
Studies in Computational Intelligence 496

Software Engineering
Research, Management
and Applications

Roger Lee Editor

Studies in Computational Intelligence

Volume 496

Series Editor

Janusz Kacprzyk, Warsaw, Poland

For further volumes:

http://www.springer.com/series/7092

Roger Lee
Editor

Software Engineering
Research, Management
and Applications

ABC

Editor

Roger Lee
Software Engineering and Information Technology Institute
Central Michigan University
Michigan
USA

ISSN 1860-949X ISSN 1860-9503 (electronic)
ISBN 978-3-319-00947-6 ISBN 978-3-319-00948-3 (eBook)
DOI 10.1007/978-3-319-00948-3
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013939743

c© Springer International Publishing Switzerland 201
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

4

Preface

The purpose of the 11th International Conference on Software Engineering Re-
search,Management andApplications (SERA2012) held onAugust 7 –August
9, 2013 in Prague, Czech Republic, was to bring together scientists, engineers,
computer users, and students to share their experiences and exchange new
ideas and research results about all aspects (theory, applications and tools) of
Software Engineering Research,Management and Applications, and to discuss
the practical challenges encountered along theway and the solutions adopted to
solve them. The conference organizers selected the best 17 papers from those
papers accepted for presentation at the conference in order to publish them
in this volume. The papers were chosen based on review scores submitted by
members of the program committee and underwent further rigorous rounds of
review.

In chapter 1, Haeng-Kon Kim proposes the XML security model for mo-
bile commerce services based electronic commerce system to guarantee the
secure exchange of trading information. To accomplish the security of XML,
the differences of XML signature, XML encryption and XML key manage-
ment scheme respect to the conventional system should be provided. The new
architecture is proposed based on unique characteristics of mobile commerce
on XML

In chapter 2, Benjamin Aziz presents a formal model of VOs using
the Event-B specification language. Grid computing is a global-computing
paradigm focusing on the effective sharing and coordination of heterogeneous
services and resources in dynamic, multi-institutional Virtual Organisations
(VOs). They have followed a refinement approach to develop goal-oriented
VOs by incrementally adding their main elements: goals, organisations and
services.

In chapter 3, Omar Badreddin, Andrew Forward, and Timothy C. Leth-
bridge present modeling characteristics of attributes from first principles and
investigate how attributes are handled in several open-source systems. They
look at code-generation of attributes by various UML tools and present their

VI Preface

own Umple language along with its code generation patterns for attributes,
using Java as the target language.

In chapter 4, Cagla Atagoren and Oumout Chouseinoglou conduct a case
study in one of the leading, medium sized software companies of Turkey by
utilizing the root cause analysis (RCA) method. The collected defect data
has been analyzed with Pareto charts and the root causes for outstanding
defect categories have been identified with the use of fishbone diagrams and
expert grading, demonstrating that these techniques can be effectively used
in RCA. The main root causes of the investigated defect items have been
identified as lack of knowledge and extenuation of the undertaken task, and
corrective actions have been proposed to upper management.

In chapter 5, Amina Magdich, Yessine Hadj Kacem, and Adel Mahfoudhi
propose through their paper an extension of MARTE/GRM sub-profile to
consider the modeling of information needed for the half-partitioned and
global scheduling step. The recent extension of Unified Modeling Language
(UML) profile for Modeling and Analysis of Real-Time Embedded systems
(MARTE) is enclosing a lot of stereotypes and sub-profiles providing support
for designers to beat the shortcomings of complex systems development. In
particular, the MARTE/GRM (Generic Resource Modeling) package offers
stereotypes for annotating class diagrams with the needed information which
will be extracted to fulfill a scheduling phase.

In chapter 6, Iakovos Ouranos and Petros Stefaneas sketch some first
steps towards the definition of a protocol algebra based on the framework of
behavioural algebraic specification. Following the tradition of representing
protocols as state machines, we use the notion of Observational Transition
System to express them in an executable algebraic specification language such
as CafeOBJ.

In chapter 7, Sébastien Salva and Tien-Dung Cao propose a model-based
testing approach which combines two monitoring methods, runtime verifica-
tion and passive testing. Starting from ioSTS (input output Symbolic Tran-
sition System) models, this approach generates monitors to check whether an
implementation is conforming to its specification and meets safety properties.
This paper also tackles the trace extraction problem by reusing the notion of
proxy to collect traces from environments whose access rights are restricted.

In chapter 8, Donghwoon Kwon,Young Jik Kwon, Yeong-Tae Song, and
Roger Lee investigate how user characteristics affect quality factors for an
effective Shopping mall websites implementation. User characteristics consist
of gender, age, school year, department, experience, and purchasing experi-
ence during a specified period. They also selected a total of 14 quality factors
from the literature review such as design, customer satisfaction, etc. As a
proof of their hypothesis to investigate how those user characteristics and
quality factors are interrelated, they have used 6 hypotheses. To verify them,
the results have analyzed the SAS 9.2 statistic package tool and they have
asked 519 participants to fill out a questionnaire for 5 Chinese and 8 Korean
websites.

Preface VII

In chapter 9, Omar Badreddin, Andrew Forward, and Timothy C. Leth-
bridge introduce a syntax for describing associations using a model-oriented
language called Umple. They show source code from existing code-generation
tools and highlight how the issues above are not adequately addressed. They
outline code generation patterns currently available in Umple that resolve
these difficulties and address the issues of multiplicity constraints and refer-
ential integrity.

In chapter 10, Damla Aslan, Ayça Tarhan, and Onur Demirörs report a
case study that aimed to investigate the effect of process enactment data on
product defectiveness in a small software organization. They carried out the
study by defining and following a methodology that included the application
of Goal-Question-Metric (GQM) approach to direct analysis, the utilization of
a questionnaire to assess usability of metrics, and the application of machine
learning methods to predict product defectiveness. The results of the case
study showed that the accuracy of predictions varied according to the machine
learning method used, but in the overall, about 3% accuracy improvement
was achieved by including process enactment data in the analysis.

In chapter 11, Javier Berrocal, José Garćıa-Alonso and Juan Manuel
Murillo study implicit relationships that often exist between different types
of elements that subsequently have to be identified and explicitly represented
during the design of the system. This requires an in-depth analysis of the gen-
erated models on behalf of the architect in order to interpret their content.
Misunderstandings that take place during this stage can lead to an incorrect
design and difficult compliance with the business goals. They present a series
of profiles that explicitly represent these relationships during the initial devel-
opment phases, and which are derived to the system design. They are reusable
by the architect, thereby decreasing the risk of their misinterpretation.

In chapter 12, Oumout Chouseinoglou and Semih Bilgen analyze tradi-
tional approaches in software engineering education (SEEd), which are mostly
inadequate in equipping students with these unusual and diverse skills. Their
study, as part of a larger study aiming to develop a model for assessing or-
ganizational learning capabilities of software development organizations and
teams, proposes and implements a novel educational approach to SEEd com-
bining different methodologies, namely lecturing, project development and
critical thinking. The theoretical background and studies on each approach
employed in this study are provided, together with the rationales of applying
them in SEEd.

In chapter 13, Étienne André, Christine Choppy, and Gianna Reggio pro-
pose activity diagram patterns for modeling business processes, devise a mod-
ular mechanism to compose diagram fragments into a UML activity diagram,
and propose semantics for the produced activity diagrams, formalized by col-
ored Petri nets. Our approach guides the modeler task (helping to avoid
common mistakes), and allows for automated verification.

In chapter 14, Barbara Gallina, Karthik Raja Pitchai and Kristina
Lundqvist propose S-TunExSPEM, an extension of Software & Systems

VIII Preface

Process Engineering MetaModel 2.0 (SPEM 2.0) to allow users to specify
safety-oriented processes for the development of safety-critical systems in
the context of safety standards according to the required safety level. More-
over, to enable exchange for simulation, monitoring, execution purposes, S-
TunExSPEM concepts are mapped onto XML Process Definition Language
2.2 (XPDL 2.2) concepts. Finally, a case-study from the avionics domain
illustrates the usage and effectiveness of the proposed extension.

In chapter 15, Martin Babka, Tomáš Balyo, and Jaroslav Keznikl de-
scribe an application in the code performance modeling domain, which re-
quires SMT-solving with a costly decision procedure. Then they focus on the
problem of finding minimum-size satisfying partial truth assignments. they
describe and experimentally evaluate several methods how to solve this prob-
lem. These include reduction to partial maximum satisfiability – PMAXSAT,
PMINSAT, pseudo-Boolean optimization and iterated SAT solving. They ex-
amine the methods experimentally on existing benchmark formulas as well
as on a new benchmark set based on the performance modeling scenario.

In chapter 16, Jacob Geisel, Brahim Hamid, and Jean-Michel Bruel deal
with a specification language for development methodologies centered around
a model-based repository, by defining both a metamodel enabling process
engineers to represent repository management and interaction and an archi-
tecture for development tools. The modeling language they propose has been
successfully evaluated by the TERESA project for specifying development
processes for trusted applications centered around a model-based repository
of security and dependability (S&D) patterns.

In chapter 17, Haeng-Kon Kim and Roger Lee discuss some of the prob-
lems of the current mobile service applications development and show how
the introduction of CBD (Component Based Development) provides flexible
and extensible solutions to it. Mobile service applications resources become
encapsulated as components, with well defined interfaces through which all
interactions occur. Builders of components can inherit the interfaces and their
implementations, and methods (operations) can be redefined to better suit
the component. New characteristics, such as concurrency control and per-
sistence, can be obtained by inheriting from suitable base classes, without
necessarily requiring any changes to users of these resources. They describe
the MSA (Mobile Service Applications) component model, which we have de-
veloped, based upon these ideas, and show, through a prototype implemen-
tation, how we have used the model to address the problems of referential
integrity and transparent component (resource) migration.

It is our sincere hope that this volume provides stimulation and inspiration,
and that it will be used as a foundation for works to come.

August 2013 Petr Hnetynka
Program Chair

List of Contributors

José Garćıa-Alonso
University Of Extremadura,
Spain
jgaralo@unex.es

Étienne André
Université Paris 13,
France
Etienne.Andre@lipn.univ-

paris13.fr

Cagla Atagoren
Başkent University,
Turkey
caglaatagoren@gmail.com

Benjamin Aziz
University of Portsmouth,

United Kingdom
benjamin.aziz@port.ac.uk

Damla Aslan
Simsoft Computer Technologies Co.,
Turkey
damla.sivrioglu@simsoft.com.tr

Martin Babka
Charles University, Czech Republic
babka@ktiml.mff.cuni.cz

Omar Badreddin
School of Electrical Engineering and

Computer Science,
Canada
obadr024@eecs.uottawa.ca

Tomáš Balyo
Charles University,
Czech Republic
balyo@ktiml.mff.cuni.cz

Javier Berrocal
University of Extremadura,
Spain
jberolm@unex.es

Semih Bilgen
Middle East Technical University,
Turkey
semih-bilgen@metu.edu.tr

Jean-Michel Bruel
IRIT, University of Toulouse,
France
bruel@irit.fr

Tien-Dung Cao
Tan Tao University,
Vietnam
dung.cao@ttu.edu.vn

X List of Contributors

Christine Choppy
Université Paris 13,
France
Christine.Choppy@lipn.

univ-paris13.fr

Oumout Chouseinoglou
Başkent University,
Turkey
umuth@baskent.edu.tr

Onur Demirörs
Informatics Institute, METU,
Turkey
demirors@ii.metu.edu.tr

Andrew Forward
School of Electrical Engineering and

Computer Science, Canada
aforward@eecs.uottawa.ca

Barbara Gallina
Mälardalen University,
Sweden
barbara.gallina@mdh.se

Jacob Geisel
IRIT, University of Toulouse,
France
geisel@irit.fr

Brahim Hamid
IRIT, University of Toulouse,
France
hamid@irit.fr

Yessine Hadj Kacem
CES Laboratory, ENIS,
Tunisia
yessine.hadjkacem@ceslab.org

Jaroslav Keznikl
Charles University,
Czech Republic
Academy of Sciences of the

Czech Republic,
Czech Republic
keznikl@d3s.mff.cuni.cz

keznikl@cs.cas.cz

Haeng-Kon Kim
Catholic University of Deagu,
Korea
hangkon@cu.ac.kr

Donghwoon Kwon
Towson University, USA
dkwon3@students.towson.edu

Young Jik Kwon
Daegu University, Korea
yjkwon@daegu.ac.kr

Roger Lee
Central Michigan University, USA
lee@cps.cmich.edu

Timothy C. Lethbridge
School of Electrical Engineering and

Computer Science, Canada
tcl@eecs.uottawa.ca

Kristina Lundqvist
Mälardalen University,
Sweden
kristina.lundqvist@mdh.se

Amina Magdich
CES Laboratory, ENIS,
Tunisia
amina.magdich@ceslab.org

List of Contributors XI

Adel Mahfoudhi
CES Laboratory, ENIS,
Tunisia
adel.mahfoudhi@ceslab.org

Juan Manuel Murillo
University Of Extremadura,
Spain
juanmamu@unex.es

Iakovos Ouranos
Hellenic Civil Aviation Authority,
Heraklion Airport,
Greece
iouranos@central.ntua.gr

Karthik Raja Pitchai
Mälardalen University,
Sweden
kpi10001@student.mdh.se

Gianna Reggio
DIBRIS, Italy
gianna.reggio@unige.it

Sébastien Salva
University of Auvergne, France
sebastien.salva@udamail.fr

Yeong-Tae Song
Towson University, USA
ysong@towson.edu

Petros Stefaneas
National Technical University of

Athens, Greece
petros@math.ntua.gr

Ayça Tarhan
Hacettepe University,
Turkey
atarhan@cs.hacettepe.edu.tr

Contents

Security Certification Model for Mobile-Commerce 1
Haeng-Kon Kim

On Formalising Policy Refinement in Grid Virtual
Organisations . 17
Benjamin Aziz

Exploring a Model-Oriented and Executable Syntax for
UML Attributes . 33
Omar Badreddin, Andrew Forward, Timothy C. Lethbridge

A Case Study in Defect Measurement and Root Cause
Analysis in a Turkish Software Organization 55
Cagla Atagoren, Oumout Chouseinoglou

Extending UML/MARTE-GRM for Integrating Tasks
Migrations in Class Diagrams . 73
Amina Magdich, Yessine Hadj Kacem, Adel Mahfoudhi

Towards a Protocol Algebra Based on Algebraic
Specifications . 85
Iakovos Ouranos, Petros Stefaneas

A Model-Based Testing Approach Combining Passive
Conformance Testing and Runtime Verification: Application
to Web Service Compositions Deployed in Clouds. 99
Sébastien Salva, Tien-Dung Cao

An Empirical Study on the Relationship between User
Characteristics and Quality Factors for Effective Shopping
Mall Websites Implementation . 117
Donghwoon Kwon, Young Jik Kwon, Yeong-Tae Song,
Roger Lee

XIV Contents

Improving Code Generation for Associations: Enforcing
Multiplicity Constraints and Ensuring Referential
Integrity . 129
Omar Badreddin, Andrew Forward, Timothy C. Lethbridge

How Process Enactment Data Affects Product
Defectiveness Prediction – A Case Study . 151
Damla Aslan, Ayça Tarhan, ve Onur Demirörs

Modeling Business and Requirements Relationships for
Architectural Pattern Selection . 167
Javier Berrocal, José Garćıa-Alonso, Juan Manuel Murillo

Introducing Critical Thinking to Software Engineering
Education . 183
Oumout Chouseinoglou, Semih Bilgen

Activity Diagrams Patterns for Modeling Business
Processes . 197
Étienne André, Christine Choppy, Gianna Reggio

S-TunExSPEM: Towards an Extension of SPEM 2.0 to
Model and Exchange Tunable Safety-Oriented Processes 215
Barbara Gallina, Karthik Raja Pitchai, Kristina Lundqvist

Solving SMT Problems with a Costly Decision Procedure
by Finding Minimum Satisfying Assignments of Boolean
Formulas . 231
Martin Babka, Tomáš Balyo, Jaroslav Keznikl

Repository-Centric Process Modeling – Example of a
Pattern Based Development Process . 247
Jacob Geisel, Brahim Hamid, Jean-Michel Bruel

Applying CBD to Build Mobile Service Applications 263
Haeng-Kon Kim, Roger Lee

Author Index . 279

Security Certification Model for
Mobile-Commerce

Haeng-Kon Kim

Abstract. The most important technology in the mobile commerce based on
mobile applications is to guarantee the certification and security of trading
information exchange. Many technologies are proposed as a standard to sup-
port this security problem. M(Mobile)-commerce is a new area arising from
the marriage of electronic commerce with emerging mobile and pervasive com-
puting technology. The newness of this area and the rapidness with which it
is emerging makes it difficult to analyze the technological problems that m-
commerce introduces and, in particular, the security and privacy issues. This
situation is not good, since history has shown that security is very difficult
to retro-fit into deployed technology, and pervasive m-commerce promises to
permeate and transform even more aspects of life than e-commerce and the
Internet has. One of them is an XML (eXtensible Markup Language). This
is used in various applications as the document standard for electronic com-
merce system. The XML security has become very important topic. In this
paper, we propose the XML security model for mobile commerce services
based electronic commerce system to guarantee the secure exchange of trad-
ing information. To accomplish the security of XML, the differences of XML
signature, XML encryption and XML key management scheme respect to the
conventional system should be provided. The new architecture is proposed
based on unique characteristics of mobile commerce on XML. Especially the
method to integrate the process management system need to the electronic
commerce is proposed.

Keywords: Mobile commerce, Mobile security, XML management, Mobile,
networks.

Haeng-Kon Kim
School of Information Technology, Catholic University of Deagu, Korea
e-mail: hangkon@cu.ac.kr

R. Lee (Ed.): SERA, SCI 496, pp. 1–15.
DOI: 10.1007/978-3-319-00948-3_1 c© Springer International Publishing Switzerland 2014

2 H.-K. Kim

1 Introduction

Mobile commerce is an interesting and challenging area of research and de-
velopment. It presents many issues that cover many disciplines and may best
be addressed by an active participation of computer and telecommunications
experts, social scientists, economists and business strategists. M-commerce
introduced several new classes of applications, reviewed networking require-
ments, and discussed application development support. Since the area of mo-
bile commerce is very new and still emerging, several interesting research
problems are currently being addressed or should be addressed by the re-
search and development community. It is believed that user trust will play
a crucial role in acceptance and widespread deployment of mobile commerce
applications. Regarding m-payment, some systems are under development
or already operational. One of the main future challenges will be to unify
payment solutions, providing the highest possible level of security.

Much of information is propagated by Internet. Internet that is an open
communication system provides browsers based on easy protocols and various
tools for information handling. Therefore m-commerce is proliferated. This
m-Commerce is based on the standards for document processing in Internet

In the last few years, advances in and widespread deployment of informa-
tion technology have triggered rapid progress in m-commerce. This includes
automation of traditional commercial transactions (electronic retailing, etc.)
as well as the creation of new transaction paradigms that were infeasible with-
out the means of widely deployed information technology. New paradigms
include electronic auctioning of purchase orders, as well as novel, with less
transaction models such as Napster [1]. M-commerce has heightened the focus
on security both of systems and also for messaging and transactions [2].

The enterprises perform not only the internal activities but also the in-
teractive businesses with other companies to secure the competitive power
of them. In general, the trading business between enterprises is performed
typically according to the pre-defined business process by exchanging the
contracted documents.

The purpose of this paper is to propose a business model for B2B environ-
ment for m-commerce. This model is based on the business process manage-
ment system which manages the conventional internal processes of enterprises.
This model also analyzes the key elements needed to m-commerce for inter-
enterprises. Especially, the documents and data exchanged between companies
is formalized by using the XML messages that are approved as the standard
tools for information exchanges. The business processes exchange the XML
messages. During all processes, therefore, the efficient business integrationmay
be possible. This model ensures the secure information exchange which is an
essential factor in m-commerce as in figure 1.

The m-commerce should be based on the public key encryption system
to authenticate the valid users. The method to ensure the reliability and
security of user’s public keys is required. Public key infrastructure (PKI)

Security Certification Model for Mobile-Commerce 3

provides secure and reliable method to open the user’s public keys to the
public [3]. Public key infrastructure has very important roles in Internet E-
Commerce. It opens the user’s public keys to public in secure and reliable
manner. Since the XML technology is used as the format of message exchange
in Internet e-Business, the security for XML documents becoming essential
and XML digital signature should be supported for secure m-commerce [4,5].

In this paper, the security application of m-commerce is designed which is
reliable by using X.509 certificate based on PKI. A web service is designed
to implement the PKI-based security application for mutual authentication.
The digital signature protocol based on PKI and XML is also designed to
solve the security and repudiation problem of message exchange in B2B on
m-commerce.

Fig. 1 Secure Information Exchange in M- Commerce

2 Background Study

2.1 Security for Mobile Commerce Applications

Security for mobile Commerce application is a crucial issue. Without secure
commercial information exchange and safe electronic financial transactions
over mobile networks, neither service providers nor potential customers will
trust mobile commerce systems. From a technical point of view, mobile com-
merce over wireless networks is inherently insecure compared to electronic
commerce over the Internet. The reasons are as follows:

• Reliability and integrity: Interference and fading make the wireless chan-
nel error-prone. Frequent handoffs and disconnections also degrade the
security services.

4 H.-K. Kim

• Confidentiality/privacy: The broadcast nature of the radio channel makes
it easier to tap. Thus, communication can be intercepted and interpreted
without difficulty if no security mechanisms such as cryptographic encryp-
tion are employed.

• Identification and authentication: The mobility of wireless devices
introduces an additional difficulty in identifying and authenticating mobile
terminals.

• Capability: Wireless devices usually have limited computation capabil-
ity, memory size, communication bandwidth and battery power. This will
make it difficult to utilize high-level security schemes such as 256-bit
encryption.

Fig. 2 Securities Mechanisms and Systems

Mobile commerce security is tightly coupled with network security. The se-
curity issues span the whole mobile commerce system, from one end to the
other, from the top to the bottom network protocol stack, from machines
to humans. Therefore, many securities mechanisms and systems used in the
mobile application and commerce may be involved as in figure 2.

Public key encryption system is an asymmetric system which is based on
mathematical functions. It has the pair of keys one is opened to public and
the other is saved securely instead of private key encryption system. Then
the key is opened is called public key, the other is called private key. The
majority security systems for E-Commerce based on public key algorithm
because the key management and distribution are difficult. It also resolves
the anonymous and user authentication problems.

Public key infrastructure should be constructed based on public key cer-
tificates. The certification authority(CA) authenticates the trading subjects.
The certification authority creates digital signature by using their own pri-
vate key and attaches them to the certificate for proving the subject users

Security Certification Model for Mobile-Commerce 5

are valid. The certificate includes the public key of certificate’s users and
information of subject users.

2.2 M-Commerce Framework

This emerging area of m-commerce creates new security and privacy chal-
lenges because of new technology, novel applications, and increased pervasive-
ness. Mobile applications will differ from standard e-commerce applications,
because the underlying technology has fundamental differences:

- Limitations of Client Devices. Current (and looming) PDAs are lim-
ited in memory, computational power, cryptographic ability, and (for the
time being) human I/O. As a consequence, the user cannot carry his en-
tire state along with him, cannot carry out sophisticated cryptographic
protocols, and cannot engage in rich GUI interaction.

- Portability of Client Device. PDAs have the potential to accom-
pany users on all activity, even traditionally offline actions away from
the desk-top. Besides creating the potential for broader permeation of e-
transactions, this fact also makes theft, loss, and damage of client devices
much more likely.

- Hidden and Unconscious Computing. Both to compensate for limited
PDA storage, as well as to provide new ways to adapt a user’s comput-
ing environment to her current physical environment, pervasive computing
often permits client devices to transparently interact with the infrastruc-
ture without the user’s direct interaction. This unconscious interaction can
include downloading executable content.

- Location Aware Devices. When the user is mobile, the infrastructure
can potentially be aware of the location of the user (e.g., in a particular
telephone cell). This knowledge introduces a wide range of applications
which have no analogue in the stationary user model.

- Merchant Machines. In the e-commerce world, the merchant (i.e., the
party that is not the user) has powerful machines, with ample storage and
computation, usually in a physically safe place. However, to fully exploit
the potential interacting with mobile, PDA equipped users, merchant ma-
chines may move out into the physical world. This move brings with its
own challenges of increased physical exposure, limited computation and
state, and limited interconnection.

The most threatened factor to the m-commerce is the security problems. The
messages exchanged by an XML message via Internet is not secure because
the user authentication is not guaranteed as shown in Fig. 3 [6].

We are aware that consensus within business and industry of future ap-
plications is still in its infancy. However, we are interested in examining
those future applications and technologies that will form the next frontier
of electronic commerce. To help future applications and to allow designers,

6 H.-K. Kim

Fig. 3 Unsecured message exchange

developers and researchers to strategize and create mobile commerce appli-
cations, a four level integrated framework is proposed as in figure 4.

These four levels are as follows: m-commerce applications, user infrastruc-
ture, middleware and network infrastructure which simplifies the design and
development. By following this framework a single entity is not forced to
do everything to build m-commerce systems, rather they can build on the
functionalities provided by others. The framework also provides a developer
and provider plane to address the different needs and roles of application
developers, content providers and service providers.

Service providers can also act as content aggregators, but are unlikely to
act as either an application or content provider due to their focus on the
network and service aspects of m-commerce. Content provider can build its
service using applications from multiple application developers and also can
aggregate content from other content providers and can supply the aggregated
content to a network operator or service provider.

Fig. 4 Framework of M-commerce

Security Certification Model for Mobile-Commerce 7

2.3 Mobile Applications and XML

M-commerec services are software interface which can be found and called
by another programs on the web regardless of location and platforms. M-
commerec service is independent on platforms, devices and location. M-
commerec service provides dynamic functionality. M-commerec service can
be also applied to the conventional systems by low cost. The mobile appli-
cations service in m-commerce is a standardized software technology which
combines conventional computer system programs between businesses on In-
ternet. This standard technology enables all business functionalities and ser-
vices. The M-commerec services by using Internet overcome the differences of
communications among the heterogeneous operation systems and program-
ming languages. So to speak, the web services are software components which
conform e-Business standard and have business logics of Internet. XML stan-
dard describes the classes of data objects for XML documents. It also describe
the operations of computer programs which process these XML documents.
XML is an application of SGML (Standard Generalized Markup Language).

XML documents consist of entities which are storage units. The entity
contains parsed data or un-parsed data. The parsed data consists of charac-
ters. Some of these characters are character data, the others are markups.
The markups encode the arrangement plan of physical storage and the de-
scription of logical structure. XML provides a mechanism which enforces the
arrangement plan of storage and logical structure. The software module as
it called XML processor reads XML document and accesses the content and
structure of that. XML is a standard for organizing the data, XSL (eXten-
sible Stylesheet Language) is a standard for method to output this data.
XSL is a translation technology. XSL is a language to translate each field of
XML to relevant tags of HTML and represent to web browser. XML schema
is the term for file to define the structure and content of XML documents.
DTD (Document Type Definition) is also a kind of schema, but it has some
defects. DTD should be described by E-BNF and so difficult. On the other
hand, XML schema can be desctibed just using XML itself. Moreover, XML
schema can use various data types that are not supported in DTD. In XML
schema the elements can be reused. So to peak, XML schema extended model
of DTD. XML schema can define precisely the types of XML documents and
the relationships of elements. XML documents should be parsed to make
a tree structure from XML elements. DOM (Document Object Model) is a
model to store parsed data as a tree structure and permits accessing particu-
lar element. According to DOM, XML documents are analyzed to client and
server structure as in figure 5.

Recently, XML is in the spotlight as a technology applicable to various
applications like B2B and B2C. The importance of security is increased in
E-Commerce because the most businesses are processed in electronically. Es-
pecially, the standards for security in documents exchanging using XML in
m-commerce have been established. The XML-Signature Group of IETF and

8 H.-K. Kim

Fig. 5 Client-Server Structure for M-commerce on XML

W3C recommended the specification for ”XML-Signature Syntax and Pro-
cessing”. This specification describes the syntax and processes for XML dig-
ital signature.

The following should be considered for security of XML digital signature.

• Confidentiality
• Integrity
• Authentication
• Authorization
• Non-Repudiation

3 Mobile Commerce Security Model

3.1 M-Commerce Security Issues

As mentioned earlier, m-commerce is not possible without a secure environ-
ment, especially for those transactions involving monetary value. Depending
on the point of views of the different participants in an m-commerce scenario,
there are different security challenges . These security challenges relate to:

• The mobile device - Confidential user data on the mobile device as
well as the device itself should be protected from unauthorized use. The
security mechanisms employed here include user authentication (e.g. PIN
or password authentication), secure storage of confidential data (e.g. SIM
card in mobile phones) and security of the operating system.

• The network operator infrastructure - Security mechanisms for the
end user often terminate in the access network. This raises questions re-
garding the security of the users data within and beyond the access net-
work. Moreover, the user receives certain services for which he/she has to
pay. This often involves the network operator and he/she will want to be
assured about correct charging and billing.

Security Certification Model for Mobile-Commerce 9

• The kind of m-commerce application - M-commerce applications, es-
pecially those involving payment, need to be secured to assure customers,
merchants, and network operators. For example, in a payment scenario
both sides will want to authenticate each other before committing to a
payment. Also, the customer will want assurance about the delivery of
goods or services. In addition to the authenticity, confidentiality and in-
tegrity of sent payment information, non-repudiation is important.

The figure 6 shows the security issues for m-commerce in the view of stake-
holders as application developers, contents provider, wireless service provider,
equipment vendors and other service provider in this paper.

Fig. 6 M-commerce Security Issues

3.2 Mobile Applications Signature

The syntax of XML signature is a complicated standard to provide vari-
ous functionalities. It can be applied any signatures because it is designed
to have high-level extensibility and flexibility. W3C recommendation defined
XML signature syntax and processing rules for them. Traditionally, middle-
ware unites different applications, tools, networks and technologies; allowing
user access via a common interface. Mobile middle-ware can be defined as
an enabling layer of software that is used by the applications development
to connect the m-commerce applications with different networks and operat-
ing systems without introducing mobility awareness in the applications. To
allow for web content to be accessible from everywhere, from PCs to TVs to
palm devices to cellular phones, the World Wide Web consortium (W3C) had
developed several recommendations. These recommendations include the Ex-
tensible Makeup Language (XML) for richer semantic information, improved
Cascading Style Sheets (CSS) and Extensible Style Sheet Language (XSL) to

10 H.-K. Kim

further separate content from presentation, and a Document Object Model
(DOM) which defines a language independent application programming in-
terface that applications can use to access and modify the structure, content
and style of HTML and XML documents. Fig.7 shows the Mobile middleware
for Certification Model for Mobile-Commerce [7].

Fig. 7 Mobile middleware Certification Model for Mobile-Commerce in this paper

XML signature starts with an element <Signature>. The element <Sig-
nature>is an important one that consists of signature and identifying the
signatures. The element <SignedInfo>lists ”the signed information” which
are the objects to sign by us. The particular data streams for Digest is repre-
sented by the element <References>. The URI (Uniform Resource Identifier)
syntax is used to prescribe these streams. The element <KeyInfo>may be
used efficiently in automation of XML signature processing because it pro-
vides identifying mechanism for verification keys. The element <Object>is a
container which can retain any types of data objects. Two elements for <Sig-
natureProperties>and <Manifest>are defined that should be contained in
the element <Object>. The element <SignatureProperties>is a pre-defined
container to verify signatures. It retains the assertions for signatures. These
assertions may be used to verify the signatures and integrity. The element
<Manifest>is used to verify references for application domains. It also pro-
vide a convenient method for multiple-signers to sign multiple documents.
If the element <Manifest>does not used, the results of signature increase
in volume and the performance may be depreciated. The creation informa-
tion for certificates and the issued certificates are exchanged in the form of
XML documents. The important information is encrypted as a unit of XML
element.

Security Certification Model for Mobile-Commerce 11

3.3 Structure for XML Security

In this paper, the security system is designed based on the web service plat-
form. This system executes and verifies XML signatures independent from
the conventional applications. Consider the Purchase Order is submitted by
Company A via Internet and is confirmed by Company B as shown in Fig. 7.
Company A executes digital signature before transmission and Company B
confirms after reception. So, the secure SOAP message exchanges are possi-
ble. In this process the Proxy has a role to check the digital signatures under
surveillance of delivered messages. The real object to execute and to confirm
the digital signature is implemented as a web service. The following is the
procedures for. Mobile Secure exchange of XML messages as in figure 8.

Fig. 8 Mobile Secure exchange of XML messages

Step 1. The business process A of company A transmits the message for
Purchase Order to business process B of company B.

Step 2. When the purchase is passing proxy A, the digital signature is exe-
cuted by sending the message to digital signature server.

Step 3. The proxy B of company B receives the signed message and sends it
to the confirmation server. The confirmation server verifies the signed
message.

Step 4. The verification results are sent to proxy B. If the signature is valid,
proxy B removes the signature and sends it to business process B.
The information of signer may be preserved.

Step 5. The business process B transacts the message for Purchase Order.
The business process B makes a reply message and transmits it to
company A.

12 H.-K. Kim

Step 6. When the reply message is passing proxy B, the digital signature is
executed using the private key of company B by sending the message
to digital signature server.

Step 7. The company A sends the message from Proxy A to the confirmation
server.

Step 8. If the digital signature is valid, the signature is removed from the
message and the message is sent to the business process A.

The proxy determines whether it executes digital signature or not by checking
the XML messages on network. Consequently, the workflow A and B do not
concern the execution and confirmation of signatures. It is a forte that the
conventional applications may not be changed.

The content verifier of the proxy server determines whether it needs a dig-
ital signature or not by checking the existence of an element <Signature>in
XML schema. If it needs, two modules are required. One is to translate the
XML message to the form of SOAP message, the other is reverse.

3.4 Execution of Digital Signature

Figure 7 shows an example of the message for Purchase Order with digital
signature. The procedure to execute the message in Fig. 9. by digital signature
web service is as follows:
Step 1. Determine the object for digital signature. This is given as the form

of URI in general.
Step 2. Calculate the value of Digest for each object for signature. The ob-

ject for signature is defined in the element <Reference>and each

Fig. 9 XML Digital Signature

Security Certification Model for Mobile-Commerce 13

Digest is stored in the element <DigestValue>. The element <Di-
gestMethod>defines the algorithm.

Step 3. The element <SignedInfo>contains the elements <Reference>of
each objects for signature. The element <CanonicalizationMethod>
designates the algorithm that normalizes the element <SignedInfo>.

Step 4. The Digest of the elements <SignedInfo>is calculated and signed,
then stored in the element <SignatureValue>.

Step 5. If the information of public key is required, it is stored in the element
<KeyInfo>. This is a certificate of X.509 for sender and needed
to confirm the digital signature. The procedure for confirmation is
shown in Fig. 10.

Step 6. Finally, the XML digital signature is generated by including all cre-
ated elements to the element <Signature>.

Fig. 8 shows the procedures to confirm the reliability of digital signature.
The information of certificates is extracted from the element <KeyInfo>to

confirm the generated digital signature. It is compared to the certificate stored
in the root certificate registry. Then the reliability is ensured.

In our works, we applied our model to mobile financial applications are
likely to be one of the most important components of m-commerce as in figure
11. They could involve a variety of applications such as mobile banking and
brokerage service, mobile money transfer, and mobile payments as shown in
the figure 11. One interesting mobile financial application is micro payment
involving small purchases such as vending and other items. A mobile device
can communicate with a vending machine using a local wireless network to
purchase desired items. Micropayments can be implemented in a variety of
ways. One way is that the user could make a call to a certain number where
per minute charges equal the cost of the vending item.

Fig. 10 Confirmation of Reliability of Mobile Security Model

14 H.-K. Kim

Fig. 11 One Execution example of M-commerce Services

4 Conclusion and Further Study

M-commerce introduced several new classes of applications, reviewed net-
working requirements, and discussed application development support. Since
the area of mobile commerce is very new and still emerging, several interest-
ing research problems are currently being addressed or should be addressed
by the research and development community. It is believed that user trust
will play a crucial role in acceptance and widespread deployment of mobile
commerce applications.

Regarding m-payment, some systems are under development or already
operational. One of the main future challenges will be to unify payment
solutions, providing the highest possible level of security.

In this paper, PKI-based digital signature is designed based on XML and
web services. It ensures the secure trading and non-repudiation in E-Commerce.
The XML digital signature is designed and the operation structure is also pro-
posed when two companies exchange the trading information as the form of
XML messages. By using the concepts of proxy and web service, the conven-
tional application programs can be operated without change. All information
for document exchange is represented in XML. Only the secret information of
XML document is encrypted. Because the digital signature is executed whole
document, the security of trading and non-repudiation are guaranteed.

In the future, we will research for connecting to the CA, distribution of
CRL (Certificate Revocation List) and key renewal for CA for improvement
our model.

References

1. The Napster.com home page, http://www.napster.com
2. Chari, S., Kermani, P., Smith, S., Tassiulas, L.: Security Issues in M-Commerce:

A Usage-Based Taxonomy. In: Liu, J., Ye, Y. (eds.) E-Commerce Agents. LNCS
(LNAI), vol. 2033, pp. 264–282. Springer, Heidelberg (2001)

http://www.napster.com

Security Certification Model for Mobile-Commerce 15

3. RFC: 2560 X.509 Internet Public Key Infrastructure Online Certificate Status
Protocol - OCSP (1996)

4. W3C, Extensible Markup Language (XML) (1998), http://www.w3c.org/XML
5. XML Signature Requirements WD, W3C Working Draft (October 1999),

http://www.w3.org

6. Cho, K.M.: Framework of Content Distribution in Mobile Network Environ-
ment. In: Proc. the 2003 International Conference on Internet Computing (IC
2003), pp. 429–434 (2003)

7. http://www.roseindia.net/services/m-commerce/mobile-commerce.shtml

8. XML-Signature Syntax and Processing, W3C Recommendation (February
2002), http://www.w3c.org

9. XML Encryption Syntax and Processing, W3C Working Draft (October 2001),
http://www.w3c.org

10. Decryption Transform for XML Signature, W3C Working Draft (October
2001), http://www.w3c.org

11. Takase, T., et al.: XML Digital Signature System Independent Existing Appli-
cations. In: Proc. the 2002 Symposium on Application and the Internet, pp.
150–157 (2002)

12. Xavier, E.: XML based Security for E-Commerce Applications. In: Eighth An-
nual IEEE International Conference and Workshop on the Engineering of Com-
puter Based Systems, pp. 10–17 (2001)

13. Cho, K.M.: Packaging Strategies of Multimedia Content in DRM. In: Proc. the
2003 International Conference on Internet Computing (IC 2003), pp. 243–248
(2003)

14. Cho, K.M.: Web Services based XML Security Model for Secure Information
Exchange in Electronic Commerce. The Journal of Korean Association of Com-
puter Education 7(5), 93–99 (2004)

http://www.w3c.org/XML
http://www.w3.org
http://www.roseindia.net/services/m-commerce/mobile-commerce.shtml
http://www.w3c.org
http://www.w3c.org
http://www.w3c.org

On Formalising Policy Refinement in Grid
Virtual Organisations

Benjamin Aziz

Abstract. Grid computing is a global-computing paradigm focusing on the effec-
tive sharing and coordination of heterogeneous services and resources in dynamic,
multi-institutional Virtual Organisations (VOs). This paper presents a formal model
of VOs using the Event-B specification language. We have followed a refinement ap-
proach to develop goal-oriented VOs by incrementally adding their main elements:
goals, organisations and services. Our main interest is in the problem of policy re-
finement in VOs, so policies are represented as invariants that should be maintained
throughout the refinement process. As an illustration, we show how a VO resource-
usage policy is represented at different levels of abstraction.

1 Introduction

Grid computing is a global-computing paradigm focusing on the effective
sharing and coordination of heterogeneous services and resources in dynamic,
multi-institutional Virtual Organisations (VOs) [13]. A Grid VO can be seen as
a temporary or permanent coalition of geographically dispersed organisations that
pool services and resources in order to achieve common goals. This paper presents
a formal model of VOs using the Event-B specification language [3]. We have fol-
lowed a refinement approach to develop goal-oriented VOs by incrementally adding
their main elements: goals, organisations and services. Our main interest is in the
problem of policy refinement in VOs.

Policy refinement is the process of transforming a high-level abstract policy spec-
ification into a low-level concrete one [16]. Current approaches to policy refinement
in distributed and dynamic systems suppose that the refinement of the abstract sys-
tem entities into the concrete objects/devices is done as a previous phase to the
refinement of policies, by assuming there exist pre-defined hierarchies of concrete

Benjamin Aziz
University of Portsmouth, Portsmouth, United Kingdom
e-mail: benjamin.aziz@port.ac.uk

R. Lee (Ed.): SERA, SCI 496, pp. 17–31.
DOI: 10.1007/978-3-319-00948-3_2 c© Springer International Publishing Switzerland 2014

18 B. Aziz

objects/devices [22] or by taking the concrete system architecture as an input [8].
Here, we use the stepwise refinement approach [6] to develop simultaneously both
the system entities and their policies. In our case, policies are represented as in-
variants that should be maintained throughout the refinement process. We illustrate
this approach by analysing the case of a resource-usage policy, the so-called cost-
balancing policy, where the cost of achieving a goal in a VO is divided equally
among the VO members. This is a particular case of the 1/N policy [23], a rep-
resentative Grid policy indicating that all resource utilisation is equally distributed
among the VO-member resources.

The work presented here has a twofold aim; on one hand, we would like to gain a
more formal understanding of VOs and their lifecycle, especially in the presence of
policy contraints. On the other hand, we would like to experiment with the process of
designing VOs following the refinement process paying particular attention to non-
functional properties such as resource usage and security. In recent years, the need
for adopting rigorous approaches for designing distributed systems such as VOs has
risen due to the various challenges posed by the use of such systems in safety and
security critical collaborative environments such as collaborative engineering in the
aerospace domain [14], Grid-based operating systems [17] and others.

The structure of the paper is the following. Section 2 introduces the main ele-
ments of a VO and the VO life cycle. Next, Section 3 gives a brief overview of
Event-B. Section 4 presents a motivating case scenario involving cost-balancing
policies. Section 5 presents our abstract model of VOs; a model containing only
goals and representing the VO lifecycle. An intermediate refinement is described in
Section 6, which includes goals and organisations. Our concrete model is presented
in Section 7, including goals, organisations and services. Section 8 presents related
work and finally, Section 9 concludes the paper and highlights future work.

2 On Virtual Organisations and Their Lifecycle

The entities that form a VO are drawn from a “club of potential collaborators” called
a Virtual Breeding Environment (VBE) [10]. A VBE can be defined as an association
of organisations subscribing to a base long term cooperation agreement, adopting
common operating principles and infrastructure with the objective of participating
in future potential VOs. In this paper, we take the view that potential partners in a VO
are selected from a VBE. We are interested in goal-oriented VOs, so organisations
willing to participate in a VO will join the VBE, advertising the goals they can
achieve and the services provided to fulfill such goals.

For the management of a VO, we are following a VO life-cycle adopted by other
projects such as ECOLEAD [11] and TrustCoM [5]. The life-cycle includes the
following phases:

• VO Identification: In this phase, the VO Administrator sets up the VO by select-
ing potential partners from the VBE, using search engines or registries. In our
model, we will be looking for partners that can achieve the goals identified in the

On Formalising Policy Refinement in Grid Virtual Organisations 19

VO. The identification phase ends with a list of candidates that potentially could
perform the goals needed for the current VO.

• VO Formation: In the formation phase, the initial set of candidates is reduced
to a set of VO members. This process may involve a negotiation between po-
tential partners. After this has been completed, the VO is configured and can be
considered to be ready to enter the operation phase.

• VO Operation: The operation phase could be considered the main life-cycle
phase of a VO. During this phase the VO members contribute to the VOs
task(s) by executing pre-defined business processes (e.g. service orchestration)
to achieve the VO goals. Membership and structure of VOs may evolve over
time in response to changes of objectives or to adapt to new opportunities in
the business environment; this is a feature we are not considering in the current
version of our model.

• VO Dissolution: During dissolution, the VO structure is dissolved and final op-
erations are performed to annul all contractual binding of the partners.

Figure 1 illustrates the VO lifecycle. As part of our model, we show in the paper a
formalisation of the VO lifecycle, where each VO phase is modelled as an event. In
our view, a VO policy is a property that should be respected across the VO phases.
We model the initial actions needed to enable the integration of organisations into a
VO as an additional phase called Initialisation.

Fig. 1 The VO Lifecycle

3 A Brief Overview of Event-B

Event-B [2] is an extension of Abrial’s B method [1] for modelling distributed sys-
tems. This section presents a brief overview of Event-B; we refer the reader to [2, 12]
for a more complete description of this formal method. Modularity is central to the
Event-B method and this is achieved by structuring specifications and development
into Machines. A machine encapsulates a local state and provides operations on the
state, as shown in Figure 2.

20 B. Aziz

MACHINE AM
SEES AC

CONTEXT AC VARIABLES v
SETS T INVARIANT I
CONSTANTS c INITIALISATION Init
AXIOMS A EVENTS
END E1 = WHEN G THEN S END

· · ·
En = · · ·
END

Fig. 2 Abstract Machine Notation in Event-B

The CONTEXT component specifies the types and constants that can be used
by a machine. It is uniquely identified by its name AC and includes clauses SETS,
defining carrier sets (types); CONSTANTS, declaring constants; and AXIOMS,
defining some restrictions for the sets and including typing constraints for the con-
stants in the way of set membership.

A machine is introduced by the MACHINE component, which is uniquely iden-
tified by its name AM. A machine may reference a context, represented by clause
SEES, indicating that all carrier sets and constants defined in the context can be
used by the machine. Clause VARIABLES represents the variables (state) of the
model, which are initialised in Init as defined in the INITIALISATION clause.
The INVARIANT clause describes the invariant properties of the variables, denot-
ing usually typing information and general properties. These properties shall remain
true in the whole model and in further refinements. The EVENTS clause defines all
the events (operations) describing the behaviour of the system. Each event is com-
posed of a guard G (a predicate) and an action S, which is a statement, such that if
G is enabled, then S can be executed. If several guards are enabled at the same time
then the triggered event is chosen in a nondeterministic way.

Statements in the bodies of events have the following syntax:

S == x := e |
IF cond THEN S1 ELSE S2 END |
x :∈ T |
ANY z WHERE P THEN S END |
S1 ‖ S2

Assignment and conditional statements have the standard meaning. The non-
deterministic assignment x :∈ T assigns to variable x an arbitrary value from the
given set (type) T . The non-deterministic block ANY z WHERE P THEN S END
introduces the new local variable z that is initialised non-deterministically accord-
ing to the predicate P and then used in statement S. Finally, S1 ‖ S2 models parallel
(simultaneous) execution of S1 and S2 provided they do not have conflict on state
variables. Statements are formally defined using a weakest precondition semantics.

On Formalising Policy Refinement in Grid Virtual Organisations 21

In order to be able to ensure the correctness of a system, a machine should be
consistent and feasible. This is assured by proving the initialisation is feasible and
establishes the invariant, and then each event is feasible and preserves the invari-
ant. Proof obligations are generated automatically and verified using the RODIN
toolkit [20]. Proof obligations are generated via before-after predicates denoting the
relation between the variable values before and after the execution of a statement.

Event-B supports stepwise refinement, the process of transforming an abstract,
non-deterministic specification into a concrete, deterministic, system that preserves
the functionality of the original specification. We use a particular refinement method,
superposition refinement [7], where the state space is extended while preserving the
old variables. During the refinement process, new features that are suggested by
the requirements are represented by new variables added to the system. Simultane-
ously, events are refined to take the new features into account. This is performed by
strengthening their guards and adding substitutions on the new variables.

3.1 Our Approach

The general approach we adopt in this paper involves the following steps:

• First, we use Event-B to model, at an abstractb level, a specific system. This will
be in our case the system of goal-oriented VOs.

• Second, we use the refinement mechanism supported by Event-B to add more
detail gradually to the original abstract model, until one arrives at the required
level of detail. In this case, this will be realised by refining our abstract goal-
oriented VOs to VOs with organisations and goal costs, then again refine further
to VOs with service sets.

• Finally, we express any policy constraints we need (in our case, the cost balanc-
ing constraint we discuss in the next section) in terms of the machine invariants
starting from some level of detail in the refinement chain. This could either start
at the abstract level, or at any level of the refined machines. We then show that the
same policy (invariant) is respected and upheld by the lower levels of refinement.

This approach is general and can be applied to any domain and with any policy
requirements. The rest of the paper considers only one example of the application
of this approach.

4 Case Study: 1/N Cost-Balancing Policy in Auction-Based
Routing VOs

The case study that motivated this paper is based on an auctioning VO that allows
transportation customers in a supply chain scenario to place their requests for trans-
port on an online auctioning system. Transportation companies can then bid for
these requests through a transporters’ portal at the backend of the auctioning sys-
tem. The collection of the customers and the service providers forms one VO called
the Auctioning VO.

22 B. Aziz

At the same time, each transportation company can form a second VO called a
Routing VO, which will involve along with the transportation company all the neces-
sary computational resources needed for computing the routing calculation resulting
in the bid offer. The highly complex computations could be outsourced to other or-
ganisations, which is why the Routing VO is needed. In both VOs the manager is the
Transporter Association Portal (TAPortal), through which the administrator creates
and populates the two VOs. This scenario is depicted in Figure 3.

Fig. 3 Auctioning-based Routing VOs

In the above case study, a cost balancing policy would be desireable in the Auc-
tioning VO, in the event that a customer of the VO is planning to divide their trans-
portation task among N number of service providers, while determning what the
cost associated with each transportation stage (service) would be. The bid calcu-
lated by each transporter is then compared to the budget advertised by the customer
in their request, and the winning bid is the one with the best cost estimate.

Such a policy is known as a 1/N cost-balancing policy, and it is one example of
VO-wide policies that are typical in Grid systems [23], which deal with the prob-
lem of managing VO resources by dividing equally the resource utilisation among
the member organisations. Such policies are useful in critical applications [14] and
Grid-based operating systems [17], since they facilitate the regulation of resource
usage.

Informally, our version of the policy states that the cost of achieving a goal is di-
vided equally among the VO members (organisations) that are collaborating toward
achieving that goal. This then implies that the cost of services employed by each
organisation toward the goal will be equal to the cost of services employed by any
of its sibling organisations. Ideally, this cost must not exceed the budget allocated to

On Formalising Policy Refinement in Grid Virtual Organisations 23

Fig. 4 The 1/N cost-balancing policy

the organisation. Figure 4 illustrates this policy across the two layers of abstraction
(organisations and services).

The policy is formalised in terms of a cost distance variable, δ ∈ N, which mea-
sures the difference between any two entities (organisations or sets of services)
working on the same goal. When delta returns zero, then the policy becomes a 1/N
cost-balancing policy, where N is the cardinality of the set of entities sharing the
cost. On the other hand, if δ is set to some non-zero value, then this will imply that
any two organisations are allowed to have some difference in their cost associated
with achieving the main goal of the VO. It is outside the scope of this paper to deter-
mine what the value of δ should be, this will be largely dependant on each specific
case of the auctioning problem.

The top layer in Figure 4 shows this policy (δ = 0 for some Goal) among the
various Organisations 1 . . .n, whereas in the lower more refined layer, we see the
same policy this time on Service Sets 1 . . .n, where each set is the representation
(refinement) of its corresponding organisation.

5 An Abstract Model of Goal-Oriented VOs

The first model of a VO is goal-oriented; it captures the idea that a VO is driven by
the aim to achieve a set of goals that some VBE makes possible. The model defines
a machine, which represents the VO lifecycle as discussed in Section 2 based on this
idea of goal-driven VOs. The machine and its context are shown in Figure 5.

The VBE is modelled as a context that introduces a carrier set (type) called Goals.
Goals form a non-empty finite set. The context also includes the type Status, which
is a flag representing the different phases of the VO lifecycle. The machine has four
events corresponding to the four phases of the VO lifecycle as described in Section
2. The VO machine contains variables that represent the status (or VO lifecycle
phase) of the machine, the goals of the VO and the completed goals of the VO. The
machine is initialised such that the goals variable is assigned some non-empty value
from the VBE goals and so that the first event at which the machine commences is
the Identification event.

24 B. Aziz

MACHINE VO SEES VBE

VARIABLES
status, goals, completedGoals

INVARIANTS
/∗Here we define the types of goals and completedGoals∗/
status ∈ Status ∧ goals ∈ P1(Goals) ∧ completedGoals ⊆ goals

INITIALISATION
goals :∈ P1(Goals) ‖ completedGoals := /0 ‖ delta := 0 ‖ status := Id
END

Identification
/∗Nothing to identify∗/
WHEN status = Id THEN status := Fr END

Formation
/∗Nothing to form∗/
WHEN status = Fr THEN status := Op END

Operation
/∗Pick an uncompleted goal and achieve it∗/
WHEN status = Op ∧ (completed goals �= goals) THEN
ANY aGoal WHERE aGoal ∈ (goals\ completedGoals) THEN
completedGoals := completedGoals ∪ {aGoal} END

Dissolution
/∗No more uncompleted goals, therefore stop∗/
WHEN status = Op ∧ goals = completedGoals THEN status := Stop END

END

CONTEXT VBE

SETS
Goals, Status

CONSTANTS
Id, Fr ,Op, Stop

AXIOMS
Status = { Id, Fr, Op, Stop }
P1(Goals) �= /0 ∧ finite(Goals)

END

Fig. 5 The abstract machine, VO, and its abstract context, VBE

The Identification event only changes the status flag to the next event (Forma-
tion). At this level of abstraction, there is no concept of organisations and therefore it
is impossible to identify potential VO candidates. In the following event, Formation,
again the only update to the machine’s state is to change the status flag to indicate to
the Operation event, also since there is no concept of organisations at this stage and
hence, it is impossible to model VO membership formation. The Operation event
is triggered as long as the set of completed goals has not yet reached the set of VO
goals. When this is the case, a goal (aGoal) is chosen non-deterministically from the
set of incomplete goals and added to the set of completed goals. Note that for sim-
plicity, we do not model operational failure here. Finally, once the set of completed

On Formalising Policy Refinement in Grid Virtual Organisations 25

goals reaches the set of VO goals, the Dissolution event is triggered, which in turn
sets the status flag to the Stop value indicating the end of the VO lifecycle.

This machine is too abstract to represent our cost-balancing policy, which refers
to goals and organisations. Nevertheless, we have included it to show the modelling
style we follow in the rest of the paper. The machine also demonstrates in an abstract
manner that the aim of a VO lifecycle is to start and finish some specific goal.

6 Goal-Oriented VOs with Organisations

In the first refinement, we introduce the concepts of organisations and goal cost.
The refined machine and its context are shown in Figure 6. The context VBERef1
is the refined VBE which introduces the type Organisations. The context also in-
troduces two new constants, GoalCandidates and GoalCost. The former models the
possible groups (sets) of organisations that when collaborating together can achieve
a particular goal. The fact that GoalCandidates is a relation and not a function im-
plies that there could be more than one such set of organisations per goal. The latter
is a function that reflects the cost of achieving a goal as advertised by a set of organ-
isations. Here we assume that cost is a stable value, which leads to GoalCost being
a function rather than a relation.

The VORef1 machine consists again of the four VO lifecycle events; Identifi-
cation, Formation, Operation and Dissolution. In the Identification event, the set
of organisations that are candidates to join the VO are identified using the rela-
tion goalCandidates, which restricts the domain of GoalCandidates defined in the
VBERef1 context to the set of VO goals. The next event is Formation, in which the
VO members defined by the function, goalMembers, and their budget defined by
the function, memberBudget, are updated. The goalMembers function is defined as
being a functional subset of the more general goalCandidates relation. On the other
hand, memberBudget is selected such that for an organisation operating towards
achieving a goal, then the member budget assigned to that organisation is equal to
the total cost of the goal divided by the cardinality of the set of organisations work-
ing towards that goal. In other words, a member receives 1/N of the cost of the goal:

(∀ g,o. g ∈ goals ∧ o ∈ goalMembers0(g) ∧ card(goalMembers(g)) �= 0 ∧ fi-
nite(goalMembers(g)) ⇒
memberBudget(o) = GoalCost(g �→ goalMembers(g)) ÷ card(goalMembers0(g)))

As this division is carried over integers, we know that each member will receive
equal share of the cost and that due to the remainder, the total cost is less than the
sum of the individual member budgets. However, this error remains in practice small
since the goal cost will be much larger than the number of participants. This can be
forced even in cases of small goal costs by adjusting the measurement unit (e.g. the
cost in Euros to the cost in Cents).

In the next event, Operation, an uncompleted goal, aGoal, is chosen as well as
a set of member organisations such that this set is capable of achieving the goal

26 B. Aziz

MACHINE VORef1 REFINES VO SEES VBERef1

VARIABLES

status, goals, completedGoals, goalCandidates, goalMembers, delta, memberBudget

INVARIANTS

/∗Type of goalCandidates∗/
goalCandidates ∈ goals ↔ P1(Organisations) ∧

/∗Type of goalMembers∗/
goalMembers ∈ goals → P1(Organisations) ∧

/∗Type of delta∗/
delta ∈ N

/∗Type of memberBudget∗/
memberBudget ⊆ Organisations → N1 ∧

/∗The 1/N cost-balancing policy invariant: VO members have equal budgets∗/
∀g,o1,o2.g ∈ goals ∧ o1∈goalMembers(g) ∧ o2∈goalMembers(g)⇒
(memberBudget(o1) − memberBudget(o2) = delta) ∨
(memberBudget(o1) − memberBudget(o2) = 0-delta)

INITIALISATION

goals :∈ P1(Goals) ‖ completedGoals := /0 ‖ goalCandidates := /0 ‖ goalMembers := /0
‖ delta := 0 ‖ memberBudget := /0 ‖ status := Id END

Identification REFINES Identification
/∗Identify potential candidates∗/
WHEN status = Id THEN goalCandidates := goals � GoalCandidates ‖ status := Fr END

Formation REFINES Formation
/∗Form the VO organisation membership∗/
ANY goalMembers0, memberBudget0 WHERE status = Fr ∧

/∗The definition of goalMember0∗/
goalMembers0 ∈ goals → P1(Organisations) ∧ goalMembers0 ⊆ goalCandidates ∧

/∗The definition of memberBudget0∗/
memberBudget0 ∈ Organisations → N1 ∧

/∗The 1/N cost-balancing policy condition∗/
(∀g,o.g ∈ goals∧o ∈ goalMembers0(g) ∧ card(goalMembers0(g)) �= 0 ∧ finite(goalMembers0(g)) ⇒
memberBudget0(o) = GoalCost(g �→ goalMembers0(g))÷card(goalMembers0(g)))

THEN goalMembers := goalMembers0 ‖ memberBudget := memberBudget0 ‖ status := Op END

Operation REFINES Operation
/∗Operate on an uncompleted goal with the right member set∗/
ANY aGoal, memberSet WHERE status = Op ∧ completedGoals �= goals ∧
aGoal ∈ (goals\ completedGoals) ∧ memberSet = goalMembers(aGoal) THEN
completedGoals := completedGoals ∪ {aGoal} END

Dissolution REFINES Dissolution
/∗No more uncompleted goals therefore stop the VO lifecycle∗/
WHEN status = Op ∧ goals = completedGoals THEN status := Stop END

END

CONTEXT VBERef1 REFINES VBE

SETS

Organisations

CONSTANTS

GoalCandidates, GoalCost

AXIOMS

GoalCandidates ∈ Goals ↔ P1(Organisations) ∧ GoalCost ∈ Goals × P1(Organisations) → N1

END

Fig. 6 The first refinement of the VO model

On Formalising Policy Refinement in Grid Virtual Organisations 27

(as defined by the goalMembers function). This goal is then added to the set of
completed goals of the VO. Once the set of completed goals reaches the set of VO
goals, the Dissolution event is triggered, which ends the VO lifecycle by setting the
status goal to Stop.

At this level, we can define the following invariant, which expresses the 1/N
cost-balancing policy using the delta distance measure.

Invariant 1 (All VO members have equal goal budgets). ∀g,o1,o2.g ∈ goals ∧
o1 ∈ goalMembers(g) ∧ o2 ∈ goalMembers(g)⇒
(memberBudget(o1)− memberBudget(o2) = delta) ∨
(memberBudget(o1)− memberBudget(o2) = 0-delta) �

This invariant states that the difference in member budget between any two organ-
isations working on the same goal is only delta (or –delta) units away, where delta
is a variable measuring the cost distance. The machine sets this variable to zero in
order to implement the 1/N cost-balancing policy. However, other values are also
possible, which would reflect incremental cost-sharing policies (similar to salary
systems). As we mentioned above, the invariant is enforced thanks to the condition
stating that each member will receive 1/N of the cost of a goal among N organisa-
tions working on that goal.

7 Goals, Organisations and Services

The second refinement, which represents our concrete model, is based on the con-
cept of services and their relation to goals and organisations. The concrete machine
and its context are shown in Figures 7. Based on this context, the second refinement,
VORef2, of the VO machine is defined as in Figure 7.

The context, VBERef2, defines a new type called Services. These are the ser-
vices advertised in a VBE. In addition to these, the context defines three relational
valued constants. These are Requires, which models the set of services that a goal
requires, Offers, which models a set services offered by an organisation in a VBE
and finally ServiceCost, which models the price of a set of services as advertised by
an organisation in a VBE.

The concrete machine resembles the previous refinement except that an extra
variable, memberServices, is introduced. This variable represents the service cur-
rently offered by the member organisations and used by the VO. The memberSer-
vices is given a value in the Formation event as a function from organisations to sets
of services such that for any particular organisation, o, working towards a goal, g,
then memberServices(o) is the set of services both required by g and offered by o.
Our cost balancing policy imposes the same condition as in the previous refinement,
which is that the budget received by each member organistion is equal to the total
goal cost divided by the cardinality of the set of organisations working on that goal.

Now, we can state the following policy invariant at the level of services.

Invariant 2 (Sets of member services have equal costs). ∀g,o1,o2. g ∈ goals ∧
o1 ∈ goalMembers(g) ∧ o2 ∈ goalMembers(g)⇒

28 B. Aziz

MACHINE VORef2 REFINES VORef1 SEES VBERef2

VARIABLES

status, goals, completedGoals, goalCandidates, goalMembers, delta, memberBudget, memberServices

INVARIANTS

/∗Define the type of memberServices∗/
memberServices ∈ Organisations → P1(Services) ∧

/∗The 1/N cost-balancing policy invariant: sets of member services have equal costs∗/
∀g,o1,o2. g ∈ goals ∧ o1 ∈ goalMembers(g) ∧ o2 ∈ goalMembers(g)⇒
(ServiceCost(o1)(memberServices(o1)) − ServiceCost(o2)(memberServices(o2)) = delta) ∨
(ServiceCost(o1)(memberServices(o1)) − ServiceCost(o2)(memberServices(o2)) = 0-delta)

INITIALISATION

goals :∈ P1(Goals) ‖ completedGoals := /0 ‖ goalCandidates := /0 ‖ goalMembers := /0 ‖
delta := 0 ‖ memberBudget := /0 ‖ memberServices := /0 ‖ status := Id END

Identification REFINES Identification
/∗Identify potential candidates∗/
WHEN status = Id THEN goalCandidates := goals � GoalCandidates ‖ status := Fr END

Formation REFINES Formation
/∗Form the VO membership∗/
ANY goalMembers0, memberBudget0, memberServices0 WHERE status = Fr ∧

/∗Type of goalMembers0∗/
goalMembers0 ∈ goals → P1(Organisations) ∧ goalMembers0 ⊆ goalCandidates ∧

/∗Type of goalBudget0∗/
memberBudget0 ∈ Organisations → N1 ∧

/∗Type of memberServices0∗/
memberService0 ∈ Organisations → P1(Services) ∧

/∗The definition of memberServices0∗/
(∀g,o g ∈ goals ∧ o ∈ goalMembers0(g)⇒ memberServices0(o) = Requires(g) ∩ Offers(o)) ∧

/∗An extra condition on memberServices0:

The cost of member services is ≤ their member budget∗/
∀ g,o. g ∈ goal ∧ o ∈ goalMembers(g)⇒ ServiceCost(o)(memberService0(o)) ≤ memberBudget0(o) ∧

/∗The 1/N cost-balancing policy condition∗/
(∀g,o.g ∈ goals∧o ∈ goalMembers0(g) ∧ card(goalMembers0(g)) �= 0 ∧ finite(goalMembers0(g)) ⇒
memberBudget0(o) = GoalCost(g �→ goalMembers0(g))÷card(goalMembers0(g)))
THEN
goalMembers := goalMembers0 ‖ memberBudget := memberBudget0 ‖ status := Op END

Operation REFINES Operation
/∗Pick an uncompleted goal and achieve it∗/
ANY aGoal, memberSet WHERE status = Op ∧ completedGoals �= goals ∧
aGoal ∈ (goals\ completedGoals) ∧ memberSet = goalMembers(aGoal) THEN
completedGoals := completedGoals ∪ {aGoal} END

Dissolution REFINES Dissolution
/∗When no more uncompleted goals, stop the VO∗/
WHEN status = Op ∧ goals = completedGoals THEN status := Stop END

END

CONTEXT VBERef2 REFINES VBERef1

SETS

Services

CONSTANTS

Requires, Offers, ServiceCost

AXIOMS

Requires ∈ Goals → P1(Services) ∧ Offers ∈ Goals → P1(Services) ∧
ServiceCost ∈ Organisations → (P1(Services) → N1)

END

Fig. 7 The second refinement of the VO model

On Formalising Policy Refinement in Grid Virtual Organisations 29

(ServiceCost(o1)(memberServices(o1)) − ServiceCost(o2)(memberServices(o2))
= delta) ∨
(ServiceCost(o1)(memberServices(o1)) − ServiceCost(o2)(memberServices(o2))
= 0-delta) �

The invariant states that the distance among sets of services belonging to one mem-
ber is delta from the sets of services employed by another member towards the
same goal. This invariant constitutes a more refined version of the invariant men-
tioned for the previous machine in the sense that equality among member budgets
for achieving a goal is now propagated to the level of services resulting in the cost
of all services offered by a member towards that goal being equal to the cost of all
services offered by any other member working on the same goal.

8 Related Work

There is a fresh interest in the problem of policy refinement, given the complexity
of dynamic distributed systems as envisaged in global computing. Bandara et al [8]
uses a goal-oriented technique for policy refinement. In their work, a formal rep-
resentation of a system, based on the Event Calculus [19], is used in conjunction
with adductive reasoning techniques to derive the sequence of operations that will
allow a given system to achieve a desired policy. An abstract policy is represented
as a goal, and goal-oriented techniques are used to refine a policy into more con-
crete ones. Their approach differs from ours in that they assume the existence of a
concrete architecture, which is expressed in UML and then translated to the Event
Calculus.

In [22], Chadwick et al. propose a refinement approach for access control policies
in Grids. Central to their approach is the existence of a hierarchy representing re-
sources at different layer of abstractions. A policy is represented at the most abstract
layer, which is then refined into more concrete policies following the resource hi-
erarchy. The hierarchy and the policies are specified using the ontological language
OWL, so semantic-web reasoning is exploited to infer the concrete policies. Our
work can be seen as a generalisation of their techniques in which the resource hier-
archy and policies are generated simultaneously, exploiting the stepwise refinement
approach.

Another line of work related to our is the formal modelling of Grids and VOs.
Németh and Sunderam [18] define an operational model of grids and VOs based on
the theory of ASMs [21]. They start first by defining a generic model that can be
used to describe both distributed and Grid computing. This generic model consists
of the universes of applications, processes, users, resources, nodes and tasks. These
universes are related to one another through multiple mappings, which define the
structure of systems. Our formal models can be seen as abstractions of their models.

The work of Janowski et al. [15] identifies two combinations of real-world en-
terprises that lead to the achievement of common goals. These are the extended
enterprise and the virtual enterprise (which corresponds to the notion of a VO in
our terminology). In the former, members of an extended enterprise satisfy one

30 B. Aziz

another’s needs by matching the output of one member to the input of another. On
the other hand, a virtual enterprise allows member organisations to cooperate and
coordinate their resources and infrastructures in order to achieve the common goal.
Hence, a virtual enterprise is a tighter coalition than an extended enterprise, which
operates beyond the business interface of its members.

9 Conclusions

VOs are examples of distributed systems in which participants offer different kind
of capabilities and resources in order to achieve common goals. Given the complex
nature and rich state of this kind of systems, an incremental approach to build VOs
is necessary. Here we have shown how to develop VOs and their policies using the
refinement approach. We have also developed a similar model for refining other
security-related policies [4], such as the Chinese Wall policy [9].

A key characteristic in our approach is to express system entities and their poli-
cies at the same level of abstraction. Then both components (i.e. entities and poli-
cies) are refined simultaneouly. The stepwise refinement approach allows one to
build a system in an incremental way, adding at each step more concrete/operational
detail. The refinement theory [6] guarantees the correctness of the whole approach
and the existence of automatic tools [20] facilitates the verification process.

The use of the Rodin toolkit in discharging proofs and animating the models has
been helpful in improving our understanding of the problem we are tackling (cost-
balancing policy refinement) and its domain of application (VOs) in the sense that
some assumptions made about the problem and/or its domain proved not to be valid.

As future work we plan to include in our model failure in achieving a goal. This
would trigger the evolution sub-phase of the operational phase of the VO lifecycle,
which is used to represent more dynamic behaviour in a VO.

References

1. Abrial, J.R.: The B Book. Cambridge University Press (1996)
2. Abrial, J.R. (ed.): Modeling in Event-B: System and Software Engineering. Cambridge

University Press (2010)
3. Abrial, J.-R., Mussat, L.: Introducing dynamic constraints in B. In: Bert, D. (ed.) B 1998.

