

R. Lee (Ed.): SERA, SCI 496, pp. 129–149.
DOI: 10.1007/978-3-319-00948-3_9 © Springer International Publishing Switzerland 201

Improving Code Generation for Associations:
Enforcing Multiplicity Constraints and
Ensuring Referential Integrity

Omar Badreddin, Andrew Forward, and Timothy C. Lethbridge

Abstract. UML classes involve three key elements: attributes, associations, and
methods. Current object-oriented languages, like Java, do not provide a distinction
between attributes and associations. Tools that generate code from associations
currently provide little support for the rich semantics available to modellers such
as enforcing multiplicity constraints or maintaining referential integrity. In this
paper, we introduce a syntax for describing associations using a model-oriented
language called Umple. We show source code from existing code-generation tools
and highlight how the issues above are not adequately addressed. We outline code
generation patterns currently available in Umple that resolve these difficulties and
address the issues of multiplicity constraints and referential integrity.

Keywords: Associations, Model Driven Development, UML, Code Generation,
Umple, Reverse Engineering.

1 Introduction

A UML association is a relationship among classes within an object-oriented sys-
tem. It specifies the connections, called links, which may exist among instances of
classes at run time. A notation called multiplicity appears at each end of an associ-
ation to describe the number of links other objects may have to the object in ques-
tion. In this paper we focus on binary associations, which have just two ends.
Examples of UML diagrams with associations can be found in Figures 1 and 2.

Omar Badreddin · Andrew Forward · Timothy C. Lethbridge
School of Electrical Engineering and Computer Science,
University of Ottawa, Canada K1N 6N5
e-mail: {obadr024,aforward,tcl}@eecs.uottawa.ca

4

130 O. Badreddin, A. Forward, and T.C. Lethbridge

Current programming languages do not directly support associations, which are
coded by hand or by using a UML code generator tool. However, current code
generators have weaknesses such as not dealing with referential integrity [1].

This paper introduces a syntax called Umple for defining associations textually,
as well as a series of patterns for generating high-level language code from associ-
ations. We analyse all possible combinations of multiplicity that may appear on
association ends, highlighting the underlying complexity in properly implement-
ing associations in a target executable language. We analyse existing UML code
generation tools to investigate the completeness of their implementation, or lack
thereof. We provide code-generation patterns covering all multiplicity combina-
tions that ensure referential integrity as well as adherence to multiplicity
constraints.

Umple enables modelling concepts to be described textually with a similar syn-
tax to Java. We present our code generator for Java, but Umple also supports PHP
and Ruby and can conceptually support any object-oriented language.

In translating UML associations into an executable language, it is more effi-
cient (but currently uncommon) to include access methods (get, set, add, remove)
to manage links of associations. These methods would maintain the multiplicity
constraints of the association and preserve referential integrity – ensuring that both
ends of an association are properly updated when adding or removing links.

2 Associations in Practice

In a separate paper in this conference [3] we discussed an empirical study that
analyzed the use of attributes in open source systems. We used the same systems
as a starting point for the research presented here.

The seven projects selected for analysis include fizzbuzz, ExcelLibrary, nde-
pendencyinjection, Java Bug Reporting Tool, jEdit, Freemaker; and Java Financial
Library. We documented all member variables and recorded the project, name-
space, object type, and variable name for each, as well as related characteristics
such as constructors, and set/get methods.

To find variables representing associations, we used a two-step manual process.
The first step recursively eliminated attributes. An attribute is considered to have
as its type either: a) a simple data type including String, Integer, Double, Date,
Time and Boolean, or b) a complex attribute type, i.e. a class that itself only con-
tains instance variables meeting conditions a and b, with the proviso that in this
recursive search process, if a cycle is found, then the variable is deemed a candi-
date association end. This process resulted in 350 candidate association ends.

In the second step, we filtered the set down to 235 association ends by remov-
ing internal variables. Internal variables represent data that is not an intrinsic part
of the permanent state of the object, but is used for some algorithm or temporary
process. They are neither set in the constructor nor are available via set/get meth-
ods. Examples of the types of such variables include Readers, Streams, and Maps.

Improving Code Generation for Associations 131

Table 1 highlights distribution statistics of the 235 association ends. The results
are not mutually exclusive so the column sum will not be 100%.

Table 1 Distribution of set / get and availability in constructor

Category Freq % Description

Set/Get Methods 67 29% All variables that had both a set and get method.
Set Method 89 38% All variables that at least had a set method.
Get Method 120 51% All variables that at least had a get method.
No Set Method 54 23% All immutable variables, as there is no set method
Only Get Method 39 17% Internally managed (no set method, not in constructor).

In addition to tracking the distribution of set and get methods, we also noted

that some implementations provided direct access to the list structure and others
provided methods like add and remove. Of the 235 association ends, 42 (17.9%)
were defined using Map, Set, Hash, or List classes and hence likely represented
associations with an upper bound greater than one.

When analyzing the open-source systems, it was difficult to match association-
end variables to one another because many associations linked to external
resources and most likely represented one-way associations. There was little
evidence of referential integrity between association ends, implying that the appli-
cation developer using the object model would have to write code to maintain the
correct multiplicities and inverse pointers. This difficulty in analyzing how asso-
ciations are used in practice provides motivation for our work. It would appear to
be beneficial for developers to be able to define associations in one location, and
have links created, accessed and modified in a consistent manner.

