
Accelerating Super-Resolution Reconstruction

Using GPU by CUDA

Toygar Akgün and Murat Gevrekci

ASELSAN Microelectronics, Guidance and Electro-Optics Division,
Akyurt, Ankara / Turkey

{takgun,mgevrekci}@aselsan.com.tr

Abstract. This paper demonstrates a massively multi-threaded imple-
mentation of super-resolution image formation on the NVIDIA CUDA
architecture. On the algorithm side maximum a-posteriori (MAP) re-
construction is adopted with sub-pixel translational motion estimation
algorithm for spatial resolution enhancement. Resulting algorithm is im-
plemented in CUDA using a low end GT640 GPU, and an overall speed
up of 10 − 11 times is achieved compared to ANSI C implementation
running on a Core i5 CPU.

Keywords: Massive multi-threading, GPU, CUDA, super-resolution,
multi-frame resolution enhancement.

1 Introduction

Graphic Processor Unit (GPU) had been used for general purpose programming
since late 1990s by carefully leveraging OpenGL API. But neither OpenGL nor
these older GPUs were designed with this goal in mind, leading to limited func-
tionality and a steep learning curve. Starting early 2000s GPU evolved into a
programmable, highly parallel, multi-threaded, many-core processor with tremen-
dous computational float-point horsepower and very high memory bandwidth.
In 2006 NVIDIA Corporation introduced the CUDA (Compute Unified Device
Architecture) architecture with an accompanying programming model and API.
CUDA and its accompanying API were designed to allow users with high com-
putational needs to leverage GPU’s compute power with minimal learning effort.
Since then massive-multithreading on GPUs has been gaining traction and gen-
eral purpose computing on GPUs is being utilized by researchers coming from
vastly varying backgrounds [1].

This paper demonstrates a massively multi-threaded implementation of super-
resolution reconstruction on the NVIDIA CUDA architecture. Super-resolution
(SR) is a multi-frame video enhancement framework to obtain a high quality de-
scription from multiple degraded observations. SR reconstruction aims to com-
pensate for image degradations i.e. aliasing, blurring, noise, interlacing, and low
resolution. Sub-pixel shifts among consecutive frames are utilized to perform
image enhancement. As discussed in [2], our multi-frame image enhancement
system is composed of two main parts: registration and reconstruction. Work in

D. Nagamalai et al. (Eds.): Adv. in Comput. Sci., Eng. & Inf. Technol., AISC 225, pp. 47–58.
DOI: 10.1007/978-3-319-00951-3_5 c© Springer International Publishing Switzerland 2013



48 T. Akgün and M. Gevrekci

[2] is utilized for estimating the vertical and horizontal shifts among consecutive
images. Reconstruction step uses a Bayesian framework to form a high-resolution
image. This paper is structured as follows: We will first briefly go through the
details of the super-resolution algorithm under discussion. Then we will discuss
the CUDA mappings of the major processing blocks and present performance
comparisons. Proposed methodology along with some visuals results are given in
Section 2. Massively multi-threaded CUDA implementation of the algorithm is
presented in Section 3 and performance boost of the proposed work is discussed
in Section 4. The final section presents conclusions and future work.

2 Algorithm Details

Super-resolution system under discussion includes several building blocks. For a
detailed discussion including references to prior art please refer to [2]. Consec-
utive images with various shifts are acquired using OpenCV image acquisition
module. Pre-processing might be required to de-interlace in case interlacing is
present. Registration step aims to align images on a common geometrical refer-
ence. Then a reconstruction step samples the aligned images on a sub-pixel grid
to create finer details. Finally, contrast enhancement can be applied to emphasize
local details as a post-processing step, which is planned as future work.

Representing the low-resolution degraded image as yk, and SR image (ground
truth) as x, image formation matrix can be represented as Hk, which is the
multiplication of down-sampling (D), blurring (Bk) and warping (Mk) matrices.

yk = DBkW kx+ nk = Hkx+ nk, (1)

k = 1, ..., N , where N is the number of images acquired and nk is additive white
Gaussian noise. Using Bayesian estimation, SR reconstruction can be written in
the form of a cost function consisting of prior information and data fidelity terms.
The optimization problem turns into following form using a discrete derivative
operator (L) as prior information

xmap = argmin
x

γ2 ‖ Lx ‖22 +
N∑

k=1

‖ yk −Hkx ‖22 . (2)