LNCS, vol. 1393, pp. 83–128. Springer, Heidelberg (1998)
4. Arenas, A., Aziz, B., Bicarregui, J., Matthews, B.: Managing conflicts of interest in

virtual organisations. Electron. Notes Theor. Comput. Sci. 197(2), 45–56 (2008),
http://dx.doi.org/10.1016/j.entcs.2007.12.016,
doi:10.1016/j.entcs.2007.12.016

5. Arenas, A.E., Djordjevic, I., Dimitrakos, T., Titkov, L., Claessens, J., Geuer-Pollmann,
C., Lupu, E.C., Tiptuk, N., Wesner, S., Schubert, L.: Toward web services profiles for
trust and security in virtual organisations. In: Collaborative Networks and their Breeding
Environments (PRO-VE 2005). Springer (2005)

6. Back, R.J., Wright, J.V.: Refinement Calculus: A Systematic Introduction. Springer
(1998)

http://dx.doi.org/10.1016/j.entcs.2007.12.016

On Formalising Policy Refinement in Grid Virtual Organisations 31

7. Back, R.J., Sere, K.: Superposition refinement of reactive systems. Formal Aspects of
Computing 8(3), 324–346 (1996)

8. Bandara, A.K., Lupu, E.C., Moffett, J., Russo, A.: A goal-based approach to policy re-
finement. In: Fifth IEEE International Workshop on Policies for Distributed Systems and
Networks, POLICY 2004. IEEE (2004)

9. Brewer, D., Nash, M.: The chinese wall policy. In: IEEE Symposium on Research in
Security and Privacy. IEEE (1989)

10. Camarihna-Matos, L.M., Afsarmanesh, H.: Elements of a ve infrastructure. Journal of
Computers in Industry 51(2), 139–163 (2003)

11. Camarihna-Matos, L.M., Afsarmanesh, H., Ollus, M.: Ecolead: A holistic approach to
creation and management of dynamic virtual organizations. In: Collaborative Networks
and their Breeding Environments (PRO-VE 2005). Springer (2005)

12. Consortium, R.: Event B Language. Technical Report, Deliverable D7 (2005),
http://rodin.cs.ncl.ac.uk/deliverables/rodinD10.pdf

13. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable virtual
organizations. International Journal of Supercomputer Applications 15(3) (2001)

14. Golby, D., Wilson, M., Schubert, L., Geuer-Pollmann, C.: An assured environment for
collaborative engineering using web services. In: Proceedings of the 2006 Conference on
Leading the Web in Concurrent Engineering: Next Generation Concurrent Engineering,
pp. 111–119. IOS Press, Amsterdam (2006),
http://dl.acm.org/citation.cfm?id=1566652.1566674

15. Janowski, T., Lugo, G.G., Hongjun, Z.: Composing enterprise models: The extended and
the virtual enterprise. In: Proceedings of the Third IEEE/IFIP International Conference
on Intelligent Systems for Manufacturing: Multi-Agent Systems and Virtual Organiza-
tions. IEEE (1998)

16. Moffett, J.D., Sloman, M.S.: Policy hierarchies for distributed system management.
IEEE Journal of Selected Areas in Communications, Special Issue on Network Man-
agement 11(9) (1993)

17. Morin, C.: Xtreemos: A grid operating sytem making your computer ready for
participating in virtual organizations. In: 10th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC 2007).
IEEE (2007)

18. Németh, Z., Sunderam, V.S.: Characterizing grids: Attributes, definitions, and for-
malisms. Characterizing Grids: Attributes, Definitions, and Formalisms 1(1), 9–23
(2003)

19. Kowalski, R.A., Sergot, M.J.: A logic-based calculus of events. New Generation Com-
puting 4, 67–95 (1986)

20. RODIN Consortium: Specification of basic tools and platforms. Technical Report, De-
liverable D10 (2005),
http://rodin.cs.ncl.ac.uk/deliverables/rodinD10.pdf

21. Dexter, S., Doyle, P., Gurevich, Y.: Abstract state machines and schoenhage storage mod-
ification machines. Journal of Universal Computer Science 3(4), 279–303 (1997)

22. Su, L., Chadwick, D.W., Basden, A., Cunningham, J.A.: Automated decomposition of
access control policies. In: Sixth IEEE International Workshop on Policies for Dis-
tributed Systems and Networks, POLICY 2005. IEEE (2005)

23. Wasson, G., Marty, H.: Toward explicit policy management for virtual organisations. In:
4th IEEE International Workshop on Policies for Distributed Systems and Networks,
POLICY 2003 (2003)

http://rodin.cs.ncl.ac.uk/deliverables/rodinD10.pdf
http://dl.acm.org/citation.cfm?id=1566652.1566674
http://rodin.cs.ncl.ac.uk/deliverables/rodinD10.pdf

R. Lee (Ed.): SERA, SCI 496, pp. 33–53.
DOI: 10.1007/978-3-319-00948-3_3 © Springer International Publishing Switzerland 201

Exploring a Model-Oriented and Executable
Syntax for UML Attributes

Omar Badreddin, Andrew Forward, and Timothy C. Lethbridge1

Abstract. Implementing UML attributes directly in an object-oriented language
may not appear to be complex, since such languages already support member
variables. The distinction arises when considering the differences between
modelling a class and implementing it. In addition to representing attributes,
member variables can also represent association ends and internal data including
counters, caching, or sharing of local data. Attributes in models also support
additional characteristics such as being unique, immutable, or subject to lazy
instantiation. In this paper we present modeling characteristics of attributes from
first principles and investigate how attributes are handled in several open-source
systems. We look code-generation of attributes by various UML tools. Finally, we
present our own Umple language along with its code generation patterns for
attributes, using Java as the target language.

Keywords: Attributes, UML, Model Driven Design, Code Generation, Umple,
Model-Oriented Programming Language.

1 Introduction

A UML attribute is a simple property of an object. For example, a Student object
might have a studentNumber and a name. Attributes should be contrasted with
associations (and association ends), which represent relationships among objects.

Constraints can be applied to attributes; for example, they can be immutable or
have a limited range. In translating UML attributes into languages like Java it is
common to generate accessor (get and set) methods to manage access.

Omar Badreddin . Andrew Forward . Timothy C. Lethbridge
School of Electrical Engineering and Computer Science,
University of Ottawa, Canada K1N 6N5
e-mail: {obadr024,aforward,tcl}@eecs.uottawa.ca

4

34 O. Badreddin, A. Forward, and T.C. Lethbridge

In this paper, we study the use of attributes in several systems and discuss how
to represent attributes in a model-oriented language called Umple. Umple allows
models to be described textually as an extension to Java, PHP, Ruby or C++. We
present code-generation patterns for attributes as used by Umple for the Java
language.

1.1 A Quick Look at Umple

Umple is a set of extensions to existing object-oriented languages that provides a
concrete syntax for UML abstractions like attributes, associations, state machines.
To distinguish between Umple and Java, the Umple examples use dashed borders
in shading, and Java examples use solid-line borders with no shading.

Figure 1 is a snippet of Umple on the left, with its corresponding UML diagram
on the right. Methods have been left out of this example; this illustrates one of the
features of Umple, the ability to use it incrementally, first to create high level
models, and later on to add more and more implementation detail until the system
is complete.

class Student {}
class CourseSection {}
class Registration {
 String grade;

 * -- 1 Student;
 * -- 1 CourseSection;

}

Fig. 1 Umple class diagram for part of the student registration system

Figure 1 shows two associations and an attribute so that the reader can see how
they are defined in Umple. The remainder of the paper focuses exclusively on
attributes.

One of our motivations is our previous research [1] indicating that most
developers remain steadfastly code-centric; hence visual modeling tools are not
being adopted as widely as might be desired. Another motivation is that there is
much repetitive code in object-oriented programs. We wish to incorporate
abstractions to promote understandability and reduce code volume [2].

An Umple program contains algorithmic methods that look the same as their
Java counterparts. Constructors, instance variables and code for manipulating
attributes, associations, and state machines are generated.

Exploring a Model-Oriented and Executable Syntax for UML Attributes 35

Umple is intended to be simple from the programmer’s perspective because
there is less code to write and there are fewer degrees of freedom than in Java or
UML. Despite the restrictions in Umple, it is designed to have ample power to
program most kinds of object-oriented systems. The current version of Umple is
written in itself.

Please refer to [3] for full details about Umple. The Umple language can be
explored in an online editor [3], which includes many examples.

2 Attributes in Practice: A Study of Seven Systems

To ground our work in the pragmatics of industrial software development, we
analyzed how real projects implement attributes. This will help us identify code-
generation patterns and areas where Umple could be improved.

Key goals of our empirical analysis of software attributes are to determine how
attributes are defined, accessed and used in practice, and also to find attribute
patterns that can enhance the vocabulary with which attributes are defined in
Umple.

For our research, we considered seven open-source software projects. The
criteria by which the projects were selected are described below, followed by a
review of the results and the implications for building a model-oriented syntax to
describe attributes.

We sampled existing software systems by selecting a random sample of
projects from selected repositories. A candidate repository contained at least 1000
full projects in Java or C#. We analyzed 33 repositories, and selected three that
met our criteria.

Candidate projects were selected by randomly picking a repository, then
randomly selecting a language (Java, or C#), and finally randomly selecting one of
the first 1000 projects. The 7 projects analysed include: from GoogleCode:
fizzbuzz, ExcelLibrary, ndependencyinjection and Java Bug Reporting Tool; from
SourceForge: jEdit and Freemaker; and from Freecode (formerly Freshmeat): Java
Financial Library.

We documented all member variables. For each we recorded the project,
namespace, object type, variable name, and other characteristics presented in
Table 1.

2.1 Analysis and Results

We used reverse engineering tools to extract member variables from source code,
and manually inspected each attribute. We identified 1831 member variables in
469 classes. Of the member variables identified, 620 were static (class variables)
and 1211 were instance variables. Table 2 gives a distribution of the types of static
variables.

36 O. Badreddin, A. Forward, and T.C. Lethbridge

Table 1 Categorizing member variables

Category Values Description
Set in Constructor No, Yes Is the member variable set in the object’s constructor?
Set Method None, Simple,

Custom
Is the variable public, or does it have a setter method? If so,
is there custom behavior apart from setting the variable
(such as validating constraints, managing a cache or
filtering the input)

Get Method None, Simple,
Custom

Is the variable public, or does the variable have a getter
method? If so, does it have any custom behavior like
returning defaulted values, using cached values or filtering
the output.

Notes Free Text Other characteristics such as whether the variable is static,
read-only, or derived.

Table 2 Distribution of static (class) variables

Object Type Frequency % Description
Integer 431 69% All whole number types including primitive

integers, unsigned, and signed numbers.
String 53 9% All string and string builder objects.
Boolean 29 5% All True/False object types.
Other 107 17% All other object and data types

Total 620 100%

Out of the 620 static members analyzed, 90% were read-only constants, 69%

were publically visible, and 83% were written in ALL_CAPS, a common style for
static variables. From this point onwards, we will focus on the instance variables.

Table 3 gives the distribution of all instance members (i.e. non-static variables)
for the five basic attribute types. The ‘other’ includes custom data types, plus
types corresponding to classes like Address. Member variables consist of
attributes, associations and internal data. To help determine which variables are
most likely attributes; we used a two-phased approach. First, we analyzed whether
the variables were included in the object’s constructor and whether the member
variable had get and set accessor methods. This analysis is shown in Table 4.

Only 3% of the variables were initialized during construction, could be
overwritten in set method, and accessed in a get method. The most common
occurrence was no access to a variable at all (not in constructor, and also no accessor
methods). The second most common was a variable whose value was set only after
construction.

To filter out potential internal data (local variables), we removed from our
potential attributes list all variables that did not have get. We also visually
inspected the list and observed that most no-getter variables were cached objects
and results (i.e. size or length), or user-interface controls. In total, 637 member
variables were removed during this process. We also filtered out five member
variables with the word cache, or internal in their name; as they most likely also
refer to internal data.

Exploring a Model-Oriented and Executable Syntax for UML Attributes 37

Table 3 Distribution of instance variable types

Object Type # of Variables % Description
Integer 326 27% All whole number types including primitive

integers, unsigned, and signed numbers.
String 169 14% All string and string builder objects.
Boolean 121 10% All True/False object types.
Double 12 1% All decimal object types like doubles, and

floats
Date / Time 9 1% All date, time, calendar object types.
Other 574 47% All other data types

Total 1211 100%

To find variables representing attributes, as opposed to associations, we worked

recursively. An attribute is considered to have as its type either: a) a simple data
type identified in the first five rows of Table 3, or b) a class that only itself
contains instance variables meeting conditions a and b, with the proviso that in
this recursive search process, if a cycle is found, then the variable is deemed an
association. This approach was partially automated (identifying and removing 12
association member variables) where both ends of the association were defined
within the system. The remaining variables were inspected manually, and
subjective judgments were made to categorize the variable type as entity or
complex. An entity class is one that is comprised of only primitive data types, or
associations to other entity classes. A complex class is comprised of primitive
data, as well as associations to other complex classes. Table 5 was used to help
distinguish class categories.

Table 4 Analyzing all instance variables for presence in the constructor and get/set methods

ConstructorSetter Getter Freq % Likelihood of being an attribute
(High, Medium, Low)

Yes Yes Yes 32 3% High, full variable access
Yes Yes No 8 1% Low, no access to variable
Yes No Yes 44 4% High, potential immutable variable
Yes No No 160 13% Low, more likely an internal configuration
No Yes Yes 318 26% High, postpone setting variable
No Yes No 41 3% Low, no access to variable
No No Yes 179 15% Medium, no access to set the variable
No No No 429 35% Low, no access at all to set/get variable
Total 1211 100%

Table 5 Entity versus complex object type criteria hinds

Entity Class Complex Class
Properties, Formats, Types and Data Nodes, Worksheets
Files, Records, and Directories Writers, Readers
Colors, Fonts, and Measurements Engines, Factories and Strategies
Indices, Offsets, Keys and Names Proxies, Wrappers, and Generic Objects
 Actions, Listeners, and Handlers
 Views, Panes and Containers

38 O. Badreddin, A. Forward, and T.C. Lethbridge

This process identified internal, attribute and association variables. Once
complete, we were left with 457 potential attributes. The distribution of attribute
types is shown in Table 6. As expected, most potential attributes are integers,
strings and Booleans.

Table 6 Distribution of attribute types

Object Type Freq. % Description
Integer 200 44% All whole number types (e.g. integers, signed, and

unsigned).
String 102 22% All string and string builder objects.
Boolean 67 15% All True/False object types.
Double 6 1% All decimal object types like doubles, and floats
Date / Time 5 1% All date, time, calendar object types.
Other 77 17% All other data types

Total 457 100%

Table 7 divides attributes into 4 categories. Only 29 attributes (6%) had

immutable-like qualities (available in the constructor, with no setter). About 31%
of the attributes were managed internally with no setter and not available in the
constructor. Finally, only about 11% of the attributes were available in the object’s
constructor.

Table 7 Constructor and Access Method Patterns (all attributes have a get method)

Constructor Setter Frequency % Probable Intention
Yes Yes 23 5% Fully editable
Yes No 29 6% Immutable
No Yes 262 57% Lazy / postponed initialization
No No 143 31% Derived or calculated attribute
Total 457 100%

Implementation of Set and Get Methods: As described in Table 1, a set or get
method, if present, can be simple or custom. Table 8 illustrates the frequency of
the various combinations of attribute set and get methods.

Table 8 Distribution of attribute properties based on type of setters and getters

Setter Getter Frequency %
Simple Simple 250 55%
Simple Custom 1 0%
Custom Simple 9 2%
Custom Custom 25 5%
None Simple 46 10%
None Custom 126 28%
Total 457 100%

Exploring a Model-Oriented and Executable Syntax for UML Attributes 39

Over 55% of attributes had simple set / get mechanisms, 10% had simple get
methods with no set method, and the remaining 35% had at least some custom set
or get method.

Attribute Multiplicities: We distinguished between one (0..1 or 1) and many (*)
based on the attribute type. List structures and object types with a plural noun (e.g.
Properties) were identified as many, all other structures were identified as one.

Overall 93% of attributes had a multiplicity of one, leaving only 7% with a
many multiplicity. To more finely categorize the multiplicity types would be too
subjective, as the multiplicity constraints are programmed in diverse ways.

Characteristics of Custom Access Methods: The following custom set method
implementations were observed: having a caching mechanism, lazy loading,
updating multiple member variables at once, and deriving the underlying member
variable’s value based on the provided input.

The following custom get method implementations were observed: constant
values returned, default values returned if the attribute had not been set yet, lazy
loading of attribute data, attribute values derived from other member variable(s),
and the attribute value returned from a previously cached value. A summary of the
implementation types for set and get methods is in Table 9.

Table 9 Distribution Set and Get Method implementations

Method
Implementation

Description Freq. %

Derived Set Input filtered prior to setting variable’s value 4 1%
Other Custom Set Caching / updating multiple members at once 30 7%
Derived Get Based on a cache, or other member variables 105 23%
Other Custom Get Custom constraints applied to variable 28 6%
Constant Get Always returns the same value 19 4%

The frequencies in Table 9 are based on the total number of attributes and not

simply those attributes with custom set or get methods. The most interesting
observation from this table is that almost a quarter of all attributes were somehow
derived from other data of the class.

2.2 Key Findings

Key findings based on the results above include

• Simple set and get methods: Many attributes follow a simple member
variable get and set approach, suggesting that such behavior could be the
default, helping to reduce the need for explicit setters and getters.

• Immutable attributes: Few attributes are set during construction, implying a
separation between building objects and populating their attributes. Despite
this, we believe it is still important to allow attributes to be immutable and,

40 O. Badreddin, A. Forward, and T.C. Lethbridge

hence, set only in the constructor. Immutability helps ensure the proper
implementation of hash codes and equality; for example, to allow consistent
storage and retrieval from hash tables. It is also important for asynchronous
and distributed processing where tests need to be done to see if one object is
the same as another.

• Attribute multiplicities: Attribute multiplicities are almost always ‘one’
(93%). Based on this, Umple only supports the generic ‘many’ multiplicity
and not specific numeric multiplicities as found in associations.

• Static attributes: Class level attributes (i.e. static) were mostly written in
ALL_CAPS (83%); a convention that could be added directly to a language,
removing the need for the ‘static’ keyword.

By analyzing existing projects we were able to align our model-oriented language
Umple with the observed trends in representative software projects. This
alignment will be expanded upon in the next section. We were also able to provide
code generation that is aligned to industry practice – in order to help make the
quality of the generated code similar in style and quality to code that a software
developer would write him or herself.

3 Umple Syntax for Attributes

In this section we show how the Umple language (introduced in Section 1) allows
the programmer to specify attributes, with common characteristics found in
practice as presented in the last section. In UML, attributes represent a special
subset of semantics of UML associations, although pragmatically we have found it
more useful in Umple to consider them as entirely separate entities.

The main features of Umple’s syntax for attributes, and its code generation,
result from answering the following three questions.

• Q1: Is the attribute value required upon construction?
• Q2: Can the attribute value change throughout the lifecycle of the object?
• Q3: What traits / constraints limit the value and accessibility of the attribute?

As we discuss in Section 4, most current code generators provide the most liberal
answers to the questions above: no, the value is not required upon construction,
yes the attribute value can change, and no there are no constraints on or special
traits of the attribute. In UML, you can add OCL constraints to answer Q3, but
there is no straight-forward way to specify answers to Q1 and Q2.

As observed in the previous section (see Table 7), the answer to Q1 is usually
‘no’ (89%), and the answer to Q2 is split between ‘yes’ (62%) and ‘no’ (38%).

The answer to Q3 is none half the time (55%) – in other words most attributes
have straightforward set and get behavior. The other half, there are a large number
of possible characteristics to consider, since each project has unique constraints
under which an attribute much conform. Two of the characteristics observe

Exploring a Model-Oriented and Executable Syntax for UML Attributes 41

reasonably frequently are uniqueness and default values; we discuss these in
Section 3.3

In the work below, we show that these answers above could be reflected in a
model-oriented syntax, and in generated code. We also determined which
scenarios do not make semantic or pragmatic sense; to further simplify the
attribute syntax. Further discussion of code generation in Umple is in Section 5.

Is the Attribute Specified in the Constructor (Q1)?: First, let us consider
attributes that are available in the constructor (Q1.Yes). By default an attribute’s
value is required at construction, and the syntax to describe this scenario is to
declare the attribute with no extra adornment. E.g.

String x;
Integer y;

For attributes that are not to be set during construction (Q1.No) the Umple syntax
is to provide an initial value (which can be null) to the attribute, as shown below.

String x = "Open";
Integer y = 1;
String z = null;
String p = nextValue();

The initialized value follows the semantics of the target language (e.g. Java or
PHP). It can either be a constant as we see for x and y, uninitialized as we see for
z or an arbitrary method call (that the developer must define) as in the case of p.

Can the Attribute Change After Construction (Q2)? By default in Umple, an
attribute’s value can change after construction (Q2.Yes), requiring no additional
syntax to describe this scenario. A set method is generated in this case.

Attributes that cannot change after construction (Q2.No) are marked
‘immutable’; the value set in the constructor cannot then be changed. No set
method is generated.

immutable String x;

As we discussed in Section 2, immutability is very useful to provide consistent
semantics for equality and hashing, although not many attributes exhibited the
immutable property. Part of the issue being the difficulty in specifying immutable
attributes in the languages we studied (Java and C#).

There are instances where an attribute should be immutable, but it might be the
case where the value is not available at the time of construction. Examples of this
include application frameworks where the creation of an object is controlled by
the framework and is outside the developer’s control. In these cases, an initially
empty object is provided to the application, to be immediately populated with the

42 O. Badreddin, A. Forward, and T.C. Lethbridge

attribute data that cannot then be changed. Therefore, to support this case in
Umple, we allow immutable attributes to delay instantiation by using the lazy
keyword.

lazy immutable y;

As in Section 3.1 the use of this syntax means that no argument is created in the
constructor for the attribute. The generated code will contain a flag to track
whether the object has been set yet, only allowing a single set to occur. We
elaborate on immutability and the underlying executable implementation in
Section 5.2.

What Other Characteristics Does the Attribute Possess (Q3)? The potential
characteristics are limitless. In our analysis of existing software we found three
somewhat-common patterns that are incorporated into Umple.

Before we consider these patterns, we should recognize that many attributes
have no explicit constraints. In general, a property like a name (or jobTitle) has no
constraints apart from those enforced by the underlying language (i.e. type
checking).

The first characteristic we considered is uniqueness. In databases, guaranteeing
uniqueness allows for efficient searching and equality assertions; many domains
also have data that is unique by design (e.g. flight numbers in an airline). In some
cases, objects are automatically assigned a unique identifier upon creation,
whereas in others uniqueness is checked whenever the attribute is set.

In UML, an attribute’s uniqueness can be specified with a qualifier, which is
really a special type of attribute. Below is an example Airline that has many
RegularFlights.

Fig. 2 Unique flightNumber on the airline association

Two RegularFlights of the same Airline should not have the same
flightNumber. It is also possible to allow for global uniqueness within a system,
for example an ipAddress attribute should perhaps be unique throughout the entire
application.

In the cases above, the developer must define unique attributes. The example
below provides a mechanism to allow the underlying system to manage the
generation of valid and unique identifiers, within or outside the context of an
association. The Umple syntax to describe the constraints above is shown below.

Exploring a Model-Oriented and Executable Syntax for UML Attributes 43

unique Integer flightNumber on airline;

unique String ipAddress;

Uniqueness for integer attributes can also be managed automatically in Umple
using the autounique keyword.

autounique Integer flightNumber on airline;

A defaulted value ensures an attribute is never null. Any time the internal value of
the attribute is null the get method returns the default value.

defaulted type = “Long”;

Not all attributes conform to a standard set/get semantics. In addition, many
member variables are not attributes, but are support variables used internally [4].
In Umple, the syntax for internal attributes is shown below. Internal attributes do
not form part of the constructor and do not have accessor methods, allowing
developers to manage this data in the way they see fit.

internal Integer cachedSize = 0;

Finally, let us consider a many multiplicity. Using square bracket [] syntax,
attributes can also be represented as multiple instances of the attribute type.

String[] names;

4 Generating Code for Attributes: Existing Tools

After investigating how attributes are used in practice, we studied the code
generation patterns of existing tools to see how they implement attributes. The
UML modeling tools considered were identified from a Gartner report [5] and an
online list of UML tools [6]. We selected four open source projects and one closed
source application to analyze. ArgoUML and StarUML are two of the most active
open source UML modeling tools and RSA has the largest market share; using
popular tools helps to ensure that our study is relevant [5, 7].

Table 10 UML code generation tools

Tool Version Source
ArgoUML 0.26.2 argouml.tigris.org
StarUML 5.0.2.1570 staruml.sourceforge.net
BOUML 4.11 bouml.free.fr
Green 3.1.0 green.sourceforge.net
RSA 7.5 ibm.com/software/awdtools/architect/swarchitect

44 O. Badreddin, A. Forward, and T.C. Lethbridge

Table 11 lists tools not considered either because they did not provide code
generation (at all, or of class diagrams), or did not run in our environment.

For the tools listed in Table 10, we used a Student class with two attributes, an
integer representing an id, and a list of names (represented as simple strings).

class Student {
 Integer id;
 String[] names
}

Fig. 3 Student class with a simple id attribute and a list attribute

Table 11 Additional UML tools not considered for our case study

Tool Version Source
Acceleo 2.5.1 acceleo.org
Jink UML 0.745 code.google.com/p/jink-uml
Hugo 0.51 pst.ifi.lmu.de/projekte/hugo
Umbrello 2.0 uml.sourceforge.net
Umlet 9.1 umlet.com
Fujaba 5.0.1 wwwcs.upb.de/cs/fujaba/
Modelio 1.0.0 modeliosoft.com
Topcased 1.2.0 topcased.org
NetBeans UML Modeling 6.7 netbeans.org
Papyrus 1.11.0 papyrusuml.org

ArgoUML: An open source modeling platform that provides code generation for
Java, C++, C#, PHP4 and PHP5. Below is the code generated from Figure 3.

import java.util.Vector;
public class Student {
 public Integer id;
 public Vector names; }

The generated code provides public access to set and get the attributes; a pattern
not often used in practice as it breaks encapsulation by fully exposing the internals
of the class. The attributes are made directly available without the inclusion of
accessor methods.

StarUML: This is an open source modeling tool. Its generated code is almost
identical to that of ArgoUML, except that the import clause was missing, and
names is declared erroneously as a String. StarUML’s generated code hence does
not account for the many multiplicity, resulting in unusable generated code.

Exploring a Model-Oriented and Executable Syntax for UML Attributes 45

Bouml: This is another free tool based on UML 2 that provides source code
generation for C++, Java, Idl, PHP and Python. Its code is very similar to the two
systems above, with the primary difference being that the attributes are declared as
private and genericity is used:

class Student {
 private int id;
 private List<String> names;
}

The Bouml source code does not provide any mechanism to set or get the
attributes; this code must be written by hand after code generation.

Green UML: This is another UML editor that can generate source code from a
class diagram.

import java.util.List;
public class Student {
 int id;
 List<String> courses;
 public Student() {} }

Although Green UML does attempt to provide some additional source code
generation to manage the various types of association multiplicities available; the
results provide little if any added benefit in representing the model’s intentions.

Rational Software Architect (RSA) and RSA Real-Time: IBM’s Rational
Software Architect is a full-fledged development environment that supports
model-driven development including source code generation from UML diagrams.
Its code for Figure 3 is as follows:

import java.util.Set;
public class Student {
 public Integer id;
 public Integer getId() { return id; }
 public void setId(Integer id) { this.id = id; }
 private Set<String> courses;
 public Set<Student> getCourses() { return courses; }
 public void setCourses(Set<Student> courses)

{ this. courses = courses; }
}

RSA’s model transformation into Java provided flexibility regarding the template
patterns including (a) which Java collection to use, and (b) whether or not to
include get/set methods. RSA Real Time generated the same code as RSA for
class diagrams.

After reviewing several code generators it became apparent that an opportunity
exists to provide better support for aligning the modeling’s world of access and

46 O. Badreddin, A. Forward, and T.C. Lethbridge

multiplicity constraints directly in the generated code, alleviating the
modeller/developer from code duplication to ensure consistency between the
model and the code. As an Umple model is the Umple code, such consistency is
easily achieved with adequate code-generation capabilities.

5 Generating Code for Attributes Using Umple

As seen earlier, existing code generating tools do not consider the many
complicated facets of implementing attributes in a target language like Java. In
this section, we demonstrate code generation patterns based on Umple attributes
and generated into Java code.

The following example shows how one would declare attributes in the first
steps of modeling a system using Umple. For conciseness, we have omitted the
code comments and some additional methods not related to the attributes in the
generated Java.

5.1 Basic Attributes

At the core of an Umple attribute is a name. The implications on code generation
include a parameter in the constructor, a default type of String and a simple set
and get method to manage access to the attribute. The attribute code in Umple is
shown below, and code generated in Java follows.

class Student { name; }

public class Student {
 private String name;
 public Student(String aName) { name = aName; }
 public boolean setName(String aName) {
 name = aName;
 return true; }
 public String getName() { return name; } }

The syntax is similar to RSA generated code, and to the simple cases observed in
the open source projects. As seen Section 2, few attributes are set in the
constructor. In Umple, this can be achieved by specifying an initial value as
shown below. The generated code in Java would only differ in the constructor, and
follows.

class Student { name = “Unknown”; }

public Student() { name = “Unknown”; }

Please note the initial value can be null, or some user defined function written in
the underlying target language (i.e. Java).

Exploring a Model-Oriented and Executable Syntax for UML Attributes 47

5.2 Immutable Attributes

If a Student variable was declared immutable, as presented in Section 3, the
resulting Java code would be the same as the basic attribute implementation,
except that there would be no setName method.

By default, immutable attributes must be specified on the constructor, and no
setter method is provided. But, Umple also supports lazy instantiation of
immutable objects as shown below and discussed in Section 3.

class Student { lazy immutable name;}

By declaring a lazy immutable attribute we follow the same convention whereby
the name attribute will not appear in the constructor; but we also provide a set
method that can only be called once.

public class Student {
 private String name;
 private boolean canNameBeSet;
 public Student() { canNameBeSet = true; }
 public boolean setName(String aName) {
 if (!canNameBeSet) { return false; }
 canNameBeSet = false;
 name = aName;
 return true; }

public String getName() { return name; } }

The implementation above includes an additional check canNameBeSet to ensure
that the variable is only set once, but should be used with caution in threaded
access to avoid issues from parallel processing conflicts.

5.3 Defaulted Attributes

As discussed in Section 3, a defaulted attribute provides an object with a default
configuration that can be overwritten. The code generated for Java follows.

class Student { defaulted name = “Unknown”; }

public class Student {
 private String name;
 public Student(String aName) { name = aName; }
 public boolean setName(String aName) {
 name = aName;
 return true; }

public String getName() {
 if (name == null) { return “Unknown”; }
 return name; } }

48 O. Badreddin, A. Forward, and T.C. Lethbridge

Below are the subtle differences between initialized and defaulted attributes. First,
a defaulted attribute is specified in the constructor, an initialized attribute is not.
Second, a defaulted value is guaranteed tp be non-null, an initialized attribute only
guarantees an attribute in set to particular value in the constructor (and can change
afterwards).

5.4 Unique Attributes

The Umple language currently only supports code generation for autounique
attributes as shown below. The code generated for Java follows.

class Student { autounique id;}

public class Student {
 private static int nextId = 1;
 private int id;
 public Student() { id = nextId++; }

public int getId() { return id; } }

The implementation is constrained to non-distributed systems; but allows for a
simple mechanism to uniquely identify an object.

5.5 Constant Class Attributes

A constant class level attribute is identified using the convention of ALL_CAPS.
The UML modeling standard is to underline; a convention that is difficult to
achieve in a development environment as most developer code is written in plain
text. The code generated for Java follows.

class Student { Integer MAX_PER_GROUP = 10; }

public class Student { public static final int MAX_PER_GROUP = 10; }

5.6 Injecting Constraints Using Before/After

To support vast array of other types of custom implementations of set and get
methods, as well as provide a generic mechanism for managing pre and post-
conditions of an attribute, we introduce the before and after keywords available in
the Umple language. Let us begin with a simple example.

Exploring a Model-Oriented and Executable Syntax for UML Attributes 49

class Operation {
 name;

before getName {
 if (name == null) { /* long calculation and store value */ }
}
after getName {
 if (name == null) { throw new RuntimeException(“Error”); }
}

}

In the code above, we are caching the derivation of the complex process to
determine the value of name. The code is also verifying that the getName method
always returns a value (never null). The code provided in the before block will be
run prior to desired operation (i.e. getName) and the code block provided in the
after block runs after (or just before returning) from the desired operation. The
code generated for Java for the getName method is shown below.

public String getName()
{
 if (name == null) { /* long calculation and store value */ }
 String aName = name;
 if (name == null) { throw new RuntimeException("Error"); }
 return aName;
}

The before and after mechanisms can be used with any Attribute A summary of
the operations is described below.

Before and after can be applied to associations, and constructors as well. This
mechanism can, for example, provide additional constraints to a class, or to
initialize several internal variables.

Table 12 Applying before and after operations to Attributes

Operation Applies To (UB = Upper Bound)
setX Attributes (UB <= 1)
getX Attributes
addX List Attributes (UB > 1)
removeX List Attributes (UB > 1)
getXs List Attributes (UB > 1)
numberOfXs List Attributes (UB > 1)
indexOfX List Attributes (UB > 1)

An operation can have several before and after invocations. This chaining

effect allows each statement to focus on a particular aspect of the system such as a
precondition check of inputs, or a post-condition verification of the state of the
system.

It should be noted that the syntax of Umple’s before and after mechanism is
purposely generic with a relatively fine-grained level of control. The intent of this
mechanism is to act as a building block to include additional constraint-like

50 O. Badreddin, A. Forward, and T.C. Lethbridge

syntaxes for common conditions such as non-nullable, boundary constraints and
access restrictions. By including before and after code injections at the model
level, additional code injection facilities are possible at the model level, without
having to modify the underlying code generators. For example, the immutable
property discussed is implemented internally (i.e. Umple is built using Umple)
using before conditions on the set methods.

6 Related Work

There is literature on code generation from UML [8-11]. In [8], an abstract class
is generated for the set and get methods and an instantiable class implements
operations. This adds a layer of complexity. Umple provides a more direct
approach, and the generated code more closely resembles that which would be
written by hand. Whereas the approach above seems guided more by the
limitations of using UML.

Jifeng, Liu, and Qin [12] present an object-oriented language that supports a
number of features like subtypes, visibility, inheritance, and dynamic binding.
Their textual object-oriented language is an extension of standard predicate logic
[13]. The approach to Umple was not to create a new language, but rather to
enhance existing ones with a more model-oriented syntax and behaviour.

Reverse engineering tools tend to generate a UML attribute when they
encounter a member variable, a practice widely adopted by software modeling
tools. Sutton and Maletic [14] advocate that attributes reflect a facet of the class
interface that can be read or written rather than representing the implementation
details of a member variable. They present their findings on the number of class
entities, attributes and relationships that were recovered using several reverse
engineering tools, revealing the inconsistencies in the reverse engineering
approaches. They present their prototype tool, pilfer, that creates UML models
that reflect the abstract design rather than recreating the structure of the program.

Gueheneuc [15] has analyzed existing technology and tools in reverse
engineering of Java programs, and highlights their inability to abstract
relationships that must be inferred from both the static and dynamic models of the
Java programs. They developed PADL (Pattern and Abstract-level Description
Language) to describe programs in class diagrams. However, their proposed
approach requires the availability and analysis of both static and dynamic models
to build the class diagrams. In another study [16], two commercial reverse
engineering tools (Together and Rose) are compared to research prototypes
(Fujaba and Idea); they note that different tools resulted in significantly different
elements recovered from the source code.

Lange and Chaudron [17] conducted an empirical analysis of three software
systems and identified violations to a number of well-formedness rules. In one of
the systems, 67% of attributes were declared as public without using setters and
getters.

Exploring a Model-Oriented and Executable Syntax for UML Attributes 51

Experimentation with Umple [18] users reveals evidence that software
developer comprehension of the code is enhanced when compared to traditional
object oriented code [19-21]. Umple was deployed and evaluated in open source
projects [22]

In most of the cases above, automated analysis done by reverse engineering
tools resulted in vastly different perceptions about the systems being studied. Our
approach, although subjective at times and error prone due to several manual steps
throughout the process, attempts to provide a structured approach to reviewing,
categorizing and understanding how attributes are used in practice.

7 Threats to Validity

Our empirical investigation of existing implementation of attributes has two main
threats of validity; Firstly, to what extent are the seven selected projects
representative of typical uses of attributes; and secondly, to what extent are attribute
patterns affected by the capabilities provided by the existing programming
languages.

To mitigate the risks of non-representation we were diligent to select projects in
a random fashion from a large group of projects written in different languages (yet
languages that we were experienced in). The process to select projects was well
documented and can easily be repeated for future studies into this subject.

The second threat is to what extent the capabilities of the underlying
programming language affects the types of patterns that can be observed. This
threat is somewhat of an extension to our first threat, and is more difficult to
mitigate, as we cannot understand what we do not know. One way to better deal
with this would be to repeat the study using different programming languages with
different attribute semantics.

8 Conclusion

This paper analyzed the syntax, semantics and pragmatics of attributes. We
studied how attributes are used in practice; and discovered the difficulty in
extracting modeling abstractions from analyzing source code. Our approach used
manual inspection, which, although subject to human error is probably comparable
to analysis by automated tools since there are so many special cases to be
considered.

We demonstrated how attributes are represented in the Umple model-oriented
language and showed the code-generation patterns used to translate Umple into
Java. When compared to the code generated for attributes by existing tools, we
believe our patterns have a lot to offer.

52 O. Badreddin, A. Forward, and T.C. Lethbridge

References

1. Forward, A., Lethbridge, T.C.: Problems and opportunities for model-centric versus
code-centric software development: A survey of software professionals. In:
International Workshop on Models in Software Engineering, MiSE, pp. 27–32 (2008)

2. Forward, A., Lethbridge, T.C., Brestovansky, D.: Improving program comprehension
by enhancing program constructs: An analysis of the umple language. In: International
Conference on Program Comprehension (ICPC), pp. 311–312 (2009)

3. Umple language online, http://www.try.umple.org (accessed 2013)
4. Sutton, A., Maletic, J.I.: Recovering UML class models from C++: A detailed

explanation. Inf. and SW Tech. 49, 212–229 (2007)
5. Norton, D.: Open-Source Modeling Tools Maturing, but Need Time to Reach Full

Potential, Gartner, Inc., Tech. Rep. G00146580 (April 20, 2007)
6. Wikipedia Listing of UML modeling tools,

http://en.wikipedia.org/wiki/List_of_UML_tools (accessed 2013)
7. Blechar, M.J.: Magic Quadrant for OOA&D Tools, 2H06 to 1H07, Gartner Inc., Tech.

Rep. G00140111 (May 30, 2006)
8. Harrison, W., Barton, C., Raghavachari, M.: Mapping UML designs to Java. ACM

SIGPLAN Notices 35, 178–187 (2000)
9. Long, Q., Liu, Z., Li, X., Jifeng, H.: Consistent code generation from uml models. In:

Australian Software Engineering Conference, pp. 23–30 (2005)
10. Brisolara, L.B., Oliveira, M.F.S., Redin, R., Lamb, L.C., Carro, L., Wagner, F.: Using

UML as front-end for heterogeneous software code generation strategies. In: Design,
Automation and Test in Europe, pp. 504–509 (2008)

11. Xi, C., JianHua, L., ZuCheng, Z., YaoHui, S.: Modeling SystemC design in UML and
automatic code generation. In: Conference on Asia South Pacific Design Automation,
pp. 932–935 (2005)

12. Jifeng, H., Liu, Z., Li, X., Qin, S.: A relational model for object-oriented designs. In:
Chin, W.-N. (ed.) APLAS 2004. LNCS, vol. 3302, pp. 415–436. Springer, Heidelberg
(2004)

13. Unifying Theories of Programming. Prentice Hall (1998)
14. Sutton, A., Maletic, J.I.: Recovering UML class models from C++: A detailed

explanation. Inf. and SW Tech. 49, 212–229 (2007)
15. Gueheneuc, Y.: A reverse engineering tool for precise class diagrams. In: CASCON,

pp. 28–41. ACM and IBM (2004)
16. Kollman, R., Selonen, P., Stroulia, E., Systa, T., Zundorf, A.: A study on the current

state of the art in tool-supported UML-based static reverse engineering. In: Ninth
Working Conference on Reverse Engineering (WCRE 2002), pp. 22–30 (2002)

17. Lange, C.F.J., Chaudron, M.R.V.: An empirical assessment of completeness in UML
designs. In: EASE 2004, pp. 111–121 (2004)

18. Badreddin, O.: Umple: a model-oriented programming language. In: 2010 ACM/IEEE
32nd International Conference on Software Engineering, vol. 2. IEEE (2010)

19. Badreddin, O.: Empirical Evaluation of Research Prototypes at Variable Stages of
Maturity. In: ICSE Workshop on User Evaluation for Software Engineering
Researchers, USER (to appear, 2013)

Exploring a Model-Oriented and Executable Syntax for UML Attributes 53

20. Badreddin, O., Lethbridge, T.C.: Combining experiments and grounded theory to
evaluate a research prototype: Lessons from the umple model-oriented programming
technology. In: User Evaluation for Software Engineering Researchers (USER). IEEE
(2012)

21. Badreddin, O., Forward, A., Lethbridge, T.C.: Model oriented programming: an
empirical study of comprehension. In: CASCON. ASM and IBM (2012)

22. Badreddin, O., Lethbridge, T.C., Elassar, M.: Modeling Practices in Open Source
Software. In: 9th International Conference on Open Source Systems, OSS 2013 (to
appear, 2013)

A Case Study in Defect Measurement and Root
Cause Analysis in a Turkish Software
Organization

Cagla Atagoren and Oumout Chouseinoglou

Abstract. In software projects, final products aim to meet customer needs and
concurrently to have the least number of defects. Defect identification and re-
moval processes offer valuable insights regarding all stages of software develop-
ment. Therefore, defects are recorded during the software development process with
the intentions of not only fixing them before the product is delivered to the customer,
but also accumulating data that can be researched upon. That data can later be used
for software process improvement. One of the techniques for analyzing defects is
the root cause analysis (RCA). A case study is conducted in one of the leading,
medium sized software companies of Turkey by utilizing the RCA method. The
collected defect data has been analyzed with Pareto charts and the root causes for
outstanding defect categories have been identified with the use of fishbone diagrams
and expert grading, demonstrating that these techniques can be effectively used in
RCA. The main root causes of the investigated defect items have been identified as
lack of knowledge and extenuation of the undertaken task, and corrective actions
have been proposed to upper management. The case study is formulated in a way to
provide a basis for software development organizations that aim to conduct defect
analysis and obtain meaningful results. All stages of the research and the case study
are explained in detail and the efforts spent are given.

Keywords: Defect measurement analysis in software projects, cause and effect
charts, root cause analysis, fishbone diagrams.

Cagla Atagoren
Information Technology and System Management, Başkent University,
06810, Ankara, Turkey
e-mail: caglaatagoren@gmail.com

Oumout Chouseinoglou
Statistics and Computer Science Department, Başkent University,
06810, Ankara, Turkey
e-mail: umuth@baskent.edu.tr

R. Lee (Ed.): SERA, SCI 496, pp. 55–72.
DOI: 10.1007/978-3-319-00948-3_4 c© Springer International Publishing Switzerland 2014

56 C. Atagoren and O. Chouseinoglou

1 Introduction

One of the major goals of software engineering is to develop high quality products
with least defects. Software quality not only focuses on the final product but also
on the artifacts of the software development processes. In that respect the concepts
of software process management and software process improvement (SPI) continu-
ously gain importance [1]. Software industry is a developing and emerging indus-
try in Turkey with a very high growing potential [2], thus it is critical for Turkish
software organizations to follow the best practices with respect to software devel-
opment processes. The continuous increase in demand for software makes the use
of a well-defined and structured software process management approach a necessity
for successful completion, especially in complex or large defense projects. On the
other hand, developing and operationalizing quality software is a subtle process [3].
Within the quality viewpoint, one of the aims in the software industry is having the
least defects on the product being delivered to the customer; where software defect
(or fault or bug) is defined as any flaw or imperfection in a software work product
or software process [4]. Similarly, every point in the software that does not meet
user requirements can be considered as a defect [5] whereas for a software engineer
anything that needs to be changed is a defect [6].

As a result of the SPI approach, all defects identified from the first day of the
development till the delivery of the product to the customer and the finalization of
the project are being recorded in order to be analyzed and used for future SPI. It
is important that the recorded defect data is reliable and of high quality, otherwise
misleading results and interpretations may emerge from the analyses conducted on
that data. Furthermore, a poorly conducted analysis may yield also to misrepresen-
tative results. Therefore, both the defect data to be used and also the techniques and
methodologies to be employed in defect analysis are of crucial importance for SPI
[7][8]. Moreover, the Causal Analysis and Resolution activity in CMMI level 5 is
expressed by two Specific Goals, namely Determine Cause of Defects and Address
Cause of Defects. The specific practices of the first goal are selecting the defect data
for analysis and analyzing causes by requiring the following: “Analyze selected de-
fects and other problems to determine their root causes” [1]. The defects recorded in
software projects can be categorized based on different approaches, and the defect
categories may vary based on the software being developed, the research conducted
or the characteristics of the software development organization [9]. One such cate-
gorization is with respect to the events that have caused the defect. Based on such
a categorization, the source of the defect can be identified and the deficiencies of
the processes can be removed, thus preventing the origination of similar defects in
future. As a result of this, SPI is realized [10].

Root-cause analysis (RCA) and fishbone (cause and effect) diagrams are used to
identify the possible reasons (root causes) of specific problems or situations, focus-
ing on the belief that defects are best solved by attempting to correct or eliminate
root causes, instead of merely addressing the immediately obvious symptoms [11].
RCAs have been identified as one of the tools used for defect removal within the
people review profiles in software engineering practices [12]. As it is possible to

A Case Study in Defect Measurement and Root Cause Analysis 57

reach the causes of a problem by starting from its results and using statistical meth-
ods, it is important that the cross relationship between the causes and the effects is
identified and displayed with graphical tools, such as fishbone diagrams, fault tree
diagrams, causal maps, matrix diagrams, scatter charts, logic trees, or causal factor
charts [9] but this is best and most easily accomplished with fishbone diagrams [1].
The use of such diagrams allows the structuring of the problem solving process,
the delivery and exhibition of all the information regarding the problem, the under-
taking of a systematic approach while moving from the already known towards the
unknown and the utilization of all experts that do have some prior experience with
the problem at hand. As stated in [7], identifying root causes is part of SPI activities
regarding defect prevention. The common steps of RCA methods and related work
practices used in software developing organizations are detailed in [9].

The aim of this research is to display and interpret the results of an RCA case
study that has been conducted in one of the major software development organiza-
tions of Turkey. Within the scope of the case study, defect data collected from 13
software projects developed from 2006 to 2012 have been investigated. The results
of this research have been used by the assessed software development organization
for the formation of defect prevention plans and SPI activities. The rest of the paper
is organized as follows: in Section 2 a brief literature survey regarding defects, de-
fect classifications, RCA in software projects and similar case studies is provided.
Section 3 presents the details and gives the results of the case study. The last section
concludes the paper with a discussion of the findings and future research.

2 Related Work

Defect cause analyses and RCA has been employed in the area of software engineer-
ing since the 80s, a survey of existing RCA methods and the theoretical background
of RCA are provided in detail in [9] and some of the best examples are given in
[13]. Among these, the work of Yu [14] follows a similar approach to the RCA con-
ducted in this study, as the team in question uses a fishbone analysis to identify the
root causes, which is also the case in [1], where fishbone diagrams are used for the
causal analysis of the defects and to provide a basis for SPI. The efficient use of this
tool in the software engineering domain has provided the grounds of employing it
in our research.

Leszak et al. [15], present several defect analyses conducted retrospectively on
a network element software product. The research is based on different data sets
from the same project context, where the input data used is defect numbers and de-
fect classification data from a sample from all defects, which constitutes the basis
for RCA. To conduct RCA, a cross-functional team was constituted with members
from software and hardware domains, the independent integration and certification
department, quality support group and other departments. The aims of the conducted
RCA are summarized as analyzing sample defects to find systematic root causes of
defects; analyzing major customer-reported modification requests during the main-
tenance release and proposing improvement actions as inputs for other development

58 C. Atagoren and O. Chouseinoglou

projects, in order to reduce number of critical defects and rework cost. This retro-
spective approach has provided an important insight as the defect data in our study is
similarly historical and has been collected from different completed projects. Simi-
larly cross-functional teams to conduct the RCAs were formed and the RCA results
obtained were used in similar fashion.

Lehtinen et al. [9] present a “lightweight” RCA method, namely ARCA, specif-
ically focusing on medium-sized software companies. ARCA consists of four steps
and does not require defect reports as it focuses on group meetings to detect the
target problem. Lehtinen and Mntyl [16] apply ARCA in order to target defects in
four medium-sized software companies by creating a two-dimensional classifica-
tion, where the first dimension is based on common software engineering process
areas and the second dimension describes the type of causes detailing them under
four major categories, namely people, tasks, methods and environment. The target
problem causes have been detected through anonymous e-mail inquiries, followed
by cause analysis workshops. The authors have spotted 14 types of causes in 6 pro-
cess areas and their results indicate that development work and software testing are
the most common process areas, whereas lack of instructions and experiences, insuf-
ficient work practices, low quality task output, task difficulty, and challenging exist-
ing product are the most common types of the causes. Pinpointing both the process
areas that require improvements and the improvements required, the authors argue
that the proposed classification is useful for understanding problem causes. Within
the defect classification approaches, Orthogonal Defect Classification (ODC) [17] is
an approach for categorizing defects into classes that collectively point to the part of
the process which needs attention, with the requirement that defects can be classified
semantically and that the set of all values of defect attributes must form a spanning
set over the process sub-space. ODC’s extension is to assist defect prevention by
providing data that can be used in RCAs. Buglione and Abran [1], working within
the perspective of CMMI and by introducing the concepts of cause analysis, RCA
and ODC at lower levels of CMMI, propose a quantitative approach to RCA and
fishbone by overcoming some of the limitations noted in ODC and arguing that the
use of RCA would assist the organization in its measurement ability and at the rating
of other processes at lower maturity levels. Kumaresh and Baskaran [10] combine
methodologies such as ODC, iteration defect reduction and capturing defects at ear-
lier stages to generate a defect prevention cycle that they argue it can be used for
continuous improvement of quality and defect prevention. The cycle consists of the
stages of defect identification, classification, analysis, RCA, prevention, and SPI.
The study uses 637 defects gathered from 5 different projects. Instead of analyzing
all defects, the authors try to focus on the majority of the defects by using the Pareto
principle and RCA. RCA is realized with the use of fishbone diagrams. The Pareto
approach has been used in our study too, to focus in the majority of defects, to lessen
the effort spent and to efficiently use the teams conducting RCA. A research utiliz-
ing ODC in a RCA is [18], where 4,372 software defects gathered from a software
project developed by the Ministry of Health, Turkey have been categorized with the
use of ODC and then have been investigated with RCAs.

A Case Study in Defect Measurement and Root Cause Analysis 59

Apart from the aforementioned studies, several more works have been inves-
tigated in the area of RCAs on computer bugs and defects. Yin et al. [19] give
a methodology for classifying network software bugs based on a combination of
static analysis and manual classification. The bugs have been classified in five di-
mensions, namely root cause, trigger condition, effect, code location and operational
issues. Although not directly related to software defects, Schroeder and Gibson [20]
utilize a root cause approach to study failures in high-performance computing sys-
tems: root causes are grouped under main categories which are further detailed to
root causes. Similarly, such categorizations and groupings of defects have been used
in our study.

3 Case Study

This case study has been conducted with the use of defect data gathered from 13
software projects developed from 2006 to 2012 in a middle-sized software organi-
zation in Turkey, having CMMi capability level 2 but showing indicators of being
on level 3 in some areas. The organizational and software development maturity of
the assessed organization are above average among software development organi-
zations in Turkey. Due to the request of the software organization, the name of the
organization is not revealed in this study, and thus it will be referred to as Organi-
zation X. Moreover, the software projects of Organization X are being developed
within a data confidentiality perspective as they are proprietary projects and require
high levels of security clearance. In accordance with these confidentiality consider-
ations, the data gathered and used in this research has been altered with the use of a
black-box algorithm provided by Organization X. Therefore, the data given in this
case study does not reflect the actual data; however, all data has been altered with
the same black-box algorithm for consistency considerations.

The software projects developed by Organization X are mainly grouped into
two major categories based on project characteristics. With respect to the afore-
mentioned confidentiality considerations these project groups will be briefly sum-
marized as Type-1 projects, which have stricter, more controlled development
procedures and require to follow several software development standards and
Type-2 projects, where the software development process is more relaxed with no
predefined standards to be followed. All projects investigated in this research by
Organization X have been following the waterfall development lifecycle.

The empirical case study in this paper follows the field study methodology
[21][22]. The defect data was collected from the company defect database and was
analyzed in two stages. Firstly, the inaccurate, incomplete and inconsistent defect
items were either removed or corrected before analysis by using interviews. Then
the defect data were analyzed with respect to their characteristics and were grouped
accordingly. The RCA meetings were conducted with the use of query forms. All
the effort spent in the analysis was measured to provide a feedback for any other
similar undertaking. The methodology is further detailed in the following sections.

60 C. Atagoren and O. Chouseinoglou

3.1 Application of the Case Study

The data used has been retrieved from the defect database of Organization X in May
30, 2012. The defect data consists of 36,424 defect items and belongs to 13 projects
conducted from 2006 to 2012, of which 8 are Type-1 and 5 are Type-2 projects.
All projects have followed the waterfall lifecycle and the defect items have been
recorded by project members at any stage of the software development lifecycle of
the specific project, with the use of a predefined defect record interface. The fields
of a defect item being recorded and the explanation of each field is given in Table 1.
The development phase that the defect was recorded and the phase that it originated
are given in Table 2, and the defect type and the phase that it originated are given in
Table 3. The tables 2 and 3 are generated with data from all 13 projects.

As can be seen from Table 2, 7,499 defects have originated from requirements
phase and 1,931 of them were found in next phases. As finding and fixing a defect in
future phases is much more expensive than finding and fixing it during the require-
ments and early design phases [23], the aforementioned high number is of critical
importance for Organization X. Table 3 shows that 27,920 of 36,424 total defects
were corrected before the delivery of the product to the customer, a fact that shows
that peer-review effectiveness is within acceptable levels with respect to internal
goals of Organization X.

Before applying RCA, the organization had considered the application of the
ODC approach for the analysis of the defect. However, as important information
such as “defect triggers” were missing from the defect data recorded and as such
information is not possible to be post-inserted, the organization shifted the defect
analysis approach to only RCA, which suited best the defect data in hand. Prior to
the RCAs, every defect item has been analyzed with respect to its accuracy, integrity
and consistency by a measurement team consisting of 7 members. Any problematic
defect item or missing fields have been resolved by conducting interviews either
with the personnel who has recorded the defect or with project members of the
specific software project. A total of 315 problematic defect items have been cor-
rected. This analysis has shown that the most common defect recording problem
that has been assessed is the confusion between the fields of “defect origin” and
“when found”. Moreover, due to the fact that defect categories have not been used
at the early stages of the defect recording process, a number of defect items have
not been categorized while being recorded. However, as the rest of the data in these
uncategorized defect items has been considered to yield meaningful and important
information, they have not been excluded from the overall analysis.

When the defect data in hand is analyzed with respect to the levels of severity, it is
seen that 22.2% are uncategorized, 0.6% are critical, 20% are major and 56.6% are
minor defects. Moreover, the major and critical defects (in total 20.6% of all defects)
are labeled as Software Change Requests (SCR). As SCRs are defects that have
been identified post to customer delivery, the effect of these defects to the product
are more severe. When the analysis results were investigated, the first prevention
plan that was decided to be undertaken by the organization has been identified as
the minimization of major and critical defects within the SCR defect type.

A Case Study in Defect Measurement and Root Cause Analysis 61

Table 1 Defect Fields and Their Explanations

Field Explanation
Project Name The abbreviation of project name
Defect Type: Can have three values:

• Software Change Request (SCR): change request and/or defect notice
that has been communicated after the submission of the deliverable to
the customer.

• Peer Review (PR): change request and/or defect notice that has been
identified prior to the submission of the deliverable to the customer.

• Informal Action Item (INFAI): change request and/or defect notice
identified during product development.

Defect Number An unique identifier used for identifying defects
When Found The development lifecycle phase that was being conducted when the defect

was discovered: Requirements (REQs), Design, Code, Test, Field
Defect Origin The development lifecycle phase where the defect originated: REQs, De-

sign, Code, Test, Field. The defect origin is determined by the person(s)
who resolves the defect after the closure of the defect. Defect reporter is
not responsible for entering this data.

Occurrence Num-
ber of Defect

Number of times this defect is found

Defect Category Defect categories are based on the characteristic of the defect and mainly
developed based on the ODC. The categories due to the aforementioned
confidentiality considerations are concealed and in this research they are
given as follows: A,B,C,D,E,F,G,H,I,J,K. However, after the conclusion of
this research, Organization X has accepted to reveal the names of the defect
categories that were analyzed in RCA. Namely these are:

• A: Behavior/ Missing/ Traceability
• D: Conflict/ Consistency/ Verifiability
• E: Documentation/ Understanding

The K category consists of uncategorized defects thus they have been ex-
cluded from the RCA undertaken in this research.

Defect Severity The effect of the defect on both the project and product with respect to
budget and calendar considerations that were analyzed in RCA. Namely
these are:

• Critical: Defects that halt the functioning software
• Major: Defects that cause software to produce incorrect or erroneous

outputs
• Minor: Defects that effect the functioning software but can easily be

fixed.

62 C. Atagoren and O. Chouseinoglou

Table 2 Origins and Detection Stages of Defect Data

Defect Origin
REQs Design Code Test Field Total

W
he

n
F

ou
nd

REQs 5,568 5,568
Design 134 1,159 1,293
Code 646 319 7,127 8092
Test 1,151 570 7,592 11995 21,308
Field 0 2 149 8 4 163
Total 7,499 2,050 14,868 12,003 4 36,424

Table 3 Origins and Types of Defect Data

Defect Type
INFAI PR SCR Total

D
ef

ec
t

O
ri

gi
n REQs 598 4,747 2.154 7,499

Design 360 939 751 2,050
Code 5,876 6.106 2,886 14,868
Test 176 9.114 2,713 12,003
Field 0 4 0 4
Total 7,010 20,910 8,504 36,424

As the defects display variations with respect to project types and as the number
of defects for Type-1 projects is higher than the defects in Type-2 projects, the defect
categorization analyses have been conducted and assessed separately for the two
project types. The defect data for Type-1 and Type-2 projects is given respectively
in figures 1 and 2, where it can be seen that the most common defects in Type-
1 projects are in categories D, A and E; whereas in Type-2 projects they are in

Fig. 1 Defect Categories for Type-1 Projects

A Case Study in Defect Measurement and Root Cause Analysis 63

categories K, D and E. Based on expert opinions, in order to obtain more efficient
results it has been decided to conduct RCA on categories where the defects densify,
similar to [10]. Therefore, to select the categories for the RCA, the Pareto principle
and Pareto histograms have been employed. The Pareto principle briefly states that
20% of the causes result to 80% of the problems and can be used to break a big
problem down into smaller pieces to identify the most significant factors, and to
direct where to focus efforts. Pareto histograms are drawn based on the occurrence
rate of an event, are especially suitable for the identification of the most important
cause in a problem or situation and can be used by software teams to focus on the
major problem areas rapidly [24].

Type-1 and Type-2 projects are analyzed separately and the defects identified
between the years 2006 to 2012 are grouped in categories as Pareto histograms and
are given in figures 1 and 2. In Figure 1, 70% of the defects belong to A, D and
E categories. On the other hand, in Figure 2, 90% of the defects belong to K , A,
D and E categories. Based on the results obtained from the Pareto histograms, the
organization decided to conduct RCA on A, D, and E defect categories, where the
74% of all defects resides. Accordingly, three separate RCA teams have been formed
consisting of members from different departments whose skills and expertise are in
accordance with the defect category being assessed, similar to [15]. RCAs have been
conducted for each of these three categories separately with the aim of identifying
the root causes of these defect categories, followed by prevention plans for each
root cause. In order to identify the root causes the teams conducted problem cause
brainstorming sessions (utilizing brainwriting) and root cause identification sessions
(utilizing the Five Whys approach), as described in [25]. The details of the formed
teams and the RCAs are given in detail in the following section.

Prior to the conduction of RCAs, the measurement team of the organization
identified 5 main groups to categorize each root cause similar to approaches used

Fig. 2 Defect Categories for Type-2 Projects

64 C. Atagoren and O. Chouseinoglou

in manufacturing and service industries [26], namely People (GP), Methods (GM),
Tools (GT), Inputs (GI) and Material (GMa), with the use of expert judgements.
However, GT and GMa were merged to a single group during the brainstorming
sessions as Tools and Materials (GTM).

3.2 Root Cause Analyses

3.2.1 Root Cause Analysis for Category A Defects

The RCA team gathered to assess the defects of category A (Behavior/ Missing/
Traceability) consisted of 3 software engineers, 1 analysis leader, 1 quality engineer,
1 project manager and 1 process engineer. Each team member was given the defect
data prior to RCA meetings and individual evaluations were prepared. The team held
2 meetings, each extending to 6 hours. In these meetings every defect in category A
was examined separately, and 17 different root causes grouped under 4 main groups,
namely GP, GM, GT and GI were identified with brainstorming sessions. These root
causes were emplaced to the corresponding fishbone diagram, given in Fig. 3.

Following the drawing of the fishbone diagram, each team member graded sep-
arately the identified 17 root causes at a scale of 0 to 10, 10 denoting the most
important item. These grades were then normalized for each team member to allow
scale consistency. The normalized grades of each item were summed to identify the
main root cause which would be the highest graded item. Each root cause item and
the corresponding summed grades are given in Table 4. As a result of the first RCA,
the most important reason (main root cause) of Category A defects is “Extenuation
of the undertaken task”.

Fig. 3 RCA / Fishbone Diagram for Defects in Category A

A Case Study in Defect Measurement and Root Cause Analysis 65

Table 4 Root Causes for Defects in Category A

Main
Group

Root Cause Normalized
Grade

GP Extenuation of undertaken task 71.70
GP Time constraints 61.46
GP Checklist items are not utilized 60.23
GT The tool is not used in its full capacity 52.84
GT Comments are not inserted thoroughly due to time constraints 46.74
GI Utilized method is ambiguous 45.70
GP Lack of training 45.34
GI Tests are forced for code parts / pieces that are incomplete 42.96
GM The software development standard used is difficult to compre-

hend
38.76

GT The tool used is inadequate 35.74
GM Control of the characters in the method is difficult 35.68
GM Method has redundant parts 35.27
GM No predefined software development standard is being used 34.56
GM Methods title comments are incomprehensible 27.06
GT Problems arising from the tools used 26.04
GT Control items which exist in the tool and used in pre-controls

are incomplete
23.58

GP Tracking of some code related constraints is challenging 16.33

RCAs for Category E and D defects were conducted similarly to RCA for defects
in Category A, therefore only specific information for these RCAs is given in the
following sections.

3.2.2 Root Cause Analysis for Category E Defects

For the assessment and RCA of category E (Documentation/ Understanding) de-
fects, a team consisting of 1 software engineer, 2 test engineers, 2 quality engineers,
1 project manager, 1 process engineer and configuration expert was formed. The
team held 3 meetings, each extending to approximately 4 hours. In these meetings
every defect in category E was examined separately, and 10 different root causes
grouped under 3 main groups, namely GP, GT and GI, were identified with brain-
storming sessions. These root causes were emplaced to the corresponding fishbone
diagram, given in Fig. 4.

Conducting a grading process similar to category A defects, the main root cause
has been identified as “Lack of expertise/ knowledge about the programming lan-
guage used”. Each root cause item and the corresponding summed grades are given
in Table 5. As a result of second RCA, the most important cause of Category E
defects is “Lack of expertise/ knowledge about the programming language used”.

66 C. Atagoren and O. Chouseinoglou

Fig. 4 RCA / Fishbone Diagram for Defects in Category E

Table 5 Root Causes for Defects in Category E

Main
Group

Root Cause Normalized
Grade

GP Lack of expertise/knowledge about the programming language
used

87.27

GP Lack of training 81.82
GP Extenuation of undertaken task 65.45
GP Team mismanagement 60.00
GT Help pages of the used tool not utilized 60.00
GT Hardly understood user interface of used tool 58.18
GI Ambiguous requirements 50.91
GP Time constraints 49.09
GP Unpracticed / inexperienced workers 43.64
GT Inadequate knowledge regarding used tool 43.64

3.2.3 Root Cause Analysis for Category D Defects

For the assessment and RCA of category D (Conflict/ Consistency/ Verifiability)
defects a team consisting of 5 test engineers, 1 team leader, 1 quality engineer, 1
project manager, and 1 process engineer was formed. The team held 2 meetings,
each extending to approximately 3 hours. In these meetings every defect in cate-
gory E was examined separately, and 28 different root causes grouped under 4 main
groups, namely GP, GTM, GM and GI, were identified with brainstorming sessions.
These root causes were emplaced to the corresponding fishbone diagram, given in
Fig. 5.

A Case Study in Defect Measurement and Root Cause Analysis 67

Fig. 5 RCA / Fishbone Diagram for Defects in Category D

Conducting a grading process similar to category A and E defects, the main root
cause has been identified as “Lack of knowledge of test engineers”. Each root cause
item and the corresponding summed grades are given in Table 6. As a result of final
RCA, the most important reason of Category D defects is “Lack of knowledge of
test engineers”.

3.3 Case Study Effort Analysis

The effort spent by the team members in the conducted RCAs has been recorded
in order to provide an insight for any study to follow. The total effort spent has
been calculated as 6,5 person months. In total, 24 people have attended meetings
of approximately 30 hours in length. The effort spent for the data preparation prior
to RCAs was 302 hours. The presentation and documentation effort of the RCA
findings was recorded as 94 hours.

4 Conclusion

Within the conducted analyses a total of 36,424 defect items have been investigated
belonging to 13 different software projects conducted in a span of 6 years. Prior
to analysis, any inconsistencies or errors in the defect data have been corrected by
examining each defect item with respect to accuracy, integrity and consistency con-
siderations. The RCA analyses conducted in this case study is an amalgamation of
different best-practice methods and approaches mentioned in the literature, afore-
mentioned in sections 2 and 3. This study has shown that RCA, which is traditionally

68 C. Atagoren and O. Chouseinoglou

Table 6 Root Causes for Defects in Category D

Main
Group

Root Cause Normalized
Grade

GP Lack of knowledge of test engineers 31.15
GM Ambiguity of methodology 30.18
GM Lack of adequate and efficient test tool training 29.68
GM Not defined in process 29.29
GT/M Detail of the checklist items 29.06
GT/M No predefined tools in methodology 26.76
GT/M Inadequate guidelines 24.93
GI Excessive update requests from customer 24.69
GT/M Unsuitability of control items 23.36
GT/M Instability of tools 23.04
GI Inadequate planning 22.33
GI Pressure for beforetime formalization 22.12
GP Calendar deadlines 21.99
GM Obsolete design due to changes in requirements 20.09
GP Size and complexity of the system 19.97
GI Control of data before being adjusted 19.75
GP Negative attitude towards work 19.13
GP Lack of expertise / knowledge in most of the team members 18.50
GP Exhaustion due to overtimes 18.50
GM Lack of knowledge of test design 17.86
GP Workload of the resource 17.73
GP Inexperience 17.57
GP Lack of work and task details 17.52
GP Not reading the related documents 17.32
GM Inadequate test design 16.69
GI Target problem 16.36
GP Lack of software engineers 14.38
GP Work overload of test engineers 11.05

used in the manufacturing industry, can be implemented in software organizations
if the defect data is recorded accordingly. Fishbone diagrams are appropriate for
displaying all possible root causes together. As well as Pareto charts focus in the
majority of defects through these charts required effort decreases. We believe that,
this generated practical method and employed approach can be generalized and can
be used in any software organization that plans a defect analysis and records the
defect data categorically.

The analysis on defect data has proven important insights regarding the organiza-
tion infrastructure and the encountered defects. It is discovered that prior to product
delivery to the customer, most of the defects are detected and resolved. However,
the defects that are communicated from the customer in SCRs and that typically are
labeled as major or critical, need to be addressed by the organization thoroughly as

A Case Study in Defect Measurement and Root Cause Analysis 69

the solution of these defects lies in far-back phases and the cost of resolving is high.
Organization X considers the undertaking of trainings and the assignment of expert
members to the phases that these defects originate, as an approach for the reduction
of these defects.

When the category types of the defect items are investigated, 74% of the defects
fall in the categories of A (Behavior/ Missing/ Traceability), E (Documentation/
Understanding) and D (Conflict/ Consistency/ Verifiability). Therefore, RCA has
been conducted only on the defects falling in these three categories. The main root
cause for the defects in category A has been identified as “Extenuation of the under-
taken task”, for category E as “Lack of expertise/knowledge about the programming
language used” and for category D as “Lack of knowledge of test engineers”. The
defect data gathering and adjustments and the conducted RCAs have been accepted
as a first step of a long term defect management approach of the organization. The
results obtained have been presented to the upper management of Organization X
and a group of actions undertaken within the overall approach of SPI are summa-
rized as:

• employee seminars to communicate the work and tasks conducted and its impor-
tance,

• courses and trainings for further education regarding the programming language
used in each project,

• action plans for the encouragement of expert engineers to emerge within the ex-
isting staff,

• and trainings for the sharing of test knowledge and expertise among development
teams.

The upper management has accepted a plan of re-conducting the RCAs for a new
set of defect data after the completion of the aforementioned SPI activities. Another
approach is the conduction of RCAs as an activity within the development lifecycle
of software projects in predefined periods, with the aim of minimizing and ideally
eliminating all defects from the product before it is delivered to the customer.

Several limitations regarding the undertaken approach exist. First of all, even
though Pareto charts reduce the time and effort to conduct RCA, they only focus to
a group of defects, resulting in some major items not being analyzed. For organiza-
tions that more resources are available, RCA may be conducted for all defect cat-
egories. Moreover, grades given to root causes in fishbone diagrams are subjective
and may vary according to RCA team members. Therefore, it is crucial to involve
different experts to RCA teams and provide for the standardization of the analysis.

