccia@isti.cnr.it

O. Pivert and S. Zadrożny (eds.), Flexible Approaches in Data, Information 95
and Knowledge Management, Studies in Computational Intelligence 497,
DOI: 10.1007/978-3-319-00954-4_5, © Springer International Publishing Switzerland 2014

96 U. Straccia

statement is entirely true or false due to the involvement of vague concepts, such as
“cheap” (we cannot always say whether a hotel is cheap or not). Here, we will focus
on fuzzy logic only.

In the SW, the standard Semantic Web Languages (SWLs) such as triple languages
RDF & RDFS [9], conceptual languages or frame-based languages of the OWL 2
family [43] and rule languages such as RIF [50] are playing a dominant role. It
also emerges that often in SW contexts, data are typically very large and dominate
the intentional level of the ontologies. Hence, in that case one could still accept
reasoning, specifically query answering, that is exponential on the intentional part,
but it is mandatory that reasoning and query answering is polynomial in the data size,
i.e. in data complexity [67].

In this chapter, we will briefly discuss a relatively novel issue for SWLs with a huge
data repository, namely the problem of evaluating ranked top-k queries. Usually, an
answer to a query is a set of tuples that satisfy a query. Each tuple does or does not
satisfy the predicates in the query. However, very often the information need of a user
involves so-called fuzzy predicates [32]. For instance, a user may need: “Find cheap
hotels near to the conference location”. Here, cheap and near are scoring predicates.
Unlike the classical case, tuples satisfy now these predicates to a degree. In the former
case the degree depends, e.g., on the price, while in the latter case it depends e.g. on
the distance between the hotel location and the conference location. Therefore, a
major problem we have to face with in such cases is that now an answer is a set
of tuples ranked according to their degree. This poses a non-negligible challenge in
case we have to deal with a huge amount of data records. Indeed, virtually every tuple
may satisfy a query with a non-zero degree and, thus, has to be ranked. Computing
all these degrees, ranking them and then selecting the top-k ones is not feasible in
practice for large size databases [32].

While there are many works addressing the top-k problem for vague queries in
databases (cf. [10, 14, 22, 23, 30, 31, 34, 35, 39]), little is known for the corre-
sponding problem in knowledge representation and reasoning and specifically for
SWLs. For instance, [68] considers non-recursive logic programs in which the score
combination function is a function of the score of the atoms in the body. The work
[55] considers non-recursive logic programs as well, though the score combination
function is more expressive and may consider so-called expensive fuzzy relations
(the score may depend on the value of an attribute, see [14]). However, a score com-
bination function is allowed in the query rule only. We point out that in the case
of non-recursive rules, we may rely on a query rewriting mechanism, which, given
an initial query, rewrites it, using rules and/or axioms of the KB, into a set of new
queries until no new query rule can be derived (this phase may require exponential
time relative to the size of the KB, but is polynomial in the size of the facts). The
obtained queries may then be submitted directly to a top-k retrieval database engine.
The answers to each query are then merged using the disjunctive threshold algo-
rithm (DTA) given in [55]. The works [54, 56, 58, 63] (see also [61]) address the
top-k retrieval problem for the description logic DL-Lite/DLR-Lite [7, 12], though
recursion is allowed among the axioms. Again, the score combination function may
consider expensive fuzzy relations. However, a score combination function is allowed

5 On the Top-k Retrieval Problem for Ontology-Based Access to Databases 97

in the query only. The work [60] shows an application of top-k retrieval to the case
of multimedia information retrieval by relying on a fuzzy variant of DLR-Lite. [57]
addresses the top-k retrieval for general (recursive) LPs and is closest to this work.
[37] slightly extends [57] as it allows also DLR-Lite axioms to occur and tries to
rely as much as possible on current top-k database technology. However, these two
works exhibits incorrect algorithms, which have been corrected in [64]. In this lat-
ter work, it is additionally shown that we can smoothly extend the top-k problem
to the top-k-n problem. This latter problem has been shown to be fundamental in
electronic Matchmaking [47, 48]. Moreno et al. [45] uses a threshold mechanism in
the query for reducing the amount of computation needed to answer a propositional
query in a tabulation-based procedure for propositional multi-adjoint logic programs
and, thus, does not address the top-k retrieval problem. Chortaras et al. and Damasio
et al. [15, 16, 18, 19] propose query answering procedures, which are based on
unification to compute answers, but do not address the top-k retrieval problem. It is
unclear yet whether unification-based query driven query answering procedures can
be combined with a threshold mechanism in such a way to compute top-k answers.

In this chapter, we will provide the basic notions and salient references to be
known concerning the top-k retrieval problem for Semantic Web languages.1

In the following, we will proceed as follows. We overview briefly SWLs and
relate them to their logical counterpart. Then, we briefly sketch a general frame-
work for ontology-based access to databases, the related top-k retrieval problem and
algorithmic solutions to this problem.

2 Semantic Web Languages: Overview

Semantic Web Languages (SWL) are standard languages used to provide a formal
description of concepts, terms, and relationships within a given knowledge domain.
There are essentially three family of languages: namely, triple languages RDF &
RDFS [9] (Resource Description Framework), conceptual languages of the OWL 2
family (Ontology Web Language) [43] and rule languages of the RIF family (Rule
Interchange Format) [50]. While their syntactic specification is based on XML [69],
their semantics is based on logical formalisms, which will be the focus here: briefly,

• RDFS is a logic having intensional semantics and the logical counterpart is
ρdf [41].
• OWL 2 is a family of languages that relate to Description Logics (DLs) [7].
• RIF relates to the Logic Programming (LP) paradigm [36].
• Both OWL 2 and RIF have an extensional semantics.

1 By purpose we will neglect the details of these works (including description of algorithms and
implementations).

98 U. Straccia

2.1 RDF and RDFS

The basic ingredients of RDF are triples, which are of the form

(s, p, o) ,

such as (umberto, likes, tomato), stating that subject s has property p with value
o. In RDF Schema (RDFS), which is an extension of RDF, additionally some spe-
cial keywords (subclass, subproperty, property domain and range and instance of
specifications) may be used as properties to further improve the expressivity of the
language. For instance we may also express that the class of ’tomatoes is a subclass
of the class of vegetables’, (tomato, sc, vegetables), while Zurich is an instance of
the class of cities, (zurich, type, ci ty).

From a computational point of view, one computes the so-called closure (denoted
cl(K)) of a set of triples K . That is, one infers all possible triples using inference
rules [40, 41, 49], such as

(A, sc, B), (X, type, A)

(X, type, B)

if A subclass of B and X instance of A then infer that X is instance of B,

and then store all inferred triples into a relational database to be used then for query-
ing. Note that making all implicit knowledge explicit is viable due to the low com-
plexity of the closure computation, which is O(|K |2) in the worst case.

2.2 OWL Family

The Web Ontology Language OWL [42] and its successor OWL 2 [17, 43] are “object
oriented” languages for defining and instantiating ontologies. An OWL ontology may
include descriptions of classes, properties and their instances, such as

class Person partial Human

restriction (hasName someValuesFrom String)

restriction (hasBirthPlace someValuesFrom Geoplace)

The class Person is a subclass of class Human and has two attributes: hasName having a
string as value, and hasBirthPlace whose value is an instance of the class Geoplace.

Given such an ontology, the OWL formal semantics specifies how to derive its logical
consequences. For example, if an individual Peter is an instance of the class Student,
and Student is a subclass of Person, then one can derive that Peter is also an instance
of Person in a similar way as it happens for RDFS. However, let us note that OWL

5 On the Top-k Retrieval Problem for Ontology-Based Access to Databases 99

is more expressive than RDFS, as the decision problems for OWL are in higher
complexity classes [46] than for RDFS.

OWL 2 [17, 43] is an update of OWL 1 adding several new features, including an
increased expressive power. OWL 2 also defines several OWL 2 profiles, i.e. OWL
2 language subsets that may better meet certain computational complexity require-
ments or may be easier to implement. The choice of which profile to use in practice
will depend on the structure of the ontologies and the reasoning tasks at hand. The
OWL 2 profiles are:

OWL 2 EL. It is particularly useful in applications employing ontologies that
contain very large numbers of properties and/or classes (basic reasoning prob-
lems can be performed in time that is polynomial with respect to the size of the
ontology [4]). The EL acronym reflects the profile’s basis in the E L family of
description logics [4].
OWL 2 QL. It is aimed at applications that use very large volumes of instance
data, and where query answering is the most important reasoning task. In OWL
2 QL, conjunctive query answering can be implemented using conventional rela-
tional database systems. Using a suitable reasoning technique, sound and com-
plete conjunctive query answering can be performed in LOGSPACE with respect
to the size of the data (assertions) [3, 13]. The QL acronym reflects the fact that
query answering in this profile can be implemented by rewriting queries into a
standard relational Query Language such as SQL [66].
OWL 2 RL. It is aimed at applications that require scalable reasoning with-
out sacrificing too much expressive power. OWL 2 RL reasoning systems can be
implemented using rule-based reasoning engines as a mapping to Logic Program-
ming [36], specifically Datalog [66], exists. The RL acronym reflects the fact that
reasoning in this profile can be implemented using a standard rule language [24].
The computational complexity is the same as for Datalog [20] (polynomial in the
size of the data, EXPTIME w.r.t. the size of the knowledge base).

2.3 RIF Family

The Rule Interchange Format (RIF) aims at becoming a standard for exchanging
rules, such as

Forall?Buyer ?Item ?Seller

buy(?Buyer ?Item ?Seller): −sell(?Seller ?Item ?Buyer)

Someone buys an item from a seller if the seller sells that item to the buyer

among rule systems, in particular among Web rule engines. RIF is in fact a family
of languages, called dialects, among which the most significant are:

100 U. Straccia

RIF-BLD. The Basic Logic Dialect is the main logic-based dialect. Techni-
cally, this dialect corresponds to Horn logic with various syntactic and semantic
extensions. The main syntactic extensions include the frame syntax and predi-
cates with named arguments. The main semantic extensions include datatypes
and externally defined predicates.
RIF-PRD. The Production Rule Dialect aims at capturing the main aspects of
various production rule systems. Production rules, as they are currently practiced
in mainstream systems like Jess2 or JRules,3 are defined using ad hoc computa-
tional mechanisms, which are not based on a logic. For this reason, RIF-PRD is
not part of the suite of logical RIF dialects and stands apart from them. However,
significant effort has been extended to ensure as much sharing with the other
dialects as possible. This sharing was the main reason for the development of the
RIF Core dialect;
RIF-Core. The Core Dialect is a subset of both RIF-BLD and RIF-PRD, thus
enabling limited rule exchange between logic rule dialects and production rules.
RIF-Core corresponds to Horn logic without function symbols (i.e., Datalog)
with a number of extensions to support features such as objects and frames as in
F-logic [33].
RIF-FLD. The Framework for Logic Dialects is not a dialect in its own right,
but rather a general logical extensibility framework. It was introduced in order
to drastically lower the amount of effort needed to define and verify new logic
dialects that extend the capabilities of RIF-BLD.

3 Ontology-Based Databases

We illustrate here a simple, though general enough framework to present the top-k
retrieval problem for the various SWLs sketched in the previous section.

To start with, the scoring space is the set (n positive integer)

Ln =
{

0,
1

n
, . . . ,

n − 2

n − 1
, 1

}

.

Then a Knowledge Base (KB) K = 〈F ,O,M 〉 consists of a facts component F ,
an Ontology component O and an mapping component M , which are defined below.
Informally, the facts component is the relational database in which the extensional
data is stored, the ontology component is the intentional level and describes the
important relations about the world we are modelling and the mapping component
defines the bridge between the low-level database schema vocabulary and the abstract
ontology vocabulary. While the facts and mapping component is syntactically equal
for all SWLs, the ontology component is language dependent. The same applies for

2 http://www.jessrules.com/
3 http://www.ilog.com/products/jrules/

http://www.jessrules.com/
http://www.ilog.com/products/jrules/

5 On the Top-k Retrieval Problem for Ontology-Based Access to Databases 101

the query language. It is also assumed that relations occurring in F do not occur in
O (so, we do not allow that database relation names occur in O).

3.1 The Facts Layer

F is a finite set of expressions of the form

R(c1, . . . , cn) : s ,

where R is an n-ary relation, every ci is a constant, and s is a degree in Ln .
For each relation R, we represent the facts R(c1, . . . , cn) : s in F by means of a

relational n+ 1-ary table TR , containing the records 〈c1, . . . , cn, s〉. We assume that
there cannot be two records 〈c1, . . . , cn, s1〉 and 〈c1, . . . , cn, s2〉 in TR with s1 �= s2
(if there are, then we remove the one with the lower degree). Each table is sorted
in descending order with respect to the degrees. For ease, we may omit the degree
component and in such case the value 1 is assumed.

3.2 The Mapping Layer

The mapping component is a set of “mapping statements” that allow to connect
classes and properties to physical relational tables. Essentially, this component is
used as a wrapper to the underlying database and, thus, prevents that relational table
names occur in the ontology. Formally, a mapping statement (see [63]) is of the form

R �→ (c1, . . . , cn) : cscore.sql ,

where sql is a SQL statement returning n-ary tuples 〈c1, . . . , cn〉 (n = 1, 2) with
score determined by the cscore column. The tuples have to be ranked in decreasing
order of score and, as for the fact component, we assume that there cannot be two
records 〈c, s1〉 and 〈c, s2〉 in the result set of sql with s1 �= s2 (if there are, then we
remove the one with the lower score). The score cscore may be omitted and in that
case the score 1 is assumed for the tuples. We assume that R occurs in O , while all
of the relational tables occurring in the SQL statement occur in F .

3.3 An RDFS Ontology Layer

The ontology component is used to define the relevant abstract concepts and relations
of the application domain by means of axioms and defines the so-called intentional
level. To what concerns us here, we will consider the essential features of RDFS only

102 U. Straccia

and follow [25, 40, 41] by considering the “core” part of RDFS, called ρdf [41] (read
rho-df, the ρ from restricted RDF). Specifically, O is a finite set of axioms having
the form

(s, p, o) ,

where p is a property that may belong to ρdf−:

ρdf− = ρdf \ {type} = {sp, sc, dom, range} ,

The keywords in ρdf− may be used in triples as properties. Informally,

• (p, sp, q) means that property p is a sub-property of property q;
• (c, sc, d) means that class c is a subclass of class d;
• (p, dom, c) means that the domain of property p is c; and
• (p, range, c) means that the range of property p is c.

Note that we don’t allow the use of ρdf triples of the form (a, type, b) with meaning
“a is of type b“ in the intentional level.

3.4 An OWL 2 Ontology Layer

The OWL 2 ontology layer O consists of a finite set of OWL 2 class and property
axioms (see, [43]) of the form

C � D

R � P

where C, D are OWL 2 classes (concepts) and R and P are OWL 2 properties . The
intuition of an axiom of the form C � D (resp. R � P) is that any instance of
class C (resp. role R) is an instance of class D (resp. P) as well. For computational
reasons (to have a query answering procedure that is worst case polynomial), we will
consider here specifically the case of the logical counterpart of the three main OWL
2 profiles, namely OWL 2 EL, OWL 2 QL and OWL 2 RL only.

3.4.1 The Case of OWL 2 EL

The importance of the E L DL family [4, 6, 26] is due to the fact that it is the logical
counterpart of the OWL 2 EL profile [44], i.e. OWL 2 EL constructs can be mapped
into the DL E L ++(d). We recall that it enables polynomial time algorithms for all

5 On the Top-k Retrieval Problem for Ontology-Based Access to Databases 103

the standard reasoning tasks4 and, thus, it is particularly suitable for applications
where very large ontologies are needed.

For illustrative purposes, we consider here the following sublanguage of
E L ++(d) together with its FOL reading [4–6]:

Concept expressions FOL-reading
A A(x)

C � D C(x) ∧ D(x)

∃R.C ∃y.R(x, y) ∧ C(x)

Axioms FOL-reading
C � D ∀x .C(x)⇒ D(x)

R1 ◦ R2 � R ∀x∀y∀z.R1(x, z) ∧ R2(z, y)⇒ R(x, y)

dom(R) � C ∀x .R(x, y)⇒ C(x)

ran(R) � C ∀y.R(x, y)⇒ C(y)

ref(R) ∀x .R(x, x).

3.4.2 The Case of OWL 2 QL

The importance of the DL-Lite DL family [3, 11–13] is due to the fact that it is the
logical counterpart of the OWL 2 QL profile [44], i.e.OWL 2 QL constructs can be
mapped into the DL DL-LiteR(d), which, we recall, was designed so that sound and
complete query answering is in LOGSPACE (more precisely, in AC0) with respect to
the size of the data, while providing many of the main features necessary to express
conceptual models such as UML class diagrams and ER diagrams.

We next recap succinctly the DL-Lite DL family [13]. We start with the language
DL-Litecore that is the core language for the whole family. Concepts and roles are
formed according to the following syntax (A is an atomic concept, P is an atomic
role and P− is its inverse):5

B −→ A | ∃R
C −→ B | ¬B
R −→ P | P−
E −→ R | ¬R .

B denotes a basic concept, that is, a concept that can be either an atomic concept or
a concept of the form ∃R, where R denotes a basic role, that is, a role that is either
an atomic role or the inverse of an atomic role. C denotes a concept, which can be
a basic concept or its negation, whereas E denotes a role, which can be a basic role
or its negation. Sometimes we write ¬C (resp., ¬E) with the intended meaning that

4 That is, the ontology satisfiability problem, the subsumption problem and the instance checking
problem.
5 The FOL-reading of concept ∃R is: set of x such that ∃y.R(x, y).

104 U. Straccia

¬C = ¬A if C = A (resp., ¬E = ¬R if E = R), and ¬C = A, if C = ¬A (resp.,
¬E = R, if E = ¬R).6

Inclusion axioms are of the form

B � C

We might include B1 � B2 (FOL-reading: set of x such that B1(x) ∨ B2(x)) in the
constructs for the left-hand side of inclusion axioms and C1 � C2 in the constructs
for the right-hand side. In this way, however, we would not extend the expressive
capabilities of the language, since these constructs can be simulated by considering
that B1 � B2 � C is equivalent to the pair of assertions B1 � C and B2 � C , and
that B � C1 �C2 is equivalent to B1 � C1 and B � C2. Similarly, we might add ⊥
to the constructs for the left-hand side and � to those for the right-hand side.

Eventually, DL-LiteR is now obtained by extending DL-Litecore with the ability
of specifying inclusion axioms between roles of the form

R � E .

where R and E are defined as above.

3.4.3 The Case of OWL 2 RL

The importance of the Horn-DL family [24, 65] is due to the fact that it is the
logical counterpart of the OWL 2 RL profile [44], i.e.OWL 2 RL constructs can be
mapped into Horn-DL. This is achieved by defining a syntactic subset of OWL 2,
which is amenable to implementation using rule-based technologies. Essentially, the
restrictions are designed so as to avoid the need to infer the existence of individuals not
explicitly present in the knowledge base, and to avoid the need for nondeterministic
reasoning. Here we report a subset of the DL specification of OWL 2 RL. Specifically,
concepts are formed according to the following syntax (the FOL-reading of concept
∀R.C is: set of x such that ∀y.R(x, y)⇒ C(y)):

B −→ A | B1 � B2 | B1 � B2 | ∃R.B
C −→ A | C1 � C2 | ¬B | ∀R.C |
R −→ P | P−

Inclusion axioms have the form

6 Of course, for any interpretation I , (¬R)I = �I ×�I \ RI .

5 On the Top-k Retrieval Problem for Ontology-Based Access to Databases 105

B � C
R1 � R2
R1 = R2
dom(R) � C
ran(R) � C
R ◦ R � R.

3.5 A RIF Ontology Layer

A RIF ontology layer O consists of a finite set of RIF rules. For illustrative purposes,
we consider here RIF-Core rules only and recall that RIF-Core corresponds to Horn
logic without function symbols (i.e., Datalog [66]) with a number of extensions to
support features such as objects and frames as in F-logic [33]. To what concerns us,
a rule is of the form

p(x)← ∃y.ϕ(x, y),

where ϕ(x, y) is a conjunction7 of n-ary predicates pi (zi) and zi is a vector of
distinguished or non-distinguished variables. Specifically, we say that p(x) is the
head and ∃y.ϕ(x, y) is the body of the rule, x is a vector of variables occurring in the
body, called the distinguished variables, y are so-called non-distinguished variables
and are distinct from the variables in x, each variable occurring in pi is either a
distinguished or a non-distinguished variable. If clear from the context, we may omit
the existential quantification ∃y. The intended meaning of a rule such as (3.5) is that
the head p(x) is true whenever the body ∃y.ϕ(x, y) is true.

4 Top-k Queries

Having defined how extensional data (a database) and intentional data (an ontology)
may be represented, it remains to define how we may query the data. To this end, we
define the notion of conjunctive query, which is at the heart of the standard Semantic
Web query language SPARQL [52, 53]. Strictly speaking, SPARQL is a query
language for data that is stored natively as RDFS or viewed as RDF via middleware.
From a logical point of view, its logical counterpart are the well-known notions of
conjunctive/disjunctive queries. As such, we may see SPARQL essentially as a query
language for databases and, indeed, has much in common with SQL.

While SPARQL has originally been proposed to query RDFS graphs only, in the
meanwhile, by relying on the representation of OWL and RIF in RDFS, SPARQL
is being used to query OWL 2 and RIF ontologies as well, via the definition of
the so-called entailment regimes. In fact, what correct answers to a SPARQL query

7 We use the symbol ‘,’ to denote conjunction in the rule body.

http://dx.doi.org/10.1007/978-3-319-00954-4_3

106 U. Straccia

are depends on the used entailment regime [51] and the vocabulary from which the
resulting answers can be taken.

To what concerns our presentation here, we will consider the essential logical
counterpart of SPARQL: namely, conjunctive queries. Specifically, a simple query
is of the rule-like form

q(x)← ∃y.ϕ(x, y)

whereϕ(x, y) is a conjunction of atoms whose notion is SWL dependent. Specifically,
For RDFS, an atom is a triple in which variables and constants may occur; for OWL
2, an atom is n-ary FOL atom (n = 1, 2) in which variables and constants may occur;
while for RIF, an atom is an n-ary FOL atom in which variables and constants may
occur.

We additionally allow built-in atoms involving build-in predicates (properties)
having a fixed interpretation. For instance, an RDFS query is

q(x1, x2)← (x, works For , google), (x, hasSalary, s), (s,<, 23000)

and is asking for Google employees earning less than 23000. Here < is a build-in
predicate.

For convenience, we write “functional built-in predicates”8 as assignments of the
form x : = f (z).

As next, we extend the query language by allowing so-called aggregates to occur
in a query. Essentially, aggregates may be like the usual SQL aggregate functions
such as SUM, AVG, MAX, MIN.

For instance, suppose we are looking for employees that work for some company.
We would like to know the average salary of their employment. Such a query may
be expressed as

q(x, avgS)← (x, works For , y), (x, hasSalary, s),
GroupedBy(x),

avgS : =AVG[s] .

Essentially, we group by the employee, consider for each employee the salaries, and
compute the average salary value for each group. That is, if g = {〈t, t1〉, . . . , 〈t, tn〉}
is a group of tuples with the same value t for employee x , and value ti for s, then the
value of avgL for the group g is (

∑
i ti)/n.

Formally, let @ be an aggregate function with

@ ∈ {SUM, AVG, MAX, MIN, COUNT}

then a query with aggregates is of the form

8 A predicate p(x, y) is functional if for any t there is unique t ′ for which p(t, t ′) is true.

5 On the Top-k Retrieval Problem for Ontology-Based Access to Databases 107

q(x,α)← ∃y.ϕ(x, y),

GroupedBy(w),

α : =@[f (z)]
(1)

where w are variables in x or y, each variable in x occurs in w and any variable in z
occurs in y.

Eventually, we further allow to order answers according to some ordering func-
tions. For instance, assume that additionally we would like to order the employee
according to the average salary of employment. Then such a query will be expressed
as

q(x, avgS)← (x, works For , y), (x, hasSalary, s),
GroupedBy(x),

avgS : =AVG[s],
OrderBy(avgS) .

Formally, a query with ordering is of the form

q(x, z)← ∃y.ϕ(x, y), OrderBy(z)

or, in case grouping is allowed as well, it is of the form

q(x, z,α)← ∃y.ϕ(x, y),

GroupedBy(w),

α : =@[f (z)],
OrderBy(z) .

(2)

Eventually, we define a top-k query as a query limiting the result to the top-k
scoring answers, i.e.

q(x, z,α)← ∃y.ϕ(x, y),

GroupedBy(w),

α : =@[f (z)],
OrderBy(z),
Limit(k)

(3)

We refer the reader to e.g. [2] for an exact formal definition in case of RDFS, to [63]
for the case of OWL 2 and to [64] for the case of RIF.

5 Top-k Query Answering Methods

Having now illustrated what a top-k query is, it remains to illustrate the basic methods
in computing the top-k answers efficiently. The methods depend on the chosen SWL.
In the following, let K = 〈F ,O,M 〉 be a KB.

108 U. Straccia

5.1 The RDFS Case

So far, we have here essentially two options. The first option is as follows.

1. Convert all facts in F into a set TF of triples, by using the mapping layer M .
Consequently, K = 〈F ,O,M 〉 can be mapped into a pure RDFS triple set

TK = O ∪ TF ,

called RDFS graph, which has the same order of size.
2. Given TK , we then compute its closure cl(TK), whose size is bounded by

O(|TK |2) and store it into a relational database. Note that there are several ways
to store the closure in a database (see [1, 28]). Essentially, either we may store
all the triples in table with four columns subject, predicate, object, score, or we
use a table for each predicate, where each table has columns subject, object,
score. The latter approach seems to be better for query answering purposes.
Top-k query answering for RDFS reduces then to top-k query answering over
relational databases for which efficient solutions exists already.

Another option consists in using top-k retrieval technologies for rule-based KBs and
is defined as follows.

1. Compute the closure cl(O) of O .
2. Map all the triples in cl(O) into Datalog rules using e.g. the mapping rules below

(see also e.g. [27–29])

(p, sp, q) �→ q(x)← p(x)

(c, sc, d) �→ d(x)← c(x)

(p, dom, c) �→ c(x)← p(x, y)

(p, range, c) �→ c(y)← p(x, y).

obtaining the rule layer OK . Let K ′ = 〈F ,OK ,M 〉 be the resulting rule-
based KB.

3. Apply a top-k procedure for rule-based KBs to K ′ (see, e.g. [64] and Sect. 5.3).

5.2 The OWL 2 Profile Cases

5.2.1 OWL EL

An option consists in relying on the query reformulation method proposed in [38]
to answer conjunctive queries by making use of standard relational database man-
agement systems (RDBMSs), and has some commonalities to the OWL QL case

5 On the Top-k Retrieval Problem for Ontology-Based Access to Databases 109

(next section). The central idea is to incorporate the consequences of O into the facts
component F .

To capture this formally, the notion of combined first-order (FO) rewritability
has been introduced. A DL enjoys combined FO rewritability if it is possible to
effectively rewrite

1. F and O into an FO structure (independently of the query q); and
2. q and (possibly) O into a FO query q ′ (independently of F) such that query

answers are preserved, i.e., the answers to q ′ over the FO structure is the same
as the answers to q over F and O .

The connection to RDBMSs then relies on the well-known equivalence between FO
structures and relational databases, and FO queries and SQL queries. The notion
of combined FO rewritability generalises the notion of FO reducibility, where O is
incorporated into the query q rather than into F , as it happens for the OWL QL
case, while the facts component F itself is used as a relational instance without any
modification [13].

Hence, a top-k query answering procedure for OWL EL may consists of

1. rewriting, once for all, F and O , using M , into an relational database DBK ;
2. rewriting a top-k query q using (possibly) O and M into a top-k SQL query to

be submitted to the RDBMS containing DBK .

5.2.2 OWL QL

The OWL QL case proceeds similarly as for the OWL EL case, as DL-Lite [3, 13]
enjoys the FO reducibility property. Specifically, a top-k query answering procedure
for OWL QL may consists of (see [63]) rewriting a top-k query q using (possibly)
O and M into a top-k SQL query to be submitted to the RDBMS containing DBK .

5.2.3 OWL RL

Concerning OWL RL, we employ the close connection between Horn-DL and Dat-
alog. Specifically, an option to compute the top-k answers consist in using top-k
retrieval technologies for rule-based KBs. To this end, we now define a recursive
mapping function σ which takes a set of inclusion axioms and maps them into the
following expressions:9

9 For the sake of ease of presentation, we are not going to present the whole mapping for Horn-DL,
but for a significant subset only that is sufficient to illustrate the main idea behind this translation.

110 U. Straccia

σ(R1 � R2) �→ σrole(R2, x, y)← σrole(R1, x, y)

σrole(R, x, y) �→ R(x, y)

σr (R−, x, y) �→ R(y, x)

σ(B � C) �→ σh(C, x)← σb(B)

σh(A, x) �→ A(x)

σh(C1 � C2, x) �→ σh(C1, x) ∧ σh(C2, x)

σh(∀R.C, x) �→ σh(C, x)← σrole(R, x, y)

σb(A, x) �→ A(x)

σb(C1 � C2, x) �→ σb(C1, x) ∧ σb(C2, x)

σb(C1 � C2, x) �→ σb(C1, x) ∨ σb(C2, x)

σb(∃R.C, x) �→ σrole(R, x, y) ∧ σb(C, y)

where y is a new variable.
We then transform the above generated expressions into rules by applying recur-

sively the following mapping:

σr ((H ∧ H ′)← B) �→ σr (H ← B),σr (H ′ ← B)

σr ((H ← H ′)← B) �→ σr (H ← (B ∧ H ′))
σr (H ← (B1 ∨ B2)) �→ σr (H ← B1),σr (H ← B2)

Eventually, if none of the above three rules can be applied then

σr (H ← B) �→ H ← B .

Therefore, a top-k retrieval method of OWL RL is as follows:

1. Map O into Datalog rules using e.g. the mapping rules above obtaining the rule
layer OK . Let K ′ = 〈F ,OK ,M 〉 be the resulting rule-based KB.

2. Apply a top-k procedure for rule-based KBs to K ′ (see, e.g. [64] and Sect. 5.3).

5.3 The RIF case

Concerning the RIF case, by exploiting the relationship to Datalog (specifically of
RIF-Core), we may opt for a solution inherited from the logic programming context.
We have already reported in Sect. 1 about various proposal developed so far. We
recap here the main principle behind the so far most general approach [64].

The basic reasoning idea stems from the database literature (see, e.g. [35]) and con-
sists in retrieving iteratively query answers and simultaneously computing a threshold

5 On the Top-k Retrieval Problem for Ontology-Based Access to Databases 111

δ. The threshold δ has the fundamental property that any newly retrieved tuple will
have a score less or equal than δ. As a consequence, as soon as we have retrieved k
tuples greater or equal to δ, we may stop. Note that a distinguishing feature of this
query answering procedure is that it does not determine all answers, but collects,
during the computation, answers incrementally together and stops as soon as it has
gathered k answers greater or equal than a computed threshold δ. The finiteness of
the truth space guarantees the termination of this process, which otherwise may not
terminate.

6 Conclusions

In this work, we briefly discussed about a relatively novel issue for SWLs with a
huge data repository, namely the problem of evaluating ranked top-k queries. We
have illustrated how this problem may be currently approached within the context of
RDFS (the triple language), OWL 2 Profiles (frame-based languages) and RIF (rule
language).

While for relational databases a non negligible amount of solutions have been
proposed so far, in the context of knowledge representation and reasoning, the devel-
opment is still in its infancy, both from an algorithmic and implementation point of
view. So far, for the languages RDFS, OWL QL, OWL EL and RIF ad hoc solution
have been worked out, while for OWL RL a reduction to RIF is required. Note that
for RDFS and OWL QL, a reduction to RIF exists as well and, thus, top-k techniques
for this latter can be applied.

We believe that with the growth in size of data repositories accessible via SWLs,
the top-k retrieval problem will emerge as a significant problem, as much as the top-k
retrieval problem is for current Information Retrieval Systems [8].

References

1. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.: Sw-store: a vertically partitioned dbms
for semantic web data management. VLDB J. 18(2), 385–406 (2009)

2. Zimmermann, A.P.A., Lopes, N., Straccia, U.: A general framework for representing, reasoning
and querying with annotated semantic web data. J. Web Semant. 11, 72–95 (March 2012)

3. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and rela-
tions. J. Artif. Intell. Res. 36, 1–69 (2009)

4. Baader, F., Brandt, S., Lutz, C.: Pushing the E L envelope. In: Proceedings of the 19th Inter-
national Joint Conference on Artificial Intelligence IJCAI-05, pp. 364–369, Edinburgh, UK.
Morgan-Kaufmann Publishers, San Francisco (2005)

5. Baader, F.: Terminological cycles in a description logic with existential restrictions. In: Pro-
ceedings of the 18th International Joint Conference on Artificial intelligence, pp. 325–330.
Morgan Kaufmann, San Francisco (2003)

112 U. Straccia

6. Baader, F., Brandt S., Lutz, C.: Pushing the E L envelope further. In: Clark, K., Patel-Schneider,
P.F. (eds.) Proceedings of the OWLED 2008 DC Workshop on OWL: Experiences and Direc-
tions (2008)

7. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.). The Descrip-
tion Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press,
Cambridge (2003)

8. Baeza-Yates, R.A., Ribeiro-Neto, B.: Modern Information Retrieval. Addison-Wesley Long-
man, Boston (1999)

9. Brickley, D., Guha, R.V.: RDF vocabulary description language 1.0: RDF schema. In: W3C
Recommendation, W3C (2004). http://www.w3.org/TR/rdf-schema/

10. Bruno, N., Chaudhuri, S., Gravano, L.: Top-k selection queries over relational databases: map-
ping strategies and performance evaluation. ACM Trans. Database Syst. 27(2), 153–187 (2002)

11. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: tractable
description logics for ontologies. In: Proceedings of the 20th National Conference on Artificial
Intelligence (AAAI 2005) (2005)

12. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Data complexity of
query answering in description logics. In: Proceedings of the 10th International Conference on
Principles of Knowledge Representation and Reasoning (KR-06), pp. 260–270 (2006)

13. Calvanese, D., Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and
efficient query answering in description logics: the dl-lite family. J. Autom. Reasoning 39(3),
385–429 (2007)

14. Chang, K.C.-C., won Hwang, S.: Minimal probing: supporting expensive predicates for top-k
queries. In: Proceedings of the SIGMOD Conference, pp. 346–357 (2002)

15. Chortaras, A., Stamou, G.B., Stafylopatis, A.: Integrated query answering with weighted
fuzzy rules. In: Proceedings of the 9th European Conference on Symbolic and Quantitative
Approaches to Reasoning with Uncertainty (ECSQARU-07), vol. 4724 in Lecture Notes in
Computer Science, pp. 767–778. Springer (2007)

16. Chortaras, A., Stamou, G.B., Stafylopatis, A.: Top-down computation of the semantics of
weighted fuzzy logic programs. In: Proceedings of the 1st International Conference on Web
Reasoning and Rule Systems (RR-07), pp. 364–366 (2007)

17. Cuenca-Grau, B., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P.F., Sattler, U.: OWL
2: the next step for OWL. J. Web Semant. 6(4), 309–322 (2008)

18. Damásio, C.V., Medina, M., Ojeda-Aciego, J.: A tabulation procedure for first-order residuated
logic programs. In: Proceedings of the IEEE World Congress on Computational Intelligence
(Sect. Fuzzy Systems) (WCCI-06), pp. 9576–9583 (2006)

19. Damásio, C.V., Medina, M., Ojeda-Aciego, J.: A tabulation procedure for first-order residuated
logic programs. In: Proceedings of the 11th International Conference on Information Processing
and Managment of Uncertainty in Knowledge-Based Systems, (IPMU-06) (2006)

20. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic
programming. ACM Comput. Surv. 33(3), 374–425 (2001)

21. Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued logics: a
clarification. Ann. Math. Artif. Intell. 32(1–4), 35–66 (2001)

22. Fagin, R.: Combining fuzzy information: an overview. SIGMOD Rec. 31(2), 109–118 (2002)
23. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: Symposium

on Principles of Database Systems (2001)
24. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining logic

programs with description logic. In: Proceedings of the 12th International Conference on World
Wide Web, pp. 48–57. ACM Press (2003)

25. Gutierrez, C., Hurtado, C., Mendelzon, A.O.: Foundations of semantic web databases. In: Pro-
ceedings of the 23rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems (PODS-04). ACM Press (2004)

26. Haase, C., Lutz, C.: Complexity of subsumption in the E L family of description logics:
acyclic and cyclic tboxes. In: Ghallab, M., Spyropoulos, C.D., Fakotakis, N., Avouris, N. (eds.)
Proceedings of the 18th European Conference on Artificial Intelligence (ECAI08), vol. 178 of
Frontiers in Artificial Intelligence and Applications, pp. 25–29. IOS Press (2008)

http://www.w3.org/TR/rdf-schema/

5 On the Top-k Retrieval Problem for Ontology-Based Access to Databases 113

27. Ianni, G., Krennwallner, T., Martello, A., Polleres, A.: Dynamic querying of mass-storage RDF
data with rule-based entailment regimes. In: Proceedings of the 8th International Semantic
Web Conference (ISWC-09), vol. 5823 in Lecture Notes in Computer Science, pp. 310–327.
Springer (2009)

28. Ianni, G., Krennwallner, T., Martello, A., Polleres, A.: A rule system for querying persistent
rdfs data. In: Proceedings of the 6th European Semantic Web Conference on Semantic Web:
Research and Applications (ESWC-2009), pp. 857–862 (2009)

29. Ianni, G., Krennwallner, T., Martello, A., Polleres, A.: A rule system for querying persistent rdfs
data. In: Aroyo, L., Traverso, P., Ciravegna, F., Cimiano, P., Heath, T., Hyvönen, E., Mizoguchi,
R., Oren, E., Sabou, M., Simperl, E.P.B. (eds.) ESWC, vol. 5554 of Lecture Notes in Computer
Science, pp. 857–862. Springer (2009)

30. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K.: Supporting top-k join queries in relational databases.
In: Proceedings of the 29th International Conference on Very Large Data, Bases (VLDB-03),
pp. 754–765 (2003)

31. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K., Elmongui, H.G., Shah, R., Vitter, J.S.: Adaptive rank-
aware query optimization in relational databases. ACM Trans. Database Syst. 31(4), 1257–1304
(2006)

32. Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top-k query processing techniques in
relational database systems. ACM Comput. Surv. 40(4), 1–58 (2008)

33. Kifer, M., Lausen, G.: Logical foundations of object-oriented and frame-based languages. J.
ACM 42(4), 741–843 (1995)

34. Li, C., Chang, K.C.-C., Ilyas, I.F.: Supporting ad-hoc ranking aggregates. In: Proceedings of
the 2006 ACM SIGMOD International Conference on Management of Data (SIGMOD-06),
pp. 61–72. ACM Press, New York (2006)

35. Li, C., Chang, K.C.-C., Ilyas, I.F., Song, S.: RankSQL: query algebra and optimization for
relational top-k queries. In: Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data (SIGMOD-05), pp. 131–142. ACM Press, New York (2005)

36. Lloyd, J.W.: Foundations of Logic Programming. Springer, Heidelberg (1987)
37. Lukasiewicz, T., Straccia, U.: Top-k retrieval in description logic programs under vagueness for

the semantic web. In: Proceedings of the 1st International Conference on Scalable Uncertainty
Management (SUM-07), vol. 4772 in Lecture Notes in Computer Science, pp. 16–30. Springer
(2007)

38. Lutz, C., Toman, D., Wolter, F.: Conjunctive query answering in the description logic E L
using a relational database system. In: Proceedings of the 21st International Joint Conference
on Artificial Intelligence (IJCAI09). AAAI Press (2009)

39. Marian, A., Bruno, N., Gravano, L.: Evaluating top-k queries over web-accessible databases.
ACM Trans. Database Syst. 29(2), 319–362 (2004)

40. Marin, D.: A formalization of rdf. Technical report TR/DCC-2006-8, Deptartment of Computer
Science, Universidad de Chile (2004). http://www.dcc.uchile.cl/cgutierr/ftp/draltan.pdf

41. Muñoz, S., Pérez, J., Gutiérrez, C.: Minimal deductive systems for rdf. In: Proceedings of the
4th European Semantic Web Conference (ESWC-07), vol. 4519 in Lecture Notes in Computer
Science, pp. 53–67. Springer (2007)

42. OWL web ontology language overview. In: W3C (2004). http://www.w3.org/TR/owl-features/
43. OWL 2 web ontology language document overview. In: W3C (2009). http://www.w3.org/TR/

2009/REC-owl2-overview-20091027/
44. OWL 2 web ontology language profiles. In: W3C (2009). http://www.w3.org/TR/2009/REC-

owl2-profiles-20091027/
45. Moreno, G., Julian, P., Medina, J., Ojeda, M.: Efficient thresholded tabulation for fuzzy query

answering. In: Foundations of Reasoning Under Uncertainty, vol. 249 in Studies in Fuzziness
and Soft Computing, pp. 125–141. Springer (2010)

46. Papadimitriou, C.H.: Computational Complexity. Addison Wesley, Reading (1994)
47. Ragone, A., Straccia, U., Di Noia, T., Di Sciascio, E., Donini, F.M.: Vague knowledge bases for

matchmaking in p2p e-marketplaces. In: Proceedings of the 4th European Semantic Web Con-
ference (ESWC-07), vol. 4519 in Lecture Notes in Computer Science, pp. 414–428. Springer
(2007)

http://www.dcc.uchile.cl/cgutierr/ftp/draltan.pdf
http://www.w3.org/TR/owl-features/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/
http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/
http://www.w3.org/TR/2009/REC-owl2-profiles-20091027/

114 U. Straccia

48. Ragone, A., Straccia, U., Di Noia, T., Di Sciascio, E., Donini, F.M.: Fuzzy matchmaking in
e-marketplaces of peer entities using Datalog. Fuzzy Sets Syst. 160(2), 251–268 (2009)

49. RDF semantics. In: W3C (2004). http://www.w3.org/TR/rdf-mt/
50. Rule interchange format (RIF). In: W3C (2011). http://www.w3.org/2001/sw/wiki/RIF
51. SPARQL 1.1 entailment regimes. In: W3C (2011). http://www.w3.org/TR/2011/WD-

sparql11-entailment-20110512/
52. SPARQL 1.1 query language. In: W3C (2012). http://www.w3.org/TR/sparql11-query/
53. SPARQL query language for RDF. In: W3C (2008). http://www.w3.org/TR/rdf-sparql-query/
54. Straccia, U.: Answering vague queries in fuzzy DL-Lite. In: Proceedings of the 11th Interna-

tional Conference on Information Processing and Managment of Uncertainty in Knowledge-
Based Systems, (IPMU-06), pp. 2238–2245. E.D.K., Paris (2006)

55. Straccia, U.:. Towards top-k query answering in deductive databases. In: Proceedings of the
2006 IEEE International Conference on Systems, Man and Cybernetics (SMC-06), pp. 4873–
4879. IEEE (2006)

56. Straccia, U.: Towards top-k query answering in description logics: the case of DL-Lite. In:
Proceedings of the 10th European Conference on Logics in Artificial Intelligence (JELIA-06),
vol. 4160 in Lecture Notes in Computer Science, pp. 439–451, Liverpool, UK. Springer (2006)

57. Straccia, U.: Towards vague query answering in logic programming for logic-based information
retrieval. In: Proceedings of World Congress of the International Fuzzy Systems Association
(IFSA-07), vol. 4529 in Lecture Notes in Computer Science, pp. 125–134, Cancun, Mexico.
Springer (2007)

58. Straccia, U.: Fuzzy description logic programs. In: Marsala, C., Bouchon-Meunier, B., Yager,
R.R., Rifqi, M. (eds.) Uncertainty and Intelligent Information Systems, Chap. 29, pp. 405–418.
World Scientific, Singapore (2008)

59. Straccia, U.: Managing uncertainty and vagueness in description logics, logic programs and
description logic programs. In: Proceedings of 4th International Summer School, Tutorial
Lectures on Reasoning Web, vol. 5224 in Lecture Notes in Computer Science, pp. 54–103.
Springer (2008)

60. Straccia, U.: An ontology mediated multimedia information retrieval system. In: Proceedings
of the 40th International Symposium on Multiple-Valued Logic (ISMVL-10), pp. 319–324.
IEEE Computer Society (2010)

61. Straccia, U.: Softfacts: a top-k retrieval engine for ontology mediated access to relational
databases. In: Proceedings of the 2010 IEEE International Conference on Systems, Man and
Cybernetics (SMC-10), pp. 4115–4122. IEEE Press (2010)

62. Straccia, U.: Fuzzy logic, annotation domains and semantic web languages. In: Proceedings of
the 5th International Conference on Scalable Uncertainty Management (SUM-11), vol. 6929
in Lecture Notes in Computer Science, pp. 2–21. Springer (2011)

63. Straccia, U.: Top-k retrieval for ontology mediated access to relational databases. Inf. Sci. 198,
1–23 (2012)

64. Straccia, U., Madrid, N.: A top-k query answering procedure for fuzzy logic programming.
Fuzzy Sets Syst. 205, 1–29 (2012)

65. ter Horst, H.J.: Completeness, decidability and complexity of entailment for rdf schema and a
semantic extension involving the owl vocabulary. J. Web Semant. 3(2–3), 79–115 (2005)

66. Ullman, J.D.: Principles of Database and Knowledge Base Systems, vols. 1, 2. Computer
Science Press, Potomac (1989)

67. Vardi, M.: The complexity of relational query languages. In: Proceedings of the 14th ACM
SIGACT Symposium on Theory of Computing (STOC-82), pp. 137–146 (1982)

68. Vojtás, P.: Fuzzy logic aggregation for semantic web search for the best (top-k) answer. In:
Sanchez, E. (ed.) Fuzzy Logic and the Semantic Web, Capturing Intelligence, Chap. 17, pp.
341–359. Elsevier, Amsterdam (2006)

69. XML. In: W3C. http://www.w3.org/XML/

http://www.w3.org/TR/rdf-mt/
http://www.w3.org/2001/sw/wiki/RIF
http://www.w3.org/TR/2011/WD-sparql11-entailment-20110512/
http://www.w3.org/TR/2011/WD-sparql11-entailment-20110512/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/XML/

Chapter 6
Semantic Data Management Using Fuzzy
Relational Databases

Jesús R. Campaña, Juan M. Medina and Maria A. Vila

Abstract This chapter presents a schema and a transformation algorithm to store
OWL ontologies in Object Relational Databases. The database schema allows the
storage of an ontology structure, while the transformation algorithm creates an appro-
priate schema to store its instances preserving all information. We allow the use of
instance data of imprecise nature, mostly fuzzy numerical data. An OWL ontology
is defined allowing numerical fuzzy datatypes as the range of properties. In order
to manage all the information, instance data handling is delegated onto a Fuzzy
ORDBMS, which is briefly described. We present here a complete description of
the structures conforming the storage schema proposed, and the algorithms used
to transform the OWL ontology to a database schema. We also discuss the role of
ontologies as relational database design tools.

1 Introduction

The Semantic Web [13] provides a common framework to share and reuse data
across applications, enterprises, and communities. The goal of the Semantic Web is
to provide access to its contents to humans and machines alike, in an efficient and
simple way.

In this new model of the Web, ontologies have proved to be of prime importance,
due to their potential to describe the semantics of information and the capacity to
solve heterogeneity problems. In recent years, several standard ontology languages
for the web have emerged. Resource Description Framework (RDF) and Schema

J. R. Campaña (B) · J. M. Medina ·M. A. Vila
Department of Computer Science and Artificial Intelligence, University of Granada,
18071 Granada, Spain
e-mail: jesuscg@decsai.ugr.es

M. A. Vila
e-mail: vila@decsai.ugr.es

J. M. Medina
e-mail: medina@decsai.ugr.es

O. Pivert and S. Zadrożny (eds.), Flexible Approaches in Data, Information 115
and Knowledge Management, Studies in Computational Intelligence 497,
DOI: 10.1007/978-3-319-00954-4_6, © Springer International Publishing Switzerland 2014

116 J. R. Campaña et al.

(RDFS), the Web Ontology Language (OWL), and recently the new version OWL
2, are the leading languages of the Semantic Web.1

OWL is a language aimed at information processing on the web. It is designed to
be interpreted by computers, not read by people. An OWL ontology is an RDF graph,
which is a set of RDF triples. Each RDF triple contains a subject, a predicate (or
property) that denotes a relationship, and an object. A triple represents a statement
of a relationship between the subject and the object. An OWL ontology graph can
be written using different syntaxes, the most usual is RDF/XML. OWL has three
increasingly expressive sub-languages, OWL Lite, OWL DL and OWL Full.

The use of ontologies as knowledge representation formalisms and its role in the
development of the Semantic Web, has motivated the creation of lots of ontologies
containing huge quantities of instance data, e.g. LUBM,2 DBPedia,3 etc. All this
instance data must be managed and stored. Current ontology reasoners are not capable
of managing efficiently large amounts of instance data. In this context, it is a good
idea to look for solutions to these problems in other well known systems.

Nowadays, Database Management Systems are the most widespread and efficient
data storage solution. A vast amount of ontology based Semantic Web data is going
to be stored in relational databases. Moreover, most of the data in the traditional Web
is already stored in relational databases. If we want to perform a smooth transition
from the current web to a Semantic Web model, we must adapt the current content
and make new content suitable to be processed in a relational database.

Database Management Systems provide features that ease the implementation of
basic reasoning tasks in the database. These features include the capacity for storing
and sharing large amounts of data, optimizations for data processing (indexes, clus-
ters, views, etc.), complex data handling features and extensibility for systems based
on standard SQL:2003, importation/exportation of different data formats to ease
interoperability, recursive queries as considered in SQL:2003 (useful for reasoning
operations such as class subsumption) and complex query optimizers.

Relational databases are specifically designed to deal with huge amounts of data,
and ontologies are good knowledge representation formalisms. We propose a two-tier
model where the conceptual tier is defined by an ontology, while data management
is delegated upon a RDBMS, which can manage huge volumes of data and optimize
queries.

Our first goal is the use of ontologies expressed in OWL as design tools for
database schemas. Database schema design is a non-trivial task that requires knowl-
edge about the domain of the problem to model, and knowledge of the conceptual
model to use. Design of domain ontologies is neither a trivial task, but it is com-
pulsory in order to design Semantic Web systems. Once an ontology is defined in
OWL, it is not necessary to create another conceptual model for database design i.e.
Entity-Relationship (ER) model. The ontology contains all the knowledge required

1 W3C Semantic Web: http://www.w3.org/standards/semanticweb/
2 LUBM—Lehigh University Benchmark: http://swat.cse.lehigh.edu/projects/lubm/
3 DBPedia: http://wiki.dbpedia.org/

http://www.w3.org/standards/semanticweb/
http://swat.cse.lehigh.edu/projects/lubm/
http://wiki.dbpedia.org/

6 Semantic Data Management Using Fuzzy Relational Databases 117

to develop an appropriate schema. Several works study the role of domain ontologies
as database design tools [26, 39].

In order to improve the access to instances while retaining the semantics of the
ontology, the ontology and its instances must be stored in different structures. There
are two main approaches to ontology storage in databases. One approach stores the
complete ontology [23] whereas the other creates a database schema based on the
ontology definition to store instances [2, 44]. Each approximation has its virtues and
its flaws, as will be explained later. In order to mitigate the drawbacks, our proposal
uses a combination of both approaches. Some basic reasoning capacities can be added
to the system through the combined use of the original ontology and the instance
data in the database schema.

Current state-of-the-art systems based on Description Logic (DL) are ready to
serve as a core reasoning engine for Entity-Relationship model. DL-Lite is presented
in [19]. This DL is specifically tailored to capture the main notions of conceptual
data models such as the ER model, while keeping the worst-case complexity of
sound and complete reasoning tractable. In [12] it is proved that current reasoners
are EXPTIME-complete with respect to the ER model enhanced with ISA on entities
and relationships. In [31] a comparison between OWL and databases is presented.
To overcome the differences encountered an extended DL is defined.

Several works deal with the problem of translation between database and ontology.
One trend is to focus on the expression of ER schemas as an ontology. In [25]
a framework to transform ER diagrams into an OWL ontology is presented. The
transformation is performed by means of rules. A similar but more restrictive set
of rules is presented in [32] to transform well-formed ER diagrams to OWL Lite
ontologies. These approaches focus on the adaption of already existent databases to
the semantic web. What we propose on this chapter is the creation of a framework
to handle and store ontologies. Storage schemas are created from the ontologies and
not the other way around.

The transformation from OWL to a relational schema is performed by means of
an algorithm that has as input a domain ontology and generates a relational database
schema to store instances. The ontology itself (TBox) is stored in database cata-
log tables specifically designed for this purpose. Instances (ABox) are stored in the
schema previously built. Mappings between ontology concepts and instance data are
created in order to perform basic semantic concordance tasks.

Ontologies are generally used to represent precise concepts. However fuzzy and
incomplete data is present on the Web, where the characteristics of some elements
may be described using approximate values, ranges of values, upper and lower
bounds, linguistic labels, etc. Due to this fact, fuzzy representations of ontologies
have emerged to offer a more accurate view of certain concepts.

The use of fuzzy logic in ontologies and its use in conjunction with databases has
been object of study. SoftFacts [38], is presented as an ontology mediated information
retrieval system over relational databases. An ontology layer is used to define the
relevant abstract concepts and relations of the application domain, while graded facts
are stored into a relational database. Facts stored in the database contain a degree
of truth (or score) in [0, 1]. This score represents to which extent the tuple is an

118 J. R. Campaña et al.

instance of the relation. This approach is different to ours, as we propose to deal with
fuzziness at instance level. In order to do so, a special kind of ontology that deals
with fuzzy data as part of attributes definitions in classes is needed. We call these
ontologies OWL Like ontologies because they are defined essentially in OWL, but the
use of fuzzy data in datatype properties is not a standard. This lack of a standard has
motivated other approaches, like [16] which proposes to represent fuzziness using
OWL 2 annotation properties.

DLs are also applied in conjunction with fuzzy logic. In [46] a DL to represent
and reason on fuzzy object-oriented database models is presented. The DL proposed
makes it possible to improve reasoning on database models. This approach is different
to ours, as we use an object-relational model.

Our system relies in a Fuzzy Object Relational Database Management System
(FORDBMS). We take advantage of the possibilities the Object Relational paradigm
offers, and the extension mechanisms that allow to create new datatypes and ways
of dealing with them. We focus on the use of numerical fuzzy types (approximate
values, data intervals, upper/lower bounds and trapezoidal distributions). Using the
extension mechanisms, a Fuzzy Database is built over a classical object relational
system, taking advantage of all features offered by the underlying system.

This chapter proposes a complete representation of OWL ontologies using fuzzy
datatypes within a FORDBMS. The database schema is designed using the ontology,
and the ontology itself and its instances are stored. Instance data can contain fuzzy
datatypes as attributes. This chapter is organized as follows. Section 2 presents a
discussion on the similarities of Knowledge Bases and Databases. Section 3 deals
with the use of ontologies as Relational Database design tools. The core of the
chapter is presented in Sect. 4, where the whole process of storage and management
of ontologies using fuzzy datatypes is explained. Finally, conclusions are presented
in Sect. 5.

2 Knowledge Bases and Databases

It is important to clarify the role that each of the components that we are going to
use holds in the general schema of this proposal, and how we are going to use them.

In general, both knowledge bases (KB) and databases (DB) allow to define and rep-
resent a domain and store information about it. However, both deal with the informa-
tion available in different ways. Databases are about extracting and displaying data,
whereas knowledge bases are about learning and answering knowledge. According
to these capabilities the services provided are completely different. Through reason-
ing the knowledge extracted can be used to change the status of the knowledge base
because of the learning process involved. This is not possible with data, because
databases present data but are not able to reason about the data. Knowledge bases
change because new knowledge changes them, however database are static w.r.t. new
incoming data. Databases provide data, while knowledge bases provide answers, rec-
ommendations and expert advice.

6 Semantic Data Management Using Fuzzy Relational Databases 119

The distinction between ontology and knowledge base is clear. We can see an
ontology as a particular case of a knowledge base where there is only information
about the intensional part described by the domain. In our case, we will use the term
knowledge base to refer to the intensional and extensional component of information,
while the term ontology will be used to refer only to the intensional part of a knowl-
edge base. In general, when we refer to knowledge bases we refer to Description
Logic based knowledge bases.

There are many systems where databases coexist with DL. Databases handle
huge volumes of instance data, while knowledge representation systems manage
intensional information in memory. DL provides a formal context similar to that
provided by semantic models such as the Entity-Relationship model [20]. A problem
modeled in DL can be checked for consistency and correction using a reasoner.

DL knowledge bases contain two distinct components, intensional knowledge
in the TBox and extensional knowledge in the ABox. The TBox contains structural
information, general properties and relations between concepts e.g. Wine, WineColor,
Wine hasWineColor Color. The ABox contains knowledge about instances of the
domain e.g. Wine(CabernetSauvignon), WineColor(Red), hasWineColor(Cabernet
Sauvignon, Red), meaning that CabernetSauvignon is a Wine, Red is a WineColor,
and CabernetSauvignon has Red color. This separation not only is done based on the
different types of knowledge, it also takes into account temporal evolution criteria.
Knowledge in the TBox does not change over time, while knowledge in the ABox
has a temporal character and can be created, updated or deleted.

In a sense, databases also present a similar behaviour. The database schema
encodes intensional knowledge about the domain of a problem, and instance data
stored in tables is a sort of extensional definition of the schema. This way we can say
that a database schema is like a TBox in a knowledge base, while data is the equiva-
lent to the ABox. However, semantics in an ABox are not the same as those used in
database instances. One important difference between DB and KB is that the former
use closed-world semantics while the latter use open-world semantics [3]. Absence
of information in databases is interpreted as negative information: if it is not in the
database it does not exists. In a ABox, absent information is not interpreted as non
existence, but just as lack of knowledge. The use of each of the previous semantics
is also connected to the kind of application to develop.

Query answering in a database is not a logical reasoning, it is the proof of a finite
model, that is, the evaluation of a formula in a fixed finite model. However, querying
in an ABox is more complex, it requires a non trivial reasoning process where all
models (sometimes an infinite number of models) must be taken into account.

Another important difference is the notion of the primary key concept. In the first
version of OWL, two instances in the ontology with the same name could refer to
different individuals. In OWL 2 a key axiom is introduced providing the idea of
primary key to ontologies.

These differences force us to decide which of these behaviours to use. In this case,
we think that a closed-world assumption for querying is the best solution, because
in query answering scenarios response time is a key factor. This decision limits the
reasoning tasks that can be performed, but it is essential if we want to perform query

120 J. R. Campaña et al.

answering over instance data. In this scenario we can only do basic reasoning tasks
as class subsumption.

There is an ongoing effort to bring together the best characteristics of the database
and DL worlds. The complexity results obtained by the DL-Lite family of DLs [18]
give support for efficient query answering over large amounts of instance data. In [31]
OWL ontologies are considered as incomplete databases, while databases in practice
are complete. To overcome these differences they propose a extended DL knowledge
base, in which certain TBox axioms are designated as integrity constraints, which
behave differently depending the type of reasoning performed (ABox or TBox).

3 Ontologies as a Tool for Relational Database Design

In order to fully develop the potential of ontologies and to enable efficient and flexi-
ble information gathering, persistent storage of ontologies and its retrieval is of vital
importance. There are different approaches to store ontologies, use a specific pur-
pose database system, exploit the modeling capabilities of object oriented database
systems, or use relational database management systems.

This last approach is particularly useful due to the widespread use of RDBMSs as
data repositories on the web. A huge amount of the data present in the web is already
stored in databases. Additionally, ontology instance management is a complex task
that is best performed by optimized data management software such as databases.

Semantic Web data relies heavily in ontology definitions. Actually, data is com-
prised of ontology instances. So, when a new application is developed and it is neces-
sary to design a database schema for ontology instances storage, a domain ontology
describing application data can be used as a conceptual model for the relational
database schema design.

Relationships between existent database schemas and ontologies through map-
pings have been widely studied in literature [10, 14]. But there is no such profusion
of works on using ontologies as conceptual models.

In [42] an automatic transformation from ontology to the conceptual ER data
model is presented. The graph oriented approach used, converts an ontology expressed
in OWL DL into an ER model. This approach delegates the DDL and DML sentences
generation to a commercial tool. The problem with this solution is that, once the
schema is designed, the ontology is useless given that there is no way of establishing
a correspondence between the schema and the original ontology. This contingency
automatically discards the method as a possible tool for designing Semantic Web
systems.

An insightful and deeply overview of domain ontologies from a database perspec-
tive is realized in [26]. A new and more complete definition of domain ontology is
proposed along with a taxonomy of domain ontologies. Also, the use of ontologies
as conceptual models is discussed. A domain ontology can be used as a first level of
database concept specification, which later can be refined to incorporate particular
requirements and hence define a conceptual model.

6 Semantic Data Management Using Fuzzy Relational Databases 121

Several works deal with the idea of domain ontologies as conceptual models. In
[36] a design methodology for Semantic Web database based systems is presented.
It is used to design new databases and to add semantics to existent systems. Among
the different possibilities presented, we focus in that which uses an ontology as a
starting point in the design of a database schema. A domain ontology is presented
as an abstraction of the knowledge of the data source schemas. After a process of
refinement is performed, the ontology is adapted to a local schema. The new ontology
obtained will be the basis of the implementation of the database schema.

The work [39] studies the role of domain ontologies in database design thoroughly.
In this case, the approach is slightly different, the ontology is used to advise the
designer about the correctness and completeness of the conceptual model created by
her/him using domain knowledge contained in the ontology.

Ontologies have also been used as formalizations of a fuzzy database schema
structure [15, 28]. Instances from these ontologies represent schemas describing
domain information in a database. These meta-models can be used to create the
schema defined in different Fuzzy DBMSs according to the data representation fea-
tures available.

In our proposal, we use OWL DL ontologies as a formalism to define conceptual
models for database schema design. The design of a database schema is reduced to
the appropriate design of a domain ontology that captures all requirements of data.
The design of the ontology can be done by using CASE tools such as Protégé [1]
and SWOOP [27]. Once the ontology is defined, trough a transformation process the
ontology is expressed as a set of DDL and DML sentences implementing a relational
database schema. An ontology expressed in OWL DL is enough to create the database
schema, reducing the problem of database design to that of proper domain ontology
definition.

Once the database schema is created, it is important to deal with data instances
and their relation to the original ontology; in order to analyze this, next sections study
different paradigms to ontology storage in database management systems.

4 OWL Ontology Storage in ORDBMS

This section deals with the implementation of ontology storage in ORDBMSs. Our
proposal is based on two principles, efficient access to instance data and the preser-
vation of the original ontology to offer basic reasoning capabilities. The proposal
is oriented towards the efficient management of large volumes of instance data in
a query oriented environment, where reasoning capabilities are not as important as
efficient query response time.