To better understand the types of associations used in practice, we analyzed
1400 associations in UML diagrams of real systems (not association ends as dis-
cussed above). These were found in two UML specifications (v1.5 / v2.1.2) and
some UML profiles (MARTE, Flow Composition, ECA, Java, Patterns, rCOS).

Table 2 Industry Usage of Association Multiplicities in UML

Industry Usage Rank in the various sets of examples

Multiplicity Frequency Ratio Industry Example Repository

1--* 273 19.0% 1 1 1
0..1--* 270 18.8% 2 4 2
-> 179 12.4% 3 9 4
-- 162 11.3% 4 2 3
0..1--1 126 8.8% 5 N/A 7
*->1 86 6.0% 6 N/A 6
*->0..1 73 5.1% 7 N/A 5
0..1--0..1 58 4.0% 8 6 N/A
--n.. 54 3.8% 9 N/A N/A
Other 157 10.9% N/A N/A N/A

Total 1438 100.0%

132 O. Badreddin, A. Forward, and T.C. Lethbridge

We also analyzed UML models in a book by one of the authors [4] (example
models), and in our repository of UML modeled systems [5] (repository models)
built using Umple.

The top nine associations patterns by multiplicity, ordered according to the
industry examples, are in Table 2. The multiplicities include the following con-
straints: optional (0), one (1), lower-bound (n), upper-bound (m), and many with-
out bounds (*). For example, a one-to-many multiplicity would be 1 -- *. The rank
of actual usage is based on the UML specification. For comparison the rank of the
particular multiplicity within the example and repository collection is also shown.

We performed similar analysis based on example usage from [4] and present
the results in Table 3.

Table 3 Example Usage [4] of Association Multiplicities

Example Usage Rank in the various sets of examples

Multiplicity Frequency Ratio Industry Example Repository

1--* 39 39.8% 1 1 1
-- 15 15.3% 4 2 3
1--1 13 13.3% N/A 3 N/A
0..1--* 11 11.2% 2 4 2
*->1 4 4.1% N/A 5 6
0..1--0..1 4 4.1% 8 6 N/A
1--0..n 3 3.1% N/A 7 N/A
*--n 2 2.0% N/A 8 N/A
-> 2 2.0% 3 9 4
Other 5 5.1% N/A N/A N/A

Total 98 100.0%

Table 4 is ordered based on our UML model repository examples [5], which

has over 28 systems in domains like airlines, elevators, traffic lights and the Um-
ple metamodel itself.

Table 4 Usage of Association Multiplicities from Model Repository [5]

Model Repository Usage Rank in the various sets of examples

Multiplicity Frequency Ratio Industry Example Repository
1--* 108 43.4% 1 1 1
0..1--* 34 13.7% 2 4 2
-- 27 10.8% 4 2 3
-> 22 8.8% 3 9 4
*->0..1 21 8.4% 7 N/A 5
*->1 12 4.8% 6 5 6
1--0..1 4 1.6% 5 N/A 7
1--1..* 3 1.2% N/A N/A 8
1..*--* 3 1.2% N/A N/A 9
Other 15 6.0% N/A N/A N/A

Total 249 100.0%

Improving Code Generation for Associations 133

The industry and example UML models share five of the top nine multiplicity
usage patterns; one-to-many, optional-one-to-many, many-to-many, optional-one-
to-one, and optional-one-to-optional-one.

After analyzing over 1,800 different modeled associations, approaches like
eUML [6] (where only a subset of the UML multiplicities can be modeled) pro-
vide sufficient coverage for most applications. The same is true of the applications
analyzed in Section 5, where most code generators provide little capability for
association multiplicities beyond differentiating a one-end from many-end. As
shown above, about 5% of the UML specifications fall outside of the simple cases
currently supported and it should be of both academic and practical relevance to
explore all types of association relationships.

3 Textual Associations in Umple

Umple is a set of extensions to object-oriented languages that provides a concrete
textual syntax for UML abstractions like attributes, associations and state ma-
chines. Below, we describe how associations are represented in Umple. Please see
our separate paper [3] for a discussion of attributes. For more details, and for the
motivation regarding why we created Umple, the reader should refer to [7] and
[8]. Umple can also be edited directly within a browser [9].

Figure 1 shows two associations. To distinguish between Umple and Java, the
Umple examples use dashed borders in light-grey shading, and Java examples use
solid-line borders with no shading. The UML class diagram one the right has three
classes and two one-to-many associations. The code on the left is the equivalent in
Umple . The ‘--‘ means that the association is bi-directionally navigable (more on
this later). It is also possible to use ‘->’ or ‘<-‘ to indicate that navigation is possi-
ble in only one direction. The full set of UML multiplicity symbols may be used.

class Student {}
class CourseSection {}
class Registration
{
 String grade;
 * -- 1 Student;
 * -- 1 CourseSection;
}

Fig. 1 Umple code/model for part of the registration system

In addition to showing an association embedded in one of the two associated
classes, it is also possible to show an association ‘on its own’. The association
name, Enrollment and role names course and attendee are optional.