A deficiency of the conducted research is the fact that the defect data recorded is
not in accordance with any defect classification schemes in literature. A proposed
improvement for this shortcoming has been the reconstruction of defect recording
approach in accordance to the ODC methodology. The upper management has un-
dertaken a research on the alteration of defect recording and the establishment of an
infrastructure that would allow the use of the ODC methodology.

70 C. Atagoren and O. Chouseinoglou

The fact that some of the defect data recorded was incomplete and inconsistent
has resulted to extended effort for resolving the existing problems prior to RCAs
by conducting interviews with the defect recorders. However, as some of the em-
ployees that have recorded the problematic defect items were no longer working in
the organization, several defect items were resolved by communicating other team
members. This may have resulted to incorrect solutions and assumptions, however,
in order to maintain the overall integrity of the defect data these defect items were
not excluded from the analysis. As a result of these findings, training sessions have
been conducted in Organization X to train employees with respect to correct and
consistent defect recording.

As such an RCA has been conducted for the first time since 2006 in the orga-
nization, the know-how of the RCA team members regarding the approach was
inadequate and the resulting fishbone diagrams have not been in the expected
clarification level. However, due to the commitment of the upper management the
diagrams are consistent with respect to each other and have provided important
insights. We believe that with the lessons learned and acquired knowledge, the
organization at present can conduct RCA and develop fishbone diagrams more
efficiently.

The results of our study can be compared with other RCAs conducted in soft-
ware development organizations with respect to several dimensions. When the three
RCAs of this study are combined, we can see that 52 unique root causes have been
identified, grouped under 4 main groups. Yu [14] discusses an RCA with 33 root
causes grouped under 6 main categories, whereas Lehtinen et al. [9] in four differ-
ent case studies have discovered 52-108 causes in preliminary cause collection and
80-137 in causal analysis workshops, and citing Card they refer to an RCA with 100
target problems. The total effort of the 3 RCAs in our study has been calculated as
6,5 person months. Lehtinen et al. [9] have spent 73-98 person-hours to conduct the
cases in their studies, and the authors citing Mayes state that the required effort to
conduct an RCA method consists of 47 developers participating in a kickoff and a
causal analysis meeting, each lasting 2 h, and 810 action team members using 10%
of their time for action team duties. It is evident that the relatively increased effort
in our study is mainly due to the high number of defects analyzed.

As a future study to follow this research, a transition plan from the current state
to an infrastructure that will allow the recording and analysis of defect data with
respect to the ODC model is planned. The transition plan will identify the shortcom-
ings of the current defect recording system, the advantages of using ODC and how
the defect management infrastructure needs to be altered in order to accommodate
the extra information fields that ODC requires. Another future work for software
development organizations that already store the defect data in ODC format would
be the analysis of the defects both in simple RCA and RCA following ODC, and the
comparison of the results that these two approaches yield. The comparison of these
two approaches can further be extended by including guidelines for organizations,
stating when and in which case to use which analysis.

A Case Study in Defect Measurement and Root Cause Analysis 71

References

1. Buglione, L., Abran, A.: Introducing root-cause analysis and orthogonal defect classi-
fication at lower CMMI maturity levels. In: Proceedings of MENSURA, Cdiz, Spain
(2006)

2. Akman, G., Yilmaz, C.: Innovative capability, innovation strategy and market orienta-
tion: an empirical analysis in Turkish software industry. International Journal of Innova-
tion Management 12(01), 69–111 (2008)

3. Gouws, J., Gouws, L.: Fundamentals of software engineering project management.
Mlikan Pty Ltd. (2004)

4. Clark, B., Zubrow, D.: How good is the software: a review of defect prediction tech-
niques. In: Proceedings of the Software Engineering Symposium (2001)

5. Mcdonald, M., Musson, R., Smith, R.: The practical guide to defect prevention. Mi-
crosoft Press, Washington (2008)

6. Norris, M., Rigby, P.: Software engineering explained. John Wiley and Sons Ltd. (1992)
7. Kumaresh, S., Baskaran, R.: Experimental design on defect analysis in software pro-

cess improvement. In: Proceedings of the Recent Advances in Computing and Software
Systems, RACSS (2012)

8. Raninen, A., Toroi, T., Vainio, H., Ahonen, J.J.: Defect data analysis as input for software
process improvement. In: Dieste, O., Jedlitschka, A., Juristo, N. (eds.) PROFES 2012.
LNCS, vol. 7343, pp. 3–16. Springer, Heidelberg (2012)

9. Lehtinen, T.O., Mntyl, M.V., Vanhanen, J.: Development and evaluation of a lightweight
root cause analysis method (ARCA method)-Field studies at four software companies.
Information and Software Technology 53(10), 1045–1061 (2011)

10. Kumaresh, S., Baskaran, R.: Defect analysis and prevention for software process quality
improvement. International Journal of Computer Applications 8(7), 42–47 (2010)

11. Reid, I., Smyth-Renshaw, J.: Exploring the fundamentals of root cause analysis: are we
asking the right questions in defining the problem? Quality and Reliability Engineering
International 28(5), 535–545 (2012)

12. Chulani, S., Boehm, B.: Modeling software defect introduction and removal: CO-
QUALMO (COnstructive QUALity MOdel). Center for Software Engineering, Univer-
sity of Southern California (1999)

13. Card, D.N.: Myths and strategies of defect causal analysis. In: Proceedings of the Pacific
Northwest Software Quality Conference (2006)

14. Yu, W.D.: A software fault prevention approach in coding and root cause analysis. Bell
Labs Technical Journal 3(2), 3–21 (1998)

15. Leszak, M., Perry, D.E., Stoll, D.: Classification and evaluation of defects in a project
retrospective. The Journal of Systems and Software 61(3), 173–187 (2002)

16. Lehtinen, T.O., Mntyl, M.V.: What are problem causes of software projects? Data of
root cause analysis at four software companies. In: The Proceedings of the Empirical
Software Engineering and Measurement (ESEM) Symposium (2011)

17. Chillarege, R., Bhandari, I.S., Chaar, J.K., Halliday, M.J., Moebus, D.S., Ray, B.K.R.,
Wong, M.Y.: Orthogonal defect classification - a concept for in-process measurements.
IEEE Transactions on Software Engineering 18(11), 943–956 (1992)

18. Soylemez, M., Tarhan, A., Dikici, A.: An analysis of defect root causes by using or-
thogonal defect classification. In: Proceedings of the 6th National Software Engineering
Conference, Ankara, Turkey (2012) (in Turkish)

19. Yin, Z., Caesar, M., Zhou, Y.: Towards understanding bugs in open source router soft-
ware. ACM SIGCOMM Computer Communication Review 40(3), 34–40 (2010)

72 C. Atagoren and O. Chouseinoglou

20. Schroeder, B., Gibson, G.A.: A large-scale study of failures in high-performance com-
puting systems. IEEE Transactions on Dependable and Secure Computing 7(4), 337–350
(2010)

21. Lethbridge, T.C., Sim, S.E., Singer, J.: Studying software engineers: data collection tech-
niques for software field studies. Empirical Software Engineering 10(3), 311–341 (2005)

22. Runeson, P., Hst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Software Engineering 14(2), 131–164 (2009)

23. Shul, F., Basili, V., Boehm, B., Brown, W.A., Costa, P., Lindvall, M., Port, D., Rus, I.,
Tesoriero, R., Zelkowitz, M.: What we have learned about fighting defects. In: Proceed-
ings of the Eighth IEEE Symposium on Software Metrics (2002)

24. Florac, W.A., Carleton, A.D.: Measuring the software process. Addison Wesley, Indi-
anapolis (2004)

25. Andersen, B., Fagerhaug, T.: Root cause analysis: simplified tools and techniques. ASQ
Quality Press (2006)

26. Young, S.: Quality management. MIM Malta Institute of Management (2005)

Extending UML/MARTE-GRM for Integrating
Tasks Migrations in Class Diagrams

Amina Magdich, Yessine Hadj Kacem, and Adel Mahfoudhi

Abstract. There is a growing interest in modeling Real-Time Embedded Systems
(RTES) using high-level approaches. The recent extension of Unified Modeling
Language (UML) profile for Modeling and Analysis of Real-Time Embedded sys-
tems (MARTE) is enclosing a lot of stereotypes and sub-profiles providing support
for designers to beat the shortcomings of complex systems development. In particu-
lar, the MARTE/GRM (Generic Resource Modeling) package offers stereotypes for
annotating class diagrams with the needed information which will be extracted to
fulfill a scheduling phase. However, GRM does not allow designers to specify data
to be used neither in half-partitioned nor in global scheduling approaches; indeed, it
does not support the modeling of task migration concept. Thus, we propose through
this paper an extension of MARTE/GRM sub-profile to consider the modeling of
information needed for the half-partitioned and global scheduling step.

1 Introduction

Model-based development is an adequate approach used when dealing with critical
systems since it helps designers to overcome the increasing complexity challenge
and to model systems at a high abstraction level. In particular, the UML/MARTE
profile fosters an adequate solution to support the whole life cycle development due
to its rich set of available annotations. In a model driven development approach, the
model transformation is linking across the various models and steps.

In general, a RTES development approach is based substantially on three ma-
jor phases: modeling, scheduling and implementation [9]. The modeling step is
founded on the use of GRM to annotate a static view (class diagram) specifying
the system properties. This view represents an entry for the scheduling step. Thus,

Amina Magdich · Yessine Hadj Kacem · Adel Mahfoudhi
CES Laboratory, ENIS Soukra km 3,5, B.P.: 1173-3000 Sfax TUNISIA
e-mail: {amina.magdich,yessine.hadjkacem,

adel.mahfoudhi}@ceslab.org

R. Lee (Ed.): SERA, SCI 496, pp. 73–84.
DOI: 10.1007/978-3-319-00948-3_5 c© Springer International Publishing Switzerland 2014

74 A. Magdich, Y.H. Kacem, and A. Mahfoudhi

the data specified in this model will be extracted and used during the scheduling
step. Thereby, the GRM view must match with the entry of the scheduling step
(Fig. 1).

In fact, three scheduling approaches are described in the literature : the parti-
tioned, the half-partitioned and the global approaches [4]. MARTE/GRM does not
support modeling of information to be used neither in the context of half-partitioned
nor in the global scheduling approaches since it does not allow modeling of data
describing task migration between the available computing resources. In this con-
text, we propose an extension of MARTE/GRM to improve the existing annotations.
We propose in this paper the main changes to be made on the MARTE/GRM sub-
profile for modeling the needed information for half-partitioned or global scheduling
phases.

This paper is structured as follows. Section 2 highlights the various related works.
Section 3 introduces the scheduling theory. In Section 4, we highlight the impor-
tance of the use of MARTE within the context of RTES development. In Section
5, we emphasise our contribution. In section 6, we validate our proposal using a
pedagogic example and we summarize by a conclusion in Section 7.

2 State-of-the-Art and Related Works

Many researchers have benefited from the MARTE profile to develop complex sys-
tems at a high-level of abstraction. In [12], the authors have benefited from MARTE
to model systems containing both of functional and non functional properties and
then they attempted to extract the temporal information included in the built mod-
els. Nevertheless, the proposed approach has treated multiprocessor systems ac-
cording to a partitioned scheduling approach inhibiting task migration. Other works
have dealt with development of complex systems while benefiting from the use of
MARTE within the context of scheduling analysis such as in [3], [11], [8] and [7].

In [9], a model-based approach, founded on the use of MARTE to cover all
the development steps of RTES, was been carried out to develop multiprocessor
systems. Yet, the proposed approach does not tackle with task migration during
the scheduling analysis step since it used the partitioned scheduling approach (the
algorithm used was Rate Monotonic). In fact, originally MARTE did not provide
possibilities to model the scheduling of multiprocessor systems allowing task mi-
gration. In this context, a research study [10] has been carried out to extend the sub-
profile MARTE/SAM (Schedulability Analysis Modeling) for modeling scheduling
analysis in the context of half-partitioned or global approaches. This contribution
is used to model temporal (activity diagrams) scenarios supporting task migration.
The corresponding SAM view represents an entry for a schedulability analysis tool
(Fig. 1).

Actually, our development approach begins with a system modeling based on
MARTE/GRM. The extracted information from GRM view will serve during the
scheduling step. For that, and first of all, to use the SAM extension [10] when mod-
eling systems supporting task migration, GRM must be able to support this concept.

Extending UML/MARTE-GRM for Integrating Tasks Migrations 75

Partition

Generator

Analysis Models

annotated With SAM

Feedback

Model

Transfor-

mation

Modeling step Scheduling step

DSE

FormalizationModel

Transfor-

mation

Implementation Step

Our previous contribution

will be used at this level

to annotate an activity

diagram

(affects MARTE/

SAM sub-profile)

Our current contribution

will be used at this level

to annotate a class

diagram

(affects MARTE/

GRM sub-profile)

UML/MARTE models

With GRM annotations

Implementation/

deployment

Schedulability

analysis

Tool

Fig. 1 A model-based development flow with MARTE extensions

This is the contribution to be explained throughout this paper. Our proposal repre-
sents a continuation of the contribution outlined in [10].

3 Scheduling Theory

This is a theory [14] which can be applied on-line or off-line in order to assign tasks
on the available execution resources while meeting tasks deadlines. Three types
of scheduling approaches intended for multiprocessor systems are described in the
literature: the partitioned, half-partitioned and global scheduling approaches. In this
paper, we focus mainly on the half-partitioned and global approaches.

3.1 Partitioned Approach

It consists of partitioning tasks to assign each one to a single computing resource [2].
This type of scheduling is performed on each processor, so each execution resource
must be associated with a scheduler. Such an approach does not allow reaching
optimality since it prohibits task migration.

3.2 Global Approach

The global scheduling approach provides a total liberty regarding task migration that
achieve optimality [2]. However, this flexibility may have a cost during execution.
That is why it is better to limit the number of task migration. This led researchers
to limit the number of preemptions by establishing the half-partitioned scheduling
approach. Algorithms of the global approach need only one scheduler annotated
main scheduler to schedule the active tasks.

76 A. Magdich, Y.H. Kacem, and A. Mahfoudhi

3.3 Half-Partitioned Approach

The half-partitioned scheduling approach allows scheduling with controlled task mi-
gration in order to reach optimality [2]. It uses mainly a main scheduler and sched-
ulers associated to processors.

4 Model Driven Engineering (MDE) and RTES Development

The Model Driven Engineering [13] is a software development paradigm aiming to
raise the level of abstraction while developing RTES and then overcoming their
increasing complexity. It enables the automation of development flows and the
reuse of built models. Besides, MDE ensures the entry and validation of constraints
through the use of the Object Constraint Language (OCL) [5]. Moreover, it ensures
the independence between the different development phases.

4.1 MARTE Capabilities for RTES Modeling

MARTE [6] is an extension of UML profile providing support for specification,
modeling and verification steps. It is a framework that sets the crucial properties
required to develop RTES. This profile provides a unified co-design containing both
RTES Hardware and Software components. Thanks to its wealth in stereotypes,
MARTE allows annotating models with functional and non-functional properties.
In addition, it offers a rich set of annotations for modeling schedulability analysis.
MARTE encloses a set of sub-profiles such as: GRM (SRM (Software Resource
Modeling), HRM (Hardware Resource Modeling)), GQAM (Generic Quantitative
Analysis Modeling (SAM, PAM (Performance analysis Modeling)), etc.

SRM is used to model Software resources such as tasks and HRM is used to
model Hardware resources such as computing resources, bus of communication,
memories, etc. The sub-profile SAM is used to model systems temporal behaviour
for schedulability analysis. Concerning PAM, it is exploited especially to model
the properties that are related to performance check. In this paper, we will focus
especially on the GRM sub-profile since it is the package affected by our proposal.

4.2 GRM

GRM is a sub-profile of MARTE providing the concepts necessary to model a
general platform for executing RTES. It provides concepts promoting modeling of
Software and Hardware resources at a high-level of abstraction. It also provides
mechanisms to manage access to different execution resources. The GRM sub-
profile allows only the modeling of systems to be scheduled in the context of parti-
tioned scheduling approaches; originally it does not support modeling of systems to
be scheduled according to the half-partitioned or global scheduling approaches.

Extending UML/MARTE-GRM for Integrating Tasks Migrations 77

4.3 DRM (Detailed Resource Modeling)

DRM is a specialization of the sub-profile GRM enclosing SRM and HRM packages
which support the modeling of Hardware and Software resources. Since SRM and
HRM are two specializations of GRM, the SW/HW allocation model benefits from
the unified structure of these models.

4.3.1 SRM

SRM is the sub-profile describing the software resources of the application such
as tasks and virtual memories. It encloses a set of stereotypes with a variety of
fields leading to an explicit description of the characteristics of the modeled software
resources.

4.3.2 HRM

HRM is the sub-profile including most of Hardware concepts under a hierarchical
taxonomy with several categories according to their natures, features, technology
and forms. Hence, it is used to describe the components of the physical platform
(the platform of execution) such as processors, memories, bus, etc.

5 Our Proposal: GRM Extension

The modeling step of RTES uses the GRM sub-profile, it allows specifying the dif-
ferent properties and provides as a result a unified model of Hardware and Software
components. The information specified in the GRM view will be needed during the
scheduling step. In fact, the GRM meta-model supports the modeling of different
systems as it models all the temporal features needed in the scheduling step except
those used in the context of scheduling with task migration (the half-partitioned and
the global approaches). Consequently, we seek to improve GRM meta-model in or-
der to support modeling of systems allowing task migration. The amendments to be
done on the GRM sub-profile can be useful for both of half-partitioned and global
approaches. But regardless, we will point out the amendments to be relevant for
the two approaches together, the changes to be useful only for the half-partitioned
approach and those only for the global one.

5.1 Amendments to Be Used in Both Approaches

The global or half-partitioned scheduling approaches allow task migration, so a task
can be allocated across multiple processors for different periods of time. Thus, the
multiplicity of the attribute corresponding to the execution resource on which a task
is allocated must be [0..*] instead of [0..1]. Hence, we propose to modify in the asso-
ciation linking the two classes schedulableResource and ExecutionHost
of the package GQAM Resources (Fig. 2 and Fig. 3).

78 A. Magdich, Y.H. Kacem, and A. Mahfoudhi

host

GQAM_Resources

host 0..1

GRM::

Scheduling::

Scheduler

0..1

ExecutionHost

GRM::

ResourceTypes::

ComputingResource

GRM::

Scheduling::

SchedulableResource

Fig. 2 Meta-model of the GQAM package

host

GQAM_Resources

host 0..1

GRM::

Scheduling::

Scheduler

ExecutionHost

GRM::

ResourceTypes::

ComputingResource

GRM::

Scheduling::

SchedulableResource

schedulableResource 0..*

0..*

Fig. 3 Meta-model of the GQAM package with amendments

This change affects MARTE/GQAM, but it also affects the use of the GRM sub-
profile since the class ExecutionHost inherits from ComputingResource
which is a class of the GRM package. Following this change, we will have in the
class schedulableResource an attribute host: GaExecHost [0..*]
instead of host: GaExecHost[0..1] (Fig. 5). I.e. GaExecHost is the stereo-
type corresponding to the class Execution Host and annotating the execution
hosts which are modeled in the GRM view and which will be called during the
creation of the SAM view of course with a multiplicity of [0..*].

While migrating from one processor to another, the execution time of a task
is not the same, then we try to add an attribute denoting the execution time
execT: NFP_Duration [0..*] in the class SchedulableResource
(Fig. 4 and Fig. 5). This will be ordered with the attribute GaExecHost, to

Extending UML/MARTE-GRM for Integrating Tasks Migrations 79

schedparams:SchedParameters [0..*]

host: Scheduler [0..1]

dependentScheduler: SecondaryScheduler

[0..1]

resMult: NFP_Integer [0..1]

isProtected: Boolean [0..1]

isActive: Boolean [0..1]

« Stereotype »

schedulableResource

Fig. 4 The old meta-model of the schedulableResource stereotype

schedparams:SchedParameters [0..*]

host: Scheduler [0..*]

dependentScheduler: SecondaryScheduler [0..1]

resMult: NFP_Integer [0..1]

isProtected: Boolean [0..1]

isActive: Boolean [0..1]

Host:GaExecHost [0..*]

execT:NFP_Duration [0..*]

P_Host:ComputingResource [0..*]

P_execT:NFP_Duration [*]

« Stereotype »

schedulableResource

Fig. 5 The new meta-model of the schedulableResource stereotype

indicate the execution time of the taski when running on the execution resourcei.
Indeed, adding the attribute execT facilitates the representation and the understand-
ing of the GRM view.

5.2 Changes to Be Used within a Half-Partitioned Approach

Among a half-partitioned scheduling approach, both a main scheduler and sched-
ulers associated to processors are used. Since this approach allows task migration,
a task can be allocated, not simultaneously, on different processors/ schedulers. Ac-
cordingly, the multiplicity of schedulers: NamedElement [0..1] should
be [0..*] (schedulers is an attribute of the stereotypeswSchedulableResource).
Likewise, the multiplicity of host scheduler [0..1] must be [0..*]. i.e.
host: scheduler is an association that connects the two classes scheduler
and SchedulableResource (Fig. 6 and Fig. 7).

80 A. Magdich, Y.H. Kacem, and A. Mahfoudhi

A half-partitioned scheduling approach enables restricted task migration, we
need then to know the possible computing resource on which a task can be allocated.
Hence, we add an association P_Host linking the SchedulableResource and
computingResource classes (Fig. 7).

Consequently, the attribute P_Host: ComputingResource [0..*] will
be added as an attribute in the stereotype SchedulableResource (Fig. 5).

A taski beeing allocated on a computing resourcei, has a specific execution time.
We propose then to add in the class SchedulableResource a new attribute
P_execT: NFP_Duration [0..*] ordered with the attribute P_Host (Fig.
5). The information indicated in the attribute P_execT will be of course extracted
to guide the scheduling phase and mainly for optimization when assigning tasks to
processors.

The difference between the attributes execT: NFP_Duration [0..*] and
P_execT: NFP_Duration [0..*] is that execT specifies the spent execu-
tion time of a task after its running on a processor (this attribute will take the value
given by the scheduling tool after a feed back), but P_execT specifies the estimated
execution time.

« Stereotype »

SchedulableResource

host

0..*

« profile »

GRM

« stereotype »

ComputingResource

« stereotype »

MutualExclusionResource

mainScheduler 0..1

processingUnitshost 0..1 0..*

Scheduler

0..1

0..* protectedShared

Resources

« stereotype »

SecondaryScheduler

0..1

0..1dependentScheduler virtualProcessingUnits

SchedulableResource 0..*

« stereotype »

ProcessingResource

« stereotype »

Scheduler

Fig. 6 Meta-model of the GRM package

The value of P_execT may be used for optimization while assigning tasks on
available processors. Otherwise, execT is a result specified after the scheduling
step, but P_execT is itemized before scheduling and will be extracted to guide the
scheduling phase. It concerns only the modeling of systems to be scheduled with the

Extending UML/MARTE-GRM for Integrating Tasks Migrations 81

host

0..*

« profile »

GRM

« stereotype »

MutualExclusionResource

mainScheduler 0..1

processingUnits
host

0..*

Scheduler

0..1

0..* protectedShar

edResources

0..*

0..1

dependentScheduler

virtualProcessingUnits

SchedulableResource 0..*

SchedulableResource

0..*

P_host 0..*

« stereotype »

SecondaryScheduler

« Stereotype »

SchedulableResource

0..1

« stereotype »

Scheduler

« stereotype »

ProcessingResource

« stereotype »

ComputingResource

Fig. 7 The new meta-model of the GRM package

half-partitioned approach, however execT concerns systems to be scheduled with
any approach.

6 Pedagogic Case Study

To better explain our GRM extension, we depend on a pedagogic example mod-
eled using a class diagram. The figure Fig 8 is composed by a model which may
be reusable for many systems and a model instance that concerns only one
system (the studied system).

In our case, the model instance models a system composed by an architecture
on which is allocated the application. The proposed application is composed by
four tasks T1, T2, T3 and T4. Concerning the architecture, it is composed by four
execution hosts, memories, a battery and a bus. The allocation of the application
on the target architecture is controlled through mutual exclusion resources designed
by classes annotated swMutualExclusionResources; resi is controlling the
access to proci.

The different tasks can have dynamic periods, priorities and deadlines due to the
concept of task migration, but we use the same corresponding values to facilitate
our example. Anyway, we can add the different values and they will be ordered with
the attribute Host: GaExecHost and ExecT: NFP_Duration.

The used scheduling approach is a half-partitioned one, so we can find re-
stricted or free task migration. T1 can be allocated only on P1, P2 and P3 which

82 A. Magdich, Y.H. Kacem, and A. Mahfoudhi

« import » « import »

Host:ComputingResource=[P1]

mainScheduler:Scheduler

=[MainSched]

« hwDMA »

dma : DMA

period = (60,ms)

priority = 20

deadline = (60,ms)

P_Host:Computing

Resource=[P1,P2,P3]

P_execT=

[10ms,12ms,8ms]

Host:scheduler

=[P1,P2,P1]

Host:GaExecHost

=[P1,P2,P1]

ExecT=[5ms,2ms,4ms]

Host:ComputingResource=[P2]

mainScheduler:Scheduler

=[MainSched]

« hwProcessor,

hwComputingResource,

scheduler »

P2 : PROCESSOR

« swSchedulable

Resource »

T1 : TASK

« hwProcessor,

hwComputingResource,

scheduler »

P1 : PROCESSOR

« hwSupport »

Battery :

BATTERY

APPLICATION « mutualExclusionResource »

ARCHITECTURE

« hwCache »

UL2

+ bUS

[1]

+ bUS

+ bUS

+ bUS

+ bUS

[1] [1]

schedulableResources:schedulableResources

=[T1,T2,T3,T4]

« Scheduler »

MainSched:SCHEDULER

Host:ComputingResource=[P3]

mainScheduler:Scheduler

=[MainSched]

« hwProcessor,

hwComputingResource,

scheduler »

P3 : PROCESSOR

« hwASIC,

hwComputingResource,

scheduler »

asic1 : ASIC

« hwDMA »

DMA

« hwProcessor,

hwComputingResou

rce, scheduler »

PROCESSOR

[1]

« hwRAM »

SDRAM

« swMutualExclusionResource »

RESOURCE
value: NFP_Boolean [1]

[1]

« hwASIC,

hwComputingReso

urce, scheduler »

ASIC

« hwSupport »

BATTERY

+ bUS

application architecture

« scheduler »

SCHEDULER

« swSchedulable

Resource »

T2 : TASK

period = (50,ms)

priority = 15

deadline = (50,ms)

P_Host:ComputingRes

ource=[P1,P2,asic1]

P_execT

=[11ms,14ms,10ms]

Host:scheduler

=[P1,asic1]

Host:GaExecHost

=[P1,asic1]

ExecT=[5ms,6ms]

« swMutualExclusionResource »

res2 : RESOURCE

« swMutualExclusionResource »

res1 : RESOURCE

Value = true

period = (50,ms)

priority = 17

deadline = (50,ms)

P_Host:ComputingRes

ource=[P1,P2,P3,asic1]

P_execT=

[7ms,9ms,11ms,5ms]

Host:scheduler=[asic1]

Host:GaExecHost

=[asic1]

ExecT=[5ms]

period = (50,ms)

priority = 18

deadline = (50,ms)

P_Host:ComputingRes

ource=[P1,P2,P3,asic1]

P_execT=

[14ms,15ms,12ms,10ms]

Host:scheduler

=[P3,asic1]

Host:GaExecHost

=[P3,asic1]

ExecT=[5ms,3ms]

«allocated»

« swSchedulableResource »

TASK

period: NFP_Duration

priority: NFP_Integer

deadline: NFP_Duration

« hwBus »

BUS

« swSchedulable

Resource »

T3 : TASK

« swSchedulable

Resource »

T4 : TASK

« hwRAM »

Sdram :

SDRAM

« hwBus »

bus : BUS

Value = true

« swMutualExclusionResource »

res4 : RESOURCE

« swMutualExclusionResource »

res3 : RESOURCE

Value = true Value = true

The model

The model

instance

Fig. 8 A GRM view to be used for a half-partitioned scheduling approach

is indicated through P_Host: ComputingResource=[P1,P2,P3]. T2 can
be allocated on P1, P2 and asic1. However, T3 and T4 can be allocated on all
the different computing resources. The estimated execution time corresponding
to the possible processors is indicated through P_execT: for example for T1,
P_execT: NFP_Duration= [10ms,12ms,8ms] ordered with the values of
P_Host: ComputingResource. In fact, T1 and T2 are scheduled firstly via

Extending UML/MARTE-GRM for Integrating Tasks Migrations 83

the mainScheduler MainSched and then through the possible schedulers associ-
ated with the corresponding processors (P1,P2,P3 for T1 and P1,P2,asic1 for T2). T3
and T4 are scheduled only through the main scheduler. Then, we notice that all tasks
must be scheduled firstly or only by the main scheduler, this is specified through
schedulableResources: schedulableResources=[T1,T2,T3,T4]
which is an attribute of scheduler annotating the main scheduler MainSched.
After scheduling all tasks, we can specify in our GRM view the used alloca-
tions through the attributes Host: GaExecHost and the corresponding attribute
ExecT: NFP_Duration. For example for T1, It was running firstly on P1 for
an execT=5ms, and then after migration it was running on P2 for 2ms and finally it
has migrated to run on P1 for 4ms.

7 Conclusion

The use of model driven engineering in the context of RTES development increases
the level of abstraction and overcomes the growing complexity challenge. In the
same context, MARTE facilitates the modeling of critical systems thanks to the
big set of stereotypes that it offers. In this paper, we have proposed an extension of
MARTE/GRM since it does not support the modeling of concepts in connection with
the half-partitioned and global scheduling approaches that allow task migration. The
benefit of our approach is the ability to model properties which will be extracted,
in the context of a model-based approach, to serve during the scheduling step using
algorithms of the half-partitioned approach or the global one. Our approach has been
enabled in the papyrus tool [1] which is an editor of MARTE-based modeling.

References

1. http://www.papyrusuml.org
2. Carpenter, J., Funk, S., Holman, P., Srinivasan, A., Anderson, J., Baruah, S.: A catego-

rization of real-time multiprocessor scheduling problems and algorithms. In: Handbook
on Scheduling Algorithms, Methods, and Models. Chapman Hall/CRC, Boca (2004)

3. Espinoza, H., Medina, J., Dubois, H., Gérard, S., Terrier, F.: Towards a uml-based mod-
elling standard for schedulability analysis of real-time systems. In: MARTES Workshop
at MODELS Conference (2006)

4. Goossens, J.: Introduction à l’ordonnancement temps réel multiprocesseur, pp. 157–166
(2007)

5. Object Management Group. UML 2.0 OCL Specification. OMG Adopted Specification
ptc/03-10-14. Object Management Group (October 2003)

6. OMG Object Management Group. A UML Profile for MARTE: Modeling and Analysis
of Real-Time Embedded systems, Beta 2, ptc/2008-06-09. Object Management Group
(June 2008)

7. Hagner, M., Huhn, M.: Tool support for a scheduling analysis view. In: The Workshop
“Modeling and Analysis of Real-Time and Embedded Systems with the MARTE UML
Profile” at DATE 2008 (Design, Automation & Test in Europe) (2008)

http://www.papyrusuml.org

84 A. Magdich, Y.H. Kacem, and A. Mahfoudhi

8. Kacem, Y.H., Karamti, W., Mahfoudhi, A., Abid, M.: A petri net extension for schedu-
lability analysis of real time embedded systems. In: The 16th International Conference
on Parallel and Distributed Processing Techniques and Applications, PDPTA 2010, pp.
304–314 (2010)

9. Kacem, Y.H., Mahfoudhi, A., Karamti, W., Abid, M.: Using model driven engineering
and uml/marte for hw/sw partitioning. International Journal of Discrete Event Control
Systems (IJDECS) 1(1), 57–67 (2011)

10. Magdich, A., Kacem, Y.H., Mahfoudhi, A., Abid, M.: A MARTE extension for global
scheduling analysis of multiprocessor systems. In: The 23th IEEE International Sympo-
sium on Software Reliability Engineering (ISSRE) (November 2012) (to appear)

11. Medina, J., Cuesta, A.G.: Experiencing the uml profile for marte in the generation of
schedulability analysis models for mast. In: The 2nd Workshop on Model Based Engi-
neering for Embedded Systems Design, M-BED (2011)

12. Peraldi-Frati, M.-A., Sorel, Y.: From high-level modelling of time in MARTE to real-
time scheduling analysis. In: MoDELS 2008 Workshop. on Model Based Architecting
and Construction of Embedded Systems on ACES-MB, Toulouse, France, pp. 129–143
(September 2008)

13. Schmidt, D.C.: Model-driven engineering. IEEE Computer 39(2) (February 2006)
14. Sha, L., Abdelzaher, T., Årzén, K.-E., Cervin, A., Baker, T., Burns, A., Buttazzo, G.,

Caccamo, M., Lehoczky, J., Mok, A.K.: Real time scheduling theory: A historical per-
spective. Real-Time Syst. 28(2-3), 101–155 (2004)

R. Lee (Ed.): SERA, SCI 496, pp. 85–98.
DOI: 10.1007/978-3-319-00948-3_6 © Springer International Publishing Switzerland 201

Towards a Protocol Algebra Based on Algebraic
Specifications

Iakovos Ouranos and Petros Stefaneas1*

Abstract. We sketch some first steps towards the definition of a protocol algebra
based on the framework of behavioural algebraic specification. Following the
tradition of representing protocols as state machines, we use the notion of Obser-
vational Transition System to express them in an executable algebraic specifica-
tion language such as CafeOBJ. This abstract approach allows defining several
useful operators for protocol reasoning and proving properties of them using theo-
rem proving techniques and CafeOBJ term rewriting machine. The proposed
protocol algebra is inspired by the module algebra and the hierarchical object
composition technique.

Keywords: formal methods, algebraic specification, behavioural specification,
protcol algebra, CafeOBJ.

1 Introduction

Distributed protocols typically involve several modules interacting with one anoth-
er in a complex manner. The design and verification of them are two of the most
difficult and critical tasks in the current computing systems development. Many
new protocols are designed in the current software industry, and the tradition is to
develop them from scratch, i.e. specify them informally and implement them di-
rectly into software using a programming language. This makes protocol develop-
ment even more painful and risky. A solution to these problems seems to be
formal algebraic specification techniques. In this paper we propose the behavioral

Iakovos Ouranos
Hellenic Civil Aviation Authority, Heraklion Airport, Greece
e-mail: iouranos@central.ntua.gr

Petros Stefaneas
National Technical University of Athens, School of Applied Math. & Phys. Sciences, Greece
e-mail: petros@math.ntua.gr

4

86 I. Ouranos and P. Stefaneas

specification paradigm [1-3] as a suitable basis for formal protocol reasoning. We
model protocols as Observational Transition Systems [21-22] a special kind of
behavioral objects [4] with a flexible modular structure. This formal object orient-
ed approach makes it possible to reuse protocol specifications and verifications,
combine/compose them hierarchically to form more complex protocols, prove in-
variant properties of them and define operations between protocols
formally.

The main advantages of our approach are a) based on behavioral specification,
which follows an equational style of specification, it is easier to read, understand
and learn, b) object orientation provides a more flexible way for handling protocol
development, c) it is compatible with semi automatic verification techniques such
as structural induction and coinduction, d) specifications can be executed by sys-
tems that support behavioural specification such as CafeOBJ [5] and finally, e) it
improves reliability since it permits the verification to be carried out at the level of
design.

This work was inspired by the hierarchical object composition technique pre-
sented in [4], the module algebra [6-7] and of course the Observational Transition
Systems

(OTSs) [21-22]. We have also adapted some results and definitions of [15] and
[10] to the behavioral specification framework.

Since every protocol specification consists of several interacting modules and
we can compose protocol specifications to form more complex with the aid of
hidden algebra, we can build protocol specifications hierarchically and define
operations between protocols in the framework of protocol algebra. In our previ-
ous works [8-9] we have proposed an algebraic framework for modeling of mobile
systems and protocols based on behavioral specification and the hierarchical ob-
ject composition technique. Additionally, several authors have indicated the need
for applying formal techniques and modularization to protocol modeling and de-
sign. In [10] the author proposes a technique for parallel composition of protocols
that allows protocols to share messages and variables. The work reported in [11]
uses category theory to define interfaces for basic modules and composition. The
concept of protocol object is defined in [12] together with BAST protocol class
library, which follows a layered architecture. In [13] a compositional technique to
design multifunction protocols has been proposed. In [14] and [15] two different
protocol algebras are proposed which are oriented to security and commitment
protocol design, respectively. Finally, there are many approaches which focus on
implementation aspects of the composition of a protocol from micro-protocols
developed for specific services, such as Appia [18], Cactus [19] and Samoa [20].

The rest of the paper is organized as follows: section 2 introduces behavioral
specification and OTSs. Section 3 defines some key notions related to protocol
reasoning in terms of behavioral specification. In section 4 we define some basic
operators of our protocol algebra and give some basic properties of them, while
section 5 discusses protocol verification. Finally, section 6 concludes the paper.

Towards a Protocol Algebra Based on Algebraic Specifications 87

2 Behavioural Specification and OTSs

Hidden algebra is the logical formalism underlying behavioral specification. It
gives a general semantics for distributed concurrent systems extending ordinary
general algebra with sorts representing states of abstract machines, rather than data
elements, and also introduces a new satisfaction between algebras and sentences,
called behavioral satisfaction. The goal of hidden algebra is to significantly de-
crease the difficulty of proving properties of distributed concurrent systems. In the
following we review the basic concepts of hidden algebra. For more details and
proofs someone can consult [3-4].

Definition 1. A hidden algebraic signature (H, V, F, Fb) consists of disjoint sets
H of hidden sorts, V of visible sorts, a set F of (H ∪V)-sorted operation symbols,
and a distinguished subset Fb ⊆ F of behavioral operations. Behavioral opera-
tions are required to have at least one hidden sort in their arity. An operation sym-
bol which has visible arity and sort is called data operation. The hidden sorts
denote sets of states of objects, the visible sorts denote data types, the operations σ
∈ b

w sF → can be thought as methods whenever s is hidden, and as attributes when-

ever s is visible.

Definition 2. An (H, V, F, Fb)-algebra is an (H ∪V, F)-algebra. Given an (H, V,
F, Fb)-algebra A, a hidden congruence ~ on A is just an Fb-congruence which is
identity on the visible sorts. The largest hidden F-congruence ~A on A is called
behavioral equivalence.

Theorem 1. Behavioral equivalence always exists.

Definition 3. A behavioral theory (Σ, Ε) consists of a hidden algebraic signature
Σ and a set E of Σ-sentences.

Definition 4. A behavioral object B is a pair consisting of a behavioural theory
((HB, VB, FB, FB

b), EB) and a hidden sort hB ∈ HB such that each behavioral
operation in FB

b is monadic, i.e. it has only one hidden sort in its domain.
The hidden sort hB denotes the space of the states of B. The visible sorted be-

havioral operations on hB are called B-observations and the hB-sorted behavioral
operations on hB are called B-actions. The hB-sorted operations with a visible sort-
ed domain are called constant states.

Definition 5. For any behavioral object B, a B-algebra is just an algebra for the
signature of B satisfying the sentences EB of the theory of the object B. The class
of B-algebras is denoted by Alg(B).

Definition 6. Given an object B, two B-algebras A and A’ are equivalent, denoted
A ≡ A’, when

88 I. Ouranos and P. Stefaneas

• they coincide on the data

•
BhA =

'BhA and ~A = ~A’ (on the sort hB), and

• Aσ = Aσ’ for each B-action σ.

Definition 7. Two behavioral objects B and B’ are equivalent, denoted B ≡ B’,
when there exists a pair of mappings Φ : Alg(B) → Alg(B’) and Ψ : Alg(B’) →
Alg(B) which are inverse to each other modulo algebra equivalence, i.e. A ≡
Ψ(Φ(A)) for each B-algebra A and A’ ≡ Φ(Ψ (A)) for each B’ -algebra A’.

Observational Transition Systems or OTSs can be regarded as a proper sub-class
of behavioral specifications, corresponding to conventional transition systems.
The main difference between OTSs and behavioral specifications is that in the
case of the latter, even if every observation function returns the same value for
two states, the two states may be different, while in the case of OTSs, behavioral
equivalence coincides with observational equivalence, i.e. when every observation
function returns the same value for two states, these states are equal with respect
to the OTS.

3 Reasoning About Protocols

Since distributed protocols are mainly distributed systems of interacting objects,
the object oriented behavioural specification paradigm is a suitable framework for
reasoning about protocols. A protocol is specified as a set of modules each of
which models either a data part or a state machine. This approach follows the
tradition of specifying protocols as state transition systems.

Definition 8. A protocol specification is an OTS P where

• the hidden sort hp ∈ HP denotes the set of the states S of the protocol,
• the P-actions denote the set of transitions that under conditions, change or not

change the state of the protocol,
• the initial state s0 ∈ S is specified as a constant state,
• the set F ⊆ S of final states are all possible reachable states (def. 12) of the

OTS,
• the P-observations “observe” quantities of the protocol at possible states, and
• the data types used by the protocol are specified as submodules of the specifi-

cation.

Definition 9. Two protocols are equivalent, whenever their specifications are
equivalent (def. 7).

Definition 10. Two protocol states are equivalent, if and only if they are observa-
tionally equivalent.

Towards a Protocol Algebra Based on Algebraic Specifications 89

Definition 11. A protocol run R is an infinite or finite sequence of states

,...,...,,0 kj sss that the protocol allows.

Definition 12. A state of a protocol P is called reachable if it appears in a run of
the P.

Definition 13. A protocol run Ri subsumes another protocol run Rj if and only if,
for every state sj that occurs in Rj, there exists a state si in Ri that is observationally
equivalent and has the same temporal order relative to other states in Ri as sj does
with states in Rj.

Definition 14. A protocol run Ri is similar to protocol run Rj if and only if the two
runs are of equal length and every ith state of Ri is equivalent to the ith state of Rj.

Hierarchical object composition technique based on behavioral specification has
been proposed in [4] and is a suitable framework for composing systems by com-
ponents. Here we argue that the hierarchical model for composition is suitable not
only for composing protocols by participants, but also for composing protocols by
sub-protocols (or systems by sub-systems). The main advantage of this method is
not only the reuse of specifications but also the reuse of proofs. If a property of a
component protocol holds and has been verified, then we can reuse the verifica-
tion to prove properties of the compound protocol, under certain conditions.

Definition 15. The component protocols Pi, i=1,…,n with n the number of the
components, that form a compound protocol Pj are called sub-protocols of it.

Definition 16. A protocol that has not sub-protocols, (i.e. is not composed by
other protocols) is called a base-level protocol. A base level protocol is composed
at most by its agents.

Additionally, agents (or component objects) of a base level protocol are either
base level objects or compound objects (i.e. objects composed by components).

The hierarchical object composition method uses projections operations to
compose objects. Informally, projection operations “project” the state of compo-
nents at the level of compound object.

Definition 17. Two actions of a compound protocol are in the same action group
when they change the state of the same component protocol via a projection
operation.

Parallel protocol composition (i.e. without synchronization) is the most funda-
mental form of behavioural protocol composition. From a methodological
perspective, to compose protocol components in parallel:

90 I. Ouranos and P. Stefaneas

• involving the corresponding projection which expresses the relationship be-
tween them;

• we write equations expressing the fact that each compound protocol action
affects only the states of its corresponding component;

• each compound protocol observation is specified as an abbreviation of a com-
ponent protocol observation;

• each compound protocol state constant is projected to a state constant on each
component.

• we add a new hidden sort for the states of the compound protocol;
• for each component protocol action, we add a corresponding compound ac-

tion and an equation

Example 1. Let us consider the following simple data transfer protocol: A sender
S wants to deliver natural numbers 0, 1, 2, … to a receiver R from a list via a cell.
The sender puts a number in the cell, and receiver gets a number from the cell, if
the cell is not empty. Sender and receiver share a boolean variable called flag,
which is initially false. While flag is false, sender repeatedly puts a number in the
cell. The receiver upon receiving a number stores it to a list and sets the flag to
true. If flag is true, sender picks the next number and sets flag to false. This simple
protocol’s specification consists of abstract data type specifications for data types
such as lists and cell, and a behavioural object. We assume that we have two
specifications of the protocol P1 and P2. The first models the communication be-
tween sender S and receiver R1, while the second the communication between
sender S and receiver R2. The parallel composition of P1 and P2 results to a proto-
col of a sender S that sends data to receivers R1 and R2 independently. This means
that the behaviour of each component protocol does not affect the behaviour of the
other component protocol (which is projected at the level of compound protocol
with projection operations).

In the case of synchronized parallel composition, we may also allow on the com-
pound protocol actions other than those of the components. These actions may
change the states either of a number of component protocols (broadcasting) or of
one (client-server computing).

Example 2. We consider the component protocols P1 and P2 of example 1. A syn-
chronized composition of them may result in a protocol with a sender sending the
same sequence of data to both receivers. To send the next number, the flags shared
by sender with both receivers must have been set to true. In this case the behaviour
and states of the compound protocol depends on the component protocols.

Towards a Protocol Algebra Based on Algebraic Specifications 91

We note here that we omit the formal definition of behavioural protocol com-
position because it can be easily derived from the parallel composition of behav-
ioural objects defined in [4]. Additionally, parallel protocol composition inherits
several semantic properties of object composition such as associativity and com-
mutativity.

Apart from composition, another way of combining protocols follows a layered
style of structuring (protocol stack). According to this style, protocols utilize ser-
vices rendered by other protocols, and extend their services to be used in conjunc-
tion with other protocols to achieve the overall desired objective. To capture this
kind of protocol interactions, the specification of a protocol can import another
protocol specification. It is permitted by the underlying behavioural specification
paradigm, and we distinguish three kinds of importation: protecting, extending and
using. For complex protocols, a module may import several other modules.

Example 3. Let us consider the TCP/IP protocol stack. It consists of four layers
each of which consists of a number of protocols. A protocol of the top layer (ap-
plication layer) such as File Transfer Protocol uses the protocols of the lower layer
(host-to-host transport layer) to deliver data. So, the behavioural specification of
FTP imports the specification or the sum of specifications of the corresponding
protocols to provide the service.

4 Protocol Algebra

Here we introduce the operators of protocol algebra. These are sum/combination

(+), import (), composition (|| for parallel / ⊗ for synchronized), subsumption
([), renaming (*) and subprotocol relation ([|). In addition the temporal ordering
of states in a protocol run r is denoted by < r, the behavioural equivalence between
two states of a protocol by ~, and the equivalence between two protocols by ≡ .

A. Protocol Sum

Since we specify protocols as behavioural objects, the protocol sum corresponds
to the sum of the corresponding behavioural theories. Therefore, the properties
are:

Proposition 1: Given protocol specifications P1, P2 and P3, then:

1. P1 + P2 = P2 + P1.
2. P1 + (P2 + P3) = (P1 + P2) + P3.
3. P1 + P1 = P1.

Proof: Each protocol specification is a behavioural object say P1 = ((HP1, VP1, FP1,
FP1

b), EP1) with hidden sort hP1 ∈ HP1 and P2 = ((HP2, VP2, FP2, FP2
b), EP2) with

hidden sort hP2 ∈ HP2. Since the sum of them is defined to be the union of the

92 I. Ouranos and P. Stefaneas

sets that a behavioral object consists of, the proof of the above uses that union has
the three corresponding properties.

The protocol sum operator is used when importing/reusing more than one pro-
tocol specifications.

B. Protocol Import

Definition 18. We denote the partial order of protocol imports by mode, where
mode may be protecting, extending or using [16-17]. When we specify a protocol
P1 that reuses the specification of protocol P2 in protecting mode we write P2 pr
P1.

A protocol specification may reuse more than one protocol specifications. In
this case we use the sum operator, e.g. for protocols P1, P2, P3, (P1+P2)  pr P3,
i.e. protocol P3 imports the specification of protocols P1 and P2 in protecting
mode.

Proposition 2: Given protocol specifications P1, P2, and P3, then if P2 mode P1
and P3 mode P2 implies P3 mode P1.

C. Protocol Composition

Since protocols are described as behavioural objects, hierarchical object
composition technique can be applied to the composition of protocols. We
distinguish two types of composition, the parallel composition, that is the most
fundamental, and the synchronized parallel composition, where communication
between component objects occurs. Below, we adapt the results of [4], to protocol
composition.

• Parallel protocol composition

Definition 19. Let P1 and P2 protocol specifications. By P1 || P2 is denoted the
class of protocols P which are parallel compositions of protocols P1 and P2.

Proposition 3: For any protocol specifications P1, P2, for each parallel
composition P ∈ P1 || P2, we have that α ~A α’ if and only if Aπ1(α) ~A1 Aπ1(α’)
and Aπ2(α) ~A2 Aπ2(α’), for each P-algebra A, elements α, α’ ∈ΑhB, and Ai is the
reduct of A to Bi for each i∈{1,2}.

For all protocols P1 and P2, all P, P’ ∈ P1 || P2 are equivalent protocols, i.e.
P ≡ P’. Additionally, parallel composition has several expected semantic proper-
ties such as associativity and commutativity that are applied to protocol composi-
tion:

For all protocols P1, P2, P3

• P1 || P2 = P2 || P1, and
• P(12)3 ≡ P1(23) for all P(12)3 ∈P12 || P3 and P1 || P23, where PIJ is any

composition in PI || PJ.

Towards a Protocol Algebra Based on Algebraic Specifications 93

• Synchronized protocol composition

This is the most general form of protocol composition. It supports dynamic
compositions and synchronization, while a kind of communication between
components (either protocols or objects) is allowed. The class of protocols P
which are synchronized compositions of protocols P1 and P2 is denoted by P1 ⊗
P2.

Theorem 2. For any protocols P1 and P2, for each composition with synchroniza-

tion P ∈ P1 ⊗P2, we have that α ~A α’ if and only if (∀ Wi) Aπi (α,Wi) ~Ai

Aπi(α’, Wi) for i∈{1,2} for each P-algebra A, elements α, α’ ∈ΑhB, and Ai is the
reduct of A to Bi for each i∈{1,2}.

We note that in case a protocol P is composed by protocols P1 and P2, then also
(P1+P2) P.

D. Protocol Subsumption

In definition 13 we introduce the notion of protocol run subsumption. Here we
define it using operators from our protocol algebra and introduce the notion of
protocol subsumption.

Let ri, rj be protocol runs and relation rj [ri denoting subsumption of ri by rj.
Then:

rj [ri ⇔ ∀ si ∈ ri, ∃ sj∈ rj : sj ~ si and ∀ si’ ∈ ri, ∃ sj’∈ rj : sj’ ~ si’(si

< ri si’  sj < ri sj’). It is obvious that longer runs subsume shorter ones provided
they have behaviourally equivalent states in the same order. Subsumption of runs
has also the two following properties:

• Reflexivity: Every protocol run subsumes itself.
• Transitivity: If rj [ri and rk [rj then rk [ri.

Definition 20. A protocol Pj subsumes a protocol Pi if and only if, every run of Pj
subsumes a protocol run of Pi. The set of protocol runs that a protocol allows are
denoted by {Pi} and {Pj} correspondingly. We write ∀ rj ∈ {Pj} ∃ ri ∈ {Pi}:
rj [ri.

The protocol runs that a protocol allows are defined at the equation part of its
specification.

Definition 21. Two protocols P1, P2 are similar if and only if for every run in one
protocol there exists at least one similar run in the other protocol and vice versa.

Definition 22. The composition of two protocols P1 and P2, creates a protocol
whose runs may subsume some run from {P1} and some run from {P2}.

94 I. Ouranos and P. Stefaneas

E. Subprotocol relation

Definition 23. A protocol P is a subprotocol of Q (P [| Q) if and only if Q is a
compound protocol and P is a component of it.

As it is obvious, the operator [| is related to composition operators || and ⊗ . Given

protocols P1, P2 and P, if P = P1 || P2 or P = P1 ⊗ P2 then P1 [| P and P2 [| P.

Theorem 3. A compound protocol subsumes its subprotocols.

Proof. A compound protocol has actions that correspond to the actions of its com-
ponents (action groups). Since every protocol run is sequence of states and each
state depends on the application of actions, every component protocol run corre-
sponds to a protocol run of the compound protocol. From def. 20 the compound
protocol subsumes its components. Also, from def. 21 a compound and a compo-
nent protocol are similar.

F. Protocol renaming

Protocol renaming is necessary when reusing protocol specifications, since in
most cases we wish to avoid having shared variables between two protocol speci-
fications that are going to be combined /composed. We use the operator * for
renaming a module. A convention we adopt is that if we have a protocol specifica-
tion P and we want to rename it to P1 we write φ*P, where φ is a signature
morphism.

F. Applying protocol algebra

Here we present how we can apply our algebra to the examples 1 and 2. The base
level protocol DTP (Data Transfer Protocol) imports other modules specifying
data types, so we write (NAT + CELL + LIST)  pr DTP. The renaming of DTP
results to two identical protocols DTP1, DTP2 that inherit all properties of DTP. We
have φ1 = {Protocol -> Protocol1, init -> init1} and φ2 = {Protocol ->
Protocol2, init -> init2} and so, DTP1 = φ1* DTP, DTP2 = φ2* DTP. Addi-
tionally, the parallel composition of DTP1 and DTP2, which is denoted as DTP1 ||
DTP2, results to 2DTP. Since DTP1 = φ1* DTP and (NAT + CELL + LIST)  pr

DTP  (NAT + CELL + LIST)  pr DTP1. The same occurs for DTP2. Addition-
ally, due to def. 23, DTP1 and DTP2 are subprotocols of DTP, i.e. DTP1 [| DTP, DTP2
[| DTP. The protocol runs of DTP is denoted by {DTP}, and the temporal ordering of
the states that constitute it is: s0 <{DTP} s1 <{DTP} s2 <{DTP} s3 <{DTP} s4 <{DTP} s5 <{DTP} s6
<{DTP} s7. Here we denote the transition relation <si,a,si+1> which means that
each protocol state (target state) si+1 emerges by another state si (source state)
after applying an action a. Similarly to parallel composition, the synchronized
parallel composition, with state space 2Protocol, is denoted by DTP1⊗ DTP2. We

Towards a Protocol Algebra Based on Algebraic Specifications 95

also can show the subsumption of runs that the protocol allows: Let R1DTP = <s0 s1
s2 > and R2DTP = <s0 s1 s2 s3 s4 >. Then it is obvious that R2DTP [R1DTP. In order to
examine the correctness of a possible run we can simulate it with CafeOBJ sys-
tem. For example, a run that begins from a state other than s0 = init is not valid.
The subsumption of runs can be very useful especially when dealing with security
protocols. For example, we can adapt the protocol specification so as the protocol
support additional services/options to customers of an e-commerce site.

Reusing protocol specifications can be very useful for protocol development.
This is because, we can specify and verify a protocol design once and then reuse
it. We can create libraries of base level protocols that will speed up the process of
designing a new protocol. It will be also easier to handle the compound protocols.

5 Verifying Protocol Specifications

The two main proof methods that are supported by behavioral specification are
structural induction and coinduction. They are used to verify safety (invariant) and
behavioral properties of systems. These two kinds of properties are of major im-
portance for protocol specification. In [4] many important results have been pre-
sented for the compositionality of verifications. The approach supports reusability
of proofs which simplifies the verification process.

Definition 24. An invariant property of a protocol is a state predicate which holds
in all reachable states of the protocol.

Theorem 4. Let P1 and P2 be protocols and P12 the parallel composition of them.
If I is an invariant of P1 (P2) which refers only to protocol observations of P1 (P2),
then I is an invariant of P12.

Proof. Since P12 is the parallel composition of P1 and P2, for each protocol run of
P12 there exists a corresponding protocol run of P1 (P2). Additionally, since I re-
fers only to observations of P1 (P2), the protocol run affects the state of each pro-
tocol independently. So, if the invariant holds for the component protocol it holds
also for the compound protocol.

Behavioral properties of protocols may include the behavioral equivalence of
two protocol states. To prove such properties, coinduction method is used. In
general, to prove ')(ttX =∀ the steps which are followed are:

• define a hidden equivalence relation _R_
• prove that _R_ is a congruence,
• prove that t R t’.

The correctness of the coinduction method follows from the fundamental result
characterizing the behavioral equivalence as the largest hidden congruence. Notice
that _R_ does not refer to a particular relation on a particular model but it is rather
interpreted in all models as any other operation symbol.

96 I. Ouranos and P. Stefaneas

The behavioral equivalence proof is very important for protocol reasoning,
since many relations between protocols are based on it.

By iterative application of Theorem 2, in the case of protocol composition, the
behavioral equivalence for the compound protocol is just the conjunction of the
behavioral equivalences of the base-level protocols, which are generally simpler
and may checked automatically by systems that support behavioral proofs such as
CafeOBJ. This means that many times the behavioral proofs are almost automatic
without having to use the usual coinduction method.

CafeOBJ also provides a methodology to prove the correctness of composition
of protocols. It is based on the idea that a composition is correct when the com-
posed protocol is the refinement of its components and for the concurrent part the
commutativity equations corresponding to the concurrency of methods/attributes
belonging to different components holds.

6 Conclusions and Future Work

We have sketched some first steps towards the definition of a protocol algebra
based on the behavioral algebraic specification framework. Hierarchical
object composition technique based on it also can be utilized to compose
protocols by sub-protocols. The proposed protocol algebra is based on the basic
operators of module algebra to handle protocol reasoning and design and it
seems to be a promising approach. Our framework can be implemented by
CafeOBJ, an algebraic specification language that supports behavioural specifica-
tion and verification techniques such as the OTS/CafeOBJ method and coinduc-
tion.

We have already applied a combination of behavioural specification and com-
position to the modeling of mobile systems in [8]. In the future there is much work
to be done. We aim to conduct case studies to show the applicability of our
framework in the area of specifying and verifying business protocols based on the
commitments approach [9]. The definition of the hierarchical composition of
OTSs is another work to be done. Finally, a library of verified base level protocol
specifications can be developed for highly reusable protocol development.

Aknowledgements. This research has been co-
financed by the European Union (European Social
Fund – ESF) and Greek national funds through the
Operational Program "Education and Lifelong
Learning" of the National Strategic Reference
Framework (NSRF) - Research Funding Program:
THALIS.

Towards a Protocol Algebra Based on Algebraic Specifications 97

References

1. Diaconescu, R.: Behavioural Coherence in Object-Oriented Algebraic Specification.
Universal Computer Science 6(1), 74–96 (2000)

2. Goguen, J.A., Diaconescu, R.: Towards an algebraic semantics for the object para-
digm. In: Ehrig, H., Orejas, F. (eds.) ADT 1992 and COMPASS 1992. LNCS,
vol. 785, pp. 1–34. Springer, Heidelberg (1994)

3. Goguen, J., Malcolm, G.: A hidden agenda. Technical Report CS97-538, University of
California at San Diego (1997)

4. Diaconescu, R.: Behavioral Specification for Hierarchical Object Composition. Theo-
retical Computer Science 343, 305–331 (2005)

5. Diaconescu, R., Futatsugi, K.: CafeOBJ report. World Scientific (1998)
6. Bergstra, J.A., Heering, J., Klint, P.: Module Algebra. Journal of ACM 37(2), 335–372

(1990)
7. Diaconescu, R., Goguen, J.A., Stefaneas, P.: Logical Support for Modularisation. In:

Huet, G., Plotkin, G. (eds.) Logical Environment, pp. 83–130 (1993)
8. Ouranos, I., Stefaneas, P., Frangos, P.: An Algebraic Framework for Modeling of Mo-

bile Systems. IEICE Trans. Fund. E90-A(9), 1986–1999 (2007)
9. Mallya, A.P., Singh, M.P.: An algebra of commitment protocols. Journal of Autono-

mous Agents and Multi - Agent Systems 14(2), 143–163 (2007)
10. Singh, G.: A compositional approach for designing protocols. In: Proceedings of the

International Conference on Network Protocols, San Francisco, CA, USA, pp. 98–107
(1993)

11. Sinha, P., Suri, N.: Modular Composition of Redundancy Management Protocols in
Distributed Systems: An Outlook on Simplifying Protocol Level Formal Specification
and Verification. In: Proceedings of ICDCS-21, pp. 255–263 (2001)

12. Garbinato, B., Felber, P., Guerraoui, R.: Modeling Protocols as Objects for Structuring
Reliable Distributed Systems. In: Proceedings of the Communication Networks and
Distributed Systems Modeling and Simulation Conference (CNDS 1997), Phoenix, Ar-
izona, pp. 165–171 (1997)

13. Singh, G., Mao, Z.: Structured design of communication protocols. In: Proceedings of
the IEEE International Conference on Distributed Computing Systems (1986)

14. Hagalisletto, A.M.: Protocol Algebra. In: Proceedings of the 11th IEEE Symposium on
Computers and Communications (2006)

15. Mallya, A.U., Singh, M.: An algebra for commitment protocols. Autonomous Agents
and Multiagent Systems 4(2), 143–163 (2007)

16. Futatsugi, K., Goguen, J., Jouannaud, J.-P., Meseguer, J.: Principles of OBJ2. In: Pro-
ceedings of the 12th ACM Symposium on Principles of Programming Languages, pp.
52–66. ACM (1985)

17. Goguen, J., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.-P.: Introducing
OBJ. Technical report, SRI International, Computer Science Laboratory (1993)

18. Miranda, H., Pinto, A., Rodrigues, L.: Appia: A flexible protocol kernel supporting
multiple coordinated channels. In: Proceedings of the 21st Int. Conf. on Distributed
Computing Systems (ICDCS 2001), Washington - Brussels - Tokyo, pp. 707–710
(2001)

19. Wong, G., Hiltunen, M., Schlichting, R.: CTP: A configurable and extensible transport
protocol. In: Proceedings of the 20th Annual Conference of IEEE Communications
and Computer Societies (INFOCOM 2001), Anchorage, Alaska (2001)

98 I. Ouranos and P. Stefaneas

20. Wojciechowski, P., Rütti, O., Schiper, A.: SAMOA: Framework for synchronization
augmented microprotocol approach. In: Proceedings of Int. Parallel and Distributed
Processing Symposium (IPDPS 2004), Santa Fe, US (2004)

21. Ogata, K., Futatsugi, K.: Some Tips on Writing Proof Scores in the OTS/CafeOBJ
Method. In: Futatsugi, K., Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and
Computation. LNCS, vol. 4060, pp. 596–615. Springer, Heidelberg (2006)

22. Ogata, K., Futatsugi, K.: Proof scores in the oTS/CafeOBJ method. In: Najm, E.,
Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 170–184.
Springer, Heidelberg (2003)

A Model-Based Testing Approach Combining
Passive Conformance Testing and Runtime
Verification: Application to Web Service
Compositions Deployed in Clouds

Sébastien Salva and Tien-Dung Cao

Abstract. This paper proposes a model-based testing approach which combines two
monitoring methods, runtime verification and passive testing. Starting from ioSTS
(input output Symbolic Transition System) models, this approach generates moni-
tors to check whether an implementation is conforming to its specification and meets
safety properties. This paper also tackles the trace extraction problem by reusing
the notion of proxy to collect traces from environments whose access rights are re-
stricted. Instead of using a classical proxy to collect traces, we propose to generate
a formal model from the specification, called Proxy-monitor, which acts as a proxy
and which can directly detect implementation errors. We apply and specialise this
approach on Web service compositions deployed in PaaS environments.

Keywords: Passive Testing, Runtime Verification, Proxy, ioco, Web services,
Clouds.

1 Introduction

Software testing is a large process, more and more considered by IT (Information
technologies) companies, used to check the correctness or quality of software, that
are notions required by end customers. In particular, Model-based Testing, which
is the topic of this paper, is an approach where the system to test is formally de-
scribed with specification models which express its functional behaviours. Beyond
the use of formal techniques, these models offer the advantage to automate some
(and eventually all) steps of the testing process. Usually, the latter is performed with
active approaches: basically, test cases are constructed from the specification and are

Sébastien Salva
LIMOS CNRS UMR 6158, University of Auvergne, France
e-mail: sebastien.salva@udamail.fr

Tien-Dung Cao
School of Engineering, Tan Tao University, Vietnam
e-mail: dung.cao@ttu.edu.vn

R. Lee (Ed.): SERA, SCI 496, pp. 99–116.
DOI: 10.1007/978-3-319-00948-3_7 c© Springer International Publishing Switzerland 2014

100 S. Salva and T.-D. Cao

experimented on its implementation to check whether the implementation meets de-
sirable behaviours w.r.t. a test relation which defines the confidence level of the test
between the specification and implementations. Active testing may give rise to some
inconvenient though, e.g., the repeated or abnormal disturbing the implementation.

Two other complementary approaches are employed to cover implementations
over a longer period of time without disturbing them: passive testing and runtime
verification. The former relies upon a monitor which passively observes the im-
plementation reactions, without requiring pervasive testing environments. The se-
quences of observed events, called traces, are analysed to check whether they meet
the specification. Runtime verification, originating from the Verification area, ad-
dresses the monitoring and analysis of system executions to check that strictly spec-
ified properties hold in every system states.

Both approaches share some important research directions, such as methodolo-
gies for checking test relations and properties, or trace extraction techniques. This
paper explores these directions and describes a testing technique which combines
the two previous approaches. The main contributions can be summarised threefold:

1. Combination of runtime verification and ioco passive testing: we propose to mon-
itor an implementation against a set of safety properties which express that ”noth-
ing bad ever happens”. These ones are known to be monitorable and can be used
to express a very large set of properties, e.g., security vulnerabilities. We combine
this monitoring approach with a previous work dealing with ioco passive testing
[13]. Ioco [15] is a well-known conformance test relation which defines the con-
forming implementations by means of suspension traces (sequences of actions
and quiescence). So, starting from an ioSTS (input output Symbolic Transition
System) model, our method generates monitors to check whether an implemen-
tation is ioco-conforming to its specification and meets safety properties,

2. Trace extraction: to collect traces on a system in production, it is required to
have the sufficient access rights on the implementation environment to install
testing tools. More and more frequently over recent years, these environment ac-
cess rights are restricted. For instance, Web server access rights are often strictly
limited for security reasons. Another example concerns Clouds. Clouds, and typi-
cally PaaS (Platform as a service) layers are virtualised environments where Web
services and applications are deployed. This virtualisation of resources combined
with access restriction make difficult the trace extraction. We address this issue
by using the notion of transparent proxy and by assuming that the implementa-
tion can be configured to pass through a proxy (usually the case for Web appli-
cations). But, instead of using a classical proxy to collect traces, we propose to
generate a formal model from the specification, called Proxy-monitor, which acts
as a proxy and which can directly detect implementation errors,

3. Analysis overhead: The proposed algorithms also offer the advantage of perform-
ing synchronous (receipt of an event, error detection, forward of the event to its
recipient) or asynchronous analyses (receipt and forward of an event, error de-
tection) whereas the use of a basic proxy allows asynchronous analysis only. The
overhead, with both synchronous and asynchronous analyses, is measured and
discussed in the experiment part.

Combining Passive Conformance Testing and Runtime Verification 101

The paper is structured as follows: initial notations and definitions are given in Sec-
tion 2. Section 3 gives some definitions about runtime verification and ioco passive
testing. The combination of both approaches is defined in Section 4. We apply, in
Section 5, the concept of Proxy-monitor on Web service compositions deployed in
Windows Azure which is the Cloud platform of Microsoft1. Finally, we review some
related works in Section 6 and Section 7 concludes the paper.

2 Model Definition and Notations

In this paper, we focus on models called input/output Symbolic Transition Systems
(ioSTS). An ioSTS is a kind of automata model, extended with two sets of vari-
ables, and with guards and assignments on transitions, which give the possibilities
to model the system state and constraints on actions.

Below, we give the definition of an ioSTS extension, called ioSTS suspension
which also expresses quiescence i.e., the authorised deadlocks observed from a lo-
cation. Quiescence is modelled by a new symbol !δ and an augmented ioSTS de-
noted Δ(ioSTS). For an ioSTS S, Δ(S) is obtained by adding a self-loop labelled by
!δ for each location where no output action may be observed. The guard of this new
transition must return true for each value which does not allow firing a transition
labelled by an output. More details about ioSTSs can be found in [9].

Definition 1 (ioSTS suspension). An ioSTS suspension is a tuple< L, l0,V,V0, I,Λ,
→>, where:

• L is the finite set of locations, with l0 the initial one,
• V is the finite set of internal variables, while I is the finite set of parameters. We

denote Dv the domain in which a variable v takes values. The internal variables
are initialised with the assignment V0 on V , which is assumed to be unique,

• Λ is the finite set of symbols, partitioned by Λ = ΛI ∪ΛO ∪{!δ}: ΛI represents
the set of input symbols, (ΛO) the set of output symbols,

• → is the deterministic finite transition set. A transition (li, l j,a(p),G,A), from

the location li ∈ L to l j ∈ L, denoted li
a(p),G,A−−−−−→ l j is labelled by an action a(p) ∈

Λ ×P(I), with a ∈ Λ and p ⊆ I a finite set of interaction variables. G is a guard
over (p∪V ∪T (p∪V)) which restricts the firing of the transition. T (p∪V) are
boolean terms over p∪V . Internal variables are updated with the assignment
function A of the form (x := Ax)x∈V Ax is an expression over V ∪ p∪T (p∪V).

Web service compositions exhibit special properties relative to the service-oriented
architecture (operations, partners, etc.). This is why we adapt the ioSTS action mod-
elling. To represent the communication behaviours of Web service compositions
with ioSTSs, we firstly assume that an action a(p) expresses either the call of a Web
service operation op with a(p) = opReq(p), or the receipt of an operation response
with a(p) = opResp(p), or quiescence. The set of parameters p must gather also
some specific variables:

1 http://www.windowsazure.com

http://www.windowsazure.com

102 S. Salva and T.-D. Cao

• the variable f rom is equal to the calling partner and the variable to is equal to the
called partner,

• Web services may engage in several concurrent interactions by means of several
stateful instances called sessions, each one having its own state. For delivering
incoming messages to the correct running session when several sessions are run-
ning concurrently, the usual technical solution is to add, in messages, a correla-
tion value set which matches a part of the session state [1]. A correlation set is
modelled with a parameter denoted coor in p.