Prior information provides smoothness to the SR estimate by penalizing high
frequency components. Selecting the regularization parameter has critical im-
portance to avoid over smoothing. During experiments we only kept data fidelity
term in cost function, since analytic selection of regularization parameter (γ) is
problematic and will violate the robustness we seek. The reduced cost function
becomes:

C(x) =
∑

i

‖ gri(zi)−H ix ‖22, (3)

where gri(z) is the observation that passes through photometric conversion, also
known as intensity mapping function, that compensates for the intensity fluc-
tuations among infrared images. Time dependent intensity scaling or histogram



Accelerating Super-Resolution Reconstruction Using GPU by CUDA 49

equalization can be used for photometric mapping. This reduced cost function
can be expanded using weighted least squares transform as

C(x) =
1

2

∑

i

(gri (zi)−Hix)
T
W i (gri(zi)−Hix) . (4)

Here W i nothing but a certainty function of ith image that weights the IR inten-
sities to suppress dark noise. Cost function in Equation 4 represents a weighted
least squares optimization. Taking certainty matrix W i as identity turns the
problem into regular least squares. Then the super-resolved output can be solved
using iterative gradient descent techniques

x(k+1) = x(k) + γ
∑

i

HT
i W i

(
gri(zi)−Hix

(k)
)
. (5)

Here γ is the step size and taken as a constant in our experiments. SR algorithm
is visualized in Figure 1 for sake of clarity. Forward projection matrix Hk, is the
building block of the algorithm as depicted in Figure 1. Forward projection is
composed of down-sampling (D), blurring (Bk) and warping (Mk) operations
applied sequentially. Note that all of these operations are suitable for paral-
lel implementation. Likewise, back projection Ht

k consists of up-sampling with
zero insertion (U ), blurring (Bt

k) and back warping (M t
k) operations. Blurring

operation is same in case a symmetric kernel is adopted such as Gaussian.
Selected parameter set is given in Table 1 for future references. Parameters

are kept constant throughout the experiments to demonstrate the robustness of
the system.

Fig. 1. SR system

Please note that vertical resolution enhancement factor should be selected
twice as the horizontal resolution factor to compensate for the vertical decima-
tion performed in preprocessing step in case frames are interlaced.



50 T. Akgün and M. Gevrekci

Table 1. Experiment setup

Number of low-res input frames 5

Vertical resolution enhancement factor 2

Horizontal resolution enhancement factor 2

Reconstruction iteration number 4

Gaussian kernel support [5,5]

Gaussian sigma 1.0

Table 2. GPU specifications

CUDA cores 384

Graphics clock 900 MHz

Memory clock 900 MHz

Memory amount and type 2 GB DDR3

Memory interface width 128 bit

Memory bandwidth 28,5 GB/sec

Algorithm is suitable for parallel implementation as each frame and pixel in-
side the frames can be processed independently. In registration step translational
shifts between input images and the reference image is computed independently.
This independence paves the way for parallel computing in registration step.
Reconstruction step is also parallel in nature since residual computation is in-
dependent for every input image. The scheme shown in Figure 1 illustrates how
the reconstruction step is suitable for parallel implementation since we adopt an
iterated back-projection method.

3 CUDA Implementation

The super-resolution algorithm described so far was implemented in CUDA to
assess the potential performance boost. For the test results presented here a GT
640 NVIDIA GPU was used. The technical specifications of this card are as given
in Table 2.

The competing platform is a Core i5 CPU clocked at 3,1 GHz with 8 GB
RAM. Note that GT 640 is the smallest and weakest GPU from the Kepler
architecture, which is the latest NVIDIA GPU architecture as of late 2012. As a
result it has very low compute power and memory bandwidth compared to high
end cards such as GTX 670, GTX 680 and GTX 690. In the following subsections
we present the CUDA mappings of several major processing blocks. Note that
there are several other CUDA kernels that will not be mentioned here, since they
mostly handle simple data moving and updates.