We have selected a subset of the OWL DL constructs to design the storage pro-
cedure, which can be seen in Table 1. A complete description of the constructs used
in OWL can be found in the document OWL Web Ontology Language Overview.4

4 http://www.w3.org/TR/owl-features/

http://www.w3.org/TR/owl-features/

122 J. R. Campaña et al.

Table 1 OWL Constructs used in the proposal

owl:Class A class defines a group of individuals grouped together because
they share some properties

rdfs:subClassOf This class axiom defines a subclass relation between two OWL
classes

ObjectProperty Property that relates two classes and thus their instances
DatatypeProperty Property that defines relations between instances of classes and

XML Schema datatypes
rdfs:subPropertyOf States that a property is a subproperty of one or more other

properties
rdfs:domain Property that links a property to a class description. Values in the

domain of a property are limited to the class specified
rdfs:range Property that links a property to a class description or a data range
sameAs States that two individuals are the same
differentFrom States that an individual is different from other individuals
AllDifferent States that a number of individuals are mutually distinct
TransitiveProperty Defines a property as transitive
SymmetricProperty Defines a property as symmetric
FunctionalProperty A functional property is a property that can have only an unique

value for each instance
InverseFunctional-

Property
If a property is inverse functional then the inverse of the property is

functional
allValuesFrom This restriction requires that for every instance of the class that has

instances of the specified property, the values of the property are
all members of the class indicated by the allValuesFrom clause

someValuesFrom In the case of someValuesFrom at least one of the properties of an
instance of the class must point to an individual that is part of
the class indicated in the restriction

minCardinality Describes the class of all individuals that for a given property have
at least N semantically distinct values (individuals or data
values)

maxCardinality Describes the class of all individuals that for a given property have
at most N semantically distinct values (individuals or data
values)

cardinality States that a property on a class has both minCardinality and
maxCardinality N

oneOf Classes can be described by enumeration of the individuals that are
part of the class

hasValue A property can be required to have a certain data value or an
individual as a value

disjointWith Classes are defined as disjoint from each other
unionOf Describes a class using a class list, the class extension contains

those individuals that occur at least in one of the class
extensions of the classes in the list

intersectionOf Describes a class using a class list, the class extension contains
those individuals that are members of the class extension of all
classes in the list

6 Semantic Data Management Using Fuzzy Relational Databases 123

We have not used constructs concerning ontology versioning, ontology inclusion and
annotation properties. Those constructs will be treated in future work.

In order to provide efficient access to instance data, we must design an appro-
priate relational schema for the domain of the problem, which is encoded in the
ontology itself. The intensional description of the ontology can be translated to a
relational database schema. In order to capture as much of this intensional knowl-
edge as possible, we must represent it using an appropriate semantic model that can
be implemented in a relational system. In order to perform a seamlessly migration
from OWL to relational databases, some authors [4] propose an intermediate trans-
formation to an ER semantic model. This intermediate step is useful from the point
of view of schema documentation, and the formalisation of the different transfor-
mations. However, the ER model presents certain representation limitations; entities
cannot have another entity as instance, entities cannot have an instance of any entity
type as a subtype and entity intersection is not easily representable.

Transformation of the domain information contained in the ontology to a ER
semantic model allows to deploy the model as a schema in a relational database. As
a direct consequence to this transformation, the database schema storage problem
is reduced to an OWL domain ontology design problem, an its transformation to a
semantic model. The ER semantic model can be transformed in a relational database
model without too much effort; this process is thoroughly studied in [5, 21, 33].

After the ER to database schema transformation, instance data can be stored in
the database tables, but the connection to the original ontology is lost. In order to
perform rich semantic queries, it is necessary to preserve the original ontology.

At this point we have one problem which can be solved using two different
approaches, ontology transformation to a database schema, and ontology structure
storage. In order to decide which is the best way to solve this problem, we review
some approaches dealing with ontology storage in databases.

In [23] a method to provide support to ontology-based semantic matching in a
RDBMS is presented. The chapter proposes a method to store an OWL DL ontology
in system-defined tables of a relational database. A set of SQL operators is defined to
provide semantic matching operations, and a new indexing scheme is implemented to
speed up these operations. In this approach, the ontology is stored in system-defined
tables along with its instances avoiding information loss.

In [44] a relational database schema representation of an OWL domain ontology
is presented. Instances are stored into tables and relations in a relational database
schema. These tables and relations are obtained by the transformation of OWL classes
and properties. Metadata regarding restrictions is stored in additional tables created
for that purpose. This approximation lacks of a proper representation of the ontology
itself, this can limit the reasoning capacity inside the database as some information
is difficult to restore after the transformation.

In a similar fashion [2] proposes rules to transform OWL ontologies to database
schemas. This general rules are oriented for human consumption and need an expert
to apply them. An algorithmic formulation would be more appropriate, in order to
discard any ambiguities in the processing. Moreover, a complete algorithmic defini-
tion can be used to implement the transformations in an automatic way.

124 J. R. Campaña et al.

These latter approaches deal with ontology data storage appropriately, obtaining
benefits from database efficiency, but losing the original structure depicted in the
ontology. The first approach covers the ontology storage problem in a more appro-
priate way, but lacks of an efficient access to instance data.

To avoid the information loss, we propose the storage of the original ontology
in the database along with the instance data. Ontology storage must be performed
in such a way that properties and relations are preserved, and the original structure
can be recovered using queries. The intensional part of the ontology can be stored
in a specific database schema that guarantees that no information is lost. With these
considerations in mind, we propose a RDBMS hybrid schema to store ontologies
and their instances, allowing a separate or combined use. A summarized version can
be seen in [9].

In order to transform the conceptual model represented by the domain ontol-
ogy to a physical implementation in a relational database, we propose an OWL to
database schema transformation algorithm. This algorithm takes an OWL DL ontol-
ogy as input, then generates a database schema for instance data, stores the ontology
(TBox Structure) in the system catalog, inserts instance data (ABox assertions) in the
schema previously created and relates instance schema data with their corresponding
concepts in the stored ontology.

Using this approximation we preserve ontology information in the database and
create an appropriate schema for instance handling. However, both parts are discon-
nected. There is no way to identify which ontology class corresponds to a specific
database table. In order to establish a connection between both parts, we design a
set of tables containing metadata, in order to link ontology descriptions and their
instances in the database schema.

Figure 1 depicts the database structures used to store the ontology and its instances.
The main OWL constructs are reflected in the schema.

The proposed schema is divided in two main parts:

• Individuals Schema: This schema is created by the transformation algorithm to
store ontology individuals.
• System Catalog Ontology Tables: Store the ontology and the relationships between

individuals and the ontology.

Each different OWL DL document would create a different Individuals Schema
depending on the domain ontology described in it. In the database schema generation
process the OWL ontology is transformed to a semantic model, ER in our case. Then,
this is transformed into a database schema using known transformation rules [24].
This way the whole process allows to transform classes into tables, object properties
into relations, datatype properties into table attributes and so on. The algorithm is
depicted in more detail in a later section.

Table names and attribute names are automatically generated using the name of
the class with a prefix with the name of the ontology the class belongs to.

The System Catalog of Ontology Tables contains two different structures:

6 Semantic Data Management Using Fuzzy Relational Databases 125

System
Catalog

Ontology
Metadata

Individuals
Schema

Mapping
Metadata

OW
L

TBoxABox

Document

RDBMS

Fig. 1 Ontology and individuals schema

• Ontology Metadata: This set of tables stores the different elements of the ontology,
terms, properties, relationships, restrictions…
• Mapping Metadata: These tables store the necessary data to establish a link

between an individual in the Individuals Schema and the concept in the ontol-
ogy to which the individual belongs.

Next sections detail each of the components of the proposed schema and define the
necessary transformations from OWL ontology to relational database schema.

4.1 From Ontology to Semantic Model

This section deals with the formal definition of the transformation of OWL ontologies
to the ER semantic model. We review the transformations necessary to express the
ontology as an ER model.

The Entity-Relationship model was introduced in [21], although later other authors
have contributed with some variations and extensions [11, 40, 41]. The ER model is
the most used semantic model and it has become a standard for database conceptual
design.

In order to better characterise the relation between ER and DLs we employ the
formal description defined in [17].

An ER schema S is built starting from pairwise disjoint sets of entity symbols,
relationship symbols, role symbols, attribute symbols and domain symbols.

S 〈E, R, U, A, D〉

126 J. R. Campaña et al.

Each domain symbol D has an associated predefined basic domain DBD and
it is assumed that basic domains are pairwise disjoint. A symbol with arity n has
associated n role symbols, each with their respective entity symbol, and defines a
relationship between those entities. We assume that each role belongs to just one
relation, in such a way that determines an unique entity. Cardinality restrictions are
represented by two functions applied on role symbols: cminS which returns a non
negative integer and cmaxS which returns a value included in the set of natural
positive values union the special symbol ∞. Specialization relationships between
entities are modeled using a binary relation �S .

As established previously, an ontology is an intensional definition. The ER schema
is appropriate to represent this type of information, but it has no capacity to represent
extensional information whatsoever. So, the relationship between an ontology an a
schema is defined via an application.

We define the application of an ontology into an ER schema.

f : O −→ S or f : O〈T 〉 −→ S 〈E, R, U, A, D〉

We must remark that before performing the translation, a external reasoner is used
to check the ontology and compute the inferred ontology to avoid redundancies.

Classes: Classes defined in the ontology are represented as entities in the ER
model. A concept Ci maps to an ER model as an entity Ei .

Ci �−→ Ei

A particular case are subclasses. Subclasses in an ontology are shown in an ER
model as entities that are specializations too. A concept Ci which is a sub-concept
for a concept C j maps to ER as an entity Ei which is a specialization of the general
entity E j .

Ci � C j �−→ Ei �S E j

Complex classes are translated to ER as normal entities, but we need to perform
additional processing in the transformation as we will see later.

Datatype Properties: Datatype properties map to attributes of the entity in their
domain in the ontology with basic datatypes.

Given a role Ri with domain the concept Ci defined in O〈T 〉 this maps to the
ER schema S as an attribute A j ∈ A associated to the entity Ei ∈ E with a domain
Dk ∈ D whose basic predefined domain is DBD .

Object Properties: Object properties of an OWL ontology relate two classes
through a property or role. In ER this is expressed as a relationship between the
entities representing in the schema the ontology classes in the range and domain of
the property. Cardinality of these properties in the ontology determines participation
and cardinality of roles in the relationship modeled in the ER schema.

6 Semantic Data Management Using Fuzzy Relational Databases 127

A property Pi of an ontology O with range the concept Cr and domain the concept
Cd , is represented in the ER schema S as a relationship Ri between entities Er and
Ed (obtained by mapping concepts Cr y Cd), by the role U j .

For a given object property, if minimum cardinality in the range of the prop-
erty is 0, participation is partial, and for a value of 1 or greater, participation is
total. Minimum cardinality of a property Pi denoted as ≥ n Pi maps to the min-
imum cardinality of role U j , denoted as cminS (U j) = n. Analogously if maxi-
mum cardinality of property range is 1, cardinality is 1, while if it is greater than
1, the cardinality of the relationship in the ER schema is n. Property Pi cardinal-
ity is denoted as ≤ n Pi and maps to maximum cardinality of role U j , denoted as
cmaxS (U j) = n.

Different combinations of participation and cardinality generate relationships 1 :
1, 1 : n, n : n. Attending to the roles in each relationship and their cardinalities we
can perform the translation to the relational model.

4.2 OWL to Relational Schema Algorithm

After the definition of the OWL domain ontology is finished, it is necessary to define
a proper database schema for instance handling. The generation of this schema is per-
formed using a transformation algorithm which takes the OWL ontology, transforms
it to the ER semantic model and finally creates the schema structure in a relational
database. Complex class definitions that cannot be represented in ER are directly
translated to the schema.

The individuals schema presented earlier, is the result of the application of the
transformation algorithm to the OWL ontology. Table and relation definitions are
created in memory and then are translated to SQL sentences.

The algorithm is presented in pseudocode in order to show the transformation
process in detail. Although the syntax employed is not very complex, we describe
some details before moving to the listings.

Element list is a FIFO list where elements are included. Using the NEXT com-
mand on a list, the next object is recovered. DBSchema is a complex element con-
taining table objects, it represents the relational schema to create. The behaviour of
assignment operator < −, varies depending on if it is used before an ADD command
or a CREATE command. In the first case it adds a new object, in the latter it creates it.
Attributes of an element are referenced using dot syntax element.attribute.
Command GET element id FROM complex_element searches for an
object of type element with the specified id, inside a complex object. It can
be used to retrieve tables from complex element DBSchema, using their identifiers.

The algorithm is presented as a succession of steps. In the first step DBSchema
is empty, in next steps it contains the structures created during the algorithm
execution.

128 J. R. Campaña et al.

The first step of the algorithm is the creation of tables. Starting from the root
class, each time a class is processed all its subclasses are added to the processing
list. Ontology classes are transformed into tables, establishing relations according
to inheritance properties such as rdfs:subClassOf. Subclasses generate new
tables referencing the tables obtained from their super-classes. Primary key (PK)
columns are named after the class from which the table is generated. The whole
process expressed in pseudocode can be seen in Algorithm 1.

Next step is the transformation of owl:ObjectProperty to represent rela-
tions between the already defined tables. Depending on factors such as cardinal-
ity, new tables or attributes are added to the schema. As a general rule multi-
valued object properties describing many-to-many relations are mapped as new
tables with foreign keys (FK) to the rdfs:domain and rdfs:range tables
with both identifiers as the primary key of the relation, whereas single-valued
object properties are mapped in the rdfs:domain table as foreign keys to the
rdfs:range table. There are some exceptions to this rule, as can be seen in the
Algorithm 2.

6 Semantic Data Management Using Fuzzy Relational Databases 129

Datatype properties are transformed to table attributes. The attribute type is the
same as the one used inrdfs:range in the propertyowl:DatatypeProperty.
These types are valid basic XML Schema types. These types map to SQL types

130 J. R. Campaña et al.

in a straightforward way. XML serialization for OWL uses XML Schema (XSD)
datatypes.

Algorithm 3 shows pseudocode for the transformation of OWL datatype properties
to attributes in a relational schema table. SQLTYPE() function uses XSD to SQL
predefined mapping tables to determine the appropriate SQL type for a XSD type
defined in the XML serialization of the OWL ontology.

Property restrictions are a special kind of class descriptions. They describe an
anonymous class, namely a class of all individuals that satisfy the restriction. OWL
distinguishes two kinds of property restrictions: value constraints and cardinality
constraints. Cardinality constraints have been treated already, they are covered in
the mapping of owl:ObjectProperty properties. Value constraints in OWL are
defined with the constructs owl:someValuesFrom, owl:allValuesFrom
and owl:hasValue.

The mapping of owl:allValuesFrom is done adding a foreign key constraint
in the column generated previously by the property, pointing to the primary key
column of the class specified by rdf:resource.

In the case of owl:someValuesFrom, the situation is more complex because
if the property is multi-valued the consistency must be checked using a trigger. If it
is single-valued, the value for the property must be one of the class in the restriction,
making this case equivalent to the owl:allValuesFrom previously depicted.

Also owl:hasValue restriction is a complex case. The property links a restric-
tion class to a value, which can be either an individual or a data value. In the case
where the value is a data value it can be modeled as a SQL CHECK constraint. Prob-
lems arise when the value is an individual, then the use of a trigger is requested. All
information needed by the trigger to operate is available in the Mapping Metadata
table. Particular cases implementing triggers are obviated for now, but they are taking
into account as future work. The algorithm performing the mapping of restrictions
is depicted as Algorithm 4.

6 Semantic Data Management Using Fuzzy Relational Databases 131

In the final step, instances are introduced in their corresponding tables. It is impor-
tant to take into account that one instance can be separated between different tables
as a result of the mapping performed.

When the ontology definition is finally stored in the database, individuals and
ontology are related trough the Mapping Metadata. This relation allows the cre-
ation of procedures and operators to perform limited reasoning tasks such as class
subsumption. The use of these operators and procedures in queries, must be explicit.

132 J. R. Campaña et al.

4.3 Ontology Storage Schema

In this section the ontology storage database schema is depicted. We use a vertical
table schema where all objects identifiers are stored and several additional tables to
provide additional information regarding the object, stored in the main table.

The OWL constructs previously depicted in Table 1 are translated into the schema.
The Ontology Metadata tables are organized as Figure 2 shows. The description of
each table is the following:

Table Ont_NameSpaces includes information about the namespaces defined
and the prefixes used, a namespace can be used with different prefixes. Each term
in the ontology has its corresponding namespace associated in order to deal with
elements defined in different ontologies.
Ont_Ontologies stores general information about the different ontologies.

Each ontology should also be described as a term in order to be associated with its
corresponding namespace.

Table Ont_Terms contains the representation of the various concepts described
in the ontology. Ontologies, classes and properties are stored here as basic ele-
ments to use in more complex constructs. Each term has an associate ontology and
a namespace. In addition to these terms two complex elements can be defined here,
ClassList that represents a list of classes, and Group which represents a group
of individuals. The basic OWL constructs must be defined here before any ontology
is inserted, in order to use them to create relations between terms.
Ont_ObjectProperties contains information about object properties and

their characteristics. The domain and range of the property are stored as terms in the
Ont_Terms table. The remaining attributes include the textual description of the
property, and all its possible characteristics. Object properties should be included as
terms in the table Ont_Terms in order to be used as part of relationships.

The table Ont_Restrictions includes information about property restric-
tions and the anonymous class that is created when restrictions are applied on
the property. The mincardinality and maxcardinality attributes con-
tain positive numeric values of cardinality. Attributes somevaluesfrom and
allvaluesfrom contain a term identifier corresponding to a class term defined
in the Ont_Terms table.
Ont_Relationships contains information about the existing relationships

between two terms of the ontology. Basic OWL relationships as SubClassOf can
be expressed here. The termID attributes point to terms defined in the Ont_Terms
table. These terms can be class terms, property terms, group terms or class list terms.
Ont_DataTypeProperties contains information about datatype properties

such as the identifier of the property, the ontology to which it belongs, the domain
and the range datatype. The domain is a term in Ont_Terms. Datatype attribute
specifies the name of the type, that could be the ones defined in thexsdXML Schema
or fuzzy ones as we will describe later.

6 Semantic Data Management Using Fuzzy Relational Databases 133

ONT_RELATIONSHIPS

ONT_ONTOLOGIES

ONT_NAMESPACES

ONT_DATATYPEPROPERTIES

ONT_TERMS

ONT_CONCEPTMAPPING
ONT_ONEOF

ONT_CLASSLIST

ONT_INDIVIDUALSIDENTITY

ONT_RESTRICTIONS

ONT_OBJECTPROPERTIES

Fig. 2 System catalog metadata schema

The Mapping Metadata Tables relate the individuals in the Individuals Schema
with the Ontology Metadata tables where the proper concepts are defined. The tables
are defined as follows:
Ont_ConceptMapping relates a table and hence its tuples (individuals) in the

Individuals Schema with its corresponding class term in Ont_Terms. A class is
represented as a table to contain its individuals, and as a term to allow reasoning.

The tableOnt_IndividualsIdentity contains information related to issues
concerning individuals identity across ontologies. OWL defines a set of proper-
ties to deal with individuals identity owl:sameAs, owl:differentFrom and
owl:AllDifferent. These properties relate individuals, not classes. Due to this,
we deal with them in a separate system-defined table which links instances and def-
initions in an ontology. The type attribute describes the OWL property, one of the
three mentioned before, and groupID is the identifier of the group containing the
individuals that are related by the property. The group of individuals definition must
be included as a term in the Ont_Terms table.

OWL provides the owl:oneOf construct to specify a class via a direct enu-
meration of its members. Ont_OneOf contains information about the individuals
belonging to a particular enumeration. The owl:oneOf construct relates a class
with the individuals describing it. In order to reflect them on the system catalog it
is necessary to include a relationship between the class and a group of individuals.
owl:oneOf should be present as an available OWL property in Ontology Metadata
Schema and the class and group should be inserted on the Ont_Terms table, then
the list of individuals belonging to the group is specified in Ont_OneOf.

OWL offers set operators like owl:intersectionOf and owl:unionOf to
define complex classes based on operations performed on classes already defined.
Classes constructed using those operators are like definitions, where their class exten-
sion consists of exactly the individuals obtained in the operation. Table Ont_Class

134 J. R. Campaña et al.

List contains the definition of class lists. owl:unionOf and owl:inter
sectionOf, should be present as OWL properties defined in the Ontology Metadata
Schema, in order to create a relationship between a class and its class list definition
using these properties. Once the relationship is defined, the new class is created as a
view over the classes in the group stored as tables, under the selected operation.

4.4 Fuzzy Datatype Management

Once the general process is depicted, it is important to explain how we deal with
fuzziness in our proposal. This proposal deals with fuzzy datatypes at two levels,
the expression of fuzzy datatypes at ontology level and their storage and operation
within a database.

Works dealing with fuzziness in ontologies usually center their attention in
describing fuzzy concepts and relations in ontologies, including fuzzy hierarchical
relationships. In [37] a fuzzy description logic is presented where concepts modeled
as fuzzy sets can be class attributes. Working with fuzziness at this level entails an
increment of complexity in the representation and management of the data.

Although fuzzy data handling is a hot topic in ontology research, there is not a
standard for representing fuzzy data in ontologies, especially in OWL ontologies.
Certain authors consider that a fuzzy extension of an ontology language is not likely
to become a standard in the foreseeable future. Thus, they propose Fuzzy OWL 2 [16],
a framework to represent fuzzy ontologies using current languages and resources.
Fuzzy OWL 2 provides a representation for fuzzy data in ontologies using the current
standard language OWL 2, by using annotation properties. This fuzzy data includes
fuzzy datatypes, fuzzy modifiers and weighted sum concepts.

The use of fuzziness at the datatype level allows to represent certain semantics,
approximate values, data ranges, etc, but does not affect complexity. Fuzzy data is
used at instance level and it is not necessary to deal with it at ontology level. As
we clearly distinguish between the treatment of the ontology structure from that of
the storage and management of instance data, it is possible to add semantics to data
using the capabilities provided by the underlying Fuzzy ORDBMS.

The use of fuzzy logic in queries helps the user to create meaningful queries
expressing flexible criteria. In [6] fuzzy data querying is used to improve query
results, particularly when using multiple conditions. Fuzzy queries allow the user
to express her/his information requirements in an intuitive and flexible way. Query
results provide additional related information that although is not what the user
specifically is looking for, may be of her/his interest.

Our approach starts from an OWL ontology and adds the possibility of defining
fuzzy datatypes as the range of owl:DatatypeProperty properties. The trans-
formation shown in Sect. 4.2 can be adapted, just including the fuzzy datatypes as
attributes in the appropriate table in individuals schema. If the original ontology has
no instance data, we just specify in the datatype property the appropriate fuzzy type
for the range. These types must be defined beforehand as depicted in Figure 3.

6 Semantic Data Management Using Fuzzy Relational Databases 135

If the initial ontology has instance data, it is necessary to provide the means
to represent instance data using the fuzzy datatypes in the ontology. OWL ontolo-
gies do not support fuzzy types, so we must extend them. We create a new XML
Schema Type named NumericFuzzyData; this datatype accepts values of type
CrispValue for precise values, ApproximateValue for triangular possibility
distributions, UpperBoundValue and LowerBoundValue for bound values,
IntervalValue for range values, and TrapezoidalValue for trapezoidal
possibility distributions.

To include these changes in the definition of datatype properties, we must change
the OWL XML Schema. The problem with this change, is that no reasoner is capable
of working with these ontologies, because it can not recognize the new datatypes.
Instead of creating a new reasoner from scratch, we take advantage of the extension
capacities offered by DBMS, in order to perform basic reasoning tasks inside the
database where ontology data is stored.

In order to better understand the capabilities of the underlying FORDBS next
section presents a brief summary of its functionality.

NumericFuzzyData

CrispValue

ApproximateValue

TrapezoidalValue

IntervalValue

GreaterThanValue

LessThanValue

fxsd:NumericFuzzyDataType

0

1
= = =

0

1
=

0

1

0

1
= =

= =

0

1

= =-

0

1

Fig. 3 Fuzzy datatypes

136 J. R. Campaña et al.

4.4.1 Fuzzy Datatypes in Databases

The best way of dealing with huge quantities of fuzzy data is the use of a Fuzzy
DBMS. We include one in our proposal to store instance data with fuzzy attributes.

Several works on fuzzy databases [30, 34, 35, 43, 45] provide different ways of
handling fuzzy information. We have decided to use a database data model [8, 22, 29]
that allows extracted fuzzy data to be stored in a FORDBMS. This data model
specifies a datatype hierarchy taking advantage of object oriented modeling benefits.
Figure 4 shows this datatype hierarchy.

The FORDBMS proposal covers a wide variety of fuzzy datatypes:

• FuzzyDataTypes (FDT) is an abstract type which is the root ancestor of all sup-
ported fuzzy datatypes. This type declares abstract methods which must be imple-
mented in its instantiable subtypes.
• AtomicFuzzyTypes (AFT) is an abstract type designed for collecting common

behaviour of subtypes aimed to represent atomic data.
• OrderedAFTs (OAFT) datatype gives support for fuzzy numbers, which are atomic

fuzzy data represented by a possibility distribution defined on an ordered domain.
The order relation between domain members allows the definition of classical
relational operators, from which extended relational operators are derived in order
to obtain fuzzy comparators for this datatype. The extended relational operators
for OAFT data are for instance FEQ (fuzzy equal to), FLEQ (fuzzy less than or
equal to), etc.
• NonOrderedAFTs (NOAFT) datatype is designed to store fuzzy data defined on a

scalar domain without any order between its elements.
• FuzzyCollections (FC) is an abstract datatype which extends the concept of clas-

sical collections to a fuzzy one.
• DisjunctiveFCs (DFC) datatype, a subtype of FC, supports fuzzy collections with

disjunctive semantics.

Fig. 4 Datatype hierarchy

6 Semantic Data Management Using Fuzzy Relational Databases 137

• ConjunctiveFuzzyCollections (CFC) datatype is similar to DFC but supports col-
lections with conjunctive semantics.
• FuzzyObject (FO) is an abstract datatype which sets a general framework for

dealing with user defined complex fuzzy objects.

We focus on the use of OAFT datatypes as the range of properties of type
owl:DatatypeProperty. This includes trapezoidal distributions, approximate
values, data ranges, upper bound values, lower bound values and crisp data. This
allows to express fuzzy attributes for concepts e.g. the age of a person can be
expressed as approximate 25 years, between 20 and 25 years, more than 20 years,
etc. The creation and handling of these new numeric datatypes can have effects on
efficiency. In order to solver this drawback, [7] proposes an indexing mechanism for
imprecise numerical data.

These datatypes have their counterpart in the ontology, a definition for all of them
has been created in XML Schema, and it is included as part of a modified OWL XML
Schema. We use OAFT datatypes because this type of fuzziness is enough to solve
the kind of problems we are dealing with, where imprecision is only in the numeric
attributes of data.

Queries in a FORDMBS are processed as standard SQL queries, and can be
optimized. The processing of these queries is more complex, due to the use of the
fuzzy datatypes and the greater amount of results recovered. Nevertheless, the main
advantage of this approach is that results are ranked, and we can obtain values similar
to the ones searched.

The data model is implemented in a Oracle® DBMS, using PL/SQL user defined
datatypes. The extension of a commercial DBMS offers benefits such as good per-
formance, scalability and reliability.

5 Conclusions

In this chapter we have presented a transformation algorithm and a storage schema for
OWL DL ontologies which allows to use domain ontologies as a conceptual model
for database schema design. This allows to create database schemas from scratch
in order to store ontology instance data in the context of the Semantic Web. The
proposed schema and algorithm cover the main constructs of OWL DL ontologies
and set the groundwork necessary to develop internal reasoning in the database.

The use of an underlying FORDBMS adds the possibility to use fuzzy datatypes
in the ontologies. These types provide richer semantics than traditional numerical
datatypes, that can be exploited in querying. Whereas we focus on OAFT datatypes,
future research will also deal with the inclusion of other datatypes defined in the
FORDBMS into the ontology, the integration of fuzzy parameters at other levels,
like fuzzy relations, fuzzy hierarchies, etc. analyzing the effect of these additions in
the subsequent task of reasoning.

138 J. R. Campaña et al.

The benefit of the approach is the possibility of creating database schemas without
the additional effort of designing an additional conceptual model, and the possibility
to manage and query instance data in a semantic way. Data instances and the ontology
can be queried together or separately, establishing a link between the objects defined
and their definition, all these features supported by database technology which guar-
antees good performance and reliability. The whole process of transformation into a
schema and the storage in the catalog can be automatized.

Future work will focus on the definition of a basic reasoner inside the database
which will lead to the optimization of the schema and DML operations. A proper
representation using triggers of complex semantic specifications is in the works.

Although the version of OWL used is compatible with OWL2, we plan to move
to the new version of the language in order to take advantage of new features.

Another concern is ontology evolution inside our system, allowing changes in the
ontology and propagate them to the schema. Finally, a graphical interface to import
and export ontologies into the database will be designed.

Acknowledgments This work has been partially supported by the “Consejería de Economía,
Innovación, Ciencia y Empleo de Andalucía” (Spain) under research projects P10-TIC-6109 and
P11-TIC-7460.

References

1. The Protégé ontology editor: http://protege.stanford.edu/ (2012)
2. Astrova, I., Korda, N., Kalja, A.: Storing OWL ontologies in SQL relational databases. Int. J.

Electr. Comput. Syst. Eng. 1(4), 242–247 (2007)
3. Baader, F., Werner, N.: The Description Logic Handbook: Theory, Implementation, and Appli-

cations, chap. Basic Description Logics, pp. 47–100. Cambridge University Press, New York
(2003)

4. Bagui, S.: Mapping OWL to the entity relationship and extended entity relationship models.
Int. J. Knowl. Web Intell. 1(1), 125–149 (2009)

5. Bagui, S., Earp, R.: Database design using entity-relationship diagrams. Auerbach Publications,
Boca Raton (2003)

6. Barranco, C.D., Campaña, J.R., Medina, J.M.: Improving query expressiveness in product
search interfaces using fuzzy logic. WSEAS Trans. Bus. Econ. 2(2), 80–87 (2005)

7. Barranco, C.D., Campaña, J.R., Medina, J.M.: A B+-Tree based indexing technique for fuzzy
numerical data. Fuzzy Sets Syst. (Advances in Intelligent Databases and Information Systems)
159(12), 1431–1449 (2008)

8. Barranco, C.D., Campaña, J.R., Medina, J.M.: Handbook of Research on Fuzzy Information
Processing in Databases, chap. Towards a Fuzzy Object-Relational Database Model, 1st edn.,
pp. 431–461. Hershey, Pennsylvania (2008)

9. Barranco, C.D., Campaña, J.R., Medina, J.M., Pons, O.: On storing ontologies including fuzzy
datatypes in relational databases. Fuzzy systems conference, 2007. FUZZ-IEEE 2007. IEEE,
international pp. 1–6, 23–26 July 2007

10. Barrasa, J., Corcho, O., Gómez-Pérez, A.: R2O, an extensible and semantically based database-
to-ontology mapping language. In: Proceedings of the second workshop on semantic web and
databases (SWDB2004) (2004)

11. Batini, C., Ceri, S., Navathe, S.B.: Conceptual Database Design: An Entity-Relationship
Approach. Benjamin/Cummings, Redwood City (1992)

http://protege.stanford.edu/

6 Semantic Data Management Using Fuzzy Relational Databases 139

12. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams. Artif. Intell.
168(1–2), 70–118 (2005)

13. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 28–37 (2001)
14. Bizer, C., Seaborne, A.: D2RQ-treating non-RDF databases as virtual RDF graphs. In: Pro-

ceedings of the 3rd international semantic web conference (ISWC2004)
15. Blanco, I.J., Vila, M.A., Martinez-Cruz, C.: The use of ontologies for representing database

schemas of fuzzy information. Int. J. Intell. Syst. 23(4), 419–445 (2008)
16. Bobillo, F., Straccia, U.: Fuzzy ontology representation using OWL 2. Int. J. Approximate

Reasoning 52(7), 1073–1094 (2011)
17. Borgida, A., Lenzerini, M., Rosati, R.: The Description Logic Handbook: Theory, Implemen-

tation, and Applications, chap. Description Logics for Databases, pp. 462–484. Cambridge
University Press, New York (2003)

18. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning and
efficient query answering in description logics: the DL-Lite family. J. Autom Reasoning 39(3),
385–429 (2007)

19. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R., Vetere, G.: DL-Lite:
practical reasoning for rich DLs. In: Proceedings of the 2004 description logic workshop (DL
2004). CEUR electronic workshop proceedings (2004)

20. Calvanese, D., Lenzerini, M., Nardi, D.: Description Logics for Conceptual Data Modeling,
chap. 8, pp. 229–264. Kluwer Academic Publisher, Dordrecht (1998)

21. Chen, P.: The entity-relationship model—toward a unified view of data. ACM Trans. Database
Syst. (TODS) 1(1), 9–36 (1976)

22. Cubero, J.C., Marín, N., Medina, J.M., Pons, O., Vila, M.A.: Fuzzy object management in
an object-relational framework. In: X International conference of information processing and
management of uncertainty in knowledge-based systems, pp. 1767–1774 (2004)

23. Das, S., Chong, E.I., Eadon, G., Srinivasan, J.: Supporting ontology-based semantic matching
in RDBMS. In: Proceedings of the 30th VLDB conference. Toronto, Canada, pp. 1054–1065
(2004)

24. Date, C.: An Introduction to Database Systems. Addison-Wesley, Reading (1990)
25. Fahad, M.: Er2owl: generating owl ontology from er diagram. In: Intelligent information

processing, pp. 28–37 (2008)
26. Jean, S., Pierra, G., Ait-Ameur: Domain ontologies: a database-oriented analysis. In: Web

information systems and technologies (WEBIST 2006), pp. 238–254 (2006)
27. Kalyanpur, A., Parsia, B., Sirin, E., Grau, B.C., Hendler, J.: Swoop: a web ontology editing

browser. Web Semant. Sci. Serv. Agents WWW 4(2), 144–153 (2006)
28. Martínez-Cruz, C., Blanco, I.J., Vila, M.A.: Describing fuzzy DB schemas as ontologies:

a system architecture view. In: Information Processing and Management of Uncertainty in
Knowledge-Based Systems. Applications, Communications in Computer and Information Sci-
ence, vol. 81, pp. 147–157. Springer, Berlin (2010)

29. Medina, J.M., Galindo, J., Berzal, F., Serrano, J.M.: Using object relational features to build
a fuzzy database server. In: VIII international conference of information processing and man-
agement of uncertainty in knowledge-based systems (IPMU 2002), pp. 307–314 (2002)

30. Medina, J.M., Pons, O., Vila, M.A.: GEFRED: a generalized model of fuzzy relational data-
bases. Inf. Sci. 76(1–2), 87–109 (1994)

31. Motik, B., Horrocks, I., Sattler, U.: Bridging the gap between OWL and relational databases.
J. Web Semant. 7(2), 74–89 (2009)

32. Myroshnichenko, I., Murphy, M.C.: Mapping er schemas to owl ontologies. In: Proceedings
of the 2009 IEEE international conference on semantic computing, ICSC ’09, pp. 324–329
(2009)

33. Navathe, S., Elmasri, R.: Fundamentals of database systems. Addison Wesley, Reading (2007)
34. Pokorný, J., Vojtáš, P.: A data model for flexible querying. In Proceedings of ADBIS’01.

Lecture Notes in Computer Science, vol. 2151, pp. 280–293 (2001)
35. Prade, H., Testemale, C.: Generalizing database relational algebra for the treatment of incom-

plete or uncertain information and vague queries. Inf. Sci. 34, 115–143 (1984)

140 J. R. Campaña et al.

36. Roldán García, M., Navas Delgado, I., Aldana Montes, J.: A design methodology for semantic
web database-based systems. In: ICITA (1), pp. 233–237 (2005)

37. Straccia, U.: A fuzzy description logic for the semantic web. In: Sanchez, E. (ed.) Fuzzy Logic
and the Semantic Web, Capturing Intelligence, chap. 4, pp. 73–90. Elsevier, Amsterdam (2006)

38. Straccia, U.: SoftFacts: A top-k retrieval engine for ontology mediated access to relational
databases. In: Proceedings of the 2010 IEEE International Conference on Systems, Man and,
Cybernetics (SMC-10), pp. 4115–4122 (2010)

39. Sugumaran, V., Storey, V.C.: The role of domain ontologies in database design: an ontology
management and conceptual modeling environment. ACM Trans. Database Syst. 31(3), 1064–
1094 (2006)

40. Teorey, T.J.: Distributed database design: A practical approach and example. SIGMOD Rec.
18(4), 23–39 (1989)

41. Thalheim, B.: Foundations of entity—relationship modeling. Ann. Math. Artif. Intell. 7(1–4),
197–256 (1993)

42. Trinkunas, J., Vasilecas, O.: A graph oriented model for ontology transformation into concep-
tual data model. Inf. Technol. Control 36(1A), 126–132 (2007)

43. Umano, M.: Freedom-O: A fuzzy database system.In: Fuzzy Information and Decision
Processes. North-Holland, New York (1982)

44. Vysniauskas, E., Nemuraite, L.: Transforming ontology representation from OWL to relational
database. Inf. Technol. Control 35A(3), 333–343 (2006)

45. Zemankova-Leech, M., Kandel, A.: Implementing imprecision in information systems. Inf.
Sci. 37, 107–141 (1985)

46. Zhang, F., Ma, Z.M., Yan, L., Wang, Y.: A description logic approach for representing and
reasoning on fuzzy object-oriented database models. Fuzzy Sets Syst. 186(1), 1–25 (2012)

Part III
Uncertain Databases

Chapter 7
Information Systems Uncertainty Design
and Implementation Combining: Rough,
Fuzzy, and Intuitionistic Approaches

Theresa Beaubouef and Frederick Petry

Abstract There are a number of alternative techniques for dealing with uncertainty.
Here we discuss rough set, fuzzy rough set, and intuitionistic rough set approaches
and how to incorporate uncertainty management using them in the relational database
model. The impacts of rough set techniques on fundamental database concepts such
as functional dependencies and information theory are also considered.

1 Introduction

The term “information system” here is meant to identify a system designed to model,
store and retrieve effectively large amounts of information. From an historical point of
view, the management of unstructured information (texts) on one side, and structured
information (formatted data representing factual information, often for business) on
the other side, gave rise to two different lines of research and products: information
retrieval systems and database management systems, respectively. For both areas
there have been significant research efforts for managing uncertainty. In this chapter
we focus only on the database area.

There are different kinds of uncertainty in data and databases, and different tech-
niques have been developed for managing the various types of uncertainty. Rough
sets [35] are effective at managing uncertainty related to vagueness and to vary-
ing the granularity of discernment of items and in the representation of “certain”
and “possible or partial” membership in a set based on the underlying partitioning
of data items. Fuzzy sets [50] offer a more continuous approach by incorporating
membership values to denote degrees of belonging to some sets. Intuitionistic fuzzy

T. Beaubouef
Southeastern Louisiana University, Hammond, Louisiana, USA

F. Petry (B)

Naval Research Lab, Stennis Space Center, Mississippi, USA
e-mail: fred.petry@nrlssc.navy.mil

O. Pivert and S. Zadrożny (eds.), Flexible Approaches in Data, Information 143
and Knowledge Management, Studies in Computational Intelligence 497,
DOI: 10.1007/978-3-319-00954-4_7, © Springer International Publishing Switzerland 2014

144 T. Beaubouef and F. Petry

sets [1, 2] take this one step further by also incorporating degrees of nonmember-
ship in some set. Various combinations of rough, fuzzy, and intuitionistic sets have
also been studied [23, 32, 47] for managing uncertainty. These take advantage of
the benefits of each. Other uncertainty management approaches, which are not dis-
cussed in this chapter, include probabilistic reasoning [33], possibility theory [51]
and interval-based logic [40].

A variety of approaches were taken by early researchers in use of fuzzy sets for
uncertainty in database models [16, 38, 46, 52]. Of particular note are the significant
research contributions by Patrick Bosc and his collaborators including among the
most cited papers [13–15].

This chapter overviews alternative techniques such as rough sets, fuzzy rough
sets, and intuitionistic rough sets for incorporating uncertainty management into the
relational database model. More general aspects of various approaches to uncertainty
than just the effects on database models can be found in [24]. Impacts of the rough
set techniques on fundamental database concepts such as functional dependencies
and information theory are discussed. In databases information theoretic measures
can be used to measure the information content of data. Entropy is one such measure,
and we discuss its use in fuzzy databases[18], intuitionistic fuzzy sets [45] and rough
databases [9].

2 Rough Sets

Rough set theory, introduced and further developed mathematically by Pawlak [35],
provides a framework for the representation of uncertainty. It has been used in various
applications such as the rough querying of crisp data [3], uncertainty management
in databases [5], the mining of spatial data [6], and improved information retrieval
[43]. Rough set theory is a technique for dealing with uncertainty and for identifying
cause-effect relationships in databases. It is based on a partitioning of some domain
into equivalence classes and the defining of lower and upper approximation regions
based on this partitioning to denote certain and possible inclusion in the rough set.
An extensive theory for rough sets and their properties has been developed and
become a well established approach for the management of uncertainty in a variety
of applications. Rough sets involve the following:

U is the universe (non- empty)
R is the indiscernibility relation, or equivalence relation
A = (U,R), an ordered pair, is called an approximation space
[x]R denotes the equivalence class of R containing x, for any element x of U
elementary sets in A - equivalence classes of R, definable set in A - finite union

of elementary sets in A.
Given an approximation space defined on some universe U that has an equivalence

relation R imposed upon it, U is partitioned into equivalence classes called elementary
sets that may be used to define other sets in A. A rough set X, where X ⊆ U, can be
defined in terms of the definable sets in A by the following:

7 Information Systems Uncertainty Design and Implementation Combining 145

lower approximation of X in A is the set R X = {x ∈ U
/[x]R ⊆ X}

upper approximation of X in A is the set R̄ X = {x ∈ U
/[x]R ∩ X �= Ø}.

POSR(X) = RX denotes the R-positive region of X, or those elements which certainly
belong to the rough set. The R-negative region of X, NEGR(X) = U−RX, contains
elements which do not belong to the rough set, and the boundary or R-borderline
region of X, BNR(X) = RX − RX, contains those elements which may or may not
belong to the set. X is R-definable if and only if RX = RX. Otherwise, RX �= RX
and X is rough with respect to R. A rough set in A is the group of subsets of U having
both the same upper approximations and the same lower approximations. In Fig. 1
the universe U is partitioned into equivalence classes denoted by the squares. Those
elements in the lower approximation of X, POSR(X), are denoted with the letter p
and elements in the R-negative region by the letter n. All other classes belong to the
boundary region of the upper approximation.

3 Fuzzy and Fuzzy Rough Sets

Fuzzy set theory is a very influential approach for managing uncertainty; proposed
initially by Zadeh [50], it also has well developed theory, properties, and applications.
Applications involving fuzzy logic are diverse and plentiful, ranging from fuzzy
control systems in industry to fuzzy logic in databases.

Because there are advantages to both fuzzy set and rough set theories, several
researchers have studied various ways of combining the two theories
[23, 28, 32, 37] Others have investigated the interrelations between the two the-
ories [19, 36, 47]. A similar approach is the fuzzy rough set in [29]. That approach
is more in the spirit of functional analysis, however. Fuzzy sets and rough sets are
not equivalent, but complementary.

Fig. 1 Example of a rough
set X

n

n

n

n

n n

n

n

n

p

p p

X

U

146 T. Beaubouef and F. Petry

One specific approach we use to illustrate this [47] has rough sets expressed by a
fuzzy membership function μ→ {0, 0.5, 1} to represent the negative, boundary, and
positive regions. In this model, all elements of the lower approximation, or positive
region, have a membership value of one. Those elements of the boundary region are
assigned a membership value of 0.5. Elements not belonging to the rough set have
a membership value of zero. Rough set definitions of union and intersection can be
modified so that using this approach the fuzzy model can be made compatible with
rough sets principles. [4, 5].

However there is a problem in general of truth-functionality in applying fuzzy
operations to rough sets. This is discussed extensively by Yao [49] He describes how
in general the theories of fuzzy and rough sets have similar qualitative aspects. Rough
set upper and lower approximations can be seen to correspond to concepts of core and
support of a fuzzy set. Methods for construction of a fuzzy set are described based
on constraints that rough set theory induces on membership values, in particular
constraints on membership values of related elements and also related sets.

We integrate fuzziness into the rough set model in order to quantify levels of
roughness in boundary region areas through the use of fuzzy membership values.
Therefore, we do not require membership values of elements of the boundary region
to equal 0.5, but allow them to range from zero to one, non-inclusive. For example, if
one were defining a fuzzy set on “people” whose membership function is “tall”, then
every person would have a membership value associated with him that indicated the
degree to which he belongs to that fuzzy set. Most basketball players would have
higher membership values (.9 or even 1) than people of average height. Additionally,
the union and intersection operators for fuzzy rough sets are comparable to those for
ordinary fuzzy sets, where MIN and MAX are used to obtain membership values of
redundant elements.

Let U be a universe, X a rough set in U, and we have the following definitions:
A fuzzy rough set Y in U is a membership function μY(x) which associates a

grade of membership from the interval [0,1] with every element of U where

μY(RX) = 1, μY(U − RX) = 0, and 0 < μY(RX)− RX) < 1.

The union of two fuzzy rough sets A and B is a fuzzy rough set C where

C = {x|x ∈ A OR x ∈ B}, where μC(x) = MAX[μA(x), μB(x)].

The intersection of two fuzzy rough sets A and B is a fuzzy rough set C where

C = {x|x ∈ A AND x ∈ B}, where μC(x) = MIN[μA(x),μB(x)].

7 Information Systems Uncertainty Design and Implementation Combining 147

4 Intuitionistic Sets

Intuitionistic sets extend the notion of fuzzy sets to include non-membership in
a set. This double-sided fuzziness measure provides even greater management of
uncertainty for many real world applications. An intuitionistic set [1, 2] (intuitionistic
fuzzy set) is a generalization of the traditional fuzzy set. Let set X be fixed. An
intuitionistic set A is defined by the following:

A = {< x,μA(x), vA(x) > | x ∈ X}, and where μA : X→ [0, 1], and vA : X
→ [0, 1].

The degree of membership of element x ∈X to the set A is denoted by μA(x), and
the degree of non-membership of element x ∈ X to the set A is denoted by vA(x). A
is a subset of X.

Additionally, for all x ∈ X,

0 ≤ μA(x) + vA(x) ≤ 1.

A hesitation margin,
πA(x) = 1− (μA(x)+ vA(x)),

expresses a degree of uncertainty about whether x belongs to X or not, or uncertainty
about the membership degree. This hesitancy may cater toward membership or non-
membership.

Example.
A shopper buys electronic products online. Using traditional 2-valued logic the

person may be satisfied or dissatisfied with the purchase. There is no continuum
between satisfied and dissatisfied; nor is there any uncertainty involved.

In rough sets many things may be considered in the realm of product satisfaction,
and some of them will be grouped together in equivalence classes. Some of these
classes are entirely included in the set satisfied: [delighted, overjoyed] or [accept-
ing, pleased], for example. Some are not in the rough set satisfied at all [furious,
disgusted] or [disappointed], [dissatisfied], for example. Lastly, there are some that
involve uncertainty about the belonging to the rough set satisfied. These may include
equivalence classes such as [ambivalent, noncommittal, indifferent]. These would
belong to the boundary, or uncertain region of the rough set.

In fuzzy sets a person could be pleased to a certain degree. The degree of mem-
bership of an element to the fuzzy set of “pleased” is represented by a membership
value between zero and one. For example, one could be “pleased” with the purchase
to a degree of .8. This implies dissatisfaction to a degree of .2. However, a person
could be pleased to a degree of .8, but not dissatisfied at all, or at least not to that
extent. This cannot be represented in fuzzy sets.

In intuitionistic fuzzy sets, however, there are measures for both the degree of
membership and the degree of non-membership. A person could be pleased with

148 T. Beaubouef and F. Petry

the product to a degree of .8, but only dissatisfied to a degree of .05, resulting in a
hesitancy of .15. This two sided fuzziness in the intuitionistic set provides greater
management of uncertainty for many real world cases.

For the fuzzy rough set case, the situation would be similar. However, with the
inclusion of indiscernibility providing equivalences, both “accepting” or “pleased”
would be treated as equivalent during query evaluation, and results would include
matches with either or both of these. So “pleased” and “accepting” are indiscernible
from each other through roughness, and fuzziness is applied with that in mind. In
a similar manner, with intuitionistic rough sets, there is an underlying indiscerni-
bility relation, and then also the values denoting degrees of membership and non-
membership.

5 Intuitionistic Rough Sets

Both fuzzy sets and intuitionistic sets can be enhanced with rough set techniques to
provide versatile uncertainty management. Intuitionistic rough sets are generaliza-
tions of fuzzy rough sets that give more information about the uncertain, or boundary
region. They follow the definitions for partitioning of the universe into equivalence
classes as in traditional rough sets, but instead of having a simple boundary region,
there are basically two boundaries formed from the membership and non-membership
functions.

Let U be a universe, Y a rough set in U, defined on some approximation space
which partitions U into equivalence classes, then an intuitionistic rough set Y in U
is < Y,μY (x), vY (x) >, where μY (x) is a membership function which associates a
grade of membership from the interval [0,1] with every element (equivalence class)
of U, and vY (x) associates a degree of non- membership from the interval [0,1] with
every element (equivalence class) of U, where

0 ≤ μY (x)+ vY (x) ≤ 1,

where x denotes the equivalence class containing x.
A hesitation margin,

πY (x) = 1− (μY (x)+ vY (x))

Let Y′ denote the complement of Y. Then the intuitionistic set having < μY(x)

μY′(x) > is same as fuzzy rough set. The last two cases in Table 1, <0, q> and
<x, y>, cannot be represented by fuzzy sets, rough sets, or fuzzy rough sets. These
are the situations which show that intuitionistic rough sets provide greater uncertainty
management than the others alone. Note, however, that with the intuitionistic set we
do not lose the information about uncertainty provided by other set theories, since
from the first few cases we see that they are special cases of the intuitionistic rough
set.

7 Information Systems Uncertainty Design and Implementation Combining 149

Table 1 Special cases <μ, v> for some element of Y

Case Description

<1, 0> Denotes total membership; corresponds to elements found in RY
<0, 1> Denotes elements that do not belong to Y; same as U − R̄Y.
<0.5, 0 .5> Corresponds to traditional rough set boundary region
<p, 1-p> Corresponds to fuzzy rough set in that there is a single boundary. In

this case we assume that any degree of membership has a
corresponding complementary degree of non-membership.

<p, 0> Corresponds to fuzzy rough set; in this case there is no complement to
what p shows membership in.

<0, q> This case cannot be modeled by fuzzy rough sets; denoting things not
a member of RY or R̄Y. It falls somewhere in region U − R̄Y.

<x, y> Intuitionistic set general case , uncertain double boundary, one for
membership and one for non-membership.

We may also perform operations on the intuitionistic rough sets such as union and
intersection. We define these operations next. The definition of these operators is
necessary for applications such as the intuitionistic rough relational database model,
and is similar to the fuzzy rough operations, but they include the concept of non-
membership v.

The union of two intuitionistic rough sets A and B is an intuitionistic rough set C
where

C = {x ∣
∣ x ∈ A OR x ∈ B} : μC(x) = MAX[μA(x),μB(x)],

vC(x) = MIN[vA(x), vB(x)].

The intersection of two intuitionistic rough sets A and B is an intuitionistic rough
set C where

C = {x ∣
∣ x ∈ A AND x ∈ B}; μC(x) = MIN[μA(x),μB(x)],

vC(x) = MAX[vA(x), vB(x)].

In this section we defined intuitionistic rough sets and compared them with rough
sets and fuzzy sets. Although there are several various ways of combining rough and
fuzzy sets, we focused on those fuzzy rough sets as defined in [5] and used for fuzzy
rough databases, since our intuitionistic rough relational database model follows
from this. The intuitionistic rough relational database model has an advantage over
the rough and fuzzy rough database models in that the non-membership uncertainty
of intuitionistic set theory will also play a role, providing even greater uncertainty
management than the original models.

150 T. Beaubouef and F. Petry

6 Rough Relational Database

The rough relational database model [11] is an extension of the standard relational
database model of Codd [20]. It captures all the essential features of rough sets theory
including indiscernibility of elements denoted by equivalence classes and lower and
upper approximation regions for defining sets which are indefinable in terms of the
indiscernibility.

Every attribute domain is partitioned by some equivalence relation designated by
the database designer or user. Within each domain, those values that are considered
indiscernible belong to an equivalence class. This information is used by the query
mechanism to retrieve information based on equivalence with the class to which the
value belongs rather than equality, resulting in less critical wording of queries.

Recall is also improved in the rough relational database because rough relations
provide possible matches to the query in addition to the certain matches which
are obtained in the standard relational database. This is accomplished by using set
containment in addition to equality of attributes in the calculation of lower and upper
approximation regions of the query result.

The rough relational database has several features in common with the ordinary
relational database. Both models represent data as a collection of relations containing
tuples. These relations are sets. The tuples of a relation are its elements, and like
elements of sets in general, are unordered and non-duplicated. A tuple ti takes the
form (di1, di2, . . ., dim), where dij is a domain value of a particular domain set Dj. In
the ordinary relational database, dij ∈ Dj. In the rough database, however, as in other
non-first normal form extensions to the relational model [30], dij ⊆Dj, and although
it is not required that dij be a singleton, dij �= Ø. Let P(Di) denote the powerset
(Di)–Ø. and A rough relation R is a subset of the set cross product P(D1) × P(D2)
× · · · × P(Dm).

A rough tuple t is any member of R, which implies that it is also a member of
P(D1)× P(D2)× · · · × P(Dm). If ti is some arbitrary tuple, then ti = (di1, di2, . . .,
dim) where dij ⊆ Dj. A tuple in this model differs from that of ordinary databases in
that the tuple components may be sets of domain values rather than single values.
The set braces are omitted from singletons for notational simplicity.

Let [dxy] denote the equivalence class to which dxy belongs. When dxy is a set of
values, the equivalence class is formed by taking the union of equivalence classes of
members of the set; if dxy = {c1, c2, . . ., cn}, then [dxy] = [c1] ∪ [c2] ∪ . . . ∪ [cn].
Tuples ti = (di1), di2, . . . , dim) and tk =(dk1, dk2, . . ., dkm) are redundant if [dij] =
[dkj] for all j = 1,. . . , m. Redundant tuples are removed in the merging process since
duplicates are not allowed in sets, the structure upon which the relational model is
based.

In the rough relational database, relations are rough sets as opposed to ordinary
sets. Therefore, new rough operators (– , ∪, ∩, σ, π,
�), which are comparable
to the standard relational operators, are required for the rough relational database.
Moreover, a mechanism must exist within the database to mark tuples of a rough

7 Information Systems Uncertainty Design and Implementation Combining 151

relation as belonging to the lower or upper approximation of that rough relation.
Rough relational operator definitions and their properties can be found in [11]. We
extend these operators for fuzzy rough relations in the next section.

7 Fuzzy Rough Relational Database

The fuzzy rough relational database is an extension of the rough database where a
relation tuple ti takes the form (di1, di2, . . ., dim, diμ), where diμ ∈ Dμ, and where
Dμ is the interval [0,1], the domain for fuzzy membership values.

For a specific relation, R, membership is determined semantically. Given that
D1 is the set of names of manufacturers, D2 is the set of electronics products, and
assuming that T-VAL is the only electronics manufacturer for the distributor that
produces EZ-MONITORs, and this is the only product of T-VAL, then

(T-VAL, EZ-MONITOR, 1.0)

(T-VAL, QMONITOR, 0.7)

(T-VAL, KEYB1, 1.0)

(NTEL, EZ-MONITOR, 0.3)

are all elements of P(D1) × P(D2) × Dμ. However, only the element (T-VAL, EZ-
MONITOR, 1.0) of those listed above is a member of the relation
R(MANUFACTURER, PRODUCT, μ), which associates each manufacturer with
the products that it manufactures. A fuzzy rough tuple t is any member of R. If ti is
some arbitrary tuple, then ti = (di1, di2, . . . , dim, diμ) where dij ⊆ Dj and diμ ∈ Dμ.
An interpretation α = (a1, a2, . . ., am, aμ) of a fuzzy rough tuple ti = (di1, di2, . . .,
dim, diμ) is any value assignment such that aj ∈ dij for all j.

The interpretation space is the cross product D1× D2 × · · ·× Dm× Dμ, but is
limited for a given relation R to the set of those tuples which are valid according to the
underlying semantics of R. In an ordinary relational database, because domain values
are atomic, there is only one possible interpretation for each tuple ti. Moreover, the
interpretation of ti is equivalent to the tuple ti. In the fuzzy rough relational database,
this is not always the case.

Let [dxy] denote the equivalence class to which dxy belongs. When dxy is a set of
values, the equivalence class is formed by taking the union of equivalence classes of
members of the set; if dxy = {c1, c2, . . ., cn}, then [dxy] = [c1] ∪ [c2] ∪ . . . ∪ [cn].
Fuzzy rough tuples ti = (di1, di2, . . ., din, diμ) and tk = (dk1, dk2, . . ., dkn, dkμ) are
redundant if [dij] = [dkj] for all j = 1, . . ., n.

If a relation contains only those tuples of a lower approximation, i.e., those tuples
having a μ value equal to one, the interpretation α of a tuple is unique. This follows
immediately from the definition of redundancy. In fuzzy rough relations, there are
no redundant tuples. The merging process used in relational database operations

152 T. Beaubouef and F. Petry

removes duplicate tuples since duplicates are not allowed in sets, the structure upon
which the relational model is based.

Tuples may be redundant in all values except μ. As in the union of fuzzy rough sets
where the maximum membership value of an element is retained, it is the convention
of the fuzzy rough relational database to retain the tuple having the higher μ value
when removing redundant tuples during merging. If we are supplied with identical
data from two sources, one certain and the other uncertain, we would want to retain
the data that is certain, avoiding loss of information.

Another definition, which will be used for upper approximation tuples, is neces-
sary for some of the alternate definitions of operators to be presented. This definition
captures redundancy between elements of attribute values that are sets:

Two sub-tuples X = (dx1, dx2, . . ., dxm) and Y = (dy1, dy2, . . ., dym) are roughly-
redundant, ≈R, if for some [p] ⊆ [dxj] and [q] ⊆ [dyj], [p] = [q] for all j = 1, . . ., m.

In order for any database to be useful, a mechanism for operating on the basic
elements and retrieving specified data must be provided. The concepts of redundancy
and merging play a key role in the operations defined.

We next formally define the fuzzy rough relational database operators.. We may
view indiscernibility as being modeled through the use of the indiscernibility rela-
tion, imprecision through the use of non-first normal form constructs, and degree
of uncertainty and fuzziness through the use of tuple membership values, which are
given as the value for the μ attribute in every fuzzy rough relation.

8 Fuzzy Rough Relational Operators

In [11], we defined several operators for the rough relational algebra. We now define
similar operators for the fuzzy rough relational database as in [5]. Recall that for
all of these operators the indiscernibility relation is used for equivalence of attribute
values rather than equality of values.

Difference: The fuzzy rough relational difference operator is very much like
the ordinary difference operator in relational databases and in sets in general. In
the fuzzy rough relational database, the difference operator is applied to two fuzzy
rough relations and, as in the rough relational database, indiscernibility, rather than
equality of attribute values, is used in the elimination of redundant tuples. Hence, this
difference operator is somewhat more complex. Let X and Y be two union compatible
fuzzy rough relations. The fuzzy rough difference, X - Y, between X and Y is a fuzzy
rough relation T where

T = {t(d1, . . . , dn,μi) ∈ X
∣
∣ t(d1, . . . , dn,μi) /∈ Y} ∪ {t(d1, . . . , dn,μi) ∈ X

∣
∣

t(d1, . . . , dn,μj) ∈ Y and μi > μj}

The resulting fuzzy rough relation contains all those tuples which are in the lower
approximation of X, but not redundant with a tuple in the lower approximation of

7 Information Systems Uncertainty Design and Implementation Combining 153

Y. It also contains those tuples belonging to upper approximation regions of both X
and Y, but which have a higher μ value in X than in Y. For example, let X contain the
tuple (SATISFIED, 1.0) and Y contain the tuple (SATISFIED, 0.02). It would not
be desirable to subtract out certain information with possible information, so X – Y
yields (SATISFIED, 1.0). Moreover, less certain information will not cause tuples
that are more certain to be eliminated, even if their membership values are close in
value. So if X contains the tuple (SATISFIED, .55) and Y contains (SATISFIED, .53),
the result of the difference operation X – Y will contain (SATISFIED, .55) as one of
its tuples.

Union: Because relations in databases are considered as sets, the union operator
can be applied to any two union-compatible relations to result in a third relation
which has as its tuples all the tuples contained in either or both of the two original
relations. The union operator can be extended to apply to fuzzy rough relations. Let
X and Y be two union compatible fuzzy rough relations. The fuzzy rough union of
X and Y, X ∪ Y is a fuzzy rough relation T where

T = {t∣∣t ∈ X OR t ∈ Y} and μT(t) = MAX[μX(t),μY(t)].

The resulting relation T contains all tuples in either X or Y or both, merged together
and having redundant tuples removed. If X contains a tuple that is redundant with
a tuple in Y except for the μ value, the merging process will retain only that tuple
with the higher μ value.

Intersection: The fuzzy rough intersection, another binary operator on fuzzy
rough relations, can be defined similarly. The fuzzy rough intersection of X and Y,
X ∩ Y is a fuzzy rough relation T where

T = {t ∣∣ t ∈ X AND t ∈ Y} and μT(t) = MIN[μX(t),μY(t)].

In intersection, the MIN operator is used in the merging of equivalent tuples having
different μ values and the result contains all tuples that are members of both of the
original fuzzy rough relations.

Select: The select operator for the fuzzy rough relational database model, σ, is
a unary operator which takes a fuzzy rough relation X as its argument and returns a
fuzzy rough relation containing a subset of the tuples of X, selected on the basis of
values for a specified attribute. The operation σA=a(X), for example, returns those
tuples in X where attribute A is equivalent to the class [a]. In general, select returns
a subset of the tuples that match some selection criteria.

Let R be a relation schema, X a fuzzy rough relation on that schema, A an attribute
in R, a = {ai} and b = {bj}, where ai,bj ∈ dom(A), and ∪x is interpreted as "the union
over all x". The fuzzy rough selection, σA=a(X), of tuples from X is a fuzzy rough
relation Y having the same schema as X and where

Y = {t ∈ X
∣
∣ ∪i [ai] ⊆ ∪j[bj]},

154 T. Beaubouef and F. Petry

and ai ∈ a, bj ∈ t(A), and where membership values for tuples are calculated by
multiplying the original membership value by card(a)/card(b) where card(x) returns
the cardinality, or number of elements, in x.