The use of correlation sets also requires the following hypotheses which result from
the correlation sets functioning. Particularly, the last one is required to correlate
some successive operation calls with the same composite service instance:

Session identification: the specification is well-defined. When a message is re-
ceived, it always correlates with at most one session.
Message correlation: except for the first operation call which starts a new com-
position instance, a message opReq(p), expressing an operation call, must contain
a correlation set coor ⊆ p such that a non-empty subset c ⊆ coor is composed of
parameter values given in previous messages.

(a) An ioSTS suspension (b) A safety property

Fig. 1 ioSTS specifications

These notation are expressed in the straightforward example of Figure 1(a). For
each symbol of Figure 1(a), Table 1 gives the corresponding action, guard and as-
signment. This specification describes the functioning of a BookSeller service. A
client places an order composed of a list of books with BookSeller by supplying
an ISBN list and the quantity of books ordered. BookSeller calls a service Whole-
saler with WholeSalerReq to buy each book one by one. For one composition in-
stance, we have two sessions of Web services connected together with correlations
sets. Each session is identified with its own correlation set e.g., BookSeller with
c1 = {account = ”custid”}, and Wholesaler with c2 = {account = ”custid”, isbn=
”2070541274”}. As these two correlation sets respect the Message correlation
assumption, we can correlate the call of Wholesaler with one previous call of
BookSeller even though several sessions are running in parallel.

An ioSTS is also associated to an ioLTS (Input/Output Labelled Transition Sys-
tem) to formulate its semantics. Intuitively, the ioLTS semantics is a valued automa-
ton often infinite: the ioLTS states are labelled by internal variable values while

Combining Passive Conformance Testing and Runtime Verification 103

Table 1 Symbol table

Symbol Action Guard Update

?BOrder ?BookOrderReq(List
Books, quantity, ac-
count,from,to,corr)

G1=[from=”Client”
∧to=”BR”∧ corr =
{account}]

q:=quantity,
b:=ListBooks,
c1:=corr

?BOrder2 ?BookOrderReq(List
Books, quantity, ac-
count,from,to,corr)

[¬G1]

!BOrderResp !BookOrderResp(resp,
from, to, corr)

G3=[from=”BR”∧ to=
”Client”∧ resp=”Order
done”∧corr=c1]

?R1 ?BookOrderResp ?Whole-
SalerReq

?R2 ?BookOrderResp
?WholeSalerReq
?δ

[�=G3]
[�=G2]

!WSReq !WholeSalerReq(isbn,
from, to, corr)

G2=[isbn=b[q]∧
q ≥ 1∧from= ”BR”∧to=
”WS”∧ corr = {a, isbn}]

q := q−1

?BOrderReq’ ?BookOrderReq(List
Books, quantity,account)

G1’=[quantity≥ 1]

!WSReq’ !WholeSalerReq(isbn)
!BOrderResp’ !BookOrderResp(resp) G3’=[end(resp)=”done”]
!BOrder [G1’] ?BookOrderReq(List

Books, quantity,)
[G1’] q:= quantity,

b:=ListBooks,
c1:= corr

?BOrderResp[G3∧
G3′]

!BookOrderResp(resp) [G3∧G3′]

?BOrderResp[¬G3
∧G3′]

!BookOrderResp(resp,
from, to, corr)

[¬G3∧G3′]

?R3 ?BookOrderResp
?WholeSalerReq
?δ

[¬G3∧¬G3′]
[�=G2]

transitions are labelled by actions and parameter values. The semantics of an ioSTS
S=< L, l0,V,V 0, I,Λ ,→> is an ioLTS ||S||=< Q,q0,∑,→> composed of valued
states in Q = L×DV . q0 = (l0,V 0) is the initial one, ∑ is the set of valued symbols
and → is the transition relation. The complete definition of ioLTS semantics can be
found in [9].

Runs and traces of ioSTS can be defined from their semantics:

Definition 2 (Runs and traces). For an ioSTS S, interpreted by its ioLTS semantics
||S|| =< Q,q0,∑,→>, a run q0α0...αn−1qn is an alternate sequence of states and
valued actions. RunF(S) = RunF(||S||) is the set of runs of S finished by a state in
F ×DV ⊆ Q with F a set of locations of S.

104 S. Salva and T.-D. Cao

It follows that a trace of a run r is defined as the projection pro j∑(r) on actions.
TracesF(S) = TracesF(||S||) is the set of traces of runs finished by states in F×DV .

The parallel product is a classical state-machine operation used to produce a model
representing the shared behaviours of two original automata. For ioSTSs, these ones
are to be compatible:

Definition 3 (Compatible ioSTSs). An ioSTS S1 = < L1, l01,V1,V 01, I1,Λ1,→1>
is compatible with S2 = < L2, l02,V2,V02, I2, Λ2,→2> iff V1 ∩V2 = ∅, Λ I

1 = Λ I
2,

Λ O
1 = Λ O

2 and I1 = I2.

Definition 4 (Parallel product ||). The parallel product of two compatible ioSTSs
S1 =< L1, l01, V1,
V01, I1,Λ1,→1> and S2 = < L2, l02,V2,V02, I2, Λ2,→2>, denoted S1||S2, is the
ioSTS P=< LP, l0P,VP,V0P, IP,ΛP,→P> such that VP =V1 ∪V2, V0P =V 01∧
V02, IP = I1 = I2, LP = L1 ×L2, l0P = (l01, l02), ΛP =Λ1 =Λ2. The transition set
→P is the smallest set satisfying the following inference rule:

l1
a(p),G1,A1−−−−−−→S1

l2,l
′
1

a(p),G2,A2−−−−−−→S2
l2′

(l1,l′1)
a(p),G1∧G2,A1∪A2−−−−−−−−−−−→P(l2,L′2)

We end this Section with the definition of the ioSTS operation re f l which ex-
changes input and output actions of an ioSTS.

Definition 5 (Mirrored ioSTS and traces). Let S be an ioSTS. re f l(S) =de f<
LS, l0S,VS,V 0S, IS,Λre f l(S),→S> where Λ I

re f l(S) = Λ O
S , Λ O

re f l(S) = Λ I
S.

We extend the re f l notation on trace sets. re f l : (∑∗)∗ → (∑∗)∗ is the function
which constructs a mirrored trace set from an initial one (for each trace, input sym-
bols are exchanged with output ones and vice-versa).

3 Passive Testing with Proxy-Testers and Runtime Verification

To reason about conformance and property satisfiability, one assume that an imple-
mentation can be modelled with an ioLTS I. I is also assumed to have the same
interface as the specification (actions with their parameters) and is input-enabled to
accept any action.

For readability, the proofs of the propositions given below can be found in [14].

3.1 Verification of Safety Properties

The primary goal of runtime verification is to check whether an implementation
I, from which traces can be observed, meets a set of properties expressed in trace
predicate formalisms such as regular expressions, temporal logics or state machines.
Given that we wish to merge the verification of safety properties with an ioSTS-
based conformance, it sounds natural to also model them with a specific state ma-
chine model. We propose to take back the notion of observers [6] which capture the

Combining Passive Conformance Testing and Runtime Verification 105

negation of a safety property by means of final ”bad” locations. Runs which lead to
these locations represent behaviours which violate the property.

Definition 6 (Observer). An Observer is a deterministic ioSTS O composed of a
non empty set of violation locations ViolateO ⊂ LO. O must be both input and
output-enabled, i.e. for each state (l,v) ∈ LO × DO, and for each valued action

(a(p),θ) ∈ ΛO ×Dp, there exists (l,v)
a(p),θ−−−→ (l′,v′) ∈→||O||. Given an ioSTS S,

Comp(S) stands for the set of compatible Observers of S.

For the specification S, an Observer O has to be input and output-enabled and com-
patible with S. These assumptions are required to model a safety property which is
violated by all the traces in TracesViolateO(O) and which is satisfied by all the traces
in (∑||S||)∗ \TracesViolateO(O). Consequently, given an implementation I, one can
say that I satisfies the Observer O if I does not yield any trace which also violates
O:

Definition 7 (Implementation satisfies Observer). Let S be an ioSTS and I an
implementation. I satisfies the Observer O ∈ Comp(Δ(S)), denoted I |= O, if
Traces(Δ(I))∩TracesViolateO(O) =∅.

Figures 1(b) and Table 1 illustrate an example of Observer for the specification of
Figure 1(a). It means that ”the receipt of an order confirmation ending with ”done”,
without requesting WholeSaler, must never occurs”.

Two Observers O1 and O2, describing two different safety properties, can be
interpreted by the Observer O1||O2. In the remainder of the paper, we shall consider
only one Observer, assuming that it may represent one or more safety properties.

3.2 Ioco Testing with Proxy-Testers

In the paper, conformance is expressed with the relation ioco [15], which intuitively
means that I is ioco-conforming to its specification S if, after each trace of the ioSTS
suspension Δ(S), I only produces outputs (and quiescence) allowed by Δ(S). For
ioSTSs, ioco is defined as:

Definition 8. Let I be an implementation modelled by an ioLTS, and S be an
ioSTS. I is ioco-conforming to S, denoted I ioco S iff Traces(Δ(S)).(∑O∪{!δ})∩
Traces(Δ(I))⊆ Traces(Δ(S)).

We have shown in our previous work [13] that ioco can be checked on implemen-
tations by means of a passive testing technique relying upon the concept of Proxy-
tester. A Proxy-tester formally expresses the functioning of a transparent proxy, able
to collect traces and to detect non-conformance without requiring to be set up in the
same environment as the implementation one. We recall here some notions about
Proxy-testers.

The Proxy-tester of a deterministic ioSTS S is derived from its Canonical tester
Can(S). This model is composed of the transitions of →Δ (re f l(S)), i.e. the specifica-
tion transitions labelled by mirrored actions (inputs become outputs and vice-versa).

106 S. Salva and T.-D. Cao

(a) An ioSTS Canonical tester (b) An ioSTS Monitor

Fig. 2 Canonical tester and monitor examples

It is also enriched with transitions leading to a new location Fail, exhibiting the re-
ceipt of unspecified actions (expressing incorrect behaviours).

Instead of giving the definition of the Canonical tester, which can be found in
[14], we illustrate in Figure 2(a) and Table 1 the Canonical tester of the ioSTS
depicted in Figure 1(a). The specification actions are mirrored and, for instance, if
we consider the location 2, new transitions to Fail are added to model the receipt of
unspecified events (messages or quiescence).

The Proxy-tester of an ioSTS S corresponds to an augmented Canonical tester
where all the transitions, except those leading to Fail, are doubled to express the
receipt of an event and the forwarding to its addressee.

Definition 9 (Proxy-tester). The Proxy-tester of the ioSTS S=< LS, l0S,VS,V 0S,
IS,ΛS,→S> is the ioSTS Pr(Can(S)) where Pr is an ioSTS operation such that
Pr(Can(S)) =de f< LP∪LFP, l0Can(S),VCan(S)∪{side, pt},V0Can(S)∪{side := ””,
pt := ””}, ICan(S),ΛP,→P>. LFP = LFCan(S) = {Fail} is the Fail location set. LP,
ΛP and →P are constructed with the following rules:

l1
!a(p),G,A−−−−−→Can(S)l2,l2 /∈LFCan(S)

l1
?a(p),G,A∪{pt :=p,side:=””}−−−−−−−−−−−−−−−−→P(l1,l2,a(p),G)

!a(p),[p=pt],{(x:=x)x∈VCan(S)
,side:=”Can”,pt:=pt}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→Pl2

l1
?a(p),G,A−−−−−→Can(S)l2,l2 /∈LFCan(S)

l1
?a(p),G,A∪{pt :=p,side:=”Can”}−−−−−−−−−−−−−−−−−−→P(l1,l2,a(p),G)

!a(p),[p=pt],{(x:=x)x∈VCan(S)
,side:=””,pt:=pt}

−−−−−−−−−−−−−−−−−−−−−−−−−−−→Pl2

l1
a(p),G,A−−−−−→Can(S)l2,l2∈LFCan(S)

l1
a(p),G,A∪{side:=”Can”,pt:=pt}−−−−−−−−−−−−−−−−−−→Pl2

Intuitively, the two first rules double the transitions whose terminal locations are
not in the Fail location set LF to express the functioning of a transparent proxy.
The first rule means that, for an event (action or quiescence) initially sent to the
implementation, the Proxy-tester waits for this event and then forwards it. The two

Combining Passive Conformance Testing and Runtime Verification 107

transitions are separated by a unique location composed of the tuple (l1, l2a(p)G)
to ensure that these two transitions, and only them, are successively fired. The last
rule enriches the resulting ioSTS with transitions leading to Fail. A new internal
variable, denoted side, is also added to keep track of the transitions provided by the
Canonical tester (with the assignment side:=”Can”). This distinction will be useful
to define partial traces of Proxy-testers and to express conformance with them.

Previously, we have also intentionally enriched Proxy-tester transitions with an
assignment on the variable side. The assignments side = ”Can” mark the transitions
carrying actions provided by the Canonical-tester. These assignments help to extract
partial runs and traces in Proxy-testers:

Definition 10 (Partial runs and traces). Let P be a Proxy-tester and ||P||= P =<
QP,q0P,∑P,→P> be its ioLTS semantics. We define Side : QP → DVP

the mapping
which returns the valuation of the side variable of a state in QP. SideE(QP)⊆ QP is
the set of states q ∈ QP such that Side(q) = E .

Let Run(P) be the set of runs of P. We denote RunE(P) the set of partial runs
derived from the projection pro jQP ∑P SideE (QP)

(Run(P)). It follows that TracesE(P)

is the set of partial traces of (partial) runs in RunE(P).

With these notations, we have showed that ioco can be rephrased with Proxy-tester
traces by [14]:

Proposition 1
I ioco S⇔ Traces(Δ(I))∩ re f l(TracesCan

Fail(Pr(Can(S)))) =∅

4 Combining Runtime Verification and Proxy-Testing

4.1 Proxy-Tester and Observer Composition

Canonical testers are enough for detecting all the implementations that are not ioco-
conforming to a given specification since they reflect incorrect behaviours in Fail
states. Observers offer at least one similarity with Canonical testers since they de-
scribe undesired behaviours. This similarity tends to combine them to produce a
model which could be used to detect both property violations and non-conformance.
This product is called Monitor. It refines the original Canonical tester behaviours by
separating the traces which violate safety properties among all the traces which may
be observed from the implementation under test. A monitor is defined as:

Definition 11 (Monitor). Let Δ(S) be an ioSTS suspension and O ∈ Comp(Δ(S))
be an Observer. The Monitor of the Canonical tester Can(S) and of the Observer O
is the ioSTS M=Can(S)||(re f l(O).

As an example, the Monitor constructed from the previous Canonical tester (Fig-
ure 2(a)) and the Observer of Figure 1(b) is depicted in Figure 2(b) and Table 1.
It contains different verdict locations: Fail received from the Canonical tester, Vio-
late received from the Observer and a combination of both Fail/Violate which de-
notes non-conformance and the violation of the safety property. For example, the

108 S. Salva and T.-D. Cao

trace ”?BookOrder(,1,”custid”) !BookOrderResp(”done”)” violates the Observer
of Figure 1(b) because WholeSaler is not called. This trace reflects also an incor-
rect behaviour because the response received ”done” is incorrect. We should have
received ”Order done”.

The combination of Canonical tester locations with Observer ones leads to new
locations labelled by local verdicts. We define these locations exhibiting verdicts by
verdict location sets:

Definition 12 (Verdict location sets). Let Can(S) be a Canonical tester and O ∈
Comp(Δ(S)) be a compatible Observer with Δ(S). The parallel product M =
Can(S)||re f l(O) produces several sets of verdict locations defined as follows:

1. VIOLATE = (LCan(S) \ {Fail})×ViolateO,
2. FAIL = {Fail}× (LO \ViolateO),
3. FAIL/VIOLATE = {(Fail,ViolateO)}.

In particular, we denote LFM = FAIL∪FAIL/VIOLATE , the Fail location set of
M.

Monitors share many similarities with Canonical testers: they have a mirrored alpha-
bet and a verdict location set LF . Typically, they are specialised Canonical testers
recognising also property violations. To passively monitor an implementation, it
sounds natural to apply the concept of Proxy-tester on Monitors. This gives a final
model called Proxy-monitor:

Definition 13 (Proxy-monitor). Let M be a Monitor resulting from the parallel
product Can(S)||re f l(O) with S an ioSTS and O ∈Comp(Δ(S)) an Observer com-
patible with the suspension of S.

We call Pr(M), the Proxy-monitor of M.

Proxy-monitors are constructed as Proxy-testers except that the Fail location sets
are different. For a Proxy-tester, there is only one Fail location, whereas a Proxy-
monitor has a Fail location set LFM equals to FAIL∪FAIL/VIOLATE since it stems
from a composition between an Observer and a Canonical tester. Except this differ-
ence, transitions of the Monitor are still doubled in its Proxy-monitor.

Before focusing on test verdicts which can be obtained from Proxy-monitors,
it remains to define formally the notion of passive monitoring of an implemen-
tation I by means of a Proxy-monitor. This product cannot be defined without
modelling the external environment, e.g., the client side, which interacts with the
implementation. We assume that this external environment can be also modelled
with an ioLTS Env which can interact with I (hence re f l(Env) is compatible with I
and Traces(Δ(Env)) is composed of sequences in re f l((∑Δ (I))

∗)).

Combining Passive Conformance Testing and Runtime Verification 109

Definition 14 (Monitoring of an implementation). Let PM =< QPM,q0PM,∑PM,
→PM> be the ioLTS semantics of a Proxy-monitor Pr(M) derived from an ioSTS
S and an Observer O ∈Comp(Δ(S)). QFPM ⊆ QPM = LFPr(M)×DVPr(M)

is its Fail
state set. I =< QI ,q0I,∑I ⊆ ∑M,→I> is the implementation model, assumed com-
patible with S and Env =< QEnv,q0Env,∑Env ⊆ ∑P,→Env> is the ioSTS modelling
the external environment, compatible with re f l(I).

The monitoring of I by Pr(M) is expressed with the product ||p(Env,PM, I) =<
QEnv×QPM ×QI,q0Env×q0PM ×q0I,∑PM,→||p(Env,PM,I)> where the transition re-
lation →||p(Env,PM,I) is defined by the smallest set satisfying the following rules. For

readability reason, we denote an ioLTS transition q1
?a−−→

”E”
q2 if Side(q2) = E (the

variable side is valued to E in q2).

q1
!a−→Δ(Env)q2,q

′′
2

?a−→Δ(I)q
′′
3 ,q

′
1

?a−→
”” PM

q′2
!a−−−→

”Can” PM
q′3

q1q′1q′′2
?a−→
”” ||p(Env,PM,I)

q2q′2q′′2
!a−−−→

”Can” ||p(Env,PM,I)
q2q′3q′′3

q2
?a−→Δ(Env)q3,q

′′
1

!a−→Δ(I)q
′′
2 ,q

′
1

?a−−−→
”Can” PM

q′2
!a−→
”” PM

q′3

q2q′1q′′1
?a−−−→

”Can” ||p(Env,PM,I)
q2q′2q′′2

!a−→
”” ||p(Env,PM,I)

q3q′3q′′2

q2
?δ−→Δ(Env)q3,q

′′
1

!a−→Δ(I)q
′′
2 ,q

′
1

?a−−−→
”Can” PM

q′2,q′2∈QFPM

q2q′1q′′1
?a−−−→

”Can” ||p(Env,PM,I)
q′2

The verdict list can now be drawn up from Definition 12. Concretely, the ob-
served traces lead to a set of verdicts, extracted from the verdict location sets which
indicate specification and/or safety property fulfilments or violations:

Proposition 2 (Test verdicts). Consider an external environment Env, an imple-
mentation I monitored with a Proxy-monitor Pr(M), itself derived from an ioSTS
S and an Observer O ∈Comp(Δ(S)). Let OT ⊆ Traces(||p(Env,PM, I)) be the ob-
served trace set. If there exists σ ∈ OT such that:

1. σ belongs to TracesFAIL/VIOLAT E(||p(Env,PM, I)), then I does not satisfy the
safety property and I is not ioco-conforming to S,

2. σ belongs to TracesFAIL(||p(Env,PM, I)), then I is not ioco-conforming to S,
3. σ belongs to TracesVIOLAT E(||p(Env,PM, I)), then I does not satisfy the safety

property.

Intuitively, the sketch of proof of the above Proposition is based on some succes-
sive Trace set replacements. For example with 1), we have TracesFAIL/VIOLAT E(||p(
Env,PM, I)) �=∅. By considering successively Definition 11, Definition 13 and Def-
inition 14, TracesFAIL/VIOLAT E (||p (Env,PM, I)) can be replaced by re f l(Traces(
Δ(I)))∩ (TracesFail(Can(S))∩TracesViolateO(re f l(O))) �=∅. We deduce that Tra
cesCan

FAIL/VIOLAT E(||p(Env,PM, I)) �=∅ iff re f l(Traces(Δ(I)))∩TracesFail(Can(S))

�=∅(a) and iff re f l(Traces(Δ(I)))∩re f l(TracesViolateO (O)) �=∅(b). From (a), we
have ¬I ioco S, from (b), we have I � O. The complete proof is given in [14].

110 S. Salva and T.-D. Cao

5 Application to Web Service Composition Deployed in Clouds

We consider having a Web service composition deployed in a PaaS environment
and we assume that each partner participating to the composition (Web services and
clients) are configured to pass through a passive tester. The latter, whose architec-
ture is depicted in Figure 3, is mainly based upon Proxy-monitors and aims to col-
lect all the traces of Web service composition instances. To consider these instances
and to detect non-conformance or violations of safety properties, several analyser
instances, based upon a Proxy-monitor model, are executed in parallel. Any incom-
ing message received from the same composition instance must be delivered to the
same analyser instance: this step is performed by a module called entry-point which
routes messages to the correct analyser instance by means of correlation sets.

Fig. 3 The passive tester architecture

The entry-point functioning is given in Algorithm 1. The latter handles a set L
of pairs (pi,PV) with pi an analyser instance identifier and PV the set of parameter
values received in previous messages. For each received message, this set is used
to correlate it with an existing composition instance in reference to the Message
correlation hypothesis. Whenever a message (e(p),θ) is received, its correlation
set c is extracted to check if an exiting analyser instance is running to accept it.
This instance exists if L contains a pair (pi,PV) such that a non-empty subset c′ ⊆ c
is composed of values of PV (correlation hypothesis). In this case, the correlation
set has been constructed from parameter values of messages received previously. If
an instance is already running, the message is forwarded to it. Otherwise, (line 7),
a new one is started. If an analyser instance pi has returned a trace set (line 11),
then the latter is stored in Traces(Pr(M)) and the corresponding pair (pi,PV) is
removed from L.

Algorithm 2 describes the functioning of an analyser. Basically, it waits for an
event (message or quiescence), covers Proxy-monitor transitions, and constructs
traces to detect non conformance or property violations when a verdict location is
reached. Algorithm 2 is based upon a forward checking approach: it starts from the
initial state i.e., (l0Pr(M),V0Pr(M)) and constructs a run denoted Run. Whenever an
event (e(p),θ) is received (valued action or quiescence), with eventually θ a valua-
tion over p (line 2), it looks for the next transitions which can be fired (line 5). Each
transition must have the same start location as the one found in the final state (l,v)
of the run Run, the same action as the received event e(p) and its guard must be

Combining Passive Conformance Testing and Runtime Verification 111

Algorithm 1. Entry-point
input : Proxy-monitor Pr(M)
output: Traces(Pr(M))

1 L =∅;
2 while message (e(p),θ) do
3 extract the correlation set c in θ ;
4 if ∃(pi,PV) ∈ L such that c′ ⊆ c and c′ ⊆ PV then
5 forward (e(p),θ) to pi; PV = PV ∪θ ;

6 else
7 create a new Pr(M) instance pi;
8 L = L∪ (pi,{θ}); send (e(p),θ) to pi;

9 if ∃(pi,PV) ∈ L such that pi has returned the trace set T then
10 Traces(Pr(M)) = Traces(Pr(M))∪T ;
11 L = L \{(pi,PV)};

satisfied over the valuation v∪θ . If this transition reaches a verdict location (Defini-
tion 12) then the algorithm constructs a new Run (lines 8-11) and ends. Otherwise,
the event (e(p),θ) is forwarded to the called partner with the next transition t2 (lines
12 to 14). Run is completed with r′ followed by the sent event and the reached state
qnext2 = (lnext2,v′′). Then, the algorithm waits for the next event. It ends when Fail
and/or Violate is detected or when no new event is observed after a delay sufficient
to detect several times quiescent states (set to ten times in the algorithm with qt). It
returns the trace T derived from Run.

Algorithm 2 reflects exactly the definition of the monitoring of an implementation
(Definition 14). It collects valued events and constructs traces of ||p(Env,PM, I) by
supposing that both I and Env are ioLTS suspensions. Lines (5-15) implement the
rules of Definition 14. In particular, when a verdict location lv is reached (line 8
or 11), the analyser has constructed a run, from its initial state which belongs to
RunV (||p(Env,PM, I)) with V a verdict location set. From this run, we obtain a trace
of TracesV (||p(Env,PM, I)).

So, with Proposition 2, we can state the correctness of the algorithm with:

Proposition 3. The algorithm has reached a location verdict in:

• FAIL/VIOLATE⇒TracesFAIL/VIOLAT E(||p(Env,PM, I)) �=∅⇒ I � (O,ViolateO)
and ¬(I ioco S),

• FAIL ⇒ TracesFAIL(||p(Env,PM, I)) �=∅⇒¬(I ioco S),
• VIOLATE ⇒ TracesVIOLAT E(||p(Env,PM, I)) �=∅⇒ I � (O,ViolateO).

Both the previous algorithms perform a synchronous analysis. Algorithm 1 receives
a message, transfers it to Algorithm 2, which constructs a run from Proxy-monitor
transitions before eventually forwarding the message to its addressee. However, this
analysis can be done asynchronously to reduce the checking overhead with slight
modifications: as soon as Algorithm 1 receives a message, it can forward it directly.
Then, the message can be also given to Algorithm 2 which constructs its run only.

112 S. Salva and T.-D. Cao

Algorithm 2. Proxy-Monitor-based analyser algorithm
input : A Proxy-monitor Pr(M)
output: Trace

1 Run := {(q0 = (l0Pr(M),V 0Pr(M)))}; qt = 0;
2 while Event(e(p),θ) ∧ Fail is not detected ∧qt < 10 do
3 if e(p) =!δ then
4 qt := qt +1;

5 foreach t = l
e(p),G,A−−−−−→ lnext ∈→Pr(M) such that Run ends with (l,v) and θ ∪ v |= G

do
6 qnext = (lnext ,v′ = A(v∪θ));
7 r′ = Run.(e(p),θ).qnext ;
8 if lnext ∈V IOLAT E ∪FAIL/VIOLAT E then
9 Violation is detected; Run := r′;

10 if lnext ∈ FAIL∪FAIL/VIOLATE then
11 Fail is detected; Run := r′;
12 if lnext /∈V IOLAT E ∪FAIL/VIOLAT E ∪FAIL then

13 Execute(t2 = lnext
!e(p),G2,A2−−−−−−−→Pr(M) lnext2) ; // forward (!e(p),θ)

14 qnext2 := (lnext2,A2(θ ∪ v′)); Run := r′.(!e(p),θ).qnext2;

15 return the trace T = {pro j∑||Pr(M)||(Run)} ;

5.1 Experimentation

We have implemented this approach in a tool called CloudPaste (Cloud PASsive
TEsting 2) to assess the feasibility of the approach. We experimented it with the
Web service composition of Figure 1(a), developed with SOAP Web services in C#
and deployed in Windows Azure. The Azure PaaS layer supports proxy configura-
tion, i.e. services can be configured to pass through proxies that can be hosted inside
or outside of the Cloud. The guard solving in Algorithm 2 is performed by the SMT
(Satisfiability Modulo Theories) solver Z3 3 that we have chosen since it offers
good performance, takes several variable types and allows a direct use of arithmetic
formulae. However, it does not support String variables. So, we extended the Z3
expression language with terms, which refer to the ioSTS definition, and in partic-
ular with String-based terms. A term stands for a function over internal variables
and parameters which returns a Boolean. Basically, our tool takes Z3 expressions
enriched with terms, terms are evaluated and replaced with Boolean values. Then,
a Z3 script, composed of the internal variables, the parameters and the guard, is
dynamically written before calling Z3. If the guard is satisfiable (not satisfiable),
Z3 returns sat (unsat respectively). Z3 returns unknown when it cannot determine
whether a formula is satisfiable or not.

2 http://sebastien.salva.free.fr/cloudpaste/cloudpaste.html
3 http://z3.codeplex.com/

Combining Passive Conformance Testing and Runtime Verification 113

Fig. 4 Time processing measurements in Window Azure

We generated the Proxy-monitor from the ioSTS of Figure 1(a) combined with
five safety properties with a tool generating Canonical testers and Proxy-monitors.
The first property is the one described in Section 3.1. The other properties are based
on security vulnerabilities. Client applications were simulated with at most 20 in-
stances of Java applications performing one request to the BookSeller Web service
with correct lists of two ISBNs. The passive tester was installed in a Windows server
hosted in Azure. The detection of quiescence was implemented with a timeout set
to 10s with respect to the HTTP timeout (usually set between 3 and 100 seconds).

Figure 4 depicts the average time processing of one client (milliseconds) when
one up to twenty clients are running. The curves represent respectively the aver-
age time, without passive-tester, with the use of the transparent proxy Charles 4,
with CloudPaste in asynchronous mode and in synchronous mode. In asynchronous
mode, CloudPaste processes messages with a slightly higher time delay than Charles
(with 20 clients, 102ms per message with Charles, 118ms per message with Cloud-
Paste). This time delay is far lower than the quiescence timeout (and than the HTTP
timeout as well). In synchronous mode, the checking overhead is higher with an
average time of 135ms per message for 1 client and 395ms per message for 20
clients. This big difference results from the constraint solver calls and from the lack
of optimisation of our code (Z3 is not yet called in parallel in CloudPaste). Never-
theless, in synchronous mode, the time processing is still lower than the timeout set
to observe quiescence (the testing process can be done) and than the HTTP timeout
(messages can be forwarded correctly). This mode is also particularly interesting
since it offers the advantage to eventually implement recovery action calls, e.g., er-
ror compensation or implementation reset, when an error is detected. Error recovery
is not possible with classical proxies or in asynchronous mode. These results tend

4 http://www.charlesproxy.com

114 S. Salva and T.-D. Cao

to show that our approach represents a good solution for testing and that it can be
done in real-time.

6 Related Works

The works proposed in the literature either dealing with runtime verification, e.g.,
[3, 4, 8] or with passive testing, e.g., [11, 5, 2, 12] rely on three main methods for
trace observation. Monitors or passive testers can be encapsulated within the imple-
mentation environment [4, 5], i.e. it is modified or completed with new test modules
e.g., workflow engines. Traces can be also observed with probes, e.g., sniffer-based
tools, deployed in the implementation environment [3, 11, 8, 12]. With these two
methods, it is required to assume that the implementation environment access rights
are granted and that it may be modified. This prerequisite condition cannot be al-
ways satisfied with any implementation environment. Installing a sniffer-based tool
in a PaaS platform is not possible since services are geographically deployed in a dy-
namic manner and since the access and the modification of PaaS and IaaS layers are
not authorised. The same issue is usually raised with Web servers: Web applications
are tested by means of active methods with a testing server and are then deployed
into another production server whose access rights are restricted for security rea-
sons. Another possibility consists in adding directly probes into the system code [7]
but this is occasionally considered only since it has the disadvantage of modifying
the implementation behaviours for testing. Our work focuses on these issues, by
proposing the use of the proxy concept for testing. A first naive solution would be
to collect traces with a proxy e.g. SOAPUI5, to eventually prune/modify them to
obtain usual traces (those that would be collected directly from the implementation)
and to analyse them with a specification to detect errors. Our proposal consists in
generating automatically another model called Proxy-tester from a specification and
to use a passive tester performing an analysis directly with Proxy-testers.

Few works have also focused on the combination of runtime verification with
conformance testing [3, 6]. The latter consider active testing and therefore a com-
bination of properties with classical test cases which are later actively executed on
the system: in [3], test cases are derived from a model describing system inputs and
properties on these inputs. Once test cases are executed, the resulting traces are anal-
ysed to ensure that the properties hold. Runtime verification and active testing have
been also combined to check whether a system meets a desirable behaviour and con-
formance w.r.t. ioco [6]. In these previous works, the combination of active testing
with runtime verification helps to choose, in the set of all possible test cases, only
those expressing behaviours satisfying the given specification and safety properties.
The other behaviours (those satisfying the specification but not the safety property
and vice-versa) are not considered. Our proposal solves this issue by defining differ-
ently specifications and safety properties so that the resulting monitors could cover
any behaviours passively over a long period of time.

5 www.soapui.org/

Combining Passive Conformance Testing and Runtime Verification 115

7 Conclusion

We have proposed a testing approach combining ioco passive testing with runtime
verification of safety properties. A monitor, called Proxy-monitor, is automatically
generated from safety properties and specifications modelled with ioSTSs. Proxy-
monitors are then used to detect whether the implementation is not ioco-conforming
to its specification or if the former violates properties. Proxy-monitors are also based
upon the notion of transparent proxy to ease the extraction of traces from environ-
ments in which testing tools cannot be deployed. Our approach can be applied on
different types of communication software, e.g., Web service compositions, in con-
dition that they could be configured to send messages through a proxy. In the exper-
imentation part, we have also showed that the overhead obtained by the use of our
approach remains reasonable and is much lower than the HTTP timeout.

In this paper, we have dealt with deterministic ioSTS specifications to rephrase
ioco, like many testing approaches proposed in the literature. However, nondeter-
ministic ioSTSs can be considered as well by apply determinization techniques [10].
In a future work, we could also consider nondeterministic ioSTSs with a weaker test
relation than ioco to generate nondeterministic Proxy-testers. Another immediate
line of future work concerns the enrichment of the experimentation with larger Web
service compositions deployed in different Clouds, each having its own possibilities
and restrictions.

References

1. Ws-bpel, Oasis Consortium (2007), http://docs.oasis-open.org/wsbpel/
2.0/OS/wsbpel-v2.0-OS.html

2. Andrés, C., Cambronero, M.E., Núñez, M.: Passive testing of web services. In: Bravetti,
M. (ed.) WS-FM 2010. LNCS, vol. 6551, pp. 56–70. Springer, Heidelberg (2011)

3. Arthoa, C., Barringerb, H., Goldbergc, A., Havelundc, K., Khurshidd, S., Lowrye, M.,
Pasareanuf, C., Rosug, G., Seng, K., Visserh, W., Washingtonh, R.: Combining test case
generation and runtime verification. Theoretical Computer Science 336(2-3), 209–234
(2005)

4. Barringer, H., Gabbay, D., Rydeheard, D.: From runtime verification to evolvable sys-
tems. In: Sokolsky, O., Taşıran, S. (eds.) RV 2007. LNCS, vol. 4839, pp. 97–110.
Springer, Heidelberg (2007)

5. Cavalli, A., Benameur, A., Mallouli, W., Li, K.: A Passive Testing Approach for Secu-
rity Checking and its Practical Usage for Web Services Monitoring. In: NOTERE 2009
(2009)

6. Constant, C., Jéron, T., Marchand, H., Rusu, V.: Integrating formal verification and con-
formance testing for reactive systems. IEEE Trans. Softw. Eng. 33(8), 558–574 (2007),
doi:10.1109/TSE.2007.70707

7. d’Amorim, M., Havelund, K.: Event-based runtime verification of java programs. In:
Proceedings of the Third International Workshop on Dynamic Analysis, WODA 2005,
pp. 1–7. ACM, New York (2005), doi:10.1145/1082983.1083249

8. Falcone, Y., Jaber, M., Nguyen, T.-H., Bozga, M., Bensalem, S.: Runtime verification of
component-based systems. In: Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011.
LNCS, vol. 7041, pp. 204–220. Springer, Heidelberg (2011)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

116 S. Salva and T.-D. Cao

9. Frantzen, L., Tretmans, J., Willemse, T.A.C.: Test Generation Based on Symbolic Spec-
ifications. In: Grabowski, J., Nielsen, B. (eds.) FATES 2004. LNCS, vol. 3395, pp. 1–15.
Springer, Heidelberg (2005)

10. Jéron, T., Marchand, H., Rusu, V.: Symbolic determinisation of extended automata. In:
Navarro, G., Bertossi, L., Kohayakawa, Y. (eds.) TCS 2006. IFIP, vol. 209, pp. 197–212.
Springer, Boston (2006)

11. Lee, D., Chen, D., Hao, R., Miller, R.E., Wu, J., Yin, X.: Network protocol system mon-
itoring: a formal approach with passive testing. IEEE/ACM Trans. Netw. 14, 424–437
(2006)

12. Nguyen, H.N., Poizat, P., Zaidi, F.: Online verification of value-passing choreographies
through property-oriented passive testing. In: Ninth IEEE International Symposium on
High-Assurance Systems Engineering, pp. 106–113 (2012)

13. Salva, S.: Passive testing with proxy-testers. International Journal of Software Engineer-
ing and Its Applications (IJSEIA). Science & Engineering Research Support Society
(SERSC) 5 (2011)

14. Salva, S.: A model-based testing approach combining passive testing and runtime
verification. Tech. rep., LIMOS, LIMOS Research report RR13-04 (2013),
http://sebastien.salva.free.fr/useruploads/files/RR-13-04.
pdf

15. Tretmans, J.: Test generation with inputs, outputs and repetitive quiescence. Software -
Concepts and Tools 17(3), 103–120 (1996)

http://sebastien.salva.free.fr/useruploads/files/RR-13-04.pdf
http://sebastien.salva.free.fr/useruploads/files/RR-13-04.pdf

R. Lee (Ed.): SERA, SCI 496, pp. 117–127.
DOI: 10.1007/978-3-319-00948-3_8 © Springer International Publishing Switzerland 201

An Empirical Study on the Relationship between
User Characteristics and Quality Factors for
Effective Shopping Mall Websites
Implementation

Donghwoon Kwon, Young Jik Kwon, Yeong-Tae Song, and Roger Lee

Abstract. In This paper, we have investigated how user characteristics affect
quality factors for an effective Shopping mall websites implementation. User
characteristics consist of gender, age, school year, department, experience, and
purchasing experience during a specified period. We also selected a total of 14
quality factors from the literature review such as design, customer satisfaction, etc.
As a proof of our hypothesis to investigate how those user characteristics and
quality factors are interrelated, we have used 6 hypotheses. To verify them, the
results have analyzed the SAS 9.2 statistic package tool and we have asked 519
participants to fill out a questionnaire for 5 Chinese and 8 Korean websites.

Keywords: Shopping Mall Websites Implementation, User Characteristics,
Quality Factors.

1 Introduction

In the recent years, the size of the online shopping market has been growing
rapidly. For example, the size of the online market in China was 265 billion yuan

Donghwoon Kwon · Yeong-Tae Song
Department of Computer & Information Science, Towson University, USA
e-mail: dkwon3@students.towson.edu, ysong@towson.edu

Young Jik Kwon
Department of Information & Communication, Daegu University, Korea
e-mail: yjkwon@daegu.ac.kr

Roger Lee
Software Engineering & Information Technology Institute,
Central Michigan University, USA
e-mail: lee1ry@cmich.edu

4

118 D. Kwon et al.

in 2009 which was approximately 42.1 billion U.S. dollars, but it would reach 1.3
trillion yuan (206.4 billion U.S. dollars) in 2013 which is five times bigger than
the size of online shopping market in 2009 [1]. According to the Korean National
Statistical Office, the size of cyber shopping in Korea was 7,277 billion Korean
Won in the third quarter of 2011 (6.52 billion U.S. dollars) which 16.3% was
increased compared to 2010 [2]. However, while the size of the online shopping
market is getting bigger, quality of most shopping mall websites is not improved
accordingly. Many shopping mall websites users usually prefer sophisticated
design, smooth communication, a variety of contents, better technology and
reliability, etc. of the web site. In reality, however, most shopping mall websites
do not fulfill such quality criteria due to the fact that it is required to spend more
money, time, and resources to implement the high quality online shopping
web site.

For this reason, this paper proposes the ways how to implement an effective
shopping mall websites through root cause analysis and hypothesis verification.

2 Related Work

Conte et al. (2007) conducted website usability evaluation based on four web
design perspectives: conceptual, presentation, navigation, and structural [3]. Cindy
et al. (2005) conducted research that designing a shopping mall website using 3D
technology is feasible and much more effective than 2D [5]. Albuquerque and
Belchior (2002) conducted an E-commerce website quality evaluation using the
communication factor, which is a part of various quality factors, and the fuzzy
model stage [4]. Hai and Tu (2010) conducted research regarding a P2P E-
commerce model based on users’ interest community [6]. Shim and Suh defined
the Customer Relationship Management (CRM) strategies for a small-sized
shopping mall website [7]. Zhou and Zhang (2009) analyzed how E-commerce
website quality affects user satisfaction based on TAM and information system
success model [8]. Fengtao and Dengbai (2011) examined that information and
information system satisfaction are directly related to customer satisfaction [9].
Xu and Liu (2010) defined that online stickiness, online satisfaction, online trust,
and repurchase intention are interrelated [10]. Peng (2011) demonstrated the
relationship between website quality and customer behavior of the transaction
[11]. Sun and Wu (2010) conducted research about customer loyalty in online
shopping [12]. Zhou and Niu (2010) defined how to design the online shopping
system based on a software bus and components [13]. Yoo et al. (2008)
demonstrated that 3 types of trust such as calculus-based, knowledge-based, and
identification-based strongly affects customer satisfaction and loyalty [14]. Zubing
and Guohe (2009) defined that the product brand, category, and security of the
transaction directly have influence on customer behavior [15].

An Empirical Study on the Relationship between User Characteristics 119

Based on literature research above, totaled 14 quality factors were drawn for
our study: design, communication, community, security, user satisfaction,
repurchase intention, transaction, customer loyalty, product, technology, trust,
contents, interaction, and size. The specific quality factors of literature research
are shown in Table 1.

Table 1 Quality Factors Used in the Literature

Authors Quality Factors
Conte et al. (2007) Design

Albuquerque and Belchior
(2002)

Security, trustworthiness, content adequacy,
technology suitability, etc.

Cindy et al. (2005) Design and 3D technology
Hai and Tu (2010) User’s interest community
Shim and Suh (2010) Transaction, comments, bulletin, etc.
Zhou and Zhang (2009) Trust, satisfaction, etc.
Fengtao and Dengbai (2009) Customer trust, customer loyalty, etc.

Xu and Liu (2010)
Online stickiness, online satisfaction, online
trust, perceived website value, repurchase
intention

Peng (2011) Purchase tendency, web content, etc.

Sun and Wu (2010)
Product quality perception, customer
satisfaction, customer trust, customer loyalty,
etc.

Zhou and Niu (2010) Component-based design

Yoo et al. (2008)
Trust in transaction, customer satisfaction,
customer loyalty

Zubing and Guohe (2009)
Trust, security, brand, satisfaction,
transaction, design, etc.

3 An Empirical Study

3.1 Outline

The research model is shown in Figure 1.
As mentioned earlier, all independent and dependent variables are same, and

we selected 8 Korean shopping mall websites and 5 Chinese shopping mall
websites. This is because we aim to conduct research as objectively as possible
and respondents are from Korea and China.

120 D. Kwon et al.

Fig. 1 The Overall Research Model

3.2 Methodology

3.2.1 Questionnaire Design

Each user characteristic and quality factor contains sub factors as shown in the
Table 2. We have converted them into questionnaire items. However, due to the
volume of sub factors, only the significant sub factors are shown below.

3.2.2 Questionnaire Performing Survey

The selected sub factors in the previous section were used for the questions in the
questionnaire. To measure the degree of consensus for each questionnaire from the
participants, 5 point Likert scale was used. The websites used for the survey are:

Korea: www.lotteshopping.com, www.ehyundai.com, www.auction.co.kr,
www.ebay.com, www.gmarket.com, www.interpark.com, www.11st.co.kr,
personal shopping malls, etc.

China: www.taobao.com, www.amazon.cn, www.dangdang.com,
www.paipai.com, www.china.alibaba.com, etc.

An Empirical Study on the Relationship between User Characteristics 121

Table 2 Detailed Sub Factors

Categories Main Factors Sub Factors

User
characteristics

Sex Male or female

Age
Under 20, 21~25, 26~30,

31~35, and over 35

School year
Freshmen, sophomore, junior,

senior, and graduate students

Dept.
Engineering, Information &

communication, etc.
Experience Yes or no

The period of
purchasing a product

(Month)
1~2, 3~4, 5~6, over 6, etc.

Quality
factors

Design
Images, graphics, font size,

etc.

Communication
Bulletin board, users’ review

and comments, etc.

Community
A sense of belonging,

influence on users’ life, etc.

Product
Product categories, product

quality, etc.

Security
Privacy agreement, security

system, secure payment, etc.

User satisfaction
Transaction satisfaction,

delivery satisfaction, etc.

Repurchase intention
Intention of repurchasing a

same product, intention of
recommendation, etc.

Contents
Display, shopping mall

symbols, icon clarity, etc.

Transaction
Convenience of account

registration and login, efficiency
of shipping tracking, etc.

Customer loyalty Affinity, sense of favor, etc.

Interaction
Online chatting, Q&A,

customer representative kindness,
etc.

Technology Error frequency, shortcut, etc.

Trust
Overall reliability of the

shopping mall, etc.

Size
The size of suppliers, a

number of members and users,
etc.

122 D. Kwon et al.

3.3 The Demographic of the Participants

The occurrence of each user characteristic from the questionnaire is analyzed and
shown in the Table 3.

Table 3 Frequency Analysis of User Characteristics

User Characteristics
Frequenc

y
(Persons)

Missin
g Value

Sex
Male 316

6
Female 197

Age
Under 20 253

2 21~25 237
26~30 27

School Year

Freshmen 289

12
Sophomore 85

Junior 65
Senior 56

Graduate Students 12

Department

Eng. 53

2

Info.&Comm. 88
Economics& Business 152

College of
administrator

73

Rehabilitation sciences 33
Other Depts. 118

Exp.
Yes 485

5
No 29

The period of
purchasing a product

1~2 mo. 215

28
3~4 mo. 95
5~6 mo. 28

Over 6 mo. 99
etc. 54

3.4 Reliability Coefficient

According to Cronbach, a question is considered reliable because the alpha value
of the question is greater than 0.70. Cronbach’s alpha is used to measure the
reliability of the questionnaire. The Cronbach’s alpha value of each quality factor
is shown in Table 4.

An Empirical Study on the Relationship between User Characteristics 123

Table 4 Reliability Coefficient using Cronbach’s Alpha

Quality Factors Cronbach’s alpha Reliability

Design 0.882198

Since the Cronbach’s value of
each quality factor is higher than
0.70, the questionnaire of this
study is reliable.

Communication 0.761989

Community 0.801693

Product 0.809899

Security 0.887740

Customer satisfaction 0.906327

Repurchase intention 0.781777

Contents 0.792084

Transaction 0.785264

Customer loyalty 0.900060

Interaction 0.877644

Technology 0.858624

Trust 0.878629

Size 0.847242

4 Hypotheses Formulation

We decomposed the main hypothesis into several specific hypotheses based on a
mathematical set which is shown in Figure 2; in other words, it is to figure out
how the elements of the set “User Characteristics” affect each element of the set
“Quality Factors”.

Fig. 2 Hypothesis Model

124 D. Kwon et al.

5 Hypotheses Verification

As mentioned earlier, the SAS 9.2 statistic tool was used to verify the hypotheses.
If there were 2 groups, we conducted T-test and if there were 3 groups, we
conducted Analysis of Variable (ANOVA). Furthermore, all hypotheses were
verified at the 0.95 confidence interval. The detailed statistical analysis results are
summarized in Figure 3.

5.1 H1 Verification Analysis

The results show that the user characteristic, sex, does not affect design,
community, product, security, customer satisfaction, contents, transaction,
interaction, trust, and size while it affects communication, repurchase intention,
customer loyalty, and technology. For this reason, to implement the effective
online shopping website, design, community, product, security, user satisfaction,
contents, transaction, interaction, trust, and size must be considered with
distinction of sex. However, the factor of communication, repurchase intention,
customer loyalty, and technology must be reflected with consideration of sex.

5.2 H2 & H3 Verification Analysis

The results show that the user characteristics, age and school year, affect every
quality factor. Thus, all quality factors must be reflected with consideration of age
and school year to implement websites.

5.3 H4 Verification Analysis

The results show that quality factors such as design, communication, product,
security, transaction, and size are not affected by the user characteristic, the
department. It is not necessary to consider the department for those quality factors.
However, community, user satisfaction, repurchase intention, contents, customer
loyalty, interaction, technology, and trust are affected by the department so that
those user characteristics must be reflected for those quality factors.

5.4 H5 Verification Analysis

The results show that experience does not affect community, product, trust, and
size while it affects design, communication, security, user satisfaction, repurchase
intention, contents, transaction, customer loyalty, interaction, and technology.
Therefore, experience must be considered for quality factors such as design,
communication, security, user satisfaction, repurchase intention, contents,
transaction, customer loyalty, interaction, and technology.

An Empirical Study on the Relationship between User Characteristics 125

Fig. 3 Statistical Analysis Results

126 D. Kwon et al.

5.5 H6 Verification Analysis

The results show that the period of purchasing a product has an impact on design,
community, product, security, user satisfaction, repurchase intention, contents,
transaction, customer loyalty, and size. However, it does not have an impact on
communication, interaction, technology, and trust. For this reason, it is not
required to consider the period of purchasing a product for communication,
interaction, technology, and trust.

6 Conclusion

We demonstrated which of the user characteristics has an impact on quality factors
for implementing effective online shopping websites based on the statistical
analysis and hypotheses verification. Our research shows that some user
characteristics such as age and school year affect every quality factor, whereas
most user characteristics do not have impact on all quality factors. Although this
paper demonstrates a correlation between user characteristics and quality factors,
we will also conduct research about a correlation between website quality factors
and quality improvement in the future.

References

1. Nakajima, H., Kuzushima, T., Huang, X.: Strategic Use of Online Sales Aimed at
China’s Rapidly Growing Consumer Market. Nomura Research Institute Paper, pp.
8–9 (May 1, 2012)

2. Korea National Statistical Office, Report of E-Commerce and Cyber Shopping Survey
in the Third Quarter 2011,
http://kosis.kr/ups/ups_01List01.jsp?pubcode=OE
(retrieved on March 2, 2012)

3. Conte, T., Massollar, J., Mendes, E., Travassos, G.H.: “Usability Evaluation Based on
Web Design Perspectives. In: First International Symposium on Empirical Software
Engineering and Measurement, pp. 146–155. IEEE (2007)

4. Albuquerque, A.B., Belchior, A.D.: E-Commerce Website Quality Evaluation. In:
Proceedings of the 28th Euromicro Conference. IEEE (2002)

5. Cindy, H.B.B., Chaudhari, N.S., Patra, J.C.: Design of a Virtual Shopping Mall: Some
Observations. In: Proceedings of the 2005 International Conference on Cyberworlds
(CW 2005). IEEE (2005)

6. Hai, M., Tu, Y.: A P2P E-Commerce Model Based on Interest Community. In: 2010
International Conference on Management of E-Commerce and E-Government, pp.
362–365. IEEE (2010)

7. Shim, B.-S., Suh, Y.-M.: Crm Strategies for a Small-Sized Online Shopping Mall
Based on Association Rules and Sequential Patterns. In: 14th Pacific Asia Conference
on Information Systems, PACIS, pp. 355–366 (2010)

8. Zhou, T., Zhang, S.: Examining the Effect of E-Commerce Website Quality on User
Satisfaction. In: 2009 Second International Symposium on Electronic Commerce and
Security, pp. 418–421. IEEE (2009)

An Empirical Study on the Relationship between User Characteristics 127

9. Fengtao, L., Dengbai, W.: The Impact of Information and Information System
Satisfaction on Customer Satisfaction under E-commerce. In: 2011 International
Conference on Information Management, Innovation Management and Industrial
Engineering, pp. 190–193. IEEE (2011)

10. Xu, J., Liu, Z.: Study of Online Stickiness: its Antecedents and Effect on Repurchase
Intention. In: 2010 International Conference on e-Education, e-Business, e-
Management and e-Learning, pp. 116–120. IEEE (2010)

11. Peng, H.: Positive Analysis of Chinese Online Customer Behavior During the
Transaction. In: 2011 International Conference on Management of e-Commerce and e-
Government, pp. 200–203. IEEE (2011)

12. Sun, H., Wu, H.: The Customer Loyalty Research Based on B2C Ecommerce Sites. In:
2010 International Conference on E-Business and E-Government, pp. 3156–3159.
IEEE (2010)

13. Zhou, C.-S., Niu, L.-H.: Research on Component Based Online Shopping System
Design. In: 2010 International Conference on Computational Aspects of Social
Networks, pp. 133–136. IEEE (2010)

14. Yoo, J.-S., Lee, J.-N., Hoffmann, J.: Trust in Online Shopping: The Korean Student
Experience. In: Proceedings of the 41st Hawaii International Conference on System
Sciences, pp. 1–10. IEEE (2008)

15. Hou, Z., Yu, G.: An Empirical Research on Influence Factors of Online Shopping. In:
The 1st International Conference on Information Science and Engineering (ICISE
2009), pp. 2846–2849. IEEE (2009)

R. Lee (Ed.): SERA, SCI 496, pp. 129–149.
DOI: 10.1007/978-3-319-00948-3_9 © Springer International Publishing Switzerland 201

Improving Code Generation for Associations:
Enforcing Multiplicity Constraints and
Ensuring Referential Integrity

Omar Badreddin, Andrew Forward, and Timothy C. Lethbridge

Abstract. UML classes involve three key elements: attributes, associations, and
methods. Current object-oriented languages, like Java, do not provide a distinction
between attributes and associations. Tools that generate code from associations
currently provide little support for the rich semantics available to modellers such
as enforcing multiplicity constraints or maintaining referential integrity. In this
paper, we introduce a syntax for describing associations using a model-oriented
language called Umple. We show source code from existing code-generation tools
and highlight how the issues above are not adequately addressed. We outline code
generation patterns currently available in Umple that resolve these difficulties and
address the issues of multiplicity constraints and referential integrity.

Keywords: Associations, Model Driven Development, UML, Code Generation,
Umple, Reverse Engineering.

1 Introduction

A UML association is a relationship among classes within an object-oriented sys-
tem. It specifies the connections, called links, which may exist among instances of
classes at run time. A notation called multiplicity appears at each end of an associ-
ation to describe the number of links other objects may have to the object in ques-
tion. In this paper we focus on binary associations, which have just two ends.
Examples of UML diagrams with associations can be found in Figures 1 and 2.

Omar Badreddin · Andrew Forward · Timothy C. Lethbridge
School of Electrical Engineering and Computer Science,
University of Ottawa, Canada K1N 6N5
e-mail: {obadr024,aforward,tcl}@eecs.uottawa.ca

4

130 O. Badreddin, A. Forward, and T.C. Lethbridge

Current programming languages do not directly support associations, which are
coded by hand or by using a UML code generator tool. However, current code
generators have weaknesses such as not dealing with referential integrity [1].

This paper introduces a syntax called Umple for defining associations textually,
as well as a series of patterns for generating high-level language code from associ-
ations. We analyse all possible combinations of multiplicity that may appear on
association ends, highlighting the underlying complexity in properly implement-
ing associations in a target executable language. We analyse existing UML code
generation tools to investigate the completeness of their implementation, or lack
thereof. We provide code-generation patterns covering all multiplicity combina-
tions that ensure referential integrity as well as adherence to multiplicity
constraints.

Umple enables modelling concepts to be described textually with a similar syn-
tax to Java. We present our code generator for Java, but Umple also supports PHP
and Ruby and can conceptually support any object-oriented language.

In translating UML associations into an executable language, it is more effi-
cient (but currently uncommon) to include access methods (get, set, add, remove)
to manage links of associations. These methods would maintain the multiplicity
constraints of the association and preserve referential integrity – ensuring that both
ends of an association are properly updated when adding or removing links.

2 Associations in Practice

In a separate paper in this conference [3] we discussed an empirical study that
analyzed the use of attributes in open source systems. We used the same systems
as a starting point for the research presented here.

The seven projects selected for analysis include fizzbuzz, ExcelLibrary, nde-
pendencyinjection, Java Bug Reporting Tool, jEdit, Freemaker; and Java Financial
Library. We documented all member variables and recorded the project, name-
space, object type, and variable name for each, as well as related characteristics
such as constructors, and set/get methods.

To find variables representing associations, we used a two-step manual process.
The first step recursively eliminated attributes. An attribute is considered to have
as its type either: a) a simple data type including String, Integer, Double, Date,
Time and Boolean, or b) a complex attribute type, i.e. a class that itself only con-
tains instance variables meeting conditions a and b, with the proviso that in this
recursive search process, if a cycle is found, then the variable is deemed a candi-
date association end. This process resulted in 350 candidate association ends.

In the second step, we filtered the set down to 235 association ends by remov-
ing internal variables. Internal variables represent data that is not an intrinsic part
of the permanent state of the object, but is used for some algorithm or temporary
process. They are neither set in the constructor nor are available via set/get meth-
ods. Examples of the types of such variables include Readers, Streams, and Maps.

Improving Code Generation for Associations 131

Table 1 highlights distribution statistics of the 235 association ends. The results
are not mutually exclusive so the column sum will not be 100%.

Table 1 Distribution of set / get and availability in constructor

Category Freq % Description

Set/Get Methods 67 29% All variables that had both a set and get method.
Set Method 89 38% All variables that at least had a set method.
Get Method 120 51% All variables that at least had a get method.
No Set Method 54 23% All immutable variables, as there is no set method
Only Get Method 39 17% Internally managed (no set method, not in constructor).

In addition to tracking the distribution of set and get methods, we also noted

that some implementations provided direct access to the list structure and others
provided methods like add and remove. Of the 235 association ends, 42 (17.9%)
were defined using Map, Set, Hash, or List classes and hence likely represented
associations with an upper bound greater than one.

When analyzing the open-source systems, it was difficult to match association-
end variables to one another because many associations linked to external
resources and most likely represented one-way associations. There was little
evidence of referential integrity between association ends, implying that the appli-
cation developer using the object model would have to write code to maintain the
correct multiplicities and inverse pointers. This difficulty in analyzing how asso-
ciations are used in practice provides motivation for our work. It would appear to
be beneficial for developers to be able to define associations in one location, and
have links created, accessed and modified in a consistent manner.

To better understand the types of associations used in practice, we analyzed
1400 associations in UML diagrams of real systems (not association ends as dis-
cussed above). These were found in two UML specifications (v1.5 / v2.1.2) and
some UML profiles (MARTE, Flow Composition, ECA, Java, Patterns, rCOS).

Table 2 Industry Usage of Association Multiplicities in UML

Industry Usage Rank in the various sets of examples

Multiplicity Frequency Ratio Industry Example Repository

1--* 273 19.0% 1 1 1
0..1--* 270 18.8% 2 4 2
-> 179 12.4% 3 9 4
-- 162 11.3% 4 2 3
0..1--1 126 8.8% 5 N/A 7
*->1 86 6.0% 6 N/A 6
*->0..1 73 5.1% 7 N/A 5
0..1--0..1 58 4.0% 8 6 N/A
--n.. 54 3.8% 9 N/A N/A
Other 157 10.9% N/A N/A N/A

Total 1438 100.0%

132 O. Badreddin, A. Forward, and T.C. Lethbridge

We also analyzed UML models in a book by one of the authors [4] (example
models), and in our repository of UML modeled systems [5] (repository models)
built using Umple.

The top nine associations patterns by multiplicity, ordered according to the
industry examples, are in Table 2. The multiplicities include the following con-
straints: optional (0), one (1), lower-bound (n), upper-bound (m), and many with-
out bounds (*). For example, a one-to-many multiplicity would be 1 -- *. The rank
of actual usage is based on the UML specification. For comparison the rank of the
particular multiplicity within the example and repository collection is also shown.

We performed similar analysis based on example usage from [4] and present
the results in Table 3.

Table 3 Example Usage [4] of Association Multiplicities

Example Usage Rank in the various sets of examples

Multiplicity Frequency Ratio Industry Example Repository

1--* 39 39.8% 1 1 1
-- 15 15.3% 4 2 3
1--1 13 13.3% N/A 3 N/A
0..1--* 11 11.2% 2 4 2
*->1 4 4.1% N/A 5 6
0..1--0..1 4 4.1% 8 6 N/A
1--0..n 3 3.1% N/A 7 N/A
*--n 2 2.0% N/A 8 N/A
-> 2 2.0% 3 9 4
Other 5 5.1% N/A N/A N/A

Total 98 100.0%

Table 4 is ordered based on our UML model repository examples [5], which

has over 28 systems in domains like airlines, elevators, traffic lights and the Um-
ple metamodel itself.

Table 4 Usage of Association Multiplicities from Model Repository [5]

Model Repository Usage Rank in the various sets of examples

Multiplicity Frequency Ratio Industry Example Repository
1--* 108 43.4% 1 1 1
0..1--* 34 13.7% 2 4 2
-- 27 10.8% 4 2 3
-> 22 8.8% 3 9 4
*->0..1 21 8.4% 7 N/A 5
*->1 12 4.8% 6 5 6
1--0..1 4 1.6% 5 N/A 7
1--1..* 3 1.2% N/A N/A 8
1..*--* 3 1.2% N/A N/A 9
Other 15 6.0% N/A N/A N/A

Total 249 100.0%

Improving Code Generation for Associations 133

The industry and example UML models share five of the top nine multiplicity
usage patterns; one-to-many, optional-one-to-many, many-to-many, optional-one-
to-one, and optional-one-to-optional-one.

After analyzing over 1,800 different modeled associations, approaches like
eUML [6] (where only a subset of the UML multiplicities can be modeled) pro-
vide sufficient coverage for most applications. The same is true of the applications
analyzed in Section 5, where most code generators provide little capability for
association multiplicities beyond differentiating a one-end from many-end. As
shown above, about 5% of the UML specifications fall outside of the simple cases
currently supported and it should be of both academic and practical relevance to
explore all types of association relationships.

3 Textual Associations in Umple

Umple is a set of extensions to object-oriented languages that provides a concrete
textual syntax for UML abstractions like attributes, associations and state ma-
chines. Below, we describe how associations are represented in Umple. Please see
our separate paper [3] for a discussion of attributes. For more details, and for the
motivation regarding why we created Umple, the reader should refer to [7] and
[8]. Umple can also be edited directly within a browser [9].

Figure 1 shows two associations. To distinguish between Umple and Java, the
Umple examples use dashed borders in light-grey shading, and Java examples use
solid-line borders with no shading. The UML class diagram one the right has three
classes and two one-to-many associations. The code on the left is the equivalent in
Umple . The ‘--‘ means that the association is bi-directionally navigable (more on
this later). It is also possible to use ‘->’ or ‘<-‘ to indicate that navigation is possi-
ble in only one direction. The full set of UML multiplicity symbols may be used.

class Student {}
class CourseSection {}
class Registration
{
 String grade;
 * -- 1 Student;
 * -- 1 CourseSection;
}

Fig. 1 Umple code/model for part of the registration system

In addition to showing an association embedded in one of the two associated
classes, it is also possible to show an association ‘on its own’. The association
name, Enrollment and role names course and attendee are optional.

134 O. Badreddin, A. Forward, and T.C. Lethbridge

association Enrollment
{* Registration course -- 1 Student atendee;}

Besides providing improved abstraction, explicitly coding associations may speed
development and reduce bugs, since the compiler can enforce various design con-
straints and less code needs to be written. The current implicit nature of associa-
tions in standard languages most likely results in code that is bug-prone since
there is no general mechanism to enforce things like referential integrity.

4 Analyzing Association Multiplicity

Consider the following association between a Mentor and a Student.

Fig. 2 An example binary association

An association has a multiplicity at each end describing how many instances of
one class can be linked with the other class. In Figure 2, a Mentor can link to any
number of Students, but a Student must be assigned to one and only one Mentor.

In general, there are nine distinct categories of multiplicity, shown in Table 5.
These largely require different treatment in the code, except that the 1..n case can
be coded as a special case of m..n and 1..* can be coded as special case of m..*.

Table 5 Multiplicity Possibilities for Associations

Multiplicity
Notation

Lower
Bound

Upper
Bound

Description

0..1 0 1 Optional-One – Item is either present or not
0..n 0 n > 1 At Most n – At most n items, or none at all
0..* (*) 0 undef. > 1 Many – Any number of items present. or none at all
1..1 (1) 1 1 One – The item is mandatory
1..n 1 n > 1 Mandatory at Most n – At least one item is mandatory

up to a maximum of n items
1..* 1 undef. > 1 Mandatory Many – One item is mandatory (no max)
n..n (n) n > 1 n Exactly n – Exactly m items are mandatory
m..n m > 1 n > m From m to n – At least m items are mandatory up to a

maximum of n items
m..* m > 1 undef. > m At least m – At least m items mandatory (no max)

Improving Code Generation for Associations 135

4.1 Bidirectional Associations Between Two Different Classes

We analyzed associations between two classes that are navigable in both direc-
tions. Both linked objects are conceptually aware of the relationship. There are 28
different patterns of binary associations, as listed in Table 6.

Note that x -- y is equivalent to y -- x, so for example, 0..1 -- n is equivalent to
n -- 0..1; for this reason, the upper diagonal in Table 6 is left blank. Also note that
the variables m and n are not assumed to be the same on both ends of the associa-
tion. For example, 0..6 -- 3..4 association would be in the 0..n -- m..n category.

Our examples model a Mentor and Student, allowing us to vary the multiplicity
in a sensible way. Figure 3 shows a Student always has one Mentor, but a Mentor
can have zero or more students.

Our code written in Java assumes a Mentor has a student variable when the
multiplicity upper bound (ub) is 1, or students if ub > 1. A Student, has a mentor
(ub =1), or mentors (ub > 1). The Umple notation for Figure 3 is:

association {1 Mentor -- * Student;}

Table 6 All 28 Bi-Directional Non-Reflexive Association Patterns

0..1 0..n * 1 n m..n m…*

0..1 -- 0..1
0..1 -- 0..n 0..n – 0..n
0..1 -- * 0..n -- * * -- *
0..1 -- 1 0..n -- 1 * -- 1 1 -- 1
0..1 -- n 0..n -- n * -- n 1 -- n n -- n
0..1 -- m..n 0..n -- m..n * -- m..n 1 -- m..n n -- m..n m..n -- m..n
0..1 -- m..* 0..n -- m..* * -- m..* 1 -- m..* n -- m..* m..n -- m..* m..* --

m..*

Shaded cells show cases where both sides are mandatory. Associations with

thick borders indicate the common cases as observed in the previous section. Note
that 1..* is a subset of the more generic m..* and 1..n is a subset of m..n.

4.2 Unidirectional (Directed) Associations

A directed association is navigable in one direction only. Only one object of the
pair is aware of and can manage the relationship. For example, one could write in
Umple:

association {* Mentor -> * Student;}

In this, a Mentor is aware of the associated Students, but a Student is unaware of
any Mentor’s to which he/she might be associated. The end that is unaware of
the link can be unknowingly linked to multiple objects (i.e. a * relationship is
generally implied); resulting in seven possible combinations for code generation.

136 O. Badreddin, A. Forward, and T.C. Lethbridge

* -> 0..1, * -> 1, * -> *, * -> m..n, * -> n, * -> m..*, * -> 0..n

Without injecting additional complex code, the system will be unable to man-

age the association when changes occur to the unaware side, such as a Student
deleting itself. If such situations must be managed, then a bi-directional associa-
tion must be used. In practice, we find that the vast majority of associations would
benefit from being bidirectional. Doing so enables functionality that tends to be
required anyway, and where the functionality is not immediately required, the
code is better suited to meet unanticipated future needs. However, bi-directional
association can increase coupling unnecessarily.

4.3 Reflexivity and Symmetry

Where both ends of an association are the same class, we must consider several
special cases. A reflexive association allows an object to be linked to other objects
of the same class including itself. An example of such an association might be
“lives-at-same-address”.

It is also common to have irreflexive associations with both ends being the
same class. The added constraint is that a given object cannot be linked to itself.
For example, a mother relationship among Person objects is irreflexive as you
cannot be your own mother.

A symmetric association describes a mapping that reads the same as its inverse;
for example, a spouse association. An asymmetric association is not reversible; for
example a child relationship. Finally, an anti-symmetric association is asymmetric
except that it allows a relationship to self. For example the relationship being-
present-at-birth is anti-symmetric.

One could encode the mentor-student example using a single class, where all
objects are Persons, and some persons can mentor others. This is an irreflexive
asymmetric association, since one cannot mentor oneself and the meaning of the
association is different in each direction. The Umple notation would be:

association {0..1 Person mentor -- * Person student;}

The Umple language natively supports symmetric and asymmetric associations.

Anti-symmetric associations are currently not supported as we find them to be
quite rare (they may be supported in the future). The distinction between reflexiv-
ity and irreflexivity is currently not managed, but applications can relatively easily
be coded to prevent (or allow) an object to be linked to itself.

Asymmetric associations require code that is effectively identical to associa-
tions between two different classes (see Table 6) - except that the lower bound of
both ends must be zero. The top seven associations from Table 6 are therefore
possible as asymmetric associations from one class to itself. The reason the lower
bound must be zero is to prevent infinite regress. For example, in the case of class
Person in the asymmetric association previously discussed, if every mentor Person

Improving Code Generation for Associations 137

must have a student Person, and since every student is also a mentor (by virtue of
being a Person) there would be an infinite chain of persons requiring a mentor.

A symmetric association specifies links between different instances of the same
class, and must have the same multiplicity on each end. The diagonal of Table 6
gives the cases to consider.