134 O. Badreddin, A. Forward, and T.C. Lethbridge

association Enrollment
{* Registration course -- 1 Student atendee;}

Besides providing improved abstraction, explicitly coding associations may speed
development and reduce bugs, since the compiler can enforce various design con-
straints and less code needs to be written. The current implicit nature of associa-
tions in standard languages most likely results in code that is bug-prone since
there is no general mechanism to enforce things like referential integrity.

4 Analyzing Association Multiplicity

Consider the following association between a Mentor and a Student.

Fig. 2 An example binary association

An association has a multiplicity at each end describing how many instances of
one class can be linked with the other class. In Figure 2, a Mentor can link to any
number of Students, but a Student must be assigned to one and only one Mentor.

In general, there are nine distinct categories of multiplicity, shown in Table 5.
These largely require different treatment in the code, except that the 1..n case can
be coded as a special case of m..n and 1..* can be coded as special case of m..*.

Table 5 Multiplicity Possibilities for Associations

Multiplicity
Notation

Lower
Bound

Upper
Bound

Description

0..1 0 1 Optional-One – Item is either present or not
0..n 0 n > 1 At Most n – At most n items, or none at all
0..* (*) 0 undef. > 1 Many – Any number of items present. or none at all
1..1 (1) 1 1 One – The item is mandatory
1..n 1 n > 1 Mandatory at Most n – At least one item is mandatory

up to a maximum of n items
1..* 1 undef. > 1 Mandatory Many – One item is mandatory (no max)
n..n (n) n > 1 n Exactly n – Exactly m items are mandatory
m..n m > 1 n > m From m to n – At least m items are mandatory up to a

maximum of n items
m..* m > 1 undef. > m At least m – At least m items mandatory (no max)

Improving Code Generation for Associations 135

4.1 Bidirectional Associations Between Two Different Classes

We analyzed associations between two classes that are navigable in both direc-
tions. Both linked objects are conceptually aware of the relationship. There are 28
different patterns of binary associations, as listed in Table 6.

Note that x -- y is equivalent to y -- x, so for example, 0..1 -- n is equivalent to
n -- 0..1; for this reason, the upper diagonal in Table 6 is left blank. Also note that
the variables m and n are not assumed to be the same on both ends of the associa-
tion. For example, 0..6 -- 3..4 association would be in the 0..n -- m..n category.

Our examples model a Mentor and Student, allowing us to vary the multiplicity
in a sensible way. Figure 3 shows a Student always has one Mentor, but a Mentor
can have zero or more students.

Our code written in Java assumes a Mentor has a student variable when the
multiplicity upper bound (ub) is 1, or students if ub > 1. A Student, has a mentor
(ub =1), or mentors (ub > 1). The Umple notation for Figure 3 is:

association {1 Mentor -- * Student;}

Table 6 All 28 Bi-Directional Non-Reflexive Association Patterns

0..1 0..n * 1 n m..n m…*

0..1 -- 0..1
0..1 -- 0..n 0..n – 0..n
0..1 -- * 0..n -- * * -- *
0..1 -- 1 0..n -- 1 * -- 1 1 -- 1
0..1 -- n 0..n -- n * -- n 1 -- n n -- n
0..1 -- m..n 0..n -- m..n * -- m..n 1 -- m..n n -- m..n m..n -- m..n
0..1 -- m..* 0..n -- m..* * -- m..* 1 -- m..* n -- m..* m..n -- m..* m..* --

m..*

Shaded cells show cases where both sides are mandatory. Associations with

thick borders indicate the common cases as observed in the previous section. Note
that 1..* is a subset of the more generic m..* and 1..n is a subset of m..n.

4.2 Unidirectional (Directed) Associations

A directed association is navigable in one direction only. Only one object of the
pair is aware of and can manage the relationship. For example, one could write in
Umple:

association {* Mentor -> * Student;}

In this, a Mentor is aware of the associated Students, but a Student is unaware of
any Mentor’s to which he/she might be associated. The end that is unaware of
the link can be unknowingly linked to multiple objects (i.e. a * relationship is
generally implied); resulting in seven possible combinations for code generation.

136 O. Badreddin, A. Forward, and T.C. Lethbridge

* -> 0..1, * -> 1, * -> *, * -> m..n, * -> n, * -> m..*, * -> 0..n

Without injecting additional complex code, the system will be unable to man-

age the association when changes occur to the unaware side, such as a Student
deleting itself. If such situations must be managed, then a bi-directional associa-
tion must be used. In practice, we find that the vast majority of associations would
benefit from being bidirectional. Doing so enables functionality that tends to be
required anyway, and where the functionality is not immediately required, the
code is better suited to meet unanticipated future needs. However, bi-directional
association can increase coupling unnecessarily.

4.3 Reflexivity and Symmetry

Where both ends of an association are the same class, we must consider several
special cases. A reflexive association allows an object to be linked to other objects
of the same class including itself. An example of such an association might be
“lives-at-same-address”.

It is also common to have irreflexive associations with both ends being the
same class. The added constraint is that a given object cannot be linked to itself.
For example, a mother relationship among Person objects is irreflexive as you
cannot be your own mother.

A symmetric association describes a mapping that reads the same as its inverse;
for example, a spouse association. An asymmetric association is not reversible; for
example a child relationship. Finally, an anti-symmetric association is asymmetric
except that it allows a relationship to self. For example the relationship being-
present-at-birth is anti-symmetric.