Assume we want to retrieve those elements where PRODUCT = "QMON" from
the following fuzzy rough tuples:

(QMON 1.0)

({QMON, EZ-MONITOR, N14} 0.7)

(KEYB1 1.0)

({QMON, T2-JACK} 0.9)

The result of the selection is the following:

(QMON 1.0)

({QMON, EZ-MONITOR, N14} 0.23)

({QMON, T2-JACK} 0.45).

where the μ for the second tuple is the product of the original membership value 0.7
and 1/3.

Project: Project is a unary fuzzy rough relational operator. It returns a relation
that contains a subset of the columns of the original relation. Let X be a fuzzy rough
relation with schema A, and let B be a subset of A. The fuzzy rough projection of
X onto B is a fuzzy rough relation Y obtained by omitting the columns of X which
correspond to attributes in A - B, and removing redundant tuples. Recall the definition
of redundancy accounts for indiscernibility, which is central to the rough sets theory
and that higher μ values have priority over lower ones. The fuzzy rough projection
of X onto B, πB(X), is a fuzzy rough relation Y with schema Y(B) where

Y(B) = {t(B)
∣
∣ t ∈ X}.

Join : Join is a binary operator that takes related tuples from two relations and
combines them into single tuples of the resulting relation. It uses common attributes
to combine the two relations into one, usually larger, relation. Let X(A1, A2, . . ., Am)

and Y(B1, B2, . . ., Bn) be fuzzy rough relations with m and n attributes, respectively,
and AB = C, the schema of the resulting fuzzy rough relation T.

The fuzzy rough join, X ��<JOIN CONDITION>Y, of two relations X and Y, is a

relation T(C1, C2, . . ., Cm+n) where T = {t
∣
∣ ∃ tX ∈ X, tY ∈ Y for tX = t(A),

tY = t(B)}, and where

(1) tX(A ∩ B) = tY(A ∩ B), μ=1
(2) tX(A ∩ B) ⊆ tY(A ∩ B) or tY(A ∩ B) ⊆ tX(A ∩ B), μ = MIN(μX, μY)

<JOIN CONDITION> is a conjunction of one or more conditions of the form
A = B.

Only those tuples which resulted from the "joining" of tuples that were both in
lower approximations in the original relations belong to the lower approximation

7 Information Systems Uncertainty Design and Implementation Combining 155

of the resulting fuzzy rough relation. All other "joined" tuples belong to the upper
approximation only (the boundary region), and have membership values less than
one. The fuzzy membership value of the resultant tuple is simply calculated as in [16]
by taking the minimum of the membership values of the original tuples. Taking the
minimum value also follows the logic of [34], where in joins of tuples with different
levels of information uncertainty, the resultant tuple can have no greater certainty
than that of its least certain component.

9 Intuitionistic Rough Relational Database Model

The intuitionistic rough relational database [8] is an extension of the fuzzy rough
model above using the intuitionistic membership and non-membership values where
Dμ is the interval [0,1], the domain for intuitionistic membership values, and Dv is
the interval [0,1], the domain for intuitionistic non-membership values.

For a specific relation, R, membership is determined semantically. Given that
D1 is the set of names of electronics manufacturers, D2 is the set of products, and
assuming that T-VAL is the only manufacturer to produce the EZ-MONITOR, with
EZ-MONITOR its only product, then

(T-VAL, EZ-MONITOR, 1.0, 0.0)

(T-VAL, QMONITOR, 0.7, 0.3)

(T-VAL,KEYB1, 1.0, 0.0)

(NTEL, EZ-MONITOR, 0.3, 0.2)

are all elements of P(D1)× P(D2)× Dμ× Dv. However, only the element
(T-VAL, EZ-MONITOR, 1.0, 0.0) of those listed above is a member of the rela-
tionR(MANUFACTURER, PRODUCT, μ, v), which associates products with their
manufacturers. An intuitionistic rough tuple t is any member of R. If ti is some
arbitrary tuple, then ti = (di1, di2, . . ., dim, diμ, div) where dij ⊆ Dj and diμ ∈ Dμ,

div ∈ Dv. Definitions for interpretation, redundancy, and rough redundancy are sim-
ilar to those for the fuzzy rough database with the addition of v.

The intuitionistic rough relational operators extend those of the fuzzy rough data-
base by inclusion of v, for non-membership. There are two cases of note here. For the
intuitionistic rough selection, the non-membership value v remains the same as in the
intuitionistic rough relation X, since the result of performing this operation does not
give us any additional information about non-membership. Also for the intuitionistic
rough join if μX = μY, then v = M AX (vX, vY).

156 T. Beaubouef and F. Petry

10 Functional Dependencies

A functional dependency can be defined as in [25] through the use of a universal
database relation concept. Let R = {A1, A2, …, An} be a universal relation schema
describing a database having n attributes. Let X and Y be subsets of R. A functional
dependency between the attributes of X and Y is denoted by X→Y. This dependency
specifies the constraint that for any two tuples of an instance r of R, if they agree on
the X attribute(s) they must agree on their Y attributes(s): if t1[X] = t2[X], then it must
be true that t1[Y] = t2[Y]. Tuples that violate the constraint cannot be inserted into the
database. The rough functional dependency is based on the rough relational database
model. The classical notion of functional dependency for relational databases does
not naturally apply to the rough relational database, since all the “roughness” would
be lost. In the rough querying of crisp data [3], however, the data is stored in the stan-
dard relational model having ordinary functional dependencies imposed upon it and
rough relations result only from querying; they are not a part of the database design
in which the designer imposes constraint upon relation schemas. Rough functional
dependencies for the rough relational database model are defined as follows [7]:

A rough functional dependency, X→Y, for a relation schema R exists if for all
instances T(R),

(1) for any two tuples t, t′ ∈ RT,

redundant(t(X), t′(X)⇒ redundant(t(Y), t′(Y))

(2) for any two tuples s, s′ ∈ R̄T ,

roughly-redundant(s(X), s′(X))⇒ roughly-redundant(s(Y), s′(Y)).

Y is roughly functional dependent on X, or X roughly functionally determines Y,
whenever the above definition holds. This implies that constraints can be imposed on
a rough relational database schema in a rough manner that will aid in integrity main-
tenance and the reduction of update anomalies without limiting the expressiveness
of the inherent rough set concepts.

It is obvious that the classical functional dependency for the standard relational
database is a special case of the rough functional dependency; indiscernibility reduces
to simple equality and part (2) of the definition is unused since all tuples in relations
in the standard relational model belong to the lower approximation region of a similar
rough model.

The first part of the definition of rough functional dependency compares with
that of fuzzy functional dependencies discussed in [42], where adherence to Arm-
strong’s axioms was proven. The results apply directly in the case of rough functional
dependencies when only the lower approximation regions are considered. It is also
necessary to show that axioms hold for upper approximations.

Rough functional dependencies satisfy Armstrong’s axioms.

7 Information Systems Uncertainty Design and Implementation Combining 157

PROOF:

(1) Reflexive
If Y ⊆ X ⊆ U, then
redundant(t(X), t′(X))⇒ redundant(t(Y), t′(Y)), and
roughly-redundant(t(X), t′(X))⇒ roughly-redundant(t(Y), t′(Y)).
Hence, X→Y.

(2) Augmentation
If Z ⊆ U and the rough functional dependency X→Y holds, then
redundant(t(XZ), t′(XZ))⇒ redundant(t(YZ), t′(YZ)), and
roughly-redundant(t(XZ), t′(XZ))⇒ roughly-redundant(t(YZ), t′(YZ)).
Hence, XZ→YZ.

(3) Transitive
If the rough functional dependencies X→Y and Y→Z hold, then
redundant(t(X), t′(X))⇒ redundant(t(Z), t′(Z)), and
roughly-redundant(t(X), t′(X))⇒ roughly-redundant(t(Z), t′(Z)).
Hence, X→Z.

Hence, rough functional dependencies satisfy Armstrong’s axioms. Given a set
of rough functional dependencies, the complete set of rough functional dependen-
cies can be derived using Armstrong’s axioms. The rough functional dependency,
therefore, is an important formalism for design in the rough relational database.

Fuzzy and rough set techniques integrated into the underlying data model result
in databases that can more accurately represent real world enterprises since they
incorporate uncertainty management directly into the data model itself. This is useful
as is for obtaining greater information through the querying of rough and fuzzy
databases..

One practical topic of great concern is the issue of security in databases. Aspects of
security violations by query inferencing in statistical and probabilistic databases have
been studied [22, 31]. Similar approaches to database security for databases using
fuzzy and rough set representations [9, 17] have also been considered in particular
using information measures such as introduced in the next section.

11 Information Theory

In communication theory, Shannon [41] introduced the concept of entropy which
was used to characterize the information content of signals. Since then, variations of
these information theoretic measures have been successfully applied to applications
in many diverse fields. In particular, the representation of uncertain information by
entropy measures has been applied to all areas of databases, including fuzzy database
querying [18], data allocation [26], classification in rule-based systems [39], and
measuring uncertainty in rough and fuzzy rough relational databases [10].

In fuzzy set theory the representation of uncertain information measures has been
extensively studied [12, 21, 27, 48]. For fuzzy databases fuzzy entropy may be

158 T. Beaubouef and F. Petry

measured as a function of a domain value or as a function of a relation. Intuitively,
the uncertainty of a domain value increases as its cardinality | dij | increases or when
the similarity sj(x,y) decreases. So if a domain value in a relational scheme, dij,
consisting of a single element represents exact information and multiple elements
are a result of fuzziness, then this uncertainty can be represented by entropy. DeLuca
and Termini [21] have devised formulas for uncertainty based on fuzzy measures.
Adapting their result to a fuzzy database, the entropy Hfz(dij), for a domain value
dij ⊆ Dj would be

Efz(dij) = −
∑

{x,y}∈dij

[sj(x, y) log2 (sj(x, y))+ (1− sj(x, y))

log2(1− sj(x, y))]

This definition cannot be directly extended to tuples, so a probabilistic entropy
measure after Shannon is needed for an entire tuple. Based on the concept of inter-
pretation of a tuple, for the ith tuple, ti, there are pi possible interpretations, i.e., the
cardinality of the cross product of the domain values, | di1× di2×. . .× dim|. Viewing
all interpretations as a priori equally likely, the entropy of tuple ti can be defined as
[18]

Epb(ti) = −
pi∑

k=0

(1/pi) log2 (1/pi) = log2(pi)

pi∑

k=1

For a non-fuzzy database, clearly pi= 1 and Epb(ti) = 0.
If the choice of a tuple in a relation r is independent of the interpretation of the

tuple, the joint probabilistic entropy Epb(r,t) of a relation can be expressed as

Epb(r, t) = −
n∑

i=1

pi∑

k=1

(n pi)
−1 log2[(n pi)

−1]

where there are n tuples.
An entropy measure in [44] is based on a geometric interpretation of intuitionistic

fuzzy sets [45] and the distances between such sets. The entropy measure is based
on the ratio of the largest cardinalities (max � Counts) involving only the set F and
its complement Fc. So the form of the entropy of intuitionstic fuzzy set F with n
elements is

E(F) = 1

n

n∑

i=1

(max Count(Fi ∩ Fi
c))/(max Count(Fi ∪ Fi

c)

Next information theory measures can be applied to rough sets and compared to
established rough set metrics of uncertainty. The measures are then applied to the

7 Information Systems Uncertainty Design and Implementation Combining 159

rough relational database model [11]. Information content of both stored relational
schemas and rough relations are expressed as types of rough entropy.

Rough set theory [35] inherently models two types of uncertainty. The first type of
uncertainty arises from the indiscernibility relation that is imposed on the universe,
partitioning all values into a finite set of equivalence classes. If every equivalence
class contains only one value, then there is no loss of information caused by the
partitioning. In any coarser partitioning, however, there are fewer classes, and each
class will contain a larger number of members. Our knowledge, or information, about
a particular value decreases as the granularity of the partitioning becomes coarser.

Uncertainty is also modeled through the approximation regions of rough sets
where elements of the lower approximation region have total participation in the
rough set and those of the upper approximation region have uncertain participation
in the rough set. Equivalently, the lower approximation is the certain region and the
boundary area of the upper approximation region is the possible region.

Pawlak [36] discusses two numerical characterizations of imprecision of a rough
set X: accuracy and roughness. Accuracy, which is simply the ratio of the number
of elements in the lower approximation of X, RX, to the number of elements in the
upper approximation of the rough set X, R̄X, measures the degree of completeness
of knowledge about the given rough set X. It is defined as a ratio of the two set
cardinalities as follows:

αR(X) = card(RX)/card(R̄X), where 0 ≤ αR(X) ≤ 1.

The second measure, roughness, represents the degree of incompleteness of
knowledge about the rough set. It is calculated by subtracting the accuracy from
1: ρR(X) = 1− αR(X).

These measures require knowledge of the number of elements in each of the
approximation regions and are good metrics for uncertainty as it arises from the
boundary region, implicitly taking into account equivalence classes as they belong
wholly or partially to the set. However, accuracy and roughness measures do not
necessarily provide us with information on the uncertainty related to the granularity
of the indiscernibility relation for those values that are totally included in the lower
approximation region. For example,

Let the rough set X be defined as follows:

X = {A11, A12, A21, A22, B11, C1}

with lower and upper approximation regions defined as

RX = {A11, A12, A21, A22} and

R̄X = {A11, A12, A21, A22, B11, B12, B13, C1, C2}

These approximation regions may result from one of several partitionings. Con-
sider, for example, the following indiscernibility relations:

160 T. Beaubouef and F. Petry

A1 = {[A11, A12, A21, A22], [B11, B12, B13], [C1, C2]},
A2 = {[A11, A12], [A21, A22], [B11, B12, B13], [C1, C2]},
A3 = {[A11], [A12], [A21], [A22], [B11, B12, B13], [C1, C2]}.

All three of the above partitionings result in the same upper and lower approx-
imation regions for the given set X, and hence the same accuracy measure (4/9 =
.444) since only those classes belonging to the lower approximation region were
re-partitioned. It is obvious, however, that there is more uncertainty in A1 than in A2,
and more uncertainty in A2 than in A3. Therefore, a more comprehensive measure
of uncertainty is needed.

We derive such a measure from techniques used for measuring entropy in classical
information theory. Countless variations of the classical entropy have been developed,
each tailored for a particular application domain or for measuring a particular type
of uncertainty. Our rough entropy is defined such that we may apply it to rough
databases. We define the entropy of a rough set X as follows: The rough entropy
Er(X) of a rough set X is calculated by

Er(X) = −(ρR(X))[� Qi log(Pi)] for i = 1, . . . n equivalence classes.

The term ρR(X) denotes the roughness of the set X. The second term is the
summation of the probabilities for each equivalence class belonging either wholly
or in part to the rough set X. There is no ordering associated with individual class
members. Therefore the probability of any one value of the class being named is the
reciprocal of the number of elements in the class. If ci is the cardinality of, or number
of elements in, equivalence class i and all members of a given equivalence class are
equal, Pi = 1/ci represents the probability of one of the values in class i. Qi denotes
the probability of equivalence class i within the universe. Qi is computed by taking
the number of elements in class i and dividing by the total number of elements in
all equivalence classes combined. The entropy of the sample rough set X, Er(X), is
given below for each of the possible indiscernibility relations A1, A2, and A3.

Using A1 : −(5/9)[(4/9) log(1/4)+ (3/9) log(1/3)+ (2/9) log(1/2)] = .274

Using A2 : −(5/9)[(2/9) log(1/2)+ (2/9) log(1/2)+ (3/9) log(1/3)+
(2/9) log(1/2)] = .20

Using A3 : −(5/9)[(1/9) log(1)+ (1/9) log(1)+ (1/9) log(1)+ (1/9) log(1)+
(3/9) log(1/3)+ (2/9) log(1/2)] = .048

From the above calculations it is clear that although each of the partitionings
results in identical roughness measures, the entropy decreases as the classes become
smaller through finer partitionings.

7 Information Systems Uncertainty Design and Implementation Combining 161

12 Entropy and the Rough Relational Database

The basic concepts of rough sets and their information-theoretic measures carries
over to the rough relational database model [11]. Recall that in the rough relational
database all domains are partitioned into equivalence classes and relations are not
restricted to first normal form. We therefore have a type of rough set for each attribute
of a relation. This results in a rough relation, since any tuple having a value for an
attribute that belongs to the boundary region of its domain is a tuple belonging to the
boundary region of the rough relation.

There are two things to consider when measuring uncertainty in databases: uncer-
tainty or entropy of a rough relation that exists in a database at some given time
and the entropy of a relation schema for an existing relation or query result. We
must consider both since the approximation regions only come about by set values
for attributes in given tuples. Without the extension of a database containing actual
values, we only know about indiscernibility of attributes. We cannot consider the
approximation regions.

We define the entropy for a rough relation schema as follows: The rough schema
entropy for a rough relation schema S is

Es(S) = −�j[� Qi log(Pi)] for i = 1, . . . n; j = 1, . . . , m

where there are n equivalence classes of domain j, and m attributes in the schema
R(A1, A2, . . ., Am).

This is similar to the definition of entropy for rough sets without factoring in
roughness since there are no elements in the boundary region (lower approxima-
tion = upper approximation). However, because a relation is a cross product among
the domains, we must take the sum of all these entropies to obtain the entropy of
the schema. The schema entropy provides a measure of the uncertainty inherent
in the definition of the rough relation schema taking into account the partitioning of
the domains on which the attributes of the schema are defined.

We extend the schema entropy Es(S) to define the entropy of an actual rough
relation instance ER(R) of some database D by multiplying each term in the product
by the roughness of the rough set of values for the domain of that given attribute.

The rough relation entropy of a particular extension of a schema is

ER(R) = −�jDρj(R) [� DQi log(DPi)] for i = 1, . . . n; j = 1, . . . , m

where Dρj(R) represents a type of database roughness for the rough set of values
of the domain for attribute j of the relation, m is the number of attributes in the
database relation, and n is the number of equivalence classes for a given domain for
the database.

We obtain the Dρj(R) values by letting the non-singleton domain values represent
elements of the boundary region, computing the original rough set accuracy and
subtracting it from one to obtain the roughness. DQi is the probability of a tuple in

162 T. Beaubouef and F. Petry

the database relation having a value from class i, and DPi is the probability of a value
for class i occurring in the database relation out of all the values which are given.

Information theoretic measures again prove to be a useful metric for quantifying
information content. In rough sets and the rough relational database, this is especially
useful since in ordinary rough sets Pawlak’s measure of roughness does not seem to
capture the information content as precisely as our rough entropy measure.

In rough relational databases, knowledge about entropy can either guide the data-
base user toward less uncertain data or act as a measure of the uncertainty of a data
set or relation. As rough relations become larger in terms of the number of tuples or
attributes, the automatic calculation of some measure of entropy becomes a necessity.
Our rough relation entropy measure fulfills this need.

13 Summary

Uncertainty in information systems has been extensively and successfully modeled
using fuzzy set theory. There are a number of aspects of uncertainty that can also be
represented with other approaches. In this chapter we have introduced some of these
approaches including rough set theory, fuzzy rough sets and intuitionistic set theory.
These were applied to a relational database model and extensions to the standard
relational operators developed. The basics of functional dependencies for the rough
relational database were also described. Lastly the application of information was
used to develop formulations for entropy to be applicable to the rough relational
database.

Acknowledgments This work was supported by the Naval Research Laboratory’s Base Program,
Program Element No. 0602435N

References

1. Atanassov, K.: Intuitionistic Fuzzy Sets. Fuzzy Sets Syst. 20, 87–96 (1986)
2. Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer-Verlag (2012)
3. Beaubouef, T., Petry F.: Rough Querying of Crisp Data in Relational Databases. Proceedings

of Third International Workshop on Rough Sets and Soft Computing (RSSC’94), pp. 368–375,
San Jose, California (1994)

4. Beaubouef, T., Petry, F.: Fuzzy Set Quantification of Roughness in a Rough Relational Database
Model. Proceedings of Third IEEE International Conference on Fuzzy Systems, pp. 172–177,
Orlando, Florida (1994)

5. Beaubouef, T., Petry, F.: Fuzzy rough set techniques for uncertainty processing in a relational
database. Int. J. Intell. Syst. 15, 389–424 (2000)

6. Beaubouef, T., Petry F.: A rough set foundation for spatial data mining involving vague regions.
Proceedings of FUZZ-IEEE’02, pp. 767–772, Honolulu, Hawaii (2002)

7. Beaubouef, T., Petry F.: Rough Functional Dependencies, 2004 Multiconferences: International
Conference On Information and Knowledge Engineering (IKE’04), pp. 175–179, Las Vegas
(2004)

7 Information Systems Uncertainty Design and Implementation Combining 163

8. Beaubouef, T., Petry, F.: Uncertainty modeling for database design using intuitionistic and
rough set theory. Int. J. Intell. Fuzzy Syst. 20(3), 105–117 (2009)

9. Beaubouef, T., Petry F.: Imprecise Database Security and Information Measures., International
J. Comput. Intell.: Theory Pract. 5(2), 61–7 (2010)

10. Beaubouef, T., Petry, F., Arora, G.: Information-theoretic measures of uncertainty for rough
sets and rough relational databases. Inf. Sci. 109, 185–195 (1998)

11. Beaubouef, T., Petry, F., Buckles, B.: Extension of the relational database and its algebra with
rough set techniques. Comput. Intell. 11, 233–245 (1995)

12. Bhandari, D., Pal, N.R.: Some new information measures for fuzzy sets. Inform. Sci. 67, 209–
228 (1993)

13. Bosc, P., Gailbourg, M., Hamlin, G.: Fuzzy querying with SQL: extensions and implementation
aspects. Fuzzy Sets Syst. 28(3), 333–339 (1988)

14. Bosc, P., Pivert, O.: Some approaches for relational databases flexible querying. J. Intell. Inf.
Syst. 1, 323–354 (1992)

15. Bosc, P., Pivert, O.: SQLf : a relational database language for fuzzy querying. IEEE Trans.
Fuzzy Syst. 3, 1–17 (1995)

16. Buckles, B., Petry, F.: A fuzzy model for relational databases. Int. J. Fuzzy Sets Syst. 7, 213–226
(1982)

17. Buckles, B., Petry, F.: Security and Fuzzy Databases, Proceedings of 1982 IEEE International
Conference on Cybernetics and Society, pp. 622–625, Seattle WA (1982)

18. Buckles, B., Petry, F.: Information-theoretical characterization of fuzzy relational databases.
IEEE Trans. Syst. Man Cybern. 13, 74–77 (1983)

19. Chanas, S., Kuchta, D.: Further remarks on the relation between rough and fuzzy sets. Fuzzy
Sets Syst. 47, 391–394 (1992)

20. Codd, E.: A relational model of data for large shared data banks. Commun. ACM 13(6), 377–
387 (1970)

21. de Luca, A., Termini, S.: A definition of a non-probabilistic entropy in the setting of fuzzy set
theory. Inf. Control 20, 301–312 (1972)

22. Denning, D.: Secure statistical databases with random sample queries. Trans. Database Syst.
5(3), 291–315 (1980)

23. Dubois, D., Prade, H.: Putting rough sets and fuzzy sets together. In: Slowinski, R. (ed.)
Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets
Theory. Kluwer Academic Publishers, Boston (1992)

24. Dubois, D., Godo, L., Prade, H., Esteva, F.: An information-based discussion of vagueness. In:
Cohen, H., Lefebvre, C. (eds.) Handbook of Categorization in Cognitive Science, Chap. 40,
pp. 892–913 , Elsevier (2005)

25. Elmasri, R., Navathe, S.: Fundamentals of Database Systems, 5th edn. Pearson/Addison Wesley
(2007)

26. Fung, K., Lam, C.: The database entropy concept and its application to the data allocation
problem. INFOR 18(4), 354–363 (1980)

27. Klir, G., Folger, T.: Fuzzy Sets, Uncertainty, and Information. Prentice Hall, Englewood Cliffs
NJ (1988)

28. Ligeza, A.: Granular Sets and Granular Relation. Intelligent Information Systems, pp. 331–340,
Physica Verlag (2002)

29. Lin, T.Y.: Topological and fuzzy rough sets. In: Slowinski, R. (ed.) Intelligent Decision Support:
Handbook of Applications and Advances of the Rough Sets Theory, pp. 287–304. Kluwer
Academic Publishers, Boston (1992)

30. Makinouchi, A.: A Consideration on normal form of not-necessarily normalized relation in the
relational data model. Proceedings of the 3rd International Conference on VLDB, pp. 447–453
(1977)

31. Motro, A., Marks, D., Jajodia, S.: Aggregation in relational databases: controlled disclosure
of sensitive information. In: Proceedings of ESORICS 94, Third European Symposium on
Research in Computer Security. Lecture Notes in Computer Science, vol. 875, pp. 431–445,
Brighton, UK, Springer-Verlag (1994)

164 T. Beaubouef and F. Petry

32. Nanda, S., Majumdar, S.: Fuzzy rough sets. Fuzzy Sets Syst. 45, 157160 (1992)
33. Nilsson, N.: Probabilistic Logic. Artif. Intell. 28(1), 71–87 (1986)
34. Ola, A., Ozsoyoglu, G.: Incomplete relational database models based on intervals. IEEE Trans.

Knowl. Data Eng. 5, 293–308 (1993)
35. Pawlak, Z.: Rough sets. Int. J. Comput. Inform. Sci. 11, 341–356 (1982)
36. Pawlak, Z.: Rough sets and fuzzy sets. Fuzzy Sets Syst. 17, 99–102 (1985)
37. Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data. Kluwer Academic

Publishers, Norwell, MA (1991)
38. Prade, H., Testemale, T.: Generalizing database relational algebra for the treatment of incom-

plete/uncertain information and vague queries. Inform. Sci. 34, 115–143 (1984)
39. Quinlan, J.: Induction of decision trees. Mach. Learn. 1, 81–106 (1986)
40. Randell, D., Cui, Z., Cohn, A.: An interval logic for space based on connection. In: Proceedings

of ECAI, pp. 394–398 (1992)
41. Shannon, C.: The mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423

(1948)
42. Shenoi, S., Melton, A., Fan, L.: Functional dependencies and normal forms in the fuzzy rela-

tional database model. Inf. Sci. 60, 1–28 (1992)
43. Srinivasan, P.: The importance of rough approximations for information retrieval. Int. J. Man

Mach. Stud. 34, 657–671 (1991)
44. Szmidt, E., Kacprzyk, J.: On distances between intuitionistic fuzzy sets. Fuzzy Sets Syst. 114,

505–518 (2000)
45. Szmidt, E., Kacprzyk, J.: Entropy for intuitionistic fuzzy sets. Fuzzy Sets Syst. 118, 467–477

(2001)
46. Umano, M.: FREEDOM-O: a fuzzy database system. In: Gupta, M., Sanchez, E. (eds.) Fuzzy

Information and Studies in Fuzziness Series, pp. 339–347. Physica-Verlag, Heidelberg, Deci-
sion Processes, North-Holland (1982)

47. Wygralak, M.: Rough sets and fuzzy sets-some remarks on interrelations. Fuzzy Sets Syst. 29,
241–243 (1989)

48. Yao, P.: Fuzzy rough set and information entropy based feature selection for credit scoring.
Proc. 6th Int. Conf. Fuzzy Syst. Knowl. Disc. 6, 247–251 (2009)

49. Yao, Y.: Semantics of Fuzzy Sets in Rough Set Theory. T. Rough Sets II, 297–318 (2004)
50. Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
51. Zadeh, L.A.: Possibility theory and soft data analysis. In: Cobb, L., Thrall, R.M. (eds.) Math-

ematical Frontiers of the Social and Policy Sciences. Westview, Boulder, CO., pp. 69–129
(1981)

52. Zemankova, M., Kandel, A.: Implementing Imprecision in Information Systems. Inf. Sci. 37,
107–141 (1985)

Chapter 8
Flexible Bipolar Querying of Uncertain
Data Using an Ontology

Patrice Buche, Sébastien Destercke, Valérie Guillard, Ollivier Haemmerlé and
Rallou Thomopoulos

Abstract In this chapter, we propose an approach to query a database where the
user preferences can be bipolar (i.e., express both constraints and wishes about the
desired result) and the data stored in the database can be uncertain. Query results are
then completely ordered with respect to these bipolar preferences, giving priority to
constraints over wishes. Furthermore, we consider user preferences expressed on a
domain of values which is not “flat”, but contains values that are more specific than
others according to the “kind of” relation. These preferences are represented by spe-
cific fuzzy sets, called “Hierarchical Fuzzy Sets” and defined over a simple ontology.
We propose a use of “Hierarchical Fuzzy Sets” for query enlargement purposes. The
approach is illustrated on a real-world problem concerning the selection of optimal
packaging material for fresh fruits and vegetables.

P. Buche (B) · R. Thomopoulos
INRA IATE, 2, place Pierre Viala, F-34060 Montpellier Cedex 02, France
e-mail: buche@supagro.inra.fr

P. Buche
LIRMM/CNRS-UM2/INRIA GRAPHIK, F-34392 Montpellier, France

S. Destercke
CNRS HEUDYASIC, Centre de recherches de Royallieu, F-60205 Compiegne Cedex, France
e-mail: sebastien.destercke@hds.utc.fr

V. Guillard
UM2 IATE, cc 023 Pl. E. Bataillon, F-34095 Montpellier, France
e-mail: guillard@univ-montp2.fr

O. Haemmerlé
IRIT-Melodi, Université Toulouse le Mirail, 5, Allées Antonio Machado,
F-31058 Toulouse Cedex 9, France
e-mail: ollivier.haemmerle@univ-tlse2.fr

R. Thomopoulos
LIRMM/CNRS-UM2/INRIA GRAPHIK, F-34392 Montpellier, France
e-mail: rallou@supagro.inra.fr

O. Pivert and S. Zadrożny (eds.), Flexible Approaches in Data, Information 165
and Knowledge Management, Studies in Computational Intelligence 497,
DOI: 10.1007/978-3-319-00954-4_8, © Springer International Publishing Switzerland 2014

166 P. Buche et al.

1 Introduction

In some applications, there may be a need to differentiate, within queries, between
negative preferences and positive ones. Negative preferences correspond to con-
straints, as they specify which values or objects have to be rejected (i.e., those that
do not satisfy constraints), while positive preferences correspond to wishes, as they
specify which objects are more desirable than others (i.e., satisfy user wishes) without
rejecting those that do not meet the wishes. Indeed, while the first type of prefer-
ences should be satisfied by query results, satisfying the second type of preferences
can be considered as optional, as the user does not consider them to be necessary
requirements.

Also, preferences may be expressed over elements organized into a hierarchy
rather than on a ‘flat’ domain. This kind of hierarchy is typically modeled as a
simple ontology in which concepts are partially-ordered by the ‘kind of’ relation.
Considering these two extensions (i.e., allowing bipolar preferences expressed over
hierarchies) answers a bipolar query enlargement purpose, as the resulting query will
send back more results than classical bipolar ones.

Finally, there may be uncertainty in the available data, and there is a need to
integrate this uncertainty in the query processing. In this chapter, we propose to
consider these three problems in a common framework, using the notion of bipolar
information and of fuzzy pattern matching.

The notions of bipolar preferences and of bipolar information in general have
recently received increasing attention [1, 21]. Roughly speaking, information is said
to be bipolar when there is a positive and a negative part of the information. These
negative and positive parts of the information may have different natures, and should
therefore be processed in parallel, and not as a single piece of information. This
kind of bipolarity [11], coined as asymmetric, is the one we are concerned with. For
example, we may feel both positive and negative about something, without being
able to fuse these two feelings in a unique one (for example, eating ice cream gives
a gustative pleasure, but one can also feel guilty about it).

In the case of database queries, asymmetric bipolarity is useful to distinguish
negative preferences or constraints (i.e. criteria that a good answer must satisfy)
from positive preferences or wishes (i.e. criteria that a good answer should satisfy,
if possible). For example, in the query “a new car not too expensive and if possible
red”, “not too expensive” is clearly a requirement while “red” merely expresses a
wish.

Some preliminary studies of this work have already been published in [16] and
[28]. In this chapter, we provide a synthetic overview of a method to treat bipolar
preferences in databases where data can be uncertain and expressed on a hierarchical
domain. In particular, this method uses the bipolar nature of preferences to induce
an (pre-)ordering between query results, so that priority is given to those instances
that are the most likely to satisfy all expressed constraints and wishes. Section 2
describes the method, while Sect. 3 illustrates the approach on a use case coming
from a new decision support system (DSS) currently developed in IATE laboratory

8 Flexible Bipolar Querying of Uncertain Data Using an Ontology 167

where a (industrial/researcher) user wants to select a packaging material that best
suits his/her needs. Finally, we give some elements of comparison with previous
works in Sect. 4.

2 Method

This section first recalls some basic tools that will be used in the method, before
describing the method itself.

2.1 Preliminaries: Fuzzy Pattern Matching

In this chapter, we use fuzzy sets [33] to represent preferences in our queries and
possibility distributions [19] to represent uncertainty in the data. A normalized fuzzy
set μ over a variable X assuming its value on DX is a mapping μ : DX → [0, 1]
with at least one x ∈ DX such that μ(x) = 1. Here, we assume that DX is either
a finite set of elements (e.g., the colour of a car), possibly partially ordered by the
‘kind of’ relation (see Sect. 2.3), or a subset of the real line (e.g., the maximal speed
of a car).

Here, fuzzy sets are used to express preferences provided by a user in a query.
That is, for a given variable X , the fuzzy value μ(x) expresses to what degree the
value x satisfies the preference represented by μ, with μ(x) = 1 meaning that the
preference is fully satisfied and μ(x) = 0 that it is completely unsatisfied.

Example 1 Consider again our car example “a new car not too expensive and if
possible red”. Assume the user has specified that “not too expensive” means that
any price over 18,000 $ is unacceptable, while any price lower than 14,000 $ can
be considered as totally satisfactory. The corresponding preference is represented by
the fuzzy set μN T E in Fig. 1. Given this representation, we have, for example, that a
price of 15,000 $ fulfils the user preferences at a degree μN T E (15, 000) = 0.75.

Possibility distributions, on the other hand, are simple uncertainty representations
allowing to model the ill-known value of some variable. A possibility distribution π

over a variable X is also a mapping π : DX → [0, 1] with at least one x ∈ DX such

1
μNTE

18,00014,000

Fig. 1 Fuzzy set μN T E describing “Not Too Expensive”

168 P. Buche et al.

that π(x) = 1. They are therefore equivalent to fuzzy sets from a formal point of
view, but possess different semantics. Indeed, they describe our knowledge about the
potential value of X . Two measures or set-functions can be derived from a possibility
distribution, namely the necessity and possibility measures, which are such that, for
every event A ⊆ DX ,

�(A) = sup
x∈A

π(x); N (A) = inf
x∈Ac

(1− π(x)) = 1−�(Ac),

where �(A) and N (A) express to what extent it is respectively plausible and certain
that the actual value of X lies in A.

Note that possibility distributions can model both precisely known values (X = x
corresponds to the distribution π(x) = 1 and zero everywhere else) and set-valued
variables (X ∈ A corresponds to the distribution π(x) = 1 if x ∈ A, zero otherwise).
In the same way, fuzzy sets can model crisp preferences (i.e., those used in classical
queries).

In the rest of the chapter, we consider that each query (or preference) P on an
attribute X assuming its value on DX is expressed by a fuzzy set μP (possibly
degenerated into a crisp preference). Our knowledge D about the attribute value for
a particular tuple is given by a possibility distribution πD (also possibly degenerated
in a crisp set). Our knowledge about the imprecise evaluation of P given uncertainty
D is summarised by the following lower and upper values [19, 20]:

�(P; D) = sup
x∈DX

min(μP (x), πD(x)), (1)

N (P; D) = inf
x∈DX

max(μP (x), 1− πD(x)).

In the following, we will speak of evaluations of a fuzzy preference when talking
about the interval [N (P; D),�(P; D)].
Example 2 Consider the preference of Example 1, and a car for which the price
is known to belong to the interval [14, 500; 16, 000], with 15, 500 the most likely
value. Figure 2 illustrates both the preference and the knowledge about the price.
From this information, we have (using Eq. (1)) that

�(P; D) = 0.7 and N (P; D) = 0.55.

1

μNTE = μP

18,00014,000

πD

15,500

Π(P;D)= 0.7

N(P;D)= 5/9

1−πD

Fig. 2 Evaluation of a fuzzy preference with uncertain data

8 Flexible Bipolar Querying of Uncertain Data Using an Ontology 169

2.2 Notations and Problem

The problem we consider is as follows: we assume that we have a database consisting
of a set T of T objects ot , t = 1, . . . , T , with each object taking its values on
the Cartesian product ×N

i=1 DXi of N domains DX1 , . . . , DX N . An object ot is here
described by a set of N possibility distributions π i

t , i = 1, . . . , N , where π i
t : DXi →

[0, 1] is the possibility distribution describing our knowledge about the value of the
i th attribute of object t . When DXi is finite, its elements are partially ordered in an
ontology according to the ‘kind of’ relation (classical finite sets are retrieved when
all elements are incomparable w.r.t. this order, see Sect. 2.3). We also assume that
the user provides the following information:

• a set C = {Ci1
1 , . . . , C

iNc
Nc
} of Nc constraints (Nc ≤ N) to be satisfied by the

retrieved objects, where C
i j
j : DXi j

→ [0, 1] is a normalised fuzzy set defined on
the attribute i j (1 ≤ i j ≤ N).

• a set W = {W i1
1 , . . . , W

iNw

Nw
} of Nw wishes (Nw ≤ N) that the retrieved objects

should satisfy if possible, where W
i j
j : DXi j

→ [0, 1] is a normalised fuzzy set
defined on the attribute i j (1 ≤ i j ≤ N).
• complete pre-orderings ≤c and ≤w between the constraints to be satisfied and

between the wishes, respectively. These pre-orderings take account of the fact
that some constraints may be considered as more important to satisfy than others
(and similarly for wishes). In the following, we denote by C(i) (resp. W(i)) the
constraints (resp. the wishes) that have rank i w.r.t. to the pre-ordering1 ≤c (resp.
≤w). We denote by | ≤c | and | ≤w | the total number of ranks (i.e., of equivalence
classes) induced by the two orderings.

Note that constraints and wishes may well be defined on the same attribute. For
example, having an acceptable price may be considered as a constraint, but since
a lower price (all other things being equal) is always preferable, lowering the price
may become a wish for prices lower than completely satisfying prices (in Example 1,
one can define a wish that would start from 14, 000 $).

The problem we consider now is how to retrieve from a set T of objects, those
that primarily satisfy the constraints, and among the latter, those that fulfill the most
wishes. Of course, the querying approach has to take account of the bipolar nature of
the information, of the possible uncertainty in the data, and of the user’s preferences
among the constraints and wishes. The next section presents how user preferences
are handled when defined over a domain of elements partially ordered by the “kind
of” relation. In this latter case, a special kind of fuzzy sets, called hierarchical fuzzy
sets, will be used.

1 Note that since ≤c and ≤w are complete pre-orderings, each constraint/wish has a well-defined
rank.

170 P. Buche et al.

2.3 Fuzzy Sets Defined on a Hierarchical Domain

The notion of hierarchical fuzzy set rose from our need to express fuzzy values
in the case where elements receiving a membership value are part of an ontology
domain (e.g., packaging material components). First (Sect. 2.3.1), a fuzzy set is cre-
ated directly by the user and defined on a part of the hierarchy (only some elements are
given membership values). Second, for reasons explained in Sect. 2.3.2, we extend
the fuzzy set to the whole hierarchy, thus obtaining the closure of the fuzzy set.
Section 2.3.3 defines how we extend the evaluation of fuzzy preferences when clas-
sic fuzzy sets are extended to hierarchical fuzzy sets.

2.3.1 Presentation

The definition domains of the fuzzy sets that we define below are subsets of hierar-
chies composed of elements partially ordered by the “kind of” relation, i.e. they are
defined over a subset B ⊆ DX of the domain of attribute X . An element x ∈ DX is
more general than an element x ′ ∈ DX (denoted x ′ ≺ x), if x ′ is a predecessor of x
in the partial order induced by the “kind of” relation (denoted ≺) of the hierarchy.
An example of such a hierarchy is given in Fig. 3. A hierarchical fuzzy set is then
defined as follows.

Definition 1 A hierarchical fuzzy set is a fuzzy set whose definition domain B ⊆
DX is a subset of the elements of a finite hierarchy partially ordered by the “kind
of” relation ≺.

Styrenic
Resin

Polyolefin

Thermoplastic

Packaging

Cellulosic Plastic

Biopolymers

Polystyrene

Polyester

Polyethylen
Naphthalate

Rubbers

Polyethylen
Terephthalate

Low Density
Polyethylene

Polypropylene

Polyvinyl
Chloride

Cellophane
Film

Polysaccharides

Proteins

Wheat
gluten

Cellulose
Starch Bilayer wheat

gluten LDPE

Fig. 3 Example of a hierarchy

8 Flexible Bipolar Querying of Uncertain Data Using an Ontology 171

Biopolymers Cellulose
0

0,9

1

Wheat gluten Biopolymers
0

0,9

1

HFS1 HFS2

Fig. 4 Fuzzy sets HFS1 and HFS2

For example, the fuzzy sets HFS1 and HFS2 represented in Fig. 4 conform to
Definition 1. Their definition domains are subsets of the hierarchy given in Fig. 3.

We can note that no restriction has been imposed concerning the elements that
compose the definition domain of a hierarchical fuzzy set and their membership
values. Therefore, the user may associate a given degree d with an element x and
another degree d ′ with an element x ′ more specific than x . d ′ ≤ d represents a
semantic of restriction for x ′ compared to x , whereas d ′ ≥ d represents a semantic
of reinforcement for x ′ compared to x .

For example, if there is particular interest in wheat gluten because the user
is studying the properties of wheat chain by-products to design packaging, but
also wants to retrieve complementary information about other kinds of biopoly-
mers, these preferences can be expressed using for instance the following fuzzy
set2: {(W heatgluten, 1), (Biopolymers, 0.9)}. In this example, the element Wheat
gluten has a larger degree than the more general element Biopolymers, which corre-
sponds to a semantic of reinforcement for Wheat gluten compared to Biopolymers.
On the contrary, if the user is interested in all kinds of biopolymers to design packag-
ing, but to a lesser extent in Cellulose because of its higher value to make bioethanol
rather than packaging, the preferences can be expressed using the following fuzzy
set: {(Biopolymers, 1), (Cellulose, 0.9)}. In this case, the element Cellulose has a
smaller degree than the more general element Biopolymers, which corresponds to a
semantic of restriction for Cellulose compared to Biopolymers.

2.3.2 Closure of a Hierarchical Fuzzy Set

We can make two remarks concerning the use of hierarchical fuzzy sets:

• the first one is semantic. Let {(Polysaccharides, 1), (Biopolymers, 0.9)} be an
expression of preferences in a query. We can note that this hierarchical fuzzy set
implicitly gives information about elements of the hierarchy other than Polysac-
charides and Biopolymers. For instance, it can be deduced that the user does not

2 Here, we adopt the usual notation (x, y) for specifying fuzzy sets over symbolic variables, where
(x, y) means that modality x has membership value y.

172 P. Buche et al.

expect results concerning packagings like Rubber or Polyolefin, even if the degree
0 has not explicitly been associated with these packagings. It is also possible to
assume that any kind of Polysaccharides (Cellulose and Starch for example) interests
the user with the degree 1;
• the second one is operational. The problem rising from Definition 1 is that two

different fuzzy sets on the same hierarchy do not necessarily have the same def-
inition domain, which means they cannot be compared using the classic com-
parison operations of fuzzy set theory (see for example Eq. (1)). For instance,
{(W heat gluten, 1), (Biopolymers, 0.9)} and {(Biopolymers, 1), (Cellulose, 0.9)} are
defined on two different subsets of the hierarchy of Fig. 3, respectively
{W heat gluten, Biopolymers} and {Biopolymers, Cellulose}, and thus are not com-
parable.

From these remarks can be defined the concept of closure of a hierarchical fuzzy set,
which is a developed form of the hierarchical fuzzy set defined on the whole hierarchy.
The closure of a hierarchical fuzzy set is computed by propagating the degree of an
element according to the “kind of” relation: the degree associated with an element
is propagated to its sub-elements (more specific elements) in the hierarchy, provided
the latter have no degree yet. For instance, in a query, if the user is interested in
the element Biopolymers, we consider that all kinds of Biopolymers—Polysaccharides,
Proteins, etc.—are of interest. On the other hand, we consider that the super-elements
(more general elements) of Biopolymers in the hierarchy— Thermoplastic, Packaging,
...—are too general to be relevant for the user’s query.

Definition 2 Let F be a hierarchical fuzzy set defined on a subset B of the elements of a
hierarchy DX . Its membership function is denoted μF . The closure+ and the closure− of
F, denoted μclos+(F) and μclos−(F), are two hierarchical fuzzy sets defined on the whole set
of elements DX .

For each element x of DX , let Ex = {x1, . . . , xn} be the set of the smallest super-elements
of x in B, i.e. elements such that for any i = 1, . . . , n, x 	 xi (x ∈ Ex if x ∈ B) and there is
no x ′ ∈ B such that x ≺ x ′ ≺ xi . Then:

• if Ex is not empty,

μclos+(F)(x) = max
1≤i≤n

(μF (xi)) (2)

and

μclos−(F)(x) = min
1≤i≤n

(μF (xi)); (3)

• otherwise μclos+(F)(x) = μclos−(F)(x) = 0.

In other words, the closure+ and the closure− of a hierarchical fuzzy set F are built
according to the following rules. For each element x of DX :

1. if x ∈ B, then x keeps the same degree in both closures of F , i.e., μclos+(F)(x) =
μclos−(F)(x) = μF (x) (case where Ex = {x});

8 Flexible Bipolar Querying of Uncertain Data Using an Ontology 173

2. if Ex has a unique smallest super-element x1 in B, then the degree associated with
x1 is propagated to x in both closures of F , i.e., μclos+(F)(x) = μclos−(F)(x) =
μF (x1) (case where Ex = {x1} with x ≺ x1);

3. if x has several smallest super-elements {x1, . . . , xn} in B, with different degrees,
the proposition made in Definition 2 consists in choosing the maximal degree
associated with x1, . . . , xn in the closure+, and the minimal degree in the
closure−;

4. all the other elements of DX , i.e., those that are more general than, or not com-
parable with the elements of B according to ≺ are considered as non-relevant.
The degree 0 is associated with them (case where Ex = ∅).

Example 1 Figure5 shows the two closures of the hierarchical fuzzy set
{(W heatgluten, 1), (Biopolymers, 0.8), (Cellulose, 0.3), (LowDensity
Polyethylene, 0.2)}.

The use of both a permissive (closure+) and a restrictive (closure−) closure is
due to the bipolar nature of the preferences involved. In the case of a wish, Eq. (2)
ensures a semantic of reinforcement by the use of the max operator (i.e., an element
outside B is at least as desirable as its most desirable super-element in B), while the
use of min operator in Eq. (3) ensures a semantic of restriction for constraints (i.e., an
element outside B is at most as desirable as its least desirable super-element in B).

Styrenic
Resin

Polyolefin

Thermoplastic

Packaging

Cellulosic Plastic

Biopolymers

Polystyrene

Polyester

Polyethylen
Naphthalate

Rubbers

Polyethylen
Terephthalate

Low Density
Polyethylene

Polypropylene

Polyvinyl
Chloride

Cellophane
Film

Polysaccharides

Proteins

Wheat
gluten

Cellulose
Starch

0.8

1

0.3

0.8

0.8

0.8

0

0

0

0

0

0

0

0.2

0

0

0

0

0

0

Bilayer wheat
gluten LDPE

0.2/1

Fig. 5 Closures of a hierarchical fuzzy set: closure+ and closure− only differ for the element
Bilayer wheat gluten LDPE for which μclos+(F)(x) = 1 and μclos−(F)(x) = 0.2

174 P. Buche et al.

2.3.3 Pattern Matching for Hierarchical Fuzzy Sets

Using the concept of closure, all fuzzy sets defined on a given hierarchy can be
extended to the same definition domain (the whole hierarchy DX) and thus can be
compared using the classical comparisons and operations between fuzzy sets (e.g.,
those presented in Eq. (1)).

Similarly to preferences, our knowledge about data will usually be expressed on
a subset B of DX , here by a possibility distribution π (note that here, we assume that
the ontology structure and concepts are certain, only the actual value of some data on
this ontology is uncertain). Computing the closure of π over DX is slightly different,
as we do not consider bipolarity in the information (only negative information in the
form of π is given) and as the semantic of possibility distributions is different.

Let us define, for an element x ∈ DX , the set E(x) = {y1, . . . , ym} of the biggest
sub-elements of x in B, i.e. elements such that for any i = 1, . . . , m, yi ≺ x and there
is no y ∈ B such that yi ≺ y ≺ x . The closure clos(π)(x) of π is defined as follows:

• if x ∈ B, then clos(π)(x) = π(x);
• if Ex = {x1, . . . , xn} is not empty, then clos(π)(x) = max1≤i≤n(π(xi));
• if Ex is empty and E(x) = {y1, . . . , ym} is not, then clos(π)(x) = max1≤i≤m(π(yi));
• else clos(π)(x) = 0.

This procedure may give quite imprecise possibilities, but it corresponds to the desire
not to miss any interesting data. It is also consistent with usual procedures modi-
fying uncertainty models in the case of refinement or coarsening of an initial non-
hierarchical space (in the example of Fig. 4, Biopolymers can be seen as a coarsening
of the elements Polysaccahrides, Proteins and as an element of the refinement of
T hermoplastic).

Definition 3 Let π and F be two hierarchical fuzzy sets defined on the same hierarchy,
respectively defining some knowledge about the variable value and some preferences about
these values. Then:

1. the possibility degree of matching between π and F a positive preference (resp. a negative
one) �(π; F) is defined as
�(clos(π); clos+(F)) = supx∈DX

min(clos(π)(x), μclos+(F)(x))

(resp. �(clos(π); clos−(F)) = supx∈DX
min(clos(π)(x), μclos−(F)(x)));

2. the necessity degree of matching between π and F a positive preference (resp. a negative
one) , N (π; F), is defined as
N (clos(π); clos+(F)) = infx∈DX max(μclos+(F)(x), 1− clos(π)(x))

(resp. N (clos(π); clos−(F) = infx∈DX max(μclos−(F)(x), 1− clos(π)(x)))).

We will see in the next section how bipolar preferences, including positive and
negative preferences defined by hierarchical fuzzy sets, are used to query uncertain
data.

8 Flexible Bipolar Querying of Uncertain Data Using an Ontology 175

2.4 From Bipolar Querying with Imprecise
Data to Answer Ordering

Previous sections have dealt with the problem of modeling and specifying bipolar
preferences and uncertain data over hierarchies defined by simple ontologies. We now
detail methods allowing the retrieval and ordering of answers from these preferences
and propose some elements explaining this ordering to the users.

2.4.1 Ordering Answers

As underlined by [1], when bipolar information concerns preferences, satisfying
constraints should be a primary aim, while satisfying wishes remains secondary. To
do this, a solution is to first retain all the objects that may satisfy the constraints,
order them w.r.t. the degree to which they satisfy these constraints, and then refine
this order by using degrees to which objects satisfy those wishes. If the user has
specified preferences between constraints (resp. between wishes)3, we also provide
a means to take these preferences into account.

We propose, for constraints C(i) of rank i , to summarise the way an object ot sat-

isfies these constraints by an aggregated interval [N (i)
t , �

(i)
t]c given by the following

formula:

N (i)
t = �C

jk
k ∈C(i)

N (C jk
k ;π jk

t), and �
(i)
t = �C

jk
k ∈C(i)

�(C jk
k ;π jk

t), (4)

with N (C jk
k ;π jk

t), �(C jk
k ;π jk

t) given by Eq. (1) or definition 3 if the domain associated

with C jk
k is a hierarchy, and � a t-norm4 [23]. T-norms are conjunctive aggregation

operators and are chosen here for the reason that ALL constraints have to be satisfied
simultaneously. Here, we take � = min, the minimum operator.

Similarly, we build, for each W(i) and object ot satisfying the constraints, the

interval [N (i)
t , �

(i)
t]w, such that

N (i)
t = ⊕W

jk
k ∈W(i)

N (W jk
k ;π jk

t), and �
(i)
t = ⊕W

jk
k ∈W(i)

�(W jk
k ;π jk

t), (5)

where ⊕ is an aggregation operator that can be a t-norm, an averaging operator such
as an OWA [32] operator or a t-conorm, depending on the behaviour we want to adopt
w.r.t. the satisfaction of wishes. Indeed, since satisfying wishes is not compulsory,
we can adopt different attitudes [1]. For instance, using a t-conorm means that we
are satisfied as soon as one wish is fulfilled, while using a t-norm means that we still

3 No preferences means here that all constraints (or wishes) have the same rank, i.e., are of equal
importance.
4 A T-norm� : [0, 1]2 to [0, 1] is an associative, commutative operator that has 1 for neutral element
and 0 for absorbing element.

176 P. Buche et al.

want all the wishes to be satisfied to increase our overall satisfaction. In this chapter,
we consider the latter case, and will take ⊕ = min.

It is necessary then to order objects that could satisfy the constraints and some
wishes, according to the previous evaluations. To do so, we will use a lexicographic
order and a dominance relation≤[N (i),�(i)] between objects such that, for two interval

evaluations [N (i)
t , �

(i)
t], [N (i)

t ′ ,�
(i)
t ′] related to objects ot and ot ′ and to a group of

constraints C(i) or a group of wishes W(i), ot ≤[N (i),�(i)] ot ′ if N (i)
t ≤ N (i)

t ′ and

�
(i)
t ≤ �

(i)
t ′ (with ot <[N (i),�(i)] ot ′ if at least one inequality is strict). That is, an

object ot ′ dominates another one ot if its satisfaction bounds are pair-wise higher than
the satisfaction bounds of ot . The lexicographic order is then used to take account
of the difference between negative and positive preferences and of the orderings ≤c

and ≤w (i.e. objects are first ordered using constraints of rank one, then two, …).
Note that, although≤[N (i),�(i)] is a partial order, we will induce from it a complete

pre-order that refines ≤[N (i),�(i)], for the reason that users are more at ease with
complete orderings. However, we will use the fact that ≤[N (i),�(i)] is a partial order
to differentiate negative and positive preferences. The procedure consists in building
iteratively an ordered partition {T0, . . . ,TM } of T . Rejected objects that do not
satisfy all constraints are put in T0, while objects in TM can be considered as the
most satisfactory.

In a preliminary step, Algorithm 1 rejects those objects of T that do not at all
satisfy some constraints.

Algorithm 1: Determination of T0, the set of rejected objects which will not
belong to the query result

Input: The set of objects T = {o1, . . . , oT }
Output: Ordered partition{T0, T \ T0} of T
T0 = ∅;1
foreach ot ∈ T do2

if �
(i)
t = 0 for some i = 1, . . . , | ≤c | then3

T0 = T0 ∪ {ot } ;4

Algorithm 2 describes how results are ordered within a subset of T \ T0 (called
T ′), according to constraints of a given rank. The whole procedure consists in build-
ing a partition of T \T0. The partition is refined iteratively by applying, at every rank
i (i ∈ [1, | ≤c |]), Algorithm 2 within each equivalence class of objects obtained at the
previous rank i − 1. When i = 1, the unique initial equivalence class T ′ is T \T0. In
every run of Algorithm 2, equivalence classes {T ′1 , . . . , T ′n } are incrementally built,
starting from the worst (T ′1) and ending with the best (T ′n). At each step, the objects
included and then suppressed from T ′ are those objects that do not dominate other
objects (line 4), in the sense of ≤[N (i),�(i)]. This means that objects with imprecise

evaluations (i.e., [N (i)
t ,�

(i)
t] with larger width) will be in lower classes, along with

objects having low evaluations (i.e., low �
(i)
t). This corresponds to a pessimistic

8 Flexible Bipolar Querying of Uncertain Data Using an Ontology 177

attitude towards imprecision, since imprecise evaluations are associated with poorly
satisfying objects. Such an attitude is coherent with negative preferences, as the
possibility of not satisfying a constraint is penalised.

Algorithm 2: Query result ordering for constraints of rank (i)
Input: T ′ ⊆ T \ T0 with T ′ an element of the partition issued from rank (i − 1),

[N (i)
t ,�

(i)
t]c for each ot ∈ T ′

Output: Ordered partition{T ′1 , . . . , T ′n } of T ′
K = T ′; j=1;1
while K �= ∅ do2

foreach ot ∈ K do3
if � ∃o j ∈ K s.t. ot ≥[N (i),�(i)] o j then4

Put ot in T ′j5

K = K \ T ′j ;6

j = j + 1;7

After having applied Algorithm 1 once and Algorithm 2 | ≤c | times, the complete
pre-order is further refined according to wishes by using Algorithm 3. There are two
main differences with Algorithm 1 and Algorithm 2. First, no objects are rejected,
as we are dealing with positive preferences (satisfying them is not compulsory).
Second, we start here from the best equivalence class and finish with the worst5, and
at each step the objects included and then suppressed from T ′ are those objects that
are not dominated by other objects (line 7), in the sense of ≤[N (i),�(i)]. Contrary to
Algorithm 2, objects with imprecise evaluations will be in the upper classes. This
corresponds to an optimistic attitude towards imprecision, which is coherent with
positive preferences, as it promotes the possibility of satisfying more wishes. Note
that inconsistency problems between positive and negative information [1] do not
occur here, since constraints and wishes are treated separately and lexicographically.

The knowledge uncertainty is fully acknowledged through the use of the partial
order ≤[N (i),�(i)] (which considers both end-points of intervals [N (i), �(i)]) in algo-
rithms 2 and 3 which allow us to make a clear distinction in the treatment of negative
and positive aspects of bipolar preferences. However, a possible drawback for huge
databases is the complexity that the use of these algorithms represents. Indeed, each
run of Algorithms 2 and 3 requires comparing each object with all the other objects
of a same equivalence class. If n objects have to be ordered, then in the worst case
(| ≤c |+| ≤w |)n2 comparisons are performed, assuming that no object strictly domi-
nates another for any rank of constraints or wishes. In the best case, i.e. when objects
are completely ordered after a first run, n2 comparisons have to be made. It must
be noted that n is reduced to |T \T0| thanks to Algorithm 1. Such complexities are
quite acceptable for most databases, but could be problematic for databases counting
billions of objects. In such a case, it is possible to use other propositions presenting

5 The shift loop (Lines 3-5) is there to keep the same indexing of subsets T j

178 P. Buche et al.

Algorithm 3: Query result ordering for wishes of rank (i)
Input: T ′ ⊆ T \ T0 with T ′ an element of a partition issued from rank (i − 1),

[N (i)
t ,�

(i)
t]w for each ot ∈ T ′

Output: Ordered partition{T ′1 , . . . , T ′m} of T ′
K = T ′; j=0;1
while K �= ∅ do2

for i = j, . . . , 1 (skip if j = 0) do3
T ′j+1 = T ′j4

T ′1 = ∅;5
foreach ot ∈ K do6

if � ∃o j ∈ K s.t. ot ≤[N (i),�(i)] o j then7
Put ot in T ′18

K = K \ T ′1 ;9
j = j + 1;10

a lower complexity where object ordering is solely based on one of the two numbers
N (i) or �(i) [20]. However, using orderings based on single numbers means that the
imprecision in [N (i), �(i)] is not fully taken into account and some of the information
contained in the interval is lost.

Example 3 Let us consider a set T of six objects o1, . . . , o6, two ranks of constraints and only

one rank of wish. The intervals [N (i)
t , �

(i)
t]c (i = {1, 2}) and [N (1)

t , �
(1)
t]w are summarized

in Table 1.
Running Algorithm 1 gives T0 = {o4}. o4 is the only rejected object, because �

(2)
4 =

0, even if it satisfies rank one constraints necessarily to a high degree. After a first run of
Algorithm 2, we obtain the following partition:

T0 = {o4} < T1 = {o1, o6} < T2 = {o2, o3} < T3 = {o5}.

All elements potentially satisfy constraints in C(1) (although o6 does not necessarily satisfy
them). Note that o6, for which information is fully imprecise, is at the end of the ordering
(whereas it would have been at the front if we used Algorithm 3). Since there are two ranks
of constraints, a second run of Algorithm 2 gives

T0 = {o4} < T1 = {o6} < T2 = {o1} < T3 = {o2, o3} < T4 = {o5}.

Table 1 Example 3
evaluations for constraints
and wishes

[N (1)
t ,�

(1)
t]c [N (2)

t ,�
(2)
t]c [N (1)

t ,�
(1)
t]w

o1 [0.1,0.4] [0.8,1] [1,1]
o2 [0.5,0.8] [0.5,0.6] [0.6,0.9]
o3 [0.3,1] [0.4,0.8] [0.2,0.5]
o4 [0.8,1] [0,0] [0.5,0.7]
o5 [1,1] [0.2,0.4] [0,0]
o6 [0,1] [0.6,0.9] [0.3,0.7]

8 Flexible Bipolar Querying of Uncertain Data Using an Ontology 179

This second run refined the ordering between o1 and o6. Also note that the bad scores of o5
w.r.t. constraints of rank two do not change its order, due to the constraint preferences and the
use of a lexicographic order. Finally, a run of Algorithm 3 gives

T0 = {o4} < T1 = {o6} < T2 = {o1} < T3 = {o3} < T4 = {o2} < T5 = {o5}.

Note that o5 is not rejected, since satisfying wishes is not a requirement.

2.4.2 Explaining the Ordering

Answers provided by DSS, expert systems or multi-criteria decision making methods
can be hard to interpret for end-users. It is therefore useful to provide them with simple
and understandable (e.g., expressed in natural language) elements of explanation
[24].

We therefore propose such explanations of our ordering. As Algorithms 1- 3 use a
lexicographic ordering implicitly based on pair-wise comparisons, such explanations
can only concern a single rank of constraint or wish and will therefore remain simple.
These explanations can be stored in an n×n matrix Expl where the element Expl(�, k)

will contain the explanation of why object � has been judged better/worse than
object k. This matrix is somehow anti-symmetric, as the reason Expl(�, k) will be the
opposite of Expl(k, �). Note that we do not need to consider objects in T0, as such
objects will not be part of the answer received by the user.

Consider first Algorithm 2 and assume that we are running it on the i th rank of
constraints and that loop of lines 3-4 has just ended for the j th time (i.e., the set T ′j
has just been built). Then, for each o�, ok such that o� ∈ T ′j and ok ∈ K \ T ′j , we
propose the following explanation in Expl(�, k):

• if N (i)
k > �

(i)
�

, then Expl(�, k) = {o� is judged worse than ok because it is certainly
worse on constraints of priority i , and they are indistinguishable on more important
constraints};
• else, Expl(�, k) = {o� is judged worse than ok because it is possibly worse on

constraints of priority i , and they are indistinguishable on more important con-
straints}.