3.1 Bilinear Scaling

Super-resolution reconstructionbegins with an initial estimate imagewhich is typ-
ically chosen as a bilinearly upscaled version of the original low resolution frame,



Accelerating Super-Resolution Reconstruction Using GPU by CUDA 51

Table 3. Bilinear filtering code analysis

Thread numbers (x,y) (32,32)

Shared memory bank conflict N/A

Global memory BW efficiency 100%

Register usage 17

Occupancy 0,877

Total execution time per frame 161 microsec

where the vertical and horizontal scaling ratios are equal to the vertical and hor-
izontal enhancement ratios. For the CUDA mapping of this bilinear upscaling
block, the texture unit of the GPU hardwarewas used. Texture units are one of the
available specialized hardware blocks on GPUs that handle simple pixel sampling
operations. Such operations are quite common in graphics processing tasks. As a
result, texture units are quite optimized and can provide substantial performance
boosts. Extensive details of the texture hardware are beyond scope of this techni-
cal report, but we note one key property that was leveraged in this implementa-
tion. Texture units can bilinearly sample 2D arrayswith very small computational
load thanks to their specialized pixel sampling hardware. Initial implementation
of the bilinear upscaling operation is presented below:

__global__ void bilinearResizeKernel(unsigned char *target,

int width,

int height,

int pitch,

float factor)

{

const int x = blockIdx.x * blockDim.x + threadIdx.x;

const int y = blockIdx.y * blockDim.y + threadIdx.y;

if(x<width && y<height)

{

// Warped coordinates to sample from input

float norm_x = ((float)x)/factor + 0.5f;

float norm_y = ((float)y)/factor + 0.5f;

// Read from texture and write to global memory

target[y * pitch + x] =

(unsigned char)(tex2D(texRef, norm_x, norm_y)*255.0f);

}

}

As the code block presents, bilinear interpolation kernel is very simple. The
heart of the kernel is the bilinear texture sampling operation (tex2D) at the
very end. Since the output of the bilinear upscaling operation is also converted
from 8 bit unsigned values to 32 bit float values for further processing, improve-
ment is possible by slightly modifying the texture sampling operation to avoid
an additional kernel launch. This faster implementation that combines bilinear
interpolation with type conversion is presented in the code block below. Note



52 T. Akgün and M. Gevrekci

that this very simple example demonstrates the difference between CPU and
GPU programming in terms of surface access methodology.

__global__ void bilinearResizeToFloatKernel(unsigned char *target,

float * target_f,

int width,

int height,

int pitch,

int pitch_f,

float factor)

{

const int x = blockIdx.x * blockDim.x + threadIdx.x;

const int y = blockIdx.y * blockDim.y + threadIdx.y;

if(x<width && y<height)

{

// warped coordinates to sample from input

float normalized_x = ((float)x)/factor + 0.5f;

float normalized_y = ((float)y)/factor + 0.5f;

// Read from texture and write to global memory

float temp = (tex2D(texRef, normalized_x, normalized_y)*255.0f);

target_f[y * pitch_f + x] = temp;

target[y * pitch + x] = (unsigned char)temp;

}

}

Note that bilinear interpolation during texture fetch is only available for float
type and there are some fine details regarding the setup and use of the texture
units to get the best performance (including using surface writes to avoid addi-
tional CUDA surface copies). Thread mapping for the bilinear resampling kernel
is very simple: Every thread handles a single output pixel. A slight speed-up (30
micro seconds faster) is possible by assigning four pixels to each thread, hence
getting better memory bandwidth usage, but given texture units are cached and
that bilinear sampling operation is called only once and constitutes only a small
percentage of the overall execution time, the resulting speed-up would not be vis-
ible at the end. Execution configuration and performance figures for the second
code block are given in Table 3.

Just to give an idea about how efficient this kernel is, the very same operation
on a Core i5 CPU clocked at 3,1 GHz takes 5 ms, which means, for this specific
block we have an average speed up of more than 30 times.

3.2 Image Warp

Image warp operation is modeled as a six parameter affine transform on the input
image coordinates. Obviously, the transformed coordinates are not guaranteed
to fall on a regular pixel grid. Off-grid pixel locations are simply obtained by
bilinear interpolation that uses the four corner pixels of the grid block that
includes the off-grid pixel location. As explained in the previous sub-section this



Accelerating Super-Resolution Reconstruction Using GPU by CUDA 53

is a perfect match for the texture hardware. The resulting CUDA implementation
is presented in the code block below:

__global__ void warpAffineKernel4(float4 *target,

float4 *grad,

int width,

int height,

int pitch16)