As a result of all the above analysis, a total of 42 different possible association
types have been identified (28 for bidirectional associations; 7 for unidirectional
associations, and 7 for symmetric associations). In the following section, we high-
light certain implications that these association types will have on code generation.
This overview serves as a guide when comparing existing code generation tools
and also as a template for building code generator for systems programmed in the
Umple modeling language.

4.4 Implications for Code Generation

The implementation of associations in a language like Java impacts the following
aspects of a class. First, the class will have an additional member variable to re-
flect the other end of an association. One and optional-one multiplicities can be
declared as a member variable of the other type, while many multiplicities are
declared as lists (implemented as a collection class) of objects of the other type.

Second, the constructor may need an additional parameter to ensure mandatory
association ends like 1 or 1..*.

Finally, the class requires methods to set, get, add and remove links between
objects. To be consistent with the model of the associations, the implementation of
those methods should enforce the referential integrity between pairs of objects, as
well as ensuring that multiplicity constraints are upheld.

In the following section, we analyze how existing code generators deal with the
various combinations of multiplicities and to what extent they behave according to
the structure outlined above. We then discuss the code generation available from
the Umple language.

5 Existing Code Generators

In this section we look at existing tools to see how well they translate the seman-
tics of associations into a programming language.

The UML modeling tools considered were identified from a Gartner report [10]
and an online list [11]. We selected four open-source and one closed source appli-
cation to analyze, as listed in Table 7. Each tool was configured to generate Java
code for a simple 1 -- * relationship shown in Figure 2.

The generated code provided in the following sections has only been modified
to provide a consistent layout/format, and for space considerations comments have
also been removed.

138 O. Badreddin, A. Forward, and T.C. Lethbridge

Table 7 UML code generation tools

Tool Version Source

ArgoUML 0.26.2 argouml.tigris.org
StarUML 5.0.2.1570 staruml.sourceforge.net
BOUML 4.11 bouml.free.fr
Green 3.1.0 green.sourceforge.net
RSA 7.5 ibm.com/software/awdtools/architect/

5.1 Code Generation Patterns

In general, all tools analyzed provided two basic code generation templates; one
for 0..1 and 1 (referred to as one) multiplicities and a second for m..n multiplicities
(referred to as many where m ≥ 0, n > m, n > 1).

The template pattern for one would generate a member variable to refer to the
other association end. The template pattern for many would generate a reference to
a List or Set structure that could contain multiple references to the other associa-
tion end. Both examples are shown below.

private <ClassName> <assocEndName>; // ub = 1
private <ListStructure> <assocEndName>; // ub > 1

Some tools provide explicit code generation patterns for n relationships (where n >
1), as well as m..* relationships (where m ≥ 0). Some tools provided explicit
get/set methods in addition to creating the necessary member variables. A discus-
sion of each code generation pattern will be provided based on the tools analyzed.

5.2 ArgoUML

ArgoUML is an open source modeling platform that provides code generation for
Java, C++, C#, PHP4 and PHP5. Below is the generated code from Figure 2.

import java.util.Vector;
public class Mentor {
 public Integer id;
 public Vector myStudent; }
public class Student {
 public String name;
 public Mentor myMentor; }

The generated code provides a mechanism to access “each end” of the relation-

ship. The generator provides little validation or constraint checking to ensure the
relationship is maintained, and the variables are made directly available without
the inclusion of accessor (get and set) methods.

In general, all 0..1 and 1 multiplicities generate similar structures as seen in the
Student class above, and all m..n multiplicities (where m ≥ 0 and n > m and n > 1)
generate similar structures to the Mentor class.

Improving Code Generation for Associations 139

5.3 StarUML

StarUML is an open source modeling tool. StarUML’s generated code does not
account for the many multiplicity, resulting in unusable generated code. Below is
the generated code for the Mentor and Student example:

public class Mentor {
 public String name;
 public Student student; }
public class Student {
 public Integer id;
 public Mentor mentor; }

5.4 Bouml

Bouml is a free tool based on UML 2 that provides source code generation for
C++, Java, Idl, Php and Python.

The source code generated below is very similar to that of ArgoUML. This
code does not provide any mechanism to test or ensure the constraints outlined in
the model; this code must be written by hand after code generation. In addition,
the source code is incomplete as no reference the java.util.List class is provided,
which means that the generated code must be maintained by hand to ensure proper
compilation into byte code.

class Mentor {
 private List<Student> student;
 private String name; }
class Student {
 private Mentor mentor;
 private int id; }

5.5 Green Code Generator

Green UML is another UML editor that can generate source code from a class
diagram. Below is the generated code for the Mentor and Student example.

import java.util.List;
public class Mentor {
 private List<Student> student;
 java.lang.String name;
 public Mentor(List<Student> student2)
 { student = student2; }
}
public class Student {
 private Mentor mentor;
 int id;
 public Student(Mentor mentor2)
 { mentor = mentor2; }
}

140 O. Badreddin, A. Forward, and T.C. Lethbridge

Green does provide additional code generation support by creating custom con-
structors based on the association. Green supports the following types of multi-
plicities: 1, n, m..*, and * (where n > 1 and m >= 0).

Green provides some enforcement of constraints; although the implementation
is awkward and not scalable. For example, the implementation of the constraint of
a mandatory relationship where a Mentor must have n Students (e.g. n = 3) is
shown below.

public class Mentor {
 private Student student3;
 private Student student2;
 private Student student;
 java.lang.String name;
 public Mentor(Student student4,
 Student student5,
 Student student6) {
 student3 = student4;
 student2 = student5;
 student = student6; } }

This implementation provides little opportunity to access or manage the collec-

tion of students, and instead each must be accessed explicitly by name. It also does
a poor job of maintaining the constraint; as the variables could be set to null, vio-
lating the model’s intention.

Green also provides an enforcement of m..* relationships. Below is an example
implementation of a 2..* relationship.

import java.util.List;
public class Mentor {
 private List<Student> student;
 java.lang.String name;
 public Mentor(List<Student> student2) {
 student = student2;
 student.add(new Student());
 student.add(new Student()); } }

The implementation above presents two issues. First, the potentially unwanted

side effect of creating and inserting additional entities into the list argument (i.e.
students). Second, the code generator assumes that a default (and empty) construc-
tor exists for the Student object; an assumption that might not always be valid and
could result in a generated system that does not compile.

Although Green UML does attempt to provide some additional source code
generation to manage the various types of association multiplicities available; the
results provide little, if any, added benefit in representing the model’s intentions.

5.6 Rational Software Architect (RSA)

IBM’s Rational Software Architect (RSA and RSA Real-Time) are full-fledged
development environments that support model-driven development including
source code generation from UML diagrams.

Improving Code Generation for Associations 141

import java.util.Set;
public class Mentor {
 public Set<Student> students;
 public Set<Student> getStudents()
 { return students; }
 public void setStudents(Set<Student>students)
 { this.students = students; }
}
public class Student {
 public Mentor mentor;
 public Mentor getMentor()
 { return mentor; }
 public void setMentor(Mentor mentor)
 { this.mentor = mentor; }
}

RSA’s model transformation into Java code provides some flexibility regarding

the template patterns including (a) which Java collection to use, and (b) whether or
not to include get/set methods for the attributes and association ends. As with all
other source code generators, no distinction between the various possible one or
many relationships are present in the generated code; leaving the implementation
of the modeling constraints up to manually-written code. In addition to providing
simple set and get methods, RSA’s member variables representing the association
ends was also public; presenting an encapsulation issue (especially considering the
code already provides set and get methods).

6 Association Code Generation in Umple

The existing UML code generation tools analyzed in the previous section fall short
of providing robust code to implement associations. The generated code provided
little implementation support either to manage referential integrity or to ensure
multiplicity constraints (beyond the ’one’ vs. ‘many’ distinction).

In this section, we present our approach to code generation and identify imple-
mentation patterns that go beyond the capabilities of current tools. This approach
is instantly accessible from Umple online [5].

6.1 Defining Association Variables

The first pattern to emerge is the distinction between having one object in the
association and having many (i.e. upper bound equal to one versus greater than
one). For convenience, we will use UB for upper bound and LB for lower bound.

Table 8 Member Variable Patterns

Mult. Constraint Pattern Example

UB = 1 ObjectType associationEnd; Student student;
UB > 1 List<ObjectType> associationEnd; List<Student> students;

142 O. Badreddin, A. Forward, and T.C. Lethbridge

6.2 Constructor Parameters for Associations

The next patterns relate to a class’ constructor signature. The constructor defines
how objects should be created and indirectly affects the order in which objects can
be instantiated. Three signatures emerge from the various multiplicities:

• The association end is not required (LB=0) and not be part of the constructor
• Exactly one, the upper and lower bounds are exactly one
• Mandatory Many, (LB > 0 and UB > LB)

The patterns in Table 9 work well when the multiplicity of at least one end of the
association is zero; allowing the creation of one object before the other. Below are
example implementations of the constructors above.

Table 9 Constructor Signature Patterns

Multiplicity
Constraint

Pattern Example

LB = 0 Empty N/A
LB=UB=1 ObjectType anAssociationEnd Student aStudent;
LB > 0 && UB > 1 List<Student> someAssociationEnds List<Student> allStudnets;

By using the setStudent method (which we discuss in the interface patterns sec-

tion), we are able to encapsulate how students are set; including the verification
that the set operation is indeed valid (i.e. association multiplicity constraints are
not violated). If we are unable to assign the student, then an exception is thrown.
The exact error message is not shown for simplicity.

public Mentor(Student aStudent) {
 boolean didAddStudent = setStudent(aStudent);
 if (!didAddStudent) {
 throw new RuntimeException("***"); } }

When the upper bound is greater than one (and the lower bound is not zero), we

must initialize a list of associated members. We can delegate the action and verifi-
cation using the setStudents (instead of setStudent like above) method.

public Mentor(List<Student> allStudents) {
 students = new ArrayList<Student>();
 boolean didAddStudents =
 setStudents(allStudents);
 if (!didAddStudents) {
 throw new RuntimeException("***"); } }

A chicken-and-egg issue manifests itself when neither end has a lower bound

of zero; meaning that each end requires the other, resulting in deadlock as neither
constructor can be called before the other. This issue has been divided into
three domains: One to One, One to Mandatory Many and Mandatory Many to

Improving Code Generation for Associations 143

Mandatory Many. To highlight the implementation of each situation above, we
added a name attribute to the Mentor, and a number attribute to the Student class.

Fig. 3 One-to-one Student and Mentor association

In 3, a Mentor must have exactly one Student, and vice versa.

public Mentor(String aName, Student aStudent) {
 name = aName;
 if (aStudent == null || aStudent.getMentor() != null)
 { throw new RuntimeException("***"); }
 student = aStudent; }
public Mentor(String aName, int aNumberForStudent) {
 name = aName;
 student = new Student(aNumberForStudent, this); }

The second constructor Mentor(String aName, int aNumberForStudent) takes

all the required parameters for both objects; allowing both objects to be created
effectively instantaneously. Please note that in this case, there is no setStudent
interface and the logic to verify that the student is valid is provided directly in the
constructor. We do not include a setStudent or setMentor interface because
the one-to-one constraint means you cannot re-assign a mentor or a student, as the
replaced object would then be an orphan; violating the one-to-one constraint.

In the One to Mandatory Many case a Mentor must have more than one Stu-
dent (m..n, n, or m..*) and a Student must have exactly one Mentor.

Table 10 Constructor Signature Patterns When Both Association Ends are Mandatory

Multiplicity Constructor Implementation Multiplicity

1 -- m..* 1 -- *
1 -- m..n 1 -- 0..n
1 -- n 1 -- 0..n

The Mentor’s constructor is implemented as though the lower bound was zero;

allowing the objects to exist in an invalid state immediately following its construc-
tion. To verify the status of an object in such a case, we add an additional method
isNumberOfStudentsValid, which checks if the number of students is valid.

The mandatory-many to mandatory-many constructor is similar, is that both
constructors are initiated without the constraint being satisfied, and an additional
method isNumberOfMentorsValid() is provided. The implementation as proposed

144 O. Badreddin, A. Forward, and T.C. Lethbridge

for these latter two cases allows for handling of cases that are in fact rare. Our
implementation provides the developer with the necessary tools to query the asso-
ciation to verify the satisfaction of the constraint.

6.3 Get Method Code Generation Patterns

Table 11 outlines an the interface to access an association end available to a Men-
tor based on the multiplicity end of the Student. The method pattern is based on a
generic association end name (name), and the association end’s type (type).

Table 11 Method Signature Patterns for Get Methods

Mult.
Constraint

Pattern Example

UB = 1 getName() : Type getStudent() : Student
UB > 1 getName(int index) : Type getStudent(int index) : Student
 getNames() : Iterator<Type> getStudents() : Iterator<Student>
 indexOfName(Type aName) : int indexOfStudent(Student aStudent) : int
 numberOfNames() : int numberOfStudents() : int
 hasNames() : boolean hasStudents() : boolean

The getStudent implementation is shown below.

public Student getStudent() { return student; }

The difference between mandatory one (1) and optional one (0..1) is that the

student member might be null in the optional case; whereas the 1 multiplicity end
will never be null.

When the upper bound multiplicity is greater than 1, there are four common ac-
cessor methods as shown below.

public Student getStudent(int index)
 { return students.get(index);}
public Iterator<Student> getStudents()
 { return students.iterator(); }
public int numberOfStudents()
 { return students.size(); }
public boolean hasStudents()
 { return students.size() > 0; }
public int indexOfStudent(Student aStudent)
 { return students.indexOf(aStudent); }

Although one has access to all associated students, one is not able to alter the

association by manipulating a list retrieved using the get methods shown above.
To change the number of elements one must use the available add methods as
shown below. The reason for this is to prevent the caller of API methods from

Improving Code Generation for Associations 145

being able to violate the multiplicity constraints or corrupt the referential integrity.
Other implementers of ‘many’ associations simply pass the collection of objects
around, however, we explicitly ensure this never happens.

6.4 Set Method Code Generation Patterns

Next, we consider an interface to add, remove and set links of an association end.
Again, we will be adding Student instances to a Mentor object based on various
multiplicity constraints. Table 12 describes the generated interface.

Table 12 Method Signature Patterns for Set Methods

Multiplicity
Constraint

Pattern Example

UB = 1 setName(Type aName) setStudent(Student aStudent)
UB > 1 addName(Type aName) addStudent(Student aStudent)
 removeName(type aName) removeStudent(Student aStudent)

The implementation of set methods is considerably more complex than get

methods. First, set methods must undo any existing links between objects and
establish the new links. Second, the methods must ensure referential integrity:
when creating one end of a binary association they must create the other end as
well.

Let us begin with the case where the upper bound is one. When the relationship
is optional, the following scenarios must be considered.

If adding a new link, there must be code to set the inverse link as well. Con-
versely, if the inverse link has already been set, then it must not be set again. For
example, if adding a Student to a Mentor, the code must be sure to add a Mentor
to the Student (but only once).

If replacing or removing an existing link, both directions of the link must be
removed. For example, if a Mentor can only have one Student, then when assign-
ing a Mentor to a new Student, the implementation must unassign that Mentor
from the existing Student.

When creating a new link, the multiplicity constraints on both ends must be sat-
isfied. If a Mentor can only have four Students, then a Student is not allowed to
add a Mentor such that the Mentor would now be linked to five Students.

Finally, whenever removing an existing link, the multiplicity constraints on the
existing objects must be satisfied. If a Mentor must have at least two Students,
then the implementation must not allow a Student to set itself to a new Mentor if
the existing mentor is at its two-Student minimum.

Two examples are outlined below; one where UB = 1, and the other where UB
> 1. First the implementation of setMentor from in Student class as part of the 0..1
Mentor -- 0..1 Student association.

146 O. Badreddin, A. Forward, and T.C. Lethbridge

public void setMentor(Mentor newMentor) {
 if (newMentor == null) {
 Mentor existingMentor = mentor;
 mentor = null;
 if (existingMentor != null &&
 existingMentor.getStudent() != null) {
 existingMentor.setStudent(null); }
 return; }
 Mentor currentMentor = getMentor();
 if (currentMentor != null &&!currentMentor.equals(newMentor)) {
 currentMentor.setStudent(null); }
 mentor = newMentor;
 Student existingStudent = newMentor.getStudent();
 if (!equals(existingStudent)) { newMentor.setStudent(this); } }

Next are the implementations of addStudent, and removeStudent for the Mentor

class as part of the 0..1 Mentor -- * Student association.

public boolean addStudent(Student aStudent) {
 if (students.contains(aStudent)) { return false; }
 Mentor existingMentor = aStudent.getMentor();
 if (existingMentor == null) {
 students.add(aStudent);
 aStudent.setMentor(this);
 } else if (!existingMentor.equals(this)) {
 existingMentor.removeStudent(aStudent);
 addStudent(aStudent);
 } else { students.add(aStudent); }
 return true; }

public boolean removeStudent(Student aStudent) {
 if (!students.contains(aStudent)) { return false; }
 else {
 students.remove(aStudent);
 aStudent.setMentor(null);
 return true; } }

There are 42 different association combinations (28 different classes, 7 for di-

rected and an additional 7 for symmetric). Each implementation follows the gen-
eral guidelines shown above, and each combination can explored online at [9].

6.5 Patterns for Generated Support Methods

In addition to establishing relationships between objects, we include methods to
query the minimum and maximum bounds of a relationship. Due to space con-
straints, we omit the full details of the support methods, but Table 13 highlights
the interface.

Improving Code Generation for Associations 147

Table 13 Interface for support methods

Multiplicity Interface

m..n, m..* minimumNumberOfStudents() : int
m..n, 0..n maximumNumberOfStudents() : int
n requiredNumberOfStudents() : int

7 Related Work

Several studies [12-16] propose approaches to formalizing the semantics of asso-
ciations. They generally agree on the interpretation of the associations, but do not
address uniqueness and ordering of associations.

Other studies refer to two types of associations; static and dynamic [17, 18].
Static associations, a view we adopt, represent structural relationships between
objects, where the association is enforced throughout the lifetime of both objects.
Dynamic (or contextual associations) are enforced only during the interactions of
the two objects. Miliev [19] proposes yet another view of associations: intentional
associations that encapsulate the intention of association of each participating
object. Milicev highlights deficiencies in the traditional semantics of associations
and multiplicities that can be overcome by the introduction of an intentional per-
spective on associations.

Acknowledging deficiencies in automated code generation of UML associa-
tions and multiplicities, Wang and Shen [20] propose a run-time verification
approach for UML association constraints. Østerbye [21] proposes supporting
association referential integrity with a reusable class library that ensures the con-
sistency of the relationship is maintained.

Executable UML (eUML) [6] aims is to provide a (yet to be approved) specifi-
cation of an unambiguous subset of executable UML (using model compilers).
The Umple language also behaves as a model compiler and provides a concrete
implementation of a subset of UML. However unlike Executable UML, Umple
integrates with standard object oriented languages, and supports a wider range of
multiplicity, as well as a variety of other features not present in executable UML.

Umple has been under continuous development since 2007. Experimentation
with users has revealed that the comprehensibility levels of model oriented code is
superior to the equivalent object oriented code [22-24]. Umple has also been used
and evaluated in open source projects [25].

8 Conclusion

This paper discussed problems with generating code for UML associations, and
proposed Umple as a solution. We identified the 42 combinations of multiplicity
for association ends and analyzed their impact on code generation. We reviewed
the code generated by five modeling tools, and found that none dealt with

148 O. Badreddin, A. Forward, and T.C. Lethbridge

multiplicity constraints or referential integrity. This may be one reason why code
generation is not as widely used in practice as might be expected.. As a result
developers must modify generated code by hand, which is awkward and error-
prone. We provided an overview of the Umple language for associations and its
model compiler that addresses the above issues.

References

1. Costal, D., Gómez, C.: On the use of association redefinition in UML class diagrams.
In: Embley, D.W., Olivé, A., Ram, S. (eds.) ER 2006. LNCS, vol. 4215, pp. 513–527.
Springer, Heidelberg (2006)

2. Object-Oriented Software Engineering: Practical Software Development using UML
and Java. McGraw-Hill (2005)

3. Badreddin, O., Forward, A., Lethbridge, T.C.: Exploring a Model-Oriented and Exe-
cutable Syntax for UML Attributes. Accepted in SERA 2013 (2013)

4. Object-Oriented Software Engineering: Practical Software Development using UML
and Java. McGraw Hill (2001)

5. UmpleOnline, http://www.try.umple.org (accessed 2013)
6. Executable UML: A Foundation for Model-Driven Architectures. Addison-Wesley,

Boston (2002)
7. Umple Language, http://cruise.site.uottawa.ca/umple/ (accessed

2013)
8. Forward, A., Lethbridge, T.C., Brestovansky, D.: Improving program comprehension

by enhancing program constructs: An analysis of the umple language, pp. 311–312
(2009)

9. Umple language online,
http://cruise.site.uottawa.ca/umpleonline/ (accessed 2013)

10. Norton, D.: Open-Source Modeling Tools Maturing, but Need Time to Reach Full Po-
tential, Gartner, Inc., Tech. Rep. G00146580 (April 20, 2007)

11. Wikipedia Listing of UML modeling tools,
http://en.wikipedia.org/wiki/List_of_UML_tools (accessed 2013)

12. Bourdeau, R.H., Cheng, B.H.C.: A formal semantics for object model diagrams. IEEE
Trans. Software Eng. 21, 799–821 (1995)

13. Diskin, Z., Dingel, J.: Mappings, maps and tables: Towards formal semantics for asso-
ciations in UML2. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 230–244. Springer, Heidelberg (2006)

14. France, R.: A problem-oriented analysis of basic UML static requirements modeling
concepts. ACM SIGPLAN Notices 34, 57–69 (1999)

15. Overgaard, G.: A formal approach to relationships in the unified modeling language.
In: Proceedings PSMT (1998)

16. Overgaard, G.: Formal specification of object-oriented ModellingConcepts. PhD The-
sis, Dept. of Teleinformatics, Royal Inst. of Technology, Stockholm, Sweden (Novem-
ber 2000)

17. Stevens, P.: On the interpretation of binary associations in the Unified Modelling Lan-
guage. Software and Systems Modeling 1, 68–79 (2002)

18. Genova, G., Llorens, J., Fuentes, J.M.: UML associations: A structural and contextual
view. Journal of Object Technology 3, 83–100 (2004)

Improving Code Generation for Associations 149

19. Miliev, D.: On the semantics of associations and association ends in UML. IEEE
Trans. Software Eng., 231–258 (2007)

20. Wang, K., Shen, W.: Runtime checking of UML association-related constraints. In:
Proceedings of the 5th International Workshop on Dynamic Analysis (2007)

21. Osterbye, K.: Design of a class library for association relationships. In: Proceedings of
the 2007 Symposium on Library-Centric Software Design, pp. 67–75 (2007)

22. Badreddin, O.: Empirical Evaluation of Research Prototypes at Variable Stages of Ma-
turity. In: ICSE Workshop on User Evaluation for Software Engineering Researchers,
USER (to appear, 2013)

23. Badreddin, O., Lethbridge, T.C.: Combining experiments and grounded theory to eval-
uate a research prototype: Lessons from the umple model-oriented programming tech-
nology. In: User Evaluation for Software Engineering Researchers (USER). IEEE
(2012)

24. Badreddin, O., Forward, A., Lethbridge, T.C.: Model oriented programming: an empir-
ical study of comprehension. In: Proceedings of the 2012 Conference of the Center for
Advanced Studies on Collaborative Research. IBM Corp. (2012)

25. Badreddin, O., Lethbridge, T.C., Elassar, M.: Modeling Practices in Open Source
Software. In: OSS 2013, 9th International Conference on Open Source Systems (to
appear, 2013)

R. Lee (Ed.): SERA, SCI 496, pp. 151–166.
DOI: 10.1007/978-3-319-00948-3_10 © Springer International Publishing Switzerland 201

How Process Enactment Data Affects Product
Defectiveness Prediction – A Case Study

Damla Aslan, Ayça Tarhan, and ve Onur Demirörs

Abstract. The quality of a software product is highly influenced by the software
process used to develop it. However, abstract and dynamic nature of the software
process makes its measurement difficult, and this difficulty has supported the
assessment insight of indirectly measuring the performance of software process by
using the characteristics of the developed product. In fact, enactment of the
software process might have a significant effect on product characteristics and
data, and therefore, on the use of measurement and analysis results. In this article,
we report a case study that aimed to investigate the effect of process enactment
data on product defectiveness in a small software organization. We carried out the
study by defining and following a methodology that included the application of
Goal-Question-Metric (GQM) approach to direct analysis, the utilization of a
questionnaire to assess usability of metrics, and the application of machine
learning methods to predict product defectiveness. The results of the case study
showed that the accuracy of predictions varied according to the machine learning
method used, but in the overall, about 3% accuracy improvement was achieved by
including process enactment data in the analysis.

Keywords: software defect prediction; machine learning; process enactment,
software measurement, defectiveness.

Damla Aslan
Simsoft Computer Technologies Co., Ltd, Technopolis of METU, Ankara, Turkey
e-mail: damla.sivrioglu@simsoft.com.tr

Ayça Tarhan
Department of Software Engineering, Hacettepe University, Ankara, Turkey
e-mail: atarhan@cs.hacettepe.edu.tr

ve Onur Demirörs
Informatics Institute, METU, Ankara, Turkey
e-mail: demirors@ii.metu.edu.tr

4

152 D. Aslan, A. Tarhan, and ve Onur Demirörs

1 Introduction

Product defectiveness is a suitable measure for the assessment of software quality.
Defect data usage for quality evaluation is common among studies in literature
since accessibility to product defect data by issue tracking and configuration
management tools are easy. These tools are important information sources with
their huge databases that store descriptions of the defects detected in software,
including detection dates, resolution status, and etc.

The process reference models such as CMMI [22] suggest after second maturity
level the mapping between the product and process data and also suggest taking
into account this mapping for process improvement. However, the accessibility
and collection of process data are difficult to use in software measurement and
analyses [1, 2] because of abstract and dynamic nature of the software process.
Therefore, we propose that using process enactment data might be a good idea to
obtain process traces and combine them with defect data. By this way process
characteristics can be realized and the patterns in the data can be recognized.
Besides, we can take process dynamics into consideration by directly using its
enactment data instead of indirectly using derived metrics such as defect density.

In this study, we aimed to investigate how the usage of process enactment data
affects software defectiveness prediction results. We used defect open duration as
dependent variable and applied machine learning algorithms for the purpose of
classifying defect data and defect tracking process enactment data to predict defect
open duration. The data used in the study belonged to a software development
project of a small software organization called Simsoft. WEKA tool [14] was used
to conduct the analysis. To assess the benefit of including process enactment data
in the analysis, we compared the reliability of the datasets with and without
process enactment data.

The remainder of this paper is organized as follows. Section two provides an
overview of studies that consider software process data in defect analysis and
prediction. Section three explains the methodology and its application in the case
study. Section four provides the results of the analysis and a discussion on them.
Finally, section five provides overall conclusions.

2 Related Studies

Catal and Diri reviewed software defect prediction studies in a systematical way
[11]. The review states that the studies with using class-level, process-level and
component-level measures are not sufficient. Besides, machine learning methods
are suggested since they give better results than statistical analysis methods and
expert view. Tarhan and Demirors [18, 19] emphasized the importance of process
differences in software projects. They developed and applied some assets such as
Metric Usability Questionnaire, Process Execution Record, and Process Similarity
Matrix for data collection and evaluation. Sivrioglu and Tarhan [3] analyzed
defect data with both statistical and machine learning methods. The results

How Process Enactment Data Affects Product Defectiveness Prediction 153

indicated that machine learning techniques were more accurate than the ones of
statistical techniques. At the end of the study they suggested to use process
enactment data for more accurate results.

It is slightly possible to find prediction studies by using process data in
literature. Jalote et al. [15] explained a defect prediction approach by performing
quantitative quality management and statistical process charts. Wahyudin et al.
[16] presented a defect prediction model by using statistical hypothesis with a
combination of product and process measures. Lee et al. [2] developed a
prediction model with micro interaction metrics which are supposed as process-
related metrics. In their study, they made comparisons among the accuracy results
of the model of code metrics, the model of history metrics, and the combination of
them. Fenton et al. [17] suggested Bayesian Belief Networks machine learning
technique as prediction model. Process data is given for their model. Dhiauddin
[4] generated a prediction model for testing phase in his master thesis. With this
model he discovered the strong factors that contributed to the number of testing
defects. Zeng and Rine [5] have estimated defect fix effort by using dissimilarity
matrix and Self Organizing Maps (Kohonen Networks) which is a type of Neural
Networks method. With this data mining technique the data have been clustered
for prediction. Model performance has been evaluated by magnitude of relative
error (MRE) values of 6 grouped data sets. The input attributes of the model are
defect fix time in hour unit, defect severity, the activity during which the defect is
detected, system mode, defect category and SLOC (source lines of code) changed.
Defect severity, detection activity, system mode and defect category attributes can
be considered as contextual metrics. Weiss et al [6] have used the defects life-time
phases gone through issue tracking tool as the attributes for defect fix effort
prediction. They compared two types of Nearest Neighbor approaches called as
with (α-kNN) and without thresholds (kNN). They used text mining for grouping
the data before kNN analysis. Hassouna and Tahvildari [7] have improved Weiss’
study by adding 1. data enrichment to infuse additional issue information into the
similarity-scoring procedure, 2. majority voting to exploit many of the similar
historical issues repeating effort values, 3. adaptive threshold to automatically
adjust the similarity threshold to ensure that they obtain only the most similar
matches and 4. binary clustering to form clusters when the similarity scores are
very low phases. Hewett and Kijsanayothin [8] have penned down a
comprehensive study regarding defect repair time prediction. Firstly, they have
applied five different empirical machine learning approaches to two individual
data sets with and without attribute selection.

It is seen that researchers claim the benefits of using process measures, machine
learning methods, some data collection and grouping methods for generating
defect prediction models one by one. However, none of them uses several of these
methods together in empirical studies. Combining product data with process data
to generate defect prediction models by using qualitative and quantitative
techniques, we believe, is a promising research topic.

154 D. Aslan, A. Tarhan, and ve Onur Demirörs

3 Methodology

Figure-1 shows the methodology that was developed and applied in the case study.
To carry out the analysis in the direction of our purpose, we applied Goal-

Question-Metric (GQM) approach [13] as the first step. The GQM table
constructed to direct the analysis is given in Table 1.

Fig. 1 Methodology

Table 1 GQM Table of the Case Study

GOAL QUESTION ANALYSIS
METHOD

DERIVED METRIC BASE METRICS AND DATA

To
understand
if there is
an effect of
process
enactment
on software
product
defectivene
ss
prediction.

How much
impact has
process
enactment
on defect
open
duration
prediction?

Bayesnet,
Logistic,
C4.5 Tree,
Multilayer
Perceptron
Machine
Learning
Techniques

Defect Data: open
duration
(closed date-created
date)

Defect and Product Data: detected
module name, closed date, created date,
detected test type, product version,
product SLOC, product complexity,
reproducibility, detected project phase

Defect Data: open
duration
(closed date-created
date)

Defect and Product Data: detected
module name, closed date, created date,
detected test type, product version,
product SLOC, product complexity,
reproducibility, detected project phase
Process Enactment Data: defect
management process attributes

How Process Enactment Data Affects Product Defectiveness Prediction 155

In the case study, we used metric data of the defects detected in software
qualification tests of a project completed in a small software development
organization called Simsoft. The company has 30 employees that contain Software
Engineers, Modeling and Graphics Designers, and Quality Assurance Support
Personnel. It has developed software projects for a large amount of institutes,
especially for defense industry by now. In the project of which defect data was
used in this study, 6 personnel worked for 7-months project duration to develop a
software product of a Computer Service Configuration Item (CSCI) with 5
modules. At the end of the development, the project ended with 23 KLOC (Kilo
Lines of Code) of C++ code implemented for 955 requirements, and with 296
defects detected during qualification tests run by test specialists.

Table 2 Metric Usability Questionnaire for “created date” Metric of Defect Records

Indicators Answers Ra�ng Expected
Measure Iden�ty N

Q1 Which en�ty does the measure measure? Process
Q2 Which a�ribute of the en�ty does the measure

measure?
Defect record’s �me

Q3 What is the scale of the measurement data? Nominal Ra�o, Absolute
Q4 What is the unit of the measurement data? Time
Q5 What is the type of the measurement data?

(integer, real, etc.)
Date

Q6 What is the range of the measurement data? 00.00.0000 00:00
Data Existence F

Q7 Is measurement data existent? Yes
Q8 What is the amount of overall observa�ons? 296 Available > 20
Q9 What is the amount of missing data points? 0
Q10 Are data points missing in periods? 0
Q11 Is measurement data �me sequenced? Yes

Data Verifiability F

Q12 When is measurement data recorded in the
process?

At start

Q13 Is all measurement data recorded at the same place
in the process?

Yes Yes

Q14 Who is responsible for recording measurement
data?

Test Specialist

Q15 Is all measurement data recorded by the
responsible body?

Yes Yes

Q16 How is measurement data recorded? (on a form,
report, tool, etc.)

Tool

Q17 Is all measurement data recorded the same way? Yes Yes
Q18 Where is measurement data stored? The tool's database
Q19 Is all measurement data stored in the same place? Yes Yes

Data Dependability P

Q20 What is the frequency of genera�ng measurement
data?

Asynchronous

Q21 What is the frequency of recording measurement
data?

Synchronous

Q22 What is the frequency of storing measurement
data?

Synchronous

Q23 Are the frequencies for data genera�on, recording,
and storing different?

No No

Q24 Is measurement data recorded precisely? Yes Yes
Q25 Is measurement data collected for a specific

purpose?
No Yes

Q26 Is the purpose of measurement data collec�on
known by process performers?

No Yes

Q27 Is measurement data analyzed and reported? No Yes
Q28 Is measurement data analysis results communicated

to process performers?
No Yes

Q29 Is measurement data analysis results communicated
to management?

No Yes

Q30 Is measurement data analysis results used as a basis
for decision making?

No Yes

156 D. Aslan, A. Tarhan, and ve Onur Demirörs

The defect data from Issue Tracking Tool (ITT) and product size data from
Configuration Management Tool (CMT) were collected manually. ITT contains
detailed information such as issue status, issue created date, issue updated date,
issue reproducibility, which are basically related to Issue Management Process.
Since the aim of the study was to analyze defect prediction process, we extracted
the data which belonged to “Defects” detected rather than “Changes” implemented
in software. Other process metrics such as project phase when the issue was
detected, and the test type in which the issue was detected were collected
manually. The product metrics such as product version size and complexity,
however, were obtained indirectly from the tool. We say “indirectly” because
these metrics were calculated with LocMetrics tool [12], and related data was
elicited from the information recorded in the tool by using the product version
where the issue was detected.

After identifying metrics and gathering metric data, metric usability analysis for
each base metric was performed to determine if the metric was suitable and its
data was sufficient for our study. This analysis was carried out by using an asset
called Metric Usability Questionnaire (MUQ) as shown in Table 2. It is an asset
that was defined by one of the authors and has been utilized in more than 10 case
studies to evaluate the usability of metrics and data for quantitative software
management [14]. The MUQ was filled for each base metric, and it was seen that
selected metrics were only “partially usable” for the analysis.

Table 3 Metric Descriptions

Metrics Metric Description
Measurement
Scale

Defect Open
Duration

The time starting with the creation of the defect and finishing with the closure of the
defect. Calculated by the difference of defect closed date and defect created date.
Unit is number of days.

Absolute

Source
Component

The component name in which the defect detected. Component name can be
component-A, component-B, component-C, component-D or component-E.
Recorded by the Issue Tracking Tool automatically when the tester enters the defect
info.

Nominal

Created Date
The date when the defect is detected. Filled by the Issue Tracking Tool
automatically when the tester records the defect.

Interval

Closed Date
The date when the defect is closed. Filled by the Issue Tracking Tool automatically
when the project manager changes the status of the defect as "Closed".

Interval

Test Type
The name of test type during which the defect is detected. Entered by tester into the
Issue Tracking Tool.

Nominal

Product Version
The version of the software product in which the defect is detected. Entered by
tester into the Issue Tracking Tool.

Ordinal

SLOC (Source
Lines of Code)

The size of the product version where the defect is detected. Collected from
Configuration Management Tool by using LocMetrics tool.

Absolute

Complexity
The McCabe complexity of the product version where the defect is detected.
Collected from Configuration Management Tool by using LocMetrics tool.

Absolute

Reproducibility
The repeatability of the defect detected. Entered by tester into the Issue Tracking
Tool.

Nominal

Project Phase
The project phase where the defect is detected. Collected manually by domain
expert.

Nominal

The descriptions of defect and product metrics specified in the GQM table (in

Table 2) are given in Table 3. The data for these metrics extracted from ITT and
CMT were gathered in an Excel sheet. “Defect open duration” metric was
calculated by subtracting “created date” from “closed date” during data cleaning
and preparation phase.

How Process Enactment Data Affects Product Defectiveness Prediction 157

To collect process enactment data, Process Execution Record (PER) shown in
Figure 2 was utilized. This is an asset to capture internal process attributes such as
inputs, activities, outputs, roles, and tools and techniques taking place during
process enactment [15]. A PER was filled retrospectively for each defect recorded
in the ITT with defect management process professionals. At the end of process
enactment data collection phase, we had process enactment data for each one of
the 296 defects detected during software qualification tests performed in the scope
of the software project.

Fig. 2 Process Execution Record

Process Similarity Matrix (PSM) given in Table 4 is another asset which was
organized as a spreadsheet in Excel file and used to gather process attribute values
for all process enactments [15]. This matrix enables one to see the similarities and
differences in process enactments at a glance, and this information is valuable to
cluster process executions prior to data analysis or to derive causal relationships
while interpreting data analysis results. Process attributes specified in PERs were
placed vertically and process enactments (regarding the management of every
defect recorded in ITT) were placed horizontally in this matrix. Each cell in the
PSM was filled by entering either “1” or “0” depending on weather the process
attribute was applicable for regarding process execution or not. After the PSM is
completed, the differences in columns were examined and the clustering of
process enactments was performed manually. Prior to this, the data collected by
the PSM was reviewed and similar colons were removed to prevent the usage of
redundant data in the analysis. We observed that dmA1, dmA5, dmR1, dmR3, and
dmR5 displayed the same patterns. We kept only dmR3 from these six attributes
as the representative. We also observed that dmI1 and dmI2 did not differ in
values among the executions, and we did not include dmI2 in our analyses.

158 D. Aslan, A. Tarhan, and ve Onur Demirörs

Table 4 Process Similarity Matrix

 Process Attributes

1.
1

<I
np

ut
 1

>

1.
2

<I
np

ut
 2

>

2.
1

<O
ut

pu
t

1>

3.
1

<A
ct

iv
it

y
1>

3.
2

<A
ct

iv
it

y
2>

3.
3

<A
ct

iv
it

y
3>

3.
4

<A
ct

iv
it

y
4>

3.
5

<A
ct

iv
it

y
5>

4.
1

<R
ol

e
1>

4.
2

<R
ol

e
2>

4.
3

<R
ol

e
3>

4.
4

<R
ol

e
4>

4.
5

<R
ol

e
5>

5.
1

<T
oo

ls
 a

nd
 T

ec
hn

iq
ue

s
1>

5.
2

<T
oo

ls
 a

nd
 T

ec
hn

iq
ue

s
2>

5.
3

<T
oo

ls
 a

nd
 T

ec
hn

iq
ue

s
3>

Process
Executi
ons

Defe
ct
No dm

I1

dm
I2

dm
O

1

dm
A

1

dm
A

2

dm
A

3

dm
A

4

dm
A

5

dm
R

1

dm
R

2

dm
R

3

dm
R

4

dm
R

5

dm
T

1

dm
T

2

dm
T

3

PE1 1 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1
PE2 2 1 0 0 1 1 0 0 1 1 0 1 0 1 1 1 1
PE3 3 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1
PE4 4 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1
PE5 5 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1
PE6 6 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1
PE7 7 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1
PE8 8 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1
PE9 9 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1
PE10 10 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1
PE11 11 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1
PE12 12 1 0 0 1 0 0 0 1 1 0 1 0 1 1 1 1
PE13 13 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1
PE14 14 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1
… …

Table 5 Process Clusters and Process Attribute Patterns

Process
Attributes
Pattern
(PAP)

2.
1

<O
ut

pu
t

1>

dm
O

1

3.
2

<A
ct

iv
it

y
2>

dm

A
2

3.
3

<A
ct

iv
it

y
3>

dm

A
3

3.
4

<A
ct

iv
it

y
4>

dm

A
4

4.
2

<R
ol

e
2>

dm

R
2

4.
3

<R
ol

e
3>

dm

R
3

4.
4

<R
ol

e
4>

dm

R
4

Cluster
Name c0

PAP1 1 1 0 1 1 1 0
PAP2 1 1 1 1 1 1 0
Cluster
Name c1

PAP1 1 1 0 1 1 0 1
PAP2 1 1 1 1 1 0 1
PAP3 1 1 1 1 0 0 1
PAP4 0 0 1 1 1 0 1
Cluster
Name

c2

PAP1 1 1 0 1 0 1 0

How Process Enactment Data Affects Product Defectiveness Prediction 159

Table 5 (continued)

Fig. 3 Clustered Data Files

As the next step we combined defect, product, and process enactment data in an

Excel file, and clustered the data by using K-Means and Euclidean Distance
clustering techniques. We obtained seven clusters including one or more Process
Attribute Patterns (PAPs) as shown in Table 5. The characteristics of the clusters
shown in the table are described below in terms of process attributes.

Cluster 0 included process executions through which an updated product
version was obtained as output, defect resolution and defect verification activities
were implemented, and configuration manager and developer performed their
roles. However, modeling and graphics designer did not perform his role.

Cluster 1 included process executions through which defect verification activity
was implemented, and modeling and graphics designer performed his role.
However, developer did not perform his role.

Cluster 2 included process executions through which an updated product
version was obtained as output, defect resolution and defect verification activities
were implemented, and developer performed his role. However, configuration
manager, and modeling and graphics designer did not perform their roles.

Cluster 3 included process executions through which an updated product
version was obtained as output, defect resolution and defect verification activities
were implemented, and configuration manager performed his role. However
developer, and modeling and graphics designer did not perform their roles.

Cluster
Name c3

PAP1 1 1 0 1 1 0 0
Cluster
Name c4

PAP1 1 1 1 1 1 0 0
Cluster
Name

c5

PAP1 0 1 0 0 0 1 0

Cluster
Name

c6

PAP1 0 0 0 0 0 1 0
PAP2 0 0 1 0 0 1 0

160 D. Aslan, A. Tarhan, and ve Onur Demirörs

Cluster 4 included process executions through which an updated product
version was obtained as output; defect resolution, not verified for second time and
defect verification activities were implemented; and configuration manager
performed his role. However developer, and modeling and graphics designer did
not perform their roles.

Cluster 5 included process executions through which defect resolution activity
was implemented, and developer performed his role. However configuration
manager, and modeling and graphics designer did not perform their roles.

Cluster 6 included process executions through which no activities documented
in PERs were implemented, and only developer performed his role. In only one of
296 executions, the “not verified for second time activity” was implemented. It
means that in one defect management process execution, the defect in resolved
status could not be verified during second test repetition by the test specialist.

We separated the data in the Excel file into separate files in accordance to the
clusters identified, and prepared a separate .csv file for each cluster accordingly.
At the end of the clustering, we obtained the files shown in Figure 3. Each of these
files included defect, product, and process enactment date of the related defects.

WEKA tool [14] was used to conduct data analyses. The main purpose of using
Weka is to discover patterns between process enactment and defect open duration
metric. We applied Multilayer Perceptron, Bayesian Belief Networks, Logistic
Regression, and C4.5 Decision Tree (J48) machine learning techniques [21] for
each cluster separately by keeping “defect open duration” metric as class attribute
(dependent variable). To define this quantitative variable as class attribute, it was
transformed to nominal scale by using Weka discretization method.

4 Analysis Results

To analyze our GQM goal, we compared the results of two different data sets. The
first data set included only defect and product data without process enactment
data. The second data set included both defect and product data with process
enactment data.

According to the analysis of first data set, the following results were obtained.
The set included 296 data points which were sufficient to obtain confident
prediction results. Multilayer perceptron gave the best performance values
compared with other machine learning approaches. Other performance values of
the models are provided in Table 6.

• Multilayer perceptron machine learning technique validated with 10-folds gave
95% correctly classified instances.

• Bayesian networks machine learning technique validated with 10-folds gave
85% correctly classified instances.

• Logistic machine learning technique validated with 10-folds gave 82%
correctly classified instances.

• J48 decision tree machine learning technique validated with 10-folds gave 92%
correctly classified instances.

How Process Enactment Data Affects Product Defectiveness Prediction 161

According to the analysis of the second data set, the following results were
obtained. Correctly classification performance values of the generated models for
cluster 0 are given below. The other performance values of the models and the
clusters are provided in Table-6. Bayesian networks gave the best performance
values compared with other machine learning approaches.

• Multilayer perceptron machine learning technique validated with 10-folds gave
96% correctly classified instances.

• Bayesian networks machine learning technique validated with 10-folds gave
97% correctly classified instances.

• Logistic machine learning technique validated with 10-folds gave 95%
correctly classified instances.

• J48 decision tree machine learning technique validated with 10-folds gave 96%
correctly classified instances.

Table 6 shows the analysis results of the comparative data sets. Since clusters 3, 4
and 5 included low number of data, we could not apply machine learning
techniques to them. In the overall, we observed that the analysis results of
clustered data sets (clusters 0 and 2) with process enactment were more accurate
than the data set without process enactment. When looked into the details of Table
6, we had the results as described in the following paragraphs.

 The average of correctly classified instances values of the methods applied to
cluster 0 data was 95.98%. On the other hand the average of correctly classified
instances values of the methods applied to data without process enactment was
88.51%. The correctly classified rate was 7.47% higher in cluster 0 than the result
of the data set that did not include process enactment. The average of root mean
squared error values of the methods applied to cluster 0 data was 11.73%. On the
other hand the average of root mean squared error values of the methods applied
to data without process enactment was 19.29%. The root mean squared error was
7.55% lower in cluster 0 than the result of the data set that did not include process
enactment.

 The average of correctly classified instances values of the methods applied to
cluster 1 data was 83.10%. The correctly classified rate was 5.41% lower in
cluster 1 than the result of the data set that did not include process enactment. The
average of root mean squared error values of the methods applied to cluster 1 data
was 25.09%. The root mean squared error was 5.81% higher in cluster 1 than the
result of the data set that did not include process enactment.

 The average of correctly classified instances values of the methods applied to
cluster 2 data was 90.00%. The correctly classified rate was 1.49% higher in
cluster 2 than the result of the data set that did not include process enactment. The
average of root mean squared error values of the methods applied to cluster 2 data
was 23.43%. The root mean squared error was 4.14% higher in cluster 2 than the
result of the data set that did not include process enactment.

 The average of correctly classified instances values of the methods applied to
cluster 6 data was 100.00%. The correctly classified rate was 11.49% higher in

162 D. Aslan, A. Tarhan, and ve Onur Demirörs

cluster 6 than the result of the data set that do not include process enactment. The
average of root mean squared error values of the methods applied to cluster 6 data
was 1.80%. The root mean squared error was 17.49% lower in cluster 6 than the
result of the data set that does not include process enactment.

 The analysis results received from cluster 1 are not promising. Because the
average of correctly classified instances value is lower than the result value of the
data set that does not include process enactment data. However if we divide it into
further clusters (PAPs 1-4 in c1) shown in Table 5, the prediction performance
might be improved. In other words, we consider that the reason of this situation is
the noise in various Process Attribute Patterns.

Table 6 Results from Comparative Data Sets

Number of
instances
(data points)

Data set Method
Correctly
Classified
Instances

Incorrectly
Classified
Instances

Kappa
statistic

Mean
absolute
error

Root mean
squared
error

Relative
absolute
error

112
Cluster 0 Data
(With Process
Enactment)

Multilayer Perceptron 96.43% 3.57% 94.86% 1.70% 10.37% 6.06%
Bayesnet 97.32% 2.68% 96.16% 1.40% 10.45% 4.98%
Logistic 94.64% 5.36% 92.28% 2.14% 14.64% 7.63%
J48 95.54% 4.46% 93.55% 2.15% 11.47% 7.64%

71
Cluster 1 Data
(With Process
Enactment)

Multilayer Perceptron 84.51% 15.49% 79.06% 7.35% 24.39% 61.41%
Bayesnet 80.28% 19.72% 73.61% 8.31% 27.57% 69.87%
Logistic 81.69% 18.31% 75.58% 7.19% 26.46% 23.84%
J48 85.92% 14.08% 80.95% 7.41% 21.94% 24.57%

70
Cluster 2 Data
(With Process
Enactment)

Multilayer Perceptron 95.71% 4.29% 92.13% 3.61% 14.75% 9.76%

Bayesnet 91.43% 8.57% 83.48% 5.53% 21.94% 14.96%
Logistic 90.00% 10.00% 81.04% 6.54% 25.37% 17.70%
J48 82.86% 17.14% 64.87% 17.21% 31.64% 46.55%

296
Data Without
Process
Enactment

Multilayer Perceptron 94.93% 5.07% 93.38% 2.40% 13.14% 7.80%
Bayesnet 85.14% 14.86% 80.54% 5.79% 20.81% 18.86%
Logistic 82.43% 17.57% 76.90% 7.00% 26.16% 22.7%
J48 91.55% 8.45% 88.87% 5.63% 17.03% 18.35%

5 Lessons Learned

GQM provided a systematic way to direct the analysis and to determine the data
that would be collected. MUQ supported data cleansing phase, and enabled us to
assess and characterize the data. PER and PSM helped us to collect process
enactment data since it was not straightforward to gather it from tools.

The metrics utilized in our study were selected by applying the GQM approach
and characterized by using MUQs. It was observed that the metrics are “partially
usable” rather than being “fully usable” for the analysis. This was due to the
weakness of “data dependability” attribute of the MUQ, more specifically to the
lack of feedback related to metric data collection and usage within the project and
the company. Actually, this is one of the essential problems that the organizations
face with while practicing measurement and analysis. The weakness of this
attribute might have caused the noise in the data and have increased the error rates
in predictions; however, these proposals need to be validated by additional studies.
The weakness of data dependability attribute was reported to company
management, and initiating a small scale measurement program was
recommended as the first step.

How Process Enactment Data Affects Product Defectiveness Prediction 163

 The module name in which the defect is detected needs to be stored in Issue
Tracking Tool (ITT). Since it had not been stored there, this data was collected
manually by the developer. SLOC and complexity metrics should be collected on
product version basis. Since these metrics had been collected on monthly basis,
the product version information mapped to these product metrics was not
available. This data was collected manually by using Version Description List
Document.

 It was observed that the history data stored by ITT was beneficial to collect
process enactment data. We collected process enactment data by filling PERs
retrospectively with process professionals to identify process attributes. These
process attributes can be identified easier by reviewing history data in tool
database since all process activity alternatives are stored with their dates and the
personnel who perform the activity. For example, when any personnel updates the
defect status as “verified”, the tool constitutes a record that “Defect status was
updated by <personnel name> on <date>.” in database. This process history data
was elicited manually and used to fill PSM for each defect record, in other words,
for each process execution. Elicitation of this data from the tool cost 40 man-
hours.

 Since machine learning analysis techniques are pattern oriented measurement
methods, the raw defect data alone cannot be sufficient either for defect prediction
or bringing recommendations for product and process improvement. Therefore, if
process enactment data is gathered and added to defect data, the data can be
clustered according to similar process attributes and machine learning techniques
can give more accurate results when the researchers have sufficient data points.

 The factors that have an impact on software product defectiveness can be
considered in two categories [15]: (outer) environmental factors and (inner)
process execution. Process execution means the applied process in the company
while developing the product (e.g., development life cycle). Environmental factors
mean the factors which affect product defectiveness but cannot be controlled by
human beings at the time of process execution (e.g., developer skills). As a
constraint in our study, we included only the (inner) process attributes.

We could not obtain successful results for each cluster when we compared the
data sets with process enactment data to those without it. We explain the insights
below.

• For cluster 1 we could not obtain promising results due to the the noise in
cluster patterns that was shown in Table 5. To avoid this noise and achieve
more accurate prediction for cluster 1, one more clustering can be performed
within cluster-1 data. This clustering operation might also show one or more
process attribute patterns.

• For cluster 2, although average correctly classified instances was high, we
obtained a high average error value. The reason of this might be the low error
rate in J48 (C4.5) decision tree method. This machine learning method needs
more data points for a more accurate prediction than the other methods.

164 D. Aslan, A. Tarhan, and ve Onur Demirörs

• The questions that we wanted to answer in this study were “Does process
enactment help software defectiveness prediction?” and “How much impact has
process enactment on defect open duration prediction?”. As we observed from
the results of cluster 0 and cluster 2 given in Section IV, process enactment
improves software defectiveness prediction performance up to 12% (with at
least 2%) if you have sufficient data points and homogeneous clusters (which
are not noisy with PAPs).

As the last point, the process clusters obtained by using K-Means and Euclidean
Distance clustering techniques indicated the variations in process enactments and
therefore might have arisen important issues for process improvement (e.g., the
reasons of variations). In this study, we did not focus on identifying the
opportunities for process improvement specifically (unless they arose naturally),
and left them out of the discussion since our aim was to investigate the effects of
process enactment data on defectiveness prediction. However, clustering of
process attribute values by machine learning methods might also serve this
specific purpose.

6 Conclusion and Future Work

This study has been carried out to introduce a methodology to use process
enactment data for defect prediction and analyze the effect of process enactment
on defect prediction. We have practiced a prediction model by combined
application of GQM, MUQ, PER, PSM, process attribute clustering, and machine
learning techniques. We investigated the validity of our model by comparing error
values of two different datasets. The first data set contained only defect and
product data. The second data set contained defect, product, and process
enactment data together. We had a number of supporting as well as threatening
results. Despite the threats, since predicting defects in the development life-cycle
is crucial to delivering quality products, using qualitative and quantitative
techniques together for defect prediction deserves attention as a research topic.

 The methodology can be used in other domains as well, since the only
requirements for machine learning analysis are process enactment data, result
metrics and one dependable variable. In any business area you can find this
information and you apply the method offered in this study.

 This study was performed with the data of only one project of a single
company. Therefore, in some data clusters the number of data points was not
sufficient for machine learning classification techniques. Similar studies with
several similar projects’ data can be performed in the future to have a more solid
base for the validation. As another future work, the outer process factors can be
investigated and different collection methods might be discovered for them.
Automatic data collection will reduce data collection efforts and increase the
motivation to use the prediction models.

How Process Enactment Data Affects Product Defectiveness Prediction 165

Acknowledgement. We thank to Simsoft team, especially Aydın Okutanoğlu, Veysi İşler,
and Şafak Burak Çevikbaş for allowing to use company data in our research study and
sharing of their expert views.

References

1. Koru, A.G., Liu, H.: Building Effective Defect-Prediction Models in Practice. IEEE
Software 22(6) (November/December 2005)

2. Lee, T., Nam, J., Han, D., Kim, S., In, H.P.: Micro Interaction Metrics for Defect
Prediction. In: ESEC/FSE 2011 Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering (2011)

3. Sivrioğlu, D., Tarhan, A.: Defectiveness Analysis According To Software Module
Features: A Case Study (Yazılım Modül Özelliklerine Göre Hatalılık Analizi: Bir
Durum Çalışması) Original is Turkish (February 2012)

4. Dhiauddin, M.: Defect Prediction Model For Testing Phase. Master Thesis, Universiti
Teknologi Malaysia, Faculty of Computer Science and Information System (May
2009)

5. Zeng, H., Rine, D.: Estimation of Software Defects Fix Effort Using Neural Networks.
In: COMPSAC 2004 Proceedings of the 28th Annual International Computer Software
and Applications Conference - Workshops and Fast Abstracts, USA, vol. 02, pp. 20–
21 (2004)

6. Weiss, C., Premraj, R., Zimmermann, T., Zeller, A.: How Long will it Take to Fix This
Bug? In: MSR 2007 Proceedings of the Fourth International Workshop on Mining
Software Repositories, USA, p. 1 (2007)

7. Hassouna, A., Tahvildari, T.: An Effort Prediction Framework for Software Defect
Correction. Information and Software Technology 52, 197–209 (2010)

8. Hewett, R., Kijsanayothin, P.: On Modeling Software Defect Repair Time. Empir.
Software Eng. 14, 165–186 (2008, 2009)

9. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research in
software engineering. Empirical Software Eng. 14, 131–164 (2009)

10. Florac, A.W., Park, R.E., Carleton, A.D.: Practical Software Measurement: Measuring
for Process Management and Improvement. Guidebook: CMU/SEI-97-HB-003 (1997)

11. Çatal, Ç., Diri, B.: A Systematic Review of Software Fault Prediction Studies. Expert
Systems with Applications 36, 7346–7354 (2009)

12. http://www.locmetrics.com/ (last access date: April 11, 2012)
13. Basili, V.R., Caldiera, G., Rombach, H.D.: Goal Question Metric Paradigm. In:

Encyclopedia of Software Engineering – 2 Volume Set (1994) ISBN#1-54004-8
14. http://www.cs.waikato.ac.nz/~ml/weka/ (last access date: April 11,

2012)
15. Jalote, P., Dinesh, K., Raghavan, S., Bhashyam, R., Ramakrishnan, M.: Quantitative

Quality Management through Defect Prediction and Statistical Process Control
16. Wahyudin, D., Schatten, A., Winkler, D., Tjoa, A.M., Biffl, S.: Defect Prediction using

Combined Product and Project Metrics a Case Study from the Open Source “Apache”
MyFaces Project Family. In: 34th Euromicro Conference on Software Engineering and
Advanced Applications, SEAA 2008, September 3-5, pp. 207–215 (2008)

17. Fenton, N., Krause, M., Neil, P.: A Probabilistic Model for Software Defect Prediction.
For submission to IEEE Transactions in Software Engineering

166 D. Aslan, A. Tarhan, and ve Onur Demirörs

18. Tarhan, A., Demirörs, O.: Apply Quantitative Management Now. IEEE
Software 29(3), 77–85 (2012), doi:10.1109/MS.2011.91

19. Tarhan, A., Demirörs, O.: Investigating the Effect of Variations in Test Development
Process: A Case from a Safety-Critical System. Software Quality Journal,
doi:10.1007/s11219-011-9129-8

20. Boetticher, G.D.: Nearest Neighbor Sampling for Better Defect Prediction
21. Witten, I.H., Frank, E.: Data Mining Practical Machine Learning Tools and

Techniques, 2nd edn. Elsevier (2005)
22. CMMI Product Team, CMMI for Development, Version 1.3, Technical Report, SEI

(2010)
23. Sivrioğlu, D.: A Method for Product Defectiveness Prediction with Process Enactment

Data in a Small Software Organization. Master Thesis, Middle East Technical
University, Informatics Institute (June 2012)

Modeling Business and Requirements
Relationships for Architectural Pattern Selection

Javier Berrocal, José Garcı́a-Alonso, and Juan Manuel Murillo

Abstract. In analysis of the business and the system requirements, the identified
elements are modeled using notations that fully describe their characteristics. Nev-
ertheless, implicit relationships often exist between different types of elements that
subsequently have to be identified and explicitly represented during the design of
the system. This requires an in-depth analysis of the generated models on behalf of
the architect in order to interpret their content. Misunderstandings that take place
during this stage can lead to an incorrect design and difficult compliance with the
business goals. Here we present a series of profiles that explicitly represent these
relationships during the initial development phases, and which are derived to the
system design. They are reusable by the architect, thereby decreasing the risk of
their misinterpretation.

1 Introduction

The initial phases of software product development require a careful analysis of the
business to which the application is addressed. In particular, the analysis will iden-
tify information such as the goals and processes of the business. This information
will then form the basis on which to identify and specify the requirements, both
functional and non-functional, of the system to develop [15], [8], [25].

The information generated from such analyses is detailed in specific artefacts.
For example, business goals are documented in a Goals Model, and the business pro-
cesses in a Business Processes Model [26]. The same applies to the system require-
ments [9]. The functional requirements are documented in the Use Cases Model
and the non-functional in the Supplementary Specification Document [20]. In this
way the characteristics of each type of information are detailed in a specific artefact
without interfering with other elements.

Javier Berrocal · José Garcı́a-Alonso · Juan Manuel Murillo
University Of Extremadura, Avda. de la Universidad s/n, 10003, Cáceres, Spain
e-mail: {jberolm,jgaralo,juanmamu}@unex.es

R. Lee (Ed.): SERA, SCI 496, pp. 167–181.
DOI: 10.1007/978-3-319-00948-3_11 c© Springer International Publishing Switzerland 2014

168 J. Berrocal, J. Garcı́a-Alonso, and J.M. Murillo

Later, at the system design phase, all this information must be analysed and con-
solidated. The architect must know how non-functional requirements influence the
functional ones in order to select the architectural tactics and patterns that best fa-
cilitate the fulfilment of both requirements.

The consolidation of this information is complicated and costly. Firstly, the ar-
chitect has to know the content of every artefact and, secondly, he or she has to
identify the relationships between the elements. Because each document is focused
on specific types of elements, the relationships between them are usually detailed
implicitly, leaving the architect the task of discovering and inferring the network of
relationships. Thus for example, in the Business Processes Model the Goals that im-
pose restrictions or limitations that affect some of the modeled tasks are not detailed.
Instead, it is the architect who, depending on his or her experience and ability, has
to detect this type of information.

There have been various studies aimed at making these relationships explicit.
In [1], the authors link business goals with business processes in order to iden-
tify areas of the business processes that should be improved to meet these needs.
In [21], the authors define how to model business operational restrictions in busi-
ness processes in order to define controls to handle these restrictions. In the present
work, we examine how to document these relationships so that they can be reused
in subsequent phases of development.

In particular, we define how to make explicit the relationships both between el-
ements of the business and between the requirements, the objective being that the
architect can subsequently use them for the design of the system. To that end, we
have defined an extension for BPMN 2.0 [7], to support the modeling of relation-
ships between business elements, and a set of extension for the UML 2 Use Case,
Activity and Sequence Diagrams [27], to support the modeling of relationships be-
tween functional and non-functional requirements. Modeling these relations, the
chances of their misinterpretation is reduced. These annotations are also used to
automatically preselect the architectural patterns that can be applied to meet the re-
quirements. This is possible thanks to the definition of a set of rules which, when
applied to the models and annotations, facilitate this selection. The result is to nar-
row down the solution space that the architect has to explore.

The paper is organized as follows. Section 2 presents the motivation of the work,
section 3 describes the process for documenting the relationships, section 4 reviews
some related work, and section 5 presents the conclusions and future works.

2 Motivation

Developing a system to provide maximum value to a firm requires a thorough
analysis of its business. Some methodological approaches, such as Ullah [26] or
BMM [6], detail how to perform and document this analysis. They define, for ex-
ample, how business goals are modeled using Goals, and how business processes
are documented with BPMN notation [7].

Modeling Business and Requirements Relationships 169

Fig. 1 Main activities of the design process

Performing this analysis in the case of an online shop, for instance, one could
identify, among other things, the business goals “facilitate the implementation of
any changes in the workflow or in the rules of the business”, and “transmit quickness
by checking whether an order is correct in less than 0.7 seconds”. All these objec-
tives are documented in the Business Goals artefact, as shown in figure 1. Similarly,
with the analysis of the business, the business processes are identified and modeled,
documenting them in the Business Processes artefact. Figure 2 shows part of the
business process to handle orders.

As each element is documented in artefacts and with specific annotations, all of
its features are perfectly detailed and encapsulated. This does not, however, facili-
tate the modeling of the relationships between elements of different types, making
it difficult to document the influence of one element on another. Thus, for the online
shop of figure 2, before a customer validates his order, he has to be given an indica-
tion of possible mistakes together with a series of suggestions of products that might
interest him. The performance goal is to convey quickness during the validation of
the order. With an initial analysis of this goal and the business process, one could
identify that only the task “Check Order” has to meet that goal. The identification
of this relationship is easy, nonetheless, for the user to really perceive this rapid-
ity, the task “Search for Additional Products” must also satisfy that objective. The
identification of this second relationship requires a deeper analysis of the business.
During the business analysis phase, the identification of these relationships may be
relatively simple. However, if they are kept undocumented, their identification at
later stages of development, such as during the design of the architecture, can be
very expensive and dependent on the experience of the architect.

In [21], the authors define an extension of BPMN to annotate the tasks of business
processes with operational restrictions. With this extension, in processing orders,
the tasks “Check Order” and “Search for Additional Products” would be annotated
with Operating Conditions indicating that the response time should be less than
0.7 seconds. To get a complete picture of the restrictions, it would be desirable

170 J. Berrocal, J. Garcı́a-Alonso, and J.M. Murillo

Fig. 2 Business process to handle orders in an online shop

to also model the conditions of the non-operational objectives. Thus, in the order
business process, one could also model which process tasks are constrained by the
objective “facilitate the implementation of new business rules”.

As shown in figure 1, one defines from the business information both the non-
functional and functional requirements. Thus, from the online shop’s business goals,
two non-functional requirements are defined: “the system has to be easy to change”
and “the response time in checking orders has to be shorter than 0.7 seconds”. These
requirements are detailed in the Supplementary Specification Document. Similarly,
from the business process of figure 2, one identifies such functionalities as “mak-
ing orders” or “checking the validity of each order”. These functionalities are first
detailed with a Use Cases Diagram in the Vision Document, as figure 3 shows. Sub-
sequently, the use cases are specified in the artefact Use Cases Model with sequence
and activity diagrams.

Again, both types of requirement are detailed with different diagrams and in
specific artefacts that allow their features to be better detailed, but making hard
to document the relationships between them. Thus, in the online shop’s Use Cases
Diagram, figure 3, one can not specify that the “Check Order” use case is related
to a non-functional requirement that constrains the time in which the checking has
to be done. These are relationships that have to be taken into account for such ac-
tivities as the system design, so that they will have to be identified by the architect.
Correct identification of these relationships is highly dependent on the architect’s
experience in correctly interpreting both requirements.

In [13], the authors add notes to the use case diagrams, detailing in natural lan-
guage the non-functional requirements that each use case must satisfy. For example,
in the online shop’s use case diagram, a note would be linked to the “Check Order”

Modeling Business and Requirements Relationships 171

Fig. 3 Use cases extracted from the order process

use case, indicating that some of its activities must be executed in less than 0.7 sec-
onds. This information will thus provide invaluable documentation for the architect.
Nonetheless, for it to have even greater value, it would be desirable if it could be
processed by tools that guide the architect in the design of the system.

The detailed requirements are then analysed during the system design process.
To decide which pattern to apply, the architect must know perfectly the system’s
requirements and their relationships. If the latter are not fully specified, they will
have to be identified by means of an in-depth analysis of the artefacts. For the online
shop, the architect should analyse the performance non-functional requirement and
all the use cases in order to identify those relationships. Whereas an initial analysis
will show that the “Check Order” use case must satisfy that requirement, to identify
the “Additional Products” use case as also having to satisfy it will need a more
detailed analysis of both the requirements and the business – a laborious task that
requires great experience.

Any misidentification of relationships may cause an incorrect pattern to be cho-
sen, which would make it difficult to fulfil the business goals. For the online shop,
once it has been identified that the entire system must be maintainable and that
only two use cases need to take performance into account, the architect may decide
to apply the Layer pattern together with some tactic to achieve the desired perfor-
mance [16]. If these relationships are identified incorrectly, it may be decided to
apply a pattern that is oriented more to performance but that does not pay special
attention to maintainability, thus hindering the fulfilment of this objective.

Works such as [3] and [19] facilitate the choice of architectural patterns in doc-
umenting the different patterns and how they affect each requirement and the rela-
tionships between requirements. In this way, the architect is guided in the selection
of the most suitable patterns. For these techniques to be fully effective, the architect
needs to have a clear picture of the relationships between system requirements. The
present work focuses on making these relationships explicit so that the architect can
identify them clearly and unambiguously.

To document the relationships between the elements of the business, we define
an extension for the Business Process Modeling Notation (BPMN 2.0). In addition,
to model the relationships between requirements, we define profiles for the UML 2
Use Case, Activity, and Sequence Diagrams. Finally, we show how the architect

172 J. Berrocal, J. Garcı́a-Alonso, and J.M. Murillo

can use these requirement relationships together with a set of rules to narrow down
the possible patterns which may be used for the system design. As a result, there is
less chance of misinterpreting the relationships, and the architect’s task in selecting
patterns is made easier.

3 Documenting the Relationships

In order to guide the specification of relationships during the early stages of devel-
opment, we have added two new activities to the design process of figure 1. Further-
more, another activity has been added to guide the architect in the analysis of those
relationships. These activities, together with their supporting tools, are:

• Model the context information. In this activity, the business processes are anno-
tated with information on the relationships between process tasks and different
elements of the business. An extension of BPMN 2.0 notation is used to be able
to model this information.

• Define the requirement relationships. In this activity, the relationships between
the system requirements are specified. To this end, we have defined a set of pro-
files that allow the relationships to be modeled in UML diagrams.

• Analyse the requirement relationships. During this activity, the requirements and
their relationships are analysed with the objective of delimiting the possible pat-
terns that can be applied. We have defined a set of rules to facilitate this task.
These rules, together with the annotated models, are automatically applied by a
tool.

Figure 4 shows highlighted the activities added to the design process illustrated in
figure 1, together with the artefacts that are modified as a result. The following
subsections describe each of these activities and the corresponding profiles.

Fig. 4 Design process indicating the new tasks and modified artefacts

Modeling Business and Requirements Relationships 173

3.1 Model the Context Information

In analysing the organization’s business, one identifies and models information
about its objectives, needs, and processes. The objective of this activity is to de-
tail the relationships between these elements. The relationships are annotated on the
business processes modeled with BPMN. These models are then used as a basis on
which to model the relationships since BPMN provides a number of communication
facilities [7] that are reused to facilitate discussion about the relationships.

To model these relationships, the BPMN notation was extended with a profile.
This extension defines the Quality Attribute, Legacy System, and Business Use Case
stereotypes.