Note that explanations make a distinction between the relation ≥[N (i),�(i)] and the
more constraining (but stronger) relation (known as interval dominance) that consists
in saying that ok > o� if and only if N (i)

k > �
(i)
�

.
Proposed explanations are similar for Algorithm 3, except that users should be

informed that wishes are now considered. Assume that we look at the i th rank of
wishes and that loop of lines 3-9 has just finished (the new set T ′1 has just been built).
Then, for each o�, ok such that o� ∈ K \ T ′1 and ok ∈ T ′1 , we propose the following
explanation in Expl(�, k):

180 P. Buche et al.

• if N (i)
k > �

(i)
�

, then Expl(�, k) = {o� is judged worse than ok because it is certainly
worse on wishes of priority i , and both satisfy constraints in an indistinguishable
way};
• else, Expl(�, k) = {o� is judged worse than ok because it is possibly worse on

wishes of priority i , and both satisfy constraints in an indistinguishable way}.

For instance, in Example 3, the element Expl(6, 1) would have been “Object 6 is
judged worse than Object 1 because it is possibly worse on constraints of priority
2, and they are indistinguishable on more important constraints”. In practical appli-
cations, the names of attributes concerned by the constraints or wishes separating
two objects can be explicitly cited rather than giving ranks, as they will be more
meaningful to the user.

A possible inconvenience of this method is that values of Eq. (4) and (5) are
aggregated on many attributes, meaning that a detailed explanation on each attribute
of rank i cannot be given. Possible solutions to solve this issue are (1) to consider
complete orderings for ≤c and ≤w (i.e., | ≤c | = Nc and | ≤w | = Nw) or (2) to
use decision strategies not based on aggregated values (e.g., a voting rule on each
constraint/wish of the same rank).

3 A New Decision Support System for Food Packaging Design

In this section, we present a new decision support system (DSS) for fresh fruit and
vegetable packaging design in which the flexible bipolar querying approach plays a
central role. To the best of our knowledge, only one DSS for fresh fruits and vegeta-
bles packaging already exists (see [25]), but it does not take into account the criteria
ensuring a sustainable design (a critical issue in food science). Such a sustainable
design must satisfy, at least, three kinds of criteria: economic, environmental and
societal. An example of the economic aspect may be the cost of the packaging mate-
rial. Concerning environmental aspects, important criteria are the biodegradability
of the package or the optimization of product preservation at ambient temperature
(in order to decrease the use of the energy-greedy cold chain). Societal aspects can
concern the fact that consumers may reject the use of some additives or of nano-
technology in the packaging material because of the unknown consequences on their
health, or more simply they may prefer transparent rather than opaque packaging.

In our DSS, starting from a given fruit or vegetable, the user specifies his/her
needs in terms of several criteria (e.g., conservation temperature, transparency, mate-
rial cost, …) in order to determine a list of packaging. These types of packaging are
ordered according to their degree of satisfaction of the criteria. The bipolar approach
gives the user the possibility to specify in a flexible way what criteria must be con-
sidered as constraints and what other criteria will be used to refine the ranking of
packaging satisfying the constraints. Starting from the user specifications, a flexible
bipolar query is executed against a database containing information about packaging
materials. This information has been collected from different sources which may

8 Flexible Bipolar Querying of Uncertain Data Using an Ontology 181

be technical descriptions of commercial packaging materials or data extracted from
scientific publications concerning new packaging materials. This information may
be uncertain, due to the variability of engineered packaging and the biological vari-
ability of vegetables. The bipolar approach proposed in this chapter deals with this
uncertainty. In Sect. 3.1, we present the global architecture of the DSS. A use case
concerning endive packaging will be presented in Sect. 3.2.

3.1 Decision Support System Architecture

Starting from the name of the vegetable/fruit of interest specified by the user (see
Fig. 6), the system scans in the first step the vegetable/fruit database in order to retrieve
the O2 respiration rate (and associated parameters) of the studied vegetable/fruit. In
the second step, the optimal O2 permeance6 of the targeted packaging is computed
thanks to a model of gas exchanges inside the package called PassiveMap (see [12]
for more details about the model). In the third step, using the targeted optimal O2
permeance and the other user requirements about criteria of various types (econom-
ical, environmental or societal), a query is executed against the packaging database
using the flexible bipolar querying engine, which is the central part of the DSS. A list
of packaging materials ordered according to the method presented in the previous
sections is finally presented to the user. The use case presented in the next section
focuses on the DSS flexible bipolar querying engine.

Fig. 6 Global architecture of
the DSS

Packaging
database

Vegetable
database

PassiveMap
simulation

Flexible bipolar
querying

User’s
specif

Ranked list of
pertinent

packagings

6 A measure of the ability of a package to conduct gas fluxes.

182 P. Buche et al.

3.2 Endive Packaging Use Case

In this section, we present a use case of the DSS concerning the choice of a
packaging material for endives. The user has to specify a set of parameters needed by
the DSS to determine the optimal O2 permeance of the targeted packaging: the mass
of the vegetable (500 grams), the surface, the volume and the thickness of the tar-
geted packaging (respectively 0.14 m2, 0.002 m3 and 5e-5 m), the shelf life of the
vegetable (7 days) and the storage temperature (20 ◦C). Using the O2 respiration
rate (and associated parameters) retrieved from the vegetable database, an optimal
O2 permeance of 3.65E-11 mol.m−2.s−1.Pa−1 is computed. The optimal permeance
and the temperature will be considered as criteria to scan the package database.

We consider in this use case that the user is also interested in two other criteria: the
biodegradability and the transparency of the package. An extract of the packaging
database content is presented in Tables 2 and 3 and will be used to illustrate the flexible
bipolar querying process. Note that imprecise data are here reduced to degenerated
possibility distributions (given by the min–max permeance span), since currently
there is no possibilistic uncertainty in the database (however, such uncertainty will
be integrated in future evolutions of the DSS including robust design methods [17]).

We will consider two examples of queries expressed by the user (in the current
case, they were given by one of the co-authors, V. Guillard). In the first one, the
user specifies one constraint and two wishes. The user first requires the package
to be transparent in order to be accepted by the consumer who wants to see the
endive through the package. It will be expressed as the first and unique constraint.
Concerning his/her wishes, the user would like to maximize the shelf life of the
product at an ambient temperature (and consequently to select a packaging whose
oxygen permeance is close to the optimal one). It will be expressed as the wishes,
here of equal rank.

Table 2 Permeance at a given temperature for an extract of the packaging database

oid Packaging type Permeancemin Permeancemax Temperature
(mol.m−2.s−1.Pa−1) (mol.m−2.s−1.Pa−1) (◦C)

o1 Polyolefin 1,29E-13 1,29E-13 23
o2 Polyolefin 4,05E-11 4,05E-11 23
o3 Cellophane 1,55E-14 1,55E-14 23
o4 Polyolefin 1,96E-11 2,39E-11 20
o5 Cellulose 1,55E-14 1,55E-14 23
o6 Polyester 4,46E-12 4,46E-12 23
o7 Polyolefin 1,50E-11 1,50E-11 23
o8 Polyester 1,55E-13 1,55E-13 23
o9 Polystyrene 1,03E-12 1,03E-12 23
o10 Polyester 6,23E-12 6,23E-12 23
o11 Wheat gluten 1,55E-11 1,67E-11 25
o12 PolyVinyl Chloride 7,47E-11 7,47E-11 25

8 Flexible Bipolar Querying of Uncertain Data Using an Ontology 183

Table 3 Transparency and biodegradability for the same extract of the packaging database

oid PackagingType Transparency Biodegradability

o1 Polyolefin Transparent no
o2 Polyolefin Transparent no
o3 Cellophane Transparent yes
o4 Polyolefin Transparent no
o5 Cellulose Transparent yes
o6 Polyester Transparent yes
o7 Polyolefin Transparent no
o8 Polyester Translucent yes
o9 Polystyrene Translucent no
o10 Polyester Translucent yes
o11 Wheat gluten Translucent yes
o12 PolyVinyl Chloride Transparent no

In the second query, the user specifies two constraints and two wishes. To design a
sustainable package, the user expresses that the packaging must be biodegradable as
a first constraint (rank one) and must be made of renewable resources (i.e. constraint
of rank two on the packaging type). Then, the user expresses as first wish that the
packaging should be transparent in order to be accepted by the consumer and as
second wish that it should maximize the shelf life of the product at an ambient
temperature for economic reasons.

As already said in Sect. 2.1, the user preferences are, for each criterion, expressed
by a fuzzy set used as a general formalism which enables the representation of fuzzy,
interval or crisp values. Concerning the permeance criterion, 60 % of variation is
authorized around the optimal value computed by the PassiveMap subsystem, with
decreasing degrees of preferences. For the temperature, a total variation of 100 %
is authorized, with no preference for the different values. The fuzzy sets associated
with the permeance and temperature preferences are presented in Fig. 7.

The fuzzy set associated with the transparency (resp. biodegradability) criterion
is Pre ftransparency={(transparent,1),(translucent,0),(opaque,0)} (resp. the fuzzy set
Pre fbiodegradabili t y={(yes,1),(no,0)}). They correspond to crisp requirements pro-
vided by the user, as the concept of graded biodegradability made little sense to the
user, while translucency is not graded in our current data. The hierarchical fuzzy
set associated with the packaging type is Pre f packagingT ype={(Biopolymers,1)}.

3.65E-110

1

permeance

10 20 300

1

temperature

1.46E-11 5.84E-11

Fig. 7 Preferences for permeance and temperature

184 P. Buche et al.

Table 4 Evaluations for the
constraint and the wishes of
the first query

[N (1)
t ,�

(1)
t]c [N (1)

t ,�
(1)
t]w

o1 [1,1] [0,0]
o2 [1,1] [0,817,0,817]
o3 [1,1] [0,0]
o4 [1,1] [0,228,0,427]
o5 [1,1] [0,0]
o6 [1,1] [0,0]
o7 [1,1] [0,021,0,021]
o8 [0,0] [0,0]
o9 [0,0] [0,0]
o10 [0,0] [0,0]
o11 [0,0] [0,043,0,098]
o12 [1,1] [0,0]

It expresses that the user preferences are for renewable resources but without speci-
fying a specific type of biopolymer.

Using the notations introduced in Sect. 2.1, the first query is built as follows:
C(1) = {Pre ftransparency} and W(1) = {Pre f permeance, Pre ftemperature}.

Let us consider the set T = {o1, . . . , o12} of the twelve packages whose character-
istics are given in Tables 2 and 3 and whose evaluations for the constraint and wishes
of query 1 are given in Table 4 (as the two wishes are of the same rank, they have
been aggregated in [N (1)

t , �
(1)
t]w according to Eq. (5)). After running Algorithm 1,

we obtain T0 = {o8, o9, o10, o11}. After running Algorithm 2 with C(1), we obtain the
following partition:

T0 = {o8, o9, o10, o11} < T1 = {o1, o2, o3, o4, o5, o6, o7, o12}.

After running Algorithm 3 with W(1), we obtain the following partition:

T0 = {o8, o9, o10, o11} < T1 = {o1, o3, o5, o6, o12} <
T2 = {o7} < T3 = {o4} < T4 = {o2}.

The second query is built as follows:
C(1) = {Pre fbiodegradabili t y}, C(2) = {Pre f packagingT ype}, W(1) =

{Pre ftransparency}, W(2) = {Pre f permeance, Pre ftemperature}. The first constraint is
judged more important than the second one: one wants biodegradable packaging to
preserve the environment (first constraint) which is sustainable, thus made of renew-
able resource (second constraint).The first wish is judged more important than the
second one: one wants transparent packaging to fulfill consumers’ preferences (first
wish) and optimized shelf life of the packed food thanks to a fine control of O2
permeance (second wish).

8 Flexible Bipolar Querying of Uncertain Data Using an Ontology 185

Table 5 Evaluations for the constraints and the wish of the second query

[N (1)
t ,�

(1)
t]c [N (2)

t ,�
(2)
t]c [N (1)

t ,�
(1)
t]w [N (2)

t ,�
(2)
t]w

o1 [0,0] [0,0] [1,1] [0,0]
o2 [0,0] [0,0] [1,1] [0,817,0,817]
o3 [1,1] [0,0] [1,1] [0,0]
o4 [0,0] [0,0] [1,1] [0,228,0,427]
o5 [1,1] [1,1] [1,1] [0,0]
o6 [1,1] [0,0] [1,1] [0,0]
o7 [0,0] [0,0] [1,1] [0,021,0,021]
o8 [1,1] [0,0] [0,0] [0,0]
o9 [0,0] [0,0] [0,0] [0,0]
o10 [1,1] [0,0] [0,0] [0,0]
o11 [1,1] [1,1] [0,0] [0,043,0,098]
o12 [0,0] [0,0] [1,1] [0,0]

Consider again the set T of packages described in Tables 2 and 3 and whose eval-
uations for the constraints and the wish of query 2 are given in Table 5. After running
Algorithm 1, we obtain T0 = {o1, o2, o3, o4, o6, o7, o8, o9, o10, o12}. Packaging which
are not biodegradable have been discarded. Moreover, the hierarchical fuzzy set
associated with the packaging type, Pre f packagingT ype, permits to express a generic
constraint in a simple way: packaging which are not bio-sourced have been discarded
too. It must be noticed that the use of a classical fuzzy set for Pre f packagingT ype
instead of a hierarchical fuzzy set would have delivered an empty set of answers (all
the objects in T0) after running Algorithm 1. After the first run of Algorithm 2 with
C(1), we obtain the following partition:

T0 = {o1, o2, o3, o4, o6, o7, o8, o9, o10, o12} < T1 = {o5, o11}.

The second run of Algorithm 2 with C(2) ([N (2)
t , �

(2)
t]c) keeps the partition

unchanged. After the first run of Algorithm 3 with W(1), we obtain the following
partition:

T0 = {o1, o2, o3, o4, o6, o7, o8, o9, o10, o12} < T1 = {o11} < T2 = {o5}.

The second run of Algorithm 3 with W(2) keeps the partition unchanged.
We can see with the result obtained for the second query, from which only two

results are retrieved, that the constraints may be very restrictive compared to the
content of the database. In those cases where no answer is found, we have proposed
in [16] an approach to provide to the users “best” answers among all the rejected
ones (i.e., answers that are the closest to satisfying the constraints).

186 P. Buche et al.

4 Related Works

There exist many works that propose to use fuzzy sets to introduce graded preferences
and possibility distributions to handle uncertainty in databases. Our work can be
related to these two complementary propositions.

The fuzzy set framework has been shown to be a sound scientific choice to model
flexible queries [4]. It is a natural way of representing the notion of preference using
a gradual scale. In [7], the semantics of a language called SQLf has been proposed to
extend the well-known SQL language by introducing fuzzy predicates processed on
crisp information. Other approaches have also been proposed to introduce preferences
into queries in the database community [8, 13, 22]. However, in all these approaches,
preferences are of the same nature. It is only recently that the concept of bipolarity
and its potential use in flexible queries has been studied [18, 21]. This extended
approach discriminates between two types of preferences, one acting as compulsory
constraints, the other acting as optional wishes. Several works have recently been
proposed in order to extend the relational algebra with this concept of bipolarity
[6, 5]or to propose a framework to deal with bipolarity in regular relational databases
[30]. It should be noticed that, to the best of our knowledge, the introduction in bipolar
flexible querying of preferences expressed on a hierarchical domain is an original
point of our approach.

The second proposition is to use possibility distributions (whose formalism is
mathematically equivalent to that of fuzzy set) to represent uncertain values [34].
Several authors have developed this approach in the context of databases [2, 3, 10, 26,
27, 29]. To the best of our knowledge, the only other work dealing with the concept
of bipolarity in flexible querying of databases including uncertain values, outside
some research perspectives in [21], is that of G. De Tré et al. [31]. However, they
deal with a different aspect of bipolar preferences, as they mainly consider the use
of interval-valued fuzzy sets (or similar models) to cope with imprecisely defined
preferences, and treat positive and negative preferences in a common framework,
rather than considering them separately (as we do here).

5 Conclusion and Perspectives

In this Chapter, we have introduced a method for querying a database when prefer-
ences are bipolar (contains both constraints and wishes), data are uncertain and can
be expressed on a hierarchical domain. We use fuzzy sets and possibility distributions
to model preferences and uncertainty, respectively.

Using basic tools to evaluate query satisfaction, we have proposed methods allow-
ing us to (1) extend fuzzy sets to hierarchical fuzzy sets which put in adequacy
two order relations (the preference order relation and the ‘kind of’ relation) to per-
mit a query enlargement (2) consider orderings between constraints or wishes and

8 Flexible Bipolar Querying of Uncertain Data Using an Ontology 187

(3) pre-order the results according to the bipolar preferences, thus presenting a list
of equivalence classes to the user.

The proposed approach is applied in a real-case problem, and is included in a
new support decision tool aiming at designing (optimal) packages for fresh fruits
and vegetables.

Concerning the method, perspectives include the handling of more generic kinds
of uncertainty models [14, 15] that could be included in the database, as well as
methods that would allow to extract information concerning packages from the web
automatically [9], since manually entering this information is time-consuming and
can only be done by an expert.

Concerning the support decision tool, we are planning to link it with a preliminary
step which will combine preferences expressed by the actors of the food packaging
chain, which can be potentially in conflict, using argumentation methods.

Acknowledgments The research leading to these results has received funding from the European
Community’s Seventh Framework Programme (FP7/ 2007-2013) under the grant agreement FP7-
265669-EcoBioCAP project.

References

1. Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Bipolar possibility theory in preference mod-
elling: representation, fusion and optimal solutions. Inf. Fusion 7, 135–150 (2006)

2. Bordogna, G., Pasi, G.: A fuzzy object oriented data model managing vague and uncertain
information. Int. J. Intell. Syst. 14(6), SCI 3495 (1999)

3. Bosc, P., Lietard, L., Pivert, O.: Fuzzy theory techniques and applications in data-base manage-
ment systems. In: Bosc, P., Kacprzyk, J. (eds.) Fuzziness in Database Management Systems,
pp. 666–671. Academic Press, New York (1999)

4. Bosc, P., Lietard, L., Pivert, O.: Soft querying, a new feature for database management sys-
tem. In: Proceedings DEXA’94 (Database and EXpert system Application), Lecture Notes in
Computer Science, vol. 856, pp. 631–640. Springer-Verlag (1994)

5. Bosc, P., Pivert, O., Mokhtari, A., Lietard, L.: Extending relational algebra to handle bipolarity.
In: Proceedings of the 2010 ACM Symposium on Applied Computing (SAC), pp. 1718–1722.
Sierre, Switzerland, ACM, 22–26 March 2010

6. Bosc, P., Pivert, O.: About bipolar division operators. In: Flexible Query Answering Sys-
tems, 8th International Conference, FQAS 2009, Roskilde, Denmark, October 26–28, 2009.
Proceedings. Lecture Notes in Computer Science, vol. 5822, pp. 572–582. Springer (2009)

7. Bosc, P., Pivert, O.: SQLf: a relational database language for fuzzy querying. IEEE Trans.
Fuzzy Syst. 3(1), 1–17 (1995)

8. Bruno, N., Chaudhuri, S., Gravano, L.: Top-k selection queries over relational databases:
Mapping strategies and performance evaluation. ACM Trans. Database Syst. 27(2), 153–187
(2002)

9. Buche, P., Dibie-Barthelemy, J., Ibanescu, L., Soler, L.: Fuzzy web data tables integration
guided by an ontological and terminological resource. IEEE Trans. Knowl. Data Eng. 24(4),
805–819 (2011)

10. Buche, P., Haemmerlé, O.: Towards a unified querying system of both structured and semi-
structured imprecise data using fuzzy views. In: Proceedings of the 8th International Con-
ference on Conceptual Structures, Lecture Notes in Artificial Intelligence, vol. 1867. pp.
207–220. Darmstadt, Germany, Springer-Verlag (August 2000)

188 P. Buche et al.

11. Cacioppo, J.T., Gardner, W.L., Berntson, G.G.: Beyond bipolar conceptualizations and mea-
sures: the case of attitudes & evaluative space. Pers. Soc. Psychol. Rev. 1, 3–25 (1997)

12. Charles, F., Sanchez, J., Gontard, N.: Modeling of active modified atmosphere packaging of
endives exposed to several postharvest temperatures. J. Food Sci. 8, 443–448 (2005)

13. Chomicki, J.: Preference formulas in relational queries. ACM Trans. Database Syst. 28(4),
427–466 (2003)

14. Destercke, S., Dubois, D., Chojnacki, E.: Unifying practical uncertainty representations: I
generalized p-boxes. Int. J. Approximate Reasoning 49(3), 664–677 (2008)

15. Destercke, S., Dubois, D., Chojnacki, E.: Unifying practical uncertainty representations: II
clouds. Int. J. Approximate Reasoning 49(3), 649–663 (2008)

16. Destercke, S., Buche, P., Guillard, V.: A flexible bipolar querying approach with imprecise
data and guaranteed results. Fuzzy Sets Syst. 169(1), 51–64 (2011)

17. Destercke, S., Guillard, V.: Interval analysis on non-linear monotonic systems as an efficient
tool to optimise fresh food packaging. Comput. Electron. Agric. 79(2), 116–124 (2011)

18. Dubois, D., Prade, H.: Bipolarity in flexible querying. In: Flexible Query Answering Systems,
5th International Conference, FQAS 2002, Copenhagen, Denmark, October 27–29, 2002,
Proceedings. Lecture Notes in Computer Science, vol. 2522, pp. 174–182. Springer (2002)

19. Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncer-
tainty. Plenum Press, New York (1988)

20. Dubois, D., Prade, H.: Tolerant fuzzy pattern matching: an introduction. In: Bosc, P., Kacprzyk,
J. (eds.) Fuzziness in Database Management Systems. Physica-Verlag (1995)

21. Dubois, D., Prade, H.: An overview of the asymmetric bipolar representation of positive and
negative information in possibility theory. Fuzzy Sets Syst. 160, 1355–1366 (2009)

22. Kießling, W., Köstler, G.: Preference SQL—design, implementation, experiences. In: VLDB
Proceedings of 28th International Conference on Very Large Data Bases. pp. 990–1001.
Morgan Kaufmann, Hong Kong, China, 20–23 August 2002

23. Klement, E., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publisher, Dordrecht
(2000)

24. Labreuche, C.: A general framework for explaining the results of a multi-attribute preference
model. Artif. Intell. 175(7–8), 1410–1448 (2011)

25. Mahajan, P., Oliveira, F., Montanez, J., Frias, J.: Development of user-friendly software for
design of modified atmosphere packaging for fresh and fresh-cut produce. Innovative Food
Sci. Emerg. Technol. 8, 84–92 (2007)

26. Prade, H.: Lipski’s approach to incomplete information data bases restated and generalized
in the setting of Zadeh’s possibility theory. Inf. Syst. 9(1), 27–42 (1984)

27. Prade, H., Testemale, C.: Generalizing database relational algebra for the treatment of incom-
plete or uncertain information and vague queries. Inf. Sci. 34, 115–143 (1984)

28. Thomopoulos, R., Buche, P., Haemmerlé, O.: Fuzzy sets defined on a hierarchical domain.
IEEE Trans. Knowl. Data Eng. 18(10), 1397–1410 (2006)

29. Tré, G.D., Caluwe, R.D.: A generalized object-oriented database model. In: Bordogna, G.
Pasi, G. (eds.) Recent Research Issues on the Management of Fuzziness in Databases. Studies
in Fuzziness and Soft computing, vol. 53, pp. 155–182. Physica-Verlag, Heidelberg, Germany
(2000)

30. Tré, G.D., Zadrozny, S., Matthé, T., Kacprzyk, J., Bronselaer, A.: Dealing with positive and
negative query criteria in fuzzy database querying. In: Flexible Query Answering Systems,
8th International Conference, FQAS 2009, Proceedings. Lecture Notes in Computer Science,
vol. 5822, pp. 593–604. Roskilde, Denmark, Springer, 26–28 October 2009

31. Tré, G.D., Zadrozny, S., Bronselaer, A.: Handling bipolarity in elementary queries to possi-
bilistic databases. IEEE Trans. Fuzzy Syst. 18, 599–612 (2010)

32. Yager, R.: On ordered weighted averaging aggregation operators in multicriteria decision
making. IEEE Trans. Syst. Man Cybern. 18, 183–190 (1988)

33. Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning-i.
Inf. Sci. 8, 199–249 (1975)

34. Zadeh, L.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)

Chapter 9
Aspects of Dealing with Imperfect Data
in Temporal Databases

José Pons, Christophe Billiet, Olga Pons and Guy De Tré

Abstract In reality, some objects or concepts have properties with a time-variant
or time-related nature. Modelling these kinds of objects or concepts in a (relational)
database schema is possible, but time-variant and time-related attributes have an
impact on the consistency of the entire database. Therefore, temporal database mod-
els have been proposed to deal with this. Time itself can be at the source of impreci-
sion, vagueness and uncertainty, since existing time measuring devices are inherently
imperfect. Accordingly, human beings manage time using temporal indications and
temporal notions, which may contain imprecision, vagueness and uncertainty. How-
ever, the imperfection in human-used temporal indications is supported by human
interpretation, whereas information systems need extraordinary support for this. Sev-
eral proposals for dealing with such imperfections when modelling temporal aspects
exist. Some of these proposals consider the basis of the system to be the conversion
of the specificity of temporal notions between used temporal expressions. Other pro-
posals consider the temporal indications in the used temporal expressions to be the
source of imperfection. In this chapter, an overview is given, concerning the basic
concepts and issues related to the modelling of time as such or in (relational) database

J. Pons (B) · O. Pons
Department of Computer Science and Artificial Intelligence, Escuela Técnica Superior de
Ingeniería Informática, Universidad de Granada, C/Periodista Daniel Saucedo Aranda s/n, 18071
Granada, Spain
e-mail: jpons@decsai.ugr.es

O. Pons
e-mail: opc@decsai.ugr.es

C. Billiet · G. De Tré
Department of Telecommunications and Information Processing, Ghent University,
St.-Pietersnieuwstraat 41,9000 Gent, Belgium
e-mail: Christophe.Billiet@telin.ugent.be

G. De Tré
e-mail: Guy.DeTre@telin.ugent.be

O. Pivert and S. Zadrożny (eds.), Flexible Approaches in Data, Information 189
and Knowledge Management, Studies in Computational Intelligence 497,
DOI: 10.1007/978-3-319-00954-4_9, © Springer International Publishing Switzerland 2014

190 J. Pons et al.

models and the imperfections that may arise during or as a result of this modelling.
Next to this, a novel and currently researched technique for handling some of these
imperfections is presented.

1 Introduction

The concept of time itself is very complex to handle and interpret [52, 74], though it is
very natural and omnipresent. As information systems often attempt the modelling
of natural objects, concepts or processes, they often require modelling temporal
aspects or concepts. Thus, several proposals have been concerned with the obtaining
of theoretical models that allow the modelling or representation of time [7, 16].

A very specific type of information systems are database systems, which are com-
puter systems designed to manage databases. A database contains data representing
real objects or concepts. Each (atomic) part of these data is a result value of a mea-
surement of a property or a description of a property of a real object or concept. In
reality, some aspects or properties of objects or concepts are time-variant or time-
related. e.g., the moment of a bank transaction is traditionally a moment in time and
thus a time-related notion, the function of an employee in a company can change
through recorded history and is thus time-variant. A temporal database schema is
a database schema that models real objects or concepts with time-related or time-
variant properties. However, the modelling of temporal aspects has a direct impact
on the consistency of the temporal database, because the temporal nature of these
aspects imposes extra integrity constraints. An example. Consider a relation in a rela-
tional library database, modelling the presence of books in the library. Every physical
book is represented by a unique identifier. Every record in the relation contains such
an identifier, a date on which the corresponding book was loaned and a date on
which it was subsequently returned (if it was returned). Without further precautions,
a library employee could add several records with the same book identifier, different
‘loaned’-dates and no ‘returned’-dates. This group of records would represent the
same physical book being loaned several times on different dates and never returned,
which is of course impossible. A temporal database model will typically constrain
record insertion and prevent similar modelling inconsistencies.

A lot of research concerns temporal database models and their approaches to
the modelling of time. The first efforts were towards the representation of histori-
cal information related to objects represented by records in a database [14]. Some
proposals tried to extend the Entity Relationship Model [53], without impact on any
database standards like SQL [72].

Notably, in 1994, “A Consensus Glossary of Temporal Database Concepts” was
published [36]. For this publication, 44 temporal database researchers, among which
some of the main researchers in this field, cooperated to reach a consensus on the
nature and definitions of some of the main temporal database concepts and termi-
nology. This glossary was subsequently updated in 1998 [48].

An interesting issue in temporal modelling concerns relationships between tempo-
ral notions. Notably, Allen [1] studied temporal relationships between time intervals

9 Aspects of Dealing with Imperfect Data in Temporal Databases 191

(and as a special case time points). Among others, the querying of temporal
databases has greatly profited from these temporal relationships, because they
allowed for richer and more complex user-specified temporal query demands, by
allowing to express more complex relationships between the temporal notions in
the temporal expressions in the query and the temporal indications in the database.
e.g., in a relation modelling who was department head of an institution during which
periods of time, a query like ‘who were the department heads when Thomas worked
for the institution’ can be evaluated using similar relationships.

Humans handle temporal information using certain temporal notions like time
intervals or time points [36], and they often have to deal with imperfections like
imprecision’s, vagueness, uncertainties or inconsistencies possibly contained in the
descriptions of these temporal notions. Among many others, these possible imper-
fections in descriptions of temporal notions determine an important issue in temporal
modelling. e.g., the description of the temporal notion in a sentence like ‘The Belfry of
Bruges was finished on a day somewhere between 01/01/1201 and 31/12/1300 A.D.’
contains imperfection because of the uncertainty in the used time-related expression.
It is known that the building was finished on a single day, but it is not known precisely
which day this was.

To allow information systems to cope with these and similar data imperfections,
many approaches adopt fuzzy sets [59] for the representation of temporal information
[5, 26, 61, 62]. The temporal relationships studied by Allen were fuzzified by several
authors [62, 65, 73]. Garrido et al. [43] present different temporal operators, defined
by a combination of regular fuzzy comparisons. Both [43, 68] deal with uncertainty
in temporal expressions concerning time intervals. Other approaches, like [70], use
rough sets [66] to represent time intervals.

Next to temporal modelling, some attention has been spent on temporal reasoning
[1]. Although temporal reasoning is not discussed in this chapter, it should be noted
that, among others, Dubois and Prade et al. [26, 30] have dealt with fuzziness and
uncertainty in temporal reasoning.

The aim of this chapter is to present and explain some main concepts regarding
time in information systems and to present and discuss some issues and techniques
concerned with handling data imperfections related to time. The rest of this chapter is
structured as follows. Section 2 presents some basic concepts and terminology about
temporal modelling and discusses some of its important aspects and issues, while
Sect. 3 presents some important issues concerning the combination of data imperfec-
tions and temporal modelling. In Sect. 4, some basic concepts and terminology about
temporal databases are presented, followed by an overview of some interesting issues
concerning temporal databases and a survey of some commercial temporal database
systems. Finally, in Sect. 5, an approach to querying temporal databases contain-
ing imperfect temporal information is presented, followed by some conclusions and
some suggestions for future work in Sect. 6.

192 J. Pons et al.

2 Basic Concepts and Issues in Time Modelling

Before considering the introduction of temporal modelling to information systems,
it is necessary to define and explain some main concepts concerning temporal mod-
elling and their corresponding terminology, to situate these and to discuss some
properties and issues related to these concepts. In this section, several basic concepts
and their corresponding terminology will be defined, explained and situated. Most
of these concepts are widely used in the community of temporal databases and their
definitions have been agreed upon in the context of [36]. For these concepts, in the
entire chapter, the contents of [36] are followed (and often cited).

2.1 Basic Concepts and Properties

In information systems, time itself is usually perceived as a linear or cyclic concept
[50]. Therefore, a time domain modelling time is usually represented by a set with an
imposed partial order. In general, two main types of time models can be discerned: a
linear model [4] and a cyclic model [58]. In the linear model, a total order is imposed
on the set and the progress of time is seen as a linear matter, while cyclic models
are mainly used in the modelling of recurrent processes. It should be noted that the
majority of proposals use linear time models.

Data models used by information systems (and in specific, temporal database
systems) may represent an underlying time axis using chronons [36], which can
informally be described as the smallest distinguishable time units that can be used
in the system. However, to explain what chronons are, an explanation of some other
temporal concepts is necessary.

Definition 1 Instant [36]
An instant is a time point on an underlying timeaxis.

Thus, an instant is basically an instantaneous time point on the time axis underlying
a time model. The term is used in the context of the time model too.

Orthogonal to the classification of time models as linear or cyclic, they can be
classified as discrete, dense or continuous models [36, 48]. In a discrete model [14],
the notion exists that every instant has a unique successor and the set of (modelled)
instants is seen as a discrete one. Here, intuitively, the set of instants can be seen as
isomorphic to the set of natural numbers N. In a dense model, the notion exists that
between any two instants always lies another. Here, intuitively, the set of instants can
be seen as isomorphic to the set of rational numbers Q (when the set of (modelled)
instants is a discrete one) or the set of real numbers R (when the set of (modelled)

9 Aspects of Dealing with Imperfect Data in Temporal Databases 193

instants is a continuous one). In a continuous model, the notion also exists that
between any two instants always lies another one, but the set of (modelled) instants
is always seen as continuous and there are no “gaps” between successive instants.

Some other necessary concepts are:

Definition 2 Time Interval [36]
A time interval is the time between two instants.

Definition 3 Duration [36]
A duration is an amount of time with known length, but no specific starting
or ending instants.

A time interval as such is bounded by two instants, whereas a duration is not.
Also, it should be noted that an instant is in fact a singular case of a time interval.

Definition 4 Temporal Element [36]
A temporal element is a finite union of time intervals.

Definition 5 Event [36]
An event is an instantaneous fact, i.e. something occurring at an instant.

Definition 6 ‘Temporal’ as Modifier [36]
The modifier ‘temporal’ is used to indicate that the modified concept concerns
some aspect of time.

Data models used for time modelling might now represent an underlying time
axis using chronons:

Definition 7 Chronon [36]
In a data model, a chronon is a non-decomposable time interval of some fixed,
minimal duration.

A time model contained in a data model may now represent an underlying time
axis by a sequence of consecutive chronons. These chronons have identical durations.
A data model will typically not specify the exact chronon duration, so it can be fixed
later by applications implementing the data model.

The fact that chronons are actually time intervals has a particular effect on the
representation of instants and time intervals. In a time model using chronons, an

194 J. Pons et al.

instant is of course represented by a chronon. A time interval may be represented
by a set of contiguous chronons, depending on the amount of time the time interval
comprises.

Another classification of time models concerns the use of points or intervals to
model time. The equivalence between interval-based and point-based time models
is demonstrated in [6].

Restrictions on time range may exist, as time may be bounded orthogonally in the
past and in the future [50].

2.2 Granularities

An important issue in time modelling concerns the concept of temporal granularities.
A formal definition for this concept is given in [57]:

Definition 8 Granularity [81]
A granularity is an ordered set of non-overlapping and continuous temporal
elements called granules.

Definition 9 Granule [81]
A granule is the basic time unit in a granularity.

A temporal granularity is in fact a partitioning of the time line (time model) used
by a system, usually dependent on the application. For example, the age of an adult
human being is usually expressed in years: one will use sentences like ‘Laura is 21
years old’ instead of sentences like ‘Laura is 21 years, 3 months and 4 days old’.
In this example any duration shorter than a year needs no representation and thus
the used granularity allows no specification for durations shorter than a year. The
granules are years.

As a granularity G is an ordered set, each granule may be represented by an
integer. In this representation, to keep track of the granularity a granule is an element
of, the corresponding granularity name is added in subscript:

G = {iG | i ∈ Z} (1)

In a system, the granularity with the shortest granules is the chronons granularity,
which is denoted by ‘⊥’. It is the granularity of which the granules are chronons.

9 Aspects of Dealing with Imperfect Data in Temporal Databases 195

Definition 10 Mapping function [57]
A mapping function f is a function that maps a given granule iG , i ∈ Z, in a
given granularity G, to a set of corresponding chronons:

f : G →P(⊥)

iG �→ {c⊥ | (c⊥ is contained in iG) ∧ (c⊥ ∈ ⊥)}

Note that a mapping function f always maps from a given granularity G to the
powerset of the set of chronons ⊥. Therefore, the output for a mapping function is
an element of P(⊥) and thus a subset of ⊥.
A mapping function f requires that the following properties hold [57]:

• G is an ordered set.
• G is a set of continuous granules.
• The granules in G do not overlap.

The existence of mapping functions between granularities and the chronons granu-
larity also allows comparing granularities with respect to the length of their granules.
In this context, two important concepts can be discerned.

Definition 11 Finner Than [57]
Consider a mapping function f and let iG and jH be elements of granularities
G and H respectively. Granularity G is now said to be finner than granularity
H if:

| f (iG) | < | f (jH) |

Definition 12 Coarser Than [57]
Consider a mapping function f and let iG and jH be elements of granularities
G and H respectively. Granularity G is now said to be coarser than granularity
H if:

| f (iG) | > | f (jH) |

It is also possible to describe the relation between different granularities. This is
called a casting function:

196 J. Pons et al.

Definition 13 Casting function [57]
Consider two different granularities G and H . A granularity-to-granularity

casting function cast is then a function mapping granules from G to granules
from H :

cast : G ×G×G→ H

: (iG, G, H)→ jH

where iG ∈ G and jH ∈ H and where G denotes the set of all granularities.

Thus, the function cast associates a granule iG in G to a corresponding granule
jH in H . Two kinds of granularity-to-granularity mappings can now be discerned:
an upwards mapping is a mapping from a granularity G to a coarser granularity
H , whereas a downwards mapping is a mapping from a granularity K to a finner
granularity L . Orthogonal to this classification, mappings between two granularities
may be classified as regular mappings, irregular mappings or congruent mappings
[37, 57].

• Regular mapping. A regular mapping is a granularity-to-granularity mapping
where the mapping function value is calculated by means of multiplications and/or
divisions and (maybe) an anchor adjustment. e.g., the mapping value of the map-
ping between hours and minutes is calculated using a multiplication by 60.
• Irregular mapping. An irregular mapping is a granularity-to-granularity mapping

where the mapping function value can not be calculated by means of multiplica-
tions and/or divisions. e.g., the mapping value of the mapping between months
and days is dependent on the exact month or day.
• Congruent mapping. A congruent mapping is a granularity-to-granularity mapping

where the two granularities involved in the mapping have the same granules but
a different anchor. e.g., the mapping between the days (Gregorian calendar days)
and the academic days is a congruent mapping.

Different granularity-to-granularity mappings between several granularities can
be represented using a granularity graph, which is a directed graph indicating the
mapping conversions. The above is illustrated in the following example.

Example 1 Consider a system that models both Gregorian calendar dates as well as
academic calendar dates. In this system, the chronons granularity is a set of millisec-
onds. Figure 1 shows the complete granularity graph corresponding to this example.
The transition between the chronons granularity and the seconds granularity is an
example of a regular mapping. Regular mappings are represented by thin arrows in
the visualisation of the graph. The transition between the days granularity and the
months granularity is an example of an irregular mapping. In the graph visualisation,
irregular mappings are represented by a bold arrow. Finally, the transition between

9 Aspects of Dealing with Imperfect Data in Temporal Databases 197

Fig. 1 The granularity graph
corresponding to Example 1

Weeks

Days

Hours

Minutes

Seconds

Chronons

Academic day

Academic month

Academic term

Academic year

Months

Years

1000

60

60

24

7

1

12 4

2

the Gregorian calendar day granularity and the academic day granularity is an exam-
ple of a congruent mapping. Both concern the same days, but the academic year
starts on October 1st, whereas the Gregorian calendar year starts on January 1st. In
the graph visualisation, congruent mappings are visualised as straight lines without
arrow heads.

2.3 Temporal Relationships

In this section, a brief introduction can be found, concerning temporal relationships,
sometimes also called ‘temporal relations’ [5]. Temporal relationships can be seen as
relationships between temporal elements belonging to the same time domain. These
relationships express how the temporal elements are related to one another, with
respect to temporal precedence and overlap.

Several (collections of) operators have been proposed in order to compare tem-
poral elements and model the temporal relationships between them. Allen [1] most
notably described such relationships between time intervals and as a special case,
between instants. Figure 2 shows the temporal relationships Allen discerned. Some
proposals can be applied to both crisp and other time intervals [43, 62, 65, 73].

198 J. Pons et al.

Fig. 2 Allen relations between two time intervals I and J

3 Data Imperfections in Time Modelling

As explained in the introduction, humans handle temporal information using tempo-
ral notions like time intervals or time points [36]. While the used temporal notions
may contain imperfections [22, 26, 30, 62], humans often gracefully deal with these,
as their inherent interpretation capability accounts for a lot of them. This phenom-
enon has been studied a.o. in the field of artificial intelligence [19, 35] and language
understanding [17, 22, 62]. An information system, however, cannot appeal to a
similar interpretation functionality. Thus, many proposals have been concerned with
the combination of time and imperfections in the context of information systems
[62]. In this section, some main concepts and issues concerning this combination are
presented.

3.1 Types of Imperfections in Temporal Modelling

Generally, in temporal modelling, a distinction is made between the following types
of imperfections [62].

• Uncertainty. Temporal information or data may contain uncertainty. This means
that the exact temporal value is (partially) unknown, however, generally some

9 Aspects of Dealing with Imperfect Data in Temporal Databases 199

knowledge is present anyhow, possibly describing the value [26, 30, 61, 62].
E.g., the temporal notion described in a sentence like ‘The Belfry of Bruges was
finished on a day somewhere between 01/01/1201 and 31/12/1300 A.D.’ contains
uncertainty: it is known that the belfry of Bruges was finished on a single day and
that this day lays somewhere between 01/01/1201 and 31/12/1300 A.D., but it is
not known exactly which day it is.
• Vagueness. Temporal information or data might contain inherent vagueness, as

a precise instant or time interval may be intended, but the description of it is
certainly vague [22, 62, 73]. E.g., the temporal notion described in a sentence like
‘It happened during summer.’ contains vagueness, as even the boundaries of the
mentioned temporal notion are not clearly expressed.
• Subjectivity or ambiguity. Temporal notions might be subject to subjectivity or

ambiguity. In certain cases, the temporal notion concerns a historical period like
‘late romanticism’ or ‘the early middle ages’ and thus contains subjectivity [62].
In other cases, the interpretation of the temporal notion depends on extra factors.
E.g., consider a person saying to another person ‘Let’s meet each other at six.’ The
person hearing these words doesn’t now if 6 a.m. or 6 p.m. is intended, though the
person saying the words does.

As to the sources of the imperfections in temporal information, most proposals
consider no specific source [30, 35, 61, 62, 65, 73, 80]. Some proposals, however,
deal with the imperfections specifically resulting from aspects of language [22] and
other proposals consider transitions between different granularities to be the source
of imperfection in temporal information [57]. Therefore, some proposals consider
granularity as the base of the temporal model [16].

In an information system, temporal information is usually related to facts or events
[13]. In light of this, a classification of temporal information can be considered, in
which the following types of temporal information may be found:

• Definite temporal information. Definite temporal information contains information
describing a situation in which all time indications associated with some fact are
absolute time indications. The temporal information is precisely known.
• Indefinite temporal information [24]. Indefinite temporal information contains

information describing a situation in which the time indication associated with
some fact has not been fully defined. E.g., consider an event that in fact occurred
but it is not known exactly when.
• Infinite temporal uncertain information [51]. Infinite temporal uncertain informa-

tion contains information describing a situation in which an infinite number of
time indications are associated with some fact. This is usually found in recurrent
events like meetings. E.g., consider meetings that take place every Wednesday at
noon. Some systems (usually with different information providers) may dispute
the occurrence and/or the duration of a fact.

200 J. Pons et al.

3.2 Representation of Imperfect Information

As mentioned before, information systems may have to deal with time indications
which contain vagueness. Even for some specific events or facts, the temporal indi-
cations may become imprecise. Therefore, a time point might be specified by means
of a time interval of which the boundaries may not be precisely known. An example.

Example 2 Consider a speaker and a hearer. The speaker wants to make an appoint-
ment with the hearer. Now, consider the speaker saying:

‘We will meet each other tomorrow around 10’

The hearer will now usually instinctively agree that the appointment will be in e.g.,
the time interval between 9.55 and 10.05 h.

The study of the semantics of ‘around’ in temporal [22] indications has shown
that the size of the time interval associated with the imprecise specification of a time
point depends on the distance with respect to the current time. E.g., consider now
that the speaker is talking about something that happened ‘during last week’, then
the hearer would consider a time interval of more or less 10 days.

Some proposals [13, 16, 54, 62] conclude that the best representation for incom-
plete temporal knowledge is therefore based on time intervals, even if they refer to a
fact that happen at a time point. This means that, as Allen proposed in [1], the prim-
itive units (the chronons) in a time domain, used in an information system should be
intervals.

In order to represent and manage uncertain temporal information properly, several
theoretical frameworks have been proposed:

• Probability theory. Probability theory [24, 46, 56] is usually employed when
uncertainty concerning a time interval allows a probability to be associated to the
time interval. The use of probability theory is very usual in logistics information
systems. E.g., ‘The package will arrive at its destination on Monday morning with
a probability of 0.8’.
• Possibility theory. Using possibility theory [28], a possibility degree is associated

to the temporal fact or event. Possibility theory is widely used to model uncertainty
and vagueness in time [23, 26, 30, 62]. Several works [65, 73] present fuzzy ver-
sions of the temporal relations proposed by Allen [1]. The aim of these works is
generally to obtain a flexible way to compare uncertain, ill-known temporal inter-
vals by means of temporal relationships. The study of imperfect temporal metadata
is done in [8, 9]. In [77] a proposal to use in fuzzy databases temporal fuzzy lin-
guistic terms is studied. Burney [11, 12] has studied recently the combination of
fuzzy databases with temporal data.
• Rough sets. Rough set theory [66] has been used to represent uncertainty in time

intervals. The two dimensional representation of time intervals and the temporal
relationships between them has been studied in [70]. In [10] a rough set-based
model for temporal databases is presented. The study of temporal relationships
between rough time interval is studied in [3].

9 Aspects of Dealing with Imperfect Data in Temporal Databases 201

Fig. 3 Example for the Allen
relationship ‘after’. (1) The
event bounded within time
points A and B. (2) The crisp
version of the ‘after’ operator.
(3) A fuzzy version of the after
operator. (4) Another event,
bounded within time points
[C, D]

possibility

time0

1

time
A B

time

(1)

(2)

(3)

C D
(4)

0.5

time

3.3 Imperfections in Temporal Relationships

As the existence of temporal relationships allows to compare temporal notions, many
approaches have been concerned with finding similar temporal relationships, able to
support imperfections in the temporal information which is described by temporal
notions or even by the temporal relationships themselves [26, 62, 65, 73]. These
approaches are often based on Allen’s operators [1]. Example 3 presents a short
example concerning one of Allen’s relationships.

Example 3 Consider an event which takes place between time points A and B. Thus,
the event comprises time interval [A, B] (this is visualized in part (1) of Fig. 3). The
classical Allen relationship ‘after’ returns an interval [B,∞] as shown in part (2)
of Fig. 3. A fuzzified version of Allen’s ‘after’ operator is illustrated in part (3) of
Fig. 3. The comparison between two time intervals results in a possibility degree in
the unit interval. The shape of the possibility distribution is shown in part (3) of
Fig. 3. Note that all the points strictly after the point B results in a possibility degree
of 1 whereas there is an area near the point B in which the possibility degree runs
smoothly between 0 and 1.

Consider now the interval given by [C, D], illustrated in part (4) of Fig. 3. The
user wants to know if [C, D] is after [A, B]. The crisp version of the ‘after’ operator
would return ‘no’ as an answer. The fuzzy version for the same operator would return
‘yes, with a possibility of 0.5’.

4 Basic Concepts and Issues in Temporal Databases

A temporal database can generally be seen as a database that manages some tem-
poral aspects in its schema [5, 39]. In Sect. 4.1, some main concepts and properties
concerning temporal databases and their definitions are presented and explained. In
Sects. 4.2 and 4.3, some main issues of relational temporal databases are presented
and discussed. Finally, Sect. 4.4 presents an overview of some commercial temporal
database systems.

202 J. Pons et al.

4.1 Basic Concepts and Properties

A database schema models some part of reality. As mentioned in the introduction, the
part of reality a temporal database schema tries to model, contains some temporal
aspects. For example, in this part of reality, some concepts or objects could have
time-related or time-variant properties. The modelling of these temporal aspects has
to be handled specifically in order for the database to maintain a consistent model of
reality.

Thus, a temporal database will contain temporal values, i.e. values representing
(indications of) time. Temporal values in a temporal database can be classified into the
following types based on their interpretation and modelling purpose. The definitions
and explanations of these types can be found in [36, 63] and more information can
be found in [49, 63, 75].

Definition 14 Valid Time [36]
The valid-time (VT) of a fact is the time when the fact is true in the modeled
reality.

Definition 15 Transaction Time [36]
A database fact is stored in a database at some point in time, and after it is
stored, it is current until logically deleted. The transaction-time (TT) of a
database fact is the time when the fact is current in the database and may be
retrieved.

Definition 16 Decision Time [63]
Decision time (DT) denotes the time when an event was decided to happen.

Definition 17 User-defined Time [36]
User-defined time (UDT) is an uninterpreted attribute domain of date and time.

Valid times are usually provided by the user, whereas transaction-times are usually
system-generated and -supplied [36]. Temporal values of type UDT are not given any
extraordinary interpretation and have thus no extraordinary query language support
[36].

A temporal database can now formally be defined as follows:

Definition 18 Temporal Database [36]
A temporal database supports some aspect of time, not counting user-defined
time.

9 Aspects of Dealing with Imperfect Data in Temporal Databases 203

In a relational temporal database, temporal values will of course be in the tuples
of the extensions of temporal relations:

Definition 19 Valid-time Relation [36]
A valid-time relation is a relation with exactly one system supported valid-
time.

Definition 20 Transaction-time Relation [36]
A transaction-time relation is a relation with exactly one system supported
transaction-time.

A valid-time, respectively transaction-time relational database is now defined as
containing one or more valid-time, respectively transaction-time relations [36]. Next
to this, bitemporal relational databases contain both valid-time and transaction-time
[36] and tritemporal databases contain valid-time, transaction-time and decision-time
[63].

A very extensive list of the most well-known temporal database models can be
found in [82]. As it is of course necessary to define a consistent way to query the
temporal data, there are several proposals concerned with query languages and query
language adaptations for temporal databases like [64, 76].

In the rest of the chapter, the focus will be on concepts and issues concerning
valid-time relations and aspects of valid-time relations. For this reason, the next two
sections will present and discuss some main issues concerning temporal databases,
specifically applied to or presented in the context of valid-time relations.

4.2 Primary Keys in Valid-Time Relation Design

Generally, when designing a relation based on a relational database model, a sub-
set of the relation’s attribute set is usually chosen as primary key. The values of
a tuple for these attributes will then uniquely determine this tuple, hence no two
distinct tuples may have the exact same values for every attribute in this primary
key. Next to attributes unrelated to time, a valid-time relation schema will typically
contain one or more attributes which model the valid-time aspects and behavior of
the real objects and concepts modelled by the relation schema. In this work, these
attributes are called valid-time attributes. In valid-time relation extensions, distinct
tuples can exist containing the exact same values for every attribute except the valid-
time attributes. These distinct tuples represent distinct versions of the same real
object or concept, valid during different time periods. To allow the existence of such
tuples when designing a valid-time relation using a relational database model, the
most common solution is to include the valid-time attributes in the primary key.

204 J. Pons et al.

Table 1 Example relation modelling the employees of a company

ID Name Birthday Supervisor Start End

1 Peter 24/10/1985 3 2010 –
2 Maria 03/04/1984 3 2001 –
3 John 21/02/1964 – 1999 –
4 Sarah 29/11/1985 2 2005 2009

Values for the ‘Birthday’ attribute are visualized here in ‘dd/mm/yyyy’ format

The following example illustrates this primary key issue.

Example 4 Consider the example valid-time relation visualized in Table 1, which
models when certain people worked as employees in a certain company and under
whose supervision they worked during that time. The valid-time attributes ‘Start’ and
‘End’ describe the year when an employee started, respectively finished working
for the company. For example, the last tuple visualized in Table 1 represents that
the employee represented by this tuple started working for the company in 2005
and finished in 2009. The attributes ‘Name’, ‘Birthday’ and ‘Supervisor’ describe
respectively the name, birthday date and unique identifier of the supervisor of an
employee in the time during which he or she worked for the company. When correct,
the date of an employee’s birthday never changes and as such, the modelling of
birthday dates has no effect on the database consistency. The ‘Birthday’ attribute
thus describes UDT values. The attribute ‘ID’ describes employee identifiers. For
each tuple, this identifier (a number) uniquely identifies the employee represented
by the tuple.

Now consider {ID} being the primary key and consider the company wanting to
hire Sarah again in 2010. This would be represented by another tuple in the relation,
containing value 4 for attribute ‘ID’. The existence of such a tuple is of course not
allowed by the primary key, because it would mean the existence of two distinct tuples
containing value 4 for attribute ‘ID’. This problem can now be solved by defining a
new primary key: {ID, Start, End}, which allows for the existence of distinct tuples
with value 4 for attribute ‘ID’, as long as they have different values for attributes
‘Start’ or ‘End’. The resulting relation is shown in Table 2.

Table 2 Example relation
after including the valid-time
attributes in the primary key
and adding a tuple

ID Name Birthday Supervisor Start End

1 Peter 24/10/1985 3 2010 –
2 Maria 03/04/1984 3 2001 –
3 John 21/02/1964 – 1999 –
4 Sarah 29/11/1985 2 2005 2009
4 Sarah 29/11/1985 2 2010 –

9 Aspects of Dealing with Imperfect Data in Temporal Databases 205

4.3 Consistency in Valid-Time Relation Content Modification

The solution presented in Sect. 4.2 concerns relation design and consists of including
the valid-time attributes in the primary key. Unfortunately, implementing this solution
as such allows for the existence of records whose values imply inconsistencies with
respect to the modelling of reality.

Consider a valid-time relation of which the primary key can be partitioned into
two sets of attributes. One set contains attributes totally unrelated to time, for which
the values of a record allow to uniquely identify the object or concept represented by
the record. The other set contains the valid-time attribute(s). Because the valid-time
attribute(s) is(are) included in the primary key, the existence of distinct records with
exactly the same values for all time-unrelated attributes and distinct values for at
least one valid-time attribute is not prohibited. Thus, inserting such records into the
relation is not prohibited either, even if the information represented by the values for
the valid-time attributes shows clear inconsistencies. An example.

Example 5 Consider the example valid-time relation visualized in Table 3, which is
based on the relation visualized in Table 1. The primary key is again {ID, Start, End}.
The last record in the relation represents a person named ‘Sarah’ started working
for the company in 2007 and finished in 2008, with supervisor ‘John’. However, the
fourth record represents the same person (the value for attribute ‘ID’ is the same)
started working for the company in 2005 and finished in 2009, with supervisor
‘Maria’. The intention is clear: Sarah worked in the company from 2005 to 2009,
first for Maria, then for John, then again for Maria. It is of course possible for an
employee to change supervisors, but it is of course impossible for a person to start
working in the same company twice at different times, for different supervisors,
without stopping to work for one in between, as it is impossible to stop working for
a supervisor twice at different times, without working for another one in between.
The valid-time information represented by the last record is clearly not consistent
with the valid-time information represented by the fourth record, or vice versa.

The most usual approach to deal with this inconsistency problem is to adapt the
DML used by the DBMS, as to enforce consistency towards time with respect to the
modelled reality.

Example 6 Consider the problem presented in Example 5. The inconsistency arises
when the last record in Table 3 is inserted. Because the record’s values for the valid-

Table 3 Example relation
with records whose values for
the valid-time attributes
violate consistency

ID Name Birthday Supervisor Start End

1 Peter 24/10/1985 3 2010 –
2 Maria 03/04/1984 3 2001 –
3 John 21/02/1964 – 1999 –
4 Sarah 29/11/1985 2 2005 2009
4 Sarah 29/11/1985 3 2007 2008

206 J. Pons et al.

Table 4 Example relation
updated maintaining
consistency

ID Name Birthday Supervisor Start End

1 Peter 24/10/1985 3 2010 –
2 Maria 03/04/1984 – 2001 –
3 John 21/02/1964 – 1999 2010
3 John 21/02/1964 – 2010 –
4 Sarah 29/11/1985 2 2005 2007
4 Sarah 29/11/1985 3 2007 2008
4 Sarah 29/11/1985 2 2008 2009

time attributes differ from those of the fourth record, the last record is accepted. The
DML statement used was (the table is called ‘Employees’):

INSERT INTO Employees VALUES
(4, ‘Sarah’, ‘29/11/1985’, 3, 2007, 2008);

The inconsistency problem can now be solved by replacing this statement with:

UPDATE Employees SET ‘End’ = ‘2007’ WHERE
(ID = 4) AND (Start = 2005) AND (End = 2009);
INSERT INTO Employees VALUES
(4, ‘Sarah’, ‘29/11/1985’, 3, 2007, 2008);
INSERT INTO Employees VALUES
(4, ‘Sarah’, ‘29/11/1985’, 2, 2008, 2009);

The resulting relation is visualized in Table 4.

4.4 Commercial Temporal Database Systems

Several commercial temporal DBMS exist. Table 5 gives an overview of some of the
more well-known temporal DBMS and provides references for more information.

Oracle workspace manager [15] and TimeDB [79] are libraries for dealing with
time in OracleDB. On another note, TimeDB and Postgree Temporal [69] are similar:
both are simple implementations that implement a subset of the Allen operators and
some operations for the creation and manipulation of temporal attributes (valid-time,
transaction-time or both times are supported). Teradata [78] is mainly a business
intelligence system designed for data mining. Secondo [25] is an extensible database
system in which the core of the database may be replaced by a customized algebra. It
is designed for non-standard applications and it supports both valid and transaction-
times.

The most complete implementation is Workspace Manager.
Unfortunately, none of these systems take data imperfections into account, neither

in data storage nor in querying.

9 Aspects of Dealing with Imperfect Data in Temporal Databases 207

Table 5 Commercial temporal database systems

Name Time supported Comments Reference

Oracle Workspace Manager VT and TT Package for Oracle DB [15]
TimeDB VT and TT Interface for Oracle DB [79]
Postgree Temporal VT Package for Postgree SQL [69]
Teradata VT and TT Used for data-mining [78]
Secondo VT and TT Spatio-temporal database [45]

5 Data Imperfections in Temporal Databases

Consider a logistics company which transports packages. At the moment a package
leaves, the time when it will arrive at its destination may be estimated, but will
typically not be known precisely. For such companies and in many other situations,
information systems able to handle imperfection with respect to certain temporal
aspects of the objects modelled by the system are necessary.

5.1 Data Imperfections in Temporal Databases

Data and information imperfections and techniques to represent them correctly in
databases and queries are usually the focus of research in fuzzy databases. Proposals
from this field may present an approach based somehow on fuzzy set theory [59]
or possibility theory [29], although other theories support information imperfections
too. Comparably, many proposals concerning the introduction of data imperfections
or information imperfections in temporal databases present approaches based some-
how on fuzzy set theory [5, 42, 43, 62] or possibility theory [18, 30, 68], although
proposals based on other theories exist [21, 38, 70]. As possibility theory is usually
seen as a theory of confidence, aimed at dealing with uncertainty, in some proposals,
possibility theory is used specifically to handle uncertainty in temporal information.
In fuzzy databases [41], uncertainty is usually expected to appear in the database con-
tent, whereas other types of imperfection, notably imprecision, are usually expected
to appear in querying.

Concerning temporal databases, there are several approaches to handle uncertainty
in temporal data stored in a database. Many of these approaches concern several
different types of time notions (VT, TT or DT), but most of these approaches focus
somehow on valid-time [42, 43].

In the following subsection, a novel approach to representing uncertainty con-
cerning valid-time notions and a corresponding technique to query similar valid-time
indications in a valid-time relation are proposed. The presented proposal is based on
concepts introduced in [27] and on the framework proposed in [68].

208 J. Pons et al.

5.2 Handling Uncertainty in a Valid-Time Relation

A valid-time indication usually takes the form of a time interval. Such a valid-
time interval can be described (and stored in a valid-time relation record) using
its boundaries (endpoints) or using one endpoint and the interval length. Usually,
a valid-time interval is represented using its endpoints, which is also the approach
adopted by the presented proposal.

Generally, the uncertainty concerning a set of values might be described by a
possibility distribution on the powerset of which one of the elements can be the
intended set [27]. This representation, however, introduces some issues in practice
or in practical applications. Therefore, in the presented proposal, possibility theory
is used to model uncertainty, but only uncertainty concerning the exact values of the
start and end point of a valid-time interval is considered and the uncertainty in both
the start point and the end point are modelled using possibility distributions.

In fact, to model the uncertainty related to a valid-time interval using possibility
theory, the presented proposal introduces so-called ill-known time intervals, relying
on the concept of ill-known sets [27].

5.2.1 Ill-known Time Intervals

To represent valid-time indications which might contain uncertainty, the presented
proposal introduces the concept of ill-known valid-time intervals, which relies on the
concept of ill-known sets [27]. To correctly explain the concept of ill-known sets, the
concept of possibilistic variables should be introduced first. In the presented proposal,
the definition of possibilistic variables of [68] is followed. In [68], a possibilistic
variable is defined as follows:

Definition 21 Possibilistic variable [68]
A possibilistic variable X over a universe U is defined as a variable taking
exactly one value in U , but for which this value is (partially) unknown. Its
possibility distribution πX on U models the available knowledge about the
value that X takes: for each u ∈ U , πX (u) represents the possibility that X takes
the value u. In the presented work, this possibility is interpreted as a measure
of how plausible it is that X takes the value u, given (partial) knowledge about
the value X takes.

Now, consider a set R, which contains single values (and not collections of values).
When a possibilistic variable Xv is defined on such a set R, the unique value Xv takes,
which is (partially) unknown, is called an ill-known value in this work [27].

When a possibilistic variable is defined on the powerset P(R) of some universe
R, the unique value the variable takes will be a crisp set and its possibility distribution

9 Aspects of Dealing with Imperfect Data in Temporal Databases 209

Fig. 4 A closed ill-known
time interval [X, Y], where
triangular possibility distrib-
utions describe the ill-known
values defining the start and
end points

1

0

Membership Degree

2 3 4 5 7 8 9 101

X Y

Time
6

on the powerset P(R) will describe the possibility of each crisp subset of R to be the
value the variable takes. This value (a crisp set) the variable takes, which is (partially)
unknown, is now called an ill-known set [27].