One could encode the mentor-student example using a single class, where all
objects are Persons, and some persons can mentor others. This is an irreflexive
asymmetric association, since one cannot mentor oneself and the meaning of the
association is different in each direction. The Umple notation would be:

association {0..1 Person mentor -- * Person student;}

The Umple language natively supports symmetric and asymmetric associations.

Anti-symmetric associations are currently not supported as we find them to be
quite rare (they may be supported in the future). The distinction between reflexiv-
ity and irreflexivity is currently not managed, but applications can relatively easily
be coded to prevent (or allow) an object to be linked to itself.

Asymmetric associations require code that is effectively identical to associa-
tions between two different classes (see Table 6) - except that the lower bound of
both ends must be zero. The top seven associations from Table 6 are therefore
possible as asymmetric associations from one class to itself. The reason the lower
bound must be zero is to prevent infinite regress. For example, in the case of class
Person in the asymmetric association previously discussed, if every mentor Person

Improving Code Generation for Associations 137

must have a student Person, and since every student is also a mentor (by virtue of
being a Person) there would be an infinite chain of persons requiring a mentor.

A symmetric association specifies links between different instances of the same
class, and must have the same multiplicity on each end. The diagonal of Table 6
gives the cases to consider.

As a result of all the above analysis, a total of 42 different possible association
types have been identified (28 for bidirectional associations; 7 for unidirectional
associations, and 7 for symmetric associations). In the following section, we high-
light certain implications that these association types will have on code generation.
This overview serves as a guide when comparing existing code generation tools
and also as a template for building code generator for systems programmed in the
Umple modeling language.

4.4 Implications for Code Generation

The implementation of associations in a language like Java impacts the following
aspects of a class. First, the class will have an additional member variable to re-
flect the other end of an association. One and optional-one multiplicities can be
declared as a member variable of the other type, while many multiplicities are
declared as lists (implemented as a collection class) of objects of the other type.

Second, the constructor may need an additional parameter to ensure mandatory
association ends like 1 or 1..*.

Finally, the class requires methods to set, get, add and remove links between
objects. To be consistent with the model of the associations, the implementation of
those methods should enforce the referential integrity between pairs of objects, as
well as ensuring that multiplicity constraints are upheld.

In the following section, we analyze how existing code generators deal with the
various combinations of multiplicities and to what extent they behave according to
the structure outlined above. We then discuss the code generation available from
the Umple language.

5 Existing Code Generators

In this section we look at existing tools to see how well they translate the seman-
tics of associations into a programming language.

The UML modeling tools considered were identified from a Gartner report [10]
and an online list [11]. We selected four open-source and one closed source appli-
cation to analyze, as listed in Table 7. Each tool was configured to generate Java
code for a simple 1 -- * relationship shown in Figure 2.

The generated code provided in the following sections has only been modified
to provide a consistent layout/format, and for space considerations comments have
also been removed.

138 O. Badreddin, A. Forward, and T.C. Lethbridge

Table 7 UML code generation tools

Tool Version Source

ArgoUML 0.26.2 argouml.tigris.org
StarUML 5.0.2.1570 staruml.sourceforge.net
BOUML 4.11 bouml.free.fr
Green 3.1.0 green.sourceforge.net
RSA 7.5 ibm.com/software/awdtools/architect/

5.1 Code Generation Patterns

In general, all tools analyzed provided two basic code generation templates; one
for 0..1 and 1 (referred to as one) multiplicities and a second for m..n multiplicities
(referred to as many where m ≥ 0, n > m, n > 1).

The template pattern for one would generate a member variable to refer to the
other association end. The template pattern for many would generate a reference to
a List or Set structure that could contain multiple references to the other associa-
tion end. Both examples are shown below.

private <ClassName> <assocEndName>; // ub = 1
private <ListStructure> <assocEndName>; // ub > 1

Some tools provide explicit code generation patterns for n relationships (where n >
1), as well as m..* relationships (where m ≥ 0). Some tools provided explicit
get/set methods in addition to creating the necessary member variables. A discus-
sion of each code generation pattern will be provided based on the tools analyzed.

5.2 ArgoUML

ArgoUML is an open source modeling platform that provides code generation for
Java, C++, C#, PHP4 and PHP5. Below is the generated code from Figure 2.

import java.util.Vector;
public class Mentor {
 public Integer id;
 public Vector myStudent; }
public class Student {
 public String name;
 public Mentor myMentor; }

The generated code provides a mechanism to access “each end” of the relation-

ship. The generator provides little validation or constraint checking to ensure the
relationship is maintained, and the variables are made directly available without
the inclusion of accessor (get and set) methods.

In general, all 0..1 and 1 multiplicities generate similar structures as seen in the
Student class above, and all m..n multiplicities (where m ≥ 0 and n > m and n > 1)
generate similar structures to the Mentor class.

Improving Code Generation for Associations 139

5.3 StarUML

StarUML is an open source modeling tool. StarUML’s generated code does not
account for the many multiplicity, resulting in unusable generated code. Below is
the generated code for the Mentor and Student example:

public class Mentor {
 public String name;
 public Student student; }
public class Student {
 public Integer id;
 public Mentor mentor; }

5.4 Bouml

Bouml is a free tool based on UML 2 that provides source code generation for
C++, Java, Idl, Php and Python.