{

// Calculate normalized texture coordinates

const int x = blockIdx.x * blockDim.x + threadIdx.x;

const int y = blockIdx.y * blockDim.y + threadIdx.y;

const int x4 = x * 4;

float xf = (float)x4;

float yf = (float)y;

if(x<width && y<height)

{

float4 gradTemp = grad[y * pitch16 + x];

// warped coordinates to sample from input

float warped_x = c_H[0]*xf + c_H[1]*yf + c_H[2] + 0.5f;

float warped_y = c_H[3]*xf + c_H[4]*yf + c_H[5] + 0.5f;

float fx = tex2D(texRef, warped_x, warped_y);

warped_x = c_H[0]*(xf+1.0f) + c_H[1]*(yf) + c_H[2] + 0.5f;

warped_y = c_H[3]*(xf+1.0f) + c_H[4]*(yf) + c_H[5] + 0.5f;

float fy = tex2D(texRef, warped_x, warped_y);

warped_x = c_H[0]*(xf+2.0f) + c_H[1]*(yf) + c_H[2] + 0.5f;

warped_y = c_H[3]*(xf+2.0f) + c_H[4]*(yf) + c_H[5] + 0.5f;

float fz = tex2D(texRef, warped_x, warped_y);

warped_x = c_H[0]*(xf+3.0f) + c_H[1]*(yf) + c_H[2] + 0.5f;

warped_y = c_H[3]*(xf+3.0f) + c_H[4]*(yf) + c_H[5] + 0.5f;

float fw = tex2D(texRef, warped_x, warped_y);

// Read from texture and write to global memory

target[y * pitch16 + x] = make_float4(fx,fy,fz,fw);

grad[y * pitch16 + x] = make_float4(gradTemp.x-fx, gradTemp.y-fy,

gradTemp.z-fz, gradTemp.w-fw);

}

}

Note that this function is called at the inner most loop of the algorithm;
hence it is required to be extremely optimized. As a result, the thread mapping is
slightly modified compared to the bilinear interpolation kernel. Here each thread
processes 4 pixels, which are modeled by the CUDA specific vector type float4.



54 T. Akgün and M. Gevrekci

Table 4. Affine warp code analysis

Thread numbers (x,y) (32,32)

Shared memory bank conflict N/A

Global memory BW efficiency 100%

Register usage 16

Occupancy 0,773

Total execution time per frame 245 microsec

To avoid an additional kernel launch, gradient surface update is also merged
into this kernel by simply obtaining updated gradient values and conducting a
global write. Execution configuration and performance figures for the previous
code block are as given in Table 4.

3.3 Image Blur

Image blur block consists of 2D convolution with a separable kernel. The choice
of a separable kernel is mostly due to its computational efficiency. For a 5×5 ker-
nel, separable convolution requires 10 multiplications and 8 additions, whereas
non-separable convolution would require 25 multiplications are 24 additions.
Separable convolution is implemented as two consecutive kernel launches. The
first kernel launch performs row-wise 1D convolution on the input image, and
the second kernel launch performs column-wise 1D convolution on the output
of the row-convolution kernel. Row and column convolution kernels are mostly
adapted from NVIDIA’s CUDA SDK with minor performance tunings. These
kernels are presented in the following two code blocks.

As the code block below shows, the row convolution implementation uses
shared memory. For the convolution operation shared memory usage provides
substantial performance boost due to better memory bandwidth usage. To see
this, simply consider what happens when we finish processing one pixel and move
to the next pixel. The 5 pixel window that is used for filtering also shifts by one
pixel and there is a 4 pixel overlap with the old filter window. Shared memory
usage removes the need for dispatching a global read to obtain these pixels. At
the beginning of the kernel each thread loads the main data to be processed by
the thread block as well as the additional pixels that will be needed to obtain
results at the boundary pixels. Note that row convolution operation uses a 5
tap blur filter and as a result boundary handling is required. This is simply due
to the fact that the pixels at the thread block boundaries require 2 neighbors
to their left and right sides. Finally, the filtering operation is performed and
the results are written back to global memory. Note that every thread handles
4 pixels and loop unrolling (pragma unroll) is heavily used due to the fixed
structures of the loops. Execution configuration and performance figures for row
filtering are summarized in Table 5.