Finally, consider a set R, which contains single values (and not collections of
values) and its powerset P(R). Now consider a subset PI (R) of P(R) and let this
subset contain every element of P(R) that is an interval, but no other elements. When
a possibilistic variable Xi is defined on the subset PI (R) of the powerset P(R)

of some set R, the unique value Xi takes will be a crisp interval and the possibility
distribution πXi of Xi will be a possibility distribution on PI (R). This πXi will
define the possibility of each value of PI (R) (a value of PI (R) is a crisp interval
which is a subset of R) being the value Xi takes. This exact value (a crisp interval)
the variable takes, which is (partially) unknown, is called an ill-known interval here.

The presented proposal will deal with ill-known time intervals. Ill-known time
intervals are ill-known intervals in a time domain. In the presented proposal, an ill-
known time interval will be defined and represented via its start and end point, which
will be ill-known values. The elements of the ill-known time interval are the values
between its start and end point, including the start and end points themselves.1 It
should be clear that this approach to representing ill-known time intervals differs
from the approach based on a single possibility distribution on a set PI (R) of a set
R. These approaches have a different behavior and can be used to describe different
ill-known time intervals. The correspondences, interactions and transitions between
these different representations of ill-known intervals and their interpretations are part
of the authors current research.

In the presented proposal, a closed ill-known time interval with start point defined
by possibilistic variable X and end point by possibilistic variable Y is noted [X, Y].
Figure 4 shows a closed ill-known time interval.

Several authors work with concepts very similar to these ill-known time intervals
and some of them [43] propose transformations of the describing functions in order
to optimize the storage of such ill-known valid-time intervals, though recent research
might seem to indicate some minor issues with respect to some of these transforma-
tions [68]. A comparison between the transformations in [43] and the framework in

1 The presented proposal only deals with closed ill-known time intervals. Dealing with halfopen or
open ill-known intervals is part of the current research of the authors.

210 J. Pons et al.

Fig. 5 Transformation based
in the convex hull from the
two ill-known points X and Y 1

0

Membership Degree

2 3 4 5 7 8 9 101

X Y

Time

1

0

Membership Degree

2 3 4 5 7 8 9 101
Time

T

6

6

[68] is presented in [67]. Figure 5 illustrates a transformation based on the ‘convex
hull’ approach [43].

In the presented proposal, ill-known valid-time intervals will be used to represent
valid-time indications in a valid-time relation and to model the uncertainty these may
contain.

To evaluate the temporal demands in queries issued by users to query a valid-time
relation containing ill-known valid-time intervals, the presented proposal introduces
a technique based on the concept of ill-known time constraints, which is based on
the concept of ill-known constraints as presented in [68]. Both concepts are treated
in Sect. 5.2.2.

Before ill-known time constraints can be introduced, another notion related to
possibilistic variables shoud be paid attention to. In fact, a specific application of
possibilistic variables is obtained when the set under consideration is the set of
boolean values, denoted B = {T, F}, where T denotes ‘true’ and F denotes ‘false’
[68]. Indeed, any boolean proposition p takes exactly one value in B. If the knowledge
about which value this proposition p takes, is given by a possibility distribution πp,
then proposition p can be seen as a possibilistic variable. In the presented proposal,
the interest lies with the case where the proposition holds (denoted p = T) and the
possibility and necessity that p = T demand most attention. In the following sections,
the following notations are used, based on previous notations:

9 Aspects of Dealing with Imperfect Data in Temporal Databases 211

Possibility that p = T : Pos(p) = πp(T) (2)

Necessity that p = T : Nec(p) = 1− πp(F) (3)

5.2.2 Ill-Known Time Constraints

The presented proposal contains a technique for evaluating user queries used to query
a valid-time relation in which the valid-time indications are represented by ill-known
time intervals. Part of this query evaluation technique relies on the concept of ill-
known time constraints, which is based on the concept of ill-known constraints as
presented in [68]. These concepts are presented below. Following [68], an ill-known
constraint is defined as follows.

Definition 22 Given a universe U , an ill-known constraint C is specified by
means of a binary relation R ⊆ U 2 and a fixed, ill-known value defined by its
possibilistic variable V on U , i.e.:

C � (V, R)

A set A ⊆ U now satisfies this constraint C if and only if:

∀a ∈ A : (V, a) ∈ R

An example of an ill-known constraint is given by:

C< � (X,<)

Some set A then satisfies C< if

∀a ∈ A : X < a

The satisfaction of a constraint C � (V, R) by a set A is basically a Boolean
matter (either the set satisfies the constraint or not) and can thus be seen as a boolean
proposition, but due to the uncertainty inherent to the ill-known value V , it can be
uncertain whether C is satisfied by A or not [68]. Based on the possibility distribution
πV of V , the possibility and necessity that A satisfies C can be found. This proposition
can thus be seen as a possibilistic variable on B. The required possibility and necessity
are calculated using the following formulas [68].

212 J. Pons et al.

Pos(A satisfies C) = min
a∈A

(

sup
(w,a)∈R

πV (w))

)

(4)

Nec(A satisfies C) = min
a∈A

(

inf
(w,a)/∈R

1− πV (w)

)

(5)

Now, to calculate the possibility or necessity of a set A satisfying multiple con-
straints, the min t-norm operator is used to express a conjunction of constraints. For
example:

Pos((A satisfies C1) and (A satisfies C2)) = min
a∈A

(Pos(A satisfies C1), Pos(A satisfies C2))

Nec((A satisfies C1) and (A satisfies C2)) = min
a∈A

(Nec(A satisfies C1), Nec(A satisfies C2))

Accordingly, the max t-conorm operator is used to express a disjunction of con-
straints. For example:

Pos((A satisfies C1) or (A satisfies C2)) = max
a∈A

(Pos(A satisfies C1), Pos(A satisfies C2))

Nec((A satisfies C1) or (A satisfies C2)) = max
a∈A

(Nec(A satisfies C1), Nec(A satisfies C2))

In the presented proposal, ill-known time constraints are considered, which are
ill-known constraints of which the considered universe is a time domain.

In the next subsection, the core of the presented proposal is described.

5.2.3 Querying Valid-Time Relations containing Ill-known Valid-Time
Intervals

One of the main purposes of the existence of (relational) databases is to allow infor-
mation retrieval. The standard query language for (relational) databases is SQL [60],
but several proposals to extend the SQL language for transaction-time databases [72],
valid-time databases [40] and bitemporal databases [64] exist and some authors have
studied how to support temporal querying in standard SQL [76].

As mentioned before, the presented proposal deals with querying a valid-time
relation. In this subsection, the core of the presented proposal is described. First the
particular structure of the relation is described, along with the nature and structure
of its supposed contents. Next, the particular query structure is presented. Finally,
the particular method for evaluating queries and for ranking the result records are
presented.

9 Aspects of Dealing with Imperfect Data in Temporal Databases 213

Relation Structure

In the presented proposal, a valid-time relation is considered, in which every record
contains just one valid-time indication. This valid-time indication is represented by
a closed ill-known time interval, to allow uncertainty in the valid-time information.
As explained above, the ill-known time intervals used here will be defined and rep-
resented via their start and end points, which are ill-known values in the valid-time
domain.

Query Structure

In the presented proposal, a query consists of two separate constructs of user demands.

Definition 23 Query A query Q̃ is given by:

Q̃ =
(

Qtime, Q
)

(6)

Here, Q denotes the construct of all (possibly fuzzy) non-temporal user query
demands. These comprise all constraints and demands unrelated to valid-time
and thus unrelated to the valid-time indications in the queried relation. Qtime

denotes the temporal demand specified by the user.

The presented query structure allows the user to specify a single temporal demand,
denoted by Qtime.

Definition 24 Temporal demand A temporal demand Qtime is defined by:

Qtime = (I, AR) (7)

Here, I denotes a crisp time interval (which can be specified in any way
required) and AR denotes one of the Allen relations (cf. Sect. 2.3).

The interpretation of such a temporal demand Qtime = (I, AR) is that, for a
record with an ill-known valid-time interval J , the user demands that I AR J holds.

214 J. Pons et al.

Table 6 Constructs of constraints related to their respective Allen relations, as used in the presented
work

Allen relation Construct of constraints

I before J C1 � (<, X)

I equal J
(
C1 � (≥, X)

) ∧ ¬ (
C2 � (�=, X)

) ∧ (
C3 � (≤, Y)

) ∧ ¬ (
C4 � (�=, Y)

)

I meets J
(
C1 � (≤, X)

) ∧ ¬ (
C2 � (�=, X)

)

I overlaps J
(
C1 � (<, Y)

) ∧ ¬ (
C2 � (≤, X)

) ∧ ¬ (
C3 � (≥, X)

)

I during J
((

C1 � (>, X)
) ∧ (

C2 � (≤, Y)
)) ∨ ((

C3 � (≥, X)
) ∧ (

C4 � (<, Y)
))

I starts J
(
C1 � (≥, X)

) ∧ ¬ (
C2 � (�=, X)

)

I finishes J
(
C1 � (≤, Y)

) ∧ ¬ (
C2 � (�=, Y)

)

In this table, the ill-known time interval J = [X, Y] in a record r has a start point described by
possibilistic variable X and an end point described by possibilistic variable Y . The crisp time interval
in the user’s temporal demand is denoted I

Query Evaluation

Query satisfaction in a fuzzy relational database is usually a matter of degree. Typi-
cally, the evaluation of the query demands for a record results in a satisfaction degree
s, which is typically in the unit interval, i.e. s ∈ [0, 1]. This satisfaction degree then
models the extent to which the record satisfies the query demands. As such, a sat-
isfaction degree of 0 indicates total dissatisfaction while a degree of 1 indicates
total satisfaction and every level of satisfaction between total satisfaction and total
dissatisfaction is indicated by a satisfaction degre between 0 and 1.

In the presented approach, for every record r , each part of a query Q̃ = (
Qtime, Q

)

is evaluated independently:

• The user preferences expressed in the non-temporal part Q, are evaluated, resulting
in a satisfaction degree denoted eQ(r). The presented approach accepts any valid,
sound method of calculating this evaluation, as long as the method is well-founded
and eQ(r) ∈ [0, 1].
• The evaluation of the temporal demand expressed in the temporal part, Qtime =

(I, AR), depends on AR. A specific construct of ill-known constraints (cf.
Sect. 5.2.2) is considered, depending on the Allen relation denoted by AR. The
exact construct of constraints is an instantiation based on the formulas which can
be found in Table 6, for every possible value of AR. The form and capacity of these
constraints are based on [68]. Then, using Eqs. (4) and (5), the exact formulas to
calculate the possibility PosQtime(r) and the necessity NecQtime(r) that record r
satisfies this construct of ill-known time constraints are derived from this construct
of constraints. As mentioned, PosQtime(r) and NecQtime(r) denote the possibility,
respectively the necessity that the considered record r satisfies the construct of
constraints corresponding to the temporal demand Qtime and thus the possibility,
respectively the necessity that r satisfies Qtime.

9 Aspects of Dealing with Imperfect Data in Temporal Databases 215

Aggregation and Ranking

In this subsection, the notations used in the previous subsection are followed. To be
able to present the most appropriate results to the user most prominently, for every
record r , an aggregation method is used to aggregate PosQtime(r) and NecQtime(r)

into a temporal record rank eQtime (r) and after this, a convex combination combining
eQtime(r) and eQ(r) will provide the final record rank e f inal(r).

To calculate eQtime(r), an a simple and crude method is used:

eQtime (r) =
(

PosQtime(r)+ NecQtime(r)

2

)

(8)

This method aims to provide the result records with a natural ranking based on
the users temporal constraint. eQtime(r) will of course be a value in [0, 1], as both
PosQtime(r) ∈ [0, 1] and NecQtime(r) ∈ [0, 1]. The purpose is that records which fit
the users temporal demand better get a higher score than records fitting the temporal
demand worse. Here, this aim is reached because the necessity degree NecQtime(r)

cannot exceed 0 unless the possibility degree PosQtime(r) equals 1.
The final ranking e f inal(r) for a record r is now given by a convex combination

of both temporal and non-temporal evaluation scores.

e f inal (r) = ω ∗ eQ (r)+ (1− ω) ∗ eQtime (9)

A convex combination is used mainly for 2 reasons:

• The use of this convex combination allows a record to make up for a low temporal
evaluation score with a high non-temporal evaluation score and vice versa.
• The exact value of ω can now be modified to ascribe more value to either the

fulfillment of the user’s temporal demands or the fulfillment of the user’s non-
temporal constraints.

In the next subsection, some main concepts and issues concerning bipolarity in
the context of temporal databases are presented and discussed.

5.3 Bipolarity in Temporal Databases

Humans express their preferences using both positive and negative statements, where
positive statements express what is desired or acceptable and negative statements
express what is undesired or unacceptable [5]. This realization is interesting with
regard to database querying, because sometimes a user does not exactly know his or
her preferences or can’t express them in only positive statements, but prefers to use
negative statements to express what he or she dislikes or doesn’t need. This introduces
the need for bipolar querying, a technique to model both positive and negative user
preferences in a database query. Sometimes positive and negative preferences are

216 J. Pons et al.

clearly symmetric, making it possible to derive one from the other. For example, a
person may define the concept of ‘tall’ as ‘1.80 m or higher’. The negative would
then be the opposite: not tall would be ‘anything less than 1.80 m’. However, in some
cases, positive preferences can not be directly obtained from negative preferences
or vice versa. E.g., when a person prefers to buy a black motorbike, this does not
necessarily mean the person would totally reject a very dark blue motorbike. This
phenomenon is called heterogeneous bipolarity [33, 34].

The use of imprecise query preference formulation in bipolar querying is well dis-
cussed in existing literature [20, 34, 55]. In [55], desired and mandatory query con-
ditions are used, instead of positive and negative preferences. However, the inverse
of a mandatory preference expresses what should be rejected and this could be seen
as negative information, whereas desired query conditions can be seen as positive
preferences. However, the combination of bipolar querying and the use of impre-
cise query preferences in the context of temporal databases is not so well discussed
in existing literature. A proposal for the bipolar querying of valid-time databases
has been made by Billiet et al. [5]. The model presented there deals with a fuzzy
valid-time specification based on [43].

Bipolarity can be handled using different concepts, such as intuitionistic fuzzy
sets [2], interval valued fuzzy sets [83] Grattan-Guiness [44], Janh [47], Sambuc
[71], [32] or twofold fuzzy sets [31].

From a theoretical point of view, bipolarity might be found either in the queries
presented to a database system or in a database managed by a database system.

When bipolarity is found in queries, it is possible to distinguish between:

• Bipolarity inside query criteria: each individual query criterion may be specified
using both positive and negative preferences. For example when querying a car
database, the user can express that he or she wants a black car, but definitely not
a red neither a blue one. Bipolarity resides here within the car color criterion.
• Bipolarity outside query criteria: the query is specified using a global positive and

a global negative preference part. For example when querying a car database, the
user can express that he or she wants a black car, but definitely not a car with a
fuel consumption of 6 l or more.

Concerning bipolarity inside a database, it should be possible to specify both
positive and negative real world object or concept aspects, even at record level.
Nevertheless, not so much research exists concerning bipolarity in databases.

6 Conclusions and Further Research

In this chapter, some of the main concepts concerning information imperfections in
temporal modelling and information imperfections in temporal modelling in informa-
tion systems and the terminology corresponding with these concepts are introduced
and explained and some of the main properties of and issues with these concepts
are presented and discussed. An overview of some commercial temporal DBMS is

9 Aspects of Dealing with Imperfect Data in Temporal Databases 217

briefly introduced. Finally, a novel technique for querying valid-time relations using
imperfect query specifications is presented.

Further research work could follow several general directions. First of all, a the-
oretical model for dealing with uncertainty in both the database and the query at the
same time could be researched and defined. Next, implementations including both
DDL and DML could be proposed and constructed.

Acknowledgments Part of this research is supported by the grant BES-2009-013805 within the
research project TIN2008-02066: Fuzzy Temporal Information treatment in relational DBMS.

References

1. Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26, 832–843
(1983)

2. Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)
3. Bassiri, A., Malek, M., Alesheikh, A., Amirian, P.: Temporal relationships between rough time

intervals. In: Gervasi, O., Taniar, D., Murgante, B., Lagan, A., Mun, Y., Gavrilova, M. (eds.)
Computational Science and Its Applications ICCSA 2009. Lecture Notes in Computer Science,
vol. 5592, pp. 543–552. Springer, Berlin (2009). http://dx.doi.org.10.1007/978-3-642-02454-
2_39

4. Benthem, J.F.K.A.V.: The logic of time: a model-theoretic investigation into the varieties of
temporal ontology and temporal discourse. Reidel, Hingham (1982)

5. Billiet, C., Pons, J.E., Matthé, T., De Tré, G., Pons Capote, O.: Bipolar fuzzy querying of
temporal databases. In: Lecture Notes in Artificial Intelligence, vol. 7022, pp. 60–71. Springer,
Ghent (2011)

6. Böhlen, M., Busatto, R., Jensen, C.: Point-versus interval-based temporal data models. In:
Proceedings of the 14th International Conference on Data Engineering, pp. 192–200 (1998)

7. Bolour, A., Anderson, T.L., Dekeyser, L.J., Wong, H.K.T.: The role of time in information
processing: a survey. ACM SIGMOD Record 12, 27–50 (1982)

8. Bordogna, G., et al.: Advanced database query systems. In: Flexible Querying of Imperfect
Temporal Metadata in Spatial Data Infrastructures: Techniques, Applications and Technologies,
p. 140. IGI Global (2011).10.4018/978-1-60960-475-2.ch006

9. Bordogna, G., Carrara, P., Pagani, M., Pepe, M., Rampini, A.: Managing imperfect tempo-
ral metadata in the catalog services of spatial data infrastructures compliant with inspire.
In: Carvalho, J.P., Dubois, D., Kaymak, U., da Costa Sousa, J.M. (eds.) IFSA/EUSFLAT
conference, pp. 915–920 (2009). http://dblp.uni-trier.de/db/conf/eusflat/eusflat2009.html#
BordognaCPPR09

10. Burney, A., Mahmood, N., Abbas, Z.: Advances in fuzzy rough set theory for temporal data-
bases. In: Proceedings of the 11th WSEAS International Conference on Artificial Intelligence,
Knowledge Engineering and Data Bases, AIKED’12, pp. 237–242. World Scientific and Engi-
neering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA (2009). http://dl.
acm.org/citation.cfm?id=2183067.2183107

11. Burney, A., Mahmood, N., Ahsan, K.: Tempr-pdm: a conceptual temporal relational model
for managing patient data. In: Proceedings of the 9th WSEAS International Conference on
Artificial Intelligence, Knowledge Engineering and Data Bases, AIKED’10, pp. 237–243.
World Scientific and Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin,
USA (2010). http://dl.acm.org/citation.cfm?id=1808036.1808078

12. Burney, A., Mahmood, N., Jilani, T., Saleem, H.: Conceptual fuzzy temporal relational model
(ftrm) for patient data. WSEAS Trans. Info. Sci. Appl. 7(5), 725–734 (2010). http://dl.acm.
org/citation.cfm?id=1852534.1852546

http://dx.doi.org
http://dx.doi.org/10.1007/978-3-642-02454-2_39
http://dx.doi.org/10.1007/978-3-642-02454-2_39
http://dx.doi.org/10.4018/978-1-60960-475-2.ch006
http://dblp.uni-trier.de/db/conf/eusflat/eusflat2009.html#BordognaCPPR09
http://dblp.uni-trier.de/db/conf/eusflat/eusflat2009.html#BordognaCPPR09
http://dl.acm.org/citation.cfm?id=2183067.2183107
http://dl.acm.org/citation.cfm?id=2183067.2183107
http://dl.acm.org/citation.cfm?id=1808036.1808078
http://dl.acm.org/citation.cfm?id=1852534.1852546
http://dl.acm.org/citation.cfm?id=1852534.1852546

218 J. Pons et al.

13. Chountas, P., Petrounias, I.: Modelling and representation of uncertain temporal information.
Requir. Eng. 5, 144–156 (2000)

14. Clifford, J., Tansel, A.U.: On an algebra for historical relational databases: two views. SIGMOD
Rec. 14, 247–265 (1985)

15. Corp., O.: Oracle database 11g., Workspace manager overview
16. Van der Cruyssen, B., De Caluwe R. and De Tré, G.: A theoretical fuzzy time model based on

granularities. EUFIT’97, pp. 1127–1131 (1997)
17. De Caluwe, R., Van der Cruyssen, B., De Tré, G., Devos, F., Maesfranckx, P.: Fuzzy Time Indi-

cations in Natural Languages Interfaces, pp. 163–185. Kluwer Academic Publishers, Norwell
(1997)

18. De Caluwe, R., De Tré, G., Van Der Cruyssen, B., Devos, F., Maesfranckx, P.: Time manage-
ment in fuzzy and uncertain object-oriented databases. In: Knowledge Management in Fuzzy
Databases, vol. 39, pp. 67–88. Physica-Verlag, Heidelberg (2000)

19. De Tré, G., De Caluwe, R., Van der Cruyssen, B.: Dealing with time in fuzzy and uncertain
object-oriented database models. EUFIT’97, pp. 1157–1161 (1997)

20. De Tré, G., Zadrozny, E.A.: Dealing with positive and negative query criteria in fuzzy data-
base querying bipolar satisfaction degrees. In: Proceedings of 8th International Conference on
FQAS, pp. 593–604. Springer, Berlin (2009)

21. Dekhtyar, A., Ross, R., Subrahmanian, V.S.: Probabilistic temporal databases, I: algebra. ACM
Trans. Database Syst. 26, 41–95 (2001)

22. Devos, F., Maesfranckx, P., De Tré, G.: Granularity in the interpretation of around in approxi-
mative lexical time indications. J. Quant. Linguist. 5, 167–173 (1998)

23. Devos, F., Van Gyseghem, N., Vandenberghe, R., De Caluwe, R.: Modelling vague lexical time
expressions by means of fuzzy set theory. J. Quant. Linguist. 1(3), 189–194 (1994)

24. Dey, D., Sarkar, S.: A probabilistic relational model and algebra. ACM Trans. Database Syst.
21(3), 339–369 (1996)

25. Dieker, S., Güting, R.H.: Plug and play with query algebras: Secondo-a generic dbms develop-
ment environment. In: Proceedings of the 2000 International Symposium on Database Engi-
neering & Applications, IDEAS ’00, pp. 380–392. IEEE Computer Society, Washington, DC,
USA (2000)

26. Dubois, D., HadjAli, A., Prade, H.: Fuzziness and uncertainty in temporal reasoning. J. Univ.
Comput. Sci. 9(9), 1168–1194 (2003)

27. Dubois, D., Prade, H.: Incomplete conjunctive information. Comput. Math. Appl. 15, 797–810
(1988)

28. Dubois, D., Prade H.: Possibility Theory. Plenum Press, New York (1988)
29. Dubois, D., Prade, H.: Possibility Theory: An Approach to Computerized Processing of Uncer-

tainty. Plenum Press, New York (1988)
30. Dubois, D., Prade, H.: Processing fuzzy temporal knowledge. IEEE Trans. Syst. Man Cybern.

B Cybern. 19, 729–744 (1989)
31. Dubois, D., Prade, H.: Bipolarity in flexible querying. In: Proceedings of the 5th International

Conference on Flexible Query Answering Systems, FQAS ’02, pp. 174–182. Springer, London
(2002)

32. Dubois, D., Prade, H.: Interval-valued fuzzy sets, possibility theory and imprecise probability.
In: Proceedings of International Conference in Fuzzy Logic and Technology, pp. 314–319
(2005)

33. Dubois, D., Prade, H.: Rough sets and current trends in computing. In: Lecture Notes in
Computer Science. Bipolar Representations in Reasoning, Knowledge Extraction and Decision
Processes, vol. 4259, pp. 15–26. Springer, Heidelberg (2006)

34. Dubois, D., Prade, H.: Handling bipolar queries in Fuzzy Information Processing. In: Handbook
of Research on Fuzzy Information Processing in Databases, pp. 97–114. Information Science
Reference, New York (2008)

35. Dutta, S.: An event based fuzzy temporal logic. In: Proceedings of the Eighteenth International
Symposium on Multiple-Valued Logic, pp. 64–71 (1988)

9 Aspects of Dealing with Imperfect Data in Temporal Databases 219

36. Dyreson, C.: Grandi, F.e.a.: A consensus glossary of temporal database concepts. SIGMOD
Rec. 23, 52–64 (1994)

37. Dyreson, C., Snodgrass, R.: Temporal granularity and indeterminacy: two sides of the same
coin. Technical report tr 94–06, Computer Science Department, University of Arizona, Tucson,
USA (1994).

38. Dyreson, C.E., Snodgrass, R.T.: Supporting valid-time indeterminacy. ACM Trans. Database
Syst. 23, 1–57 (1998)

39. Etzion, O., Jajodia, S., Sripada, S.: Temporal Databases: Research and Practice. Lecture Notes
in Computer Science. Springer, Berlin (1998)

40. Gadia., S.K.: A seamless generic extension of sql for querying temporal data. TR 92-02, Iowa
State Univerity, Department of Computer Science (1992)

41. Galindo, J.: Fuzzy Databases: Modeling, Design, and Implementation. IGI Publishing, Hershey
(2006)

42. Galindo, J., Medina, J.M.: Ftsql2: Fuzzy time in relational databases. In: EUSFLAT Conference
’01, pp. 47–50 (2001)

43. Garrido, C., Marin, N., Pons, O.: Fuzzy intervals to represent fuzzy valid time in a temporal
relational database. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 17, 173–192 (2009)

44. Grattan-Guinness, I.: Fuzzy membership mapped onto intervals and many-valued quantities.
Math. Logic Quart. 22(1), 149–160 (1976)

45. Güting, R.H., Schneider, M.: Moving objects databases. http://dna.fernuni-hagen.de/Lehre-
offen/Kurse/1675/KE1.pdf

46. Haddawy, P.: Believing change and changing belief. IEEE Trans. Syst. Man Cybern. Spec.
Issue on High. Ord. Uncertainty 26 (1996)

47. Jahn, K.U.: Intervall-wertige mengen. Mathematische Nachrichten 68(1), 115–132 (1975)
48. Jensen, C., Dyreson, C., Böhlen, M., Clifford, J., Elmasri, R., Gadia, S., Grandi, F., et al.: The

consensus glossary of temporal database concepts—february 1998 version. In: Lecture Notes
in Computer Science, pp. 367–405 (1998)

49. Jensen, C.S., Mark, L., Roussopoulos, N.: Incremental implementation model for relational
databases with transaction time. IEEE Trans. Knowl. Data Eng. 3, 461–473 (1991)

50. Jensen, C.S., Snodgrass, R.T., Soo, M.D.: The tsql2 data model. In: The TSQL2 Temporal
Query, Language, pp. 153–238 (1995)

51. Kabanza, F., m. Stevenne, J., Wolper, P.: Handling infinite temporal data. J. Comput. Syst. Sci.
392–403 (1990)

52. Klein, W.: Time in language. Routledge, London (1994)
53. Klopprogge, M.R., Lockemann, P.C.: Modelling information preserving databases: conse-

quences of the concept of time. In: Proceedings of the 9th International Conference on Very
Large Data Bases, pp. 399–416. Morgan Kaufmann Publishers Inc., San Francisco (1983)

54. Knight, B., Ma, J.: Time representation: a taxonomy of temporal models. Artif. Intell. Rev. 7,
401–419 (1993)

55. Lacroix, M., Lavency, P.: Preferences; putting more knowledge into queries. In: Proceedings of
the 13th International Conference on Very Large Data Bases, VLDB ’87, pp. 217–225. Morgan
Kaufmann Publishers Inc., San Francisco (1987)

56. Lakshmanan, L.V.S., Leone, N., Ross, R., Subrahmanian, V.S.: Probview: a flexible probabilis-
tic database system. ACM Trans. Database Syst. 22(3), 419–469 (1997)

57. Lin, H., Jensen, C.S., Böhlen, M.H.: Efficient conversion between temporal granularities. TR
19, The University of Arizona (1997)

58. Lorentzos, N.A.: A formal extension of the relational model for the representation of generic
intervals. Ph.D. thesis, Birkbeck College, University of London (1988)

59. Zadeh, L.: Fuzzy sets. Inf. Control 8, 338–353 (1965)
60. Melton, J., Simon, A.R.: Understanding the new SQL: a complete guide. Morgan Kaufmann

Publishers Inc., San Francisco (1993)
61. Mitra, D., et al.: A possibilistic interval constraint problem: fuzzy temporal reasoning. In:

Proceedings of the Third IEEE Conference on Fuzzy Systems: IEEE World Congress on Com-
putational Intelligence, vol. 2, pp. 1434–1439 (1994)

http://dna.fernuni-hagen.de/Lehre-offen/Kurse/1675/KE1.pdf
http://dna.fernuni-hagen.de/Lehre-offen/Kurse/1675/KE1.pdf

220 J. Pons et al.

62. Nagypál, G., Motik, B.: A fuzzy model for representing uncertain, subjective, and vague tempo-
ral knowledge in ontologies. In: On The Move to Meaningful Internet Systems 2003: CoopIS,
DOA, and ODBASE, LNCS, vol. 2888, pp. 906–923. Springer, Heidelberg (2003)

63. Nascimento, M.A., Eich, M.H.: Decision time in temporal databases. In: Proceedings of the Sec-
ond International Workshop on Temporal Representation and Reasoning, pp. 157–162 (1995)

64. Navathe, S., Ahmed, R.: Tsql: a language interface for history databases. In: Workshop on
Temporal Databases-TDB, pp. 109–122 (1987)

65. Ohlbach, H.J.: Relations between fuzzy time intervals. In: International Symposium on Tem-
poral Representation and Reasoning, pp. 44–51 (2004)

66. Pawlak, Z., Grymala-Busse, J., Slowinski, R., Ziarko, W.: Rough sets. Commun. ACM 38(6),
88–95 (1995)

67. Pons, J., Bronselaer, A., Pons, O., de Tre, G.: Possibilistic evaluation of fuzzy temporal intervals.
In: Sainz, G., Alcalá, J. (eds.) Actas del XVI Congreso Espa nol sobre Tecnologías y Lógica
Fuzzy. Valladolid, Spain (2012)

68. Bronselaer, A., Pons, J.E., De Tré, G., Pons, O.: Possibilistic evaluation of sets. Int, J. Unc.
Fuzz. Knowl. Based Syst. 21(3), 325–346 (2013)

69. Postgree: Temporal postgreesql (2011). http://pgfoundry.org/projects/temporal/
70. Qiang, Y., Asmussen, K., Delafontaine, M., De Tré, G., Stichelbaut, B., De Maeyer, P., Van de

Weghe, N.: Visualising rough time intervals in a two-dimensional space. In: 2009 IFSA World
Congress / EUSFLAT Conference, Proceedings (2001)

71. Sambuc, R.: Fonctions φ-floues. application l’aide au diagnostic en pathologie thyroidienne.
Ph.D. thesis, Univ. Marseille, France (1975)

72. Sarda, N.L.: Extensions to sql for historical databases. IEEE Trans. Knowl. Data Eng. 2, 220–
230 (1990)

73. Schockaert, S., De Cock, M., Kerre, E.: Fuzzifying allen’s temporal interval relations. IEEE
Trans. Fuzzy Syst. 16(2), 517–533 (2008)

74. Shackle, G.: Decision, order and time in human affairs. Cambridge University Press, Cambridge
(1961)

75. Snodgrass, R.: The temporal query language tquel. In: Proceedings of the 3rd ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems, PODS ’84, pp. 204–213. ACM,
New York (1984)

76. Snodgrass, R.T., Jensen, C.S., Jensen, C.S., Jensen, C.S., Steiner, A., Böhlen, M.H., Busatto,
R., Gregersen, H.: Transitioning temporal support in tsql2 to sql3. In: Etzion, O., Jajodia,
S., Sripada S. (eds.) Temporal Databases: Research and Practice, Lecture Notes in Computer
Science, vol. 1399. Springer, Berlin (1998)

77. Soysangwarn, S., Chittayasothorn, S.: Toward fuzzy temporal databases with temporal fuzzy
linguistic terms. In: Second International Conference on the Applications of Digital Informa-
tion and Web Technologies, 2009. ICADIWT ’09, pp. 8–13 (2009).10.1109/ICADIWT.2009.
5273853

78. Teradata: Teradata Temporal (2011). http://www.teradata.com/database/teradata-temporal/
79. TimeDB: A temporal relational dbms (2011) http://www.timeconsult.com/Software/Software.

html
80. Virant, J., Zimic, N.: Attention to time in fuzzy logic. Fuzzy Sets Syst. 82(1), 39–49 (1996)
81. Wang, X.S., Jajodia, S., Subrahmanian, V.S.: Temporal modules: an approach toward federated

temporal databases. In: Information Systems, pp. 227–236 (1993)
82. Wu, Y., Jajodia, S., Wang, X.: Temporal database bibliography update. In: O. Etzion, S. Jajodia,

S. Sripada (eds.) Temporal Databases: Research and Practice, Lecture Notes in Computer
Science, vol. 1399, pp. 338–366. Springer, Berlin (1998)

83. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning—
I. Inf. Sci. 8(3), 199–249 (1975)

http://pgfoundry.org/projects/temporal/
http://dx.doi.org/10.1109/ICADIWT.2009.5273853
http://dx.doi.org/10.1109/ICADIWT.2009.5273853
http://www.teradata.com/database/teradata-temporal/
http://www.timeconsult.com/Software/Software.html
http://www.timeconsult.com/Software/Software.html

Part IV
Flexible Queries Over Nonstandard Data

Chapter 10
A Unifying Model of Flexible Queries with
Distinct Semantics of Search Term Weights

Gloria Bordogna, Gabriella Pasi and Giuseppe Psaila

Abstract When querying documents archives there is often the need to specify
importance weights of the search terms that define flexible selection conditions on
documents representation. Several interpretations of the semantics of these weights
have been proposed within distinct information retrieval models. In this contribution
we define a unifying model of information retrieval based on a vector p-norm, were
importance weights with distinct semantics can be specified in flexible queries.

1 Introduction

One important aspect of flexible queries in databases and information retrieval
systems is the possibility of expressing both flexible selection conditions and soft
aggregations of the selection conditions themselves. When aggregating soft selec-
tion conditions which admit degrees of satisfaction, a trade off of these satisfaction
degrees must be computed. This issue occurs in flexible queries to both databases
and documents archives managed by Information Retrieval Systems (IRSs). In this
last context, search terms define soft selection conditions on the documents represen-
tation which generally consists of pairs (term - index term weight) where the weight
indicates the significance degree of the term in representing the document’s seman-

G. Bordogna (B)

CNR IDPA, via Pasubio 5, I-24044 Dalmine, BG, Italy
e-mail: gloria.bordogna@idpa.cnr.it

G. Pasi
Dipartimento Informatica Sistemistica e Comunicazione, University of Milano Bicocca,
Viale Sarca, 336, 20126 Milano, MI, Italy
e-mail: pasi@disco.unimib.it

G. Psaila
Department of Engineering, University of Bergamo, via Marconi 5, I-24044 Dalmine, BG, Italy
e-mail: psaila@unibg.it

O. Pivert and S. Zadrożny (eds.), Flexible Approaches in Data, Information 223
and Knowledge Management, Studies in Computational Intelligence 497,
DOI: 10.1007/978-3-319-00954-4_10, © Springer International Publishing Switzerland 2014

224 G. Bordogna et al.

tics and is generally computed based on the frequency of the term in the document
and in the whole archive [21]. A search term is thus interpreted as a soft condition on
the index term’s significance degree: the greater the significance degree of a search
term in a document, the greater the query satisfaction by that document.

When aggregating the soft conditions in a query one can consider them as all
mandatory, i.e., necessary, thus not allowing any compensation among their satis-
faction; or one may consider them as all replaceable, i.e., the satisfaction of just one
of them is considered as a sufficient condition to retrieve a document. Furthermore,
they can be regarded as a mixture of mandatory/replaceable search terms, or even as
optional, desirable to satisfy [2].

Within fuzzy set theory these distinct semantics of soft aggregations have been
modeled by distinct aggregation operators. While mandatory conditions are aggre-
gated by t-norms (conjunctive query), fully replaceable conditions are aggregated by
t-conorms (disjunctive query) [20]. Concerning partially mandatory/replaceable con-
ditions, several approaches have been proposed based on either the Ordered Weighted
Averaging operators (OWA) [2, 6, 14], or the Conjunctive Disjunctive Function [12],
or the vector p-norm operator [3, 22]. Finally, mandatory and optional conditions can
be aggregated by bipolar aggregation operators (non monotonic conjunctive query)
[2, 10, 19, 25].

Further flexibility of soft aggregations in queries to document archives can be
provided by associating distinct importance weights with the search terms.

As outlined in [1], the introduction of query weights raises the problem of their
semantic interpretation: in the vast literature on information retrieval models, query
weights have been intended as either relative appraisal of search terms, which tells to
what extent a term is more important than another in determining the global satisfac-
tion degree of the query, or as ideal, desired (or undesired) significance degrees of the
search terms in documents, or still as minimum acceptance levels of satisfaction of
the conditions, i.e., thresholds on the term significance in document representations.

Nevertheless, a IR model that unifies in a common framework the evaluation of
flexible queries with soft aggregations of weighed terms, and distinct semantics of
importance weights has not been defined yet.

A first attempt to define a unifying IR model was proposed in [4], by making it
possible to interpret the importance weights with distinct semantics in conjunctive
queries.

In this contribution, first we recap this model; then we analyze some approaches
for modeling the soft aggregations of flexible conditions with unequal importance
weights in information retrieval systems and databases, by discussing their char-
acteristics and semantics of the importance weights. Finally, we define a unifying
model, based on the vector p-norm that allows modeling several semantics of the
importance weights of search terms in both (partially) conjunctive and (partially)
disjunctive queries.

10 A Unifying Model of Flexible Queries 225

2 Modeling Distinct Semantics of Query Weights in Conjunctive
Queries Based on the Division of Fuzzy Relations

Information Retrieval Systems are aimed at both handling huge document repositories,
and retrieving those documents which correspond to user needs expressed in a query.
Documents generally consist of texts which are indexed to represent their contents
(index terms), and queries are based on the specification of terms used as selection
conditions for identifying topics of interest [1]. In most commercial IRSs conjunctive
queries can be specified by users to locate the documents which are related to the
specified search terms.

Most IR models represent the significance of the index terms in describing the
documents’ semantics by a numeric index term weight, and some of them allow spec-
ifying the importance of terms in queries. Since these models are based on different
formalisms their comparison is not easy. Their common basis is the introduction of
weights both in document representation and in the query language.

In [4] it has been shown that a unique formalization of the retrieval activity of IR
models can be based on the notion of the division of fuzzy relations that is general
enough to model distinct semantics of search terms weights. The only limitation
of the above proposal is related to the aggregation of the weighted terms that are
assumed to be ANDed, i.e., necessary in order to retrieve a document.

Hereafter we recap how the distinct semantics of query term weights can be
modelled by calling upon the notion of division of fuzzy relations.

In the framework of the relational data model, a universe is modeled by a set
of relations (in a mathematical sense, i.e., a relation Ri is a subset of the Cartesian
product of some domains), which can be manipulated with the help of relational
algebra operators (set operations, selection, projection).

Among these operations, the division of the relation R(A,X) by the relation S(A),
denoted by R[A ÷ A]S, where A is a set of attributes common to R and S, aims at
determining the X-values connected in R with all the A-values appearing in S [5].
This operation can be defined in the following ways:

x ∈ [A ÷ A]S⇔ ∀a ∈ S, (x,a) ∈ R (1)

x ∈ [A ÷ A]S⇔ a ∈ S⇒ (x,a) ∈ R (2)

x ∈ [A ÷ A]S⇔ S ⊆ �(x) where �(x) = {a|(x, a) ∈ R} (3)

R[A ÷ A]S = ∩a∈S �−1(a) where �−1 is the inverse function of � (4)

where formulas (1)–(4) are equivalent.
Let us consider a document d described as a set of terms d = {t1, . . . , tm}, with

ti ∈ T, where T is the set of all the n index terms. Moreover, let us restrict to the
case in which a query q looks for those documents indexed by all the search terms
P = {t1, . . . , tk}. Notice that P can contain keywords freely chosen by the user and
thus not necessarily contained in T.

226 G. Bordogna et al.

Table 1 Relations
representing an archive and a
query

Archive Expected-terms
Doc. Index term

d1 t1 t1
d1 t4 t2
d2 t1 t3
d2 t2
d2 t3
d3 t2

The set of documents of the archive may be represented as an un-normalized
relation (UR) where a tuple has the form: <d, t1, . . . , tm>, or as a normalized relation
(NR) where the information stored in the previous tuple is split through m tuples:
<d, t1>, . . . , <d, tm>.

The search terms in P appearing in the query may be seen as a unary relation (P)
and the query may be answered as the division of NR by P.

In the example in Table 1, the result of the division
ARCHIVE [index term ÷ search term] EXPECTED-TERMS
returns the document d2, which corresponds to the only document containing the

three desired search terms {t1, t2, t3}.
Now, let us represent a document by a fuzzy set of index terms:
R(d) = {µt1(d)/t1, . . . ,µtm (d)/tm>}, in which µti (d)∈ [0,1] is the weight associated

with the index term ti to represent its significance in document d.
Analogously, to draw a parallel with the fuzzy database context μti (d) can be

considered as the degree of satisfaction of a flexible condition imposed on the value
of attribute ti of a fuzzy relation R(d), where d is a tuple of a database.

A query q asking for those documents indexed by a set of expected (weighted)
terms can also be represented by a fuzzy set of terms S(q) = {i1/e1, . . . , wn/en}
in which ii ∈[0,1] is the weight associated with the term ei to express its desired
importance. Analogously, in a database, ii can be the importance weight of the flexible
selection condition imposed on the values of attribute ti.

A document can then be viewed as a fuzzy relation R:D× T→ [0,1] in which D
is the set of documents in the archive and T the set of the index terms, such that with
each pair (d,t) a membership degree is associated µR (d,t)= µt(d) ∈ [0, 1]. A query
can be represented as a unary relation S: T→ [0,1], with membership degrees µS(t)
corresponding to the importance weights it ∈ [0, 1] of the search terms (see Tables 2
and 3).

Then, the answer to a flexible query q may be defined as the generalization of the
one exemplified above, namely the division of two fuzzy relations R and S.

In this case, the result of the division is defined as a fuzzy set, i.e., a fuzzy relation
R[T ÷ T]S, and a natural extension stems from (3) where the usual set inclusion
operator is changed into a grade of inclusion g defined as:

µR[T÷T]S(d) = g(S[T] ⊆ �(d)) (5)

10 A Unifying Model of Flexible Queries 227

�(d) being a fuzzy set defined as:

�(d) = {µR(d,t)/t|µR(d,t)/(d,t) ∈ R, and d ∈ D, t ∈ T}. (6)

The membership degree µR (d,t) is generally computed based on the schema term-
frequency* inverse-document-frequency [21]. Then, the semantics of the division
depends on both the choice of the inclusion degree g and on the intended meaning
of the weights µR (d,t) and µS (t) in relations R and S respectively [7, 8].

A view of the fuzzy inclusion consists in defining the degree of inclusion g(S[T]
⊆ � (d)) by using a fuzzy implication:

S ⊆ �(d)⇔ ∀t((t ∈ S)⇒ t ∈ �(d)))

⇔ ∀t(µS(t)→ µ�(t)),

⇔ ∀t(µS(t)→ µR(d,t)),

and then, we obtain the following:

g(S[T] ⊆ �(d)) = mint∈S(µS(t)→ µR(d,t)) (7)

Two slightly different interpretations may be distinguished depending on the
nature of the interaction of the degrees in the two relations. In the first case, the
degree µS (t) is seen as a threshold and the complete satisfaction requires that this
threshold is attained by µR (d,t) for each value t of S. When the threshold is not
reached, a penalty is applied and several choices are possible: 0, µR (d,t), µR (d,t)/
µS (t) or also (1−µS (t)+µR (d,t)): these cases are modeled by the Rescher-Gaines
(RG), Gödel (Gd), Goguen (Gg) and Lukasiewicz (L) implications respectively:

µR[T÷T]S(d) = mint∈SµS (t)→RG µR(d, t) (8)

where x→RG y = 1 if x ≤ y, 0 otherwise

µR[T÷T]S(d) = mint∈SµS (t)→Gd µR(d, t) (9)

where x→Gd y = 1 if x ≤ y, y otherwise

µR[T÷T]S(d) = mint∈SµS (t)→Gg µR(d, t) (10)

where x→Gg y = 1 if x ≤ y, y/x otherwise

µR[T÷T]S(d) = mint∈SµS (t)→L µR(d, t) (11)

where x→L y = 1 if x ≤ y, 1+ y− x otherwise.
With all definitions from (8) to (11) full satisfaction 1 is obtained only when y

is greater equal x, otherwise a penalty to full satisfaction is applied. With the RG

228 G. Bordogna et al.

definition (8) we have a Boolean result that is a full penalty is applied and the result
is zero. With the Gd definition (9) the penalty is equal to y. With Gg definition (10)
the penalty y/x is applied. With L definition (11) the penalty is equal to the difference
between x and y.

In the second interpretation, µS(t) defines the relative importance of value x
(and then the degree µR(d,t) is modulated). In the logical framework imposed by an
implication, the underlying notion is the one of a guaranteed satisfaction when this
importance is under 1: when µS(t) < 1 the requirement is fully important, and it can
be forgotten to some extent. The complete satisfaction requires that µR(d,t) equals 1
for each value x of S whatever its importance and µR[T÷T]S(d)= 0 only if for at least
one t in S, both µS (t) = 1 (the requirement has the maximum level of importance)
and µR (d,t)= 0 (the document does not fulfill the requirement at all). This behavior
is modeled by using the Dienes implication (x→D y = max(1− x, y)) in defining
the division:

µR[T÷T]S(d) = mint∈SµS(t)→D µR(d, t)

= mint∈Smax(1− µS(t),µR(d, t)) (12)

where S is a normalized fuzzy relation (∃u,µS(u) = 1), so as to have an appropriate
scaling of the levels of importance.

This approach is logical and conjunctive and an “absorption effect” occurs: the
division operator only retains the smallest degree of implication between S and R.
The S-grades, i.e., the query importance weights, can express either a threshold or a
relative importance. If we assume that the degree µR (d,t) of a term t in a document
d (hereafter, for sake of simplicity, we name µR(d,t) = µt(d)) refers to the relevance
of d with respect to t, the weight µS (t) tied to the search term t stands for a minimal
relevance with the threshold interpretation while it represents the importance of t
with the second interpretation. Consequently, the solutions suggested before for the
division of fuzzy relations may be an interesting basis for plausible interpretations
of document retrieval.

Example. Let us consider the archive represented by the fuzzy relation in Table 2
and the queries q and q’ represented by the fuzzy relations in Table 3.

Depending on the chosen semantics, the result of the queries q and q’ are given
in Table 4. We can see that with the relative semantics modeled by Dienes definition
neither document gets full relevance. With the threshold semantics, a distinct penalty
is applied to the full relevance of d1 due to the under satisfaction of the threshold 0.5
imposed on the index term weight of t4 by q’.

Table 2 Relation
representing an archive of
documents as a fuzzy
relation R

t1 t2 t3 t4

d1 1 0.9 1 0.2
d2 0.7 0.6 0.3 0.8

10 A Unifying Model of Flexible Queries 229

Table 3 Each row is a fuzzy
relation S representing a
query

t1 t2 t3 t4

q 1 0.4 0 0.6
q’ 0.6 0.6 0.3 0.5

Table 4 Result of the queries
of Table 3 referred to the
archive of Table 2

Query weight Semantics d1 d2

q Relative importance Dienes (11) 0.2 0.6
Gödel (8) 0.1 1

q’ Threshold Goguen (9) 0.33 1
Lukasiewicz (10) 0.7 1

3 Soft Aggregations of Conditions with Unequal Importance

In the previous modeling framework we did not consider the distinct semantics of
the aggregation of query terms, but we assumed that they were ANDed, i.e., search
terms are considered mandatory selection conditions.

Nevertheless, when submitting queries to search engines an implicit relaxation of
their aggregation is assumed so that either a cascading of the conditions is applied
where the importance of the search terms decreases from the first term to the last one
listed in the query, or the Pareto principle holds: this means that the quantity of the
important terms (conditions) that are met by a document must positively increase the
overall relevance of the document [9, 16, 17].

In fuzzy Information Retrieval Systems and databases, distinct models of soft
aggregations of partially mandatory/replaceable conditions having unequal impor-
tance weights have been proposed. A well known approach is based on the use of
OWA operators that hereafter we synthesize.

3.1 Soft Aggregations Based on the OWA Operator

In order to make the expression of the semantics of the aggregation of terms easier
one can use relative monotone non decreasing linguistic quantifier Q, such as most,
defined by a fuzzy set μQ : [0,1]→ [0,1] [2, 15].

When aggregating n terms (or satisfaction degrees of the flexible selection condi-
tions in databases) with distinct importance weights [i1, . . . , in] the weighting vector
W = [w1, . . . , wn] associated with the OWAQ operator can be obtained as follows:

wi = μQ

(
1

e

i∑

k=1

ek

)

− μQ

(
1

e

i−1∑

k=0

ek

)

e =
n∑

k=1

ek =
n∑

k=1

ik (13)

230 G. Bordogna et al.

where ek is the importance weight of the k-th greatest significant term. The subtraction
in formula (13) allows computing wi as the increment of the relevance degree due
to having the i-th query term with not null index term weight in the representation of
the documents. Further this increment is proportional to the importance of the i-th
query term.

The OWAQ operator is then defined as in [23].
Given a document d and µt1 (d),. . . ,µtn (d) ∈ [0,1], its degrees of satisfaction of

the query conditions t1, …, tn , the OWAQ operator is defined as follows:

OWAQ(µt1(d), . . . ,µtn(d)) =
N∑

i=1

wi Supi (μt1(d), . . . ,μtn(d)) (14)

in which Supi (µt1 (d),…,µtn (d)) denotes the i-th highest of its arguments.
Notice that by applying definition (13) the importance weights affect the weighting

vector W of the OWAQ operator, so that its semantics is different from the original
definition provided by μQ . For example, if one specifies as aggregation “all” (with
μall(1) = 1,μall (x) = 0,∀x ∈ [0, 1]), having all terms with equal importance
would produce an OWAall selecting the smallest significance degree, i.e., the OWAall

behaves like a t-norm in accordance with μall . On the contrary, if only the most
significant term is important while the others have zero importance the OWAall

operator would select the highest significance degree as the satisfaction degree, in
this case behaving like a t-conorm, then completely in contrast with μall .

A user should be careful in specifying the linguistic quantifier in conjunction with
soft section conditions having distinct importance, in order not to express contradic-
tory requirements in the query [24]. Further, while the semantic of “most” makes
sense when aggregating a large number of terms, it is unintuitive when aggregating
only two or three terms as it commonly happens when querying search engines over
the Internet.

3.2 Soft Aggregations Based on the Generalized Conjunction
Disjunction Function

A second approach, originally proposed for evaluating soft aggregations of criteria
in decision making is based on the Generalized Conjunction Disjunction Function
(GCD) [11, 12]. GCD enables a continuous transition from the full conjunction to
the full disjunction, using a parameter p that specifies a desired level of conjunction
or disjunction of the soft aggregation.

The Generalized Conjunction/Disjunction function (GCD) has been defined in
[12] as the weighted power mean. Given [µt1(d), . . . ,µtn(d)] in [0,1] the satisfaction
degrees of n selection conditions imposed by the search terms t1, . . ., tn on a document
d, with importance weights [i1, . . . , in], with ii ∈ [0,1] and �k=1,...,n ik = 1, the
GC Dp aggregation function is defined as follows:

10 A Unifying Model of Flexible Queries 231

GC Dp(μt1(d), . . . ,μtn(d))=
(

n∑

k=1

ik× (μtk(d))p

)1/p

−∞ ≤ p ≤ +∞∧ p = 0

(15)
The exponent p is used to set the logic properties of the aggregation function. By
varying the value of p the GC Dp function can model distinct basic aggregations:

• Simultaneity aggregator: full conjunction, i.e., AND aggregation, is obtained with
p = −∞; partial conjunction, i.e., AND-OR aggregation, models situations in
which most terms are mandatory, thus should be satisfied simultaneously, and is
obtained with −∞ < p < 1.
• Replaceability aggregator: full disjunction, i.e., OR aggregation, is obtained with

p = +∞; partial disjunction, i.e., OR-AND aggregation, is obtained with 1 <

p < +∞ . With this kind of aggregators one wants to model the situation in which
a single or a few terms are sufficient, thus the presence of a single term, or of a
few terms, can be replaced by the presence of another one, or a few other ones.
• Neutrality aggregator: vector product is obtained with p = 1. This aggregator is

exactly in the middle between AND and OR. By choosing it, one wants a balance
between simultaneity and replaceability of the terms, i.e., a weighted average.

The semantics of a GC Dp function can be captured by computing its fundamental
properties of Andness for (partial) conjunctions, and Orness for (partial) disjunc-
tion aggregations. The Andness(GC Dp) and Orness(GC Dp) of a GC Dp function
measure the similarity between the semantics of GC Dp function and the semantics
of the full conjunction and full disjunction respectively. There are various ways to
define Andness and Orness (see [13]), hereafter we only need to know that they take
values in [0,1] and that they are complementary and satisfy the following:

Andness(GC Dp) = 1-Orness(GC Dp)
Andness(GC D−∞) = 1
Orness(GC D+∞) = 1,
Andness(GC D1) = Orness(GC D1) = 0.5.
Therefore, a GC Dp function has a mixture of conjunctive and disjunctive

properties. In the case of partial conjunction, conjunctive properties predominate:
Andness(GC D−∞<p<1) > 0.5, viceversa in the case of partial disjunction:
Orness(GC D1<p<+∞) > 0.5. From the above definitions it follows that the seman-
tic of the aggregation is specified by selecting the parameter p.

Nevertheless, the precision of humans in specifying the desired level of and-
ness/orness is limited, since a practical way is to allow them to select the proper
GCD function from a table whose entries report the parameter settings for discrete
increments of Andness [11]. Further, when associating importance weights to search
terms one might encounter inconsistency between a low weight and a high andness
of the aggregation operator, as in the case of the OWA. In fact, the low importance
weight is interpreted as a low relative importance, thus based on this the condition
should be disregarded. However, a high andness of the aggregation means the require-
ment for high simultaneity, which indirectly means that all terms must be present

232 G. Bordogna et al.

and consequently they are very important. So, a low weight and a high andness may
sometimes represent a contradiction, and should be avoided.

Thus modeling soft aggregation of search terms based on the GCD function is not
very practical in flexible queries to information retrieval systems at least from a user
point of view, due to the difficulty in understanding the semantics of the formulations.

3.3 Soft Aggregations Based on the p-Norm Operator

A third model of soft aggregation of search terms in IR and of soft conditions in
fuzzy databases was proposed in [3, 22] based on the vector p-norm. This approach
has a geometric interpretation, since conjunctive and disjunctive queries are regarded
as distinct vectors in a metric space, where each dimension corresponds to an index
term. The satisfaction of a query is then based on a p-norm distance of the documents
(tuples) from the query vectors, and the contribution of each dimension (term or
condition) to the distance is penalized or rewarded based on the importance weight
of the term (condition). Hereafter, we recap this model.

In [3, 22] query terms (conditions) with distinct importance weighs are aggregated
by means of a vector p-norm operator.

Given a vector V = [v1, . . ., vn] with vk ∈ [0, 1], and k = 1, . . .n, a p-norm
operator is defined as the Minkowski distance:

||V ||pnormalized =
(

1

n

) 1
p ||V ||p =

⎡

⎢
⎢
⎣

n∑

k=1
v

p
k

n

⎤

⎥
⎥
⎦

1
p

with1 ≤ p ≤ ∞. (16)

By varying p, distinct metrics are obtained: for example, with p = 1 definition (16)
is the Hamming distance, while with p = 2 it is the Euclidean distance.

Each document d (or tuple t of a database) is represented by a vector of coordinates
[µt1(d), . . . ,µtn(d)] in an n-dimensional space, where each axis corresponds to an
index term t, and the coordinates of a vector are the significance degrees of the
term in the document (or the satisfaction degrees of the soft condition by the tuple).
Notice that a vector of this space can represent multiple documents (tuples), those
that contain the terms with the same significance degrees (satisfy to the same degrees
the n conditions).

A Conjunctive query identifies an ideal vector with coordinates [1, . . ., 1] since it
is best satisfied by documents as far as possible similar to [1, . . ., 1], i.e., documents
that contain with full significance all query terms. Further, it is partially satisfied
by documents that correspond to vectors close to [1, . . ., 1], and their overall query
satisfaction degrees increases as their similarity to [1, . . ., 1] increases. On the other
side, a disjunctive query demands that the documents to be retrieved satisfy, at
least a little, one condition. Then, a disjunctive query identifies the undesired vector
[0, . . . , 0] and the relevance of documents to a query increases with their distance
from [0, . . . , 0] corresponding to no search terms in the document representation.

10 A Unifying Model of Flexible Queries 233

When associating unequal importance weights [i1, . . ., in], with ik ∈ [0,1], ∀k,
the impact of satisfying (or not satisfying) a condition imposed by a search term
decreases as the importance of the condition decreases.

This is the relative importance semantics of the query weights.
A conjunctive query of n ANDed search terms t1, . . .tn, with importance weights

[i1, . . ., in] is evaluated by computing for each document d a similarity measure
with respect to vector [1,…1] (sim(d, q p

AN D)) as defined in formula (17) below.
On the other side a disjunctive query of n ORed search terms t1, . . .tn, with impor-
tance weights [i1, . . ., in] is evaluated by computing for each document d a distance
measure with respect to vector [0, . . . , 0] (dist (d, q p

O R)) as defined in formula (17):

sim(d, q p
AN D) ≡ 1−

[∑n
k=1 i p

k ×(1− μtk(d))p

∑
k=1ni p

k

] 1
p

dist (d, qO R p) ≡
[∑n

k=1 i p
k × (μtk(d))p

∑n
k=1 i p

k

] 1
p

(17)

When p = 1, sim(d, q1
AN D) = dist (d, q1

O R), then the meaning of AND and OR is
no more modeled but both conjunctive and disjunctive queries reduce to the weighted
mean.

When p = ∞ and all the conditions have equal importance, we obtain the fuzzy
modeling of full mandatory and full replaceable conditions, respectively [22]:
sim(d, q∞AN D) = min(µt1(d), . . . ,µtn(d)); dist (d, q∞O R) = max(µt1(d), . . . , µtn(d)).

So, by increasing p above 1 one can model by definitions (17) more and more
mandatory qAN D and replaceable qO R semantics of search terms, respectively.

In [3] it has been shown that when p = ∞ and the search terms have unequal
importance weights, definitions (17) reduce to the importance weighted transforma-
tion functions defined for ANDed and ORed aggregations respectively, that model
the relative importance semantics of [i1, . . . , in] [3, 18].

The p-norm model provides an intuitive geometric interpretation of the query
semantics. Documents that get the same overall query satisfaction lie on equidistant
lines (hyper surfaces in an n dimensional metric space) having centroid vector [1,…,1]
for (partially) conjunctive queries and [0,…,0] for (partially) disjunctive queries.

With the Euclidean distance metrics, p = 2, these hyper surfaces are hyper spheres
centered in [1,…,1] and [0,…,0] respectively.

In Fig. 1 an example of two documents d1 and d2 in a bi-dimensional space defined
by two index terms t1 and t2 is shown. The dotted circle centered in [1,1] represents
the equidistance line around the ideal document [1,1]. This means that without impor-
tance weights both documents d1 and d2 lie on the same equidistance line and thus
have the same relevance to a conjunctive query t1 AND t2.

The specification of distinct importance weights of the terms, affects the shape of
the hyper surfaces: the greater the importance of a search term (an axis), the smaller

234 G. Bordogna et al.

Fig. 1 Equidistant lines
(grey ellipses) from the query
[1,1] having unequal relative
importance weights i2 > i1
and p = 2

µt1(d2)µt1(d1)

(1,1)

t2

t1

d1

d2
µt2(d2)

µt2(d1)

(greater) the projection of the equidistant hyper surfaces in case of conjunctive query
(in case of disjunctive query) on the associated axis.

As depicted in Fig. 1 the concentric dotted circles around the ideal vector [1,1]
in case of equal importance (i1 = i2), become ellipses (continuous lines) when
having unequal important terms with i2 > i1. A greater distance from [1,1] on the
most important axis t2 (y axis in Fig. 1) is valuated as a smaller distance on the less
important one t1, (x-axis in Fig. 1). When having equal importance weights, the two
documents d1 and d2 lie on the same circle and then get the same rank, while with
distinct relative importance weights i2 > i1 document d1 gets a higher rank than d2
since it lies on the ellipses closer to [1,1]. This geometric representation is effective
and simple to understand both in presence of few and many terms.

4 Generalized p-Norm Aggregation with Distinct Interpretations
of Query Importance Weights

A generalization of the previous definitions in (17) in order to allow other inter-
pretations of the semantics of importance weights of soft conditions in queries to
databases has been formulated in [3]. Hereafter, we apply this model to the case of
information retrieval.

Partially conjunctive and disjunctive queries are evaluated as follows:

sim(d,q
p
AN D) ≡ 1−

⎡

⎢
⎢
⎢
⎣

n∑

k=1
a p

k ×
∣
∣bk − Fk(μtk (d)

∣
∣p

n∑

k=1
a p

k

⎤

⎥
⎥
⎥
⎦

1
p

dist(d,qO R p) ≡

⎡

⎢
⎢
⎢
⎣

n∑

k=1
a p

k ×
∣
∣Fk(μtk (d))− ck

∣
∣p

n∑

k=1
a p

k

⎤

⎥
⎥
⎥
⎦

1
p

(18)

10 A Unifying Model of Flexible Queries 235

where |z| denotes the absolute value of z.
[a1, . . ., an], [b1, . . ., bn,], [c1, . . ., cn] are parameter vectors in the n dimensional

space with values defined in [0,1], and Fk : [0, 1] → [0, 1] ∀k = 1, . . . , n are non
decreasing functions defining soft constraints on the document significance degrees
of the search terms .

By varying the values of the parameters and by selecting distinct Fk functions,
distinct semantics of the importance weights can be obtained.

The relative importance semantics of the query weights is obtained by setting:
[a1, . . ., an] = [i1, . . ., in] equal to the importance weights of search terms,
[b1, . . ., bn] = [1, . . ., 1],
[c1, . . ., cn] = [0, . . ., 0],
and Fk(x) = x ∀k = 1, . . ., n.
In this case it can be noticed that definitions (18) reduce to definitions (17).

4.1 Importance Weights as Thresholds on the Significance
Degrees of Terms

A useful feature of flexible queries is the possibility to reduce the number of retrieved
documents based on the specification of distinct minimum acceptable significance
degrees of the search terms. With this semantics, a flexible query delimits the inter-
esting portion of the n-dimensional space for retrieving the documents.