The source code generated below is very similar to that of ArgoUML. This
code does not provide any mechanism to test or ensure the constraints outlined in
the model; this code must be written by hand after code generation. In addition,
the source code is incomplete as no reference the java.util.List class is provided,
which means that the generated code must be maintained by hand to ensure proper
compilation into byte code.

class Mentor {
 private List<Student> student;
 private String name; }
class Student {
 private Mentor mentor;
 private int id; }

5.5 Green Code Generator

Green UML is another UML editor that can generate source code from a class
diagram. Below is the generated code for the Mentor and Student example.

import java.util.List;
public class Mentor {
 private List<Student> student;
 java.lang.String name;
 public Mentor(List<Student> student2)
 { student = student2; }
}
public class Student {
 private Mentor mentor;
 int id;
 public Student(Mentor mentor2)
 { mentor = mentor2; }
}

140 O. Badreddin, A. Forward, and T.C. Lethbridge

Green does provide additional code generation support by creating custom con-
structors based on the association. Green supports the following types of multi-
plicities: 1, n, m..*, and * (where n > 1 and m >= 0).

Green provides some enforcement of constraints; although the implementation
is awkward and not scalable. For example, the implementation of the constraint of
a mandatory relationship where a Mentor must have n Students (e.g. n = 3) is
shown below.

public class Mentor {
 private Student student3;
 private Student student2;
 private Student student;
 java.lang.String name;
 public Mentor(Student student4,
 Student student5,
 Student student6) {
 student3 = student4;
 student2 = student5;
 student = student6; } }

This implementation provides little opportunity to access or manage the collec-

tion of students, and instead each must be accessed explicitly by name. It also does
a poor job of maintaining the constraint; as the variables could be set to null, vio-
lating the model’s intention.

Green also provides an enforcement of m..* relationships. Below is an example
implementation of a 2..* relationship.

import java.util.List;
public class Mentor {
 private List<Student> student;
 java.lang.String name;
 public Mentor(List<Student> student2) {
 student = student2;
 student.add(new Student());
 student.add(new Student()); } }

The implementation above presents two issues. First, the potentially unwanted

side effect of creating and inserting additional entities into the list argument (i.e.
students). Second, the code generator assumes that a default (and empty) construc-
tor exists for the Student object; an assumption that might not always be valid and
could result in a generated system that does not compile.

Although Green UML does attempt to provide some additional source code
generation to manage the various types of association multiplicities available; the
results provide little, if any, added benefit in representing the model’s intentions.

5.6 Rational Software Architect (RSA)

IBM’s Rational Software Architect (RSA and RSA Real-Time) are full-fledged
development environments that support model-driven development including
source code generation from UML diagrams.

Improving Code Generation for Associations 141

import java.util.Set;
public class Mentor {
 public Set<Student> students;
 public Set<Student> getStudents()
 { return students; }
 public void setStudents(Set<Student>students)
 { this.students = students; }
}
public class Student {
 public Mentor mentor;
 public Mentor getMentor()
 { return mentor; }
 public void setMentor(Mentor mentor)
 { this.mentor = mentor; }
}

RSA’s model transformation into Java code provides some flexibility regarding

the template patterns including (a) which Java collection to use, and (b) whether or
not to include get/set methods for the attributes and association ends. As with all
other source code generators, no distinction between the various possible one or
many relationships are present in the generated code; leaving the implementation
of the modeling constraints up to manually-written code. In addition to providing
simple set and get methods, RSA’s member variables representing the association
ends was also public; presenting an encapsulation issue (especially considering the
code already provides set and get methods).

6 Association Code Generation in Umple

The existing UML code generation tools analyzed in the previous section fall short
of providing robust code to implement associations. The generated code provided
little implementation support either to manage referential integrity or to ensure
multiplicity constraints (beyond the ’one’ vs. ‘many’ distinction).

In this section, we present our approach to code generation and identify imple-
mentation patterns that go beyond the capabilities of current tools. This approach
is instantly accessible from Umple online [5].

6.1 Defining Association Variables

The first pattern to emerge is the distinction between having one object in the
association and having many (i.e. upper bound equal to one versus greater than
one). For convenience, we will use UB for upper bound and LB for lower bound.

Table 8 Member Variable Patterns

Mult. Constraint Pattern Example

UB = 1 ObjectType associationEnd; Student student;
UB > 1 List<ObjectType> associationEnd; List<Student> students;

142 O. Badreddin, A. Forward, and T.C. Lethbridge

6.2 Constructor Parameters for Associations

The next patterns relate to a class’ constructor signature. The constructor defines
how objects should be created and indirectly affects the order in which objects can
be instantiated. Three signatures emerge from the various multiplicities:

• The association end is not required (LB=0) and not be part of the constructor
• Exactly one, the upper and lower bounds are exactly one
• Mandatory Many, (LB > 0 and UB > LB)

The patterns in Table 9 work well when the multiplicity of at least one end of the
association is zero; allowing the creation of one object before the other. Below are
example implementations of the constructors above.