Accelerating Super-Resolution Reconstruction Using GPU by CUDA 55

__global__ void convolutionRowsKernel(float *d_Dst,
float *d_Src,
int imageW,
int imageH,
int pitch)

{
__shared__ float
s_Data[BLOCKDIM_Y][(RESULT_STEPS + 2 * HALO_STEPS) * BLOCKDIM_X];

//Offset to the left halo edge
const int baseX = (blockIdx.x * RESULT_STEPS - HALO_STEPS) * BLOCKDIM_X + threadIdx.x;

const int baseY = blockIdx.y * BLOCKDIM_Y + threadIdx.y;

d_Src += baseY * pitch + baseX;
d_Dst += baseY * pitch + baseX;

//Load main data
#pragma unroll
for(int i = HALO_STEPS; i < HALO_STEPS + RESULT_STEPS; i++)

s_Data[threadIdx.y][threadIdx.x + i * BLOCKDIM_X] = d_Src[i * BLOCKDIM_X];

//Load left halo
#pragma unroll
for(int i = 0; i < ROWS_HALO_STEPS; i++)

s_Data[threadIdx.y][threadIdx.x + i * BLOCKDIM_X] =
(baseX >= -i * BLOCKDIM_X ) ? d_Src[i * BLOCKDIM_X] : 0;

//Load right halo
#pragma unroll
for(int i = HALO_STEPS + RESULT_STEPS; i < HALO_STEPS + RESULT_STEPS + HALO_STEPS; i++)

s_Data[threadIdx.y][threadIdx.x + i * BLOCKDIM_X] =
(imageW - baseX > i * BLOCKDIM_X) ? d_Src[i * BLOCKDIM_X] : 0;

//Compute and store results
__syncthreads();
#pragma unroll
for(int i = HALO_STEPS; i < HALO_STEPS + RESULT_STEPS; i++){

float sum = 0;

#pragma unroll
for(int j = -KERNEL_RADIUS; j <= KERNEL_RADIUS; j++)

sum += c_Kernel[KERNEL_RADIUS - j]
* s_Data[threadIdx.y][threadIdx.x + i * BLOCKDIM_X + j];

d_Dst[i * BLOCKDIM_X] = sum;
}

}

As the following code block shows, the column convolution implementation
uses shared memory, due the reasons discussed previously. At the beginning
of the kernel each thread loads the main data to be processed by the thread
block as well as the additional pixels that will be needed to obtain results at
the boundary pixels. Note that just like row convolution, column convolution
operation uses a 5 tap blur filter and as a result boundary handling is required.
This is simply due to the fact that the pixels at the thread block boundaries
require 2 neighbors to their top and bottom. Finally, the filtering operation is
performed and the results are written back to global memory. Note that every
thread handles 8 pixels and loop unrolling pragma unroll is heavily used due
to the fixed structures of the loops. Execution configuration and performance
figures column filtering are given in Table 6.



56 T. Akgün and M. Gevrekci

__global__ void convolutionColumnsKernel(float *d_Dst,
float *d_Src,
int imageW,
int imageH,
int pitch)

{
__shared__ float s_Data[BLOCKDIM_X][(RESULT_STEPS + 2 * HALO_STEPS) * BLOCKDIM_Y + 1];

//Offset to the upper halo edge
const int baseX = blockIdx.x * BLOCKDIM_X + threadIdx.x;
const int baseY = (blockIdx.y * RESULT_STEPS - HALO_STEPS) * BLOCKDIM_Y + threadIdx.y;

d_Src += baseY * pitch + baseX;
d_Dst += baseY * pitch + baseX;

//Main data
#pragma unroll
for(int i = HALO_STEPS; i < HALO_STEPS + RESULT_STEPS; i++)

s_Data[threadIdx.x][threadIdx.y + i * BLOCKDIM_Y] = d_Src[i * BLOCKDIM_Y * pitch];

//Upper halo
#pragma unroll
for(int i = 0; i < HALO_STEPS; i++)

s_Data[threadIdx.x][threadIdx.y + i * BLOCKDIM_Y] =
(baseY >= -i * BLOCKDIM_Y) ? d_Src[i * BLOCKDIM_Y * pitch] : 0;

//Lower halo
#pragma unroll
for(int i = HALO_STEPS + RESULT_STEPS; i < HALO_STEPS + RESULT_STEPS + HALO_STEPS; i++)

s_Data[threadIdx.x][threadIdx.y + i * BLOCKDIM_Y] =
(imageH - baseY > i * BLOCKDIM_Y) ? d_Src[i * BLOCKDIM_Y * pitch] : 0;