A conjunctive and a disjunctive query of n ANDed and ORed terms with minimum
acceptance levels [i1, . . ., in] ∈ [0, 1] can be evaluated by applying definitions (18)
with the following setting of the parameters:
[a1, . . ., an] = [1, . . ., 1],
[b1, . . ., bn] = [1, . . ., 1],
[c1, . . ., cn] = [0, . . ., 0],
and Fk(x) = x if x ≥ ik ∧ Fk(x) = 0 if x < ik , for k = 1, . . . , n.
It can be seen that, based on (18), we obtain the following definitions:

sim(d,qAN D p) ≡ 1−

⎡

⎢
⎢
⎢
⎢
⎣

n∑

k=1

{
(1− μtk (d))p f orμtk (d) ≥ ik

1 f orμtk (d) < ik

n

⎤

⎥
⎥
⎥
⎥
⎦

1
p

dist (d,qO R p) ≡

⎡

⎢
⎢
⎢
⎢
⎣

n∑

k=1

{
(μtk (d))p f orμtk (d) ≥ ik
0 f orμtk (d) < ik

n

⎤

⎥
⎥
⎥
⎥
⎦

1
p

(19)

236 G. Bordogna et al.

Fig. 2 The acceptance
levels (threshold importance
weights) i1 > i2 constrain
the interesting portion of the
space (p=2) to satisfy x > i1
and y> i2

(1,1)

t2

t1

d1

d2µt2(d2)

µt2(d1)

µt1(d2)µt1(d1)

i2

i1

Function Fk imposes a full penalty when the acceptance level ik is not reached by
μtk (d). In fact, Fk(μtk(d)) = 0 if μt (d) < ik . In this case μtk (d) does not contribute
to the global query satisfaction degree.

Based on definition (19) the n crisp acceptance levels [i1, . . ., in] delimit the sub-
space of interest by defining a crisp region with projections [i1, . . ., in] on the axis
that includes the point [1,…,1] and that does not include the point [0,…,0].

To clarify the semantics of the minimum acceptance levels, let us look at Fig. 2
that depicts the same two documents of Fig. 1 equidistant to [1,1] in the Euclidean
bi-dimensional metric space. It can be seen that the distinct minimum acceptance
levels i1 > i2 delimit the interesting portion of the space so that while both the index
term weights µt1(d2) and µt2(d2) contribute to compute the ranking of d2 (since they
are both above the thresholds µt1(d2) > i1 and µt2(d2) > i2) only µt2(d1) contributes
to the ranking of d1, since the index term weight of t1 does not reach the threshold
(µt1(d1) < i1). Thus d2 is ranked first than d1.

Tolerant acceptance levels (with a tolerance degree 0 < δ < ik∀k = 1, . . ., n) can
be defined so as to obtain a region with a broad boundary by setting the following
Fk functions:

Fk(μtk(d)) = μtk(d) if μtk(d) ≥ ik

Fk(μtk(d)) = 0 if μtk(d) < ik − δ (20)

Fk(μtk(d)) = δ if ik − δ < μtk(d) < ik

This way, the n thresholds [i1, . . ., in] delimit the core of the interesting region of the
subspace but still a contribution equal to δ is provided by μtk(d) when it is below
the threshold ik but above i − δ. So the documents vectors belonging to the broad
boundary region still contribute to the satisfaction of the query to an extent δ.

Figure 3 depicts the situation in which unequal tolerant acceptance levels are
imposed on the index term weights. Differently than with the crisp acceptance levels
in Fig. 2, now d1 lies on the broad boundary defined by i1, and thus µt1(d1) contributes
to the ranking of d1 to the degree δ.

10 A Unifying Model of Flexible Queries 237

Fig. 3 The tolerant accep-
tance levels i1 and i2 define
soft constraints on the index
term weights so that the inter-
esting portion of the space has
a broad boundary (p = 2)

*3.3+"

t4

t1

d3

d2µt2 d4

µt4 d3

µv1(d4+ µt1(d3)

i4

i3

()

()

4.2 Importance Weights as Ideal Satisfaction Degrees

Another possible interpretation of importance weights in flexible queries is to con-
sider them as desired (undesired) significance degrees of the index terms. The more
(the less) the μt (d) is close to i the greater (the lower) should be its contribution to
the global satisfaction degree of the query. This semantics may be useful to model
the Rocchio feedback algorithm in the p-norm vector space [21].

Let us assume that a graphic user interface for visualizing the documents as points
in the n-dimensional space exists by which a user can explore the documents retrieved
by an initial query. One might project documents on a sub-space by selecting the
interesting axes and might click on the points representing the documents to see
their contents. Now, let us suppose that the user discovers that one of these docu-
ments with coordinates [x1, . . . , xn] is very relevant (not at all relevant) to his/her
needs. These coordinates can be considered as those of an ideal document (desired
or undesired) to retrieve. To reorder the documents based on the user positive (neg-
ative) feedback we consider a conjunctive qAN D query (disjunctive qO R query) in
which the index terms have as importance weights the coordinates of the ideal point
[i1, . . ., in] = [x1, . . ., xn], and re-rank the documents by applying formula (18) by
setting the following:
[a1, . . ., an] = [1, . . ., 1],
[b1, . . ., bn] = [c1, . . ., cn] = [i1, . . ., in],
and Fk(x) = x∀k = 1, . . ., n.

With these settings, definitions (18) reduce to the following:

sim(d, qAN D p) ≡ 1−

⎡

⎢
⎢
⎢
⎣

n∑

k=1

∣
∣ik − μtk (d)

∣
∣p

n

⎤

⎥
⎥
⎥
⎦

1
p

dist (d, qO R p) ≡

⎡

⎢
⎢
⎢
⎣

n∑

k=1

∣
∣μtk (d)− ik

∣
∣p

n

⎤

⎥
⎥
⎥
⎦

1
p

(21)

The equidistant hyper surfaces are centered in the ideal vector [i1, . . ., in]. In the case
of positive feedback one reorders the documents with respect to sim(d, q p

and), i.e.,

238 G. Bordogna et al.

their closeness to the ideal document [i1, . . ., in]: the closest vectors are ranked first. In
the case of negative feedback the documents are ranked with respect to dist (d, q p

or),
i.e., their distance from the undesired document [i1, . . ., in].

5 Conclusions

This contribution proposes a unifying information retrieval model for evaluating
flexible queries to documents archives, in which both soft aggregations of the search
terms, and distinct semantics of importance of the search terms can be specified
in queries. This approach generalizes the extended Boolean Information Retrieval
models defined in the literature to manage query importance weights [1, 3]. Specifi-
cally, we have outlined the drawbacks of the common approaches. Further, we have
proposed a generalization of the p-norm model defined in [22]. Besides the relative
importance semantics of search terms, as in the original p-norm model [22], the
proposal in this contribution can model also both ideal (desired or undesired) sig-
nificance degrees of search terms and minimum (crisp or broad) acceptance levels
of the significance degrees. The geometric representation provided by the p-norm
model, where the documents identify vectors, and the query defines hyper surfaces
of equi-ranked documents supports an intuitive understanding of the flexible query
semantics.

References

1. Bordogna, G., Pasi, G.: Modeling vagueness in information retrieval. Lectures on Information
Retrieval Lecture Notes in Computer Science. Springer, Berlin 1980/2001, pp. 207–241 (2001)

2. Bordogna, G., Pasi, G.: Linguistic aggregation operators of selection criteria in fuzzy informa-
tion retrieval. Int. J. Intell. Syst. 10, 233–248 (1995)

3. Bordogna, G., Psaila, G.: (2009) Soft Aggregation in Flexible Databases Querying based on the
Vector p-norm. Int. J. Uncertainty Fuzziness Knowl. Based Syst. (World Scientific Publishing
Company) 17(1), 25–40 (2009)

4. Bordogna, G., Bosc, P., Pasi, G.: Extended Boolean information retrieval in terms of fuzzy
inclusion. In: Pons, O., Vila, M.A., Kacprzyk, J. (eds.) Knowledge Management in Fuzzy
Databases. Studies in Fuzziness and Soft Computing series, vol. 39, pp. 234–247. Physica-
Verlag, New York. ISBN: 3790812552 (2000)

5. Bosc, P., Dubois, D., Pivert, O., Prade H.: Fuzzy division for regular relational databases. In:
Proceedings of 4th International IEEE Conference on Fuzzy Systems (FUZZ-IEEE/IFES’95),
pp. 729–734, Yokohama (Japan), March 1995

6. Bosc, P., Lietard, L.: Quantified statements and some interpretations for the OWA operators.
In: Yager, R., Kacprzyk, J. (eds.) The Ordered Weighted Averaging Operators: Theory and
Applications, pp. 241–257. Kluwer, Boston (1997)

7. Bosc, P.: Some views of the division of fuzzy relations. In: Proceedings of 5th International
Workshop on Current Issues on Fuzzy Technologies (CIFT’95), pp. 14–22, Trento (Italy), June
1995

8. Bosc, P., Pivert, O.: Some approaches for relational databases flexible querying. J. Intell. Inf.
Syst. 1, 323–354 (1992)

10 A Unifying Model of Flexible Queries 239

9. Chomicki, J.: Preference formulas in relational queries. ACM Trans. Database Syst. 28(4),
427–466 (2003)

10. Dubois, D., Prade, H.: Bipolarity in flexible querying. In: Andreasen, T., Motro, A., Chris-
tiansen, H., Larsen, H.L. (eds.) Flexible Query Answering Systems, FQAS 2002. Lecture
Notes in Computer Science, vol. 2522, pp. 174–182. Springer, Berlin (2002)

11. Dujmović, J.J., Fang, W.Y.: An empirical analysis of assessment errors for weights and andness
in LSP criteria. In: Torra, V., Narukawa, Y. (eds.) Modeling Decisions for Artificial Intelligence.
LNAI, vol. 3131, pp. 139–150. Springer, Berlin (2004)

12. Dujmović, J.J., Larsen, H.L.: Generalized conjunction/disjunction. Int. J. Approximate Rea-
soning 46(3), 423–446 (2007)

13. Dujmović, J.J.: Nine forms of andness/orness. In: Kovalerchuk, B. (ed.) Proceedings of the
Second IASTED International Conference on Computational Intelligence, pp. 276-281. ISBN
Hardcopy: 0-88986-602-3/CD: 0-88986-603-1 (2006)

14. Kacprzyk, J., Zadrozny, S.: Implementation of OWA operators in fuzzy querying for Microsoft
Access. In: Yager, R.R., Kacprzyk, J. (eds.) The Ordered Weighted Averaging Operators:
Theory and Applications, pp. 293–306. Kluwer, Boston (1997)

15. Kacprzyk, J., Ziolkowski, A.: Database queries with fuzzy linguistic quantifiers. IEEE Trans.
Syst. Man Cybern. 16, 474–479 (1986)

16. Kießling, W., Kostler, G.: Preference SQL—design, implementation, experiences. In: Proceed-
ings of the 28th VLDB Conference, Hong Kong (2002)

17. Lacroix M., Lavency P.: Preferences: putting more knowledge into queries. In: Proceedings of
13th Conference VLDB, pp. 217–225, Brighton, GB (1987)

18. Larsen, H.L.: Importance weighted OWA aggregation of multicriteria queries. In: Larsen, H.L.
(ed.) Proceedings of NAFIPS 1999, pp. 740–744, New York (1999)

19. Lietard, L., Rocacher, D., Tbahriti, S.E.: Towards an extended SQLf: bipolar query language
with preferences. Int. J. Appl. Math. Comput. Sci. 4(1), 58–63 (2008)

20. Petry, F.E.: Fuzzy Databases. Kluwer Academic Pub., Boston (1996)
21. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, New

York, NY (1983)
22. Salton, G., Fox, E., Wu, H.: Extended Boolean information retrieval. Commun. ACM 26(12),

1022–1036 (1983)
23. Yager, R.R.: On ordered weighted averaging aggregation operators in multi-criteria decision

making. IEEE Trans. Syst. Man Cybern. 18, 183–190 (1988)
24. Zadrozny, S., Kacprzyk, J.: Issues in the practical use of the OWA operators in fuzzy querying.

J. Intell. Inf. Syst. 33, 307–325 (2009)
25. Zadrozny, S., Kacprzyk, J.: Bipolar queries: an approach and its various interpretations. In:

Proceedings of IFSA-EUSFLAT 2009, pp. 1288–1293. ISBN: 978-989-95079-6-8 (2009)

Chapter 11
Social Network Database Querying Based
on Computing with Words

Ronald R. Yager

Abstract Fuzzy relationships and their role in modeling weighted social relational
networks are discussed. We describe how the idea of computing with words can
provide a bridge between a network analyst’s linguistic description of social network
concepts and the formal model of the network. We then turn to some examples of
taking an analyst’s network concepts and formally representing them in terms of
network properties. We first do this for the concept of clique and then for the idea
of node importance. Finally we introduce the idea of vector–valued nodes and begin
developing a technology of social network database theory.

1 Introduction

Social relational networks have rapidly become an important technology in our dig-
ital based information intense world [1–8]. Among the notable examples of social
network sites are Facebook and LinkedIn. In addition to providing an ability for
enabling people from all over the world to connect with each other each they provide
a vast source of information about the individual participants in the network, the so
called nodes. Each of these participants can be viewed as a kind of database contain-
ing information about themselves. We see here that a social network can be viewed
as kind of network of databases. This leads us to understand that the development
of appropriate technologies to manage social networks requires a combination of
the use of network technologies, graph theory and database technologies [9]. Fur-
thermore the development of intelligent social network management requires the
extension of these two technologies by the introduction of ideas from soft and granu-
lar computing, computational intelligence [8]. In addition to the intelligent extension
of these two technologies with soft computing an important task on the road map

R. R. Yager(B)

Machine Intelligence Institute, Iona College, New Rochelle, NY 10801, USA
e-mail: yager@panix.com

O. Pivert and S. Zadrożny (eds.), Flexible Approaches in Data, Information 241
and Knowledge Management, Studies in Computational Intelligence 497,
DOI: 10.1007/978-3-319-00954-4_11, © Springer International Publishing Switzerland 2014

242 R. R. Yager

of developing intelligent social networks is the combining of network theory with
database theory. Since many advances have been made toward the development of
intelligent database technologies, especially by contributors to this volume, here we
shall take some steps in the other two tasks, the intelligent extension of social network
theory and the combining of social networks with databases. We note that one area
that has received a considerable amount of research is the mining of social networks
[4, 5]. We emphasize that our interest here is not on this problem but we shall be
more interested in the issue of querying the social network with its nodes seen as
individual databases. We shall refer to this as SONDAB-Q as an acronym for SOcial
Network DAtaBase Querying.

The current social network technology can be extended and enriched to help in
modeling these newly emerging applications by introducing ideas from fuzzy sets
and related granular computing technologies [10–16]. We can provide this exten-
sion and enrichment in two ways. The first is with the introduction of fuzzy graphs
representing the networks [17–19]. This allows a generalization of the types of con-
nection between nodes in a network from simply connected or not to weighted or
fuzzy connections. Here the idea of strength of connection becomes important. The
second and perhaps more interesting extension is the use of Zadeh’s fuzzy set based
paradigm of computing with words [10–12] to provide a bridge between a human
network analyst’s linguistic description of social network concepts and the formal
model of the network. Fundamental to this capability is the realization that both
formal network models and the paradigm of computing with words are built upon
set based technologies. More specifically, the formal representation of a social net-
work is in terms of a mathematical set object called a relationship [1] and computing
with words uses a set object, fuzzy subsets, to formally represent the semantics of
linguistic terms. This common underlying set based technology allows us to take
human concepts and formally represent them in terms of network properties. This in
turn allows an analyst to estimate the truth or falsity of observations about a network
as well helps in the mining of social relation networks. In an attempt to help the
reader get an understanding of the technology useful in this approach we provide
few examples of how we would model some social network concepts.

Another useful idea we discuss is vector-valued nodes. Here we associate with
each node a vector whose components are the attribute values of the node. Com-
bining this with the machinery of Zadeh’s computing with words we are then able
to intelligently query the network with questions that involve both attributes and
connections. We see this as the basis of an emerging discipline of social network
database querying, SONDAB-Q

2 Fuzzy Graphs

Since a social network can be formally viewed as graph whose nodes represent the
members of the social network we begin by introducing some ideas from fuzzy
graphs. Here we first describe the idea of a fuzzy relationship. The concept of a

11 Social Network Database Querying Based on Computing with Words 243

fuzzy relationship plays a fundamental role in modeling a type of weighted graph
called a fuzzy graph [17–19]. Let X be a set of elements. A fuzzy relationship on X
is a mapping R : X×X→ [0, 1] where R(x, y) indicates the degree of relationship
between x and y. We note that we can view a fuzzy relationship as a fuzzy subset on
X × X. This allows us to use much of the formalism of fuzzy sets. For example we
can say that R1 ⊆ R2 if R1(x, y) ≤ R2(x, y) for all (x, y). We note that R1 ⊆ R2
means that R1 is a subset of R2. We shall also use the terminology R1 ≤ R2.

Some notable properties that can be associated with fuzzy relationships are

(1) Reflexivity: R(x, x) = 1 for all x
(2) Symmetry: R(x, y) = R(y, x)
(3) Transitivity: R(x, z) ≥ Maxy[R(x, y) ∧ R(y, z)]
An important operation on fuzzy relations is composition. Assume R1 and R2 are
two relations on X. The composition R = R1 � R2 is also a relationship on X such
that

R(x, z) = Maxy[R1(x, y) ∧ R2(y, z)]

The composition operation can be shown to be associative

(R1 � R2) � R3 = R1 � (R2 � R3)

The associativity property allows us to use the notation Rk = R � R � . . . � R for
the composition of R with itself k times. In addition we shall define R0 to be such
that R0(x, y) = 0 for all x and y.

If R is reflexive then Rk2 ⊇ Rk1 for k2 > k1. On the other hand if R is transitive,
it can be shown that Rk2 ⊆ Rk1 if k2 > k1. From this we see that if R is reflexive
and transitive then Rk2 = Rk1 for all k1 and k2 �= 0.

We shall now define various types of fuzzy graphs. Let X be a set of elements,
which we shall refer to using graph terminology as nodes or vertices. We shall further
assume R is a reflexive fuzzy relationship on X. The pair <X, R> can be seen as
defining a fuzzy or weighted graph in which R(x, y) is the weight associated with
the arc x→ y, (x, y). More generally if F is a fuzzy subset of X we can also define a
fuzzy graph as <X, F, R>. Here in addition to having degrees of connection we also
have a degree to which each of the nodes belongs to the network. In this case we let
R.F be a relationship on X defined such that R.F(x, y) = R(x, y) ∧ F(x) ∧ F(y) and
say that R.F is the relationship R on F. We note here that R.F(x, x) = F(x). If F = X
then R.F(x, y) = R(x, y). It can be shown here that R.Fk1 ⊆ R.Fk2 if k2 > k1. We
note that if F = X then <X, F, R> = <X, R>.

If R is symmetric we shall say <X, F, R> is an undirected fuzzy graph. We note
that if R is symmetric then R.F is also symmetric. If R is not symmetric we shall
refer to <X, F, R> as a directed graph and we refer to a pair (x, y) as an arc. Here
the weight on the arc (x, y) and arc (y, x) may be different. In the case of where R
symmetric we shall refer to the pair (x, y) as an edge. Since we shall primarily be
concerned with undirected graphs, we shall simply use the unmodified term graph
or network to refer to this case where R is symmetric.

244 R. R. Yager

At times, especially when working with undirected graphs, we shall find it
convenient to consider the space U which consists of all unordered pairs of dis-
tinct elements which we denote as {x, y}. In this case we can refer to RU as the
reflection of R on U. In this RU({x, y}) = R(x, y) = R(y, x). We note that at a
formal level we can also view U as consisting of all subsets of X consisting of two
elements.

Assume G = <X, F, R> is a fuzzy graph. A path ρ in G is a sequence of distinct
nodes x0x1 · · · xn. The number of links in the path is n. The strength of the path is
defined as

ST(ρ) = Min
i=1 to n

[R.F(xi−1, xi)].

If F = X then ST(ρ) = Min
i=1 to n

[R(xi−1, xi)].
Two nodes for which there is a path ρ with ST(ρ) > 0 between them are called

connected. We call ρ a cycle if n ≥ 2 and x0 = xn
Consider the graph G = <X, R> let us now consider Rk. We can show that

Rk(x, y) is the strength of the strongest path from x to y containing at most k links.

We see that if X has n nodes then Rn−1 provides the strongest connection between two
nodes using any number of links. If Rk(x, y) �= 0 we can say x and y are connected
at least of order k.

We note that if G = <X, F, R> we can make statements similar to the above
about R.F.

Assume G = <X, R> is a fuzzy graph. Let ρ = x0 x1 · · · xn be a path in X. A
concept introduced by Rosenfeld [17] is the length of the path. He defined

L(ρ) =
n∑

i=1

1

R(xi−1, xi)

Clearly L(ρ) ≥ n. We note that if there exists one R(xi−1, xi) = 0 then L(ρ) = ∞
and St(ρ) = 0. We note that if R is crisp and St(ρ) �= 0 then L(ρ) = n. Using this
idea we can define the distance between two nodes x and y in the graph G as

δ(x, y) = Min
all paths x to y

[L(ρ)]

It is the length of the shortest path from x to y. It can be shown that δ is a metric [17],
δ(x, x) = 0, δ(x, y) = δ(y, x) and δ(x, z) ≤ δ(x, y)+ δ(y, z). Using the termino-
logy common in social network analysis [1, 2] we can refer to the path ρ such that
L(ρ) = δ(x, y) as the geodesic between x and y and refer to δ(x, y) as the geodesic
distance.

While there appears to be some inverse connection between strength of a path and
its length as for example in the case where ST(ρ) = 0 implies L(ρ) = ∞ this is not a
strict correlation. Consider for example the two paths ρ1 and ρ2 shown in Fig. 1. We
see that ST(ρ1) = 0.75 > Str(ρ2) = 0.5. On the other hand L(ρ1) = 4

3 + 4
3 + 4

3 =
4 ≥ L(ρ2) = 1

11 Social Network Database Querying Based on Computing with Words 245

Fig. 1 Two paths

x
1

x
2

x
3 x

4

x
1

x
4

ρ
1

ρ
2

0.75 0.750.75

0.5

Let <X, R> be a weighted graph. At times it can be useful to view this from
the level set point of view [20]. This will allow us to make use of the representation
theorem [20] to extend operations to these fuzzy relationships. We recall that if R is
a fuzzy relationship on X × X then Rα = {(x, y)/R(x, y) ≥ α} is called the α level
set of R. We see that each Rα is a crisp relationship on X.

We note that if Rk is the k composition of R then Rk
α = {(x, y)/Rk(x, y) ≥ α}. It

can also be shown that [21]

Rk
α = Rα � Rα � � Rα,

the k composition of Rα is also Rk
α .

The representation theorem allows us to represent fuzzy relationship in terms
of the collection of its level sets. This can be used to extend operations that are
well defined on crisp sets to be defined on fuzzy sets. Using this we can express

Rk = 1
�

α=0
{ α

Rk
α
}, here we are using the standard fuzzy set notation where α

Rk
α

indicates

that α is the membership grade of Rk
α .

Undirected fuzzy graphs, which are also transitive, provide a very interesting class
of graph. In these graphs if x is related to y and y is related to z then x is related to z.
In social networks transitivity captures the property “friend of a friend is a friend”.

Many of the concepts introduced in the preceding are valid for both directed and
undirected graphs. A fundamental difference is the following. Assume x0x1 · · · xn
is a sequence of points that constitute a path. In an undirected graph its transpose
xnxn−1 · · · x0 is a path having the same strength and length. In a directed graph we
can’t say anything about the transpose sequence. Whenever possible in an undirected
graph we shall refer a path as between x0 and xn while in a directed graph we shall
refer to the path from x0 to xn.

3 Computing with Words

Our goal here is to extend our capabilities for analyzing social relational networks
by associating with these networks concepts with which human beings view social
network relationships in such a way that they are comprehensible to both humans
and machines. On one hand human beings predominantly use linguistic terms in
which to communicate, reason and understand the world. Machines on the other hand
require much more formal symbols. One of the most useful approaches to providing a

246 R. R. Yager

bridge between man and machine comprehension is the general framework provided
by granular computing [8] and more specifically Zadeh’s fuzzy set based paradigm
of computing with words. This technology allows for a high level of man-machine
cooperation by providing a framework in which concepts can be modeled in a manner
amenable to both. The potential for applying fuzzy set based technologies within the
domain of social network analysis is particularly promising given that the computer
modeling of these networks is in terms of mathematical relationships which as we
already noted are equivalent to fuzzy sets.

In the following we introduce some ideas from the fuzzy set based approach to
computing with words. Let U be some attribute that takes its value in the space Y. An
example of such an attribute is age, which, for human beings takes its value in the
set Y = {0, . . . , 100}. A fundamental concept in computing with words is the idea
of linguistic value [22]. A linguistic value is some word used to express the value of
U. In the case of age, some examples of linguistic values are “old”, “young”, “about
30”, A linguistic value can be seen as a granule, it is a collection of values from the
space Y. As we noted it is with the aid of linguistic values that human beings best
understand and reason about their environment.

By a vocabulary we shall mean a collection of commonly understood words that
are used to express the linguistic values associated with an attribute. These are the
words that people use to communicate with each other. They are also the words
people use to reason with about the attribute. Fuzzy sets provide a useful tool for
formalizing the idea of a vocabulary in a way that allows machine computation and
understanding. If W is a word in the vocabulary associated with the variable U we
can express W as a fuzzy subset W of the domain of U. Here then for any element
y ∈ Y the membership grade of y in W, W(y), indicates the compatibility of the
value y with the linguistic value W . Thus the fuzzy subset W provides a machine
comprehensible interpretation of the word W .

We are now in a position to bridge the gap in man-machine communication with
respect to the analysis of social relational network by allowing the human to build
a vocabulary of linguistic terms associated with an attribute and then provide a
representation for these terms by fuzzy sets (see Fig. 2). Thus here now we have a
communal vocabulary coherent to both the human and the machine.

What must be emphasized here is that the choice of the vocabulary as well as the
associated meaning of the words in terms of fuzzy sets is completely in the hands
of the human partner. This greatly simplifies this task. The vocabulary that will be
used is imposed, we are giving the computer meaning. Particularly noteworthy is the
fact that learning algorithms need not necessarily be required, the computer is told
these are the terms I will be using and this is what they mean in your language, fuzzy

HUMAN MACHINE

Words Vocabulary
Fuzzy
Sets Numbers

Fig. 2 Paradigm of man-machine understanding

11 Social Network Database Querying Based on Computing with Words 247

Fig. 3 Fuzzy subset of term
strong 1

10 α β
Connection Weight

sets. This is not to say that the construction of the communal vocabulary is not an
important and complex task to which future research must be dedicated so that it is
thoughtfully and appropriately done but only to reflect the fact that it is within our
power to impose what we have decided. This situation allows us in the following
to assume the availability of a communal vocabulary associated with attributes of
interest.

In analyzing weighted relational networks there are a number of attributes about
which it will be useful to have a vocabulary of commonly accepted terms. One such
attribute is strength of connection. This is an attribute whose domain is the unit
interval, I = [0, 1]. Terms like strong, weak, none would be part of a vocabulary
associated with this attribute. In this case we would define the word strong as a fuzzy
subset S of [0, 1] such that for any y ∈ [0, 1] the value S(y) would indicate the
degree to which y satisfies the working definition of the concept strong connection.
We would assume that S would be such that S(0) = 0, S(1) = 1 and S is monotonic,
S(y1) ≥ S(y2) if y1 ≥ y2. A prototypical example of the definition of the term strong
would be the piecewise linear fuzzy subset shown in Fig. 3.

Another attribute for which it will be useful to have a communal vocabulary is
the number of links in a path, path length. Some words in such a vocabulary would
be short and long. In the case of this attribute we would provide a semantics for the
words of the vocabulary, in terms of fuzzy subsets of the domain H = {0, 1, . . . , n}
when n is the number of vertices in the network.

Concepts, in addition to actual physical objects, can provide attributes of interest.
One such concept that we shall find useful are proportions. Here U is an attribute
that takes its value in the set I = [0, 1] where r ∈ [0, 1] is a proportion. Examples of
linguistic values that could be part of a communal vocabulary associated with this
attribute are many, most and about half. As noted by Zadeh these terms provide a
generalization of the quantifiers “all” and “none” that are used in logic. We can refer
to these as linguistic quantifiers.

248 R. R. Yager

4 Clusters and Cliques

An important idea in classical graph theory is the concept of a cluster; here we want to
extend this to weighted graphs. Let us first review the ideas from crisp graph theory.
Let <X, R> be a graph where R is a crisp relationship. We are implicitly assuming
our graph is undirected so R is symmetric. One approach is to call a subset C of X a
cluster of order k if

(a) For all node pairs x and y in C we have Rk(x, y) = 1
(b) For all nodes z /∈ C there is some x ∈ C such that Rk(x, z) = 0.

Note: When k = 1 we call C a clique.
Note: The order k of the cluster is reflected in the term Rk.

In [17] Rosenfeld suggested extending these ideas to fuzzy graphs. Here we let
<X, R> be a fuzzy graph where R is a symmetric fuzzy relationship. A crisp subset
C ⊂ X is called a fuzzy cluster of order k if

Minx,y∈C[Rk(x, y)] > Supz/∈C[Infw∈CRk(w, z)].

In the following we suggest an alternative, more human meaningful, definition
of a clique and then using the paradigm of computing with words we can provide a
procedure for evaluating how well a subset of nodes satisfies our definition.

Let A be a subset of elements from X. We shall define A to be a clique if

C1: All elements in A are connected by a short strong path.
C2: No element not in A is connected to an element in A by a strong path.

Here then we have two criteria that need to be satisfied for a subset A ⊂ X to be
considered as a clique, C1 and C2. If we let C1(A) ∈ [0, 1] be the degree to which it
is true that A satisfies C1 and C2(A) ∈ [0.1] be the degree to which it is true that A
satisfies C2 then C(A) = Min[C1(A), C2(A)] is the degree to which it is true that A
is a clique.

We must now formulate the two criteria in terms of features from the network
<X, R>. Here we shall make use of the communal vocabularies for the attributes
strength of connection and path length. We shall assume the availability of the word
strong for strength of connection and short for length of path in the vocabulary, that
is we have expressions for the meaning, semantics, of these words as fuzzy subsets.

We first focus on C1. Here we will make use of the term “strong connection”
which we will represent as a fuzzy subset S of the unit interval I. In addition we need
use the linguistic term “short path” which we represent as a fuzzy subset SH of the
space N.

Assume xi and xj are two nodes in the proposed clique A. Here Rk(xi, xj) indicates
the strength of connection of xi and xj for a path of at most k links. For any Rk(xi, xj)

the value S(Rk(xi, xj)) is the degree to which Rk(xi, xj) is a strong connection.
We recall that Rk(xi, xj) is monotonic in k, that is if k2 > k1 then Rk2(xi, xj) ≥
Rk1(xi, xj). In addition as we noted earlier S, strong connection, is also monotonic

11 Social Network Database Querying Based on Computing with Words 249

Fig. 4 Fuzzy set
representation of short path 1

0

Number of Links

nn
1

n
2

in strength, S(a) ≥ S(b) if a > b. From this we can conclude that for k2 > k1 then
S(Rk2(xi, xj)) ≥ S(Rk1(xi, xj)).

The concept short path with respect to the number of links it contains can be
defined as a fuzzy subset SH of N = {1, 2, . . . , n}. Here we can observe that
generically SH should have the following properties; SH(1) = 1, SH(n) = 0 and
SH(k1) ≥ SH(k2) if k1 < k2. Here it is monotonic decreasing in k, increasing
k leads to decrease the satisfaction. A prototypical example of this concept is the
piecewise linear fuzzy subset as shown in Fig. 4.

Using these ideas we can determine the degree to which there exists a short-strong
connection between xi and xj. We define this using a form of the Sugeno integral
[23] as

C1(xi, xj) = Max
k=1 to n

[SH(k) ∧ S(Rk(xi, xj))]

In the above ∧ is the Min operator. We see that as k increases SH(k) tends to get
smaller while S(Rk(xi, xj) tends to get bigger.

We now can use this to determine the degree to which all elements in A are
connected by a short-strong path,

C1(A) = Min
xi,xj∈A

xi �=xj

[C1(xi, xj)].

It is very important to observe the marriage of different types of set objects used
in making up the definition of C1(xi, xj). We first see that we have used Rk(xi, xj),
which is essentially the set–based definition of the network. In addition we have used
the fuzzy sets SH and S, which are the fuzzy set definitions of the words short and
strong. Here we have taken advantage of the fact that both the basic representation
of a graph (network) and the meaning of words can be formulated using a set-based
formulation to mix language and network representation. In [8] we referred to this
approach as PISNA, the Paradigm for Intelligent Social Network Analysis.

We now consider the second criteria, C2, no element not in A has a strong con-
nection with an element in A. In the following we shall let x ∈ A and z /∈ A. For

250 R. R. Yager

these elements Rn(x, z) is the strength of the strongest path between x and z of
any length. Here then S(Rn(x, z)) is the degree to which there exists a strong path
between x and z. If we calculate Max

x∈A,z/∈A
[S(Rn(x, z))] we obtain the degree to which

there exists a strong path between an element in A and an element not in A. Using
this can calculate C2(A) as

C2(A) = 1− Max
x∈A,z/∈A

[S(Rn(x, z))]

We now can use these formulations to determine the degree to which a subset A is a
clique.

In the following we will make some observations regarding the preceding
approach to defining the concept of clique.

In the preceding we defined the concept of short path in an absolute way as a fuzzy
subset SH of the set of number of elements in a graph. It is possible to express short
in a more universal way as a subset of the proportion of the number of elements in
the graph. Thus here we can define “short path” as a fuzzy subset SHp defined on the
unit interval where for any r ∈ [0, 1] the value SHp(r) indicates the degree to which
the proportion r of elements in the network constitute a “short path.” Thus here we
are defining “short path” as a proportion of number of vertices in the network. This
allows us to have a universal definition of the concept of “short path” independent
of the number of nodes in the network. In this case where we have SHp we calculate

C1(xi, xj) = Max
k=1 to n

[

SHp

(
k

n

)

∧ S(Rk(xi, xj))

]

We note that SHp will have the same form as SH, SHp(r) decreases as r increases.
We also note that it is possible to somewhat relax the second criteria. Instead of

having
C2 = no element, not in A, is connected to an element in A by a strong path.

We can say that
C2 = no element not in A is connected to an element in A by a strong path that is

not long.
Here we need obtain the word Long from our communal vocabulary. A typical

example of a fuzzy subset representing such a definition is shown in Fig. 5.
If L is the fuzzy subset defined on N corresponding to Long then not Long is a

fuzzy subset N.L defined such that N.L(k) = 1− L(k). Using this we obtain

Max
k=1 to n

[N.L(k) ∧ S(Rk(x, z))]

as the degree to which there is a strong and not long path between x and z. Finally
from this we obtain

C2(A) = 1− Max
x∈A,z/∈A

(

Max
k=1 to n

[
N.L(k) ∧ S

(
Rk(x, z)

)])

11 Social Network Database Querying Based on Computing with Words 251

Fig. 5 Fuzzy set representing
term Long 1

0
Number of Links

nn
4

n
5

We now consider the situation in what we allow the set A to be a fuzzy set. Thus
we want to determine if A is a fuzzy clique. We shall consider the same two original
conditions C1 and C2 as defining a clique. We shall use Ã to indicate our fuzzy
Clique.

Here we first look at C1. In this case we still get for any two nodes x and y ∈ X.

C1(x, y) = Max
k=1 to n

[SH(k) ∧ S(Rk(x, y))]

as the degree to which there is a short and strong path between the nodes x and y.
Using this we obtain

C1(Ã) = Min
x �=y∈X

[(1− Ã(x)) ∨ (1− Ã(y)) ∨ C1(x, y))]

We note that in the case where Ã is crisp this reduces to our original definition of
C1. For if x or y are in Ã then the disjunction reduces to for C1(x, y) while if either
x or y is not in Ã then the argument becomes 1.

In this case of C2, for a fuzzy clique we get

C2(Ã) = 1− Max
x,z∈X

x �=z

[Ã(x) ∧ (1− Ã(z)) ∧ S(Rn(x, z))]

We note that if Ã is crisp this reduces to our previous definition. For if x ∈ Ã
and if z /∈ Ã then it becomes the original format. If either x /∈ Ã or z ∈ Ã then
Ã(x)∧ (1− Ã(z))∧ S(Rn(x, z)) = 0 and it doesn’t effect the calculation of C2(Ã).

252 R. R. Yager

5 Centrality

An important concept in social network analysis is centrality [1, 2]. The centrality
of a node is closely related to its importance in the network. Assume <X, R> is a
relational network where R is a crisp relation. The measure of centrality of node xi

is the number of nodes connected to it by at most k links. In this case

Ck(xi) =
n∑

j=1
j �=i

Rk(xi, xj)

is the measure of the centrality of node xi.
If we have a network where R is a weighted graph a straightforward way to extend

this is to calculate Ck(xi) as in the above. One problem that can arise here is that a
large number of weak connections, small values of Rk(xi, xj), can add up to appear
as a strong connection. Here we can suggest some other alternative methods for
obtaining this measure of centrality.

One method is to use the level set representation and obtain a fuzzy set represen-
tation for the centrality. Here we can express

Ck
α(xi) =

n∑

j=1
j �=i

Rk
α(xi, xj)

Thus here Ck
α(xi) is the number of nodes connected to xi with strength of at least α

using at most k links. Using this we can define

C̃k(xi) = �
α∈[0,1]

{
α

Ck
α(xi)

}

,

here we are using the standard fuzzy notation indicating that α is the membership
grade of Ck

α(xi).
In this case C̃k(xi) is a fuzzy number. We should note that since for α2 > α1 we

have Rk
α2 ⊆ Rk

α1 then Ck
α1Ck

α2.
Let us consider another way to extend the concept of centrality to the case of a

weighted graph. An alternative and perhaps more appropriate definition of centrality
would be the “number of strong connections using at most k links.” Here we shall
define the concept “strong” as a fuzzy subset of unit interval. For example see Fig. 3.
Using this definition we can obtain

C̃k(xi) =
n∑

j=1
j �=i

Strong Rk(xi, xj)

Thus here we transform the scores via the concept strong.

11 Social Network Database Querying Based on Computing with Words 253

6 Social Network Databases

In the following we shall consider a weighted network <X, R> where each of the
nodes has an associated vector of attribute (feature) values. In these types of networks
each of the node objects have various attributes, properties and features. This structure
can be viewed as the combination of a network and database.

In these networks we have a collection of q attributes U1, . . . , Uq. In the case where
the nodes are people, examples of attributes could be nationality, age or income. Each
of the attributes takes a value from a domain Yi. In this situation, each node has an
associated q vector whose i th component is the value of the i th attribute for that
node.

We shall use the notation Ui(xj) to indicate the variable corresponding to the
attribute Ui in the case of node xj. For example with Ui being the attribute age then
Ui(xj) would indicate the variable age of xj. If Ui is the attribute country of birth then
Yi would be a list of countries and Ui(xj) would be the variable corresponding the
country of birth of xj. We shall let vij indicate the value of the variable Ui(xj), thus
Ui(xj) = vij. Thus in this case any node in our network has an associated vector Vj
whose i component vij corresponds to the value of attribute Ui for node xj. We should
observe the above network could in some ways be viewed as a kind of database.

In the following we shall begin to describe techniques that can be used to analyze,
investigate and question networks with vector-valued nodes. Here we shall be using
flexible/fuzzy-querying techniques [9, 24].

In the following we shall assume that country of residence is one of the attributes,
we shall denote this as U1. Thus U1(xj) is the variable denoting the country of
residence of xj. In this case the domain Y1 associated with U1 is the set of countries.
In addition, a communal vocabulary associated with this attribute would consist of
terms such as “Middle East”, “North America”, “South America” and “Southeast
Asia”. Other terms such as “mountainous country”, “Spanish speaking”, and “Oil
producing” can also be part of the vocabulary. Each of the terms in the vocabulary
would be defined in terms of subsets of Y1. Some of these terms can be defined using
crisp subsets while others will require fuzzy subsets.

In addition we shall assume age is another of the attributes associated with the
network nodes. We shall denote this as U2 with its domain Y2 being the set of
non-negative integers. Here we shall also assume the availability of mutually under-
standable vocabulary of commonly used linguistic terms to describe a person’s age.
These terms will be defined in terms of subsets of Y2.

Assume xj is some node in our network. We can ask “To what extent is xj strongly
connected to a person residing in South America?” In the following we shall let SA
indicate the subset of Y1 corresponding to South America. Using this we can obtain
as the answer to our question

Max
i,i �=j
[SA(U1(Xi)) ∧ Rn(xi, xj)]

254 R. R. Yager

More specifically we can ask “To what extent is xj strongly connected to a young
person residing in South America?” In this case with U2 being the attribute age and
Young being the subset corresponding concept young person we get as the answer

Max
i,i �=j
[SA(U1(Xi)) ∧ Young(U2(Xi)) ∧ Rn(xi, xj)]

We note this value is also the truth of the question “Does xj have a connection to a
Young South American”.

We note that if we want to find out “does xj have a strong connection to a Young
South American” then we obtain the truth of this as

Max
i,i �=j
[SA(U1(Xi)) ∧ Young(U2(Xi)) ∧ Strong(Rn(xi, xj)))]

Here we have replaced the predicate Rn(xi, xj) with Strong (Rn(xi, xj))

A related question is the following. Let B be some crisp subset of X. We now
ask what is the strongest connection between an element in B and a Young South
American not in B. The answer is then obtained from the following

Max
Xi∈B

[

Max
xj
[SA(U1(Xi)) ∧ Young(U2(Xj)) ∧ Rn(xi, xj) ∧ B(Xj)]

]

If in the above we are interested in only direct connections rather than any connection
we replace Rn by R.

We now consider the question: Do all people residing in South America have a
strong connection with each other? We shall denote the truth of this question Tr[Q]
We calculate this truth-value as

Tr(Q) = Min
xi,xj∈X

[(1− SA(U1(xi)) ∨ (1− SA(U1(xj)) ∨ Strong(Rn(xi, xj))]

Let us look at this for the special case where SA is a crisp set. We first see that in
the case of a pair (xi, xj) in which at least one of the elements do not reside in South
America then either SA(U1(xi)) = 0orSA(U1(xj)) = 0 and therefore

(1− SA(U1(xi)) ∨ (1− SA(U1(xj)) ∨ Strong(Rn(xi, xj)) = 1.

This case will not be the min. For the case in which both xi and xj reside in South
America then SA(U1(xi)) = SA(U1(xj)) = 1 and hence

(1− SA(U1(xi)) ∨ (1− SA(U1(xj)) ∨ Strong(Rn(xi, xj)) = Strong(Rn(xi, xj))

From this we get as expected Tr(Q) = Min
xixj∈SA

[Strong(Rn(xi, xj))]
Now we shall consider the slightly more complicated question of whether “most

of the people residing in western countries have strong connections with each other?”

11 Social Network Database Querying Based on Computing with Words 255

We shall here assume the term most is available in our common vocabulary where it
is defined as a fuzzy subset over the unit interval. In addition we shall assume that
the concept western country, is a concept that is defined by the fuzzy subset W over
the domain Y1. In this case for each xi ∈ X we have W(U1(xi)) indicates the degree
to which it is true that xi is from a western country. In the following we shall set P
to be the set of all unordered pairs of distinct elements from X. P is the set of all the
subsets of X consisting of two elements. We see that the number of elements in P,
nP = (n)(n−1)

2 where n is the number of elements in X. We shall denote an element
{xi, xj} in P as pk. Here then k goes from 1 to nP.

For each pair pk = {xi, xj}we obtain two values. The first Vk = Min(W(U1(xi)),

W(U1(xj))) indicates the degree to which pk consists of pair of elements both from a
western country. The second value is Sk = Strong(Rn(xi, xj)), indicates the degree
to which there is a strong connection between the pair {xi, xj}. We shall use the
technology of OWA operators to answer our question [25]. We proceed to obtain the
answer as follows:

(1) Order the Sk and let ind(j) be the index of the j th largest of the Sk. Thus here
Sind(j) is the j th largest of the Sk and Vind(j) is its associated V value.

(2) We next calculate

R =
np∑

j = 1

Vind(j)

(3) We next obtain a set of weight wj for j = 1 to np where

wj = Most(
Rj

R
)−Most(

Rj − 1

R
)

here Rj =∑j
i=1 Vind(i)

(4) We finally calculate the truth of the question as

Tr(q) =
np∑

j = 1

wjSind(j)

An interesting special case of the preceding occurs if the subset W, Western Country,
is a crisp set. In this case Vk = Min(W(U1(xi)), W(U1(xj))) is a binary value, either
one or zero. It is one if both xi and xj are from western countries and zero of either
is not from a western country.

Another question we can ask is whether the young people form a clique. Since
the young people provide a fuzzy subset over the space X and we have previously
indicated a process for determining whether a fuzzy set is a clique we can answer
this question.

256 R. R. Yager

7 Conclusion

We discussed the idea of fuzzy relationships and their role in modeling weighted
social relational networks. The paradigm of computing with words was introduced
and the role that fuzzy sets play in representing linguistic concepts was described. We
discussed how these technologies can provide a bridge between a network analyst’s
linguistic description of social network concepts and the formal model of the network.
Some examples of taking an analyst’s network concepts and formally representing
them in terms of network properties were provided. We applied this to the concept
of clique and then to the idea of node centrality. Finally we introduced the idea of
vector–valued nodes and began developing a technology of social network database
theory. Clearly this newly introduced idea of social network database theory will
provide many applications and will need a more formal mathematical framework, a
task for future research.

References

1. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cambridge
University Press, New York (1994)

2. Scott, J.: Social Network Analysis. SAGE Publishers, Los Angeles (2000)
3. Newman, M.: Networks: An Introduction. Oxford University Press, New York (2010)
4. Russell, M.A.: Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and

Other Social Media Sites. O’Reilly Media, Schasptopol, CA (2011)
5. Aggarwal, C.C.: Social Network Data Analytics. Springer, New York (2011)
6. Prell, C.: Social Network Analysis: History, Theory and Methodology. Sage Publisher, London

(2012)
7. Kadushin, C.: Understanding Social Networks: Theories, Concepts and Findings. Oxford Uni-

versity, New York (2012)
8. Yager, R.R.: Intelligent social network analysis using granular computing. Int. J. Intell. Syst.

23, 1196–1219 (2008)
9. Pivert, O., Bosc, P.: Fuzzy Preference Queries to Relational Databases. World Scientific, Sin-

gapore (2012)
10. Zadeh, L.A.: Fuzzy logic = computing with words. IEEE Trans. Fuzzy Syst. 4, 103–111 (1996)
11. Zadeh, L.A.: From computing with numbers to computing with words—from manipulation of

measurements to manipulations of perceptions. IEEE Trans. Circuits Syst. 45, 105–119 (1999)
12. Zadeh, L.A.: Outline of a computational theory of perceptions based on computing with words.

In: Sinha, N.K., Gupta, M.M. (eds.) Soft Computing and Intelligent Systems, pp. 3–22. Acad-
emic Press, Boston (1999)

13. Zadeh, L.A.: Generalized theory of uncertainty (GTU)-principal concepts and ideas. Comput.
Stat. Data Anal. 51, 15–46 (2006)

14. Zadeh, L.A.: Fuzzy logic. In: Meyers, A.R. (ed.) Encyclopedia of Complexity and Systems
Science. Springer, Heidelberg (2009)

15. Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic Publishers,
Amsterdam (2003)

16. Yager, R.R.: Human behavioral modeling using fuzzy and Dempster-Shafer theory. In: Liu, H.,
Salerno, J.J., Young, M.J. (eds.) Social Computing, Behavioral Modeling and Prediction, pp.
89–99. Springer, Berlin (2008)

11 Social Network Database Querying Based on Computing with Words 257

17. Rosenfeld, A.: Fuzzy graphs. In: Zadeh, L.A., Fu, K.S., Tanaka, K., Shimura, M. (eds.) Fuzzy
Sets and their Applications to Cognitive and Decision Processes, pp. 77–97. Academic Press,
New York (1975)

18. Delgado, M., Verdegay, J.L., Vila, M.A.: On the valuation and optimization problems in fuzzy
graphs (a general approach and some particuar cases). ORSA J. Comput. 2, 74–83 (1990)

19. Koczy, L.T.: Fuzzy graph in the evaluation and optimization of networks. Fuzzy Sets Syst. 46,
307–319 (1992)

20. Yager, R.R.: Level sets and the extension principle for interval valued fuzzy sets and its appli-
cation to uncertainty. Inf. Sci. 178, 3565–3576 (2008)

21. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inf. Sci. 3, 177–200 (1971)
22. Zadeh, L.: The concept of a linguistic variable and its application to approximate reasoning:

Part 1. Inf. Sci. 8, 199–249 (1975)
23. Murofushi, T., Sugeno, M.: Fuzzy measures and fuzzy integrals. In: Grabisch, M., Murofushi,

T., Sugeno, M. (eds.) Fuzzy Measures and Integrals, pp. 3–41. Physica-Verlag, Heidelberg
(2000)

24. Zadrozny, S., de Tré, G., de Caluwe, R., Kacprzyk, J.: An overview of fuzzy approaches to
database querying. In: Galindo, J. (ed.) Handbook of Research on Fuzzy Information Processing
in Databases, vol. 1, pp. 34–54. Information Science Reference, Hershey, PA (2008)

25. Yager, R.R.: Quantifier guided aggregation using OWA operators. Int. J. Intell. Syst. 11, 49–73
(1996)

Part V
Fuzzy Knowledge Discovery and

Exploitation

Chapter 12
Fuzzy Cardinalities as a Basis
to Cooperative Answering

Grégory Smits, Olivier Pivert and Allel Hadjali

Abstract Cooperative approaches to relational database querying help users retrieve
the tuples that are the most relevant with respect to their information needs. In this
chapter we propose a unified framework that relies on a fuzzy cardinality-based
summary of the database. We show how this summary can be efficiently used to
explain failing queries or to revise queries returning a plethoric answer set.

1 Introduction

The paradigm of cooperative answering is originated from the works in the context of
natural-language question-answering done by Kaplan [20] in the end of the seventies.
One of the aims of such works is to avoid natural-language query systems to produce
“there is zero result” when a query fails. Cooperative intelligent systems should
rather correct any false presupposition of the user, anticipate follow-up queries and
provide information not explicitly requested by the user.

Cooperative responses to a query are indirect responses that are more helpful to
the user than direct, literal responses would be. Interest in cooperative responses
in the database field arises in the middle of the eighties [13, 14, 17, 25, 31]. In
this context, cooperative answering represents intensional, qualified or approximate
answers. They may explain the failure of a query to produce results, build queries that
are related to the original one and re-submit them for an evaluation. Most cooperative

G. Smits (B)

IRISA-IUT, Lannion, France
e-mail: gregory.smits@univ-rennes1.fr

O. Pivert · A. Hadjali
IRISA-ENSSAT, Lannion, France
e-mail: pivert@enssat.fr

A. Hadjali
e-mail: hadjali@enssat.fr

O. Pivert and S. Zadrożny (eds.), Flexible Approaches in Data, Information 261
and Knowledge Management, Studies in Computational Intelligence 497,
DOI: 10.1007/978-3-319-00954-4_12, © Springer International Publishing Switzerland 2014

262 G. Smits et al.

techniques proposed in the literature deal with the empty answer problem in a crisp
query setting.

In this chapter, we consider fuzzy queries which express preferences modeled
using fuzzy set membership functions (that describe the preference profiles of the
user on each attribute domain involved in the query). We address two problematic
situations users can be faced with when querying relational databases: their query
returns (i) an empty set of answers or, (ii) a plethoric answer set. We propose a uniform
solution to these two symmetrical problematic situations. This solution relies on the
precomputation of a summary of the queried database according to a predefined
shared vocabulary. This summary provides information about the distribution of the
data over the definition domains of the different target attributes. This summarization
strategy efficiently computes fuzzy cardinalities using a single scan of the database.

Recall that with respect to Boolean queries, fuzzy queries reduce the risk of
obtaining an empty set of answers since the use of a finer discrimination scale—
[0, 1] instead of {0, 1}—increases the chance for an element to be considered some-
what satisfactory. Nevertheless, the situation may occur where none of the elements
of the target database satisfies the query even to a low degree.

In the context of fuzzy queries, beside the empty answer set (EAS) problem,
another situation deserves attention: that where the answer set is not empty but
only contains elements which satisfy to a low degree the preferences specified in
the user query. We show in this chapter that a generic—and very efficient—type of
approach that leverages fuzzy cardinalities may be employed to provide explanations
for both types of situations (empty or unsatisfactory answer set). Minimal failing
subqueries [24] constitute useful explanations about the conflicts in a failing query.
These explanations may (i) help the user revise or reformulate his/her initial query
or (ii) be used to set up an automatic and targeted relaxation strategy.

As for the symmetrical problem, i.e. the plethoric answer set (PAS) problem,
it has been intensively addressed by the information retrieval community and two
main approaches have been proposed for Boolean queries. The first one, that may be
called data-oriented, aims at ranking the answers in order to return the best k ones to
the user. However, this strategy is often faced with the difficulty of comparing and
distinguishing among tuples that satisfy the initial query. In this data-oriented type
of approach, we can also mention works which aim at summarizing the answer set
to a query [36].

The second type of approach may be called query-oriented as it performs a mod-
ification of the initial query in order to make it more selective. For instance, a strat-
egy consists in strengthening the specified predicates (as an example, a predicate
A ∈ [a1, a2] becomes A ∈ [a1 + γ, a2 − γ]) [6]. However, for some predicates,
this strengthening (if applied in an interated way) can lead to a deep modification of
the meaning of the initial predicate. Another type of approach advocates the use of
user-defined preferences on attributes which are not involved in the initial query
[3, 12, 21]. Such a subjective knowledge can then be used to select the most
preferred items among the initial answer set. Still another category of query-
oriented approaches [26, 27] aims at automatically completing the initial query with

12 Fuzzy Cardinalities as a Basis to Cooperative Answering 263

additional predicates to make it more demanding. Our work belongs to this last family
of approaches but its specificity concerns the way additional predicates are selected.

Indeed, we consider that the predicates added to the query must respect two
properties: (i) they must reduce the size of the initial answer set, (ii) they must modify
the semantic scope of the initial query as little as possible. Based on a predefined
vocabulary materialized by fuzzy partitions that linguistically describes the attribute
domains, we propose to identify the predicates which are the most correlated to
the initial query. Moreover, we consider that the queries involve a user-specified
quantitative threshold k corresponding to the approximate number of expected results
(the best ones). To assist the user through the reduction of a plethoric answer set
to a subset containing approximately k results, we again propose to make use of
precomputed fuzzy cardinalities that constitute useful knowledge about the data
distributions.

The remainder of the chapter is structured as follows. Section 2 provides a concise
reminder about fuzzy sets and fuzzy queries. In Sect. 3, we present the context of our
work and especially the fuzzy cardinality-based summarization process. Sections 4
and 5 respectively deal with the two symmetrical problems, i.e. the PAS problem and
the explanation of failing queries. We address these issues using a uniform framework
based on the notion of fuzzy cardinalities. Experimental results are presented and
analyzed in Sect. 6. Section 7 discusses related work, whereas Sect. 8 recalls the main
contributions and outlines perspectives for future work.

2 Preliminaries

2.1 Fuzzy Sets

Fuzzy set theory was introduced by Zadeh [22] for modeling classes or sets whose
boundaries are not clear-cut. For such objects, the transition between full membership
and full mismatch is gradual rather than crisp. Typical examples of such fuzzy classes
are those described using adjectives of the natural language, such as young, cheap,
fast, etc. Formally, a fuzzy set F on a referential U is characterized by a membership
function μF : U → [0, 1] where μF (u) denotes the grade of membership of u in
F . In particular, μF (u) = 1 reflects full membership of u in F , while μF (u) = 0
expresses absolute non-membership. When 0 < μF (u) < 1, one speaks of partial
membership.

Two crisp sets are of particular interest when defining a fuzzy set F :

• the core C(F) = {u ∈ U | μF (u) = 1}, which gathers the prototypes of F ,
• the support S(F) = {u ∈ U | μF (u) > 0}.
The notion of an α-cut encompasses both these concepts. The α-cut (resp. strict
α-cut) Fα (resp. Fα) of a fuzzy set F is defined as the set of elements from the
referential which have a degree of membership to F at least equal to (resp. strictly
greater than) α:

264 G. Smits et al.

Fig. 1 Trapezoidal member-
ship function

0

1

U

'linguistic label'

µf

A BA-a B+b

Fα = {u ∈ U | μF (u) ≥ α}

Fα = {u ∈ U | μF (u) > α}.

Straightforwardly, one has: C(F) = F1 and S(F) = F 0.
In practice, the membership function associated with F is often of a trapezoidal

shape. Then, F is expressed by the quadruplet (A, B, a, b) where C(F) = [A, B]
and S(F) = [A − a, B + b], see Fig. 1.

Let F and G be two fuzzy sets on the universe U , we say that F ⊆ G iff
μF (u) ≤ μG(u), ∀u ∈ U . The complement of F , denoted by Fc, is defined by
μFc(u) = 1 − μF (u). Furthermore, F ∩ G (resp. F ∪ G) is defined the following
way: μF∩G(u) = min(μF (u), μG(u)) (resp. μF∪G(u) = max(μF (u), μG(u))).

As usual, the logical counterparts of the theoretical set operators ∩, ∪ and the
complementation operator correspond respectively to the conjunction ∧, disjunction
∨ and negation ¬. See [16] for more details.

2.2 Fuzzy Queries and SQLf

Fuzzy sets are convenient tools to model vague criteria and user’s preferences. The
underlying fuzzy set theory offers a large panoply of connectives to aggregate these
preferences following different semantics. Fuzzy sets are used to model and rep-
resent common sense properties like ‘recent’, ‘low’, ‘very cheap’, ‘large’, ..., that
correspond to familiar and easily understandable notions for end users. Moreover, in
accordance with the imprecise nature of the concepts they represent, the fuzzy sets
behind these properties introduce some graduality when checking the satisfaction of
the items wrt. the user’s preferences. This gradual satisfaction provides the necessary
information to rank order the items that somewhat satisfy the user’s requirements.

The language called SQLf described in [8, 29] extends SQL so as to support fuzzy
queries. The general principle consists in introducing gradual predicates wherever
it makes sense. The three clauses select, from and where of the base block of SQL

12 Fuzzy Cardinalities as a Basis to Cooperative Answering 265

are kept in SQLf and the from clause remains unchanged. The principal differences
affect mainly two aspects :

• the calibration of the result since it is made with discriminated elements, which
can be achieved through a number of desired answers (k), a minimal level of
satisfaction (α), or both, and
• the nature of the authorized conditions as mentioned previously.

Therefore, the base block is expressed as:
select [distinct] [k | α | k, α] attributes
from relations
where fuzzy-condition
where fuzzy-condition may involve both Boolean and fuzzy predicates. This expres-
sion is interpreted as:

• the fuzzy selection of the Cartesian product of the relations appearing in the from
clause,
• a projection over the attributes of the select clause (duplicates are kept by default,

and if distinct is specified the maximal degree is attached to the representative in
the result),
• the calibration of the result (top k elements and/or those whose score is over the

user-specified threshold αu).

The operations from relational algebra—on which SQLf is based—are extended to
fuzzy relations by considering fuzzy relations as fuzzy sets on the one hand and by
introducing gradual predicates in the appropriate operations (selections and joins
especially) on the other hand. The definitions of these extended relational operators
can be found in [4]. As an illustration, we give the definitions of the fuzzy selection
and join operators hereafter, where r and s denote two fuzzy relations defined on the
sets of attributes X and Y .

• μselect (r, cond)(t) = �(μr (t), μcond(t)) where cond is a fuzzy predicate and� is
a triangular norm (most usually, min is used),
• μ join(r, s, A θ B)(tu) = �(μr (t), μs(u), μθ (t.A, u.B)) where A (resp. B) is a

subset of X (resp. Y), A and B are defined over the same domains, and θ is a
binary relational operator (possibly fuzzy).

A typical example of a fuzzy query is: “retrieve the recent and low-mileage cars”,
where recent and low-mileage are gradual predicates represented by means of fuzzy
sets as illustrated in Fig. 2.

266 G. Smits et al.

1

0

re
ce

nt

year

`recent'

5 10 15

1

0

lo
w

mileage

`low'

30k 60k 90k

(a) (b)
µ µ

Fig. 2 Predicates: a recent and b low-mileage

3 Fuzzy-Cardinality-Based Database Summaries

3.1 A Fuzzy-Partition-Based Predefined Vocabulary

Fuzzy sets constitute an interesting framework for extracting knowledge on data that
can be easily comprehensible by humans. Indeed, associated with a membership
function and a linguistic label, a fuzzy set is a convenient way to formalize a gradual
property. As noted in some previous works, especially in [27], such prior knowledge
can be used to represent what the authors call a “macro expression of the database".
Contrary to the approach presented in [27] where this knowledge is computed by
means of a fuzzy classification process, it is, in our approach, defined a priori by
means of a partition in the sense of Ruspini [33] of each attribute domain. These
partitions form a predefined and shared vocabulary and it is assumed that the fuzzy
sets involved in users’ flexible queries are taken from this vocabulary.

Let R be a relation containing w tuples {t1, t2, . . . , tw} defined on a set Z of q
categorical or numerical attributes {Z1, Z2, . . . , Zq}. A shared predefined vocab-
ulary on R is defined by means of fuzzy partitions of the q domains. A partition
Pi associated with the domain of attribute Zi is composed of mi fuzzy predicates
{Pi,1, Pi,2, . . . , Pi,mi }, such that for all Zi and for all t ∈ R :

mi∑

j=1

μPi j (t) = 1.

As mentioned above, we consider Ruspini partitions for numerical attributes (Fig. 3),
i.e., fuzzy partitions composed of fuzzy sets, where a set, say Pi , can only overlap
with its predecessor Pi−1 or/and its successor Pi+1 (when they exist). For categorical
attributes, we simply impose that for each tuple the sum of the satisfaction degrees
on all elements of a partition is equal to 1. These partitions are specified by an expert
during the database design step and represent “common sense partitions” of the
domains. Each Pi is associated with a set of linguistic labels {L p

i,1, L p
i,2, . . . , L p

i,mi
},

each of them corresponding to an adjective which gives the meaning of the fuzzy

12 Fuzzy Cardinalities as a Basis to Cooperative Answering 267

1

0 year

`la
st

 m
od

el
'

10 20 30 40

`v
er

y
re

ce
nt

'

`r
ec

en
t'

`m
ed

iu
m

'

`o
ld

'

`v
er

y
ol

d'

`v
in

ta
ge

'

µ

Fig. 3 A partition over the domain of attribute year

Table 1 A partition over the domain of attribute make
make

dodge jeep ... honda ... nissan renault peugeot dacia ... ARO oltcit ... vw Lamborghini Skoda ...