A new element is needed to model the relationships between business goals and
business processes so that they can be documented. This element is the Quality
Attribute stereotype, which allows one to group tasks of the processes that must
meet certain of the business’s quality objectives or requirements. In figure 5, the
virtual shop process has been annotated with three business goal relationships. The
first specifies that the entire business process is related to the goal of ease of change.
The second and third indicate that the “Check Order” and “Search for Additional
Products” tasks are constrained by the objective which limits the time in which they
must be completed. These annotations make it easy for the architect to see which of
the process’s specific tasks must fulfil each goal.

Fig. 5 The order-handling process annotated using the defined profile

174 J. Berrocal, J. Garcı́a-Alonso, and J.M. Murillo

It is also necessary to know whether certain tasks, even though are modeled in a
lane because a certain role is responsible of them, are already being supported by a
legacy system. The Legacy System (LS) stereotype allows such tasks to be grouped.
The resulting groupings are then used to derive the relationships between the new
system and the legacy systems. In figure 5 for instance, this stereotype is used to
indicate that the “Restore Stocks” sub-process is already being supported by the
“Stock Control” legacy system. In this way, one can identify when the new system
should invoke the legacy system to restore stock.

Finally, when business processes are used to identify the functionalities of a sys-
tem, natively there exists no element to show an approximation of the functionali-
ties which will support the process and each of its task. The “Business Use Case”
(BUC)1 stereotype, which is based on the Cockburn’s Coffee-break rule [10] and
on the Step concept defined in [12], allows process tasks to be grouped to repre-
sent this information. These groupings, in addition to facilitate the derivation of use
cases, are reused in the “Define Requirement Relationships” activity to derive the
relationships between requirements. Five Business Use Cases are modeled in the on-
line shop’s business process. The first BUC, for example, groups the tasks the user
performs to place the order. In this way, the business expert and the requirements
engineer can easily see and discuss the business tasks covered by each functionality.

By means of the above stereotypes, the engineer can reflect the relationships
between different elements of the business, documenting them and facilitating their
consideration in future development phases. In addition, these annotations may also
be automatically dealt by tools that aid certain development activities.

3.2 Define the Requirement Relationships

The functional and non-functional requirements are defined on the basis of the in-
formation modeled in the business. The functional requirements are modeled and
specified as use cases in the Vision Document and in the Use Cases Model, and the
non-functional requirements in the Supplementary Specification Document.

The relationships between the functional and non-functional requirements are
documented and modeled in this activity. These relationships are documented at two
levels of granularity. At the first level, the non-functional requirements that must be
satisfied by each use case are detailed. At the second level, which of each use case’s
tasks or actions must satisfy each restriction are detailed.

To model the relationship between non-functional requirements and use cases,
we have defined a profile for the UML 2 Use Case Diagrams. This profile defines
stereotypes that extend the “Extension Points” to enable these relationships to be
modeled. It was decided to extend this metaclass because it maintains the readability
of the diagram when a large number of relationships are modeled.

1 The term “Business Use Case” is used here, even though it is similar to the System Use
Case term [10], because it groups business tasks that should be refined in order to detail
the system tasks.

Modeling Business and Requirements Relationships 175

Fig. 6 Annotated use case diagram extracted from the online shop process

Figure 6 shows the use case diagram extracted from the information annotated
in the business process illustrated in figure 5. The diagram shows five use cases,
all annotated with the “Changeability” non-functional requirement, and the “Check
Order” and “Additional Products” use cases must also fulfil the “Time Behaviour”
requirement. Thus, the relationships between each use case and non-functional re-
quirement are easily documented and visualized. In addition, these annotations can
be reused by tools that assist development.

Besides being able to deduce these relationships manually, we have also defined
a series of patterns to guide the engineer in their identification. These patterns are
based on the information annotated in the business processes to derive the relation-
ships between requirements. For example, since the tasks covered by “BUC:Check
Order” of the online shop are annotated with the “Time Behaviour” requirement,
one of these patterns indicates that there also exists a relationship between the use
case derived from that BUC and the indicated quality requirement. In [4], one can
find more detailed information on these patterns.

In order to be able to detail at a finer granularity the relationships between use
cases and non-functional requirements, we have also defined extensions to the Ac-
tivity and Sequence Diagrams. These extensions define stereotypes that group the
actions that have to fulfil each non-functional requirement.

Fig. 7 Activity diagram of the Check Order use case

176 J. Berrocal, J. Garcı́a-Alonso, and J.M. Murillo

Figure 7 shows the activity diagram for the online shop’s “Check Order” use case.
As in the use case diagram, this diagram has two relationships annotated with non-
functional requirements. The first is that all of the use case’s actions must satisfy the
“Changeability” requirement. The second indicates that just the “Check Customer
Data, Check Products, Check Payment, and Get Suggestions” actions must satisfy
the “Time Behaviour” requirement.

The above profiles allow one to reflect the relationships between use cases and
non-functional requirements to the point of detailing exactly which actions each
non-functional requirement must satisfy. In this way, with little effort the architect
can identify and analyse that information in the system design phase, thereby reduc-
ing the risk of failure due to the misidentification of some relationship.

The stereotypes of the presented profiles were defined taking into account the
ISO/IEC 9126 quality model [18], and permitting the possibility of detailing prop-
erties for each quality requirement. One can thus apply rules to filter, search, or
reason the use cases constrained by specific non-functional requirements.

3.3 Analyse the Requirement Relationships

For designing the system, the architect should have formed a complete picture of the
requirements and how they relate to each other. This information is needed to select
the most appropriate patterns and tactics. Each pattern may affect different require-
ments positively or negatively. For example, as shown in table 1 derived from [16]
and [5], the Layer pattern affects positively the adaptability and ease of change re-
quirements, but negatively the performance requirement.

Analysing all the patterns and how they affect the non-functional requirements,
those that best facilitate the fulfilment the system requirements could be selected.
Nevertheless, whether all the pattern’s benefits, or its liabilities, are obtained largely
depends on the functionalities on which it is applied. Thus, for example, in order for
the Pipe and Filter pattern to provide the performance and maintenance benefits,
the system functionalities should be implemented to exploit the parallel processing.
Similarly, for the Layer pattern to provide the stated benefits, the system must have a
certain size. Otherwise, the complexity introduced for the separation between layers
harm instead of benefit to the system maintainability.

Table 1 Benefits and liabilities of the architectural patterns

Pattern Benefits Liabilities

Layer Security
Maintainability
Adaptability
Developed by multiple teams

Efficiency
Development
Complexity

Pipes And Filter Maintainability
Efficiency

Usability
Security
Reliability

Modeling Business and Requirements Relationships 177

In this activity, the architect analyses the relationships between functional and
non-functional requirements through the diagrams annotated with the profiles de-
tailed above. The annotated use case diagrams allow the architect to obtain a high
level vision of the use cases together with the non-functional requirements that each
of them has to fulfil. The activity diagrams give a finer grain view of which actions
have to support each non-functional requirement. This way, one can easily assess
whether the application of a pattern to a given set of use cases facilitates or hinders
the fulfilment of the annotated non-functional requirements. In addition, the archi-
tect can also evaluate whether applying the desired pattern on that set of use cases
the desired benefits are really obtained.

For the online shop for example, it is readily seen that the entire system must ful-
fil the ease of change requirement, while only the “Check Order” and “Additional
Products” use cases need to take performance into account when executing their
actions. Taking these non-functional requirements and the patterns indicated in ta-
ble 1 into account, the architect could decide to apply the Pipes and Filter pattern,
since it benefits both non-functional requirements. However, since for processing
an order there has to be interactions between the customer and the online shop, and
that most of the functionalities should be executed sequentially, this pattern does not
provide all the desired benefits. Therefore, because all the use cases must satisfy the
changeability requirement and that the system has an appropriate number of func-
tionalities, the architect may decide to apply the Layer pattern to fulfil it. Observing
the annotated diagrams, he or she is aware of which actions would be positively
affected regarding the maintainability advantage provided by the pattern, and which
would be negatively affected by the by the performance liability. Thus, to achieve
the desired performance, the application of a variant of the Layer pattern may be
evaluated, such as, for example, bypassing some of the layers as indicated in [17].
More information about this process can be found in [5].

In addition, the annotated diagrams are reused by a tool that assists the architect
in selecting patterns. This tool, first, documents the different architectural patterns
that a firm uses, together with their variants and how they affect each non-functional

Fig. 8 Fragment of the feature model documenting architecture patterns

178 J. Berrocal, J. Garcı́a-Alonso, and J.M. Murillo

requirement. Feature models [11] are used for this purpose. Figure 8 shows a frag-
ment of the feature model documenting architecture patterns. This diagram models
the common top-level architecture patterns. By examining each pattern, one can see
how it affect the functional and non-functional requirements, and its architectural
variability. Second, the tool contains a series of rules which, by evaluating the anno-
tated use cases, preselects a set of architectural patterns that might be applied, thus
assisting the architect in finally deciding on the patterns to apply. More information
about this process can be found in [14].

4 Related Work

Many studies describe techniques for relating business processes and business goals
for various purposes. In [1] for example, the authors define a process to identify, de-
compose, and model quality requirements using a goal tree. These goals are then
attached to the business process models. The resulting relationships are used to
identify areas of the processes that are candidates for improvement. Such annota-
tions could also be used, together with the methodological approach presented in
this work, to derive the relationships between the system requirements.

In [21], the authors extend BPMN with two new elements (“Operating
Condition” and “Control Case”). The former is used to annotate the processes’ op-
erating restrictions, and the latter to define control mechanisms that handle those
restrictions. This extension is used to detail the relationships between business pro-
cesses and operational goals. Again, this extension could be used together with the
present proposals to detail the relationships with not only operational but also non-
operational goals.

Other works have focused on facilitating the derivation of system requirements
from business processes. In [12], [24], and [23], the authors define mappings that use
business processes modeled with Activity Diagrams or BPMN as the basis to iden-
tify actors, use cases, and some of the relationships between use cases. Likewise,
in [28], functional requirements, represented as Task Descriptions, are derived from
business processes modeled with BPMN. These proposals allow a set of functional
requirements to be defined that are aligned with the business. For this alignment to
be perfect, the present work complements the aforementioned proposal by provid-
ing a mechanism to extract not just the functional requirement relationships but also
the non-functional.

In [22], the authors extend the BPMN notation to model security concepts in
business processes. In addition, they define a set of transformations which, based
on these annotated processes, derive the system’s use cases and the functionalities
needed to provide the security being modeled. In particular, they document the re-
lationships between business processes and security goals to then derive the corre-
sponding relationships with the system requirements. These extensions may be used
together with the present proposals to also address the relationships with other goals
and non-functional requirements.

Modeling Business and Requirements Relationships 179

There has been work aimed at improving requirement specification in order to
provide the architect with more information [2]. Thus, IESE NFR [13] sets out a
guide for the identification, analysis, and documentation of non-functional require-
ments. Once identified, they are then linked to the functionalities that have to satisfy
them. To this end, notes are added to the use cases and their scenarios. In addition,
each non-functional requirement is refined until metrics can be associated with it.
These metrics are used to evaluate whether or not a particular architectural design
can fulfil the requirements. The IESE NFR methodological approach can be used
together with the work presented here to, firstly, apply the BPMN extension to ob-
tain a set of requirements and relationships aligned with the business, and, second,
to use the rules, for the selection of patterns, and the metrics, they define, as a guide
in the design of the architecture.

Other work has been specifically oriented to facilitating the design of the archi-
tecture. For example, Quality-Driven Architecture Development [19] models archi-
tectural patterns, and their variants, with quality models based on feature models.
The architect uses this model to identify patterns or variants that will satisfy the sys-
tem’s quality attributes. The selection of these architectural patterns is made entirely
by the architect on the basis of his or her knowledge of the system requirements and
the relationships between them. The present work also uses feature models to docu-
ment architectural patterns and tactics, but with the selection of patterns being nar-
rowed down by the relationships annotated on the business process and requirements
models.

Finally, the studies of Harrison and Avgeriou [16], [17] first examines how ar-
chitectural patterns influence positively and negatively the quality requirements,
and second how architectural patterns and tactics influence each other. The feature
model and the pattern selection rules of the present work take these studies as their
basis.

5 Conclusions and Future Works

Designing the architecture of a software system is a very complex activity that
requires great experience. Software architects need to know perfectly all the func-
tional and non-functional requirements and the relationships between them to de-
sign the architecture that best allows them to be satisfied. The identification of this
information requires architects with extensive experience and skill, since any mis-
interpretation of the requirements or their relationships may lead to the design of an
architecture that not only does not facilitate compliance with some of them, but may
even actively make such compliance difficult.

In order to reduce the effort of interpreting and identifying this information, we
have here presented extensions to model the relationships both between the various
elements of the business and between the system requirements. The relationships
between business elements are modeled through an extension for BPMN 2.0. The
relationships between requirements are modeled by mean of extensions for the UML
2 Use Case, Activity and Sequence Diagrams. We are currently working on applying

180 J. Berrocal, J. Garcı́a-Alonso, and J.M. Murillo

MDD techniques to define transformations between models that semi-automate the
derivation of a system’s requirements and their relationships from the information
annotated in the business.

Furthermore, these relationships, together with a model documenting the archi-
tectural patterns, are used by a set of rules that pre-select the patterns to apply. This
model and the rules can be used by a firm to generate repositories of knowledge
about its architectural style. These repositories can then be used during the devel-
opment of new applications, thus taking advantage of the knowledge that has been
acquired in previous projects.

Acknowledgements. This research was supported by the Spanish Ministry of Science and
Innovation under Project TIN2012-34945, by the Department of Employment, Enterprise,
and Innovation of the Government of Extremadura under Project GR10129, and by the Euro-
pean Regional Development Fund (ERDF).

References

1. Aburub, F., Odeh, M., Beeson, I.: Modelling non-functional requirements of business
processes. Inf. Softw. Technol. 49, 1162–1171 (2007), doi:10.1016/j.infsof.2006.12.002

2. Avgeriou, P., Grundy, J., Hall, J.G., Lago, P., Mistrı́k, I. (eds.): Relating Software Re-
quirements and Architectures. Springer (2011)

3. Bachmann, F., Bass, L., Klein, M., Shelton, C.: Designing software architectures to
achieve quality attribute requirements. IEE Proceedings Software 152(4), 153–165
(2005), doi:10.1049/ip-sen:20045037

4. Berrocal, J., Garcı́a-Alonso, J., Murillo, J.M.: Patrones para la extracción de casos de
uso a partir de procesos de negocio. In: II Taller de Procesos de Negocio e Ingenierć-a
de Servicios, pp. 1–11 (2009)

5. Berrocal, J., Garcı́a-Alonso, J., Murillo, J.M.: Facilitating the selection of architectural
patterns by means of a marked requirements model. In: Babar, M.A., Gorton, I. (eds.)
ECSA 2010. LNCS, vol. 6285, pp. 384–391. Springer, Heidelberg (2010)

6. BMM: Business motivation model version 1.1,
http://www.omg.org/spec/BMM/

7. BPMN: Business process modeling notation version 2.0,
http://www.bpmn.org/

8. Cardoso, E., Almeida, J., Guizzardi, G.: Requirements engineering based on business
process models: A case study. In: 13th Enterprise Distributed Object Computing Confer-
ence Workshops, EDOCW 2009, pp. 320–327 (2009),
doi:10.1109/EDOCW.2009.5331974

9. Chung, L., do Prado Leite, J.C.S.: On non-functional requirements in software engineer-
ing. In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual Model-
ing: Foundations and Applications. LNCS, vol. 5600, pp. 363–379. Springer, Heidelberg
(2009)

10. Cockburn, A.: Writing Effective Use Cases, 1st edn. Addison-Wesley Longman Publish-
ing Co., Inc., Boston (2000)

11. Czarnecki, K., Helsen, S., Eisenecker, U.W.: Formalizing cardinality-based feature mod-
els and their specialization. Software Process: Improvement and Practice 10(1), 7–29
(2005)

http://www.omg.org/spec/BMM/
http://www.bpmn.org/

Modeling Business and Requirements Relationships 181

12. Dijkman, R.M., Joosten, S.M.M.: Deriving use case diagrams from business process
models. Tech. Rep. TR-CTIT-02-08, University of Twente (2002)

13. Dörr, J.: Elicitation of a complete set of non-functional requirements. Ph.D. thesis, Uni-
versity of Kaiserslautern (2011)

14. Garcı́a-Alonso, J., Berrocal, J., Murillo, J.M.: Modelado de la variabilidad en arquitec-
turas multicapa. Jornadas de Ingeniera del Software y Bases de Datos (JISBD), 895–900
(2011)

15. Grau, G., Franch, X., Maiden, N.A.M.: Prim: An i*-based process reengineering method
for information systems specification. Inf. Softw. Technol. 50(1-2), 76–100 (2008)

16. Harrison, N.B., Avgeriou, P.: Leveraging architecture patterns to satisfy quality at-
tributes. In: Oquendo, F. (ed.) ECSA 2007. LNCS, vol. 4758, pp. 263–270. Springer,
Heidelberg (2007)

17. Harrison, N.B., Avgeriou, P.: How do architecture patterns and tactics interact? a model
and annotation. Journal of Systems and Software 83(10), 1735–1758 (2010)

18. International Standard Organization (ISO/IEC): Informational technology – product
quality: Quality model. International Standard ISO/IEC 9126 (2001)

19. Kim, S., Kim, D.K., Lu, L., Park, S.: Quality-driven architecture development using
architectural tactics. J. Syst. Softw. 82, 1211–1231 (2009), doi:10.1016/j.jss.2009.03.102

20. OpenUP: Open unified process (2013),
http://epf.eclipse.org/wikis/openup/

21. Pavlovski, C.J., Zou, J.: Non-functional requirements in business process modeling. In:
Proceedings of the Fifth Asia-Pacific Conference on Conceptual Modelling, APCCM
2008, vol. 79, pp. 103–112. Australian Computer Society, Inc., Darlinghurst (2008)

22. Rodrı́guez, A., de Guzmán, I.G.R., Fernández-Medina, E., Piattini, M.: Semi-formal
transformation of secure business processes into analysis class and use case models:
An mda approach. Information & Software Technology 52(9), 945–971 (2010)

23. Siqueira, F., Silva, P.: Transforming an enterprise model into a use case model using
existing heuristics. In: Model-Driven Requirements Engineering Workshop (MoDRE),
pp. 21–30 (2011)

24. Stolfa, S., Vondrak, I.: Mapping from business processes to requirements specification.
Tech. rep., CUniversitat Trier (2006)

25. Traetteberg, H., Krogstie, J.: Enhancing the usability of bpm-solutions by combining pro-
cess and user-interface modelling. In: Stirna, J., Persson, A. (eds.) PoEM 2008. LNBIP,
vol. 15, pp. 86–97. Springer, Heidelberg (2009)

26. Ullah, A., Lai, R.: Modeling business goal for business/it alignment using requirements
engineering. Journal of Computer Information Systems 51(3), 21–28 (2011)

27. UML: Unified modeling language, http://www.uml.org/
28. de la Vara, J.L., Sánchez, J.: BPMN-based specification of task descriptions: Approach

and lessons learnt. In: Glinz, M., Heymans, P. (eds.) REFSQ 2009. LNCS, vol. 5512, pp.
124–138. Springer, Heidelberg (2009)

http://epf.eclipse.org/wikis/openup/
http://www.uml.org/

Introducing Critical Thinking to Software
Engineering Education

Oumout Chouseinoglou and Semih Bilgen

Abstract. Software and its development processes are changing continuously per-
vading our daily life, new and diverse techniques and approaches are being proposed
and the software industry is eager to adopt the ones that will provide competitive ad-
vantage. The diversity of these new techniques and approaches and the diversity of
clients and contexts in the software industry, requires software developers to have
the ability to judge correctly and to discriminate successfully among these. These
skills need to be taught to software developers in the course of their formal under-
graduate education. However, traditional approaches in software engineering edu-
cation (SEEd) are mostly inadequate in equipping students with these unusual and
diverse skills. This study, as part of a larger study aiming to develop a model for as-
sessing organizational learning capabilities of software development organizations
and teams, proposes and implements a novel educational approach to SEEd com-
bining different methodologies, namely lecturing, project development and critical
thinking. The theoretical background and studies on each approach employed in this
study are provided, together with the rationales of applying them in SEEd. Student
opinions and instructor observations demonstrate that the proposed course structure
is a positive step towards the aforementioned goals.

Keywords: Software engineering education, critical thinking, practicum, SQ4R.

1 Introduction

Software systems evade our daily life in an increasing pace with diverse applica-
tions and the need for quality software is eminent. Different methodologies and

Oumout Chouseinoglou
Statistics and Computer Science Department, Başkent University, 06810, Ankara, Turkey
e-mail: umuth@baskent.edu.tr

Semih Bilgen
Electrical and Electronics Engineering Department, Middle East Technical University, 06531,
Ankara, Turkey
e-mail: semih-bilgen@metu.edu.tr

R. Lee (Ed.): SERA, SCI 496, pp. 183–195.
DOI: 10.1007/978-3-319-00948-3_12 c© Springer International Publishing Switzerland 2014

184 O. Chouseinoglou and S. Bilgen

approaches in software engineering are being employed to provide the necessary
levels of software quality, however, the quality of developed software is directly re-
lated to the supply of capable and up-to-date software developers [1], who have to
cope with technical as well as non-technical issues [2], and who have to discriminate
among the criteria for success by identifying the good solutions for the problem at
hand [3]. In other words todays software developers need to “think out of the box”
[3]. On the other hand, software engineers, in accordance with the characteristics
of the engineering domain, are expected to reconcile conflicting constraints and to
make deliberate selections among alternative designs with their judgments based on
deep knowledge of the discipline [1], need to have social skills, and must be capa-
ble of evaluating competing values [4]. Thus, our belief is that software developers
and engineers need to be equipped with the aforementioned skills and capabilities
through their education with the use of specifically constructed software courses.

However, traditional and generic approaches in software engineering education
(SEEd) are insufficient in helping students to keep their knowledge current, can-
not prepare them for the intricacies of the domain and fail to produce the supply
and quality of developers required by the industry [1][5]. Traditional learning ap-
proaches have been proven to be ineffective as students are not actively involved in
the learning process but are merely passive listeners [6]. SEEd should first identify
the critical ingredients that result in competence in the field and then the instruc-
tional models that will transform students to effective practitioners should be devel-
oped [7]. Moreover, new approaches should not only require students to study theory
using text books but also should educate them to “learn how to learn” through state-
of-the-art analyses [8], allow them to stay up-to-date regardless of rapid change,
prepare them for different and new roles [1], and provide them with the experience
of non-technical issues and practical know-how [2]. Similarly, in a detailed review
of current trends in SEEd [6] the importance of self-directed learning (the ability to
learn on their own) and higher order cognitive skills of application, analysis, eval-
uation and synthesis is emphasized. Surveying the current trends in SEEd within
the pedagogical context, the authors of [9] point to the increasing importance of
practice-based education and alternative ways of teaching such as empirical meth-
ods where students will acquire knowledge for evaluating and proposing technology
and processes. SEEd is moving from lecture-format courses to team projects where
students are expected to exercise the ideas they are learning [1][6], the so called
practicum, a positive change bridging the academia-industry gap [6]. The efforts of
transforming the existing knowledge to a curriculum have produced two important
milestones for the SEEd, namely the Guide to the Software Engineering Body of
Knowledge, which manifests the general perceptions on what a software engineer
with bachelor’s degree and four years of experience should know, and the Soft-
ware Engineering 2004, which suggests curriculum guidelines for undergraduate
software engineering degree programs [4]. However, experiences in project based
SEEd have shown that students with little industrial involvement (i.e., undergradu-
ate students) aren’t mature enough to appreciate the importance of many software
engineering topics [4], they lack the intuition to understand problems, ambiguity
and hidden constraints of real projects and therefore find it challenging to apply

Introducing Critical Thinking to Software Engineering Education 185

their acquired knowledge to a project [3], and focus more on programming issues
and less on the development process and the associated software engineering issues
[6]. Therefore, students often fail to appreciate the importance of tasks that software
practitioners continuously conduct (e.g., requirements engineering, project manage-
ment, cost estimation) [4], as they consider them theoretical and of very little use in
future [6].

In [7], SEEd courses are investigated with respect to three distinctive knowledge
categories, namely declarative (knowledge from textbooks), procedural (knowl-
edge by doing) and metacognitive knowledge (planning, monitoring process and
progress, changing when appropriate and reflecting). Software domain studies make
it clear that each knowledge category must be addressed explicitly in instruction.
This paper describes the practice of combining the approach of critical thinking,
a metacognitive approach, to a project based SEEd course (traditionally encom-
passing the declarative and procedural approaches) with the aim of increasing the
understanding capabilities of students with respect to software engineering prac-
tices, allowing them to appreciate these practices and equipping them with skills to
evaluate and judge alternative approaches that they will face in their professional
careers. The rest of the paper is organized as follows: First, we briefly review the
related practices and the theoretical background on the subject. Section 3 gives the
details of the developed course as a comparative study, and Section 4 outlines the
lessons learned. The last section concludes the paper and overviews the planned
future work.

2 Related Work

2.1 Software Engineering Practicum

Acknowledging that the skills to be effective software engineers are not limited to
declarative knowledge and claiming that expertise is domain-specific and can only
be acquired in the context in which it will be practiced, practicum is a procedural
approach which uses a realistic environment, usually in the form of a project for an
actual client, where students learn the skills they will use in the future by apply-
ing their knowledge in a real-world setting [7][10][11]. Especially it is important
that these practicum approaches be team based, according to the CMM statement
that in higher levels of maturity individual activities transform to team activities
[12]. Practicum is closely related to constructivism, a learning theory that is learner
centered, which states that students learn better if they construct knowledge for
themselves and regards learning as a process of active construction [13]. The set
of constructivist instructional principles and the skills needed by software engineers
to solve real-world problems within the constructivist approach are given in detail
in [13].

Numerous successful cases of SEEd courses incorporating theoretical knowledge
and practical experience with the use of semester-long projects have been discussed
in the literature. Surveys and descriptions of courses reflecting the realities and

186 O. Chouseinoglou and S. Bilgen

focusing on specific areas of software engineering such as requirements engineer-
ing, supply chain development and global software development are presented in
[14] and [15]. In [16] it is argued that the proposed approach taught inexperienced
graduate students many software engineering principles, such as software verifica-
tion and validation. An initiative towards restructuring an undergraduate software
engineering class from lecture-based to lab-oriented by focusing on learning and
personality types and emphasizing practical tools is given in [17]. A review of text-
books addressing the difficulties of learning by doing in the SEEd domain and the
challenges faced by the universities is available in [2], and a university-wide exam-
ple of learner centered approach by solving real problems is provided in [18]. In
[13], the author surveys a vast number of approaches employed to render software
education more realistic, pinpointing the most important ones that have provided
valuable contributions. However, it is argued that the majority of these approaches
do not explicitly integrate pedagogical innovations, they do not sufficiently take into
consideration the human aspect of the learning process such as the emotions, be-
havior and thoughts of students and finally they do not expose students to all phases
of software development [13]. Despite these successful cases in the literature, the
practicum approach has several drawbacks, pointed out in detail in [7]: instructors
use little effort on identifying the skills that a project should bring to the students,
practicum does not help students to develop the skills necessary for deliberate prac-
tice and students mostly are able to apply what they have learned only to very similar
situations [7]. In [11], observed issues with practicum are poor testing, ineffective
teams, no documentation, no use of metrics, no measures of quality and failure of
students to transfer knowledge from the formal curriculum to the practicum project.

Another successful practicum in SEEd is the CSCI577ab Software Engineering
course [19][20] which is further described in detail in Section 3 as it has been pivotal
in our study.

2.2 Personality and Learning Types

In [17] it is discussed that students can be classified with respect to their person-
ality types using the Myers-Briggs type indicator and to their learning styles using
Felder-Silverman model and a software engineering course should be constructed
in a way that should appeal to most students. In Myers-Briggs personality types the
students can be characterized with respect to four dimensions, namely as introvert
vs. extrovert, sensing vs. intuitive, thinking vs. feeling and judging vs. perceiving.
On the other hand, with respect to the Felder-Silverman learning styles, the students
can be classified as active vs. reflective, sensing vs. intuitive, visual vs. verbal and
sequential vs. global. The details of how these dimensions should be assessed are
given in detail in [17]. However, it is evident that SEEd courses need to be designed
in a fashion to contain elements that would address the majority of students. We be-
lieve that critical thinking is an approach that can address a wide number of students
with different personality and learning types.

Introducing Critical Thinking to Software Engineering Education 187

2.3 Critical Thinking in Education

The importance of judgment and decision making in engineering is studied in detail
in [3], where it is clearly shown that methods, tools, processes, skills, heuristics, and
other tools and techniques can be utilized in the search of good and cost-effective
candidate solutions but cannot replace judgment. According to the engineering prin-
ciple of striking a balance between conflicting goals, SEEd students should be taught
judgment and the commitment to use it [3]. This, we believe, is closely related to
critical thinking, a metacognitive approach. A survey of the conceptions of critical
thinking is given in [21] where it is defined as “reasonable, reflective thinking focus-
ing on task, people or belief”; involving abilities such as “identifying a problem and
its associated assumptions, clarifying and focusing the problem, and analyzing, un-
derstanding and making use of inferences, inductive and deductive logic, as well as
judging the validity and reliability of the assumptions, sources of data or information
available”. In [7] it is stated that when students are asked to think in a metacognitive
fashion at every stage of a problem-solving process, not only they accomplish this
task but they also develop a deeper understanding about it and achieve better per-
formance on following problems. Moreover, studies in programming domain have
demonstrated that students perform better both on declarative and procedural tasks
when they reflect on what they are learning. This suggests that the metacognitive
activity is the main reason for producing the improved performance [7].

In [3], a critical thinking approach for SEEd is presented where supplemental
materials (mostly books) are incorporated to the course by having the groups read
and report on the ideas from these materials via critical analysis and interpretation,
and having the students to identify their association with the course. According to
the authors [3] this activity highlights the value of engineering judgment by empha-
sizing critical evaluation and helps students learn to recognize external but relevant
material, evaluate techniques on their own, and recognize how to use different tech-
niques together. The course moves from the traditional memorize-and-recite-back
to the critical application of content. The related theoretical framework and the ap-
plication details of this approach are provided in detail in [3]. In [7] extreme pro-
gramming practices are assessed within the metacognitive approach by focusing on
how each practice may facilitate the acquisition of the metacognitive skills that are
required for the development of enhanced competence in students.

In this study the Survey, Question, Read, Recite, Review, and wRite (SQ4R)
technique is proposed as a critical thinking method. Details of SQ4R and how it
was implemented are discussed in Section 3.

3 Comparative Study

3.1 General Structure of the Course

The İST478 Current Topics in Information Technologies course, which is offered
in the Department of Statistics and Computer Science, Başkent University, Turkey,

188 O. Chouseinoglou and S. Bilgen

is a course with flexible content and focuses on addressing current topics in infor-
mation systems, software engineering and programming. In the 2011-2012 Spring
term in which this study was conducted, İST478 was given as a Software Engineer-
ing Team Project Practicum course, as explained below, and was developed with
the initial aims of: (a) to teach students the practical techniques and tools that are
used in professional software development through regular lecture sessions and a
practicum conducted in teams, and (b) to provide a test bed and a pilot study to
validate whether a model for assessing the organizational learning capabilities of
software development teams, namely AiOLoS (Assessing Organizational Learning
of Software Development Organizations), developed by the authors [23], is actu-
ally applicable in real life teams. AiOLoS has been developed with the main aims
of (a) providing a framework for comparison between software organizations with
respect to their organizational learning capabilities, (b) allowing software organiza-
tions to identify their deficiencies and shortcomings, (c) offering the means for the
measurement of the realized improvement in organizational learning and (d) pro-
viding a starting point for software process improvement. AiOLoS consists of three
major process areas that map to the three major objectives of an Learning Software
Organization [22], namely obtaining, using and passing knowledge. AiOLoS pro-
poses that the organizational learning activity can be assessed with respect to 12
core processes that elaborate the 3 major process areas. The details of AiOLoS are
available in [23] whereas an exploratory case study of AiOLoS conducted on the
İST478 course is given in [24]. As explained in [9], when pilot studies such this
one are carried out with students, they are required to have pedagogical value and
both the researchers and the students have to perceive that value. Therefore, in order
to enhance the pedagogical value of the course a critical thinking approach within
the perspective of metacognitive knowledge was employed. However, as this critical
thinking approach is also novel and was developed based on different practices in
the literature not previously applied in the SEEd domain in conjunction, a compar-
ative study was performed in order to assess its applicability and usefulness.

The subjects consisted of 15 undergraduate and 4 graduate level students who
were enrolled in the İST478 course. All graduate level students and 6 of the 15 un-
dergraduate level students had taken an introductory software engineering course.
Four software development groups were formed of varying sizes, with each grad-
uate student being assigned as a team leader (project manager) to each group.
Moreover, each group had at least two students who had previously taken an intro-
ductory software engineering course. In order to achieve fairness in the workload,
each group was assigned the development of systems similar in size and context, but
with significant requirement and development differences. Specifically, each group
was assigned the development of a score tracking software respectively for chess,
tennis, basketball and football.

The course followed a customization of the outline provided by CSCI577ab
Software Engineering [19], a graduate software engineering course at University
of Southern California, being offered since 1996. CSCI577ab focuses on soft-
ware plans, processes, requirements, architectures, risk analysis, feasibility analysis,

Introducing Critical Thinking to Software Engineering Education 189

software product creation, integration, test, and maintenance with an emphasis on
quality software production [20]. Moreover, CSCI577ab has been used as an exper-
imental test-bed to deploy various research tools and approaches for validation of
new methods and tools, leading to twelve PhD dissertations until 2008. As stated in
[16], partially employing an already defined course outline and building the novel
approaches of our study on top of that outline, ensures that our study is in accor-
dance with published, well-grounded work and may encourage other instructors to
use and employ the methodology that is proposed in this research with less effort.
İST478 followed the Incremental Commitment Spiral Model (ICSM) [25][26][27],
a new generation process model developed specifically for CSCI577ab and the ar-
chitected agile approach for software development. İST478 covered the full system
development life cycle of ICSM, which consisted of the Exploration phase, Val-
uation phase, Foundations phase, Development phase, and Operation phase. The
deliverable deadlines and the items to be delivered for each of these phases were
predefined. The tasks and artifacts to be developed by the students in İST478 were
based on specific templates and they were described in detail in the Incremental
Commitment Spiral process model - Electronic Process Guide (ICSM-EPG) [28].
Table 1 provides the list of conducted phases and the artifacts delivered by groups
in each phase.

3.2 Implementing the SQ4R Approach

SQ4R [29] is a metacognitive approach to facilitate students’ comprehension and
memory specifically when reading science texts. Moreover, SQ4R has been im-
plemented successfully in courses from a variety of areas, such as poetry analysis
[30] or arts teaching [31]. SQ4R teaches learners to “attack” content in five sequen-
tial steps [32]: (i) Survey and (ii) Question where self-questioning and predicting
occurs, (iii) Reading where learners check if their predictions are accurate, (iv)
Recording where learners take notes regarding the content, Reciting where learn-
ers fill the gaps in their understanding based on their notes and finally (v) wRiting
where learners write a brief summary to reflect what they have understood from the
subject [33].

Fig. 1 The implemented SQ4R approach

190 O. Chouseinoglou and S. Bilgen

Table 1 The ICSM phases followed in this study

Phase Deliverable Artifact
Exploration Customer Interaction Package Customer Interaction Report
Valuation Valuation Commitment Package Customer Interaction Package +

Life Cycle Plan
Operational Concept Description
Feasibility Evidence Description

Foundation Foundation Commitment Package Valuation Commitment Package +
System and Software Architecture Description
System and Software Requirements Description
Prototype Report
Supporting Information Document

Development Development Commitment Package Foundation Commitment Package +
Quality Management Plan
Acceptance Test Plan and Cases
Iteration Plan

Transition Transition Readiness Package Development Commitment Package +
Iteration Assessment Report
Training Plan
User Manual
Transition Plan
Test Procedures and Results
Functioning Product

Two randomly selected groups (groups 2 and 3) were assigned a differentiated
development method of the ICSM which incorporated the SQ4R, to enhance their
learning experience. The two groups implementing SQ4R were provided with prior
knowledge of the phase they were conducting, the artifacts they were expected to
develop and the deliverables to submit. During SQ4R, before working on and devel-
oping the deliverable, the students were given the deliverable name and were asked
to conduct a small “survey” on the subject. After the survey, the team members
were asked to write a brief reflection paper where they “questioned” and discussed
why they thought the phase and the related deliverables are of importance for the
software development process. Then all teams were given the guidelines and tem-
plates of the deliverables to be developed. The teams, while developing the deliv-
erables, “read” the documents provided by the instructor and team members would
“recite” to each other what they have understood on the material provided by the
instructor. After the submission of the deliverable, the members of the teams un-
dertaking SQ4R would conduct a “review” session with the instructor where they
discussed their understanding of the process they have concluded/undertaken and
the deliverable they have submitted. Finally they would write a closure paper, where
they discussed what they have done, if they have understood it, what their initial
thoughts and final thoughts were on the process, if they would change some or all
parts of the deliverable or process, and their final comments/proposals. Figure 1
displays the SQ4R approach which was undertaken by the two randomly assigned
groups in all five phases (depicted as “Milestone” in Fig. 1) of the software devel-
opment lifecycle of İST478 course.

Introducing Critical Thinking to Software Engineering Education 191

Similar to the experience in [34], during the course period one of the groups
submitted no acceptable documents and deliverables (Group 4) and subsequently
the members failed the course; thus no metrics or data were collected from this
group. The authors in [34] argue that this experience is one of the most important
lessons learned while conducting experiments in SEEd courses: surprises happen,
and evaluations rarely turn out exactly as planned.

Among these three groups, only Group 1 did not undertake the SQ4R approach.
The results of the AiOLoS research regarding the organizational learning capabili-
ties of the assessed three teams are given in [24].

4 Lessons Learned / Experience and Evaluation

As explained in detail in [34], evaluation in the domain of education and especially
SEEd is a challenging undertaking, as it is almost impossible to adequately isolate
the effects of a new or proposed educational technique, there are difficulties in get-
ting a statistically significant number of subjects, assessment of software engineer-
ing skills is less straightforward with respect to other disciplines, and comparative
evaluations are difficult to be conducted due to the immaturity of the domain of soft-
ware engineering. Due to these reasons in SEEd a new technique is usually intended
to be a supplement to a curriculum.

The developed İST478 course was aimed to be as close as possible to reality and
all five phases of the ICSM model were completed in a period of 16 weeks. All
three groups that attended the course completed and submitted a working software
artifact. However, as the developed software products were not meant for real-life
usage, no payments or similar incentives existed; the incentives of students for de-
veloping the projects according to the expectations of the ICSM-EPG and SQ4R
were credit points. Students also received credit points for attending the lectures.

After the conclusion of the course, the teams undertaking the SQ4R approach, a
total of 11 students (both undergraduate and graduate), were asked to evaluate and
assess the SQ4R approach and provide their opinions regarding the model and its
results. The team members were asked five questions regarding the developed SQ4R
model and they submitted their results using a Likert Scale. The questions and the
Likert scores of the answers are given in Table 2. The major threat to the validity
of that evaluation was the instructor-student relationship that existed between the
assessor and the assessed team members. This relationship could force the students
to alter their answers in the questionnaires to more favorable ones, believing that
such answers would contribute to their grades. In order to resolve this, the students
were informed that they would not be graded based on the answers they provide.
Moreover, the survey answers were collected after the submission of the grades, so
that students would not feel compelled to provide answers that do not depict their
true opinions about the SQ4R model.

The frequency of the results regarding the answers given in the opinion question-
naires were:

192 O. Chouseinoglou and S. Bilgen

• 8 out of 11 believed that the SQ4R approach mostly helped them to learn the
course topics better (mode value being Mostly, median value being 4 out of 5),

• 6 out of 11 believed that the SQ4R approach mostly helped them to apply the
course topics better to their project (mode value being Mostly, median value
being 4 out of 5),

• 9 out of 11 believed that the SQ4R approach mostly provided them with an ad-
vantage in the development of the project (mode value being Mostly, median
value being 4 out of 5),

• 6 out of 11 believed that the time spent for conducting the SQ4R approach mostly
was worth it (mode value being Mostly, median value being 4 out of 5),

• 6 out of 11 believed that the SQ4R approach mostly would contribute to passing
the acquired knowledge to their later professional life (mode value being Mostly,
median value being 4 out of 5).

Moreover, the students felt that the SQ4R experience enhanced their academic cu-
riosity by the questions they were asking and the level of their participation in class-
room activities. Even though it was not measured with questionnaires, another im-
portant observation was that the attitude of team members towards the task at hand
would usually shift positively after the conclusion of the SQ4R for that task. On the
other hand, the majority of the students would complain regarding the extra work
the SQ4R required. However, we believe that these complaints were mostly related
to the fact that one development team was not undertaking the SQ4R approach.

Table 2 Student opinions regarding SQ4R approach

Question Fully Mostly Somewhat Very Little Not at all

Q1) Do you think the SQ4R helped you to
learn the course topics better?

2 8 1

Q2) Do you think the SQ4R approach helped
you to apply the topics better to your project?

3 6 2

Q3) Do you think the SQ4R approach pro-
vided you an advantage in the development of
your project?

1 9 1

Q4) Do you think the extra time spent for con-
ducting the SQ4R was worth it?

6 2 3

Q5) Do you think the SQ4R approach will
contribute to you passing the acquired knowl-
edge to your later professional life?

4 6 1

5 Conclusion

This study has been a part of a larger study aiming to develop the AiOLoS model
for assessing organizational learning capabilities of software development organi-
zations and teams. Within that perspective, a pilot study was constructed to test

Introducing Critical Thinking to Software Engineering Education 193

whether AiOLoS can be actually implemented in software development teams.
In conjunction, in order to propose a pedagogical contribution, a novel SEEd
course structure has been introduced, implementing several different methodolo-
gies, namely lecturing, practicum with ICSM and critical thinking.

It is obvious that the number of subjects who participated in the comparative
study described in this paper and the overall structure of the study are not conducive
to statistically significant and definitive results, especially as one of the development
teams did not continue the course. As confirmed in [34], the anecdotal usage alone of
an education technique does not provide much information, instead a multi-angled
evaluation approach which is partially rooted in educational theory, can be a useful
solution.

Nevertheless, we believe that the combination of lecture and practicum, the use
of a well-grounded software process model (ICSM), and the implementation of a
critical thinking based learning approach to the process has contributed to the devel-
opment of a successful learning environment. It is our opinion that, with the afore-
mentioned amalgamation of approaches and methods, the course has (a) constituted
a step forward towards the realization of an overall SEEd course that will arm stu-
dents with the critical thinking and judgment capabilities the engineering approach
requires, and (b) appealed to a wide variety of students with different personality
types and learning styles. The student opinions given in Table 2 and the observa-
tions of the instructor are supplements of these claims. We have interpreted these
results as an indication that the proposed approach of utilizing creative thinking in
SEEd provides students with both the knowledge and the judgment capabilities that
the software engineering industry requires.

We are currently analyzing the obtained results and the lessons learned from that
first experience with this course in order to develop a more structured and well-
defined course, that will be used to better evaluate and compare the educational
attainments of the proposed model. It is our belief that by harvesting further data
from students in the newly constructed course we will have a better understand-
ing of the learning needs of SEEd students and we will be able to find solutions in
filling the gap between the requirements of software industry and SEEd. Further-
more, we are also investigating the case of proposing the critical thinking approach
to professional software development organizations as a technique of increasing the
organizational learning of teams and individuals and enhancing AiOLoS in order to
embody the critical thinking capabilities of software practitioners.

References

1. Shaw, M.: Software engineering education: a roadmap. In: Proceedings of the Confer-
ence on the Future of Software Engineering. ACM (2000)

2. Gnatz, M., Kof, L., Prilmeier, F., Seifert, T.: A practical approach of teaching software
engineering. In: Proceedings of the 16th Conference on Software Engineering Education
and Training, CSEE&T 2003, pp. 120–128. IEEE (2003)

194 O. Chouseinoglou and S. Bilgen

3. Shaw, M., Herbsleb, J., Ozkaya, I., Root, D.: Deciding what to design: Closing a gap in
software engineering education. In: Inverardi, P., Jazayeri, M. (eds.) ICSE 2005. LNCS,
vol. 4309, pp. 28–58. Springer, Heidelberg (2006)

4. Van Vliet, H.: Reflections on software engineering education. IEEE Software 23(3), 55–
61 (2006)

5. Blake, B.M.: A student-enacted simulation approach to software engineering education.
IEEE Transactions on Education 46(1), 124–132 (2003)

6. Garg, K., Varma, V.: A study of the effectiveness of case study approach in software
engineering education. In: Proceedings of the 20th Conference on Software Engineering
Education & Training, CSEET 2007. IEEE (2007)

7. Williams, L., Upchurch, R.: Extreme programming for software engineering education?
In: The Proceedings of the 31st Annual Frontiers in Education Conference. IEEE (2001)

8. Boehm, B.: A view of 20th and 21st century software engineering. In: Proceedings of
the 28th International Conference on Software Engineering. ACM (2006)

9. Carver, J., Jaccheri, L., Morasca, S., Shull, F.: Issues in using students in empirical stud-
ies in software engineering education. In: Proceedings of the Ninth International Soft-
ware Metrics Symposium. IEEE (2003)

10. Katz, E.P.: Software engineering practicum course experience. In: Proceedings of the
23rd IEEE Conference on Software Engineering Education and Training (CSEE&T).
IEEE (2010)

11. Bareiss, R., Katz, E.P.: An exploration of knowledge and skills transfer from a formal
software engineering curriculum to a capstone practicum project. In: Proceedings of the
24th IEEE-CS Conference on Software Engineering Education and Training (CSEE&T).
IEEE (2011)

12. Favela, J., Feniosky, P.M.: An experience in collaborative software engineering educa-
tion. IEEE Software 18(2), 47–53 (2001)

13. Hadjerrouit, S.: Learner-centered web-based instruction in software engineering. IEEE
Transactions on Education 48(1), 99–104 (2005)

14. Gotel, O., Kulkarni, V., Neak, L.C., Scharff, C., Seng, S.: Introducing global supply
chains into software engineering education. In: Meyer, B., Joseph, M. (eds.) SEAFOOD
2007. LNCS, vol. 4716, pp. 44–58. Springer, Heidelberg (2007)

15. Gotel, O., Kulkarni, V., Say, M., Scharff, C., Sunetnanta, T.: A global and competition-
based model for fostering technical and soft skills in software engineering education. In:
Proceedings of the 22nd Conference on Software Engineering Education and Training
(CSEE&T 2009). IEEE (2009)

16. Hayes, J.H.: Energizing software engineering education through real-world projects as
experimental studies. In: Proceedings of the 15th Conference on Software Engineering
Education and Training (CSEE&T 2002). IEEE (2002)

17. Layman, L., Cornwell, T., Williams, L.: Personality types, learning styles, and an ag-
ile approach to software engineering education. ACM SIGCSE Bulletin 38(1), 428–432
(2006)

18. Nikolov, R., Ilieva, S.: Building a research university ecosystem: the case of software
engineering education at Sofia University. In: Proceedings of the 6th Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering. ACM, Cavtat near Dubrovnik (2007)

19. Boehm, B., Koolmanojwong, S.: Software Engineering I - Fall 2011. USC Viterbi School
of Engineering (August 12, 2011),
http://greenbay.usc.edu/csci577/fall2011/index.php
(cited June 30, 2012)

http://greenbay.usc.edu/csci577/fall2011/index.php

Introducing Critical Thinking to Software Engineering Education 195

20. Koolmanojwong, S., Boehm, B.: Using Software Project Courses to Integrate Education
and Research: An Experience Report. In: Proceedings of the 22nd Conference on Soft-
ware Engineering Education and Training (CSEE&T 2009), Hyderabad, India (2009)

21. Pithers, R., Soden, R.: Critical thinking in education: A review. Educational Re-
search 42(3), 237–249 (2000)

22. Ruhe, G.: Learning Software Organisations. In: Chang, S.K. (ed.) Handbook of Soft-
ware Engineering and Knowledge Engineering, vol. 1, pp. 663–678. World Scientific
Publishing (2001)

23. Chouseinoglou, O., Bilgen, S.: Assessing Organizational Learning in Software Develop-
ment Organizations. Technical Report. METU/II-TR-2012-02, Department of Informa-
tion Systems, Middle East Technical University, Ankara, Turkey (2012),
http://www.baskent.edu.tr/˜umuth/METU-II-TR-2012-02.pdf

24. Chouseinoglou, O., Bilgen, S.: A Model for Assessing Organizational Learning in Soft-
ware Development Organizations. In: Winckler, M., Forbrig, P., Bernhaupt, R. (eds.)
HCSE 2012. LNCS, vol. 7623, pp. 251–258. Springer, Heidelberg (2012)

25. Boehm, B., Lane, J.A.: Using the Incremental Commitment Model to Integrate System
Acquisition, Systems Engineering, and Software Engineering. CrossTalk the Journal of
Defense Software Engineering, 4–9 (October 2007)

26. Pew, R.W., Mavor, A.S.: Human-System Integration in the System Development Process:
A New Look. National Academy Press (2007)

27. Boehm, B.: Some future software engineering opportunities and challenges. In: The Fu-
ture of Software Engineering, pp. 1–32. Springer, Heidelberg (2011)

28. USC-CSSE: Instructional Commitment Spiral Model - Software Electronic Process
Guide. USC Viterbi School of Engineering (2008),
http://greenbay.usc.edu/IICMSw/index.htm (cited June 30, 2012)

29. Thomas, E.L., Robinson, A.H.: Improving Reading in Every Class: A Sourcebook for
Teachers. Allyn & Bacon, Boston (1982)

30. Casebeer, E.F.: SQ4R in the Analysis of Poetry. College Composition and Communica-
tion 19(3), 231–235 (1968)

31. Applegate, M.D., Quinn, K.B., Applegate, A.J.: Using metacognitive strategies to en-
hance achievement for at-risk liberal arts college students. Journal of Reading 38(1),
32–40 (1994)

32. Glynn, S.M., Muth, D.K.: Reading and writing to learn science: achieving scientific lit-
eracy. Journal of Research in Science Teaching 31(9), 1057–1073 (1994)

33. Yakupoglu, F.: The effects of cognitive and metacognitive strategy training on the reading
performance of Turkish students. Practice and Theory in Systems of Education 7(3),
353–358 (2012)

34. Navarro, E.O., Van Der Hoek, A.: Comprehensive evaluation of an educational software
engineering simulation environment. In: Proceedings of the 20th Conference on Software
Engineering Education and Training, CSEET 2007. IEEE (2007)

http://www.baskent.edu.tr/~umuth/METU-II-TR-2012-02.pdf
http://greenbay.usc.edu/IICMSw/index.htm

Activity Diagrams Patterns for Modeling
Business Processes�

Étienne André, Christine Choppy, and Gianna Reggio

Abstract. Designing and analyzing business processes is the starting point of the
development of enterprise applications, especially when following the SOA (Service
Oriented Architecture) paradigm. UML activity diagrams are often used to model
business processes. Unfortunately, their rich syntax favors mistakes by designers;
furthermore, their informal semantics prevents the use of automated verification
techniques. In this paper, (i) we propose activity diagram patterns for modeling busi-
ness processes, (ii) we devise a modular mechanism to compose diagram fragments
into a UML activity diagram, and (iii) we propose a semantics for the produced ac-
tivity diagrams, formalized by colored Petri nets. Our approach guides the modeler
task (helping to avoid common mistakes), and allows for automated verification.

1 Introduction

Business processes are collections of related and structured activities or tasks, pro-
ducing a specific service or product. Being able to model and to analyze business
processes is of paramount importance, not only for the design of such processes, but
also in the field of the software development whenever the SOA (Service Oriented
Architecture) paradigm [9] is followed. The most common modeling notations for

Étienne André · Christine Choppy
Université Paris 13, Sorbonne Paris Cité, LIPN, F-93430, Villetaneuse, France
e-mail: {Etienne.Andre,Christine.Choppy}@lipn.univ-paris13.fr
Gianna Reggio
DIBRIS, Genova, Italy
e-mail: gianna.reggio@unige.it
� This work is partially supported by project #12 “Méthode de modélisation des systèmes

dynamiques” (CREI, Université Paris 13, Sorbonne Paris Cité).

R. Lee (Ed.): SERA, SCI 496, pp. 197–213.
DOI: 10.1007/978-3-319-00948-3_13 c© Springer International Publishing Switzerland 2014

198 É. André, C. Choppy, and G. Reggio

business processes are the BPMN1 and the UML [1] activity diagrams. We consider
in this paper the UML since it offers also many other diagrams (classes, state ma-
chine, etc.), providing an integrated way to model all the aspects of a business as the
used data and the participant entities; also it may be used in all the other phases of
the software development. Furthermore, there is no relevant difference between the
readability of the UML and of the BPMN (see, e.g., [17]).

Although UML diagrams are widely used, they suffer from some drawbacks. In-
deed, since UML specification is documented in natural language, inconsistencies
and ambiguities may arise. First, their rich syntax is quite permissive, and hence
favors common mistakes by designers. Second, their informal semantics in natu-
ral language prevents the use of automated verification techniques, that could help
detecting errors as early as the modeling phase.

Our contribution is twofold. First, we define precise activity diagrams for mod-
eling business processes. These precise activity diagrams are based on patterns, that
can be inductively composed so as to build complex activity diagrams. Our ap-
proach also takes classes into account. We have selected a minimal subset of the
useful UML activity diagram constructs (viz., sequence, fork, join, choice, merge,
loops). This paper does not consider accept and timed event, which is the subject of
ongoing work. Second, we give a semantics to these patterns, by translating them
into Colored Petri Nets (CPNs) [12] in a modular way. Petri net is a natural formal-
ism as result of the translation: the UML specification explicitly mentions them, and
the informal semantics of activity diagrams is given in terms of token flows.

Related Works. The first issue we address is that of an adequate notation and ap-
proach for business process modeling. [19, 6] compare different styles of activity di-
agrams (precise, “ultra-light”) in experiments. The workflow pattern initiative [20]
issued a collection of workflow patterns for business modeling. These patterns ad-
dress the modeling of control, data, etc., and are expressed in Petri nets.

Another issue is to propose a formal associated semantics to UML diagrams us-
ing a formal notation, which is important to allow for automated verification [10].
This has been addressed in quite a variety of works using automata, different kinds
of Petri nets, etc., so we mention only a few. Instantiable Petri nets are the target of
transformation of activity diagrams in [13], and this is supported by tool BCC (Be-
havioral Consistency Checker); however they do not consider data, whereas we do.
In [8, 4], the issue is performance evaluation, from activity diagrams and others (use
case, state diagrams, etc.) to stochastic Petri nets. In [21] and [2], various syntactic
features of UML state machines are translated into CSP# and colored Petri nets,
respectively. Also note that [11] proposes an operational semantics of the activity
diagrams (for UML 2.2). Börger [5] and Cook et al. [7] present other formaliza-
tions of the workflow patters of [20] using formalisms different from Petri nets,
viz., Abstract State Machines and Orc, respectively. In [16], patterns for specify-
ing the system correctness are defined using UML statecharts, and then translated
into timed automata. The main differences with our approach are that the authors
mainly focus on real-time properties, and the patterns of [16] do not seem to be

1 http://www.bpmn.org/

http://www.bpmn.org/

Activity Diagrams Patterns for Modeling Business Processes 199

hierarchical: the “composition” of patterns in [16] refers to the simultaneous verifi-
cation of different properties in parallel. In [15], a reactive semantics is defined for a
subset of UML activities, which makes it a precise design language for reactive sys-
tems. The same authors also define in [14] an automated compositional mechanism
for UML activities together with an interface (a so-called External State Machine),
seen as building blocks.

Outline. Section 2 presents our UML-based modeling for business processes (static
view, activity diagram, etc.), details the activity diagram features we consider, and
describes how to compose them in a modular way. Then, we provide a translation
of the considered activity diagrams into colored Petri nets in Section 3 (activity dia-
gram) and Section 4 (static view). We use as a running example an electronic com-
merce system EC. Section 5 concludes, gives some hints on our implementation,
and sketches future directions of research.

2 Business Process Modeling

2.1 Precise Business Process Models

Business processes are collections of related and structured activities or tasks, pro-
ducing a specific service or product. In this section, we consider precise models of
business processes. The word “precise” means here that we define such models in
a sharper way than usual; the word is used in several related works on models (see,
e.g., [19]). A precise model of a business process consists of (1) the static view, i.e.,
a class diagram defining the types of all the entities in the process; (2) the list of the
process participants and of the used data typed using the classes and the datatypes
in the static view; and (3) an activity diagram representing the process behavior.

The process participants are entities taking part in a process, and can be classified
as: (i) business worker, if they correspond to human beings acting in the process,
(ii) system, if they are software or hardware systems with a role in the process,
and (iii) business object, when they are passive entities used in the activities of
the workers and of the systems. The classes in the static view may be stereotyped
by <<worker>>, <<system>> and <<object>> to explicit which kind of entities
they model. A class with these stereotypes is called an entity class.

The operations of the classes stereotyped by either <<worker>> or <<system>>

represent the atomic activities that they are able to perform in the business process.
These classes may have also some auxiliary operations stereotyped by <<aux>>

not modeling any activity.
The operations of the classes stereotyped by <<object>> represent the atomic

activities that may be performed over them. The constructor operations for any class
have the stereotype <<create>>.

We consider an e-commerce EC as a running example of a precise business pro-
cess. Fig. 1 presents its static view, while Fig. 2 presents its activity diagram and the
list of the participants with the used data.

200 É. André, C. Choppy, and G. Reggio

Fig. 1 EC example: static view

The EC business process has seven participants, and two of them, ORDER and
PACK, are created during the process execution. Two boolean values, ANS and RES,
are set during the process execution. It is important to note that the listed participants
and data are not specific individuals, but roles that can be instantiated in many dif-
ferent ways. If a participant/data is marked by <<out>>, then it means that it is
created/defined during the process execution.

The static view should be complemented with methods defining the meaning
of the operations of the datatypes, of the classes stereotyped by <<object>>, and
of any operation stereotyped by <<aux>> or <<create>>. In Fig. 1, the various
methods are reported in notes attached to the corresponding classes. The behav-
ior of the classes stereotyped by <<worker>> or <<system>> will be defined
by state machines, where all events are calls of their operations not stereotyped
by <<aux>>. In the case of the EC process, these state machines are not shown
here. They have a simple “daisy form”, with a unique state and with a transition
leaving and entering this state for any operation. This corresponds to say that the in-
stances of these classes may perform anytime any atomic activity represented by an
operation.

Activity Diagrams Patterns for Modeling Business Processes 201

The following subsection describes how the business process behavior is modeled
by a precise activity diagram.

2.2 Precise Activity Diagrams

2.2.1 UML Activity Diagrams

Fig. 2 EC example: activity diagram

We first briefly recall UML activity di-
agrams [1]. They feature in particular
an initial node (e.g., the top node in
Fig. 2), and two kinds of final nodes:
activity final, that terminate the activ-
ity globally (“final1” and “final2” in
Fig. 2), and flow final, that terminate the
local flow [1, p.340]. They also fea-
ture choice (e.g., “dec1”), i.e., the abil-
ity to follow one path among different
possibilities, depending on guards, and
merge (e.g., “Merge1”), i.e., the con-
verse operation. They also feature fork,
i.e., the ability to split the flow into dif-
ferent subactivities executed in parallel
(e.g., the large line below “Merge1”),
and join, i.e., the converse operation
(the large line below “Merge3”).

2.2.2 Activity Diagrams Patterns

General Scheme for Patterns. We
now introduce precise activity dia-
grams. Whereas UML activity dia-
grams provide a lot of freedom in the
syntax, we give here precise rules for
building activity diagrams in an itera-
tive and modular way. First, from years
of experience in the area of modeling,
we believe that some of the syntactic
features of UML activity diagrams are
not often used in practice, or are am-
biguous, and are then discarded here.
Second, some constructions can reflect
ill-formed diagrams. For example, we
make here compulsory that a fork must
always be eventually followed by a
join, except in very particular cases.

202 É. André, C. Choppy, and G. Reggio

Hence, following these patterns can help the designer to avoid common mistakes
(see, e.g., [18]). Providing these precise activity diagrams with a semantics will be
the subject of Section 3. Note that, different from software engineering design pat-
terns, that can be inserted into freely written code, precise activity diagrams are
exclusively made of activity diagram patterns composed with each other.

Inductive Rules. We assume the static view and the list of the participants of the
business process are already defined. Now, the set PACT of the precise activity
diagrams is inductively defined below using a set of rules. Each rule defines an
activity diagram pattern. For each activity diagram pattern in PACT , we define a
begin node and an end node. Either the begin or the end node may be undefined, but
not both. When composing the activity diagram fragments, we denote by ⊥ the fact
that a fragment has no end node.

In the following EXP denotes the set of the OCL (Object Constraint Language)
expressions built on the participant names, the operations of the datatypes defined in
the static view, and the operations of the entity classes appearing in the static view
stereotyped by <<aux>>. Such expressions are without side-effects on the process
since the stereotype <<aux>> requires an operation to be a query.

Rules 1–4 define simple patterns, whereas rules 5–8 define complex patterns by
composing fragments built using the patterns. We also compare our patterns with
those of [20], when applicable.

Rule 1: Initial. The initial node belongs to PACT , and its begin node is undefined,
while its end node is itself.

Rule 2: Activity final. belongs to PACT , and its begin node is itself, while its
end node is undefined.

Rule 3: Flow final. belongs to PACT , and its begin node is itself, while its end
node is undefined.

Rule 4: Action. If X is a participant of the process, Exp, Exp1, . . . , Expn belong
to EXP , and op is an operation of a class stereotyped either by <<worker>>,
<<system>>, <<object>> in turn not stereotyped by <<aux>> or <<create>>,

then X := Exp (4a) , X := Exp.op(Exp1, . . . ,Expn) (4b), and Exp.op(Exp1, . . . ,Expn) (4c)
belong to PACT , and their begin and end nodes coincide with themselves.

Rule 5: Sequence. This pattern corresponds to pattern 5 (“sequence”) in [20]. If
A1

(with a defined end node) and
A2 (with a defined begin node) belong to

PACT , then

A1

A2 belongs to PACT , and has the begin node of A1 and the end
node A2, if they exist. Note that A1 and A2 represent here activity diagrams frag-
ments inductively defined using our set of rules. The begin node of A1 (resp. end
node of A2) is not depicted: this means it can either be defined or not. These con-
ventions will be used throughout this section.

Activity Diagrams Patterns for Modeling Business Processes 203

Rule 6: Decision/merge. Let n ≥ 1, m ≥ 0, n+m ≥ 2.

If
A1

, . . . ,
An

,
An+1
⊥ , . . . ,

An+m

⊥ belong to PACT , if An+1, . . . , An+m

have no defined end node, and if cond1, . . . , condn+m belong to EXP such that

∨
i=1,...,n+m condi = true, then

A1 An An+1 An+m· · · · · ·
⊥ ⊥

[cond1]

[c
on

d n
] [cond

n+
1]

[condn+m]

belongs to
PACT . Its begin node is the decision node, and its end node is the merge node. This
pattern can be seen as a combination and a generalization of patterns 4 (“exclusive
choice”) and 5 (“simple merge”) in [20]. However, there are several differences: (1)
we make the merge compulsory after a choice; (2) we allow some activities (n+ 1
to n+m) not to merge, providing they terminate (which is encoded by the fact that
they have no end node); and (3) our choice is not exclusive (several guards may be
true simultaneously, in which case the choice is nondeterministic).

Rule 7: Loop. If
A1

and
A2 belong to PACT , and cond1, cond2 belong to

EXP with cond1∨cond2=true, then
A1 A2

[cond1]

[cond2]

and

A1

A2

[cond2]

[cond1]

belong to PACT ; their begin node is the merge node, and their end node is the end
node of A2. We name these two rules 7a (“while”) and 7b (“repeat until”) respec-
tively. Rule 7a (resp. 7b) is similar to the while variant (resp. repeat variant) of
pattern 21 (“structured loop”) in [20].

Rule 8: Fork/join. Let n ≥ 0, m ≥ 0, n+m ≥ 2.

If
A1

, . . . ,
An

,
An+1
⊥ , . . . ,

An+m

⊥ belong to PACT , if An+1, . . . , An+m

have no defined end node, then

A1 An An+1 An+m· · · · · ·
⊥ ⊥

belongs to
PACT . Its begin node is the fork node, and its end node is the join node if n > 0,
otherwise it is undefined. This pattern can be seen as a combination and a general-
ization of patterns 2 (“parallel split”) and 3 (“synchronization”) in [20]. However,
we make the join compulsory after a fork; and we allow some activities (n+ 1 to
n+m) not to join, providing they terminate.

204 É. André, C. Choppy, and G. Reggio

3 Translation of the Activity Diagram

In the remaining of the paper, we consider the translation into a CPN of the business
process models introduced in Section 2. On the one hand, the translation of the static
view and of the lists of the participants of a business process will result in a set of
declarations of types and of functions over them defining a special type State, whose
values represent the current situation of the process participants and of the process
data during the process execution. On the other hand, the translation of the activity
diagram will result in a CPN. This CPN will use the type declarations and functions
in its inscriptions.

We first recall the formalism of CPNs (Section 3.1), and then introduce the trans-
lation of the activity diagram (Section 3.2). The translation of the static view will be
the subject of Section 4.

3.1 Colored Petri Nets with Global Variables

We briefly recall here colored Petri net (CPNs) [12] (for a precise definition, see [3]).
CPNs are an extension of Petri nets with color sets, or types. In CPNs, places, to-
kens and arcs have a type. In Fig. 3(a), place p1 has type N, whereas p2 has type
N×B. Arcs can be labeled with arc expressions modifying the (colored) token (e.g.,
(i, true) in Fig. 3(a)). Transitions can have a guard, hence enabling the transition
only if the guard is true (e.g., [i �= 2]). We use for arc inscriptions and guards the
syntax of CPN ML, an extension of the functional programming language Standard
ML, and used by CPN Tools [12].

p1 N

[i �= 2] v := v+ i

p2 N×B

i

(i, true)

(a) Global variables notation

p1 N

[i �= 2]

p2 N×B

pv N

i

(i, true)

v

v+ i

(b) Corresponding semantics

Fig. 3 Example of a use of global variables

We use here the concept of global variables, a notation that does not add expres-
sive power to CPNs, but renders them more compact. Global variables can be read
in guards and updated in transitions. Some tools (such as CPN Tools) support these
global variables. Otherwise, one can simulate a global variable using a “global”
place, in which a single token (the type of which is the variable type) encodes the
current value of the variable. An example of use is given in Fig. 3(a). The variable v
(of type N) is a global variable updated to the expression v+ i. This CPN construc-
tion is equivalent to the one in Fig. 3(b). The case where a global variable is read in
a guard is similar, with the difference that v is not modified.

Activity Diagrams Patterns for Modeling Business Processes 205

3.2 Translation

The translation of the precise activity diagrams belonging to PACT (defined in Sec-
tion 2.2) will be given compositionally following the rules defined there.

3.2.1 Assumptions

We make the following choice: each translated activity diagram fragment must start
and finish with a place, so that the composition of the translations of the subparts is
straightforward: it suffices to connect the places the same way as for the nodes we
defined for the activity diagram patterns.

We define two global variables go: BOOL and s (see Section 4). In particular,
variable go records whether the CPN should still execute, or should be completely
stopped. This go variable is used to encode the activity final pattern (rule 2); if such
a state is entered, then the whole process must immediately stop. Here, we assume
that, for each transition of the CPN, the guard includes a check [go=true] (for sake
of conciseness, this variable will not be depicted in our graphics). This go variable
is initialized with true, and will be set to false when entering the CPN transition
encoding the activity final state (see Fig. 4(c)).

Note that all edges and places have type “UNIT”, i.e., the same type as in
place/transition nets (we omit that type in Fig. 4 for sake of conciseness). Never-
theless, our CPN is still colored because of the use of global variables, guards in
transitions, and functions updating the variables in transitions.

3.2.2 Translation of the Rules

We now give in Fig. 4 the translation of the rules from Section 2.2.2. The translation
of each activity diagram pattern will result in a CPN fragment having the shape of
Fig. 4(a). Modular composition is performed using the begin and end nodes, using
the same way as for activity diagram patterns in Section 2.2.2.

Rule 1: Initial. The initial state is encoded into an initial place, containing the only
initial token of the resulting CPN, followed by a transition assigning InitState to the
global variable s (InitState will be detailed in Section 4). Finally, an outgoing place
allows connection with the next component.

Rule 2: Activity final. An activity final pattern is translated into a transition updat-
ing the global variable go to false. Hence, since each transition has an implicit guard
checking that go=true, the execution of the CPN is immediately stopped.

Rule 3: Flow final. A flow final pattern is translated into a simple place; hence local
execution is terminated, without any consequence on the rest of the system.

Rule 4: Action. Recall from Section 2.2 that this rule translates the actions using
three different schemes (i.e., Rules 4a, 4b, and 4c).

Rule 5: Sequence. We translate A1 and A2 inductively, and we directly merge the
end node of A1 with the begin node of A2.

206 É. André, C. Choppy, and G. Reggio

Tr(A)

(a) CPN fragments
shape

initi

s := InitState

(b) Rule 1

go := false

(c) Rule 2 (d)
Rule 3

Tr(A1)

Tr(A2)

(e) Rule 5

. .

X := Exp

s := setX
(

s,
TrE(Exp,s))

(f) Rule 4a

X := Exp.op(Exp1, . . . ,Expn)

let (s′,v) = setX
(

s,op
(
TrE(Exp,s),

TrE(Exp1,s), . . . ,TrE(Expn,s)
))

in s := setX(s′,v)

(g) Rule 4b
. .