Table 9 Constructor Signature Patterns

Multiplicity
Constraint

Pattern Example

LB = 0 Empty N/A
LB=UB=1 ObjectType anAssociationEnd Student aStudent;
LB > 0 && UB > 1 List<Student> someAssociationEnds List<Student> allStudnets;

By using the setStudent method (which we discuss in the interface patterns sec-

tion), we are able to encapsulate how students are set; including the verification
that the set operation is indeed valid (i.e. association multiplicity constraints are
not violated). If we are unable to assign the student, then an exception is thrown.
The exact error message is not shown for simplicity.

public Mentor(Student aStudent) {
 boolean didAddStudent = setStudent(aStudent);
 if (!didAddStudent) {
 throw new RuntimeException("***"); } }

When the upper bound is greater than one (and the lower bound is not zero), we

must initialize a list of associated members. We can delegate the action and verifi-
cation using the setStudents (instead of setStudent like above) method.

public Mentor(List<Student> allStudents) {
 students = new ArrayList<Student>();
 boolean didAddStudents =
 setStudents(allStudents);
 if (!didAddStudents) {
 throw new RuntimeException("***"); } }

A chicken-and-egg issue manifests itself when neither end has a lower bound

of zero; meaning that each end requires the other, resulting in deadlock as neither
constructor can be called before the other. This issue has been divided into
three domains: One to One, One to Mandatory Many and Mandatory Many to

Improving Code Generation for Associations 143

Mandatory Many. To highlight the implementation of each situation above, we
added a name attribute to the Mentor, and a number attribute to the Student class.

Fig. 3 One-to-one Student and Mentor association

In 3, a Mentor must have exactly one Student, and vice versa.

public Mentor(String aName, Student aStudent) {
 name = aName;
 if (aStudent == null || aStudent.getMentor() != null)
 { throw new RuntimeException("***"); }
 student = aStudent; }
public Mentor(String aName, int aNumberForStudent) {
 name = aName;
 student = new Student(aNumberForStudent, this); }

The second constructor Mentor(String aName, int aNumberForStudent) takes

all the required parameters for both objects; allowing both objects to be created
effectively instantaneously. Please note that in this case, there is no setStudent
interface and the logic to verify that the student is valid is provided directly in the
constructor. We do not include a setStudent or setMentor interface because
the one-to-one constraint means you cannot re-assign a mentor or a student, as the
replaced object would then be an orphan; violating the one-to-one constraint.

In the One to Mandatory Many case a Mentor must have more than one Stu-
dent (m..n, n, or m..*) and a Student must have exactly one Mentor.

Table 10 Constructor Signature Patterns When Both Association Ends are Mandatory

Multiplicity Constructor Implementation Multiplicity

1 -- m..* 1 -- *
1 -- m..n 1 -- 0..n
1 -- n 1 -- 0..n

The Mentor’s constructor is implemented as though the lower bound was zero;

allowing the objects to exist in an invalid state immediately following its construc-
tion. To verify the status of an object in such a case, we add an additional method
isNumberOfStudentsValid, which checks if the number of students is valid.

The mandatory-many to mandatory-many constructor is similar, is that both
constructors are initiated without the constraint being satisfied, and an additional
method isNumberOfMentorsValid() is provided. The implementation as proposed

144 O. Badreddin, A. Forward, and T.C. Lethbridge

for these latter two cases allows for handling of cases that are in fact rare. Our
implementation provides the developer with the necessary tools to query the asso-
ciation to verify the satisfaction of the constraint.

6.3 Get Method Code Generation Patterns

Table 11 outlines an the interface to access an association end available to a Men-
tor based on the multiplicity end of the Student. The method pattern is based on a
generic association end name (name), and the association end’s type (type).

Table 11 Method Signature Patterns for Get Methods

Mult.
Constraint

Pattern Example

UB = 1 getName() : Type getStudent() : Student
UB > 1 getName(int index) : Type getStudent(int index) : Student
 getNames() : Iterator<Type> getStudents() : Iterator<Student>
 indexOfName(Type aName) : int indexOfStudent(Student aStudent) : int
 numberOfNames() : int numberOfStudents() : int
 hasNames() : boolean hasStudents() : boolean

The getStudent implementation is shown below.

public Student getStudent() { return student; }

The difference between mandatory one (1) and optional one (0..1) is that the

student member might be null in the optional case; whereas the 1 multiplicity end
will never be null.

When the upper bound multiplicity is greater than 1, there are four common ac-
cessor methods as shown below.

public Student getStudent(int index)
 { return students.get(index);}
public Iterator<Student> getStudents()
 { return students.iterator(); }
public int numberOfStudents()
 { return students.size(); }
public boolean hasStudents()
 { return students.size() > 0; }
public int indexOfStudent(Student aStudent)
 { return students.indexOf(aStudent); }

Although one has access to all associated students, one is not able to alter the

association by manipulating a list retrieved using the get methods shown above.
To change the number of elements one must use the available add methods as
shown below. The reason for this is to prevent the caller of API methods from

Improving Code Generation for Associations 145

being able to violate the multiplicity constraints or corrupt the referential integrity.
Other implementers of ‘many’ associations simply pass the collection of objects
around, however, we explicitly ensure this never happens.

6.4 Set Method Code Generation Patterns

Next, we consider an interface to add, remove and set links of an association end.
Again, we will be adding Student instances to a Mentor object based on various
multiplicity constraints. Table 12 describes the generated interface.