//Compute and store results
__syncthreads();
#pragma unroll
for(int i = HALO_STEPS; i < HALO_STEPS + RESULT_STEPS; i++){

float sum = 0;
#pragma unroll
for(int j = -KERNEL_RADIUS; j <= KERNEL_RADIUS; j++)

sum += c_Kernel[KERNEL_RADIUS - j]
* s_Data[threadIdx.x][threadIdx.y + i * BLOCKDIM_Y + j];

d_Dst[i * BLOCKDIM_Y * pitch] = sum;
}

}

Table 5. Row filtering code analysis

Thread numbers (x,y) (32,4)

Shared memory bank conflict 0%

Global memory BW efficiency 100%

Register usage 22

Occupancy 0,957

Total execution time per frame 120 microsec



Accelerating Super-Resolution Reconstruction Using GPU by CUDA 57

Table 6. Column filtering code analysis

Thread numbers (x,y) (32,8)

Shared memory bank conflict 0%

Global memory BW efficiency 100%

Register usage 32

Occupancy 0,476

Total execution time per frame 140 microsec

4 Performance Boost and Comparison

In this section we present the overall performance boost obtained by the CUDA
implementation. The results we compare against are obtained by a Core i5 pro-
cessor clocked at 3,1 GHz with 8 GB RAM for images of dimension 384x256
(single channel, 8-bit).

– One iteration of the gradient computation on the CPU was timed to be
around 18 ms.

– One iteration of the gradient computation on the GPU was timed to be
around 2 ms.

Gradient computation is the main computational block of the super-resolution
algorithm and consists of applying the forward imaging model, taking the differ-
ence between the resulting constructed observation and the corresponding true
observation, and finally applying the backward imaging model on the error.
Hence, any speed up obtained for this block has a direct effect on the overall
execution time. Please note that the ”QueryPerformance” functions provided by
MS has a time resolution of 1 ms. We have reason to believe that actual GPU
timing is somewhere between 1ms and 2 ms, but we will not discuss this here
and simply assume a 9X speed up.

– The overall algorithm execution time per frame on CPU is between 410 -
440 ms.

– The overall algorithm execution time per frame on GPU is between 42 - 46
ms.

These numbers represent a worst case speed up factor of approximately 9X and
a best case speed up factor of approximately 10X on a low end GT 640 GPU,
which has about 3 times lower core clock rate and 4 times less memory com-
pared to the competing CPU configuration. For GT 640, current performance
profiling results show that the CUDA implementation is both memory band-
width and compute limited. This suggests that a high end GPU is guaranteed
to improve the overall performance. Just to give an idea, GTX 670 has 3,5 times
more compute power and 6,5 times higher memory bandwidth compated to
GT 640.



58 T. Akgün and M. Gevrekci

5 Conclusion and Future Work

In this paper we discussed a massively-multithreaded CUDA implementation
of the super-resolution algorithm originally presented in [2]. Performance test
results were presented comparing a low-end GT 640 NVIDIA GPU to a Core
i5 CPU. Current implementation does not support overlapping kernel execution
with data read/write. As future work, the current implementation will be moved
to a higher end GPU such as GTX660T i, GTX670 or GTX680 and modified
to overlap kernel executions with data copies. We expect these modifications to
further enhance the overall performance and lower the total execution time per
frame to below 10 ms per frame, allowing the final implementation to run at
60 frames per second for frames of size 384x256 with a resolution enhancement
factor of 2X.

References

1. NVIDIACUDAC Programming Guide, http://developer.download.nvidia.com/
compute/DevZone/docs/html/C/doc/CUDA C Programming Guide.pdf

2. Gevrekci, M., Gunturk, B.K.: Image Acquisition Modeling for Super-Resolution Re-
construction. In: IEEE Int. Conf. on Image Processing (ICIP), vol. 2, pp. 1058–1061
(September 2005)

http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/DevZone/docs/html/C/doc/CUDA_C_Programming_Guide.pdf

	Accelerating Super-Resolution Reconstruction
Using GPU by CUDA

	1 Introduction
	2 Algorithm Details
	3 CUDA Implementation
	3.1 Bilinear Scaling
	3.2 Image Warp
	3.3 Image Blur

	4 Performance Boost and Comparison
	5 Conclusion and Future Work
	References