Exp.op(Exp1, . . . ,Expn)
s := op

(
TrE(Exp,s),

TrE(Exp1,s),
. . . ,TrE(Expn,s)

)

(h) Rule 4c

Fork

join

Tr(A1) Tr(An) Tr(An+1) Tr(An+m)

· · · · · ·

(i) Rule 8: fork/join
. .

cond1 [TrE(cond1,s)] condn [TrE(condn,s)] condn+1 [TrE(condn+1,s)] condn+m [TrE(condn+m,s)]

Tr(A1)

merge1

Tr(An)

mergen

Tr(An+m)Tr(An+1)· · · · · ·

(j) Rule 6: decision merge
. .

cond1 [TrE(cond1),s] cond2 [TrE(cond2),s]

Tr(A1)

merge

Tr(A2)

(k) Rule 7a: while

merge

Tr(A1)

cond1[TrE(cond1,s)] cond2 [TrE(cond2,s)]

Tr(A2)

(l) Rule 7b: repeat until

Fig. 4 Translating precise activity diagrams patterns into colored Petri nets fragments

Activity Diagrams Patterns for Modeling Business Processes 207

Rule 6: Decision/merge. Here, (only) one of the transitions will fire (depending on
the guards2). If the corresponding activity has an end node (activities 1 to n), then the
process continues afterwards from the outgoing place below; otherwise (activities
n+ 1 to n+m), it is stopped when the activity stops.

Rule 7: Loop. The translation of the while loop (resp. repeat until loop) is given in
Fig. 4(k) (resp. Fig. 4(l)).

Rule 8: Fork/join. The translation is quite straightforward. The n+m activities are
subject to a fork; then, only the n first activities are merged later.

A full translation of the activity diagram in Fig. 2 is available in [3].

4 Translation of the Static View and of the Participant List

In this section, we translate the static view and the participant list into a set of
CPN ML declarations. In particular, we translate the type (color set) State together
with a set of declarations of auxiliary types and of functions needed to handle them,
used by the CPN defined in Section 3. Recall that the values of State represent the
current situation of the process participants and of the process data during the exe-
cution of the process itself.

We first present the part of the translation generating the definition of State (Sec-
tion 4.1). Then we give the translation of the expressions (Section 4.2). We termi-
nate with the part concerning the definition of the initial state (Section 4.3), the
particular value of State representing the situation at the beginning of the process
execution. We use the EC example to illustrate our approach throughout the section.
The complete model can be found in [3].

In the following E1: T1, . . . , En: Tn are the participants of the business process,
Class1, . . . , Classm are all the entity classes introduced by the static view (i.e., those
stereotyped by <<object>>, <<worker>> or <<system>>), and Datatype1, . . . ,
Datatypeh are all datatypes included in the static view.

4.1 State Definition

As mentioned earlier, the values of type State represent all possible states of the
process participants during the process execution. State is defined by the list of
type and function declarations shown in Fig. 5(a). The first n components of State
are used to record the associations between the names of the participants (E1, . . . ,
En) and the CPN ML value identifying them; whereas, given Class a class, then
classes: CompType(Class) is the component of State recording all existing instances
(objects) of the class Class with their current states. Function CompType returns the
proper types for the various components of State. Comp generates all the functions
and type declarations needed to handle the State component corresponding either to

2 If several guards are true simultaneously, the choice is nondeterministic, according to the
CPN semantics.

208 É. André, C. Choppy, and G. Reggio

Decls(Datatype1) . . . Decls(Datatypeh); Decls(Class1) . . . Decls(Classm)

Comp(E1: T1) . . . Comp(En: Tn); Comp(Class1) . . . Comp(Classm)

colset State = record
E1: CompType(T1) * . . . * En: CompType(Tn)
class1s: CompType(Class1) * . . . * classms: CompType(Classm); ;

(a) State translation

let att1: T1, . . . , attk: Tk be the attributes of Class

colset ClassID = int;
if Class is stereotyped by <<object>> then
colset ClassState = record att1: TrType(T1) * . . . * attk: TrType(Tk);
otherwise
colset ClassControl = with s1 | . . . | sh;
colset ClassState = record att1: TrType(T1) * . . . * attk: TrType(Tk) * control:
ClassControl;
where s1, . . . , sh are the states of the state machine associated with Class

(b) Definition of Decls(Class)

let att1: T1, . . . , attk: Tk be the attributes of Datatype

colset DatatypeVal = record att1: TrType(T1) * . . . * attk: TrType(Tk);
for any op(T1, . . . , Tn): T operation of Datatype
op: TrType(T1) * . . . * TrType(Tn) → TrType(T)
these operations must be defined by looking at the associated methods in the static view

(c) Definition of Decls(Datatype)

fun setE: State × TrType(T) → State
(d) Definition of Comp(E: T)

colset Classes = list product ClassID * ClassState;

upClass: Classes * ClassID * ClassState → Classes
getClass: Classes * ClassID → ClassState

for any op(T1, . . . , Tn) operation of Class
op: State * ClassID * TrType(T1) * . . . * TrType(Tn) → State

for any op(T1, . . . , Tn): T operation of Class not marked by <<aux>>
op: State * ClassID * TrType(T1) * . . . * TrType(Tn) → (State * TrType(T))

for any op(T1, . . . , Tn): T operation of Class marked by <<aux>>
op: State * ClassID * TrType(T1) * . . . * TrType(Tn) → TrType(T)

(e) Definition of Comp(Class)

Fig. 5 Translation of the static view

Activity Diagrams Patterns for Modeling Business Processes 209

a process participant or to all the instances of a class, whereas Decls generates the
data structures and the relative functions needed to represent a class/dataype.

We give below the definition of State in the case of the EC example.

colset State = record
CLIENT : ClientID * EC : ECommerceID * WH : WarehouseID *

CARRIER : CarrierID * CC : CreditCardID * PP : PaypalID *
ORDER : OrderID * PACK : PackageID * ANS : BOOL *

RES : BOOL * clients : Clients * eCommerces : ECommerces *
warehouses : Warehouses * carriers : Carriers * creditCards : CreditCards *

paypals : Paypals * orders : Orders * packages : Packages;

Function Decls (defined in Fig. 5(b) and 5(c)) transforms a class/datatype present
in the static view into the set of CPN ML type and function declarations needed
to represent its values and to handle them. The values of a datatype Datatype are
represented by the type DatatypeVal, i.e., a record having a component for each
attribute of Datatype. A class Class determines a set of objects having an identity,
typed by ClassID, and a local state typed by ClassState. The local state is a record
having a component for each attribute of Class and, in the case of active objects
and extra component corresponding to the control state, typed by ClassControl, and
defined by the state machine associated with Class.

In the EC example, the WarehouseState is defined as follows:
colset WarehouseState = record control: WarehouseControl;

As all identifiers, the WarehouseID is an integer: colset WarehouseID = int;
And the WarehouseControl is an enumerated type with (in this case) only one

value: WarehouseControl = with Warehouse0;
Function Comp (defined in Fig. 5(d) and 5(e)) transforms a process participant

declaration (resp. a class) in the static view into a set of the type and function decla-
rations needed to define and handle component State recording the participant state
(resp. the states) of all class instances. The set of the states of the instances/objects
of a class is realized by a list of pairs, made of an object identity and an object state.

For example, type Warehouses is defined as a list of pairs of WarehouseID
and WarehouseState: colset Warehouses = list product WarehouseID *
WarehouseState.

The function corresponding to an operation op of a class in the static view is
defined by looking either at the method associated with op in the static view, in
case of business object classes and of <<aux>> operation of workers and system
classes, whereas for the other operations of the workers and system classes they are
defined using the state machines associated with that class. By looking at the state
machine transitions, it will be possible to know how these operation calls modify the
attribute values and the control state. In particular, our mechanism defines functions
set to set a value inside a record (e.g., “State.set CLIENT s id” sets field CLIENT to
id in state s), as well as functions to get a value from the record, and to update it.
The definitions of these set, get and upd functions are omitted here; their definition
for the EC example can be found in [3].

Finally, the TrType function translates a UML type into its corresponding
CPN ML type. Native types (string, boolean, integer) are translated to CPN ML

210 É. André, C. Choppy, and G. Reggio

types (viz., STRING, BOOL, int respectively). Then, we have TrType(Class) =
ClassID, where Class is the name of a UML class of the static view. And
TrType(Datatype) = DatatypeVal, where Datatype is the name of a UML datatype.

4.2 Expressions

We give here the translation of the expressions of EXP into CPN ML expressions,
since they will appear in the activity diagrams as conditions on the arcs leaving the
merge nodes, as well as in the action nodes. We define below by cases the translation
function TrE(Exp,s), that associates a CPN ML with an OCL expression Exp, given
the current state s.

• TrE(X,s) = #X(s), if X is a participant of the process, (#X is the CPN ML opera-
tion selecting a record type component), e.g. CLIENT is translated to #CLIENT(s);

• TrE(C,s) =C, if C is a primitive data type constant;
• TrE(op(Exp1, . . . ,Expn),s) = op′(TrE(Exp1,s), . . . ,TrE(Expn,s)), if op is an op-

eration of a primitive type, op′ will be either op itself or it will be defined case
by case in case of name mismatch between the operations on the UML primitive
types and the corresponding ones of CPN ML;

• TrE(op(Exp1, . . . ,Expn),s) = op(TrE(Exp1,s), . . . ,TrE(Expn,s)), if op is an op-
eration of a datatype defined in the static view;

• TrE(Exp.op(Exp1, . . . ,Expn),s) = op(s,TrE(Exp,s),
TrE(Exp1,s), . . . ,TrE(Expn,s)), if op is an operation of a class defined in
the static view of kind query.

For example, the translation of the guard [RES = true] in Fig. 2 using function TrE
results in the CPN ML expression [#RES(s) = true]. And the OCL expression CAR-
RIER.deliver(PACK) is translated to deliver(s,#CARRIER(s),#PACK(s)).

4.3 Initial Process Execution State

In order to translate a business process into CPNs, and specifically define the initial
execution state of the process itself, we also need a specific list of individual par-
ticipants. Recall that the names in the participant list part of the process model are
roles, not specific individuals.

If n is the number of participants and data not marked by <<out>>, we call a
business process instantiation a list of n ground OCL expressions defined using the
data type defined in the static view, and the constructors of the classes in the static
view itself (operations stereotyped by <<create>>).

Given the business process instantiation (i.e., a list of ground expressions G1,
. . . , Gn), the function Initialize returns the CPN ML expression defining the initial
state, where the participants not marked by <<out>> are initialized with the values
determined by the process instantiation. The other ones are initialized with some
standard default values depending on their type (e.g., 0 for int, false for booleans, nil
for list types, etc.), and the components corresponding to the objects of the various

Activity Diagrams Patterns for Modeling Business Processes 211

classes just contain the states of the objects appearing in the process instantiation.
Hence, we have: val InitState = Initialize(C1, . . . , Cn); Initialize is defined using TrE
(details can be found in [3]).

5 Conclusion and Future Work

In this work, we define precise business models, where the activity diagrams are
inductively defined using a set of patterns combined in a modular way. Hence, we
characterize a set of commonly used behaviors in activity diagrams. Moreover, our
patterns provide the designer with guidelines, thus avoiding common modeling er-
rors. Our second contribution is to provide the activity diagrams built using these
patterns with a formal semantics using colored Petri nets, hence allowing the use of
automated verification techniques.

Implementation. Following our algorithm, we implemented (manually) the EC ex-
ample into the CPN Tools model checker [12]. This results in a CPN containing 24
places, 25 transitions and about 500 lines of CPN ML code; the detailed CPN de-
scription is available in [3], and the CPN Tools model is available online3. Such an
implementation allows for automated verification techniques; among the properties
are for example the fact that the various final nodes may be reached in any case, and
hence that the process is well-formed. Automatizing the translation process from
a precise activity diagram to a CPN using model-driven methods and technologies
does not raise any particular theoretical problem, and is the subject of ongoing work.

Future Works. Among directions for future research is the comparison of our se-
mantics given in terms of CPNs where the process execution state is modeled by
colored tokens, with existing (partial) semantics, such as [15] and [11] (a source
of inspiration for our work). Furthermore, integrating accept and timed events to
our approach is an interesting direction of research. Finally, we aim at finding the
properties relevant for the business process, and providing guidelines to prove them.

Also note that the resulting CPN (including the functions) may be simplified in
some cases. First, some places and transitions added by the translation may be un-
necessary. This is the case, e.g., of a decision/merge pattern with only one activity
on the left side, and one on the right side (n = m = 1). In that case, the only ac-
tivity synchronizing in the merge is the left one; hence, the transition “merge1” in
Fig. 4(j), as well as the place below, are unnecessary. Second, some functions could
be simplified for similar reasons. These simplifications, that are beyond the scope of
this paper, could help to speed up the automated verification of the resulting CPN.

Acknowledgment. We wish to thank Michael Westergaard for his kind help when using
CPN Tools, and anonymous reviewers for their helpful comments.

3 http://lipn.univ-paris13.fr/˜andre/
activity-diagrams-patterns/

http://lipn.univ-paris13.fr/~andre/activity-diagrams-patterns/
http://lipn.univ-paris13.fr/~andre/activity-diagrams-patterns/

212 É. André, C. Choppy, and G. Reggio

References

1. OMG unified language superstructure specification (formal). version 2.4.1 (August 06,
2011), http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/

2. André, É., Choppy, C., Klai, K.: Formalizing non-concurrent UML state machines using
colored Petri nets. ACM SIGSOFT Software Engineering Notes 37(4), 1–8 (2012)

3. André, É., Choppy, C., Reggio, G.: Activity diagrams patterns for modeling business
processes (report version) (2013), http://lipn.fr/˜andre/adp/

4. Bernardi, S., Merseguer, J.: Performance evaluation of UML design with stochastic well-
formed nets. Journal of Systems and Software 80(11), 1843–1865 (2007)

5. Börger, E.: Modeling workflow patterns from first principles. In: Parent, C., Schewe,
K.-D., Storey, V.C., Thalheim, B. (eds.) ER 2007. LNCS, vol. 4801, pp. 1–20. Springer,
Heidelberg (2007)

6. Di Cerbo, F., Dodero, G., Reggio, G., Ricca, F., Scanniello, G.: Precise vs. ultra-light
activity diagrams – An experimental assessment in the context of business process mod-
elling. In: Caivano, D., Oivo, M., Baldassarre, M.T., Visaggio, G. (eds.) PROFES 2011.
LNCS, vol. 6759, pp. 291–305. Springer, Heidelberg (2011)

7. Cook, W.R., Patwardhan, S., Misra, J.: Workflow patterns in Orc. In: Ciancarini, P., Wik-
licky, H. (eds.) COORDINATION 2006. LNCS, vol. 4038, pp. 82–96. Springer, Heidel-
berg (2006)

8. Distefano, S., Scarpa, M., Puliafito, A.: From UML to Petri nets: The PCM-based
methodology. IEEE Transactions on Software Engineering 37(1), 65–79 (2011)

9. Erl, T.: SOA Principles of Service Design. The Prentice Hall Service-Oriented Comput-
ing Series from Thomas Erl (2007)

10. France, R.B., Evans, A., Lano, K., Rumpe, B.: Developing the UML as a formal mod-
elling notation. In: Computer Standards and Interfaces: Special Issues on Formal Devel-
opment Techniques, pp. 297–307. Springer (1998)

11. Grönniger, H., Reiß, D., Rumpe, B.: Towards a semantics of activity diagrams with se-
mantic variation points. In: Petriu, D.C., Rouquette, N., Haugen, Ø. (eds.) MODELS
2010, Part I. LNCS, vol. 6394, pp. 331–345. Springer, Heidelberg (2010)

12. Jensen, K., Kristensen, L.M.: Coloured Petri Nets – Modelling and Validation of Con-
current Systems. Springer (2009)

13. Kordon, F., Thierry-Mieg, Y.: Experiences in model driven verification of behavior with
UML. In: Choppy, C., Sokolsky, O. (eds.) Monterey Workshop 2008. LNCS, vol. 6028,
pp. 181–200. Springer, Heidelberg (2010)

14. Kraemer, F.A., Herrmann, P.: Automated Encapsulation of UML Activities for Incre-
mental Development and Verification. In: Schürr, A., Selic, B. (eds.) MODELS 2009.
LNCS, vol. 5795, pp. 571–585. Springer, Heidelberg (2009)

15. Kraemer, F.A., Herrmann, P.: Reactive semantics for distributed UML activities. In: Hat-
cliff, J., Zucca, E. (eds.) FMOODS/FORTE 2010, Part II. LNCS, vol. 6117, pp. 17–31.
Springer, Heidelberg (2010)

16. Mekki, A., Ghazel, M., Toguyeni, A.: Validating time-constrained systems using UML
statecharts patterns and timed automata observers. In: VECoS, pp. 112–124. British
Computer Society (2009)

17. Peixoto, D.C., Batista, V.A., Atayde, A.P., Pereira, E.B., Resende, R.F., Pádua, C.I.: A
comparison of BPMN and UML 2.0 activity diagrams. In: Simposio Brasileiro de Qual-
idade de Software (2008), http://homepages.dcc.ufmg.br/˜cascini/

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
http://lipn.fr/~andre/adp/
http://homepages.dcc.ufmg.br/~cascini/

Activity Diagrams Patterns for Modeling Business Processes 213

18. Reggio, G., Leotta, M., Ricca, F.: Precise is better than light: A document analysis study
about quality of business process models. In: First International Workshop on Empirical
Requirements Engineering (EmpiRE), pp. 61–68 (2011)

19. Reggio, G., Ricca, F., Scanniello, G., Di Cerbo, F., Dodero, G.: A precise style for busi-
ness process modelling: Results from two controlled experiments. In: Whittle, J., Clark,
T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 138–152. Springer, Heidel-
berg (2011)

20. Workflow Patterns Initiative. Workflow patterns home page,
http://www.workflowpatterns.com

21. Zhang, S.J., Liu, Y.: An automatic approach to model checking UML state machines. In:
SSIRI (Companion), pp. 1–6. IEEE Computer Society (2010)

http://www.workflowpatterns.com

S-TunExSPEM: Towards an Extension of
SPEM 2.0 to Model and Exchange Tunable
Safety-Oriented Processes

Barbara Gallina, Karthik Raja Pitchai, and Kristina Lundqvist

Abstract. Prescriptive process-based safety standards (e.g. EN 50128, DO-178B,
etc.) incorporate best practices to be adopted to develop safety-critical systems or
software. In some domains, compliance with the standards is required to get the
certificate from the certification authorities. Thus, a well-defined interpretation of
the processes to be adopted is essential for certification purposes. Currently, no
satisfying means allows process engineers and safety managers to model and ex-
change safety-oriented processes. To overcome this limitation, this paper proposes
S-TunExSPEM, an extension of Software & Systems Process Engineering Meta-
Model 2.0 (SPEM 2.0) to allow users to specify safety-oriented processes for the
development of safety-critical systems in the context of safety standards according
to the required safety level. Moreover, to enable exchange for simulation, monitor-
ing, execution purposes, S-TunExSPEM concepts are mapped onto XML Process
Definition Language 2.2 (XPDL 2.2) concepts. Finally, a case-study from the avion-
ics domain illustrates the usage and effectiveness of the proposed extension.

Keywords: DO-178B, safety-oriented processes, process modelling, SPEM 2.0,
process exchange, XPDL 2.2, process reuse.

1 Introduction

The increasing awareness of software development being a complex task has since
the 1980’s received increased attention from the research community working on
engineering software processes [11]. Software processes can be defined as coherent
sets of policies, organizational structures, technologies, procedures, and artefacts
that are needed to conceive, develop, deploy, and maintain a software product [11].

Barbara Gallina · Karthik Raja Pitchai · Kristina Lundqvist
Mälardalen University, P.O. Box 883, SE-72123 Västerås, Sweden
e-mail: {barbara.gallina,kristina.lundqvist}@mdh.se,

kpi10001@student.mdh.se

R. Lee (Ed.): SERA, SCI 496, pp. 215–230.
DOI: 10.1007/978-3-319-00948-3_14 c© Springer International Publishing Switzerland 2014

216 B. Gallina, K.R. Pitchai, and K. Lundqvist

The research motivation surrounding software processes is based on the assumption
that there is a correlation between the quality of the process and the quality of the
software developed. According to what is stated in [15], each life-cycle phase may
represent a source of faults that if not handled lead to system failures causing se-
rious incidents. To avoid such failures, processes must be enhanced by preventing
or removing potential faults. To enhance processes, in the context of safety stan-
dards, best systems and software development practices have been collected and
prescriptive processes have been defined. More specifically, these processes man-
date the activities to be executed, the work-products to be provided, the qualifica-
tions needed to execute the activities, the tools to be used to execute the activities,
and the guidelines to be followed. DO-178B [22], for instance, is the de facto stan-
dard for software development in civilian aircraft and its adoption is considered to
be beneficial in contributing to the excellent record with remarkably few failures of
avionics software [24]. Even though no strong correlation between the process and
the product can be claimed in the context of dependable (safety-critical) systems, the
enhancement of the processes permits the development of a deeper safety culture,
leading the development team to act cautiously [16].

For certification purposes, in some domains, compliance with the processes de-
fined within safety standards is mandatory. As investigated in [5], DO-178B leaves
room for interpretation. In some cases, due to its lack of specificity in the guide-
lines, different users may come to different conclusions regarding the acceptability
of a particular document or artefact based on their particular experience. Thus, as
nicely put in [6] “for companies seeking a first-time certification, preparation for
DO-178B can be a daunting challenge”.

To ensure process understanding and thus eliminate inconsistencies in the process
specification, a Process Modelling Language (PML) is necessary. Besides under-
standing, an adequate PML should permit users to document and exchange process
models. In the literature, several PMLs are at disposal, e.g. Software & Systems
Process Engineering Meta-Model 2.0 (SPEM 2.0). As recently reviewed in [23],
SPEM 2.0 has obtained a significant acceptance and the research community is very
active to propose extensions towards SPEM 3.0 in order to enhance its modelling
capabilities, its executability, and its tool support. Thus, we decide to join this active
research community to propose an extension, called S-TunExSPEM, to support the
modelling as well as the exchange of safety-oriented processes. Our focus is limited
to core process elements since our goal is to ease the adoption of S-TunExSPEM by
providing an easy-to-digest PML. To define the set of core elements we have ana-
lyzed DO-178B to extract a list of key safety-related concepts. For these concepts we
have defined: the abstract syntax by extending the SPEM 2.0 meta-model, the con-
crete syntax by providing new safety-oriented icons. Then, to enable process models
interchange towards the usage of existing execution as well as monitoring and sim-
ulation engines, we have provided a mapping between S-TunExSPEM concepts and
corresponding concepts of XML Process Definition Language 2.2 (XPDL 2.2). Fi-
nally, we have used S-TuneExSPEM to model processes for the development of
avionics software.

S-TunExSPEM 217

The rest of the paper is organized as follows. In Sect. 2, we provide essen-
tial background information. In Sect. 3, we present S-TunExSPEM the proposed
SPEM 2.0 extension that targets safety-oriented processes. In Sect. 4, we illustrate
the usage and effectiveness of S-TunExSPEM by modelling a process taken from the
avionics domain. In Sect. 5, we discuss related work. Finally, in Sect. 6 we present
some concluding remarks and future work.

2 Background

In this section, we present the background information on which we base our work.
In particular, in Sect. 2.1 we provide general information on safety-oriented pro-
cesses and their role in the certification process. In Sect. 2.2 we provide essential
information concerning the software development process defined in DO-178B. In
Sect. 2.3, we briefly present SPEM 2.0, the process modelling language from which
stems our extension. Finally, in Sect. 2.4, we briefly present XPDL 2.2, the process
definition language onto which we map our SPEM 2.0 extension.

2.1 Safety-Oriented Processes and Their Role in Certification

Prescriptive safety-oriented processes also known as safety life-cycles are systems
(or software) development processes that prescribe best practices to be followed to
achieve systems capable of managing safety by addressing the causes of accidents,
namely hazards. Generally, a safety process requires safety analysts to identify and
categorize the hazards according to domain-specific levels and risk assessment pro-
cedures. These levels, whose determination is not straightforward due to potential
misconception/misuse/abuse [21], are called Design Assurance Levels (DALs) in
the avionics domain in the context of DO-178B, Automotive Safety Integrity Levels
(ASILs) in the automotive domain in the context of ISO 26262, and Safety Integrity
Levels (SILs) in other domains that inherit the levels from IEC 61508. These levels
(four or five depending on the specific standard) span from negligible to catastrophic
hazards and they determine the number of objectives to be satisfied (eventually with
independence) during the system (or software) development. Once hazards are clas-
sified, safety managers elicit safety requirements aimed at reducing risk. Then, they
verify and validate the correct implementation and deployment of the elicited safety
requirements throughout the safety life-cycle. It must be noted that it is not always
possible to show that the systems developed meet the safety requirements.

Certification refers to the “process of assuring that a product or process has cer-
tain stated properties, which are then recorded in a certificate” [16]. Thus, for safety
certification purposes, product and process-based arguments are needed to claim an
acceptable level of safety. Process-based arguments are of particular value whenever
confidence in product-based arguments is limited.

To provide convincing process-based arguments claiming for compliance, first of
all it is necessary to achieve a well-defined and agreed-upon interpretation of the

218 B. Gallina, K.R. Pitchai, and K. Lundqvist

processes mandated within the standards [19]. Thus, adequate process modelling
means are necessary and should be developed.

2.2 DO-178B

DO-178B [22] has been the de facto standard in the avionics domain. Currently, it is
being replaced by a revised version (DO-178C), which addresses the inconsistencies
of the previous document but preserves its basic and valuable principles. DO-178B
provides guidance for the development of software for airborne systems and equip-
ment. Its purpose is to guarantee a level of confidence in the correct functioning of
the software developed in compliance with airworthiness requirements.

In this subsection, we provide a brief description of the software development
process. This description is then used in Sect. 3 to extract process models. The soft-
ware development process is constituted of four phases (requirements, design, cod-
ing and integration), which can be chained, if a waterfall process model is selected.
The standard, however, does not impose a specific process model. In what follows,
for each phase we provide its characteristics in terms of input/output, guidelines
and roles. For sake of clarity, it must be noted that no role is explicitly assigned
in DO-178B. Roles, however, can be inferred from the skills that are required and
mentioned in the standard.

The requirements phase is characterized by:
Input: System requirements, hardware interface, system architecture, Software

Development Plan, Software Requirements Standards.
Output: Software Requirements Data that include functional as well as non func-

tional requirements.
Roles: requirement engineers in charge of functional requirements and quality

(safety) experts in charge of non-functional requirements.
Guidelines: guidelines, defined in Section 5.1.2 of the standard, contain general

as well as safety specific information.

The design phase is characterized by:
Input: Software development plan, Software Requirements Data, Software De-

sign Standards.
Output: Design description.
Roles: designers in charge of the design decision related to functional require-

ments and quality (safety) experts in charge of the design decision related to non-
functional requirements.

Guidelines: guidelines, defined in Section 5.2.2 of the standard, contain general
as well as safety specific information.

The coding phase is characterized by:
Input: Software development plan, Design description, Software Code Standards.
Output: Source code and object code.

S-TunExSPEM 219

Roles: programmers in charge of the implementation decisions related to func-
tional aspects of the design and quality (safety) experts in charge of the implemen-
tation decision related to non-functional aspects of the design.

Guidelines: guidelines, defined in Section 5.3.2 of the standard, contain general
as well as safety specific information.

The integration phase is characterized by:
Input: Source code and object code, target computer, linking and loading data.
Output: Executable Object Code.
Roles: integration experts.
Guidelines: guidelines, defined in Section 5.4.2 of the standard, contain general

as well as safety specific information.
With respect to the outputs that characterize the phases, a general remark is that

for reuse purposes, outputs (e.g. Software Requirements Data) should be split to
take into consideration the different views.

Details concerning how to break down the work within each phase are not pro-
vided in the standard. For sake of simplicity, we consider that each phase is con-
stituted by a single task. Similarly, no specific tool is mentioned. However, at the
organization-specific level, tools have to be planned (indeed a specific section called
Software development environment is expected within the Software Development
Plan) and used. The standard however recommends to guarantee traceability among
the phases thus an additional task aimed at checking traceability can be considered.

2.3 SPEM 2.0

As recalled in the introduction, a software process can be defined as a coherent set
of policies, organizational structures, technologies, procedures, and artefacts that
are needed to conceive, develop, deploy, and maintain a software product. From this
definition, it emerges that the core conceptual elements that are necessary to define
a process are: guidelines, roles, tools, artefacts, and finally the breakdown structure
to define the work to be executed.

In the literature, several PMLs that support those concepts are available [28, 1, 4].
SPEM 2.0 (Software & Systems Process Engineering Meta-Model 2.0) [18] is one
of them and since it has appealing features in terms of standardization, reuse, tool-
support, etc. (as surveyed in [4]) as well as in terms of an active community working
towards its enhancement [23], it answers our expectations. SPEM 2.0 is the OMG’s
standard for systems and software process modelling and it is defined as a MOF-
based meta-model. SPEM 2.0 meta-model is composed of seven main packages,
which are briefly recalled in what follows.

The Core package defines concepts allowing for the foundation of the other
packages. The Method Content package defines concepts allowing for the speci-
fication of a knowledge base of reusable process elements, as partially depicted
in Fig. 1. The Process Structure package defines concepts allowing for the repre-
sentation of process models composed of inter-related activities, roles (actual per-
formers, called RoleUse), work-products (actual data, called WorkProductUse). The

220 B. Gallina, K.R. Pitchai, and K. Lundqvist

Fig. 1 Taxonomy of MethodContentElement

Fig. 2 Taxonomy of BreakDownElement

Managed Content package defines concepts such as Guidance allowing for the ad-
dition of descriptions in natural language to be attached to other process elements
defined in other packages. The Process with Method package defines concepts such
as Method Content Use elements for the integration of processes defined by using
the concepts available in Process Structure with the instances of concepts available
in Method Content. Fig. 2 depicts a sub-set of these concepts. The Method Plu-
gin package defines mechanisms allowing for the reuse and management of method
content and processes. The Process Behaviour package defines mechanisms and
concepts (i.e. proxy meta-classes) allowing process elements to be linked to exter-
nal models (e.g. UML 2.0 Activity Diagrams) for behavioural specification.

For a subset of the concepts that belong to the meta-model, graphical modelling
elements (icons) are at disposal. In Table 1, we recall those elements for which we
propose a safety-oriented decoration in Sect. 3.1. Tasks, roles and work-products
(shortened as WP in Table 1) are commonly considered as process core elements [4].
Beside these elements, since we are focusing our work on safety-oriented processes,
tools and guidances are also considered being core elements.

Table 1 Icons denoting Method Content (MC) and Method Content Use (MCU) elements

MC Elements MCU Elements
Task Definition Role Definition Tool WP Definition Guidance TaskUse RoleUse WPUse

S-TunExSPEM 221

2.4 XPDL 2.2

XML Process Definition Language 2.2 (XPDL 2.2) [27] is the current version of
the XPDL specification recently issued by the Workflow Management Coalition
(WfMC). XPDL 2.2 is a standard that defines an interchange format for process
models. XPDL 2.2 syntax is specified by an XML schema. A process description
in XPDL 2.2 is an XML document, which includes core modelling elements such
as: Process, Activity, Transition, Participant, DataObject, and DataAssociation, and
Application, Annotation. Below we recall the informal semantics of these elements
and in Fig. 3 we provide the cut of XPDL 2.2 meta-model that includes them.

Annotation represents a piece of textual information that can be attached to ac-
tivities or lanes. Application is used to specify the applications/tools invoked by the
process. Activity represents a logical, self-contained unit of work. Transition rep-
resents the sequence-flow that relates two activities. Each individual transition has
three elementary properties: the from-activity, the to-activity and the condition un-
der which the transition is made. Activities and transitions are the key elements that
form the process, which consists of an oriented graph composed of nodes (activ-
ities) and edges (transitions). Participant is used to specify the participants in the
workflow, i.e., the entities that can execute work. There are six types of partici-
pant: ResourceSet, Resource, Role, OrganizationalUnit, Human, and System. Pool
acts as the container for activities and transitions. Lane represents a performer in-
formation at the activity level. A lane is used to subdivide a pool and thus model
who does what. DataObject (and related concepts such as DataInputs and DataOut-
puts) belongs to the set of new concepts, which have been introduced in XPDL 2.2.
DataObject represents the primary construct for modelling data within a process and
opens the possibility to model global as well as local variables and to model that data
objects are transformed during the process execution [25]. DataInputs and DataOut-
puts are used to specify the I/O parameters needed by e.g. activities. DataAssocia-
tion represents a mapping between a data object on one end and a data input or data
output on the other end. XPDL also offers extensibility mechanisms supported by
the extended attribute modelling element. This element can be used to customize all
the other XPDL 2.2 concepts.

Fig. 3 Cut of XPDL 2.2 meta-model

222 B. Gallina, K.R. Pitchai, and K. Lundqvist

Currently, several commercial and open-source tools (e.g. process execution /
monitoring / simulation engines) take XPDL descriptions in input and it is likely
that soon new releases will be provided to support XPDL 2.2. This is why in Sect. 3
we propose a mapping onto XPDL 2.2 and not onto older versions. Moreover, we
select XPDL 2.2 and not one specific execution language (e.g. Business Process
Execution Language - BPEL) because by focusing on the exchangeability we can
take advantage of the existing and various engines.

3 S-TunExSPEM

As discussed in the previous sections, development processes defined within safety
standards exhibit safety-related concepts, which should be better supported by
PMLs in order to allow process engineers and assessors to better communicate
and easily identify process-based evidence. Thus, in this section we introduce S-
TunExSPEM, the SPEM 2.0 extension aimed at supporting the modelling as well as
the exchange of safety-oriented processes. In particular, in Sect. 3.1 we focus on the
modelling aspect and in Sect. 3.2 we focus on the exchangeability aspect.

3.1 Modelling Safety-Oriented Information

In this subsection, we focus on one aspect of our SPEM 2.0 extension: its safety-
tunability (recalled in the first part of its name S-Tune). Our extension involves
mainly four SPEM 2.0 packages, namely Method Content, Process with Method,
Managed Content and Process Structure.

To provide safety-tunability, we add an attribute to the Activity meta-class to al-
low process engineers to set the safety level. We only consider four levels since
in case of negligible (e.g. no effect, level E in D0-178B) consequences related to
the hazards, no specific safety-related process elements are needed. Moreover, we
extend each meta-class pertaining to the definition of the core process elements
(namely, RoleDefinition/etc. as depicted in Fig. 1) with a corresponding safety-
related meta-class (SafetyRole/etc.). Similarly to what proposed for the core process
elements-related meta-classes, we extend the Method Content Use-related meta-
classes (recalled in Fig. 2) with corresponding safety-related meta-classes, as par-
tially depicted in Fig. 4 (e.g. SafetyWorkProductUse, SafetyRoleUse, etc.). Finally,
the extension of the WorkSequence meta-class permits process engineers to high-
light safety-related flows within the process.

Whenever DO-178B provides information to further classify the core process el-
ements, we add an attribute to the corresponding meta-classes to allow the kind to
be set. For sake of clarity, in what follows we provide some examples. According
to DO-178B, a safety activity (task) can be further characterized by setting its kind
(check, review, or audit). Thus, as shown in Fig. 4, we add an attribute called S-
ActivityKind to the SafetyActivity class and an appropriate enumeration to allow the
kind to be set. As seen in Sect. 2.2, workproducts that flow through the tasks belong
to different kinds (Plans e.g. Software Development Plan, Standards e.g Software

S-TunExSPEM 223

Fig. 4 Cut of S-TunExSPEM meta-model

Design Standards, or other software life-cycle data e.g. code). Thus, an attribute is
added to the SafetyWorkProduct meta-class and an additional enumeration is avail-
able to allow the kind to be set (Plan, Standards, OtherData). This characterization
is possible also for Method Content Use-related meta-classes, as shown in Fig. 4
for SafetyWorkProductUse. DO-178B also allows guidances to be further charac-
terized (namely, checklists to guide for example reviews, guidelines and additional
supporting material). Thus, also in this case, even if not shown in Fig. 4, we add an
attribute to the SafetyGuidance meta-class and an enumeration.

To the meta-classes, we associate intuitive icons. Table 2 shows some of the
S-TunExSPEM icons to be used to model safety-related tasks, roles, tools, work-
products and guidelines. Except for the Safety Work Sequence, which is represented
as a yellow/black line, the remaining elements are obtained by adding a safety hat
to the original Method Content SPEM 2.0 icons presented in Table 1. Similarly, a
safety hat is added for the Method Content Use SPEM 2.0 icons. According to the
safety level, a different colour for the hat can be used (i.e. red for the most critical
safety level, followed by orange, yellow and bitter lemon). In case of sub-processes
related to non-safety functions, no hat is needed.

Table 2 Graphical core elements of S-TunExSPEM

Task Definition Role Definition Tool Definition Work Product Definition Guidance

Safety Work Sequence

224 B. Gallina, K.R. Pitchai, and K. Lundqvist

3.2 Exchangeability of Safety-Related Processes

In this subsection, we focus on the other aspect of our SPEM 2.0 extension: its ex-
changeability (recalled in the second part of its name Ex). In particular, we present
the mapping between some S-TunExSPEM concepts and corresponding XPDL 2.2
concepts. We focus our attention on the safety-related concepts. The interested
reader may find details concerning the entire mapping as well as a pseudo-code
version of the transformation algorithm in [20]. The aim of this mapping is to sup-
port exchangeability of process models and thus enable the exploitation of engines
(available off the shelf) for execution, simulation, monitoring purposes.

Table 3 shows our rather self-explanatory mapping which further develops what
was presented in [10] to take into consideration the beneficial changes (introduced in
XPDL 2.2), which allow for a better semantic mapping. As mentioned in Sect. 2.4,
XPDL 2.2 provides modelling elements for the data/artefacts that flow within a pro-
cess, thus instead of mapping a work-product onto an extended attribute as authors
did in [10], we are able to map a work-product onto a closer semantic element.
Similarly, we map the concept of guidance onto the concept of textual annotation.
Moreover, we also preserve the distinction between RoleDefinition and RoleUse,
by mapping these elements onto more appropriate XPDL 2.2 elements. We indeed
map the reusable method content element role onto the concept of participant and
we map the process-specific task-role (method content use element) onto the con-
cept of lane. Then, to model the safety concern, we make an extensive usage of the
extensibility mechanisms of XPDL.

Table 3 Concepts mapping

S-TunExSPEM XPDL 2.2
SafetyRoleDefinition Participant +extended attribute
SafetyTaskUse Activity +extended attribute
SafetyWorkProductUseDataObject+ extended attribute
SafetyRoleUse Lane in a pool + extended attribute
SafetyGuidance Annotation +extended attribute
SafetyTool Application+extended attribute
SafetyWorkSequence Transition + extended attribute. Remark: from-activity or to-activity

must be an activity representing a SafetyTaskUse

4 Case Study

In this section, we show the usage of S-TunExSPEM by modelling the software
development process defined in DO-178B, which was briefly recalled in natural
language in Sect. 2.2. The purpose is not to provide a detailed model but to pro-
vide evidence with respect to the richer expressiveness of the language as well as
its potential in terms of exchangeability. For sake of clarity, it must be highlighted
that S-TunExSPEM only aims at offering usable and expressive modelling capabil-
ities targeting safety-oriented processes. Its usage should allow process engineers

S-TunExSPEM 225

to model safety concerns in a more straightforward way and to communicate with
safety assessors more easily. S-TunExSPEM does not contribute to safer code di-
rectly. If the process mandated by the standard contributes to safer code and if this
process is properly understood, S-TunExSPEM may help in spreading and formal-
izing its understanding as well as graphically recalling what should be done.

Fig. 5 shows the design phase modelled by using S-TunExSPEM. From the figure
it is straightforward to grasp that this phase is dealing with some design decisions re-
lated to some safety concerns of major (yellow hat) relevance. Moreover, in case of
need, it is straightforward to detect the roles that are responsible of safety related de-
cisions. Hanna is the only human being in charge of the design. Hanna however has
all the skills that are needed since she acts as safety expert as well as designer. Hanna
is in charge of: checking that all the work-products in input are available, following
the guidances and using the appropriate tools to provide all the work-products in
output. It is also straightforward to identify safety-related work-products and thus
be aware about the deliverables that are involved in the certification process.

Fig. 5 DO-178B design phase in S-TunExSPEM

Fig. 6 shows the dynamics of the entire software development process. For space
reasons, however, in Fig. 6 we do not provide in S-TunExSPEM all the character-
istics of the phases as done textually in Sect. 2.2 and graphically in Fig. 5 for the
design phase. For the same reason, we do not show the usage of the safety-oriented
flow that takes place whenever an output from the traceability check tasks is avail-
able as a feedback to the preceding task. Fig. 6 is simply aimed at showing that S-
TunExSPEM permits process engineers to intuitively separate safety concerns from
functional concerns.

In what follows, we provide the essential XPDL 2.2 snippets corresponding to
some S-TunExSPEM process elements, depicted in Fig. 5. We do not provide the
entire code but only significant parts needed to highlight our mapping related to
safety concerns and our timely and pertinent exploitation of the current release of
XPDL. In bold, we highlight the first-class entities for readability purposes.

226 B. Gallina, K.R. Pitchai, and K. Lundqvist

Fig. 6 DO-178B software development process in S-TunExSPEM

<!-Input data of Activity (TaskUse) "Design" -->
<xpdl:Artifact ArtifactType="DataObject" FormalParameterRef="IN"
Id="DO1" Name="SW development Plan"></xpdl:Artifact>
<xpdl:Artifact ArtifactType="DataObject" FormalParameterRef="IN"
Id="DO2" Name="SW Requirements Data (functional)"></xpdl:Artifact>
<xpdl:Artifact ArtifactType="DataObject" FormalParameterRef="IN"
Id="DO3" Name="SW Requirements Data (Safety-related)"> </xpdl:Artifact>
<xpdl:Artifact ArtifactType="DataObject" FormalParameterRef="IN"
Id="DO4" Name="SW Design Standards"> </xpdl:Artifact>

<!-Output data of Activity (TaskUse) "Design" -->
<xpdl:Artifact ArtifactType="DataObject" FormalParameterRef="OUT"
Id="DO5" Name="SW design Description (Functional)"> </xpdl:Artifact>
<xpdl:Artifact ArtifactType="DataObject" FormalParameterRef="OUT"
Id="DO6" Name="SW design Description (Safety-related)"></xpdl:Artifact>

As the above snippets show, work-products involved in the design phase are defined
as Artifacts of type DataObject. Moreover, if artefacts are provided in input (out-
put, respectively), the attribute FormalParameterRef must be set to ”IN” (”OUT”
respectively).

<!-Guidance attached to Activity (TaskUse) "Design" -->
<xpdl:Artifact ArtifactType="Annotation" Id="AN1" Name="Safety guidance">
</xpdl:Artifact>
<xpdl:Artifact ArtifactType="Annotation" Id="AN2" Name="guidance">
</xpdl:Artifact>

As the above snippets show, guidances involved in the design phase are defined as
Artifacts of type Annotation.

<!-Participants of Activity (TaskUse) "Design" -->
<xpdl:Participants>
<xpdl:Participant Id="RO1" Name="Designer"><xpdl:ParticipantType Type=""/)
<xpdl:Description>In charge of design decision related to functional
requirements </xpdl:Description></xpdl:Participant>
<xpdl:Participant Id="RO2" Name="Safety Expert"><xpdl:ParticipantType Type=""/)
<xpdl:Description>In charge of design decision
related to non-functional (safety) requirements
</xpdl:Description> </xpdl:Participant></xpdl:Participants>

As the above snippets show, the involved roles are defined as Participants.

<!-Pool and Lane containing TaskUse "Design" -->
<xpdl:Pools>
<xpdl:Pool BoundaryVisible="true" Id="RO1" MainPool="true"
Name="PARTICIPANT NAME" Orientation="HORIZONTAL" Process="SW Life Cycle">
<xpdl:Lanes>
<xpdl:Lane Id="" Name="Hanna">
<xpdl:Performers>
<xpdl:Performer>RO1</xpdl:Performer><xpdl:Performer>RO2</xpdl:Performer>
</xpdl:Performers>
</xpdl:Lane></xpdl:Lanes></xpdl:Pool></xpdl:Pools>

S-TunExSPEM 227

As the snippets concerning the pool specification states, Hanna, consistently with
what modelled in Fig. 5, is the only human being in charge of the design. Hanna is
the actual role responsible of acting as designer as well as safety expert.

<!-extended attributes for the safety-oriented customization -->
<xpdl:ExtendedAttributes>
<xpdl:ExtendedAttribute Name="Safety Role" Value="Safety Expert">
<xpdl:ExtendedAttribute Name="Safety Data object" Value="SW Development Plan">
<xpdl:ExtendedAttribute Name="Safety Data object"
Value= "SW Requirements Data (Safety-related)">
<xpdl:ExtendedAttribute Name="Safety Data object" Value="SW Design Standards">
<xpdl:ExtendedAttribute Name="Safety Data object"
Value= "SW Design Description (Safety-related)">
<xpdl:ExtendedAttribute Name="Safety Guidelines" Value="Safety Guidance">
</xpdl:ExtendedAttributes>

As the above snippets show, extended attributes customize/specialize the XPDL 2.2
concepts towards safety. As presented in Table 3, an extended attribute is used to
customize each safety-related process element.

5 Related Work

In this section, we discuss those related works that contribute to either provide mod-
elling capabilities for safety-oriented processes or transform process models into
other models for execution purposes. To support the modelling of safety-oriented
processes, a new meta-model, called Repository-Centric Process Metamodel is pro-
vided in [13, 29, 14]. Besides, meta-classes aimed at representing generic process
concepts (e.g. activity), RCPM includes one safety related meta-class (check point),
which specializes a generic meta-class. RCPM also includes one meta-class to rep-
resent safety-related relationships (safety relationship). Finally, a safety level can
be specified for a process. Thus, in principle, safety process engineers are enabled
to model safety-related activities and how these activities are related from a safety-
related flow point of view.

Similarly to what is proposed in [13, 29, 14], we also provide a meta-class to
represent safety-related activities as well as a meta-class to represent safety-related
flows. However, our work highly differs from [13, 29, 14] since we do not introduce
a new meta-model but propose to extend an existing one. Moreover, we broaden our
focus on other conceptual elements that are crucial in the context of safety critical
systems development. The concept of role, for instance is of paramount importance
to stress that every piece of information produced during the development process
requires the appropriate set of skills. Similarly, the way in which an activity is per-
formed is of paramount importance. Thus guidelines represent first-class modelling
elements. Finally, we also propose a rather intuitive safety-oriented concrete syntax.

Another related work which was aimed at modelling DO178B processes by using
OpenUp is presented in [6]. This work is of interest for its pioneering intention of
exploiting existing process modelling capabilities to document safety-related pro-
cesses. Authors conclude that customization of the existing capabilities is needed.

When quality attributes (e.g. safety) are crucial for the systems development, it
becomes relevant to model the techniques that target that attribute. In [7], authors

228 B. Gallina, K.R. Pitchai, and K. Lundqvist

investigate how safety analysis techniques could be modelled in SPEM. They ex-
plore two alternatives: the usage of step eventually combined with guidance or the
usage of task eventually combined with guidance. In our case, we also model the
techniques but we only use guidance since we model the remaining and conceptu-
ally different information onto other modelling elements.

Concerning process models interchange or simulation/execution/monitoring, sev-
eral works exist. Some of these works have investigated approaches for mapping
process models onto interchangeable models others have provided SPEM 2.0 exten-
sions to enhance its support for executability.

In [10], authors provide a mapping as well as a transformation algorithm to trans-
form SPEM1.0 models into XPDL (draft 1.0) models. As a running example they
use a review process. As mentioned in Sect. 3.2, our approach borrows from this
one and goes beyond it since we transform S-TunExSPEM models into XPDL 2.2
models and thus we provide support for safety concerns and a more suitable seman-
tic mapping. In [3], authors make a critical analysis of SPEM 2.0 support for exe-
cutability and then propose a SPEM 2.0 extension, called xSPEM. Their extension
includes a set of concepts and behavioural semantics aimed at enhancing SPEM 2.0
executability. Similarly, in [8, 9], authors propose a tool-supported SPEM 2.0 ex-
tension, called eSPEM to enhance the support for executability. eSPEM is defined
as CMOF meta-model and is based on both SPEM 2.0 and UML Superstructure.
Authors replace the Process Behaviour package recalled in Sect. 2.3 with a new one
defining fine-grain concepts for behaviour specification.

To provide our contribution, we have focused our attention on the textual de-
scriptions of safety-related processes available in safety standards. We have not yet
tried to model real processes and thus the mechanisms for behavioural specifica-
tion, provided within the SPEM 2.0 Process Behaviour package, were enough for
our purposes. So, we have not integrated the above extensions within our proposal.

6 Conclusion and Future Work

To ensure the safety of safety-critical systems, compulsory as well as advisory
safety standards have been issued. Some of these standards define (prescriptive)
safety-oriented processes. Modelling processes in compliance with the standards is
relevant to provide process-based evidence for certification purposes. To support
safety-oriented process engineers in these activities, in this paper we have proposed
a PML, called S-TunExSPEM, obtained by extending SPEM 2.0 with safety-specific
constructs extracted by examing safety standards (mainly DO-178B). Moreover,
besides offering modelling capabilities for safety-related concepts, S-TunExSPEM
provides the first tile to pave the road towards process models exchangeability aimed
at exploiting existing simulation, monitoring and execution engines.

In the immediate future, first of all, we aim at validating the effectiveness of
our proposal in supporting process modelling activities in industrial settings. We
are currently in contact with some military as well as civil organizations responsi-
ble for software development of avionics software. Then, we aim at investigating

S-TunExSPEM 229

model transformation approaches to automatize the generation of XPDL 2.2 models
from S-TunExSPEM models. In a long-term future, we plan to provide a tool-chain
support for modelling and monitoring / executing / etc. safety-processes.

Finally, since safety-oriented processes can be considered as a process line [12],
safety-related process elements of S-TunExSPEM could be considered as variabil-
ity elements and divided into commonalities, partial commonalities, and variabili-
ties either by reusing the current SPEM 2.0 support for variability modelling or by
adopting the in-progress SPEM 2.0 extension for process lines, called vSPEM [17].
The intention would be to contribute to pushing towards a SPEM 3.0 version al-
lowing for richer modelling support as well as exchangeability/execution targeting
safety.

Acknowledgements. This work has been partially supported by the European Project
ARTEMIS SafeCer [2] and by the Swedish SSF SYNOPSIS project [26].

References

1. Acuña, S.T., Ferré, X.: Software Process Modelling. In: Proceedings of the World Multi-
conference on Systemics, Cybernetics and Informatics, Orlando, FL, pp. 237–242 (2001)

2. ARTEMIS-JU-269265: SafeCer-Safety Certification of Software-Intensive Systems with
Reusable Components (2013), http://www.safecer.eu/

3. Bendraou, R., Combemale, B., Cregut, X., Gervais, M.P.: Definition of an Executable
SPEM 2.0. In: Proceedings of the 14th Asia-Pacific Software Engineering Conference,
APSEC, Nagoya, Japan, pp. 390–397 (2007)

4. Bendraou, R., Jezequel, J., Gervais, M.P., Blanc, X.: A Comparison of Six UML-Based
Languages for Software Process Modeling. IEEE Transactions Software Engineering 36,
662–675 (2010)

5. Berk, R.H.: An Analysis of Current Guidance in Certification of Airborne Software.
Master’s thesis, Massachusetts Institute of Technology, Cambridge, USA (2009)

6. Bertrand, C., Fuhrman, C.P.: Towards Defining Software Development Processes in DO-
178B with Openup. In: Proceedings of 21st IEEE Canadian Conference on Electrical and
Computer Engineering, CCECE, Niagara Falls, Ontario, Canada, pp. 851–854 (2008)

7. Chiam, Y.K., Staples, M., Zhu, L.: Representation of Quality Attribute Techniques Us-
ing SPEM and EPF Composer. In: European Software Process Improvement, EuroSPI,
Spain. Springer (2009)

8. Ellner, R., Al-Hilank, S., Drexler, J., Jung, M., Kips, D., Philippsen, M.: eSPEM – A
SPEM extension for enactable behavior modeling. In: Kühne, T., Selic, B., Gervais, M.-
P., Terrier, F. (eds.) ECMFA 2010. LNCS, vol. 6138, pp. 116–131. Springer, Heidelberg
(2010)

9. Ellner, R., Al-Hilank, S., Jung, M., Kips, D., Philippsen, M.: Integrated Tool Chain for
Meta-model-based Process Modelling and Execution. In: Proceedings of First Workshop
on Academics Modeling with Eclipse, ACME, Lyngby, Denmark (2012)

10. Feng, Y., Mingshu, L., Zhigang, W.: SPEM2XPDL-Towards SPEM Model Enactment.
In: Software Engineering. Front. Comput. Sci. China, pp. 1–11. Higher Education Press,
Bejing (2008); Co-published with Springer-Verlag GmbH

11. Fuggetta, A.: Software Process: A Roadmap. In: Proceedings of the International Con-
ference on Software Engineering, ICSE, New York, USA, pp. 25–34 (2000)

http://www.safecer.eu/

230 B. Gallina, K.R. Pitchai, and K. Lundqvist

12. Gallina, B., Sljivo, I., Jaradat, O.: Towards a Safety-oriented Process Line for Enabling
Reuse in Safety Critical Systems Development and Certification. In: Post-proceedings of
the 35th IEEE Software Engineering Workshop, SEW-35, Greece (2012)

13. Hamid, B., Geisel, J., Ziani, A., Gonzalez, D.: Safety lifecycle development process
modeling for embedded systems - example of railway domain. In: Avgeriou, P. (ed.)
SERENE 2012. LNCS, vol. 7527, pp. 63–75. Springer, Heidelberg (2012)

14. Hamid, B., Zhang, Y., Geisel, J., Gonzalez, D.: First Experiment on Modeling Safety
LifeCycle Process in Railway Systems. International Journal of Dependable and Trust-
worthy Information Systems 2, 17–39 (2011)

15. Health and Safety Executive (HSE): Out of Control. Why Control Systems Go Wrong
and How to Prevent Failure (2003)

16. Jackson, D., Thomas, M., Limmet, L.I.: Software for Dependable Systems: Sufficient
Evidence? National Academy Press, Washington DC (2007)

17. Martı́nez-Ruiz, T., Garcı́a, F., Piattini, M., Münch, J.: Modeling Software Process Vari-
ability: An Empirical Study. IET Software 5, 172–187 (2011)

18. Object Management Group: Software & Systems Process Engineering Meta-Model
(SPEM), v2.0. Full Specification formal/08-04-01 (2008)

19. Panesar-Walawege, R.K., Sabetzadeh, M., Briand, L.: Using Model-Driven Engineering
for Managing Safety Evidence: Challenges, Vision and Experience. In: Proceedings of
the 1st International Workshop on Software Certification, WoSoCER, Hiroshima, Japan,
pp. 7–12 (2011)

20. Pitchai, K.R.: An Executable Meta-model for Safety-oriented Software and Systems De-
velopment Processes within the Avionics Domain in Compliance with RTCA DO-178B.
Master’s thesis, Mälardalen University, School of Innovation, Design and Engineering,
Sweden (2013)

21. Redmill, F.: Safety Integrity Levels - Theory and Problems. Lessons in System Safety.
In: Proceedings of the Eighth Safety-critical Systems Symposium, Southampton (2000)

22. RTCA Inc.: Software Considerations in Airborne Systems and Equipment Certification,
RTCA DO-178B (EUROCAE ED-12B), Washington DC (1992)

23. Ruiz-Rube, I., Dodero, J.M., Palomo-Duarte, M., Ruiz, M., Gawn, D.: Uses and Appli-
cations of SPEM Process Models. A Systematic Mapping Study. Journal of Software
Maintenance and Evolution: Research and Practice, 1–32 (2012)

24. Rushby, J.: New Challenges in Certification for Aircraft Software. In: Proceedings of
the Ninth ACM International Conference on Embedded Software, EMSOFT, New York,
USA, pp. 211–218 (2011)

25. Shapiro, R.M.: XPDL 2.2: Incorporating BPMN2.0 Process Modeling Extensions. Ex-
tracted from BPM and Workflow Handbook, Future Strategies (2010)

26. SYNOPSIS-SSF-RIT10-0070: Safety Analysis for Predictable Software Intensive Sys-
tems. Swedish Foundation for Strategic Research

27. Workflow Management Coalition: Workflow Management Coalition Workflow
Standard- Process Definition Interface - XML Process Definition Language, WfMC-TC-
1025, v2.2 (2012)

28. Zamli, K.Z., Lee, P.A.: Taxonomy of Process Modeling Languages. In: Proceedings
of the ACS/IEEE International Conference on Computer Systems and Applications,
AICCSA, Beirut, Lebanon, pp. 435–437 (2001)

29. Zhang, Y., Hamid, B., Gouteux, D.: A metamodel for representing safety lifecycle de-
velopment process. In: Proceedings of the Sixth International Conference on Software
Engineering Advances (ICSEA), pp. 550–556. IEEE Computer Society Press, Barcelona
(2011)

Solving SMT Problems with a Costly Decision
Procedure by Finding Minimum Satisfying
Assignments of Boolean Formulas

Martin Babka, Tomáš Balyo, and Jaroslav Keznikl

Abstract. An SMT-solving procedure can be implemented by using a SAT solver
to find a satisfying assignment of the propositional skeleton of the predicate for-
mula and then deciding the feasibility of the assignment using a particular decision
procedure. The complexity of the decision procedure depends on the size of the
assignment. In case that the runtime of the solving is dominated by the decision
procedure it is convenient to find short satisfying assignments in the SAT solving
phase. Unfortunately most of the modern state-of-the-art SAT solvers always output
a complete assignment of variables for satisfiable formulas even if they can be satis-
fied by assigning truth values to only a fraction of the variables. In this paper, we first
describe an application in the code performance modeling domain, which requires
SMT-solving with a costly decision procedure. Then we focus on the problem of
finding minimum-size satisfying partial truth assignments. We describe and experi-
mentally evaluate several methods how to solve this problem. These include reduc-
tion to partial maximum satisfiability – PMAXSAT, PMINSAT, pseudo-Boolean
optimization and iterated SAT solving. We examine the methods experimentally
on existing benchmark formulas as well as on a new benchmark set based on the
performance modeling scenario.

Martin Babka · Tomáš Balyo
Department of Theoretical Computer Science and Mathematical Logic, Faculty of Mathemat-
ics and Physics, Charles University, Malostranské nám. 2/25, 118 00 Prague, Czech Republic
e-mail: {babka,balyo}@ktiml.mff.cuni.cz
Jaroslav Keznikl
Department of Distributed and Dependable Systems, Faculty of Mathematics and Physics,
Charles University, Malostranské nám. 2/25, 118 00 Prague, Czech Republic
e-mail: keznikl@d3s.mff.cuni.cz

Jaroslav Keznikl
Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod
Vodárenskou vežı́ 2, 182 07 Prague, Czech Republic
e-mail: keznikl@cs.cas.cz

R. Lee (Ed.): SERA, SCI 496, pp. 231–246.
DOI: 10.1007/978-3-319-00948-3_15 c© Springer International Publishing Switzerland 2014

232 M. Babka, T. Balyo, and J. Keznikl

1 Introduction

Boolean satisfiability (SAT) is one of the most important and most studied prob-
lems of computer science. It is important in theoretical computer science, it was
the first NP-complete problem [12], as well as in practical applications. SAT has a
lot of successful applications in many fields such as A.I. planning [19], automated
reasoning [26] and hardware verification [29]. This is possible because of the high
practical efficiency of modern SAT solvers.

An important extension of the SAT problem is the SMT (Sat Modulo Theories)
problem [4, 24]. SMT is a combination of SAT and some theories, for example
arithmetic, arrays, or uninterpreted functions. Like SAT, SMT has numerous ap-
plications for example bounded model checking [1] or performance modeling of
software [10, 11]. SMT solving can be done by using a SAT solver to evaluate the
propositional skeleton of the SMT formula and then checking the result of the SAT
solver using the theory evaluation procedures. It might be the case, that the evalua-
tion of the theory is very time consuming and therefore it is beneficial to try to find
minimum satisfying assignments in the SAT solving phase.

Unfortunately, most of the current state-of-the-art SAT solvers always output a
complete satisfying truth assignment even for formulas that can be satisfied by small
partial truth assignments. It is because these solvers implement the conflict-driven
clause learning (CDCL) DPLL algorithm [7] in a very efficient manner. The search
for a satisfying assignment in these implementations is continued until all variables
are assigned or an empty clause is learned. Therefore the output of the solvers is a
complete truth assignment for satisfiable instances.

In this paper we first give a brief description and example of the challenge of
solving SMT problems with a theory that has a very costly decision procedure.
We show how it can be addressed using a special SAT solver, that gives minimum
partial satisfying assignments. The rest of the paper is then dedicated to finding such
assignments.

In the theory of Boolean functions the problem of finding a partial satisfying truth
assignment with the minimal number of assigned variables is called the shortest
implicant problem. The decision version of this problem has been shown to be ΣP

2
– complete for general formulas [28]. However, for CNF formulas, it is in NP (see
below), thus, theoretically, it is not harder than SAT.

This problem is also referred to as finding minimum-size implicants. It is some-
times confused with the problem of finding minimal-size implicants (implicants that
cannot be shortened, i.e., prime implicants). A minimum-size implicant is always a
minimal-size (prime) implicant but not vice versa. The problem of finding prime
implicants is well studied and there are many papers devoted to this topic, see e.g.
[25]. On the other hand, methods for finding minimum-size implicants are often
hidden inside papers dealing with other problems, where they are only briefly men-
tioned as a possible application. There are however some papers dealing directly
with minimum-size implicants such as [23] and [22].

Our goal is to give an overview of several methods for the minimum satisfying
assignment problem based on reducing this problem to other well known problems.

Solving SMT Problems with a Costly Decision Procedure 233

Two of the described reductions (PMAXSAT and PMINSAT) have not been de-
scribed elsewhere. The others are mentioned in the literature. For more information
please see Section Related Work. In the paper we also do experimental comparison
of the described methods using relevant benchmark problems and state-of-the-art
solvers.

2 Motivation

2.1 SMT Solving with a Costly Decision Procedure

In general, the main motivation for short satisfying assignments is the case of an
SMT-solving [4, 24] algorithm with a costly decision procedure. SMT-solving is a
technique for finding satisfying assignments of predicate-logic formulas. The basic
idea of one of the approaches to SMT-solving is to employ a SAT solver for finding
a satisfying assignment of the propositional skeleton of a given predicate formula.
Having such a satisfying assignment, a decision procedure (specific to the particular
predicate logic) is employed in order to decide the feasibility of the assignment with
respect to the predicates. If the assignment is not feasible, the SAT solver is (incre-
mentally) asked for another satisfying skeleton assignment until the assignment is
feasible or there are no undecided assignments left. As an aside, the state-of-the-art
SMT solvers operate incrementally; i.e., they call the decision procedure already
for partial skeleton assignments. Nevertheless, since this potentially increases the
number of expensive decision procedure calls, we will consider the non-incremental
case. Note, that the unsatisfiability of a propositional skeleton implies unsatisfiabil-
ity of the associated predicate formula (the opposite does not hold). Additionally,
the satisfiability of a predicate formula implies the satisfiability of its propositional
skeleton.

A typical decision procedure of an SMT-solving algorithm is designed to work
with the conjunctive fragment of the predicate logic (i.e., conjunctions of predicates
and their negations). A formula in the conjunctive fragment can be easily obtained
from a satisfying skeleton assignment. Therefore, while deciding feasibility of a
skeleton assignment, it is necessary to evaluate some of the associated predicates;
in the case of a feasible assignment all of them.

Taking into account a decision procedure where an evaluation of a predicate is a
costly operation [11], it is beneficial to minimize the number of evaluated predicates
while deciding feasibility of a skeleton assignment. However, this minimization has
to be performed by the SAT solver by providing small satisfying assignments (as
the decision procedure works with the conjunctive fragment and thus has to evaluate
all the corresponding predicates).

2.2 Stochastic Performance Logic

To illustrate this problem, we describe the Stochastic Performance Logic (SPL) [10,
11], for which evaluating the predicates is a very time-consuming operation and

234 M. Babka, T. Balyo, and J. Keznikl

which will thus greatly benefit from minimization of the satisfying skeleton assign-
ments during SMT-solving. Specifically, it is a predicate logic designed for express-
ing assumptions about performance of code and is motivated by the challenges in
the performance modeling domain. In particular, according to [11], it is beneficial to
provide means for performance testing similar to functional unit-testing approaches
– that is, being able to express performance-related developer assumptions or in-
tended usage in code in a platform-independent way and test or verify them auto-
matically.

The main goal of SPL is thus to capture performance conditions that should be
met by software (expressing performance-related developer assumptions or intended
usage) in a form of predicate formulas, semantics of which is platform-independent.
Specifically, the approach of SPL is based on capturing performance conditions
on a given function relatively to performance of a baseline function (rather than
on absolute metrics); e.g., in case of an encryption function, the baseline can be
the memory-copying function (i.e., no encryption). In practice, SPL formulas are
inserted into code (e.g., as Java annotations) and automatically validated [18].

The semantics of the predicates expressing the relative performance is based on
instrumentation and monitoring of the execution times of both the tested and base-
line function and performing a statistical test in order to validate or invalidate the
statistical hypothesis determined by the predicate. Therefore, the decision procedure
in SPL has to perform (expensive) execution-time measurements and a statistical
test in order to evaluate a single performance predicate. Thus, it is an extremely
time-consuming operation.

To provide a clearer perspective on this issue, we present a brief summary of
the SPL-solving algorithm (Fig. 1). Before going into detail, we first describe the
notation. For a given SPL formula F , the MakeSkeleton function returns its propo-
sitional skeleton FS. AP is a partial assignment of FS enforcing the results of the
previous decision-procedure runs. The ApplyAssignment(F,A) function returns for-
mula F after applying the assignment A ; i.e., with all variables from A replaced
by their assigned values. The PartSAT function returns for the given formula a
satisfying assignment with only some variables assigned (i.e., a partial satisfying
assignment). The tuple (var,val) denotes a variable and its value in an assignment.
The FilterAssigned function returns the assigned variables in the given assignment.
MeasureAndTest is the very expensive decision procedure deciding validity of a
single performance predicate associated with the given skeleton variable. Finally, m
is the result of the procedure (i.e., true or false).

After the propositional skeleton FS is created and the partial assignment AP is ini-
tialized (lines 1-2), a partial satisfying truth assignment Atemp of FS after applying
AP is obtained via the PartSAT function (line 3). If PartSAT indicates that FS af-
ter applying AP is unsatisfiable, the algorithm returns “false” (lines 4-6), because it
implies that the original SPL formula is unsatisfiable with respect to measurements
dictating AP. Otherwise, the algorithm sequentially processes assignments of all as-
signed variables; i.e., those which were not yet checked by the decision procedure
(line 7). Note that the order in which the variables are processed may depend on
further optimization; e.g., the variable corresponding to the “cheapest to measure”

Solving SMT Problems with a Costly Decision Procedure 235

1: FS ← MakeSkeleton(F)
2: AP ← /0
3: Atemp ← PartSAT(ApplyAssignment(FS,AP))
4: if Atemp = f alse then
5: return f alse
6: end if
7: for all (var,val) ∈ FilterAssigned(Atemp) do
8: m ← MeasureAndTest(var)
9: AP ← AP ∪{(var,m)}

10: if val �= m then
11: goto line 3
12: end if
13: end for
14: return true

Fig. 1 SPL-solving algorithm

performance predicate will be processed first. For each assigned variable, it is nec-
essary to call the decision procedure MeasureAndTest (line 8). The result of the
decision procedure is added to AP to be enforced in the subsequent PartSAT runs
(line 9). If the stored result conforms to the current skeleton valuation Atemp, the
next variable is processed. Otherwise (lines 10-12), Atemp is infeasible with respect
to the measurements and a new skeleton valuation has to be obtained from PartSAT .

It is important to stress, that each call of the decision procedure MeasureAndTest
for a typical performance predicate usually takes a non-trivial amount of time; i.e.,
hundreds of milliseconds. Thus, it is obvious that employing a PartSAT function that
supports partial satisfying assignments with the minimum number of assigned vari-
ables (and thus minimizes the number of performance predicates to be evaluated)
would significantly reduce the execution time of the whole SPL-solving algorithm.

The rest of the paper is devoted to the computation of the PartSAT function i.e.
finding minimum satisfying truth assignments of Boolean formulas.

3 Preliminaries

A Boolean variable is variable with two possible values True (1) and False (0).
A literal of a Boolean variable x is either x or x (positive or negative literal). A
clause is a disjunction (OR) of literals. A conjunctive normal form (CNF) formula
is a conjunction (AND) of clauses. The number of variables of a formula will be
denoted by n. A (partial) truth assignment φ of a formula F assigns a truth value
to (some of) its variables. The assignment φ satisfies a positive(negative) literal if
it assigns the value true (false) to its variable and φ satisfies a clause if it satisfies
any of its literals. Finally, φ satisfies a CNF formula if it satisfies all of its clauses.
A formula F is said to be satisfiable if there is a (partial) truth assignment φ that
satisfies F . Such an assignment is called a satisfying assignment. The satisfiability

236 M. Babka, T. Balyo, and J. Keznikl

problem (SAT) is to find a satisfying assignment of a given CNF formula. We will
call φmin a minimum-size satisfying assignment of a formula F if there is no other
satisfying assignment φ of F , such that φ assigns truth values to fewer variables
than φmin.

A conjunction (AND) of literals is called a term. An implicant I of a formula F is
a term, such that any truth assignment that satisfies I also satisfies F . I is a shortest
implicant of a formula F if there is no other implicant I′ of F such that I′ contains
fewer literals than I. I is called a prime implicant if there is no other implicant I′
such that I′ ⊂ I. The shortest implicant problem is to find the shortest implicant of
a given formula. It is easy to observe that an implicant corresponds to a satisfying
partial truth assignment of its formula and the shortest implicant corresponds to a
minimum-size satisfying assignment.

4 Related Work

In the Boolean functions community the problem of shortest implicants is studied
mostly in the context of Boolean function minimization [28], which is the problem
of finding a minimal representation of Boolean functions [13]. The function is often
given in form of a CNF formula and the desired output is an equivalent CNF or
DNF formula of minimum size. In this context, finding shortest implicants is ΣP

2 –
complete for general formulas, [28].