Table 12 Method Signature Patterns for Set Methods

Multiplicity
Constraint

Pattern Example

UB = 1 setName(Type aName) setStudent(Student aStudent)
UB > 1 addName(Type aName) addStudent(Student aStudent)
 removeName(type aName) removeStudent(Student aStudent)

The implementation of set methods is considerably more complex than get

methods. First, set methods must undo any existing links between objects and
establish the new links. Second, the methods must ensure referential integrity:
when creating one end of a binary association they must create the other end as
well.

Let us begin with the case where the upper bound is one. When the relationship
is optional, the following scenarios must be considered.

If adding a new link, there must be code to set the inverse link as well. Con-
versely, if the inverse link has already been set, then it must not be set again. For
example, if adding a Student to a Mentor, the code must be sure to add a Mentor
to the Student (but only once).

If replacing or removing an existing link, both directions of the link must be
removed. For example, if a Mentor can only have one Student, then when assign-
ing a Mentor to a new Student, the implementation must unassign that Mentor
from the existing Student.

When creating a new link, the multiplicity constraints on both ends must be sat-
isfied. If a Mentor can only have four Students, then a Student is not allowed to
add a Mentor such that the Mentor would now be linked to five Students.

Finally, whenever removing an existing link, the multiplicity constraints on the
existing objects must be satisfied. If a Mentor must have at least two Students,
then the implementation must not allow a Student to set itself to a new Mentor if
the existing mentor is at its two-Student minimum.

Two examples are outlined below; one where UB = 1, and the other where UB
> 1. First the implementation of setMentor from in Student class as part of the 0..1
Mentor -- 0..1 Student association.

146 O. Badreddin, A. Forward, and T.C. Lethbridge

public void setMentor(Mentor newMentor) {
 if (newMentor == null) {
 Mentor existingMentor = mentor;
 mentor = null;
 if (existingMentor != null &&
 existingMentor.getStudent() != null) {
 existingMentor.setStudent(null); }
 return; }
 Mentor currentMentor = getMentor();
 if (currentMentor != null &&!currentMentor.equals(newMentor)) {
 currentMentor.setStudent(null); }
 mentor = newMentor;
 Student existingStudent = newMentor.getStudent();
 if (!equals(existingStudent)) { newMentor.setStudent(this); } }

Next are the implementations of addStudent, and removeStudent for the Mentor

class as part of the 0..1 Mentor -- * Student association.

public boolean addStudent(Student aStudent) {
 if (students.contains(aStudent)) { return false; }
 Mentor existingMentor = aStudent.getMentor();
 if (existingMentor == null) {
 students.add(aStudent);
 aStudent.setMentor(this);
 } else if (!existingMentor.equals(this)) {
 existingMentor.removeStudent(aStudent);
 addStudent(aStudent);
 } else { students.add(aStudent); }
 return true; }

public boolean removeStudent(Student aStudent) {
 if (!students.contains(aStudent)) { return false; }
 else {
 students.remove(aStudent);
 aStudent.setMentor(null);
 return true; } }

There are 42 different association combinations (28 different classes, 7 for di-

rected and an additional 7 for symmetric). Each implementation follows the gen-
eral guidelines shown above, and each combination can explored online at [9].

6.5 Patterns for Generated Support Methods

In addition to establishing relationships between objects, we include methods to
query the minimum and maximum bounds of a relationship. Due to space con-
straints, we omit the full details of the support methods, but Table 13 highlights
the interface.

Improving Code Generation for Associations 147

Table 13 Interface for support methods

Multiplicity Interface

m..n, m..* minimumNumberOfStudents() : int
m..n, 0..n maximumNumberOfStudents() : int
n requiredNumberOfStudents() : int

7 Related Work

Several studies [12-16] propose approaches to formalizing the semantics of asso-
ciations. They generally agree on the interpretation of the associations, but do not
address uniqueness and ordering of associations.

Other studies refer to two types of associations; static and dynamic [17, 18].
Static associations, a view we adopt, represent structural relationships between
objects, where the association is enforced throughout the lifetime of both objects.
Dynamic (or contextual associations) are enforced only during the interactions of
the two objects. Miliev [19] proposes yet another view of associations: intentional
associations that encapsulate the intention of association of each participating
object. Milicev highlights deficiencies in the traditional semantics of associations
and multiplicities that can be overcome by the introduction of an intentional per-
spective on associations.

Acknowledging deficiencies in automated code generation of UML associa-
tions and multiplicities, Wang and Shen [20] propose a run-time verification
approach for UML association constraints. Østerbye [21] proposes supporting
association referential integrity with a reusable class library that ensures the con-
sistency of the relationship is maintained.

Executable UML (eUML) [6] aims is to provide a (yet to be approved) specifi-
cation of an unambiguous subset of executable UML (using model compilers).
The Umple language also behaves as a model compiler and provides a concrete
implementation of a subset of UML. However unlike Executable UML, Umple
integrates with standard object oriented languages, and supports a wider range of
multiplicity, as well as a variety of other features not present in executable UML.

Umple has been under continuous development since 2007. Experimentation
with users has revealed that the comprehensibility levels of model oriented code is
superior to the equivalent object oriented code [22-24]. Umple has also been used
and evaluated in open source projects [25].