‘American’ 1 1 ... 0 ... 0 0 0 0 ... 0 0 ... 0 0 0 ...

‘Asian’ 0 0 ... 1 ... 0.6 0 0 0 ... 0 0 ... 0 0 0 ...

...

‘French’ 0 0 ... 0 ... 0.4 1 1 0.4 ... 0 0 ... 0 0 0 ...

‘East-european’ 0 0 ... 0 ... 0 0 0 0.6 ... 1 1 ... 0 0 0 ...

‘German’ 0 0 ... 0 ... 0 0 0 0 ... 0 0 ... 1 0.5 0.6 ...

...

predicate. A query Q to this relation R is a conjunction of fuzzy predicates chosen
among the predefined ones which form the partitions.

As an example, let us consider a database containing ads about second hand cars
and a view named secondHandCars of schema (id , model, description, year, mileage,
price, make, length, height, nbseats, consumption, acceleration, co2emission) as the
result of a join-query over the database. A common sense partition and labelling of
the domain of attribute year is illustrated in Fig. 3. Table 1 shows a possible common
sense partition and labelling of the domain of the categorical attribute make.

3.2 About Fuzzy Cardinalities and Their Computation

Hereafter, we describe a technique aimed at building fuzzy database summaries that
can be helpful in a cooperative answering perspective.

In the context of flexible querying, fuzzy cardinalities appear to be a convenient
formalism to represent how many tuples from a relation satisfy a fuzzy predicate to
various degrees. We assume in the following that these various membership degrees
are defined by a finite scale 1 = σ1 > σ2 > · · · > σ f > 0. Such fuzzy cardinalities
can be incrementally computed and maintained for each linguistic label and for the
diverse conjunctive combinations of these labels. Fuzzy cardinalities are represented

268 G. Smits et al.

by means of a possibility distribution [15] like

FPa = 1/0+ · · ·1/(n − 1)+ 1/n + λ1/(n + 1)+ · · ·+
λk/(n + k)+ 0/(n + k + 1)+ · · · ,

where 1 > λ1 ≥ · · · ≥ λk > λk+1 = 0 for a predicate Pa . This expression represents
a cardinality that possibly equals at least n to degree 1 and possibly equals at least
(n + k) to degree λk . In this chapter, without loss of information, we use a more
compact representation:

FPa = σ1/c1 + σ2/c2 + · · · + σ f /c f ,

where ci , i = 1.. f is the number of tuples in the concerned relation that are Pa

with a degree at least equal to σi . For the computation of cardinalities concerning
a conjunction of q fuzzy predicates, like FPa∧Pb∧···∧Pq , one takes into account the
minimal satisfaction degree obtained by each tuple t for the concerned predicates,
min(μPa (t), μPb (t), . . . , μPq (t)).

As illustrated by Algorithm 1, the computation of the fuzzy cardinalities relies on
a single scan of the database but for each tuple, one has to compute its satisfaction
degree regarding every possible conjunction of the fuzzy predicates involved in the
query. The number of all possible conjunctions to consider is equal to 2q where
q is the number of predicates in the query, but the computation has a linear data
complexity and the process remains tractable as soon as q is reasonably small, which
is the case in practice (in general, q ≤ 10). Indeed, even though databases are getting
larger and larger, the number of predicates involved in users queries remains stable
around half a dozen of predicates. Section 6 illustrates this observation in a concrete
applicative context.

The computation of fuzzy cardinalities relies on two steps. First a lattice is gener-
ated to store the fuzzy cardinalities according to all the possible conjunctions of pred-
icates. Figure 4 shows the lattice generated for a set of three predicates {Pa, Pb, Pc}.

Then, for each tuple t from the concerned database D , one computes its perfor-
mance vector 〈μPa (t), μPb (t), . . . , μPq (t)〉 that stores the satisfaction degrees of t

Fig. 4 Lattice of possible
conjunctions for a set of three
predicates {Pa, Pb, Pc}

Pa P b P c

Pa P b P a P c P b P c

P a P b P c

12 Fuzzy Cardinalities as a Basis to Cooperative Answering 269

wrt. the atomic predicates {Pa, Pb, . . . , Pq} involved in the query. Using a depth or
breadth first exploration of the lattice, one updates the fuzzy cardinalities according
to the performance vector of the tuple. Thus, according to the currently analyzed
predicate or conjunction of predicates P and a tuple t , if t satisfies P with a degree
greater or equal than αu then the function updateCardinality simply increments the
stored fuzzy cardinality of P for each α ≥ αu . A t-norm, here the minimum, is used
by the function computeSatisDegree to compute the satisfaction degree of a tuple
according to a conjunction of predicates. This satisfaction degree is directly com-
puted on the performance vector associated with the currently analyzed tuple (line
1.6). During the exploration of the lattice, for a tuple t , a path is discarded as soon
as t does not satisfy at all the query, say Q, composed of the current conjunction of
predicates since

μQ(t) = 0⇒ ∀Q′ such that pred(Q) ⊆ pred(Q′), μQ′(t) = 0

where pred(Q) denotes the set of predicates involved in Q.

Input: a failing query Q = Pa ∧ . . . ∧ Pn ; a scale of degrees
A = α f < ... < α2 < (α1 = 1); a user-defined qualitative
threshold αu ;

Output: L a lattice of fuzzy cardinalitites for Q;
begin1.1

R ← execute(Pa ∨ . . . ∨ Pn);1.2

L ← generateLattice({Pa, . . . , Pn});1.3

//L points to the entry node (∅) of the lattice1.4

foreach t ∈ R do1.5

〈μPa (t), μPb (t), ..., μPq (t)〉 ← computePer f V ector(t, {Pa, . . . , Pn});1.6

updateLattice(L , 〈μPa (t), μPb (t), ..., μPq (t)〉);1.7

end1.8

end1.9

Algorithm 1: Fuzzy Cardinalities Computation

Two strategies can be envisaged to compute the fuzzy cardinalities: dynamically
or a priori. The dynamic computation of fuzzy cardinalities allows for the use of user
defined fuzzy predicates inside queries. However, to perform an efficient dynamic
computation of the fuzzy cardinalities, it would be necessary to modify the optimizer
of the DBMS so as to integrate this process in their execution plan.

270 G. Smits et al.

Input: a lattice of fuzzy cardinalities L; a performance vector
V = 〈μPa (t), μPb (t), ..., μPq (t)〉; a scale of degrees
A = α f < ... < α2 < (α1 = 1); a user-defined qualitative
threshold αu ;

begin2.1

N ← Parent (L);2.2

foreach node ∈ N do2.3

let P be the predicate associated with the node N ;2.4

μP(t) = computeSatis Degree(V, P);2.5

if μP(t) ≥ αu then2.6

updateCardinali t y(N , μP(t));2.7

updateLattice(N , V, A, αu);2.8

end2.9

end2.10

end2.11

Algorithm 2: Recursive function updateLattice

In the following, we assume that a shared vocabulary is a priori defined by means
of fuzzy partitions over the domain of each searchable attribute. Thus, fuzzy cardi-
nalities can be pre-computed for each possible conjunction of predicates taken from
the shared vocabulary. More precisely, one computes the fuzzy cardinalities for all
the possible conjunctions of predicates containing no more than one predicate of
each attribute partition. Indeed, we consider that it does not make sense to explore
conjunctions of predicates from the same attribute partition like ‘year is young and
year is old’. Fuzzy cardinalities associated with conjunctions which are somewhat
satisfied by at least one tuple are stored in a dedicated table of the database. This table
can be easily maintained as the fuzzy cardinalities can be updated incrementally [5].

An index computed on the string representation of each conjunction makes it
possible to efficiently access the different fuzzy cardinalities.

3.3 A Semantic Correlation Measure

In this subsection, we introduce a measure aimed at assessing the extent to which
two fuzzy predicates are semantically correlated. This measure will be used in the
approach presented in Sect. 5 as a basis to the augmentation of a query leading to a
plethoric answer set.

Given two predicates Pa and Pb, an association rule denoted by Pa ⇒ Pb

expresses that tuples which are Pa are also Pb (Pa and Pb can be replaced by any
conjunction of predicates). As suggested in [9], the confidence of such an association
may be quantified by means of a scalar or by a fuzzy (relative) cardinality. The first
representation (as a scalar) is used in our approach as it appears more convenient and
easier to interpret. Thus, the confidence of an association rule Pa ⇒ Pb, denoted

12 Fuzzy Cardinalities as a Basis to Cooperative Answering 271

by con f (Pa ⇒ Pb), is computed as follows:

con f (Pa ⇒ Pb) = ΓPa∧Pb

ΓPb
. (1)

Here, ΓPa∧Pb and ΓPa correspond to scalar cardinalities, which are computed as
the weighted sum of the elements belonging to the associated fuzzy cardinalities.
For example, the scalar version of Γrecent = 1/6 + 0.6/7 + 0.2/8 is Γrecent =
1× 6+ 0.6× (7− 6)+ 0.2× (8− 7) = 6.8.

To quantify the semantic link between a query Q and a predicate P , one computes
a correlation degree denoted by μcor (P, Q), as:

μcor (P, Q) = �(con f (Q ⇒ P), con f (P ⇒ Q)) (2)

where � stands for a t-norm and the minimum is used in our experimentation
(Sect. 6.3). One can easily check that this correlation degree is both reflexive
μcor (Q, Q) = 1 and symmetric μcor (P, Q) = μcor (Q, P).

4 Query Failure Explanation

In this section, we show how fuzzy cardinalities can be used inside a cooperative
system to explain failing queries. We still assume that the queries are composed of
fuzzy predicates chosen in a predefined vocabulary. Let us first recall the formal
definition of the EAS problem.

Definition 1 Let Q be a fuzzy query and ΣQ = {t ∈ D | μQ(t) > 0} the set of
answers to Q against a given database D. We say that Q results in the EAS problem
if ΣQ = ∅.

4.1 About Minimal Failing and Unsatisfactory Subqueries

An empty set of answers associated with a fuzzy query Q = P1 ∧ P2 ∧ · · · ∧ Pn

is necessarily due to an empty support (w.r.t. the current state of the database) for
at least one of the subqueries of Q. The notion of an unsatisfactory set of answers
generalizes this problem by considering an empty α-cut of Q where α is a user-
defined qualitative threshold. As explained in Sect. 2.1, the support and the core of
a fuzzy set are particular cases of α-cuts where α is respectively equal to 0+ and 1.
In the rest of the chapter we only use the notion of an empty α-cut to refer to failing
queries as well as unsatisfactory ones.

Thus, an extreme case of a failing query corresponds to an empty 1-cut for Q only.
The opposite extreme is when one or several predicates Pi have an empty 0+-cut.

272 G. Smits et al.

Between these two situations, it is of interest to detect the subqueries composed of
more than one predicate and less than n predicates, which have an empty 0+-cut.
From an empty to an unsatisfactory set of answers, the problem defined above just
has to be slightly revisited, where the condition of an empty 0+-cut is transposed to
α-cuts, where α is taken from a predefined scale of membership degrees S : 1 =
α1 > α2 > · · · > α f = 0+.

Definition 2 Let us consider a query Q = P1 ∧ P2 ∧ · · · ∧ Pn , and let S and S′ be
two subsets of predicates such that S′ ⊂ S ⊆ {P1, P2, . . . , Pn}. A conjunction of
elements from S (resp. S′) is a subquery (resp. strict subquery) of Q.

If one wants to explain why the result of the initial query is empty (resp. unsat-
isfactory), and/or weaken the query by identifying the subqueries whose α-cut is
empty, one must naturally require that such subqueries be minimal: a subquery Q′ of
a query Q constitutes a minimal explanation if the considered α-cut is empty and if
no (strict) subquery of Q′ has an empty α-cut. This corresponds to a generalization
of the concept of a Minimal Failing Subquery (MFS) [18].

Let us denote by Σα
Q the set of answers to the α-cut of a query Q against a given

database D: Σα
Q = {t ∈ D | μQ(t) ≥ α}.

Definition 3 A Minimal Failing Subquery of a query Q = P1 ∧ P2 ∧ · · · ∧ Pn for
a given α is any subquery Q′ of Q such that Σα

Q′ = ∅ and for all strict subquery Q′′
of Q′, Σα

Q′′ �= ∅.
When faced with an empty set of answers for a user-defined threshold α, the

explanation process that we propose in this chapter generates layered MFSs for
different satisfaction degrees αi ∈ S , αi ∈ [α, 1].

Obviously, due to the monotonicity of inclusion of α-cuts, one has Σ
αi
Q ⊆ Σ

α j
Q

if αi ≥ α j . Therefore, a query Q that fails for a given α j also fails for higher
satisfaction degrees αi > α j . However, this property is not satisfied by minimal
failing subqueries. Indeed, a subquery Q′ can be an MFS of Q for a given α j without
being minimal for higher satisfaction degrees αi > α j as a strict subquery of Q′, say
Q′′, may fail for αi and not for α j .

During the layered MFS detection step (Sect. 4.2), when a subquery Q′ of an
initial failing or unsatisfactory query Q is detected for a degree α j , one has to check
for each higher level αi > α j if Q′ is also minimal at the level αi before considering
Q′ as an MFS for this level.

4.2 Cardinality-Based MFS Detection

Using the precomputed fuzzy cardinalities, one can detect the MFSs for different
empty α-cuts of Q, starting from a user-defined qualitative threshold up to the highest
satisfaction degree 1.

12 Fuzzy Cardinalities as a Basis to Cooperative Answering 273

In the manner of Apriori [1], Algorithm 3 starts with atomic predicates and the
first αi -cut of interest, the one corresponding to the user-defined qualitative threshold
αu . To determine if an atomic predicate Pa is a failing subquery of Q, one just has to
check the associated precomputed fuzzy cardinality. If no tuple satisfies Pa at least
with the degree αi then Pa , as an atomic predicate, is by definition an MFS of Q
and is also an MFS for α j > αi . Then, for the second round of the loop (line 3.7 of
Algorithm 3), conjunctions containing two non failing predicates are generated and
for each of them (line 3.11) one checks the fuzzy cardinalities so as to determine
if it is an MFS. If one of these conjunctions, say Pa ∧ Pb ∧ Pc, is an MFS for a
degree αi one tries to propagate it to higher satisfaction degrees (see Algorithm 4
where isMFS(L ,M F Sα j (Q)) returns true if L ∈ M F Sα j (Q), false otherwise). As
the MFS property is not monotonic with respect to α-cuts, one checks with Algorithm
4 for each α j > αi if a subquery of Pa∧Pb∧Pc corresponds to a previously detected
MFS for degree α j ; if it is not the case Pa ∧ Pb ∧ Pc is stored as an MFS of Q for
α j . Obviously, an atomic failing query is an MFS for all α-cuts. Then, the algorithm
goes back to the main loop (line 3.7) and conjunctions containing three predicates
are generated for each considered satisfaction degree (line 3.8) taking care that these
conjunctions do not contain an already identified MFS. This recursive process goes
on until candidate conjunctions cannot be generated anymore.

The complexity of this algorithm is obviously exponential in the number of pred-
icates involved in the failing query to explain, where the worst case corresponds
to a single MFS Q for the maximal satisfaction degree of 1. In this case, the fore-
ach loop (line 3.11) makes 2n iterations where n is the number of predicates in
Q. For a complete gradual explanation from α = 0+ to 1, the 2n iterations are
repeated f times, where f is the number of considered satisfaction degrees in
S : 1 = α1 > α2 > · · · > α f = 0+. Thus, the final complexity in the worst
case is f × 2n ∈ θ(2n). As we said previously, this is not a problem in practice as
the number of predicates specified by a user is rather low (≤ 10) in most applicative
contexts. Therefore, this process remains tractable as we will show experimentally
in Sect. 6.

Once the MFSs have been detected, it is possible to inform the user about the
conflicts in his/her query, which should help him/her revise the selection condition
of the failing query.

5 Plethoric Answer Set Reduction

In this section, we address the problem symmetrical to that studied in Sect. 4: the
Plethoric Answer Sets (PAS) problem. Let Q be a fuzzy query and ΣQ (denoted
also by Σ0+

Q) its set of answers against the database D. One can write Σ0+
Q =

{μ1/t1, μ2/t2, . . . , μn/tn} where ti is a tuple of D and μi its satisfaction degree
w.r.t. Q. Assume that a user provides a number k of desired answers along with the
query Q.

274 G. Smits et al.

Input: a failing query Q = P1 ∧ . . . ∧ Pn ;
a scale of degrees A = 0 < α f < ... < α2 < (α1 = 1);
a user-defined qualitative threshold αu ;

Output: M F S(Q) ordered sets of MFS’s of Q, one set for each α-cut of Q.
begin3.1

foreach αi ∈ A | αi ≥ αu do3.2

M F Sαi (Q)← ∅; Eαi ← {P1, . . . , Pn};3.3

Candαi ← Eαi ;3.4

end3.5

nbPred ← 1;3.6

while Candα1 �= ∅ do3.7

foreach αi ∈ A | αi ≥ αu do3.8

// generation of the candidates of size nbPred3.9

Candαi ← {M composed of nbPred predicates present in Eαi such3.10

that ∀M ′ ⊂ M, M ′ /∈ M F Sαi (Q)};
foreach L in Candαi do3.11

if card(Lαi) = 0 then3.12

M F Sαi (Q)← M F Sαi (Q) ∪ {L};3.13

//EL contains the atomic predicates that compose L3.14

Eαi ← Eαi − EL ;3.15

//Propagate L to higher satisfaction degrees3.16

// E = ∪i Eαi and M F S = ∪i M F Sαi (Q)3.17

propagate(αi , A, L , M F S, E);3.18

end3.19

end3.20

end3.21

nbPred → nbPred + 1;3.22

end3.23

end3.24

Algorithm 3: Gradual MFS computation

Definition 4 We say that a PAS problem occurs for Q if
∣
∣
∣Σ

μmax(Q)

Q

∣
∣
∣� k.

Where μmax(Q) = sup
ti∈Σ0+

Q
μi and Σ

μmax(Q)

Q = {ti ∈ Σ0+
Q | μi = μmax(Q)}.

This definition means that the set of answers Σ0+
Q contains a large number of

answers (with a maximal satisfaction degree) w.r.t. the number k of desired answers.
The general idea of our solution is to augment a user query Q with predefined
predicates which are semantically correlated with those present in Q, in order to
reduce the initial answer set and get an answer subset whose cardinality is as close
to k (the user-specified quantitative threshold) as possible.

12 Fuzzy Cardinalities as a Basis to Cooperative Answering 275

Input: a satisfaction degree: αi ; a scale of degrees: A; detected MFS for αi : L;
a reference to the array of layered MFS: M F S; a reference to the array
of predicates used for the generation of candidates: E ;

procedure propagate(αi , A, L , M F S, E) begin4.1

foreach α j ∈ A | α j ≥ αi do4.2

if isAtomic(L) or isMFS(L,M F Sα j (Q)) then4.3

M F Sα j (Q)← M F Sα j (Q) ∪ {L};4.4

Eα j ← Eα j − EL ;4.5

else4.6

break;4.7

end4.8

end4.9

end4.10

end4.11

Algorithm 4: Procedure that propagates an MFS to higher satisfaction degrees

5.1 Correlation-Based Ranking

In the approach we propose, the new conjuncts to be added to the initial query are
chosen among a set of possible predicates pertaining to the attributes of the schema
of the database queried (see Sect. 3.1). This choice is mainly made according to their
correlation with the initial query. A user query Q is composed of n (≥ 1) specified
fuzzy predicates, denoted by Ps1 , Ps2 , . . . , Psn , which come from the predefined
vocabulary associated with the database (Sect. 3.1). The first step of the query aug-
mentation process is to identify the predefined predicates most correlated to the initial
query Q.

The notion of correlation introduced in Sect. 3.3 is used to qualify and quantify
the extent to which two fuzzy sets (one associated with a predefined predicate P p

i, j ,
the other associated with the initial query Q) are somewhat “semantically” linked.

Using the fuzzy-cardinality-based measure of correlation (cf. Formula 2), we can
identify the predefined predicates most correlated to an under-specified query Q. In
practice, we only consider the η most correlated predicates to a query, where η is a
technical parameter which has been set to 5 in our experimentation. This limitation is
motivated by the fact that an augmentation process involving more than η iterations,
i.e., the addition of more than η predicates, could lead to important modifications of
the scope of the initial query. Those η predicates most correlated to Q are denoted
by Pc1

Q , Pc2

Q , . . . , Pcη

Q .

276 G. Smits et al.

5.2 Reduction-Based Reranking

The second step of the query augmentation process aims at reranking the η predicates
most correlated to the query according to their “reduction capability”. It is assumed
that the user specifies a value for the parameter k which defines the number of answers
he/she expects. Let FQ ∧Pcr

Q
, r = 1..η, be the fuzzy cardinality of the answer set

when Q is augmented with Pcr

Q . Pcr

Q is all the more interesting for augmenting Q as

Q∧Pcr

Q contains a σi -cut (σi ∈ S and σi ≥ αu) with a cardinality ci close to k and σi

close to 1. To quantify how interesting Pcr

Q is, we compute for each σi -cut of FQ ∧Pcr
Q

a “strengthening degree” which represents a compromise between its membership
degree σi and its associated cardinality ci . The global degree assigned to FQ ∧Pcr

Q
,

denoted by μstren(FQ ∧Pcr
Q

), is the maximum of its strengthening degrees over the

different σi -cuts:

μstren(FQ ∧Pcr
Q

) = sup1≤i≤ f �
(

1− |ci − k|
max(k, |ΣQ | − k)

, σi

)

where � stands for a t-norm and the minimum is used in our experimentation. This
reranking of the predicates the most correlated to Q can be carried out using the
fuzzy cardinalities associated with each conjunction Q ∧ Pcr

Q , r = 1..η.

Example 1 To illustrate this reranking strategy, let us consider a user query Q result-
ing in a PAS problem (|Σ∗Q | = 123 and |ΣQ | = 412), where k has been set to 50.

As an example, let us consider the following candidates Pc1

Q , Pc2

Q , Pc3

Q , Pc4

Q , Pc5

Q and
the respective fuzzy cardinalities:

• F
Q∧Pc1

Q
= {1/72 + 0.8/74 + 0.6/91+ 0.4/92+ 0.2/121}, μstren(F

Q∧Pc1
Q

) � 0, 94

• F
Q∧Pc2

Q
= {1/89 + 0.8/101 + 0.6/135+ 0.4/165+ 0.2/169}, μstren(F

Q∧Pc2
Q

) � 0, 9

• F
Q∧Pc3

Q
= {1/24 + 0.8/32 + 0.6/39+ 0.4/50+ 0.2/101}, μstren(F

Q∧Pc3
Q

) � 0, 93

• F
Q∧Pc4

Q
= {1/37 + 0.8/51 + 0.6/80+ 0.4/94+ 0.2/221} , μstren(F

Q∧Pc4
Q

) � 0, 96

• F
Q∧Pc5

Q
= {1/54 + 0.8/61 + 0.6/88+ 0.4/129+ 0.2/137}, μstren(F

Q∧Pc5
Q

) � 0, 99.

According to the problem definition (k = 50) and the fuzzy cardinalities above, the
following ranking is suggested to the user: 1) Pc5

Q , 2) Pc4

Q , 3) Pc1

Q , 4) Pc3

Q , 5) Pc2

Q . Of
course, to make this ranking more intelligible to the user, the candidates are proposed
with their associated linguistic labels (cf. the concrete example about used cars given
in Sect. 6.3).�

12 Fuzzy Cardinalities as a Basis to Cooperative Answering 277

5.3 Query Augmentation Process

Precomputed Knowledge

As the predicates specified by the user and those that we propose to add to the initial
query are chosen among the predefined vocabulary, one can precompute some useful
knowledge that will make the augmentation process faster. We propose to compute
and maintain precomputed knowledge which is stored in two tables. The first one con-
tains the precomputed fuzzy cardinalities introduced in Sect. 3.2, whereas the second
one stores the correlation degrees between sets of predefined predicates (correspond-
ing to the initial query) and any other predefined predicate. Using these correlation
degrees, one can also determine and store, for each conjunction of predefined pred-
icates, the most correlated predefined atomic predicates ranked in decreasing order
of their correlation degrees. Both tables have to be updated after each (batch of)
modification(s) performed on the data but these updates imply a simple incremental
computation.

Interactive Augmentation Mechanism

The query augmentation process consists of the following steps. One first checks the
table of fuzzy cardinalities in order to determine whether the user is faced with a
PAS problem according to the value he/she has assigned to k. If so, one retrieves—
still in constant time—up to η candidates that are then reranked according to k and
presented to the user. Finally, as it is illustrated in Sect. 6.3, the user can decide to
process the initial query, to process one of the suggested augmented queries, or to
ask for another augmentation iteration of one of the augmented queries.

6 Experimentation

6.1 Context

The fuzzy-cardinality-based summarization process as well as the cooperative
approaches described in Sects. 4 and 5 have been tested on a concrete database
containing ads about second hand cars. This database is composed of a single rela-
tion named secondHandCars and contains 46,089 tuples with the following schema:
{idads, year, mileage, price, make, length, height, nbseats, acceleration, consump-
tion, co2emission}.

Common sense fuzzy partitions have been defined on the attributes of this relation,
which led to a shared vocabulary made of 59 fuzzy predicates. Figure 5 illustrates
the way users may employ this vocabulary to construct their fuzzy queries.

278 G. Smits et al.

Fig. 5 Query interface relying on the shared vocabulary

Fig. 6 Evolution of the processing time and space wrt. the number of tuples

Using this predefined vocabulary, we have first evaluated the time needed to
compute a complete fuzzy-cardinality-based summary and also its evolution with
respect to the size of the database. Figure 6 (left) shows the evolution of the time
needed to compute the fuzzy cardinalities for a database whose size varies from
5000 to 45,000. Figure 6 (right) shows the evolution of the memory space needed
to store the computed fuzzy-cardinality-based summary. These results have been
obtained on a basic computer configuration (Intel Core 2 Duo 2.53GHz with 4Go
1067 MHz of DDR3 ram) and Postgresql as the RDBMS for the storage of the relation
secondHandCars and its summary.

As expected, the time needed to compute the fuzzy cardinality-based summary
linearly increases wrt. the size of the database. The most interesting phenomenon
that can be observed in Fig. 6 is that the size of the memory used to store the fuzzy
cardinalities is very reasonable and increases in a logarithmic way according to
the number of tuples. Indeed, the number of fuzzy cardinalities that have to be
stored increases quickly from 0 to 15,000 tuples, then very slowly to 35,000 and is
almost stable from 35,000 to 45,000. This phenomenon was predictable and can be
explained by the fact that whatever the number of tuples, the possible combinations of

12 Fuzzy Cardinalities as a Basis to Cooperative Answering 279

Fig. 7 Evolution of the
processing time wrt. the
number of predicates

properties to describe them is finite and can quickly be enumerated. As an example,
let us consider the failing fuzzy query Q composed of 8 predicates: “year is recent
and mileage is low and price is low and acceleration is very_high and consumption
is very_low and co2emission is very_low”. Whatever the number of tuples in the
database, some combinations of properties are not observed, such as: “year is recent
and mileage is low and price is low”, “acceleration is very_high and consumption
is very_low”, “acceleration is very_high and co2emission is very_low”,etc. So, one
can expect that the size of the memory used to store the fuzzy cardinalities will not
increase significantly in general, even when the database grows a lot.

To complete these observations, Fig. 7 shows the evolution of the time needed to
compute a complete summary of the database (with 46.089 tuples) with respect to
the number of predicates in the vocabulary.

This first experimentation clearly shows that this fuzzy-cardinality-based sum-
mary can be considered even for large databases as long as the vocabulary contains
a reasonably small number of fuzzy predicates. It is worth noticing that this char-
acteristics correspond to most of the applicative contexts, especially for web sites
proposing a query interface to their database.

6.2 A Prototype for Explaining Failing Queries

The query interface illustrated in Fig. 5 has been completed with the cooperative
approach described in Sect. 4 in order to provide the users with some explanations
about the failure of their queries [30]. In the first part of this experimentation, we have
used the fuzzy cardinalities precomputed according to the predefined vocabulary and
estimated the time needed to generate the explanations of failing queries. For this
purpose, we have submitted 50 failing or unsatisfactory queries containing various
numbers of predicates, from 1 up to 10. Figure 8 illustrates the explanations of the
failing query “year is vintage and price is low”, whereas Fig. 9 shows the evolution

280 G. Smits et al.

Fig. 8 Explanations for the failing query “year is vintage and price is low”

of the average time needed to compute these explanations for failing queries whose
number of predicates varies from 1 to 10. These results have been observed on three
queries containing a single predicate, six containing two predicates and ten for other
numbers of predicates. Despite the exponential aspect of the curve, these results
show that for a reasonable number of predicates involved in the query, the time
needed to compute the MFSs is very limited. Moreover, it is worth noticing that the
performances of this explanation process could certainly be improved using parallel
programming and a compiled language such as C instead of PHP.

To complete this first experimentation, we have also implemented the “naive”
approach studied in [18], which does not make use of a summary but processes every
possible subquery. To make the comparison meaningful, we have implemented a
version of our approach where a fuzzy-cardinality-based summary is dynamically
computed for each submitted query. In this case, the sole predicates involved in the
query are concerned by the summarization process. Figure 10 graphically shows the
difference in computation time for these two approaches and empirically shows the
benefits of a single scan of the database. This comparison is performed for queries
with at most six predicates, as the time needed to compute the MFSs for longer
queries is prohibitive with the technique proposed in [18].

In Sect. 6, we have seen that the size of a fuzzy-cardinality-based summary is
very limited, and that it is not linearly related to the size of the database but rather
depends on the applicative context and on the correlations between the attributes.
Indeed, Fig. 6 shows that the size of the summary quickly converges as soon as all
the “plausible combinations” of predicates have been enumerated.

The experimentations that we carried out show the benefits of an approach whose
complexity is not very sensitive to the number of tuples in the database. However,
such an approach can only be used when the queries involve a relatively small num-
ber of predicates. As said previously, this is not a problem in practice as the number
of predicates specified by a user is rather low (≤ 10) in most applicative contexts. To

12 Fuzzy Cardinalities as a Basis to Cooperative Answering 281

Fig. 9 MFS computation
time using precomputed fuzzy
cardinalities

Fig. 10 Naive method versus
dynamic computation of the
summary

support this assertion, we have analyzed the query interface of 12 web sites1 propos-
ing an access to ads about second hand cars. The maximum number of constraints
(i.e. predicates) a user can specify through these interfaces varies from 5 to 12 with
an average of 8.8 predicates.

MFSs-Based Failing Queries Revision

When faced with a failing query, the explanations given by the layered MFSs help the
user revise his/her initial query. Depending on the nature of the conflicts underlined
in the MFSs, a user may:

• reconsider the qualitative threshold αu specified in the query,

1 Examples of web portals to databases containing ads about second hand cars: http://
www.annoncesauto.com, http://www.paruvendu.fr, http://www.auroreflex.com, http://www.ebay.
fr, http://www.lacentrale.fr, ...

http://www.annoncesauto.com
http://www.annoncesauto.com
http://www.paruvendu.fr
http://www.auroreflex.com
http://www.ebay.fr
http://www.ebay.fr
http://www.lacentrale.fr

282 G. Smits et al.

Fig. 11 Example of an MFS-guided revision of an initial failing query

• remove one or several predicates involved in a conflict,
• replace one or several predicates involved in an MFS by predicates from the shared

vocabulary that appear less conflicting,
• apply a repair step which aims at relaxing the definition of some predicates [7]

or replace the conjunctive query Q by a fuzzy quantified statement of the type
Q∗ = most (P1, P2, . . . , Pn) [37].

Figure 8 illustrates a failing situation for an initial query “year is vintage and
price is low” and a user-defined qualitative threshold αu = 0.2. The explanation
related to this failure clearly point out that the predicate “price is low” is in conflict
with the property “year is vintage”. Guided with this explanation, one may replace
the conflicting predicate “price is low” by a less demanding one such as “price is
medium” (Fig. 11).

Thanks to the gradual MFSs, the user knows that it is useless to expect answers
with a high level of satisfaction if he/she keeps the predicate “year is vintage” which
constitutes an atomic MFS for α = 0.6.

6.3 A Prototype for Reducing Plethoric Answer Sets

To help users revise their queries when they return a plethoric answer set, we have
augmented the query interface illustrated in Fig. 5 with a cooperative functionality
that implements the approach described in Sect. 5 [10]. Using this interface, users
may define their fuzzy queries and specify a quantitative threshold k corresponding
to the number of answers they expect.

A concrete example given below illustrates the relevance of the predicates sug-
gested by the system for augmenting the initial query.

Example 2 Let us consider the following query Q composed of fuzzy predicates
chosen among the shared vocabulary (Fig. 5):

Q = select ∗ from second Hand Cars where year is very_old with k = 50.

12 Fuzzy Cardinalities as a Basis to Cooperative Answering 283

Executed on the second hand cars DB, Q returns an answer set whose cardinality is:
FQ = {1/179 + 0.8/179 + 0.6/179+ 0.4/323+ 0.2/323}. We are faced with a
PAS problem, which means that the query augmentation process is triggered.

The following candidates are suggested along with the fuzzy cardinality of the
corresponding augmented queries:

1. mileage is medium (μcor (Q, P p
mileage, medium) = 0.11)

FQ∧P p
mileage, medium

= {1/24 + 0.8/27 + 0.6/28+ 0.4/72+ 0.2/77}

2. mileage is very high (μcor (Q, P p
mileage, ver yhigh) = 0.19)

FQ∧P p
mileage, ver y high

= {1/7 + 0.8/7 + 0.6/8 + 0.4/18+ 0.2/19}

3. mileage is high (μcor (Q, P p
mileage, high) = 0.37)

FQ∧P p
mileage, high

= {1/101 + 0.8/106 + 0.6/110+ 0.4/215+ 0.2/223}.

For each candidate query Q′, the user may decide to process Q′ (i.e. retrieve the
results) or to repeat the augmentation process on Q′. If the latter option is chosen,
the table of fuzzy cardinalities is checked in order to retrieve relevant predicates for
augmenting Q′ (i.e. properties correlated to Q′) along with their associated fuzzy
cardinalities that are ranked according to k. Let us assume that the user selects

Q′ = year is very_old and mileage is medium

for a second augmentation step. The following candidates are suggested along with
their fuzzy cardinalities:

1. price is low (μcor (Q′, P p
price, low) = 0.34)

FQ′∧P p
price, low

= {1/18 + 0.8/20 + 0.6/21+ 0.4/46+ 0.2/51}

2. price is medium (μcor (Q′, P p
price, medium) = 0.15)

FQ′∧P p
price, medium

= {1/6 + 0.8/7 + 0.6/7+ 0.4/22+ 0.2/22}.�

From this experimentation on a real-world database, one may observe that query
augmentation based on semantic correlation provides the users with useful infor-
mation about data distributions and the possible queries that can be formulated in
order to retrieve coherent answer sets. By coherent answer set, we mean a group of
items that share correlated properties and that may correspond to what the user was
looking for without knowing initially how to retrieve them. Moreover, thanks to the
precomputed knowledge tables, it is not necessary to process the candidate queries

284 G. Smits et al.

to inform the user about the size of their answer sets and the predicates that can be
used to augment them.

This experimentation shows that the predicates suggested to augment the queries
are meaningful and coherent according to the initial underspecified queries. One
can find below some examples of suggested augmented queries Q′ starting from
underspecified queries Q:

• Q = year is old and mileage is high and price is very_low
intensified after two iterations into:
Q′ = year is old and mileage is high and price is very_low and acceleration is
slow and consumption is high
with |Σ∗Q | = 63 and |Σ∗Q′ | = 26.
• Q = year is recent

intensified after two iterations into:
Q′ = year is recent and mileage is low and price is medium
with |Σ∗Q | = 4.060 and |Σ∗Q′ | = 199.
• Q = price is high

intensified after two iterations into:
Q′ = price is high and year is last_model and co2emission is low
with |Σ∗Q | = 180 and |Σ∗Q′ | = 45.

7 Related Work

The practical need for endowing intelligent information systems with the ability to
exhibit cooperative behavior has been recognized since the early ’90s. As pointed
out in [13, 17], the main intent of cooperative systems is to provide correct, non-
misleading and useful answers, rather than literal answers to user queries. During the
last two decades, several cooperative approaches have been proposed for different
aspects related to the problems dealt with here. In this section, we first recall the main
existing approaches for database summarization. Then, we situate the uniform fuzzy-
cardinality-based cooperative approach we propose with respect to work related to
failing queries and plethoric answers respectively.

Database Summarization

In [34], Saint-Paul et al. propose an approach to the production of linguistic sum-
maries structured in a hierarchy, i.e., a summarization tree where the tuples from
the database are rewritten using the linguistic variables involved in fuzzy partitions
of the attribute domains. The deeper the summary in the tree, the finer its granu-
larity. First, the tuples from the database are rewritten using the linguistic variables
involved in fuzzy partitions of the attribute domains. Then, each candidate tuple is
incorporated into the summarization tree and reaches a leaf node (which can be seen

12 Fuzzy Cardinalities as a Basis to Cooperative Answering 285

as a classification of the tuple). In the hierarchical structure, a level is associated with
the relative proportion of data that is described by the associated summary. However,
the relative semantic poorness of these summaries in terms of cardinality-related
information makes its interest limited when it comes to helping the user reformulate
his/her query in an EAS or PAS situation.

Developed by Rasmussen and Yager, SummarySQL [32] is a fuzzy query language
which can evaluate the truth degree of a summary guessed by the user. A summary
expresses knowledge about the database in a statement under the form “Q objects
in DB are S” or “Q R objects in DB are S” where DB stands for the database,
Q is a linguistic quantifier (almost all, about half, etc.) and R and S are linguistic
terms (young, well-paid, and so on). The expression is evaluated for each tuple
and the associated truth values are later used to obtain a truth value for the whole
summary. A similar type of approach is proposed in [28]. Anyway, this view of
database summarization is purely oriented toward knowledge discovery, and does
not aim at providing tools to support database querying/browsing.

Failing Queries

We discuss here only some studies that are most related to the approach proposed.
For a complete and rich synthesis of works about failing queries, the reader can refer
to [6, 7]. Jannach [19] proposes an algorithm which is somewhat similar to ours,
but which does not precompute the cardinalities. Instead, it builds a binary matrix
containing the satisfaction degrees obtained by each tuple for each atomic predicate,
and combines these degrees in order to detect the MFSs. The main problems with
this technique are that (i) such a table can be very large to the point of not fitting in
memory (cf. the experimental results reported in [30]), and (ii) a query is processed
for each atomic predicate on the whole dataset.

The algorithm proposed in [18] processes every query corresponding to a can-
didate MFS, which is obviously quite expensive. Similarly, the approach described
in [23, 24], processes every maximally successful subquery of a failing query in
order to retrieve what the author calls a recovery set. Compared to these works, the
major interest of our approach is that the determination of the MFSs does not imply
any additional query processing, thanks to the precomputation of fuzzy cardinalities.
Thus, the complexity of our algorithm is linear in the size of the data (cf. Sect. 6.2).

Finally, apart from the study done in [7] and to the best of our knowledge, there
is no other work that has addressed the problem of MFS detection in the context
of preference queries, which covers an application context that goes beyond failing
queries stricto sensu.

Plethoric Answer Sets

In their probabilistic ranking model, Chaudhuri et al. [11] also propose to use a
correlation property between attributes and to take it into account when computing

286 G. Smits et al.

ranking scores. However, correlation links are identified between attributes and not
predicates, and the identification of these correlations relies on a workload of past
submitted queries.

Su et al. [35] have emphasized the difficulty to manage such a workload of previ-
ously submitted queries or users feedbacks. This is why they have proposed to learn
attribute importances regarding a price attribute and to rank retrieved items accord-
ing to their commercial interest. Nevertheless, this method is domain-dependent and
can only be applied for e-commerce databases.

The approach advocated by Ozawa et al. [26, 27] is also based on the analysis
of the database itself, and aims at providing the user with information about the
data distributions and the most efficient constraints to add to the initial query in
order to reduce the initial set of answers. The approach we propose in this chapter
is somewhat close to that introduced in [26], but instead of suggesting an attribute
on which the user should specify a new constraint, our method directly suggests
a set of fuzzy predicates along with some information about their relative interest
with respect to the user needs. The main limitation of the approach advocated in
[26] is that the attribute chosen is the one which maximizes the dispersion of the
initial set of answers, whereas most of the time, it does not have any semantic link
with the predicates that the user specified in his/her initial query. To illustrate this,
let us consider again the relation secondHandCars introduced in Sect. 3.1. Let Q be
a fuzzy query on secondHandCars: “select * from secondhandcars where type =
‘estate’ and year is recent” resulting in a PAS problem. In such a situation, Ozawa
et al. [26] first apply a fuzzy c-means algorithm [2] to classify the data, and each
fuzzy cluster is associated with a predefined linguistic label. After having attributed
a weight to each cluster according to its representativity of the initial set of answers,
a global dispersion degree is computed for each attribute. The user is then asked
to add new predicates on the attribute for which the dispersion of the initial set of
answers is maximal. In this example, this approach may have suggested that the user
should add a condition on the attributes mileage or brand, on which the recent estate
cars are probably the most dispersed. We claim that it is more relevant to reduce the
initial set of answers with additional conditions which are in the semantic scope of
the initial query. Here for instance, it would be more judicious to focus on cars with
a high level of security and comfort as well as a low mileage, which are features
usually related to recent estate cars. This issue has been illustrated in Sect. 6.3.

The problem of plethoric answers to fuzzy queries has been addressed in [6]
where a query strengthening mechanism is proposed. Let us consider a fuzzy set
F = (A, B, a, b) representing a fuzzy query Q. The authors of [6] define a
fuzzy tolerance relation E which can be parameterized by a tolerance indicator Z ,
where Z is a fuzzy interval centered in 0 that can be represented in terms of a
trapezoidal membership function by the quadruplet Z = (−z, z, δ, δ). From a
fuzzy set F = (A, B, a, b) and a tolerance relation E(Z), the erosion operator
builds a set FZ such that FZ ⊆ F and FZ = F � Z = (A+ z, B− z, a− δ, b− δ).
However, such an erosion-based approach can lead to a deep modification of the
meaning of the user query, if the erosion process is not correctly controlled.

12 Fuzzy Cardinalities as a Basis to Cooperative Answering 287

8 Conclusion

This chapter is a synthesis of several works that we have carried out in the context of
cooperative query answering. The main originality of our approach is that it addresses
symmetrical problems with a unified framework based the notion of a database fuzzy
summary. The type of summary we consider is based on fuzzy cardinalities and offers
a concise formalism to represent the data distributions over a predefined vocabulary
composed of fuzzy partitions. We have empirically shown on a concrete applicative
context that this method is efficient and that it provides meaningful information that
may help the user retrieve the items he/she is looking for. An important point is
that the summarization process has a linear data complexity. On the other hand, this
fuzzy-cardinality-based cooperative approach is realistic only when the number of
predicates that compose the predefined fuzzy vocabulary is reasonably small. An
interesting perspective would be to study the benefits of an incremental computation
of the summaries bootstrapped with correlation between attributes or predicates that
can be identified in a workload of previously submitted queries.

Concerning the failing query problem, we have proposed an approach that pro-
vides informative explanations about the reasons of the failure. A perspective is to
define a strategy that automatically repairs the failing queries, the goal being to sug-
gest a relaxed query that returns a non-empty set of answers and, if possible, whose
cardinality is as close as possible to the quantitative parameter k. As mentioned
above, an interesting solution could be to consider reformulations involving fuzzy
quantified statements.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases.
In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) VLDB, pp. 487–499. Morgan Kaufmann, San
Francisco (1994)

2. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithm. Plenum Press,
New York (1981)

3. Bodenhofer, U., Küng, J.: Fuzzy ordering in flexible query answering systems. Soft Comput.
8, 512–522 (2003)

4. Bosc, P., Buckles, B., Petry, F., Pivert, O.: Fuzzy databases. In: Bezdek, J., Dubois, D., Prade,
H. (eds.): Fuzzy Sets in Approximate Reasoning and Information Systems, pp. 403–468. The
Handbook of Fuzzy Sets Series. Kluwer Academic Publishers, Dordrecht (1999)

5. Bosc, P., Dubois, D., Pivert, O., Prade, H., de Calmès, M.: Fuzzy summarization of data
using fuzzy cardinalities. In: Proceedings of the 9th International Conference on Information
Processing and Management of Uncertainty in Knowledge-Based Systems (IPMU’02), pp.
1553–1559, Annecy, France (2002)

6. Bosc, P., Hadjali, A., Pivert, O.: Empty versus overabundant answers to flexible relational
queries. Fuzzy Sets Syst. 159(12), 1450–1467 (2008)

7. Bosc, P., Hadjali, A., Pivert, O.: Incremental controlled relaxation of failing flexible queries.
J. Intell. Inform. Syst. 33(3), 261–283 (2009)

8. Bosc, P., Pivert, O.: SQLf: a relational database language for fuzzy querying. IEEE Trans.
Fuzzy Syst. 3(1), 1–17 (1995)

288 G. Smits et al.

9. Bosc, P., Pivert, O., Dubois, D., Prade, H.: On fuzzy association rules based on fuzzy cardi-
nalities. In: FUZZ-IEEE, pp. 461–464 (2001)

10. Bosc, P., Pivert, O., Hadjali, A., Smits, G.: Correlation-based query expansion. In: Actes des
26e Journées Bases de Données Avancées (2010)

11. Chaudhuri, S., Das, G., Hristidis, V., Weikum, G.: Probabilistic ranking of database query
results. In: Proceedings of VLDB’04, pp. 888–899 (2004)

12. Chomicki, J.: Querying with intrinsic preferences. In: Proceedings of EDBT’02, pp. 34–51
(2002)

13. Corella, F., Lewison, K.: A brief overview of cooperative answering. In: Technical report
http://www.pomcor.com/whitepapers/cooperative_responses.pdf (2009)

14. Cuppens, F., Demolombe, R.: Cooperative answering: a methodology to provide intelligent
access to databases. In: Proceedings of DEXA’88, pp. 333–353 (1988)

15. Dubois, D., Prade, H.: Fuzzy cardinalities and the modeling of imprecise quantification. Fuzzy
Sets Syst. 16, 199–230 (1985)

16. Dubois, D., Prade, H.: Fundamentals of fuzzy sets, volume 7 of The Handbooks of Fuzzy
Sets. Kluwer Academic, The Netherlands (2000)

17. Gaasterland, T., Godfrey, P., Minker, J.: Relaxation as a platform for cooperative answering.
J. Intell. Inform. Syst. 1(3–4), 296–321 (1992)

18. Godfrey, P.: Minimization in cooperative response to failing database queries. Int. J. Cooper-
ative Inform. Syst. 6(2), 95–149 (1997)

19. Jannach, D.: Techniques for fast query relaxation in content-based recommender systems. In:
Proceedings of KI’06, pp. 49–63 (2006)

20. Kaplan, S.-J.: Cooperative responses from a portable natural language query system. Artif.
Intell. 19, 165–187 (1982)

21. Kiessling, W.: Foundations of preferences in database systems. In: Proceedings of VLDB’02
(2002)

22. Zadeh, L.A.: Fuzzy sets. Inform. Control 8(3), 338–353 (1965)
23. McSherry, D.: Incremental relaxation of unsuccessful queries. In: Proceedings of ECCBR’04,

pp. 331–345 (2004)
24. McSherry, D.: Retrieval failure and recovery in recommender systems. Artif. Intell. Rev.

24(3–4), 319–338 (2005)
25. Motro, A.: Cooperative database system. In: Proceedings of FQAS’94, pp. 1–16 (1994)
26. Ozawa, J., Yamada, K.: Cooperative answering with macro expression of a database. In:

Proceedings of IPMU’94, pp. 17–22 (1994)
27. Ozawa, J., Yamada, K.: Discovery of global knowledge in database for cooperative answering.

In: Proceedings of Fuzz-IEEE’95, pp. 849–852 (1995)
28. Pilarski, D.: Linguistic summarization of databases with quantirius: a reduction algorithm

for generated summaries. Int. J. Uncertainty Fuzziness Knowl. Based Syst. 18(3), 305–331
(2010)

29. Pivert, O., Bosc, P.: Fuzzy Preference Queries to Relational Databases. Imperial College Press,
London (2012)

30. Pivert, O., Smits, G., Hadjali, A., Jaudoin, H.: Efficient detection of minimal failing subqueries
in a fuzzy querying context. In: Eder, J., Bieliková, M., Tjoa, A.M. (eds.) ADBIS. Lecture
Notes in Computer Science, vol. 6909, pp. 243–256. Springer (2011)

31. Ras, R.-W., Dardzinska, A.: Intelligent query answering. In: Wang, J. (ed.) Encyclopedia of
Data Warehousing and Mining, 2nd edn, vol. II, pp. 1073–1078. Idea Group, Inc., Hershey
(2008)

32. Rasmussen, D., Yager, R.R.: Summary SQL: a fuzzy tool for data mining. Intell. Data Anal.
1(1–4), 49–58 (1997)

33. Ruspini, E.: A new approach to clustering. Inform. Control 15(1), 22–32 (1969)
34. Saint-Paul, R., Raschia, G., Mouaddib, N.: General purpose database summarization. In:

Proceedings of VLDB’05, pp. 733–744 (2005)
35. Su, W., Wang, J., Huang, Q., Lochovsky, F.: Query result ranking over e-commerce web

databases. In: Proceedings of CIKM’06 (2006)

http://www.pomcor.com/whitepapers/cooperative_responses.pdf

12 Fuzzy Cardinalities as a Basis to Cooperative Answering 289

36. Ughetto, L., Voglozin, W.A., Mouaddib, N.: Database querying with personalized vocabulary
using data summaries. Fuzzy Sets Syst. 159(15), 2030–2046 (2008)

37. Zadeh, L.: A computational approach to fuzzy quantifiers in natural languages. Comput. Math.
Appl. 9, 149–183 (1983)

Chapter 13
Scalability and Fuzzy Systems: What
Parallelization Can Do

Malaquias Q. Flores, Federico Del Razo, Anne Laurent
and Nicolas Sicard

Abstract (Fuzzy) Database management systems aim to provide tools for data stor-
age and ing. Based on the stored information, systems can offer analytical func-
tionalities in order to deliver decisional database environments. In many application
areas, fuzzy systems have proven to be efficient for modeling, reasoning, and pre-
dicting with imprecise information. However, expanding the frontiers of such areas
or exploring new domains is often limited when facing real world data: as the space
to search get bigger, more computation time and memory space are required. In this
chapter, we discuss how the parallelization of fuzzy algorithms is crucial to tackle
the problem of scalability and optimal performance in the context of fuzzy database
mining. More precisely, we present the parallelization of fuzzy database mining algo-
rithms on multi-core architectures of two knowledge discovery paradigms, namely
fuzzy gradual pattern mining and fuzzy tree mining (for example in the case of XML
databases). We also present a review of other two related problems, namely fuzzy
association rule mining and fuzzy clustering.

M. Q. Flores (B) · A. Laurent
LIRMM, University Montpellier 2 CNRS, 161 rue Ada 34095, Montpellier, France
e-mail: quinterofl@lirmm.fr

A. Laurent
e-mail: laurent@lirmm.fr

M. Q. Flores
Instituto Tecnológico de Apizaco, Tlaxcala, Mexico
e-mail: quinterofl@lirmm.fr

F. Del Razo
Instituto Tecnológico de Toluca, DGEST-SEP Av. S/N, Metepec, Edo de Mexico, Mexico
e-mail: delrazo@ittoluca.edu.mx

N. Sicard
AllianSTIC-EFREI, Paris, 30-32 av. de la République, 94800 Villejuif Cedex, France
e-mail: nicolas.sicard@efrei.fr

O. Pivert and S. Zadrożny (eds.), Flexible Approaches in Data, Information 291
and Knowledge Management, Studies in Computational Intelligence 497,
DOI: 10.1007/978-3-319-00954-4_13, © Springer International Publishing Switzerland 2014

292 M. Q. Flores et al.

1 Introduction

In recent years fuzzy set and fuzzy logic theory have found applications in
mathematical theory, artificial intelligence, non-linear control, real-time systems,
database mining, machine learning, database management systems, decision mak-
ing, consumer electronics, expert systems, economics, finance, software engineering,
among other interesting areas of application [35, 36, 63, 71]. The expression “fuzzy
systems” is the name commonly used to refer in general to the systems resulting from
the different applications of fuzzy logic [36]. Whereas for referring to specific sys-
tems, we use expressions such as fuzzy control, fuzzy database management systems,
fuzzy database mining techniques, and so on.

Fuzzy systems are computer systems inspired from the linguistic processing of
information, where representation and processing of imprecise and uncertain data is
done through fuzzy set theory and fuzzy logic (fuzzy inference) respectively [36, 63].
Such systems aim at implementing on the machines, models and algorithms related to
imprecise information processing by approximate reasoning. Fuzzy database mining
techniques are methods to extract automatically meaningful knowledge from complex
databases [35, 71].

Informally, approximate reasoning is here defined as the process of inferring
meaningful conclusions from imprecise antecedents [36]. The automatic extraction
of knowledge from databases, also known as Knowledge Discovery in Databases is
defined as a multi-step process of discovering potentially useful information from
large and complex databases [54]. In this framework, fuzzy database management
systems and fuzzy database mining techniques have an important role [5, 33, 35, 50].

With the emergence of innovative and accessible models of parallel computa-
tion, fuzzy systems can improve their performance by using parallel computing
architectures. In this chapter, we discuss how important the parallelization of fuzzy
algorithms is to tackle the problem of scalability and optimal performance in the
framework of fuzzy database mining. More precisely, we discuss the parallelization
of fuzzy database mining algorithms on multi-core architectures of four knowledge
discovery paradigms, namely fuzzy association rules, fuzzy clustering, fuzzy gradual
dependencies, and fuzzy tree mining (for example in the case for XML databases).
In all cases, the role of fuzzy databases is important in the process of extraction of
fuzzy patterns.

The outline of this chapter is as follows: In Sect. 2, we present an overview about
fuzzy database systems, definitions related to the representation of fuzziness in the
relational fuzzy database model, an introduction to fuzzy database mining tech-
niques, and the importance of optimizing the performance of such techniques by
parallelization. We present a brief review about parallel programming models, tax-
onomy of computer architectures and definition of performance measurements of
parallel programs in Sect. 3. In Sect. 4, we present our approach of parallelization
of a fuzzy gradual patterns mining method, our approach of parallelization of a
fuzzy tree mining algorithm on multi-core architectures, we also present a review

13 Scalability and Fuzzy Systems 293

of two related problems, namely: parallel fuzzy association rule mining and parallel
fuzzy clustering. Finally, we conclude and give some suggestions for future research
directions in Sect. 5.

2 Fuzzy Databases and (Fuzzy) Database Mining Techniques

In the framework of traditional database management systems, it is common to
assume that the data are precise and certain. Unfortunately, real-world data are often
uncertain, imprecise, inconsistent, ambiguous or vague due to different reasons such
as: human errors, instrument errors, recording errors, noisy data, and so on [67].
Fuzzy databases (FDB) aim at providing tools for storage and querying data with
the previously mentioned imperfections [64].

In order to represent and manage imperfect data, during the last thirty-five years
has been carried out extensive scientific research work aimed at developing different
approaches of how to incorporate fuzziness1 at different levels into FDB models
[47, 53].

The most studied fuzzy database models have been the fuzzy relational database
models (FRDBM) [1, 3, 10] and fuzzy object-oriented database models (FOODBM)
[46, 47]. In the next section, we review necessary theoretical background and ter-
minology of FRDBM, on which this chapter focuses. For a comprehensive review
related to FOODBM, refer to [3, 46, 47]. This is because in this chapter, we present
an approach to address the problem of optimizing the automatic extraction of gradual
patterns from fuzzy relational databases.

2.1 Fuzzy Databases

In FRDBM, fuzziness is introduced at the tuple level and at the attribute level. At
the tuple level, the tuples are described by the membership degrees that indicate the
extent to which their characteristics belong to their considered fuzzy relations or
a possibility distribution measuring the possibility that the tuples belongs to their
fuzzy relations [3, 59]. At the attribute level, the attributes are described through
fuzzy linguistic variables or possibility distributions that indicate the extent to which
attribute values belong to their fuzzy sets defined on the domains of the attributes
[1, 3].

The fuzzy relations that are employed in recent FRDBM to introduce fuzziness
at the tuple level are: similarity relations [3, 11], proximity relations [3, 59], or

1 According to OXFORD DICTIONARY. Fuzziness is deterministic uncertainty Fuzziness is
concerned with the degree to which events occur rather than the likelihood of their occurrence
(probability).

294 M. Q. Flores et al.

resemblance relation [3, 57], where each pair of values in the attribute domain are
mapped, through similarity, proximity or resemblance relation, to interval [0, 1].

Definition 1 Let X and Y be non-empty sets. A fuzzy subset R of the Cartesian
product X × Y is called a binary fuzzy relation from X to Y . For (x, y) ∈ R, for
some pair (x, y), R(x, y) is the degree to which x is R-related to y in the unit interval
[0, 1].

If X = Y , that is to say if R is a subset of X × X then R is a binary fuzzy relation
on X denoted as R : X2 →[0, 1].

Zadeh introduced the notion of fuzzy similarity relation [70] in 1971, later gen-
eralized by the proximity relation [23] and the resemblance relation [14]. In 1999,
Bodenhofer proposed a generalization in the form of the fuzzy equivalence relation
[9].

Fuzzy equivalence relation is a concept that plays an outstanding role for model-
ing gradual similarity under fuzzy environment, where information concerning the
objects of study and analysis is often expressed in linguistic terms, e.g., very low
between very poor and poor, about $580, approximately between $6,090 and $4,700,
fair, very high, and so on [38].

Definition 2 A fuzzy relation E : X2 →[0, 1] is called equivalence relation on a
domain X with respect to a t-norm T , for brevity T-equivalence, if and only if the
following three axioms are fulfilled for all x, y, z ∈ X :

(i) E-reflexivity: E(x, x) = 1,

(ii) E-symmetry: E(x, y)= E(y, x), and

(iii) T-transitivity: T(E(x, y), E(y, z))≤ E(x, z).

E(x, y), E(y, z) and E(x, z) are the grade of membership of the ordered pairs
(x, y), (y, z), and (x, z) in E, with respect to a triangular minimum (t-norm) T .
Along the last twenty years, the above concept of equivalence relation has been
developed and generalized. For instance, alternative interpretations of the property
of T-transitivity have been proposed, e.g., Bezdek and Harris [8, 9] introduced
an interpretation of T-transitivity based on the Lukasiewicz t-norm TL(x, y) =
max(0, x+ y−1). The interpretation based on the product t-norm TP (x, y) = (x · y)

was introduced by Faurous and Fillard [8, 9].
In FRDBM, the concepts of fuzzy linguistic variable and possibility distribution

[10] play an important role in representing imprecise data at the attribute level.

Definition 3 A fuzzy linguistic variable V is defined as a quadruple of the form
V = (X, D, T, M F), where X is the name of V , D is the values domain of V , T
represents the set of fuzzy subsets defined in D, and MF represents the membership
functions that characterize each fuzzy subset ∈ T .

13 Scalability and Fuzzy Systems 295

Table 1 Example of a fuzzy database

Attribute Size Weight Sugar rate

Id X1 N X1 low high X2 N X2 low high X3 N X3 low high
o1 6 0.00 0.85 0.15 6 0.00 0.80 0.20 5.3 1.00 0.45 0.55
o2 10 0.24 0.60 0.40 12 0.75 0.30 0.70 5.1 0.50 0.48 0.52
o3 14 0.47 0.44 0.56 14 1.00 0.20 0.80 4.9 0.00 0.48 0.52
o4 23 1.00 0.15 0.85 10 0.50 0.45 0.55 4.9 0.00 0.48 0.52
o5 6 0.00 0.85 0.15 8 0.25 0.55 0.45 5.0 0.25 0.5 0.50
o6 14 0.47 0.45 0.14 9 0.38 0.5 0.5 4.9 0.00 0.48 0.52

Definition 4 A fuzzy subset A defined in a domain D is a set with fuzzy boundaries
and therefore totally characterized by a membership function (A(d)), which denotes
the degree of membership of d in the fuzzy subset A ∀d ∈ D.

A = {(d, A(d)) | d ∈ D} (1)

Table 1 illustrates the concept of fuzzy database representing imprecise data at the
attribute level, the attributes are defined by fuzzy linguistic variables. For example
the non normalized values of attribute Size are represented by the variable X1, with
their membership degrees in the fuzzy sets low and high in the interval [0, 1]. The
variable N X1 represents the normalized values of attribute Size in the interval [0, 1].

2.2 Fuzzy Database Mining Techniques

The aim of database mining can be defined as finding patterns or rules that describe
the meaning of the relationships or dependencies between the data contained in
big and complex databases. Database mining is an interdisciplinary field, which
combines research from areas such as machine learning, statistics, theory of fuzzy
sets and fuzzy logic, neural networks, evolutionary computing, high performance
computing, parallel programming, databases, and FDB models [25, 29, 35].

In the pattern mining field, an important problem is the extraction of patterns
that are intrinsically vague, imprecise, uncertain and that can involve data disturbed
by the noise [34]. This problem comes from the fact that real-world data tend to
be uncertain due to human errors, instrument errors, recording errors, noisy data,
and so on [26, 67]. Fuzzy databases allow a natural and flexible representation of
patterns and data with the characteristics mentioned above. In this framework, in
recent years, several extensions of database mining techniques have been developed
on the basis of fuzzy sets and fuzzy logic theory [35], such extensions are known as
fuzzy database mining techniques (FDMT) [5].

Scaling algorithms of FDMT is a challenge [28], because their search spaces,
requirements of computation time and memory are larger than of the algorithms used

296 M. Q. Flores et al.

in crisp database mining methods [27]. In this context, we present the parallelization
of fuzzy database mining algorithms on multi-core architectures, more precisely,
we present parallel gradual pattern mining based on fuzzy orderings and parallel
fuzzy tree mining. We also present a review of other two related approaches, namely
parallel fuzzy association rule mining and parallel fuzzy clustering. Before stating
that, in Sect. 3 some definitions of Parallel programming will be recalled.

3 Parallel Programming Models and Parallel Computers:
An Overview

Parallel computing is a viable means to improve performance of algorithms of fuzzy
computing [66]. With the emergence of new generations of multi-core processors
and the new generations of graphics processing units (G PUs) as key components
of high performance hardware of a computer system, optimization of fuzzy systems
through its parallelization is possible on general purpose computing platforms [15,
24, 39].

Parallelization-based optimizations of algorithms [6, 66] aim to: (i) reduce the exe-
cution time, (ii) allow real-time processing, (iii) solve large problems, and (iv) exploit
the computing power of the more and more present high-performance systems (e.g.,
multi-core processors that now even equip mobile phones and tablets).

Below we present the taxonomy of parallel computers, concepts, and terminology
about parallel programming models, that is used through subsequent sections.

3.1 Taxonomy of Computer Architecture

According to instruction and data streams, Flynn in 1966 [22, 58] defined a taxonomy
of computer architecture, as is presented in Table 2, where instruction streams are the
operations to be performed by the processors/cores, the data streams are sequences
of data to be processed and that circulate between memory and the processors/cores.

• A SISD system is the standard architecture of uniprocessor von Neumann com-
puters.

Table 2 Flynn’s taxonomy
of computer architecture

Single-data
stream

Multiple-data
stream

Single-instruction stream SISD SIMD
Multiple-instruction stream MISD MIMD

13 Scalability and Fuzzy Systems 297

• In SIMD architecture, same instruction stream is executed in all processors with
different data streams in a synchronized fashion.
• In a MISD machine, different instruction streams on the same stream of data, this

type of machine has never been used in practice.
• In the MIMD category, each processor has its own control unit and uses its own

stream of data and executes its own stream of instructions (or part of the program),
this type of architecture is considered the more flexible.

3.2 Parallel Programming Models

The parallel programming models are divided into three categories [22, 58, 66]:

• Distributed memory systems, any cluster and/or single symmetric multiprocessors
(SMP), each processor has its own system memory that cannot be accessed by
other processors, the shared data are transferred usually by message passing, e.g.,
sockets and message passing interface (MPI).
• Shared memory, SMP only, the processors share the global memory, the proces-

sors have direct access to the entire set of data. Access to the same data need
synchronization and sequential memory access, e.g., Posix threads, OpenMP, and
automatic parallelization.
• Hierarchical systems, is a combination of shared and distributed models. They

are composed by multiprocessor nodes in which memory is shared by intra-node
processors and distributed over inter-node processors. Hierarchical models are
implemented on fast networks and share disk drives.

3.3 Process and Thread

In multicore architectures, a parallel program is executed by the processors through
one or multiple control flows referred to as processes or threads [31, 66]. A process
can consist of several threads that share a common address space whereas each
process works on a different address space [31]. In order to achieve efficiency, the
multicore CPUs can use only a few threads, while GPUs may use thousands [16].

In a multiprocessor/multicore system SIMD, data parallelism (loop-level paral-
lelism) takes place when different threads execute the same code or task on different
data streams. Task parallelism (control parallelism) take place when each proces-
sor/core executes a different thread on the same or different data stream.

In the massively multi-threaded SIMD architecture provided by GPUs, threads
are extremely lightweight and grouped into thread block [16]. Threads within the
same thread block are divided into SIMD groups, called warps, each one of them
contain 32 threads [16, 24].

The parallel portions of an application are executed on the device GPU as kernels,
one kernel is executed at a time by an array of threads, where all treads run the same

298 M. Q. Flores et al.

code and each thread has an ID that it uses to compute memory addresses and make
control decisions [16, 24].

3.4 About Speedup and Scaleup of Parallel Programs

The speedup of a parallel program expresses the relative diminution of response time
that can be obtained by using a parallel execution on p processors or cores compared
to the best sequential implementation of that program.

The speedup (Speedup(p)) of a parallel program with parallel execution time
T (p) is defined as

Speedup(p) = T (1)

T (p)
(2)

where:

• p is the number of processors/cores or threads;
• T(1) is the execution time of the sequential program (with one thread or core);
• T (p) is the execution time of the parallel program with p processors, cores, or

threads.

Scale Up (Scaleup(p)) evaluates throughput of a parallel implementation and can
be expressed as:

Scaleup(p) = T (1, D)

T (p, pD)
(3)

where T (1, D) is the execution time of the sequential program on 1 core with data
size of D, T (p, pD) is the execution time of the parallel program on p cores and p
times D.

4 Parallel Fuzzy Database Mining

Parallelizing fuzzy database mining algorithms is a viable means to improve their
performance and for making feasible fuzzy database mining to large-scale [29].

Within the framework of multiprocessor/multicore architectures of share or dis-
tributed memory, parallel fuzzy database mining as well as parallel database mining
follow two approaches of parallelization: task parallelization and data paralleliza-
tion [24, 25, 60]. In task parallelization the processors/cores execute a different task
on the (fuzzy) database. In data parallelization the (fuzzy) database is partitioned
among the processors/cores and all execute the same task.

13 Scalability and Fuzzy Systems 299

4.1 Parallel Mining of Gradual Patterns

In fuzzy gradual pattern mining, the aim is to find dependencies between the variation
and direction of change of attribute values of gradual patterns in the fuzzy database
instead of finding the degree of presence or absence of attributes in a transaction
[32, 40]. Gradual patterns allow describing complex interactions in the behaviour of
the attribute values of a DB, interactions represented as: {(pollution_I O,+ | −),
(measurement error, + | −)} interpreted as “The higher/lower light pollution, the
higher/lower measurement error”.

Given a fuzzy database DB (as that shown in Table 1) consisting of N trans-
actions/objects O = {o1, . . . , oN }, m attributes X = {X1, . . . , Xm} correspond-
ing to fuzzy linguistic variables of the form Vj = {X j , {A j , B j , . . .}, {A(oi) ∈
[0, 1], B(oi) ∈ [0, 1], . . .}, D j where {A j , B j , . . .} are the fuzzy sets defined on the
domain of values D j of the attribute X j , {A(oi) ∈ [0, 1], B(oi) ∈ [0, 1], . . .} are
membership functions denoting the degree to which the value xi ∈ D j for object oi

belongs to the fuzzy sets {A, B, . . .}, for i = 1, 2, . . . , N and j = 1, 2, . . . , m.
In this framework, we present the definitions of gradual item, gradual pattern, of

concordant couple, and support of a GP, since they are basic concepts in the complex
task of gradual pattern mining.

Definition 5 A gradual item is defined as a tuple of the form (Xl , d), where Xl

is a attribute in DB, d ∈ {+|−} denotes the direction of change (tendency) in the
attribute values Xl . For instance (Xl ,+) represents the fact that the Xl values have
the tendency to increase or to decrease in case (Xl ,−).

Definition 6 A gradual pattern (GP) is defined as a combination of two or more
gradual items, semantically interpreted as their conjunction denoted as G P =
{(Xl , dl), l = 1, . . . k|2 ≤ k ≤ m}. For instance G P = {(X1,+), (X2,+), (X3,−)}
is interpreted as (X1, more), (X2, more), (X3, less), i.e., {The higherX1, the higherX2,

the lowerX3}.
Definition 7 A concordant couple (cc) is an index pair (i, j), where the objects
(oi , o j) satisfy all the variations d expressed by the gradual items in a GP of size
k, e.g., let G P = {(X1,−), (X2,−)} with size k = 2, an index pair cc(i, j) is
a concordant couple if ((x1

i > x1
j) implies (x2

i > x2
j)) then cc(i, j) = 1 else

cc(i, j) = 0, where i = (x1
i , x2

i) and j = (x1
j , x2

j), for i, j ∈ {1, 2, 3, . . . , n} and
i �= j .

Definition 8 An index pair (i, j) has a fuzzy concordance degree (c̃c) in the inter-
val [0, 1], if the objects (oi , o j) satisfy in a degree given in the interval [0, 1] all
the variation constraints d expressed by the k gradual items contained in a GP,
e.g., let G P = {(X1,+), (X2,+)} size k = 2, assuming that X1 and X2 are two
equivalence relations EX1 : X2

1 →[0, 1], EX2 : X2
2 →[0, 1], we can define a strict

TL− EX1 ordering on X1 as in (4, 5) and a strict TL− EX2 ordering on X2 as in (6, 7),
we compute c̃c for an index pair (i, j) as is done by Eq. (8) where T̃ is a Lukasiewicz
t-norm.

300 M. Q. Flores et al.

1 2 3 4 5 6

1 0.00 0.00 0.00 0.00 1.00 0.00

2 1.00 0.00 0.00 0.00 1.00 0.00

3 1.00 1.00 0.00 0.00 1.00 1.00

4 1.00 1.00 1.00 0.00 1.00 1.00

5 1.00 0.00 0.00 0.00 0.00 0.00

6 1.00 1.00 1.00 0.00 1.00 0.00

1 2 3 4 5 6

1 0.00 1.00 1.00 1.00 0.00 1.00

2 0.00 0.00 1.00 1.00 0.00 1.00

3 0.00 0.00 0.00 1.00 0.00 0.00

4 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 1.00 1.00 1.00 0.00 1.00

6 0.00 0.00 0.00 1.00 0.00 0.00

1 2 3 4 5 6

1 0.00 0.00 0.00 0.00 0.00 0.00

2 1.00 0.00 0.00 1.00 1.00 1.00

3 1.00 1.00 0.00 1.00 1.00 1.00

4 1.00 0.00 0.00 0.00 1.00 1.00

5 1.00 0.00 0.00 0.00 0.00 0.35

6 1.00 0.00 0.00 0.40 1.00 0.00

1 2 3 4 5 6

1 0.00 1.00 1.00 1.00 1.00 1.00

2 0.00 0.00 1.00 0.00 0.00 0.00

3 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 1.00 1.00 0.00 0.00 0.00

5 0.00 1.00 1.00 1.00 0.00 0.65

6 0.00 1.00 1.00 0.60 0.00 0.00

1 2 3 4 5 6

1 0.00 1.00 1.00 1.00 0.00 1.00

2 0.00 0.00 0.00 0.0 0.00 0.00

3 0.00 0.00 0.00 0.0 0.00 0.00

4 0.0 0.00 0.00 0.0 0.00 0.00

5 0.0 1.00 1.00 1.0 0.00 0.65

6 0.00 0.00 0.00 0.60 0.00 0.00

(5)

(4)

(7)

(6)

(8)

Fig. 1 Example of computation of the fuzzy concordance degrees (c̃c(i, j)) of the G P = {(X1,+),
(X2,+)} with the normalized values of attributes Size and Weight of Table 1

RX1(x1
i , x1

j) = 1− L X1

(
x1

j , x1
i

)
(4)

L X1(a, b) = min

(

1, max

(

0, 1− 1

r
∗ (a − b)

))

; r > 0 (5)

RX2

(
x2

i , x2
j

)
= 1− L X2

(
x2

j , x2
i

)
(6)

L X2(a, b) = min

(

1, max

(

0, 1− 1

r
∗ (a − b)

))

; r > 0 (7)

c̃c(i, j) = T̃ (RX1(x1
i , x1

j), RX2(x2
i , x2

j) (8)

Figure 1 shows the computation of the fuzzy concordance degrees (c̃c(i, j)) of the
G P = {(X1,+), (X2,+)} with the normalized values of attributes Size and Weight
of Table 1, where for example given the pair of objects (o5, o6), o5 = (0.00, 0.25),
o6 = (0.47, 0.38), the concordant couple((x1

5 , x2
5), (x1

6 , x2
6)) is set as x1

5 = 0.00,
x1

6 = 0.47, x2
5 = 0.25, and x2

6 = 0.38. Then the results of Eqs. (5), (4), (7), (6) and

13 Scalability and Fuzzy Systems 301

(8) are L X1(x1
6 , x1

5) = 0.00, RX1(x1
5 , x1

6) = 1.00, L X2(x2
6 , x2

5) = 0.35, RX2(x2
5 ,

x2
6) = 0.65, and finally the fuzzy concordance degree c̃c(5, 6) = 0.65.

Definition 9 The supporto f a G P(supp(G P)) is an indicator of reliability of the
occurrence of GP in DB, which is calculated in absolute and relative terms. In absolute
terms the support of a GP is defined as the number of objects in DB that respect the
variation d described by the gradual items in GP. In relative terms the support of a
GP is defined as the fraction (frequency) of the absolute support of GP with respect
to the total number of objects in DB.

4.1.1 State of the Art

(a) Sequential extraction of gradual patterns: related work
In order to measure the strength of the dependency or correlation between the

variation and direction of change of attribute values of a gradual pattern/dependency,
there are various approaches and each has its own method to compute the support
(see [40, 42, 49] for more details), a brief description is given below.

• Numerical approach: such as analysis of contingency diagrams by means of tech-
niques from statistical regression analysis, suggested in [32], the validity of the
gradual tendency is evaluated from the quality of the regression, measured by the
normalized mean squared error R2, together with the slope of the regression line.
• Qualitative alternative: count the number of pairs of points (x1

i , x2
i) and (x1

j , x2
j),

where x1
i , x1

j ∈ X1 and x2
i , x2

j ∈ X2 for which (x1
i < x1

j) and (x2
i < x2

j),
association rules in [48], and fuzzy association rules in [49] are used in order to
mine gradual dependencies type { the more X1, the more X2 }. Other methods and
algorithms of this category are: approach based on conflict sets [42], approach
based on the precedence graph [43, 44], and approach based on rank correlation
measures (GRAANK) [42].
• Numerical-qualitative approaches: this kind of techniques combines properties of

both approaches, the numerical and the qualitative one, in order to measure not
only the existence of a tendency, but its strength in terms of a fuzzy rank correlation
measure [40, 56], or terms of fuzzy association rules and fuzzy gradual dependence
[48, 49].

(b) Parallel extraction of gradual patterns: related work
Recently, in [43] and [44], Laurent et al. have presented PGP-mc a multicore

parallel approach for mining gradual patterns where the evaluation of the correlation
and support is based on conflict sets and precedence graph approaches [42]. In this
approach, new tasks are dynamically assigned to a pool of threads on a “first come,
first serve” basis.

PGP-mc was implemented on two MIMD multi-core computer employing the
parallel programming model of Posix threads. Experiments were led on synthetic
databases automatically generated by a tool based on adapted version of IBM Syn-
thetic Data Generation Code for Associations and Sequential Patterns. For example,

302 M. Q. Flores et al.

the sequential processing of the 350 attributes database took more than five hours
while it spend approximatively 13 min using 24 threads. Furthermore, speed-up
results are particularly stable from one architecture to another (for 24 to 32 cores).2

An efficient parallel mining of closed frequent gradual patterns, named PGLCM
has been proposed by Do et al. [61]. This approach is based on the principle of the
LCM algorithm for mining closed frequent patterns, an adaptation of LCM named
GLCM in order to mine closed frequent gradual patterns, and parallelization of the
GLCM algorithm named PGLCM based on the Melinda parallelism environment.
It consists of shared memory space, called TupleSpace, where all the threads can
either deposit or retrieve a data unit called Tuple, via two primitives get (T uple) and
put (T uple). All the synchronizations for accessing the TupleSpace are handled by
the Melinda framework.

The comparative experiment is based on synthetic databases produced with the
same modified version of IBM Synthetic Data Generator for Association and Sequen-
tial Patterns. All the experiments were conduced on a MIMD multi-core computer in
two stage, the first one to evaluate the performance of the sequential version of GLCM
and PGP-mc (known as Grite), the second one to evaluate the scaling capacities of
PGLCM and PGP-mc (known as Grite-MT). Evaluation criteria were the execution
time and memory consumption. Where GLCM/PGLCM compute only the closed
frequent gradual patterns, whereas Grite/PGP-mc compute all the frequent gradual
patterns (see [43] and [44] for more details).

4.1.2 Parallel Fuzzy Orderings for Fuzzy Gradual Pattern Mining

In this section, we address the problem of automatically finding correlations between
positive and/or negative small variations in the values of attributes affected by noise
and non-linear nature. Consequently, we implemented a method of extraction of
gradual patterns based on the concepts of fuzzy concordance degree and fuzzy strict
ordering presented in Definition 8.

In our approach we propose to compute the support of a GP as

supp(G P) =
∑N

i=1
∑

j �=i c̃c(i, j)

N (N − 1)
(9)

where each c̃c(i, j) is computed using (8) and stored in a matrix named matrix of
fuzzy concordance degree (mc̃c(i, j)) (see Fig. 2).

More precisely, our sequential approach of fuzzy gradual pattern mining is shown
in Fig. 3, where the algorithm works as follows:

• Step 1. For each attribute Xl ∈ DB, build their gradual items {(Xl ,+), (Xl ,−)}.
• Step 2. Initialization (k = 2): (a) with the gradual items of step 1 generate all

gradual pattern candidates of size k, (b) computing their mc̃c(i, j) according to

2 Detailed results are available on-line at http://www.lirmm.fr/~laurent/.

http://www.lirmm.fr/~laurent/

13 Scalability and Fuzzy Systems 303

Matrix of fuzzy concordance degrees

o1 o2 ... oj on

o1 -

o2 -

oi

on -

Fig. 2 Illustration of the structure of a matrix of fuzzy concordance degrees mc̃c(i, j)

Gradual
Items

(X1,+)

(X1,)

(X2,+)

(X2,)

(X3,+)

(X3,)

K=2

GP Support

{X1+X2+} 0.347

{X1+X2 } 0.08

{X1+X3+} 0.278

{X1+X3 } 0.13

{X1 X2+} 0.08

{X1 X2 } 0.347

{X1 X3+} 0.13

{X1 X3 } 0.278

{X2+X3+} 0.329

{X2+X3 } 0.11

{X2 X3+} 0.11

{X2 X3 } 0.329

X

X

X

X

X

X

Frequent GP Support

{X1+X2+X3+} 0.245

{X1 X2 X3 } 0.245

K+1
Frequent

GP

{X1+X2+}

{X1+X3+}

{X1 X2 }

{X1 X3 }

{X2+X3+}

{X2 X3 }

positive variation

negative variation

Pruned infrequent GPX

Support(GP) < minimum threshold

minimum threshold=0.15

Step 3

Step 2

Step 1 K

Fig. 3 Sequential fuzzy gradual pattern mining (fuzzyMGP)

304 M. Q. Flores et al.

Eq. (8), (c) compute their support as in (9), (d) prune candidates whose support is
lower than the user-defined minimum threshold,
• Step 2.1 classify gradual patterns whose support is higher or equal than the user-

defined minimum threshold as frequent gradual patterns of size k,
• Step 3. Set k = k+1: (a) with the frequent gradual patterns size k-1 build all gradual

pattern candidates of size k, e.g., GPc{(X1,+), (X2,+), (X3,+)}←{G Pa{(X1,+),
(X2,+)}, G Pb{(X1,+), (X3,+)}} (b) computing their mc̃c(i, j) according to a
t-norm T , e.g.,
GPc.mc̃c(i, j)← min(G Pa .mc̃c(i, j), GPb.mc̃c(i, j)) (c) compute their support
as in (9), (d) prune candidates whose support is lower than the user-defined mini-
mum threshold,
• Step 4. Iterate on step 2.1 and 3 until the build step (3 (a)) does not provide any

new candidate.

The evaluation of the correlation, support, and generation of gradual pattern candi-
dates are tasks that require huge amounts of processing time, memory consumption,
and load balance. In order to reduce memory consumption, each matrix of fuzzy con-
cordance degrees mc̃c(i, j) is represented and stored according to the Yale Sparse
Matrix Format, such as only non-zero coefficients are retained. In order to reduce
processing time we propose to use the parallel programming model of OpenMP,
which is ideally suited for multi-core architectures [58].

Figure 4 shows an overall view of the parallel version of two regions of our
fuzzyMGP algorithm, where in the first region is parallelized the extraction process

Parallel region 1: Num_threads= {1, 2, 4, 6, }

Parallel evaluation of fuzzy
support of gradual patterns
of level k=2.

Parallel evaluation of fuzzy
support of gradual patterns
of level k>2.

Master thread

Set of gradual items
GI={(gi1*2,{+ }), (gi2*2,{+ }), (gin*2,{+ })}, k=2

Set of frequent gradual
patterns of level k = 2.

Set of frequent gradual
patterns of level k > 2.

Parallel region 2: Num_threads= {1, 2, 4, 6, }

Gen_GP(0, GPk=2) Gen_GP(1, GPk=2) Gen_GP(2, GPk=2) Gen_GP(31, GPk=2)

Gen_GP(0, GPk>2) Gen_GP(1, GPk>2) Gen_GP(2, GPk>2) Gen_GP(31, GPk>2)

Fig. 4 Parallel extraction of gradual patterns (parfuzzyMGP)

13 Scalability and Fuzzy Systems 305

of gradual patterns of size k = 2. In the second region is parallelized the extrac-
tion cycle of gradual patterns of size k > 2. To implement our parallel fuzzyGPM
algorithm we choose OpenMP for the following reasons.

Open Multi-Processing (OpenMP) is a shared memory architecture API, that
supports multi-platform for writing shared memory parallel applications in C, C++,
and Fortran on many architectures, including Linux, OS X, UNIX and Microsoft
Windows platforms. It consists of a set compiler directives, runtime routines, and
environment variables that influence runtime behaviour [65, 69].

In OpenMP, a parallel region is a block of code executed by a team of threads
simultaneously with shared or private data. A team threads is defined by a master
thread and a set of N worker threads, which is defined by the environment variable
OMP_NUM_THREADS [58, 65, 69].

4.1.3 Experiments and Results

We present an experimental study of the scaling capacities of our approach on several
cores, for the database C500A50 with 500 records and 50 attributes, and database
C500A100 with 500 records and 100 attributes, which were used in [43, 61] and
produced with the IBM Synthetic Data Generator for Association and Sequential
Patterns.

Our experiments were performed on a MIMD computer with up to 32 processing
cores and 64 GB of RAM with Linux Centos 5.1 and GCC OpenMP 3.1.

The first experiment involves a database with 500 records and 50 attributes, Table 3
shows the results regarding memory consumption and number of gradual patterns
(NGP) found for minimum thresholds of 0.30 and 0.35, with uncompressed and
compressed matrices of concordance degrees. Figures 10 and 11 in Appendix 1
depict the execution time and speedup reached for 1 to 32 threads.

It should be noted that these results are highly sensitive to the thresholds that
are set, which a common drawback of data mining techniques. Some works have
tried to study the automatic setting of the threshold, for instance by using genetic
programming. However, no general and good result has been shown, neither from
the theoretical studies nor from the experimental approaches. In the cases where a
threshold is difficult to set, the users can consider giving the set of patterns they
would like to retrieve by using top − k approaches [52].

The second experiment involves a database with 500 records and 100 attributes,
Table 4 shows the results regarding memory consumption and number of gradual pat-
terns (NGP) found for minimum thresholds of 0.375 and 0.38, with uncompressed and
compressed matrices of concordance degrees. Figures 12, 13, 14 and 15 in Appendix
1 depict the execution time and speedup reached for 1 to 32 threads.

306 M. Q. Flores et al.

4.2 Parallel Mining of Fuzzy Trees

With the development of Internet and Web, frequent pattern mining has been extended
to more complex patterns like tree mining, graph mining, and fuzzy tree mining.
Such applications arise in complex domains like bioinformatics, Web mining, bank-
ing, marketing, biology, health, etc. especially to handle complex databases such as
semi-structured data or tree databases (for example in the case of XML databases)
[19, 20].

Definition 10 A tree is a direct, acyclic, connected graph, and rooted labelled tree
of the form T=(V, E), with V = {0, 1, . . . , n} as the set of nodes, E = {(x, y) |
x, y ∈ V } as the set of edges. There is a special vertex r ∈ V called the root of T and
∀ x ∈ V, there is a unique path from r to x. Then y is a descendant of x if x, y ∈ V
and there is a path (L) from x to y. If | L | from two vertices x, y is reduced to one,
then the descendant relationship is considered as a children relationship. We assume
that the children {y1, y2, . . . , yn} (n ≥ 0) of a node x ∈ V are ordered from left to
right [19, 20, 60].

Tree mining consists in discovering all the frequent subtrees FS from a database
of trees (D) [20], as shown in Fig. 5. The frequency is computed using the notion of
support: Given a database D and a tree S, the support of a tree S is the proportion of
trees T from D where S is included:

Support (S) = # of trees T where S is embedded

of trees in D

S is said to be frequent if Support(S) ≥ σ where σ is a user-defined minimal support
threshold. There are two types of strict inclusion: induced inclusion and embedded
inclusion, see Fig. 6, where a tree S is included in another tree T ∈ D, if all nodes in
S are included in T.

Fuzzy approaches have been proposed in order to soften the constraint on the
patterns (frequent subtrees) found by the algorithms. In fuzzy tree mining a tree S is
included in another tree T∈D, with a degree of inclusion τ (S, T). Four types of fuzzy
inclusion have been proposed: ancestor-descendant degree, sibling ordering degree,
partial inclusion, and node similarity. A detailed treatment of these approaches is

Table 3 Results of experiment with data set C500-A50-50 of 50 attributes and 500 records

Type of matrix Minimum
threshold

Elapsed time Speedup Memory
consumption
(%)

NGP found

Uncompressed 0.30 Fig. 10 Fig. 11 12.6 59810
0.35 Fig. 10 Fig. 11 0.6 2758

Compressed 0.30 – – 3.5 59810
0.35 – – 0.3 2758

13 Scalability and Fuzzy Systems 307

Table 4 Results of experiment with data set C500-A100-50 of 100 attributes and 500 records

Type of matrix Minimum threshold Elapsed time Speedup Memory consumption (%) NGP found

Uncompressed 0.375 Fig. 12 Fig. 13 36.2 186994
0.38 Fig. 12 Fig. 13 24.7 121154

Compressed 0.375 Fig. 14 Fig. 15 14.4 186994
0.38 Fig. 14 Fig. 15 10.3 121154

Fig. 5 Scheme of process of tree mining

given in [20, 41]. Figure 7 shows partial inclusion of trees and ancestor-descendant
relationship.

In our approach, we consider the fuzzy inclusion ancestor-descendant degree, to
which we propose to give a scope considering the number of nodes between ancestor
and descendant nodes. We propose the fuzzy membership function in Eq. (10) for
characterizing the ancestor-descendant relationship depending on the number of
nodes separating the two nodes being considered. The frequency is computed using
the notion of fuzzy support: given a database D and a tree S, the support of S in D is
given by:

Support (S) =
∑

T∈D(τ (S, T))

#of trees in D

308 M. Q. Flores et al.

Fig. 6 Induced inclusion and
embedded inclusion of trees

a

c b

a

c b

a

b

c

S T1 T2
?

a

c b

a

c b

a

b

c

S T1 T2
?

Embedded Inclusion

Induced Inclusion

Fig. 7 Partial inclusion of
trees and ancestor-descendant
relationship a

c b
a

S

T1

?

a

c

a

c

b

S T1

?

Partial Inclusion

d

b d c

a

T1

b d

a

T1

c

b

Ancestor-descendant relationship: fuzzy vertical paths.

a

d

c

T1
a

d

b

T1

c

τ (S, T) =

⎧
⎪⎨

⎪⎩

1 No more than 5 nodes

0.5 if Number of nodes = 6

0 if Number of nodes ≥ 7

(10)

The core of the process for fuzzy tree mining is briefly described in the algorithm
1. Several methods have been proposed for generating candidates from frequent
subtrees [2, 12, 13, 72]. Most of the methods rely on the construction of candidates
by using an extension on the right most branch. The trees are numbered in a depth-
first enumeration from the root to the right most leaf. Then, for every frequent tree
of size k (containing k nodes), candidates are generated by adding a node on the
right after considering all the possible 2-trees whose first node corresponds to the
anchoring node.

13 Scalability and Fuzzy Systems 309

Algorithm 1 Fuzzy Frequent SubTrees Mining
Data: Tree Database D
Result: Fuzzy Frequent Subtrees F
F ← ∅1
k ← 1
repeat

Sk ← Gen_Cand(k)2
foreach s ∈ Sk do

Support (s)← 03
foreach T ∈ D do

/* If degree of fuzzy inclusion is relevant, computing Support(s) */4
if Fuzzy_ inclusion_ degree τ (s,T) then

Support(s) = AggT∈D(τ (s, T));5

/* minSupp stands for a user-specified minimum support value */6
if Support (s) ≥ minSupp then

F ← F ∪ {s};7

k++8
until F does not grow any more;9

Dynamic queue of
potential k+l candidates

thread2

k - frequents

2 - frequents

Pool of threads

thread1

k+l - frequents

E
ac

h
th

re
ad

 g
en

er
at

es
 th

e
ca

nd
id

at
e

an
d

co
m

pu
te

s
its

 fr
eq

ue
nc

y
an

d
su

pp
or

t

Fig. 8 Parallel fuzzy tree mining

Recently, [60] have developed PaFUTM: Parallel Fuzzy Tree Mining a parallel
version of Algorithm 1. Figure 8 illustrates the general structure of PaFUTM where
the computation of the fuzzy support is parallelized using a pool of 1 to 32 threads and
a dynamic queue of tasks type “first come, first served ”. For each level k, potential
k+1 candidates are queued. Then each idle thread extract a non-processed candidate,

310 M. Q. Flores et al.

calculates its frequency and fuzzy support according to a fuzzy inclusion τ (S, T) type
Ancestor-descendant degree. This fuzzy inclusion is defined by a discrete fuzzy set
interpreted as a fuzzy scope for the ancestor-descendant relationship “scope no more
than 5 nodes”.

PatFUTM was implemented using the g++ 3.4.6 and evaluated with POSIX
threads, on a 32-core machine, with 8 AMD Opteron 852 processors (each with
4 cores), 64 GB of RAM with Linux Centos 5.1, g++ 3.4.6. and evaluated with two
types of datasets: B datasets (BA, BB and BC) that contain lots of relatively small
trees and C datasets (CG, CH, CJ) that contain a smaller amount of larger trees.

4.3 Related Problems

4.3.1 Parallel Mining of Fuzzy Association Rules

Fuzzy association rule mining is an important fuzzy database mining task which is
defined as a process to find out the fuzzy patterns or fuzzy attributes which frequently
occur together from a fuzzy database [18, 45, 50].

According to the notation of fuzzy database introduced in Sect. 4.1, given two
attributes X1, X2, a fuzzy set A ∈ t X1 and a fuzzy set B ∈ Y2, then a fuzzy association
rule is defined as an implication of the form, A→B, where A and B are considered
as two fuzzy patterns, the problem in fuzzy association rules mining is to find all
rules A→B that hold in O with the fuzzy support (f supp({A, B})) and the fuzzy
confidence (fconf (A→B)), defined as

f supp({A, B}) =
N∑

i=1

min(A(oi), B(oi)) (11)

f con f (A→ B) =
∑N

i=1 min(A(oi), B(oi))
∑N

i=1 A(oi)
(12)

The fuzzy association rules with at least a minimum support and a minimum
confidence respectively are extracted and considered as interesting [18, 45, 50].

Bao-wen et al. [4], and Jian-jian et al. [37], presented the adaptation of the Count
Distribution Parallel Algorithm to design the parallel algorithm for mining fuzzy
association rules. Quantitative attributes are partitioned into several fuzzy sets by the
parallel fuzzy c-means algorithm (PFCM) [62]. The parallel algorithm for mining
Boolean association rules is improved to extract frequent fuzzy patterns. Finally, the
fuzzy association rules with at least fuzzy confidence are generated on all processors.
The parallel algorithm based on MPI was implemented on the distributed linked
PC/workstation of six computers. The results of experimental work showed that the
parallel mining algorithm had an excellent scaleup and speedup.

13 Scalability and Fuzzy Systems 311

Fig. 9 Scheme of parallel mining fuzzy association rules

In another approach, in order to extract both association rules and membership
functions from quantitative attributes, Hong et al. [30], propose a parallel genetic-
fuzzy mining algorithm based on the master-slave architecture. Where the master
processor uses a single population as a simple genetic algorithm, and distributes the
tasks of fitness evaluation to slave processors. The crossover, mutation and production
are performed by the master processor. The results showed that the speedup can
increase nearly linear along with the number of individuals to be evaluated.

Figure 9 shows the general structure of our interpretation of the parallel process
of extracting fuzzy association rules.

4.3.2 Parallel Fuzzy Clustering: c-Means

Cluster analysis is defined as the process of grouping a data set, where the similarity
between data within a cluster is maximised while the similarity between data of
different clusters is minimized [55, 62]. In classical (hard) cluster analysis it is
considered that each point of the data set belongs to only one cluster [68]. Whereas
in fuzzy cluster analysis each point of the data set may belong to more than one
cluster, according to a set of membership degrees [62, 68].

The most widely used fuzzy clustering algorithm is the Fuzzy c-Means (FCM)
algorithm proposed by Dunn [21] and generalized by Bezdek [7], FCM is a method
based on an objective function of the form:

312 M. Q. Flores et al.

J =
n∑

i=1

c∑

j=1

(u ji)
m

∥
∥xi − c j

∥
∥2 (13)

The clustering is achieved by an iterative optimisation process that minimises the
objective function (13) subject to:

c∑

j=1

u ji = 1 (14)

FCM achieves the optimisation of J by the iterative calculations of c j and u ji

using Eqs. (15) and (16).

c j =
∑n

i=1(u ji)
m xi

∑n
i=1(u ji)m

(15)

u ji =
⎛

⎝
c∑

k=1

(∥
∥xi − c j

∥
∥

‖xi − ck‖

) 2
m−1

⎞

⎠

−1

(16)

The process stops when the condition in Eq. (17) is met for successive iterations
t, t + 1, ε is the minimum permissible error and the weighting exponent m is often
set to the value 2 [51, 55, 62, 68].

Max
{∥
∥
∥ut+1

j i − ut
ji

∥
∥
∥
}

< ε∀ j,i (17)

Given n data points {x1, x2, . . ., xn}∈ Rd and assuming that C clusters are to
be generated, c j ∈ Rd is the centroid of the cluster j in C, u ji is the matrix of the
membership degrees (in [0, 1]) of each xi in each cluster j in C, the

∑C
j=1 u ji = 1

∀i , for j = 1, . . . , C ; i = 1, . . . , n.
In fuzzy database mining, the FCM method is used to partition the quantitative

attributes of crisp database into several fuzzy sets [62]. As the database size becomes
larger and larger, this usually requires a high volume of computations, and con-
siderable amount of memory which may lead to frequent disk access, making the
process inefficient. With the development of high performance parallel systems, par-
allel fuzzy clustering may be used to improve performance and efficiency of fuzzy
clustering algorithm [51, 62].

Terence et al. [62], present a parallel version of FCM algorithm, where P process
are generated and assigned to P processors,the set of data points is divided into equal
number of data points, so that each process computes with its n/P data points loaded
into its own local memory. The processes can exchange data through of calls to the
MPI library. The parallelization of FCM algorithm takes place in two stages, Eq. (15)
is evaluated in parallel in the first stage by each cluster, Eq. (16) in the same way is
evaluated in the second stage. In their experimental work, their approach of parallel

13 Scalability and Fuzzy Systems 313

FCM algorithm demonstrated to reach almost ideal speedups and excellent scaleup
for larger data sets, and it performs equally well when more clusters are requested.

5 Conclusion

In this chapter, we discuss the importance of the scalability of fuzzy systems in general
and the scalability of fuzzy database mining algorithms in particular. We analyzed
the possibilities of scalability offered by architectures of multi-core processors and
its potential for parallel processing. We presented a study of parallel programming
of fuzzy database mining algorithms based on Multithreading.

In this chapter, we have discussed how the parallelization of fuzzy algorithms is
crucial to tackle the problem of scalability and optimal performance in the context
of fuzzy database mining. More precisely, we presented the parallelization of fuzzy
database mining algorithms on multi-core architectures of two knowledge discovery
paradigms, namely fuzzy gradual pattern mining and fuzzy tree mining (for example
in the case of XML databases), so also we presented a review of other two related
problems, namely fuzzy association rule mining, fuzzy clustering.

Parallel programming models we are interested in exploring are: Task Parallelism,
Data parallelism, and Task-Data parallelism.

The obtained results show the interest of parallel approaches in the fuzzy data
mining context. The feasibility having been done, future work will include the inte-
gration of more complex optimisations that will enable to tackle with larger databases
such as the ones encountered on the Web. For this purpose, depth-first approaches
will be explored,together with distributed implementations of the algorithms using
GPU processors and the MPI paradigm.

Another perspective of our work is to consider fuzzy data.When considering fuzzy
databases where each data is a fuzzy set, fuzzy orderings may then be defined over
fuzzy subsets. The computation will be more time and memory consuming, thus
requiring more work on the clever parallel implementation. In particular, the data
structures will have to be redefined.

Acknowledgments This work was realized with the support of HPC@LR, a Center of Com-
petence in High-Performance Computing from the Languedoc-Roussillon region, funded by the
Languedoc-Roussillon region, the Europe and the Universit Montpellier 2 Sciences et Techniques.
The HPC@LR Center is equipped with an IBM hybrid Supercomputer.

314 M. Q. Flores et al.

Appendix 1: Results of Parallel Gradual Pattern Mining

Graphic representation of the Speedup obtained in the experimental work with the
parallel fuzzyGPM algorithm (Figs. 10, 11, 12, 13, 14, 15).

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25 30 35

E
la

ps
ed

 ti
m

e
(s

ec
.)

Database of 500 records
and 50 attributes

Minimum threshold = .30

Number of threads

Minimum threshold = .35

32

Number of patterns found= 59810

Number of patterns found= 2758

Fig. 10 Threads versus elapsed time with a database of 500 × 50 and minSupp = .30 and .35,
using uncompressed binary matrices of concordance degrees

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35

Database of 500 records
and 50 attributes

Number of threads

Minimum threshold = .30

Minimum threshold = .35

S
pe

ed
up

32

Number of patterns found= 2758

Number of patterns found= 59810

Fig. 11 Speedup with a database of 500 × 50 and minSupp = .30 and .35, using uncompressed
binary matrices of concordance degrees

13 Scalability and Fuzzy Systems 315

0

500

1000

1500

2000

2500

3000

3500

0 5 10 15 20 25 30 35

E
la

ps
ed

 ti
m

e
(s

ec
.)

Database of 500 records
and 100 attributes

Minimum threshold = .375

Number of threads

Minimum threshold = .38

Number of patterns found= 186994

Number of patterns found= 121154

32

Fig. 12 Threads versus elapsed time with a database of 500 × 100 and minSupp = .375 and .38,
using uncompressed binary matrices of concordance degrees

0

5

10

15

20

25

0 5 10 15 20 25 30 35

Database of 500 records
and 100 attributes

Number of threads

Minimum threshold = .375

Minimum threshold = .38

S
pe

ed
up

32

Number of patterns found= 186994

Number of patterns found= 121154

Fig. 13 Speedup with a database of 500× 100 and minSupp = .375 and .38, using uncompressed
binary matrices of concordance degrees

316 M. Q. Flores et al.

0

200

400

600

800

1000

1200

1400

1600

1800

0 5 10 15 20 25 30 35

E
la

ps
ed

 ti
m

e
(s

ec
.)

Database of 500 records
and 100 attributes

(CM)

Minimum threshold = .375

Number of threads

Minimum threshold = .38

Number of patterns found= 186994

Number of patterns found= 121154

32

Fig. 14 Threads versus elapsed time with a database of 500 × 100 and minSupp = .375 and .38,
using compressed matrices of concordance degrees

0

2

4

6

8

10

12

14

16

18

20

0 5 10 15 20 25 30 35

Database of 500 records
and 100 attributes

(CM)

Number of threads

Minimum threshold = .375

Minimum threshold = .38

S
pe

ed
up

32

Number of patterns found= 186994

Number of patterns found= 121154

Fig. 15 Speedup with a database of 500 × 100 and minSupp = .375 and .38, using compressed
matrices of concordance degrees

13 Scalability and Fuzzy Systems 317

References

1. Angryk, R.A., Petry, E.F.: Discovery of abstract knowledge from non-atomic attribute values
in fuzzy relational databases. In: Bouchon-Meunier, B., Goletti, G., Yager, R.R. (eds.) Modern
Information Processing: From Theory to Applications, pp. 1–11. Elsevier, Amsterdam (2005)

2. Asai, T., Arimura, H., Uno, T., Nakano, S.: Discovering frequent substructures in large
unordered trees. In: Proceedings of the 6th International Conference on Discovery Science
(2003)

3. Bahri, A., Chakhar S., Yosr, N., Bouaziz R.: Implementing imperfect information in fuzzy data-
bases. In: International Syposium on Computational Intelligence and Intelligent Informatics,
October 14–16, Hammamet, Tunisia, pp. 1–8 (2005)

4. Bao-wen, X., Jian-jiang, L., Yingz-hou, Z., Lei, X., Huowang, C., Hong-ji, Y.: Parallel algo-
rithm for mining fuzzy association rules. In: Proceedings of International Conference on Cyber-
worlds, IEEE (2003)

5. Basterretxea, K., Del Campo, I.: Electronic hardware for fuzzy computing. In: Laurent, A.,
Lesot, M.-J. (eds.) Scalable Fuzzy Algorithms for Data Management and Analysis: Methods
and Design, pp. 1–30. Information Science Reference (2010)

6. Barney, B.: Introduction to Parallel Computing. Lawrence Livermore National Laboratory.
http://computing.llnl.gov/tutorials/parallel_comp/#ModelsData. Cited 29 September (2012)

7. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press,
New York (1981)

8. Bodenhofer, U., Klawonn, F.: Robust rank correlation coefficients on the basis of fuzzy order-
ings: initial steps. Mathware Soft Comput. 15, 5–20 (2008)

9. Bodenhofer, U.: A similarity-Based Generalization of Fuzzy Orderings. Johannes-Kepler-
Universitat Linz, Linz (1999)

10. Bosc, P., Prade, H.: An introduction to fuzzy set and possibility theory based approaches to the
treatment of uncertainty and imprecision in database management systems. In: Proceedings of
UMIS’94: From Needs and Solutions, Catalina, CA, USA (1994)

11. Buckles, W.P., Petry, F.E.: Fuzzy representation of data for relational databases. Fuzzy Sets
Syst. 7, 213–226 (1982)

12. Chi, Y., Nijssen, J., Muntz, R., Kok, J.: Frequent subtree mining: an overview. Fundam. Inform.
66(1–2), 161–198 (2005)

13. Chi, Y., Xia, Y., Yang, Y., Muntz, R.: Mining closed and maximal frequent subtrees from
databases of labeled rooted trees. IEEE Trans. Knowl. Data Eng. 17(2), 190–202 (2005)

14. Cubero, J.C., Medina, J.M., Pons, O., Vila, M.A.: Extensions of resemblance relation. ELSE-
VIER Fuzzy Sets Syst. 86, 197–212 (1997)

15. CUDA-NVIDIA: What is GPU computing? In GPU Computing Solutions. http://www.nvidia.
com/object/GPU_Computing.html. Cited 29 September, (2012)

16. CUDA Training: Cuda Parallel Programming Model Overview. In Downloadable CUDA Train-
ing Podcast. http://www.developer.nvidia.com/cuda-training, Cited 29 September (2012)

17. Data Mining, Analytics, and Databases. In: GPU Computing Solutions. http://www.nvidia.
com/object/data_mining_analytics_database.html, (2011)

18. Delgado, M., Marin, N., Martín-Bautista, M., J., Sánchez, D., Vila, M.-A.: Mining fuzzy
association rules: an overview. In: Soft Computing for Information Processing and Analysis:
Studies in Fuzziness and Soft Computing, vol. 11/2005-vol. 276, Springer (2005)

19. Del Razo, F., Laurent, A., Poncelet, P., Teisseire, M.: Fuzzy tree mining: go soft on your
nodes. In: Foundations of Fuzzy Logic and Soft Computing, 12th International Fuzzy Systems
Association World Congress IFSA, pp. 145–154. Lecture Notes in Computer Science. Springer,
Heidelberg (2007)

20. Del Razo, F., Laurent, A., Poncelet, P., Teisseire, M.: FTMnodes:Fuzzy tree mining based on
partial inclusion. Elsevier, ScienceDirect Fuzzy sets and systems (2009)

21. Dunn, J.C.: A fuzzy relative of the ISODATA process and its use in detecting compact well-
separated clusters. J. Cybernet. 3, 32–57 (1973)

http://computing.llnl.gov/tutorials/parallel_comp/#ModelsData
http://www.nvidia.com/object/GPU_Computing.html.
http://www.nvidia.com/object/GPU_Computing.html.
http://www.developer.nvidia.com/cuda-training,
http://www.nvidia.com/object/data_mining_analytics_database.html,
http://www.nvidia.com/object/data_mining_analytics_database.html,

318 M. Q. Flores et al.

22. El-Rewini, H., Abd-el-Barr, M.: Advanced Computer Architecture and Parallel Processing.
Wiley, New York (2005)

23. Fan, J., Xie, W.: Some notes on similarity measure and proximity measure. ELSEVIER Fuzzy
Sets Syst. 101, 403–412 (1999)

24. Fang, W.-F., Lu, M., Xiao X., He, B., Luo, Q.: Frequent itemset mining on graphics processors.
In: Proceedings of the Fifth International Workshop on Data Management on New Hardware
(DaMoN 209), ACM (2009)

25. Freitas, A.A.: A survey of parallel data mining. In: 2nd International Conference on the Practical
Applications of Knowledge Discovery and Data Mining, pp. 287–300 (1998)

26. Golkar, C.: Predictive in-database analytics bringing analytics to the data. In: Fuzzy Logix.
www.fuzzyl.com/products/in-database-analytics/ (2011)

27. Golkar, C.: Fuzzy Logix Unveils NVIDIA GPU-Based Analytics Appliance The
Tanay ZXnW Series. www.fuzzyl.com/press-releases/fuzzy-logix-uneils-nvidia-gpu-based-
analytics-appliance/ (2011)

28. Hall, L., O., Goldgof, D., B., Canul-Reich, J., Hore, P., Cheng W., Shoemaker, L.: Scaling fuzzy
models. In: Laurent, A., Lesot, M.-J. (eds.) Scalable Fuzzy Algorithms for Data Management
and Analysis: Methods and Design, pp. 31–53. Information Science Reference (2010)

29. Hirota, K., Pedrycz, W.: Fuzzy computing for data mining. In: Proceedings of the IEEE, vol.
87, no. 9 (September 1999)

30. Hong, T.P., Lee, Y.C., Wu, M.T.: Using the master-slave parallel architecture for genetic-
fuzzy data mining. In: Proceedings of IEEE International Conference on Systems, Man and,
Cybernetics (2005)

31. Hughes, C., Hughes, T.: Professional Multicore Programming: Design and Implementation for
C++ Developers. Wrox & Wiley Publishing, Inc., Hoboken (2008)

32. Hüllermeier, E.: Association rules for expressing gradual dependencies. In: PKDD, LNAI 2431.
Springer, Berlin (2002)

33. Hüllermeier, E.: Fuzzy methods in machine learning and data mining: status and prospects.
Fuzzy Sets Syst. 156(3), 387–407 (2005)

34. Hüllermeier, E.: Why fuzzy set theory is useful in data mining. In Successes and New Directions
in Data Mining, IGI Global (2008)

35. Hüllermeier, E.: Fuzzy sets in machine learning and data mining. Appl. Soft Comput. J. 11,
1493–1505 (2011)

36. Jang, J.-S. R., Sun, C.-T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational
Approach to Learning and Machine Intelligence. Prentice Hall Engineering Science Mathe-
matics, New Jersey (1997)

37. Jian-jiang, L., Bao-wen, X., Xiao-feng, Z., Da-zhou, K., Yan-hui, L., Jin Z.: Parallel mining
and application of fuzzy association rules. In: Higher Education Press and Springer-Verlag
(2006)

38. Julian-Iranzo, P.: A procedure for the construction of a similarity relation. In: Proceedings of
IPMU’2008, Terremolinos (Malaga), pp. 489–496 (2008)

39. Kim, S.: A GPU based parallel hierarchical fuzzy art clustering. In: Proceedings of the Inter-
national Joint Conference on Neural Networks (IJCNN), IEEE-Computational Intelligence
Society (2011)

40. Koh, H., W., Hüllermeier, E.: Mining gradual dependencies based on fuzzy rank correlation.
In: Proceedings of SMPS 2010, 5th International Conferebce on Soft Methods in Probability
and Statistics. Oviedo/Mieres (Asturias), Spain, October (2010)

41. Laurent A., Poncelet, P., Teisseire, M.: Fuzzy data mining for the semantic web: building XML
mediator schemas. In: Fuzzy Logic and the Semantic Web, pp. 249–265. Elsevier, Amsterdam
(2006)

42. Laurent, A., Lesot, M., J., Fifqi, M., GRAANK: Exploiting rank correlations for extracting
gradual itemsets. In: FQAS 2009, LNAI 5822. Springer, Berlin (2009)

43. Laurent, A., Negrevergne, B., Sicard, N., Termier, A.: PGP-mc: towards a multi-core parallel
approach for mining gradual patterns. In: Proceedings of DASFAA (2010)

13 Scalability and Fuzzy Systems 319

44. Laurent, A., Negrevergne, B., Sicard, N., Termier, A.: Efficient parallel mining of gradual
patterns on multi-core processors. In: AKDM-2, Advances in Knowledge Discovery and Man-
agement, vol. 2. Springer (2010)

45. Lin, N., P., Chueh H., E.: Fuzzy correlation rules mining. In: Proceedings of the 6th WSEAS
International conference on Applied Computer Science, Hangzhou, China (2007)

46. Ma, Z., M.: Advances in Fuzzy Object-Oriented Databases: Modeling and Applications. Idea
Group Publishing, Hershey (2004)

47. Ma, Z.M., Yan, L.: A literature overview of fuzzy database models. J. Inform. Sci. Eng. 26(2),
427–441 (2008)

48. Molina, C., Serrano, J.M., Sánchez, D., Vila, M.A.: Measuring variation strength in gradual
dependencies. In: Proceedings of the 5th EUSFLAT Conference Contents of Volume I, New
Dimensions in Fuzzy Logic and Related Technologies (2007)

49. Molina, C., Serrano, J.M., Sánchez, D., Vila, M.A.: Mining gradual dependencies with variation
strength. In: Mathware& Soft Computing, vol. 15 (2008)

50. Martin, T., Shen, Y.: Fuzzy association rules to summarise multiple taxonomies in large data-
bases. In: Laurent, A., Lesot, M.-J. (eds.) Scalable Fuzzy Algorithms for Data Management
and Analysis: Methods and Design, pp. 273–301. Information Science Reference (2010)

51. Murugavalli, S., Rajamani, V.: A high speed parallel fuzzy C-mean algorithm for brain tumor
segmentation. BIME J. 6(1) (2006)

52. Ngan, S.C., Lam, T., Wong, R., Wai-Chee Fu, A.: Mining N-most interesting itemsets without
support threshold by the COFI-tree. Int. J. Bus. Intell. Data Mining 1(1) (2005)

53. Petry, F., Bosc, P.: Fuzzy Databases: Principles and Applications. Kluwer Academic Publishers,
Boston (1996)

54. Piatetsky-Shapiro, G., Frawley, W.J.: Knowledge Discovery in Databases. AAAI Press/The
MIT Press (1991)

55. Polimi, D.: A tutorial on clustering algorithms: introduction, k-means, and fuzzy c-means clus-
tering. In: home.dei.polimi.it/matteucc/Clustering/tutorial-html/cmeans.html. Cited 29 Sep-
tember (2012)

56. Quintero, M., Laurent, A., Poncelet, P.: Fuzzy ordering for fuzzy gradual patterns. In: FQAS
2011, LNAI 7022. Springer, Berlin (2011)

57. Rundensteiner, E.A., Hawkes, L.W., Bandler, W.: On nearness measures in fuzzy relational
data models. Int. J. Approx. Reason. 3, 267–298 (1989)

58. Rauber, T., Rünger, G.: Parallel Programming: for Multicore and Cluster Systems. Springer,
Berlin (2010)

59. Shenoi, S., Melton, A.: Proximity relations in the fuzzy relational database model. ELSEVIER
Fuzzy Sets Syst. (Supplement) 100, 51–62 (1999)

60. Sicard, N., Laurent, A., Del Razo, F., Quintero Flores, P.M.: Towards multi-core parallel fuzzy
tree mining. In: FUZZ-IEEE’2010, IEEE World Congress on Computational Intelligence, IEEE
Computational Intelligence Society (2010)

61. Thac Do, T.D., Laurent, A., Termier, A.: PGLCM: efficient parallel mining of closed frequent
gradual itemsets. In: Proceedings of International Conference on Data Mining (ICDM) (2010)

62. Terence, K., Kate, A., S., Sebastian, L., David, T.: Parallel fuzzy c-means clustering for large
data sets. In: Proceedings of the 8th International Euro-Par Conference on Parallel Processing,
pp. 365–374 (2002)

63. Timothy, J.R.: Fuzzy Logic with Engineering Applications. John Wiley & Sons, West Sussex
(2010)

64. Touzi, A.G., Ben Hassine, A.B.: New architecture of fuzzy database management systems. Int.
Arab J. Inform. Technol. 6(3), 213–220 (2009)

65. Van der Pas, R.: An overview of OpenMP. In: OpenMP the OpenMP API specification for
parallel programming. http://openmp.org/wp/resources/#Tutorials (2011)

66. Van der Pas, R.: Basic concepts in parallelization. In OpenMP the OpenMP API specification for
parallel programming. http://openmp.org/wp/resources/#Tutorials. Cited 29 September (2011)

67. Wen, C.H., Chen Y.L.: Mining fuzzy association rules from uncertain data. Knowl. Inform.
Syst. 23(2), Springer (2010)

http://openmp.org/wp/resources/#Tutorials
http://openmp.org/wp/resources/#Tutorials

320 M. Q. Flores et al.

68. Yang, M.-S.: A survey of fuzzy clustering. Mathl. Comput. Modeling 18(11), 1–16 (1993)
69. Yang, C.-T., Huang, C.-L., Lin C.-F.: Hybrid CUDA, OpenMP, and MPI parallel programming

on multicore GPU clusters. Computer Physics Communications, ELSEVIER, Volume (182),
pp. 266–269 (2011)

70. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inform. Sci. ELSEVIER 3(2), 177–200
(1971)

71. Zadeh, L.A., Hirota, K., Klir, G.J., Sanchez, E., Wang, P.-Z., Yager, R.R.: Advances in Fuzzy
Systems: Applications and Theory. World Scientific, Singapore (2011)

72. Zaki, M.J.: Efficiently mining frequent trees in a forest: algorithms and applications. IEEE
Trans. Knowl. Data Eng. 17(8), 1021–1035 (2005)

	Preface
	Contents
	Part IBipolar Preference Queries
	1 Modeling ``and if possible'' and ``or at least'': Different Forms of Bipolarity in Flexible Querying
	1 Introduction
	2 Modeling ``and if possible'' and ``or at least'' in Terms of Weighted Constraints
	2.1 ``If possible'': Crisp Case
	2.2 ``Or at least'': Crisp Case
	2.3 Fuzzy Case
	2.4 ``If possible'' as ``if consistent''
	2.5 Nested ``if possible'' Conditions

	3 Modeling ``and if possible'' in Terms of Constraints and Wishes
	3.1 Asymmetric Handling of Bipolar Queries
	3.2 Comparing the Two Approaches
	3.3 Positive and Negative Wishes

	4 Possibilistic Logic Modeling
	4.1 Conjunctive Queries
	4.2 The Two Bipolar Approaches in Possibilistic Logic
	4.3 Disjunctive Queries
	4.4 Relation Between Conjunctive and Disjunctive Queries
	4.5 Hybrid Queries

	5 Concluding Remarks
	References

	2 Constraint-Wish and Satisfied-Dissatisfied: An Overview of Two Approaches for Dealing with Bipolar Querying
	1 Introduction
	2 Bipolar Query Conditions
	2.1 Constraint-Wish Approach
	2.2 Satisfied-Dissatisfied Approach
	2.3 Examples

	3 Ranking of Query Results
	3.1 Ranking in the Constraint-Wish Approach
	3.2 Ranking in the Satisfied-Dissatisfied Approach
	3.3 Comparison and Discussion

	4 Aggregation in Bipolar Query Processing
	4.1 Aggregation in the Constraint-Wish Approach
	4.2 Aggregation in the Satisfied-Dissatisfied Approach
	4.3 Comparison and Discussion

	5 Conclusions
	References

	3 A Relational Algebra for Generalized Fuzzy Bipolar Conditions
	1 Introduction
	2 Fuzzy Bipolar Conditions
	2.1 Fuzzy and-if-possible-Bipolar Conditions
	2.2 Fuzzy or-else-Bipolar Conditions

	3 A Generalization for Fuzzy Bipolar Conditions
	3.1 A General Form for Fuzzy Bipolar Conditions
	3.2 The Negation Operator
	3.3 The Satisfaction of De Morgan's Laws

	4 The Extension of Algebraic Operators
	4.1 Fuzzy Bipolar Relations and Bipolar Queries
	4.2 Extended Algebraic Operators

	5 Linguistic Quantifiers Extended to Fuzzy Bipolar Conditions
	5.1 Linguistic Quantifiers
	5.2 Quantified Statements and Bipolarity

	6 Conclusion
	References

	4 Bipolarity in Database Querying: Various Aspects and Interpretations
	1 Introduction
	2 Background
	2.1 Basic Concepts
	2.2 Classical and Flexible Queries: A Brief Overview

	3 Unipolar and Bipolar Fuzzy Conditions
	3.1 Classical Fuzzy Approach to the Modeling of Query Conditions and Bipolarity
	3.2 Bipolarity: Which Scale to Use

	4 Semantics of the Bipolar Bivariate Conditions: An Aggregation Perspective
	4.1 A General View
	4.2 The Required/Desired Semantics Once Again
	4.3 The ``and possibly'' Operator Based Aggregation

	5 Concluding Remarks
	References

	Part IIOntology-based Data Access
	5 On the Top-k Retrieval Problem for Ontology-Based Access to Databases
	1 Introduction
	2 Semantic Web Languages: Overview
	2.1 RDF and RDFS
	2.2 OWL Family
	2.3 RIF Family

	3 Ontology-Based Databases
	3.1 The Facts Layer
	3.2 The Mapping Layer
	3.3 An RDFS Ontology Layer
	3.4 An OWL 2 Ontology Layer
	3.5 A RIF Ontology Layer

	4 Top-k Queries
	5 Top-k Query Answering Methods
	5.1 The RDFS Case
	5.2 The OWL 2 Profile Cases
	5.3 The RIF case

	6 Conclusions
	References

	6 Semantic Data Management Using Fuzzy Relational Databases
	1 Introduction
	2 Knowledge Bases and Databases
	3 Ontologies as a Tool for Relational Database Design
	4 OWL Ontology Storage in ORDBMS
	4.1 From Ontology to Semantic Model
	4.2 OWL to Relational Schema Algorithm
	4.3 Ontology Storage Schema
	4.4 Fuzzy Datatype Management

	5 Conclusions
	References

	Part IIIUncertain Databases
	7 Information Systems Uncertainty Design and Implementation Combining: Rough, Fuzzy, and Intuitionistic Approaches
	1 Introduction
	2 Rough Sets
	3 Fuzzy and Fuzzy Rough Sets
	4 Intuitionistic Sets
	5 Intuitionistic Rough Sets
	6 Rough Relational Database
	7 Fuzzy Rough Relational Database
	8 Fuzzy Rough Relational Operators
	9 Intuitionistic Rough Relational Database Model
	10 Functional Dependencies
	11 Information Theory
	12 Entropy and the Rough Relational Database
	13 Summary
	References

	8 Flexible Bipolar Querying of Uncertain Data Using an Ontology
	1 Introduction
	2 Method
	2.1 Preliminaries: Fuzzy Pattern Matching
	2.2 Notations and Problem
	2.3 Fuzzy Sets Defined on a Hierarchical Domain
	2.4 From Bipolar Querying with Imprecise Data to Answer Ordering

	3 A New Decision Support System for Food Packaging Design
	3.1 Decision Support System Architecture
	3.2 Endive Packaging Use Case

	4 Related Works
	5 Conclusion and Perspectives
	References

	9 Aspects of Dealing with Imperfect Data in Temporal Databases
	1 Introduction
	2 Basic Concepts and Issues in Time Modelling
	2.1 Basic Concepts and Properties
	2.2 Granularities
	2.3 Temporal Relationships

	3 Data Imperfections in Time Modelling
	3.1 Types of Imperfections in Temporal Modelling
	3.2 Representation of Imperfect Information
	3.3 Imperfections in Temporal Relationships

	4 Basic Concepts and Issues in Temporal Databases
	4.1 Basic Concepts and Properties
	4.2 Primary Keys in Valid-Time Relation Design
	4.3 Consistency in Valid-Time Relation Content Modification
	4.4 Commercial Temporal Database Systems

	5 Data Imperfections in Temporal Databases
	5.1 Data Imperfections in Temporal Databases
	5.2 Handling Uncertainty in a Valid-Time Relation
	5.3 Bipolarity in Temporal Databases

	6 Conclusions and Further Research
	References

	Part IVFlexible Queries Over Nonstandard Data
	10 A Unifying Model of Flexible Queries with Distinct Semantics of Search Term Weights
	1 Introduction
	2 Modeling Distinct Semantics of Query Weights in Conjunctive Queries Based on the Division of Fuzzy Relations
	3 Soft Aggregations of Conditions with Unequal Importance
	3.1 Soft Aggregations Based on the OWA Operator
	3.2 Soft Aggregations Based on the Generalized Conjunction Disjunction Function
	3.3 Soft Aggregations Based on the p-Norm Operator

	4 Generalized p-Norm Aggregation with Distinct Interpretations of Query Importance Weights
	4.1 Importance Weights as Thresholds on the Significance Degrees of Terms
	4.2 Importance Weights as Ideal Satisfaction Degrees

	5 Conclusions
	References

	11 Social Network Database Querying Based on Computing with Words
	1 Introduction
	2 Fuzzy Graphs
	3 Computing with Words
	4 Clusters and Cliques
	5 Centrality
	6 Social Network Databases
	7 Conclusion
	References

	Part VFuzzy Knowledge Discovery and Exploitation
	12 Fuzzy Cardinalities as a Basis to Cooperative Answering
	1 Introduction
	2 Preliminaries
	2.1 Fuzzy Sets
	2.2 Fuzzy Queries and SQLf

	3 Fuzzy-Cardinality-Based Database Summaries
	3.1 A Fuzzy-Partition-Based Predefined Vocabulary
	3.2 About Fuzzy Cardinalities and Their Computation
	3.3 A Semantic Correlation Measure

	4 Query Failure Explanation
	4.1 About Minimal Failing and Unsatisfactory Subqueries
	4.2 Cardinality-Based MFS Detection

	5 Plethoric Answer Set Reduction
	5.1 Correlation-Based Ranking
	5.2 Reduction-Based Reranking
	5.3 Query Augmentation Process

	6 Experimentation
	6.1 Context
	6.2 A Prototype for Explaining Failing Queries
	6.3 A Prototype for Reducing Plethoric Answer Sets

	7 Related Work
	8 Conclusion
	References

	13 Scalability and Fuzzy Systems: What Parallelization Can Do
	1 Introduction
	2 Fuzzy Databases and (Fuzzy) Database Mining Techniques
	2.1 Fuzzy Databases
	2.2 Fuzzy Database Mining Techniques

	3 Parallel Programming Models and Parallel Computers: An Overview
	3.1 Taxonomy of Computer Architecture
	3.2 Parallel Programming Models
	3.3 Process and Thread
	3.4 About Speedup and Scaleup of Parallel Programs

	4 Parallel Fuzzy Database Mining
	4.1 Parallel Mining of Gradual Patterns
	4.2 Parallel Mining of Fuzzy Trees
	4.3 Related Problems

	5 Conclusion
	References