8 Conclusion

This paper discussed problems with generating code for UML associations, and
proposed Umple as a solution. We identified the 42 combinations of multiplicity
for association ends and analyzed their impact on code generation. We reviewed
the code generated by five modeling tools, and found that none dealt with

148 O. Badreddin, A. Forward, and T.C. Lethbridge

multiplicity constraints or referential integrity. This may be one reason why code
generation is not as widely used in practice as might be expected.. As a result
developers must modify generated code by hand, which is awkward and error-
prone. We provided an overview of the Umple language for associations and its
model compiler that addresses the above issues.

References

1. Costal, D., Gómez, C.: On the use of association redefinition in UML class diagrams.
In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 513–527.
Springer, Heidelberg (2006)

2. Object-Oriented Software Engineering: Practical Software Development using UML
and Java. McGraw-Hill (2005)

3. Badreddin, O., Forward, A., Lethbridge, T.C.: Exploring a Model-Oriented and Exe-
cutable Syntax for UML Attributes. Accepted in SERA 2013 (2013)

4. Object-Oriented Software Engineering: Practical Software Development using UML
and Java. McGraw Hill (2001)

5. UmpleOnline, http://www.try.umple.org (accessed 2013)
6. Executable UML: A Foundation for Model-Driven Architectures. Addison-Wesley,

Boston (2002)
7. Umple Language, http://cruise.site.uottawa.ca/umple/ (accessed

2013)
8. Forward, A., Lethbridge, T.C., Brestovansky, D.: Improving program comprehension

by enhancing program constructs: An analysis of the umple language, pp. 311–312
(2009)

9. Umple language online,
http://cruise.site.uottawa.ca/umpleonline/ (accessed 2013)

10. Norton, D.: Open-Source Modeling Tools Maturing, but Need Time to Reach Full Po-
tential, Gartner, Inc., Tech. Rep. G00146580 (April 20, 2007)

11. Wikipedia Listing of UML modeling tools,
http://en.wikipedia.org/wiki/List_of_UML_tools (accessed 2013)

12. Bourdeau, R.H., Cheng, B.H.C.: A formal semantics for object model diagrams. IEEE
Trans. Software Eng. 21, 799–821 (1995)

13. Diskin, Z., Dingel, J.: Mappings, maps and tables: Towards formal semantics for asso-
ciations in UML2. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 230–244. Springer, Heidelberg (2006)

14. France, R.: A problem-oriented analysis of basic UML static requirements modeling
concepts. ACM SIGPLAN Notices 34, 57–69 (1999)

15. Overgaard, G.: A formal approach to relationships in the unified modeling language.
In: Proceedings PSMT (1998)

16. Overgaard, G.: Formal specification of object-oriented ModellingConcepts. PhD The-
sis, Dept. of Teleinformatics, Royal Inst. of Technology, Stockholm, Sweden (Novem-
ber 2000)

17. Stevens, P.: On the interpretation of binary associations in the Unified Modelling Lan-
guage. Software and Systems Modeling 1, 68–79 (2002)

18. Genova, G., Llorens, J., Fuentes, J.M.: UML associations: A structural and contextual
view. Journal of Object Technology 3, 83–100 (2004)

Improving Code Generation for Associations 149

19. Miliev, D.: On the semantics of associations and association ends in UML. IEEE
Trans. Software Eng., 231–258 (2007)

20. Wang, K., Shen, W.: Runtime checking of UML association-related constraints. In:
Proceedings of the 5th International Workshop on Dynamic Analysis (2007)

21. Osterbye, K.: Design of a class library for association relationships. In: Proceedings of
the 2007 Symposium on Library-Centric Software Design, pp. 67–75 (2007)

22. Badreddin, O.: Empirical Evaluation of Research Prototypes at Variable Stages of Ma-
turity. In: ICSE Workshop on User Evaluation for Software Engineering Researchers,
USER (to appear, 2013)

23. Badreddin, O., Lethbridge, T.C.: Combining experiments and grounded theory to eval-
uate a research prototype: Lessons from the umple model-oriented programming tech-
nology. In: User Evaluation for Software Engineering Researchers (USER). IEEE
(2012)

24. Badreddin, O., Forward, A., Lethbridge, T.C.: Model oriented programming: an empir-
ical study of comprehension. In: Proceedings of the 2012 Conference of the Center for
Advanced Studies on Collaborative Research. IBM Corp. (2012)

25. Badreddin, O., Lethbridge, T.C., Elassar, M.: Modeling Practices in Open Source
Software. In: OSS 2013, 9th International Conference on Open Source Systems (to
appear, 2013)

	Improving Code Generation for Associations: Enforcing Multiplicity Constraints and Ensuring Referential Integrity
	1 Introduction
	2 Associations in Practice
	3 Textual Associations in Umple
	4 Analyzing Association Multiplicity
	4.1 Bidirectional Associations Between Two Different Classes
	4.2 Unidirectional (Directed) Associations
	4.3 Reflexivity and Symmetry
	4.4 Implications for Code Generation

	5 Existing Code Generators
	5.1 Code Generation Patterns
	5.2 ArgoUML
	5.3 StarUML
	5.4 Bouml
	5.5 Green Code Generator
	5.6 Rational Software Architect (RSA)

	6 Association Code Generation in Umple
	6.1 Defining Association Variables
	6.2 Constructor Parameters for Associations
	6.3 Get Method Code Generation Patterns
	6.4 Set Method Code Generation Patterns
	6.5 Patterns for Generated Support Methods

	7 Related Work
	8 Conclusion
	References