Some papers about enumerating prime implicants also describe methods for find-
ing the shortest implicants. One such paper is by Bieganowky and Karatkevich,
which presents a heuristic for Thelen‘s method [5]. Thelen‘s method is an algo-
rithm for enumerating all prime implicants of a CNF formula. The proposed heuris-
tic should lead to a minimal prime implicant, but it is not guaranteed to find an
optimal solution.

In [25] a 0-1 programming scheme is used to encode the formula and additional
constraints which allow selective enumeration. The constraint can, of course, be the
length of the implicant, therefore this method is suitable for our purposes. Consid-
ering the efficiency of state-of-the-art pseudo-Boolean optimization (PBO) solvers,
this approach appears to be a promising one.

In [23] and [22] the authors describe some methods based on integer linear pro-
gramming (ILP) and binary decision diagrams (BDD).

Finally, in [8] there is a suggestion, that the problem could be solved by incre-
mental SAT solving. This requires us to encode cardinality constraints into SAT.
There are several available methods to do this, a survey of such methods is given in
[2].

5 Solving the Shortest Implicant Problem

We shall start this section by describing a technique called dual rail encoding [9],
which will be used in all of the following methods.

Solving SMT Problems with a Costly Decision Procedure 237

5.1 Dual Rail Encoding

The first step of the dual rail encoding of a CNF formula F is introducing new dual
rail variables representing possible positive and negative assignments to the original
variables of F .

Definition 1 (Dual rail variables). Let X = {x1, . . . ,xn} be a set of Boolean vari-
ables. Then the Boolean variables XDR = {px1,nx1, px2,nx2, . . . , pxn,nxn} are the
dual rail variables for X .

Let φ be a partial truth assignment of X . Then we define φDR as a truth assignment
of XDR so that φDR(pxi) = 1 ⇔ φ(xi) = 1 and φDR(nxi) = 1 ⇔ φ(xi) = 0.

Notice that pxi and nxi are both negative under φDR iff xi is unassigned under φ .
This implies that the number of assigned variables under φ is equal to the number
of dual rail variables that are assigned 1 by φDR. Also observe that given φDR we can
easily construct φ and vice versa.

Definition 2 (Dual rail encoding). Let F be a CNF SAT formula with variables
X = {x1, . . . ,xn} and clauses C. Let CDR be the clauses obtained from the clauses
C by replacing all occurrences of the literal xi by pxi and literal xi by nxi for all
i ∈ {1 . . .n}. The dual rail encoding of F is a CNF formula

FDR =CDR ∧
∧

i∈{1...n}
(pxi ∨nxi)

Example 1 (Dual rail encoding). (x1 ∨ x2)∧ (x3 ∨ x1)∧ (x2 ∨ x3) would be encoded
as (px1 ∨nx2)∧ (px3 ∨nx1)∧ (nx2 ∨nx3)∧ (px1 ∨nx1)∧ (px2 ∨nx2)∧ (px3 ∨nx3).

Lemma 1. Let F be a CNF formula. Then φ is a satisfying assignment of F iff φDR

is a satisfying assignments of FDR.

Proof. Let φ satisfy F . Let C be an arbitrary clause of F , then there is a literal x
(or x) in C that is satisfied under φ . It implies by definition that px (or nx) is True
under φDR. Hence the clause corresponding to C in FDR is satisfied by px (or nx).
The clauses (nxi ∨ pxi) of FDR are satisfied under any φDR since a Boolean variable
cannot be assigned both values True and False.

On the other hand, let φDR satisfy FDR. The (nxi ∨ pxi) clauses ensure that either
pxi or nxi is False under φDR and thus φ is a valid partial truth assignment. Let C
be an arbitrary clause in F . The corresponding clause to C in FDR is satisfied by a
literal px (or nx), surely is then C satisfied by x (or x) under φ .

5.2 Solving via Pseudo-Boolean Optimization

In this section we describe a method for solving the shortest implicant problem
by reducing it to the pseudo-Boolean optimization problem [7]. We start by its
definition.

238 M. Babka, T. Balyo, and J. Keznikl

A PB-constraint is an inequality C0×x0+C1×x1+ · · ·+Ck−1×xk−1 ≥Ck, where
Ci are integer coefficients and xi are literals. The integer value of a Boolean variable
is defined as 1 (0) if it is True (False). Positive (negative) literals of a variable x are
expressed as x ((1− x)) in the inequality. A (partial) truth assignment φ satisfies a
PB-constraint if the inequality holds. An objective function is a sum C0 × x0 +C1 ×
x1 + · · ·+Cl × xl , where Ci are integer coefficients and xi are literals. The pseudo-
Boolean optimization problem is to find a satisfying assignment to a set of PB-
constraints that minimizes a given objective function.

Now, we describe how a CNF formula F can be reduced into a PB optimization
problem. For a clause C = (l1 ∨ l2 ∨ ·· · ∨ lk) we define its PB-constraint PB(C) =
(1× l1+1× l2+ · · ·+1× lk ≥ 1). It is easy to see that a partial assignment φ satisfies
the clause C iff it satisfies its PB-constraint PB(C). For a CNF formula F we denote
its PB-constraints PB(F) = {PB(C) |C ∈ F}.

Example 2 (Reducing a clause into a PB-constraint). (x1 ∨x2 ∨x3) would yield 1×
x1 + 1× (1− x2)+ 1× x3 ≥ 1.

For a given CNF formula F we encode the instance of the shortest implicant
problem as the pseudo-Boolean optimization problem PBO(F) as follows. First
we construct the dual rail encoding FDR of F . Then we translate it into its PB-
constraints PB(FDR). Finally, we define the objective function O(FDR) as O(FDR) =

∑n
i=1(1× pxi + 1× nxi). Let us denote PBO(F) = (PB(FDR),O(FDR)) the pseudo-

Boolean optimization problem with the constraints PB(FDR) and the objective
function O(FDR).

The optimal solution of PBO(F) is a truth assignment that satisfies all the con-
straints and minimizes the objective function. Now, we can use a PB solver to find
an optimal solution of PBO(F) and from the optimal solution we can extract the
shortest implicant in the following way.

Definition 3. For a truth assignment ψ of the dual rail variables we define the term
Iψ as

Iψ =
∧

i : ψ(pxi)=1

xi ∧
∧

i : ψ(nxi)=1

xi

Theorem 1. Let F be a CNF formula and ψ the optimal solution of PBO(F). Then
Iψ is the shortest implicant of F.

Proof. From Lemma 1 and the correspondence of satisfying assignments and impli-
cants we get that Iψ is an implicant of F . By contradiction we show that there is no
shorter implicant. Let I′ be a shorter implicant than Iψ . Then I′ defines a satisfying
assignment φ of F . Realize the fact that the length of the implicant is exactly the
number of the variables assigned by φ which equals the value of the objective func-
tion O(FDR) for φDR. Thus φ allows us to construct a better solution for PBO(F)
than ψ . That is contradictory with ψ being an optimal solution of PB(F).

Solving SMT Problems with a Costly Decision Procedure 239

5.3 Solving via Partial Maximum Satisfiability

In this section we describe a reduction of shortest implicant problem into a partial
maximum satisfiability (PMAXSAT) problem [7]. The reduction is again based on
dual rail encoding, therefore it is very similar to the PB optimization approach. First
we define the PMAXSAT problem.

A PMAXSAT formula is a tuple of two sets of clauses called soft clauses and
hard clauses. A solution of a PMAXSAT problem is a truth assignment that satisfies
all hard clauses and some soft clauses. An optimal solution of a PMAXSAT problem
is a solution φ that there is no other solution that satisfies more soft clauses than φ .

To reduce shortest implicant problem given by a CNF formula F to a PMAXSAT
problem PMAX(F) we first apply dual rail encoding on F . The clauses of FDR are
the hard clauses of PMAX(F). The soft clauses of PMAX(F) are defined as the unit
clauses pxi and nxi for each i. The shortest implicant from the optimal solution of
PMAX(F) is extracted in the same way as in the case of PB optimization. A precise
formulation and proof follows.

Theorem 2. Let F be a CNF formula and ψ an optimal solution of PMAX(F).
Then Iψ is a shortest implicant of F.

Proof. Let ψ be an optimal solution of PMAX(F). All hard clauses of PMAX(F)
are satisfied under ψ and thus by Lemma 1 Iψ is an implicant of F . The implicant
Iψ is also the shortest possible. The existence of a shorter one would allow a partial
truth assignment φ of F such that φDR satisfies more soft clauses than ψ . Indeed, the
number of unsatisfied soft clauses is equal to the number dual rail variables assigned
the value True.

5.4 Solving via Partial Minimum Satisfiability

The partial minimum satisfiability (PMINSAT) problem [7] is analogous to the
PMAXSAT problem with the only difference being, that the goal is to minimize
the number of satisfied soft clauses. The reduction of the shortest implicant problem
to PMINSAT is a straightforward modification of the PMAXSAT reduction. Instead
of using the unit soft clauses pxi and nxi for each i we use pxi and nxi (e.g. the soft
clauses of PMAX(F) are negated).

5.5 Solving via Iterative SAT Solving

The method described in this section is in a way similar to planning as satisfiability
[19]. For a given CNF formula F we construct another CNF formula G(F,k) which
will be satisfiable iff F has an implicant of size k or shorter. We construct and test
G(F,k) for various k iteratively until we find the smallest k such that G(F,k) is
satisfiable. From the satisfying assignment of G(F,k) we extract a shortest implicant
of size k.

240 M. Babka, T. Balyo, and J. Keznikl

To construct G(F,k) we again start by dual rail encoding F into FDR and then we
add a cardinality constraint≤k (px1,nx1, . . . , pxn,nxn) meaning (∑n

i=1 pxi+nxi)≤ k.
There are several methods of encoding cardinality constraints into SAT. A survey
on these methods is given in [2]. Many of these encodings are polynomial (relative
to n and k) in size and time required to construct them. There is even a linear encod-
ing [14]. The resulting formula G(F,k) is a conjunction of the cardinality constraint
and the dual rail encoding of the original formula.

The reduction can be improved by adding a set of n new variables sxi which en-
code if the variable xi is assigned: (pxi∨nxi)→ sxi. Then we encode the cardinality
constraint over sxi instead of pxi and nxi. The improved reduction Gs(F,k) is then

Gs(F,k) =FDR ∧
n∧

i=1

[(pxi ∨ sxi)∧ (nxi ∨ sxi)]

∧≤k (sx1,sx2, . . . ,sxn)

Why is this an improvement? In fact most encodings of cardinality constraints
add a lot of new variables and clauses to the formula. Therefore it is good to use
the cardinality constraint on fewer variables. Overall, Gs(F,k) has fewer variables
than G(F,k) for almost every known cardinality encoding. Also, in our experiments
Gs(F,k) vastly outperformed G(F,k) in terms of time required to solve them by a
SAT solver. A theorem of this approach‘s validity follows.

Theorem 3. Let F be a CNF formula, k be the smallest integer such that Gs(F,k)
is satisfiable. If ψ is a partial truth assignment satisfying Gs(F,k), then the term
Iψ|{px1,nx1,...,pxn,nxn}

1 is the shortest implicant of F.

Proof. Lemma 1 implies that I = Iψ|{px1,nx1,...,pxn,nxn} is an implicant of F . Observe
that I has length exactly k. For the sake of contradiction assume that there is a
shorter implicant I′ with length k′ < k. Then Gs(F,k′) must be satisfiable which is
contradictory with the choice of k.

The proper k can be found for example by iteratively solving Gs(F,k− 1) for k =
n,n−1, . . . ,1 until Gs(F,k−1) is unsatisfiable. A better way is to use binary search
to find the proper k, which we used in our experiments.

What we described above is actually a polynomial reduction of the decision ver-
sion of the shortest implicant problem into SAT. Since SAT is in NP, the shortest
implicant problem for CNF formulas is also in NP.

5.6 Solving via Incomplete Methods

In the previous sections we incorporated various complete methods which find the
optimal solution for certain optimization problems. However it is often the case
that there are also incomplete methods based on local search which solve the same

1 By ψ|{px1,nx1, . . . , pxn,nxn} we mean the restriction of ψ to the variables
px1,nx1, . . . , pxn,nxn.

Solving SMT Problems with a Costly Decision Procedure 241

Table 1 Results for the tested algorithms and instances

Benchmark Set maxsat minsat iter. sat pbo local sat

Random
no. solved (opt. no./approx.) 79 80 80 81 79 (75/1.0003) 81

total time [s] 8767 6516 5887 5037 4005 20.15

SPL
no. solved (opt. no./approx.) 24 35 98 19 98 (20/1.0045) 98

total time [s] 139835 133047 4680 143827 18447 1.51

BMC
no. solved (opt. no./approx.) 0 3 9 3 0 (0/∞) 13

total time [s] 23400 18302 12096 18502 11714 14

The bold value indicates the best result. In the case of local search we also give the number
of optimal solutions and the average approximation ratio.

problems. The general advantage of incomplete solvers is that they run fast and are
able to quickly produce a first but rough estimate of the objective function. The
unpleasant price is that they are not guaranteed to find the optimal solution.

Several incomplete methods have been already designed for the PMAXSAT
problem. They can, of course, be used for solving the shortest implicant instances
using the same encoding. Thus the only difference is that the produced implicant
cannot be proven to be of minimum size. When using incomplete methods we have
to consider the quality of the solutions together with the running time of the algo-
rithms in order to compare the algorithms correctly.

6 Experiment Setup

To compare the practical usability of the above described methods, we conducted
experiments on various benchmark problems. We implemented the reductions in
Java, particularly, to encode cardinality constraints for iterative SAT we employed
the BoolVar/PB Java library [3]. BoolVar/PB implements several methods; we con-
cretely used the “linear” encoding, which implements a sorter based encoding intro-
duced by Eén and Sörensson [14].

For PMAXSAT solving we used Akmaxsat by Adrian Kügel [20] and for PMIN-
SAT minsat [15]. For PB-optimization we selected bsolo [21]. The SAT solver used
for iterative SAT solving was PrecoSAT by Armin Biere [6]. As for the incomplete
solver we chose UBCSAT [27] particularly the g2wsat algorithm.

Our focus was on our own new benchmark set – SPL – but we also used bench-
mark formulas from SATLIB [17].

As for the SPL benchmark, we have exploited several SPL use-cases [10, 11], As
a simple example, consider the following: if a method M uses two implementations
A and B of a library function, we may want to express that performance of M de-
pends on performance of the fastest one of A and B. In the propositional skeleton of
the corresponding SPL formula, this could be expressed (after simplification) by the
following conjunction:

242 M. Babka, T. Balyo, and J. Keznikl

(VA is f aster than B =⇒ VM depends on A)

∧ (VB is f aster than A =⇒ VM depends on B)

∧ (VA is f aster than B ∨ VB is f aster than A)

∧ (¬VA is f aster than B ∨ ¬VB is f aster than A)

Note, that in SPL such a formula corresponds to particular values of performance
parameters (e.g., size of an input array). A scenario typically covers several such val-
ues (e.g., array sizes 100, 200, and 500). We have always considered several scenar-
ios to generate each benchmark CNF formula. In particular, the formula comprises
a conjunction of sub-formulas encoding the individual scenarios. Since the scenar-
ios are independent, all the sub-formulas use disjoint sets of variables. Basically, the
scenarios cover different forms of selection of a suitable variant of a function imple-
mentation, based on the relative performance of the implementation for the given
performance parameters (e.g. size of an input array). In general, the main param-
eters determining the produced sub-formula for each scenario are: (i) the number
of alternative implementation variants, and (ii) the range of performance parame-
ter values to be covered. The former case increases the size of the clauses of the
generated sub-formulas, while the latter increases the number of the sub-formulas.
Overall, the SPL benchmark uses randomization while generating the sub-formulas.
The final formula is produced by repeating the randomized generation process un-
til reaching the required number of clauses and/or variables. For our experiments,
we have generated formulas in a range of sizes, starting with hundreds of clauses
and variables, and ending with tens of thousands. As an aside, in SPL, the relation
“faster than” has a slightly different semantics to “slower or equal”, therefore there
are two different variables in the example – VA is f aster than B and VB is f aster than A –
rather the just one and its negation. Moreover, because of SPL semantics, the vari-
able VM depends on A has to be in the benchmark formula actually represented as a
conjunction of variables “M is at most c1% slower than A” and “M is at most c2%
faster than A”, where c1 and c2 express the level of dependency of M on A.

The other input data are chosen from the SATLIB benchmarks [16]. For our
experiments we selected the “bmc” and “Uniform Random-3-SAT” formulas. The
BMC formulas arise from bounded model checking problem instances which are
modelled as SAT. And the random formulas are from phase transition region with
number of variables ranging from 50 to 250. For further explanation of the formulas
consult the SATLIB benchmark site [16].

The experiments were run for each input type on a computer with Intel i7 920
CPU @ 2.67 GHz processor and 6 GB of memory. The timelimit for a single in-
stance was 1800 seconds. The instances were sorted by the number of variables and
if the solver timed out eight times in a row we stopped running it on that input set.

7 Experiment Results

In Table 1 and Figure 3 we compared the running times required to solve the SAT
formulas (using Precosat [6]) with the running times required to find the shortest

Solving SMT Problems with a Costly Decision Procedure 243

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2200 4400 6600 8800 11000

Im
pl

ic
an

t l
en

gt
h

Variable number

SPL formulas

variable no.
optimal implicant length
g2wsat implicant length

 0

 50

 100

 150

 200

 250

 50 100 150 200 250

Im
pl

ic
an

t l
en

gt
h

Variable number

Random formulas

variable no.
optimal implicant length
g2wsat implicant length

Fig. 2 Comparison of the length of the shortest implicant to the number of variables for SPL
and BMC formulas.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160 180 200

Ru
nt

im
e

[s
]

Solved instances

SPL + BMC + RANDOM formulas

sat iter. sat pbo local minsat maxsat

Fig. 3 Number of solved instances and runtimes of all the algorithms for all the input
instances

implicants by the described methods. In the case of the local search, g2wsat algo-
rithm, (named local) we also provide the number of optimal solutions found and
the average approximation ratio – the length of the found implicant divided by the
optimal length. The total time is the sum of the running times on all the instances.
If the solver did not terminate within the time limit we used the time limit as the
running time. Let us note that the SAT solver was able to solve all the instances.

Verifying if the input formula is satisfiable turns out to be by orders of magnitude
faster than finding the minimum satisfying assignment. We think that this is also the
reason why the iterative SAT is the fastest method.

To support this idea we also experimented with various modifications of iterative
SAT. First we chose different initial lower and upper bounds on the the length of

244 M. Babka, T. Balyo, and J. Keznikl

the shortest implicant. We obtained them using the Akmaxsat solver or set them to 1
and n respecitvely. The other modification is just a simple linear search, i.e., we used
the iterative SAT reduction with the limit u, then u−1 and so on until the optimum
length was found.

Out of all the possible modifications binary search with the initial bounds set to
1 and n performed the best when considering the number of solved instances. It also
always ran faster and solved more instances than the binary search with the bounds
initialized by Akmxasat solver. Thus we think that Akmaxsat spends a nonnegligible
amount of time by deriving the bounds, especially the upper one. This fact is based
on the observation that the linear search starting from the lower bound achieves
comparable results to the binary search.

All the iterative methods solve more instances than the Akmaxsat solver, espe-
cially the method approaching the optimum from below. We also observed that the
iterative methods based on the linear search are less stable than the binary search
with bounds 1 and n, i.e. they never solved more instances. However on some inputs
the linear search approaching the optimum from below performed faster.

The performance of linear search does not substantially depend on the fact if the
bound is derived by akmaxsat – the methods have roughly the same performance.
For the methods starting with lower bounds, which seems to be easy to obtain, we
think that sat solving dominates the running time. For the methods starting with the
upper bound the number of iterations is certainly lower see Figure 2. On the other
hand sat solving is harder since the upper limit on the implicant length prunes less
of the search space than the lower bound. For the lower bound methods the fact that
solving unsatisfiable formulas does seem to have a detrimal effect.

The other complete methods (PMAXSAT, PMINSAT, and PBO) give very sim-
ilar results relative to each other but are considerably weaker than iterative SAT.
It is interesting that there is a relatively big gap between PMAXSAT (worst of the
3) and PMINSAT (best of the 3) since these problems and our encodings for them
are very similar. The difference is probably caused by the different heuristics and
implementation of the solvers.

Let us note that the performance of incomplete methods, especially the quality of
the solution, crucially depends on a proper choice of the parameters of the algorithm
such as the number of steps, number or restarts and overall iteration count. When
these parameters are well chosen the quality of the solution is comparable to the
optimal solution as observed in Figure 2.

Altogether we can conclude that the best strategy is iterative SAT followed by
iterative SAT using simple linear search. For the hard formulas incomplete methods
could also be useful but one has to tweak their parameters.

8 Conclusion

In this paper we have shown that finding minimum-size satisfying assignments is
both useful and can be computed relatively efficiently for many relevant formulas.

Solving SMT Problems with a Costly Decision Procedure 245

The usefulness was demonstrated by describing a class of SMT problems with a
costly decision procedure and an application of this kind – the SPL framework.

We described five possible methods to solve this problem from which the reduc-
tions to PMINSAT and PMAXSAT are novel to our best knowledge. Although the
other three already appeared in the literature, there is no published comparison of
these methods.

We did exhaustive experiments using modern state-of-the-art solvers and relevant
benchmark problems to measure the performance of the methods we described. One
of the benchmark sets was generated according to ideas of the SPL framework.
Unfortunately, we were unable to do direct experiments to measure the usefulness
of the methods for the SPL framework, since it is still under development and the
number of its large-scale case studies is limited.

As for future work, we plan to improve the methods with support for assignment
costs. Finding optimal short assignments with respect to a given assignment cost
function would be beneficial in the cases presented in the motivation section, SPL
in particular. Here, the cost of a SAT assignment could be determined by the exe-
cution times of the measurements to be performed by the SMT decision procedure
in order to decide the feasibility of the skeleton assignment. In consequence, this
would allow preferring the fast measurements to the slower ones while solving the
SPL formulas.

Acknowledgements. This research was partially supported by the SVV project number
267314, the Grant agency of the Charles University under contracts no. 266111 and 600112,
and the Charles University institutional funding SVV-2013-267312. This work was also par-
tially supported by the Grant Agency of the Czech Republic project GACR P202/10/J042.

References

1. Armando, A., Mantovani, J., Platania, L.: Bounded model checking of software using
smt solvers instead of sat solvers. International Journal on Software Tools for Technology
Transfer (STTT) 11(1), 69–83 (2009)

2. Bailleux, O.: On the cnf encoding of cardinality constraints and beyond. CoRR
abs/1012.3853 (2010)

3. Bailleux, O.: Boolvar/pb v1.0, a java library for translating pseudo-boolean constraints
into cnf formulae. CoRR abs/1103.3954 (2011)

4. Barrett, C.W., Dill, D.L., Stump, A.: Checking satisfiability of first-order formulas by
incremental translation to SAT. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS,
vol. 2404, pp. 236–249. Springer, Heidelberg (2002)

5. Bieganowski, J., Karatkevich, A.: Heuristics for thelen’s prime implicant method.
Schedae Informaticae 14, 125–125 (2005)

6. Biere, A.: Precosat home page (2013), http://fmv.jku.at/precosat/
7. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability.

Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (2009)
8. Brauer, J., King, A., Kriener, J.: Existential quantification as incremental SAT. In:

Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 191–207.
Springer, Heidelberg (2011)

http://fmv.jku.at/precosat/

246 M. Babka, T. Balyo, and J. Keznikl

9. Bryant, R.E.: Boolean analysis of mos circuits. IEEE Trans. on CAD of Integrated Cir-
cuits and Systems 6(4), 634–649 (1987)

10. Bulej, L., Bures, T., Horky, V., Keznikl, J., Tuma, P.: Performance Awareness in Compo-
nent Systems: Vision Paper. In: Proceedings of COMPSAC 2012 (2012)

11. Bulej, L., Bures, T., Keznikl, J., Koubkova, A., Podzimek, A., Tuma, P.: Capturing per-
formance assumptions using stochastic performance logic. In: Proceedings of ICPE 2012
(2012)

12. Cook, S.A.: The complexity of theorem-proving procedures. In: STOC, pp. 151–158
(1971)

13. Crama, Y., Hammer, P.L.: Boolean Functions - Theory, Algorithms, and Applications.
In: Encyclopedia of Mathematics and its Applications, vol. 142. Cambridge University
Press (2011)

14. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints into sat. JSAT 2(1-4),
1–26 (2006)

15. Heras, F., Morgado, A., Planes, J., Silva, J.P.M.: Iterative sat solving for minimum satis-
fiability. In: ICTAI, pp. 922–927 (2012)

16. Hoos, H., Stutzle, T.: Satlib benchmark site (2013),
http://www.cs.ubc.ca/˜hoos/SATLIB/benchm.html

17. Hoos, H.H., Stutzle, T.: Satlib: An online resource for research on sat, pp. 283–292. IOS
Press (2000)

18. Horky, V.: Stochastic Performance Logic (SPL) Home Page (2013),
http://d3s.mff.cuni.cz/projects/
performance evaluation/spl/

19. Kautz, H.A., Selman, B.: Planning as satisfiability. In: ECAI 1992: Tenth European Con-
ference on Artificial Intelligence, Vienna, Austria, pp. 359–363 (1992)

20. Kügel, A.: Homepage of Adrian Kügel (2012),
http://www.uni-ulm.de/en/in/
institute-of-theoretical-computer-science/m/kuegel.html

21. Manquinho, V.: bsolo home page (2012),
http://sat.inesc-id.pt/˜vmm/research/index.html

22. Manquinho, V., Oliveira, A., Marques-Silva, J.: Models and algorithms for comput-
ing minimum-size prime implicants. In: Proceedings of the International Workshop on
Boolean Problems (1998)

23. Manquinho, V.M., Flores, P.F., Silva, J.P.M., Oliveira, A.L.: Prime implicant computa-
tion using satisfiability algorithms. In: ICTAI, pp. 232–239 (1997)

24. de Moura, L., Bjørner, N.: Satisfiability modulo theories: An appetizer. In: Oliveira,
M.V.M., Woodcock, J. (eds.) SBMF 2009. LNCS, vol. 5902, pp. 23–36. Springer, Hei-
delberg (2009)

25. Palopoli, L., Pirri, F., Pizzuti, C.: Algorithms for selective enumeration of prime impli-
cants. Artificial Intelligence 111(1), 41–72 (1999)

26. Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning (in 2 volumes).
Elsevier and MIT Press (2001)

27. Tompkins, D.: Ubcsat home page (2012), http://www.satlib.org/ubcsat/
28. Umans, C.: The minimum equivalent dnf problem and shortest implicants. In: FOCS, pp.

556–563 (1998)
29. Velev, M.N., Bryant, R.E.: Effective use of boolean satisfiability procedures in the formal

verification of superscalar and vliw microprocessors. J. Symb. Comput. 35(2), 73–106
(2003)

http://www.cs.ubc.ca/~hoos/SATLIB/benchm.html
http://d3s.mff.cuni.cz/projects/performance_evaluation/spl/
http://d3s.mff.cuni.cz/projects/performance_evaluation/spl/
http://www.uni-ulm.de/en/in/institute-of-theoretical-computer-science/m/kuegel.html
http://www.uni-ulm.de/en/in/institute-of-theoretical-computer-science/m/kuegel.html
http://sat.inesc-id.pt/~vmm/research/index.html
http://www.satlib.org/ubcsat/

Repository-Centric Process Modeling –
Example of a Pattern Based Development
Process

Jacob Geisel, Brahim Hamid, and Jean-Michel Bruel

Abstract. Repositories of modeling artefacts have gained more attention
recently to enforce reuse in software engineering. In fact, repository-centric
development processes are more adopted in software/system development,
such as architecture-centric or pattern-centric development processes.

In our work, we deal with a specification language for development method-
ologies centered around a model-based repository, by defining both a meta-
model enabling process engineers to represent repository management and
interaction and an architecture for development tools.

The modeling language we propose, has been successfully evaluated by
the TERESA project for specifying development processes for trusted appli-
cations centered around a model-based repository of security and depend-
ability (S&D) patterns.

Keywords: Metamodel, Model-Driven Engineering, Process, Security, De-
pendability, Repository, Pattern.

1 Introduction

Non-functional requirements such as Security and Dependability (S&D) [12]
become more and more important as well as more and more difficult to
achieve, particularly in embedded systems development [17]. Such systems
come with a large number of common characteristics, including real-time
and temperature constraints, security and dependability as well as effi-
ciency requirements. In particular, the development of Resource Constrained
Embedded Systems (RCES) has to address constraints regarding memory,

Jacob Geisel · Brahim Hamid · Jean-Michel Bruel
IRIT, University of Toulouse
118 Route de Narbonne, 31062 Toulouse Cedex 9, France
e-mail: {geisel,hamid,bruel}@irit.fr

R. Lee (Ed.): SERA, SCI 496, pp. 247–261.
DOI: 10.1007/978-3-319-00948-3_16 c© Springer International Publishing Switzerland 2014

248 J. Geisel, B. Hamid, and J.-M. Bruel

computational processing power and/or energy consumption. The integra-
tion of S&D features requires the availability of both application domain
specific knowledge and S&D expertise at the same time. Hence capturing
and providing this expertise by means of a repository of S&D patterns and
models can enhance embedded systems development. We seek mechanisms
which allow a safer, easier and faster RCES development processes.

Modeling software and system process is fundamental in order to improve
the quality of applications. The main goal of these processes is to provide
to organizations with the means to define a conceptual framework. For this
reason, several tentatives (including those developed by the OMG1) have been
proposed to model software process. For instance, the SPEM [10] specification
is used for describing a concrete software development process or a family of
related software development processes. It conforms to the OMG MOF meta-
metamodel and is defined as a UML profile.

In this paper, we study the RCPM metamodel which defines a new formal-
ism for system development processes. This formalism is centered around a
repository of modeling artefacts, providing new concepts related to repository
management and interaction. The paper also presents the design environment
for process modeling, supporting reuse in form of predefined libraries of pro-
cess element types. These libraries may be used to facilitate process modeling
from scratch or to adapt existing process models for certain domains. Fur-
thermore, the design environment offers the ability to build new type libraries
based on the recommendations of a targeted domain.

The rest of this paper is organized as follows. In Section 2, we introduce
the context and background related to this work. Then, Section 3 details the
specification of the repository-centric process modeling language. Section 4
describes our proposed tool implementation through an example of a process
model from Railway domain targeting RCES applications. In Section 5, we
present an extract from a process enactment to develop an RCES application.
In Section 6, we review some principal existing process metamodels close to
our work. Finally, Section 7 concludes and draws future work directions.

2 Development Context and Background

2.1 Development Context

The proposed methodology promotes a model-based approach coupled with
a repository of modeling artefacts. In this vision, the modeling artefacts de-
rived from (resp. associated with) domain specific models aim at helping
the application developer to integrate these artefacts as building blocks.
The repository presented here is a model-based repository of modeling
artefacts. Concretely, the repository is a structure that stores specifica-
tion languages and the modeling artefacts coupled with a set of tools to
1 Organization normalizing the UML language.

Repository-Centric Process Modeling 249

manage/visualize/export/instantiate these artefact in order to use them in
engineering processes. For instance, to define an engineering discipline for
S&D that is adapted to RCES, a repository-centric engineering process model
will have to recognize the need to separate expertise on applications (repre-
sented by an application designer), expertise on security and dependability
(represented by an S&D engineer), and expertise on repository-based devel-
opment (represented by a model-driven and pattern engineer).

2.2 Process Models and Artefacts

Models are used to denote some abstract representation of system engineering
processes. Specifically, we need models to represent the process activities,
models to encode the artefacts and software platforms to test, to simulate
and to validate the proposed solutions. Accordingly, comprehension, study
and analysis of system engineering processes require the seek of models which
make it as easy as possible to express and to encode them with the following
characteristics:

• Intuitive: to develop them and teach them,
• Practical: to test and validate them by a simple implementation.
• Formal: to prove their correctness using formal method tools,

As a benefit, the study of problems on high-level models allows deducing prop-
erties on other less abstract models. Here, we deal with the two first charac-
teristics through metamodeling technique and its associated implementation
environment.

2.3 DSL Buildung Process

Domain Specific Modeling Languages (DSML) [2] have recently increased in
popularity to cover a wider spectrum of concerns. A process defining those
DSMLs reuses many practices from Model-Driven Engineering. For instance,
metamodeling and transformation techniques. SEMCO2 is a set of federated
DSLs working as a group, each one relevant to the key concern. A DSL process
3 is divided into several kinds of activities: DSL definition, transformations
and consistency and relationships rules as well as design with DSLs and
qualification. The first three activities are achieved by the DSL designer and
the two last ones are used by the final DSL user.

There are several DSML environments available. In our context, we use the
Eclipse Modeling Framework (EMF) [15] open-source platform to support
such a building process and to create our tool suite. Note, however, that our
vision is not limited to the EMF platform.
2 http://www.semcomdt.org
3 DSL process defines how development projects based on DSL are achieved.

http://www.semcomdt.org

250 J. Geisel, B. Hamid, and J.-M. Bruel

2.4 Working Example

The illustrating example is a simple variant of the well-know V-Model. In
this process model, the developer starts by requirements engineering/ spec-
ification, followed by system specification. In a traditional approach (non
repository-of-pattern-based approach) the developer would continue with the
architecture design, module design, implementation and test.

In our vision, instead of following this phases and performing their re-
lated activities, which usually are time and efforts consuming as well as er-
rors prone, the system developer merely needs to select appropriate patterns
from the repository and integrate them into the system under development
(Figure 1 shows the process and points out the phases with repository interac-
tions). For each phase, the system developer executes the search/select from
the repository to instantiate appropriate patterns in his modeling environ-
ment and then integrates them in his models following an incremental process.
The downside of this approach is that in a very early stage of the develop-
ment, mainly during the requirements and design phases, the requirements
engineers and the system architects have to be aware of existing patterns.

�������	
���
��

�
���������
��

���������������������
���������
��

��������������������

�
���������������������

������������

�����������������

�������
�������������������

�����������������

�������

 �
���������
��

���

 �
���������
��

����������

 �
���������
��

�
�����!�������

����������

�
�����!�������

����
�����

!�������

 ��������
��

������� ��������
��

�
��"������������
��

!�����

 ��������
��!�����

 ��������
���
�����

 ��������
��#$#$%#��

��������
��
���������������
��

����������
��

�
�
��

��
�
�
��

�
�

�
�
��
��
�
�
��

�
�

����������
��

����������
��

����������
��

�������	
���

���

����	�

���	�������
�	��		�
��
���
���

���
��
�

���������
����������

� ���	�

!��	��"	��
#
���	�$

!����
%�����

&

��

��

����

����

��

����

��

����

����

��

����

����

	�

	���

	���

	���

�

����������

&������������

�
���������
��

����������

�������������

�������

�
��"������������
�&

����������
��

����

����

��������	�
��
��������������������

��
�
��

����
��

����������	

�
%���	��

���	����	

�
%���	��

���&�

���
��������

'	%������$
�	���	���

���&�

���
�����

���

&�

���
��

 �������'������

���
���

�����������

���
���

Fig. 1 Railway Engineering Process Lifecycle

3 Repository Interaction Metamodel

In the following subsection, we highlight the sub-metamodel architecture of
the Repository- Centric Process Metamodel (RCPM), while the next subsec-
tions concentrate on the presentation of the repository interaction part of the
RCPM metamodel.

Repository-Centric Process Modeling 251

3.1 RCPM

The RCPM is a metamodel defining a new formalism for system development
process modeling based on a repository of modeling artefacts. The RCPM
metamodel contains different sub-metamodels, as shown in Fig. 2, which offer
different capabilities. RCPM is oriented to support:

Fig. 2 Design principles of RCPM

• The development of embedded systems. The metamodel orients to facil-
itate the modeling the development of embedded systems, including the
concepts of partitions which are popular in embedded system development.

• Reuse of existing solutions. The metamodel enables to model existing mod-
eling artefacts and their integration process. For instance, the metamodel
supports the repository-centric design methodology, introducing new con-
cepts on repository management and interactions with the traditional pro-
cess metamodel.

• A safety process lifecycle. As we can find in standards as IEC 61508 [7],
there are more and more requirements for transforming traditional pro-
cesses to safety processes to meet specific safety requirements of systems or
software. This metamodel adds the concepts used in the safety lifecycle to
support this kind of process model, such as verification and validation [4].

In this paper, we concentrate on presenting the repository part of the RCPM
metamodel. For a general description and other referenced metamodel con-
cepts see [3].

3.2 Repository Interaction Sub-Metamodel

Our specification language is described by a metamodel that we call Repos-
itory Interaction Sub-Metamodel, as depicted in Figure 3. It constitutes the
base of our process modeling language, describing all the concepts (and their
relations) required to capture all the facets of Repository Interactions.

252 J. Geisel, B. Hamid, and J.-M. Bruel

Step ToolWorkproduct

Task

Role

Repository

BreakdownElement

TaskTypeLibraryTaskType

ProcessElementType

RepositoryInteractionTaskType

tools

0..*
mandatoryInputFrom 0..*

steps
0..*

primaryPerformedBy

0..*

types
0..*

recommendedBDE
0..*

type
0..1

respoitory
1

Fig. 3 Overview of the Repository Interaction Sub Metamodel

The principal classes of the metamodel are described with the Ecore no-
tations of the Eclipse Modeling Framework4 in Figure 3 as well as the link
with the libraries models 5. As we shall see, we define a set of libraries with
a set of tasks and steps dedicated to specify the repository interaction tasks
and steps during the process model enactment. These libraries will be used as
external models to type the process tasks. The meaning of the main elements
of the metamodel with the working example are described in the sequel.

• BreakdownElement. A BreakdownElement is an abstract generalization
for any Process Element that is part of a breakdown structure. Any of its
concrete sub-classes can be used to compose an Activity*6.

• Task. A Task is a WorkBreakdownElement* that represents the work that
should be done in an Activity*. The Task should be related to a Role, a
WorkProduct and, if necessary, a Tool. In our example, as visualized in
Figure 1 we define a set of Tasks, which are related to repository manage-
ment (initialize a repository, manage a repository) and those related to
repository interactions (instantiate a pattern, deposit a pattern, integrate
a pattern). The later Task is not strictly related to repository interaction,
but may lead to some repository interactions. A Task is decomposed into
Steps, which detail what exactly is done in which order. A Task has nor-
mally WorkProducts (mandatory or optional) as input and output.

4 http://www.eclipse.org/modeling/emf/
5 We use gray to label concepts imported from the library model
6 Elements marked with * are not shown in Figure 3, please refer to [3] for more

details

http://www.eclipse.org/modeling/emf/

Repository-Centric Process Modeling 253

• Step. A Step is a detailed description of the work to be done. It is the
smallest entity in the decomposition of Process*, Phase*, Activity* and
Task. It describes the elementary step, which leads to the realization of a
WorkProduct. For instance, instantiate a pattern task may be decomposed
into three steps: search a pattern in the repository, select the appropriate
one from the search results list and finally import the selected one into the
development environment.

• Role. A Role describes the role of an actor in a Process/Phase/Activity/
Task. It is generally linked to the realization of a WorkProduct for a specific
Task using a specific Tool. In our example, we can associate repository
manager role to the actor responsible of the manage a repository task and
system engineer role to actor responsible of the instantiate a pattern task.

• WorkProduct. A WorkProduct is a special BreakdownElement that rep-
resents an input and/or output for a Task. The WorkProduct is related to
a Task and a Role. A pattern is a key workproduct of the proposed process
model.

• Tool. A Tool represents the tool used to fulfill a Task and to realize a
WorkProduct. Here, we deal with a set of tools supporting to the repository
management (Repository Admin) and repository interactions (Repository
Retrieval).

• ProcessElementType. The ProcessElementType allows to type a
ProcessElements*, adding mandatory or optional properties to a ProcessE-
lements*, as well as references to different Phases*, Roles, Tools, WorkProd-
ucts or Activities*.

• TaskType. A TaskType allows to type a Task to reuse capitalize knowl-
edge about Roles, Tools, WorkProducts and Steps. This Type links these
information.

• RepositoryInteractionTaskType. A RepositoryInteractionTaskType is
a specialization of a TaskType introducing the idea of Repository. Thess
TaskTypes can be linked to a Repository. In our example, we could define
instantiate a pattern as RepositoryInteractionTaskType instance.

• TaskTypeLibrary. A Library containing TaskTypes which are common
to an application domain or standard recurring TaskTypes and can be
reused to type recurring Tasks in a process or Tasks in different processes.
The repository specific interaction tasks may be grouped into one or mul-
tiple libraries to foster reuse.

• Repository. It describes the repositories used in development process. As
the repository-centric development processes are more and more adopted
in software/system development, such as architecture-centric or pattern-
centric development processes. In our example, we use a repository of S&D
patterns.

254 J. Geisel, B. Hamid, and J.-M. Bruel

Fig. 4 Overview of the Naravas Architecture

4 Tool Architecture and Implementation

Using the proposed metamodels, ongoing experimental work with SEM-
COMDT7 (SEMCO Model Development Tools, IRIT’s editors and platform
as Eclipse plugins) is realized, testing the features of Naravas, a tool for
formalizing process models and documentation generation. In the following
subsections, we present our tooling. Figure 4 depicts the architecture of the
development framework based on Eclipse Technologies.

4.1 How the Process Model Editor Is Built?

We used the Eclipse EMF based Ecore editor to model our Repository-centric
Process Metamodel (RCPM), creating one Ecore file containing the three
packages needed for the process model, the core package, the type pack-
age and the process package. Minor modifications have been applied on the
metamodel to support an EMF based editor and HTML documentation gen-
eration. The generated editor code was modified to limit the user actions on
the ones needed and to enhance user experience (e.g. modifying the process
model creation workflow).

The second part of the project was to create the HTML code generator
based on Acceleo8, a Model-to-Text (M2T) component of the Eclipse Mod-
eling Framework. We developed modularized code transformation templates,
generating one HTML file per process model object and type and managing
the links among them.
7 http://www.semcomdt.org
8 http://www.eclipse.org/acceleo/

http://www.semcomdt.org
http://www.eclipse.org/acceleo/

Repository-Centric Process Modeling 255

4.2 Process Model Designer: Naravas

Naravas is an EMF tree-based editor for specifying models of processes, li-
braries of types and generation of documentation. Naravas implements several
facilities conforming to the RCPM metamodel.

4.2.1 Library Design

The design environment of the type libraries is presented in Figure 5. The
figure represents a Task Type Library for Repository Task. The Task Types
presented here are identically to the ones presented in Figure 1. For instance,
the second Repository Interaction Task Type (Artefact Instantiation) show
the mandatory steps (Search repository, Select Patterns in Repository and
Import Patterns to IDE), the optional Roles, the Tool and the output Work
Product for a Task typed by this type. The other Task Types in this library
represent Tasks with Repository Interactions, encountered multiple times in
the shown process (e.g. Repository Management, Artefact Publishing, Arte-
fact Retrieval).

4.2.2 Process Model Design

The design environment is presented in Figure 6. Naravas enables the user to
model processes in a tree-based manner. There is a design palette on the right
(enabled by a right click on an element), a tree view of the project on the left
and the main design view in the middle. As we shall see, the design palette is
updated regarding the targeted process element. The used example shows the
Railway Application Process built by Ikerlan. It represents the Repository,
the Phases, Activities, Tasks, Steps, Roles, Tools, Work Products and Flows
among the Elements, such as Control, Retrieve, Verification and Validation
Flows. The Process model editor allows to add, delete, move and modify
the elements, as well as conformance validation. It also allows the import
of external resources, such as Process Element Type Libraries. The usage of
the Task Types is shown in Figure 7. When creating a Task, it is possible
to type it from the Task Types already defined in a Library. By choosing a
Type (Repository Interaction), the mandatory Steps, Work Products, Roles
and Tools are filled in automatically (Search Repository, Select Artefact in
Repository, Import Artefact to IDE), and the mandatory ones are proposed
in addition to the standard items when creating new entities.

4.2.3 Conformance Validation

Further, using EMF features, we added the metamodel conformance valida-
tion to the editor. The process validation tool is used to guarantee design va-
lidity conforming to the process metamodel. Process model validation starts
by right clicking on Process Core and pressing the Validation tool. In our

256 J. Geisel, B. Hamid, and J.-M. Bruel

Fig. 5 Naravas for Library Design Environment

Fig. 6 Naravas Process Design Environment

example, the process model built by Ikerlan for the railway domain can be
validated, where a violation of a metamodel construct will yield an error
message (see Figure 8).

4.2.4 Documentation Generation

Documentation generation of a process model is triggered by running the
SEMCO Model to Doc tool. Our implementation allows so far to generate
HTML documentation using M2T transformations through Acceleo.

Repository-Centric Process Modeling 257

Fig. 7 Example of the Usage of a Library - Repository Interaction Task Types

Fig. 8 Process Validation

5 Process Model Enactment

In this section we will present an extract of the process model and its en-
actment to build an industry control application from the railway called
Safe4Rail acting as a TERESA case study. In this case, SIL4 level is tar-
geted. A repository of patterns for TERESA called Gaya was built. Gaya
contains so far (as of March 2013):

• Users. 5 organizations and 10 users.
• Patterns. 59 S&D patterns.

The following table depicts a subset of inputs and outputs consumed and
produced during the chosen activities of the process enactment, mainly those
related to the repository. Repository Interactions are highlighted, as well as
results from Repository Interaction.

258 J. Geisel, B. Hamid, and J.-M. Bruel

Table 1 Description of the Railway Process Enactment (Extract from the Module
Detailed Design)

Phase Activity Task

Module
Detailed
Design

SW Detailed
requirement
and Design -
SW detailed
requirement
specification

Define the SW detailed requirements
Step Role Tool WP in WP out
Analysis
and Defini-
tion

SW Archi-
tect, SW
Designer

Rhapsody,
DOORS

SW Require-
ments Speci-
fication, SW
Architecture

SW Detailed
Require-
ments
Specification

SW Detailed
requirement
and Design -
SW detailed
design

Define the SW detailed design
Step Role Tool WP in WP out
Define
Internal
Description

SW De-
signer

Rhapsody SW Archi-
tecture, SW
Detailed Re-
quirements
Specification

SW Detailed
DesignDefine

Compo-
nents

SW De-
signer

Rhapsody

Define
Interfaces

SW De-
signer

Rhapsody

Define
Communi-
cation

SW De-
signer

Rhapsody

Generate
SW De-
tailed
Design

SW De-
signer

Rhapsody

Instantiate Design Patterns
Step Role Tool WP in WP out
Search
Reposi-
tory

SW De-
signer

Repository
Retrieval
Tool

SW Archi-
tecture, SW
Architec-
tural
patterns,
SW
Detailed Re-
quirements
Specifica-
tion, SW
Detailed
Design

SW
Detailed
Design
Patterns

Select
Patterns
in Reposi-
tory

SW De-
signer

Repository
Retrieval
Tool

Import
Pattern to
IDE

SW De-
signer

Repository
Retrieval
Tool, Rhap-
sody

Integrate Patterns
Step Role Tool WP in WP out
Elicitation SW De-

signer
Rhapsody SW Detailed

Design, SW
Detailed
Design
Patterns

SW Detailed
Design with
integrated
PatternsBinding SW De-

signer
Rhapsody

Consoli-
dation

SW De-
signer

Rhapsody

Repository-Centric Process Modeling 259

6 State of the Art

State of the Art of process metamodels have been analyzed from a perspective
of repository interactions, embedded systems and safety lifecycles support.
Process metamodels can be modeled from different types of views: activity-
oriented, product-oriented and decision-oriented views [13, 6]. Most process
metamodels and process frameworks based on metamodels adopt the activity-
oriented views, such as SPEM, RUP and OPF.

The SPEM (Software & Systems Process Engineering Metamodel) [10] is a
de facto, high-level standard for process modeling used in object-oriented soft-
ware development. The scope of SPEM is intentionally limited to the minimal
elements necessary to define any software and systems development process,
without adding specific features for particular development domains or dis-
ciplines. The goal is to accommodate a large range of development methods
and processes of different styles, cultural backgrounds, levels of formalism,
lifecycle models, and communities.

The RUP (IBM’s Rational Unified Process Framework) and its extension
RUP SE (SE stands for System Engineering) are derived from the Unified
Process Framework [8]. Both metamodels are, like SPEM, described by a
UML profile and define a Process Modeling Language (PML). The OPEN
Process Framework (OPF) [11] is a componentized OO development method-
ology underpinned by a full metamodel, encapsulating business as well as
quality and modeling issues.

In addition to the above mentioned process metamodels, exist other
activity-based metamodels like OOSPICE [5] and SMSDM [14]. Other types
of process metamodels such as decision based etc., do not orient to safety crit-
ical system development. As far as we know, the studied process metamodels
unfortunately do not support safety related development processes explicitly
or facilitate the modeling of safety lifecycles. Many safety critical systems
use Safety Instrument Systems (SIS) to manage the safety lifecycle, however,
these SIS do not have process metamodels. Works like [1] propose to model
different standards and try to give recommendations during the application
development.

[16] presents a survey of business process model repositories and their
related frameworks. This work deals with the management of a large collec-
tions of business processes using repository structures and providing common
repository functions such as storage, search and version management. It tar-
gets the process model designer allowing the reuse of process model artefacts.
A comparison of process model repositories is presented to highlight the de-
gree of reusability of artefacts. For example, the repository for process models
described in [9], supports activity, control-flow and monitoring aspects. The
metamodel described in this paper may be used to specify the management
and the use of this kind of process models. In fact, a process model aspect or
the process model as a whole of the aforementioned process models can be
seen as artefacts supported by our metamodel. In return, the vision of the

260 J. Geisel, B. Hamid, and J.-M. Bruel

business process model repositories may be used in our work to manage the
process element type libraries.

7 Conclusion

In our work, we target the development of a modeling framework built around
a model-based repository of modeling artefact in order to be used in an
MDE approach for trusted RCES applications in several domains. In this
paper, we have proposed a modeling language to specify repository-centric
process models, providing new appropriate concepts related to repository
management and interaction. The design environment supports reuse in form
of libraries of types, facilitating process modeling. The later may be used to
specialize process models for a certain domain. In this case, the library is
build on the recommendations of the targeted domain. Furthermore, we walk
through a prototype with EMF editors supporting the metamodel. Currently
the tool is provided as part of a tool-suite named SEMCOMDT as Eclipse
plugins.

The design environment presented here has been evaluated in two use
studies from TERESA industrial partners mainly for a repository of S&D
and resource property and pattern modeling artefacts. By this illustration,
we can validate the feasibility and effectiveness of the proposed specification
and design frameworks.

As future work, we plan to study new libraries for additional process ele-
ments. Also, we will seek new opportunities to apply the framework to other
domains.

References

1. Cheung, L.Y.C., Chung, P.W.H., Dawson, R.J.: Managing process compliance,
pp. 48–62. IGI Publishing, Hershey (2003)

2. Gray, J., Tolvanen, J.-P., Kelly, S., Gokhale, A., Neema, S., Sprinkle, J.:
Domain-Specific Modeling. Chapman & Hall/CRC (2007)

3. Hamid, B., Zhang, Y.: D3.2 - Common Engineering Metamodels. Technical
report, TERESA-Project (2012), http://www.teresa-project.org/

4. Hamid, B., Geisel, J., Ziani, A., Gonzalez, D.: Safety lifecycle development
process modeling for embedded systems - example of railway domain. In: Avge-
riou, P. (ed.) SERENE 2012. LNCS, vol. 7527, pp. 63–75. Springer, Heidelberg
(2012)

5. Henderson-Sellers, B., Gonzalez-Perez, C.: A comparison of four process meta-
models and the creation of a new generic standard. Information & Software
Technology 47(1), 49–65 (2005)

6. Hug, C., Front, A., Rieu, D., Henderson-Sellers, B.: A method to build infor-
mation systems engineering process metamodels. J. Syst. Softw. 82, 1730–1742
(2009)

7. I. S. IEC 61508. Functional safety of electrical/electronic/programmable elec-
tronic safety-related systems (2000)

http://www.teresa-project.org/

Repository-Centric Process Modeling 261

8. Kruchten, P.: The Rational Unified Process: An Introduction. Addison-Wesley
Longman Publishing Co., Inc., Boston (2003)

9. Liu, C., Lin, X., Zhou, X., Orlowska, M.E.: Building a repository for workflow
systems. In: TOOLS (31), pp. 348–357. IEEE Computer Society (1999)

10. OMG. Software & Systems Process Engineering Meta-Model Specification
(2008)

11. OPF Repository Organization. OPEN Process Framework (OPF) (2009),
http://www.opfro.org/

12. Ravi, S., Raghunathan, A., Kocher, P., Hattangady, S.: Security in embedded
systems: Design challenges. ACM Trans. Embed. Comput. Syst. 3(3), 461–491
(2004)

13. Rolland, C.: A comprehensive view of process engineering. In: Pernici, B.,
Thanos, C. (eds.) CAiSE 1998. LNCS, vol. 1413, pp. 1–24. Springer, Heidelberg
(1998)

14. Standards Australia. Standard Metamodel for Software Development Method-
ologies (2004)

15. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework 2.0, 2nd edn. Addison-Wesley Professional (2009)

16. Yan, Z., Dijkman, R.M., Grefen, P.: Business process model repositories - frame-
work and survey. Information & Software Technology 54(4), 380–395 (2012)

17. Zurawski, R.: Embedded systems. CRC Press Inc. (2005)

http://www.opfro.org/

R. Lee (Ed.): SERA, SCI 496, pp. 263–277.
DOI: 10.1007/978-3-319-00948-3_17 © Springer International Publishing Switzerland 201

Applying CBD to Build Mobile Service
Applications

Haeng-Kon Kim and Roger Lee

Abstract. Mobile service applications must be developed following component
based and object oriented principles of encapsulation, abstraction and code
reusability. Future changes to a particular functionality developed in this context
will be paid only as per the individual instance of change according to its single-
instance complexity. This has to be taken into account from the very beginning in
the mobile service applications design. For development of mobile service
applications, the use of appropriate existing tools is generally supported.
Specifically, open source software should be used where possible. The set of tools
in use must be kept to a minimum. The tools / external libraries / external
dependencies that have to remain available to the software after development is
completed must be approved in writing.

In this paper, we discuss some of the problems of the current mobile service
applications development and show how the introduction of CBD (Component
Based Development) provides flexible and extensible solutions to it. Mobile
service applications resources become encapsulated as components, with well-
defined interfaces through which all interactions occur. Builders of components
can inherit the interfaces and their implementations, and methods (operations) can
be redefined to better suit the component. New characteristics, such as
concurrency control and persistence, can be obtained by inheriting from suitable
base classes, without necessarily requiring any changes to users of these resources.
We describe the MSA (Mobile Service Applications) component model, which we
have developed, based upon these ideas, and show, through a prototype
implementation, how we have used the model to address the problems of
referential integrity and transparent component (resource) migration. We also give
indications of future work.

Haeng-Kon Kim

School of Information Technology, Catholic University of Daegu, Korea
e-mail: hangkon@cu.ac.kr

Roger Lee
Dept. of Computer Science, Central Michigan Univ. Mt.Pleasant, MI 48859, U.S.A
e-mail: lee@cps.cmich.edu

4

264 H.-K. Kim and R. Lee

Keywords: Mobile Devices, Mobile Application Development, User Interface
Design, Mobile Service Applications, Component-Based Development,
Referential Integrity, Mobility, Distributed Systems, Mobile Application Model.

1 Introduction

Mobile applications are a term used to describe Internet applications that run on
smart phones and other mobile devices. Mobile applications usually help users by
connecting them to Internet services more commonly accessed on desktop or
notebook computers, or help them by making it easier to use the Internet on their
portable devices. A mobile app may be a mobile site bookmarking utility, a
mobile-based instant messaging client, Gmail for mobile, and many other
applications. Mobile apps are add-on software for handheld devices, such as smart
phones and personal digital assistants (PDA). Among the most popular are games,
social networking, maps, news, business, and weather and travel information. All
of these leverage at least one of the device’s technical features: communications
interfaces (Wi-Fi, WiBro/mobile WiMAX, GSM/EDGE, W-CDMA/
UMTS/HSPA and Bluetooth), audio and video processors, camera, sensors or
GPS module [1].

In this paper, we will show how the current mobile service applications
development is component-based, with a single interface. Although extensions
have been implemented to allow the incorporation of nonstandard resources, We
will show how making the change to an Component-Based Development system
can yield an extensible infrastructure that is capable of supporting existing
functionality and allows the seamless integration of more complex resources and
services. We aim to use proven technical solutions from the distributed
Component-Based Development community to show how many of the current
problems with the mobile service applications development can be addressed
within the proposed model. In the next section, a critique of the current mobile
service applications development is presented, highlighting existing problems in
serving standard resources and the current approach for incorporating nonstandard
resources. The section entitled MSA (Mobile Service Applications) Component
describes the MSA (Mobile Service Applications) component design, its aims,
component model, and system architecture. The Illustrations section gives an
example, describing how particular mobile shortcomings can be addressed within
the proposed architecture.

2 Related Works

2.1 Characteristics of Mobile Application Development Model

These powerful development tools and frameworks greatly simplify the task of
implementing a mobile application. However, they are predominantly focused on

Applying CBD to Build Mobile Service Applications 265

the individual developer who is trying to create an application as quickly as
possible. For small and medium-sized mobile applications that can be built (and
easily updated) by a single developer, they represent a vast improvement on the
previous generations of tools, and encourage developers to adhere to the important
principles of abstraction and modularity that are built into the platform
architectures. However, as mobile applications become more complex, moving
beyond inexpensive recreational applications to more business critical uses, it will
be essential to apply software engineering processes to assure the development of
secure, high-quality mobile applications. While many “classic” software
engineering techniques will transfer easily to the mobile application domain, there
are other areas for new research and development. In many respects, developing
mobile applications is similar to software engineering for other embedded
applications. Common issues include integration with device hardware, as well as
traditional issues of security, performance, reliability, and storage limitations.
However, mobile applications present some additional requirements that are less
commonly found with traditional software applications, including [2,3]:

1) Potential interaction with other applications – most embedded devices only

have factory-installed software, but mobile devices may have numerous
applications from varied sources, with the possibility of interactions among
them;

2) Sensor handling – most modern mobile devices, e.g., “smart phones”, include
an accelerometer that responds to device movement, a touch screen that
responds to numerous gestures, along with real and/or virtual keyboards, a
global positioning system, a microphone usable by applications other than
voice calls, one or more cameras, and multiple networking protocols;

3) Native and hybrid (mobile Mobile) applications – most embedded devices
use only software installed directly on the device, but mobile devices often
include applications that invoke services over the telephone network or the
Internet via a Mobile browser and affect data and displays on the device;

4) Families of hardware and software platforms – most embedded devices
execute code that is custom-built for the properties of that device, but mobile
devices may have to support applications that were written for all of the
varied devices supporting the operating system, and also for different versions
of the operating system. An Android developer, for example, must decide
whether to build a single application or multiple versions to run on the broad
range of Android devices and operating system releases

5) Security – most embedded devices are “closed”, in the sense that there is no
straightforward way to attack the embedded software and affect its operation,
but mobile platforms are open, allowing the installation of new “malware”
applications that can affect the overall operation of the device, including the
surreptitious transmission of local data by such an application.

6) User interfaces – with a custom-built embedded application, the developer
can control all aspects of the user experience, but a mobile application must
share common elements of the user interface with other applications and must
adhere to externally developed user interface guidelines, many of which are

266 H.-K. Kim and R. Lee

implemented in the software development kits (SDKs) that are part of the
platform.

7) Complexity of testing – while native applications can be tested in a traditional
manner or via a PC-based emulator, mobile applications are particularly
challenging to test. Not only do they have many of the same issues found in
testing mobile applications, but they have the added issues associated with
transmission through gateways and the telephone network

8) Power consumption – many aspects of an application affect its use of the
device’s power and thus the battery life of the device. Dedicated devices can
be optimized for maximum battery life, but mobile applications may
inadvertently make extensive use of battery-draining resources.

2.2 Mobile Applications Referential Integrity

A system supports mobile applications referential integrity if it guarantees that
resources will continue to exist as long as there are outstanding references to the
resources. The mobile application does not support this property and cannot do so
since the system is unaware of the number of references that exist to a particular
resource. It is impractical to maintain every resource that has ever been published
on a particular server forever, this simply does not scale. Mobile applications
resources that are no longer of value, for whatever reason, become garbage and
need to be collected. This may involve moving the resources to backing storage,
or in some cases, deleting the resources entirely. Access pattern information,
which is currently available through examination of server logs, is not a sufficient
basis to decide whether a component is safe to garbage collect as important though
rarely used references to a resource may exist. Safe garbage collection can only be
performed if referencing information is available [4]. The consequences of
deleting resources that are still referenced affect both the user and the information
provider. In mobile application environment, deleting a resource is referenced by
another resource results in a broken hypertext link. Such broken links are the
single most annoying problem faced by browsing users in the current mobile.
Broken links result in a tarnished reputation for the provider of the document
containing the link, annoyance for the document user, and possible lost
opportunity for the owner of the resource pointed to by the link.

2.3 Component Based Mobile Applications Development

Well-defined models can substantially improve the development and evolution of
complex, multi-platform and long-running software systems. Software models
play a pivotal role particularly for component-, framework-, and product line-
based development. Modeling expertise requires both domain knowledge and
software knowledge. Software modeling disciplines are rapidly accumulating in
terms of languages, codified expertise, reference models, and automated tools as
in figure 1. The areas where such technologies are extensively practiced, the

Applying CBD to Build Mobile Service Applications 267

quality features re neither of main concern nor adequately tackled. It is a well-
known truth that CBD is important for large and complex systems but why it is
important for mobile device applications. It tackles vital concerns such as
productivity, high level of abstraction, partitioning of the system development
process from the component development process and reusability [7]. Reusability
offers a number of advantages to a software development team. An assembly of
component assembly leads to a 70 percent reduction in development cycle time;
an 84% reduction in project cost, and a productivity index of 26.2, compared to an
industry norm of 16.9. For the development of mass mobile examination system,
CBD is a smart method, but due to its explicit requirements such as real time,
safety, reliability, minimum memory and CPU consumption, standard component
models cannot be used [7]. Rather than, a new CBD methodology is very much
needed for the development of mobile mass examination system to deal with its
specific requirements.

Fig. 1 CBD Driven Mobile Applications Development

MSA(Mobile Service Applications) development model in this paper is based on
component based software development. One of the principles of computer
science field to solve a problem is divide and conquer i.e., divide the bigger
problem into smaller chunks. This principle fits into component based
development. The aim is to build large computer systems from small pieces called
a component that has already been built instead of building complete system from
scratch. Reuse of software components concept has been taken from
manufacturing industry and civil engineering field [8]. Manufacturing of vehicles
from parts and construction of buildings from bricks are the examples. Car
manufacturers would have not been so successful if they had not used
standardized parts/components. Software companies have used the same concept
to develop software in standardized parts/components. Software components are
shipped with the libraries available with software.

268 H.-K. Kim and R. Lee

2.4 Quality of Service of Mobile Applications

The perceived quality of service (QoS) of the mobile is influenced by many factors,
including the broken link problems already mentioned. Even if a user holds a correct
reference to an existing mobile resource, it may still be unavailable due to a number
of reasons, including unavailability of the machine serving the resource, and
partitions in the network between the client and server. Partitions may either be real,
caused by breaks in the physical network, or virtual, due to excessive network or
server load making communications between the client and server impossible. Even
if communication is possible, very poor response characteristics may effectively
make the resource unusable. QoS will become more of an issue as the Mobile
continues its transformation into a commercially Based Development system.
Technical solutions for improving QoS are fairly well understood, including caching
for responsiveness, replication for availability, and migration for load balancing.
Caching in the mobile is reasonably common, both through the use of browser
memory and disc caches, and also through the use of caching servers [5]. Current
caching servers use a heuristic approach for consistency management, where
resources can only apply coarse-grained tuning based on expiry dates.

3 Design of MSA(Mobile Service Application) Components

A new component-based development (CBD) model has been proposed for a
mobile sever applications system. A MSA model is a process model that provides
a framework to develop software from previously developed components. The
primary componentive of our research is to develop an extensible Mobile
infrastructure which is able to support a wide range of resources and services. Our
model makes extensive use of the concepts of component-orientation to achieve
the necessary extensibility characteristics. Within this component-Based
Development framework, proven concepts from the distributed component-Based
Development community will be applied to the problems currently facing the
mobile. The next section introduces our component model, describing how the
principles of component-orientation are applied to the Mobile domain. The
interactions between the system components are described in the section entitled
"System Architecture," which is followed by a section entitled "MSA Properties"
which classifies and describes a collection of properties applicable to different
classes of MSAComponent.

3.1 Component Model for Mobile Applications

In the proposed model, Mobile resources are transformed from file-based
resources into components, MSAComponent. MSAComponent are encapsulated
resources possessing internal state and a well-defined behavior. The components
themselves are responsible for managing their own state transitions and
properties, in response to method invocations. This model supports abstraction

Applying CBD to Build Mobile Service Applications 269

since clients only interact with MSAComponent through the published interfaces;
the implementation of a particular operation is not externally visible. Different
classes of MSAsupport different operational interfaces, which are obtained
through the use of interface inheritance. Abstract classes are used to define an
interface to a particular component abstraction, without specifying any particular
implementation of the operations. Different classes of MSAComponent may
share conformance to a particular abstract interface, but may implement the
operations differently, in a manner appropriate to the particular class. The use of
interface inheritance provides polymorphism; that is, all derived classes that
conform to an interface provided by some base class may be treated as instances
of that base class, without regard for any other aspects of that class' behavior.
Continuing with the previous example, consider a dedicated GUI-based Mobile
site management tool, providing a graphical interface for performing
management-style operations on the components; one such operation may be
component migration. The management tool is able to abstract away from other
features of the different components (supported through various other interfaces)
and simply address all of the different components as instances of the
Manageable interface. In addition to inheritance of interface, the model also
supports behavioral inheritance, thereby supporting code reuse. For example,
mixinbase classes to be inherited as required may provide component properties
such as persistence and concurrency control. Mix-in classes are not designed to
be instantiated themselves. They are used to augment the functionality of the
derived class, by providing some particular behavior, usually orthogonal to the
primary function of the class. The diagram in Figure 2 illustrates the key points
of our component model by showing how two example MSAclasses, backend,
SAP web application server and mobile devices are composed using both
interface and behavioral inheritance. The abstract class, Manageable provides the
interface description for management-style operations (only a single operation,
migrate, is shown). Both of the derived classes inherit this interface, providing
their own implementations. Also shown in the diagram are three different clients,
which manipulate instances of SAP and mobile device. A Mobile site
management tool, previously mentioned, is solely concerned with the operations
provided through the manageable interface. The tool is able to invoke the migrate
operation on instances of either derived class without knowledge of the nature of
the class. Two further clients are shown, a theatre booking application and a
spreadsheet tool, which manipulate instances of backend, SAP web application
server and mobile device respectively. The fact that these classes also conform to
the manageable interface is of no consequence to the clients who only interact
with the components via the interfaces supporting the classes' primary function.

3.2 Mobile Component Architecture

In common with the current Mobile Applications, the proposed MSA architecture
consists of three basic entity types, namely, clients, servers, and published
components.

270 H.-K. Kim and R. Lee

Fig. 2 Basic Component Model for Mobile Applications

In the current Mobile environment, these three types correspond to Mobile
browsers (e.g., mosaic), Mobile daemons (e.g., CERN HTTPD), and
documentation resources (e.g., HTML documents) respectively. Our architecture
supports both client-component (client-server), and intercomponent (peer-to-peer)
communication.

3.2.1 Client-Component Interactions

Figure 3 shows the logical view of client-component interactions within the MSA
architecture. A single server process is shown, managing a single MSA(although
servers are capable of managing multiple components of different types), which is
being accessed via two different clients, a standard Mobile browser, and a
dedicated bespoke application. This diagram highlights interoperability as one of
the key concepts of the architecture, that is, the support for component
accessibility via different applications using multiple protocols. As stated earlier,
MSAComponent are encapsulated, meaning that they are responsible for
managing their own properties (e.g., security, persistence, concurrency control
etc.) rather than the application accessing the component.

For example, in the case of concurrency, the component manages its own access
control, based upon its internal policy, irrespective of which application method
invocations originate from. The local representation of a component, together with
the available operations, may vary depending upon the particular type of client
accessing it. The Mobile browser uses a URL to bind to the particular component
in the server. The operations that are permitted on the component, via the URL,

Applying CBD to Build Mobile Service Applications 271

Fig. 3 Client-Component Interactions of MSA

are defined by the HTTP protocol.. The HTTP communication end-point of the
server may perform name mapping between URL and the internal name for the
component and may also map HTTP requests to appropriate method invocations
on the component. From the point of view of the application, this stub
component presents the illusion that the remote component is actually within the
address space of the client. Like any other component, the stub presents a well-
defined interface describing the supported operations. This interface has the
potential to be much richer than that provided through HTTP, including
application specific operations. Operation invocations on the stub are passed to the
component using the remote procedure call (RPC) protocol. Client-stub
components may be automatically generated from a description of a component
interface. Our implementation uses C++ as the definition language and we provide
stub-generation support for creating client and server side stubs which handle
operation invocation and parameter. Other possible interface definition languages
are possible, including CORBA IDL. The common gateway interface (CGI) could
be used to provide a richer client-side interface than is readily available through
HTTP. Although, it has been already stated that we believe CGI to be too low-
level for direct programming, CGI interfaces to remote components can be
automatically created using stub-generation tools. We have implemented a basic
stub-generator, which uses an abstract definition of the remote component, and
ANSA have recently released a more complete tool based on CORBA IDL.
Recent developments using interpreted languages within the Mobile, including
Java and SafeTcl are potentially very useful for developing client-side interfaces
to MSAComponent. Using such languages, complex, architecture-neutral, front-
ends dedicated to a particular MSAclass can be developed, supporting rich sets of
operations.

3.2.2 Inter-Component Interactions

In addition to client-component communication, our architecture also supports inter-
component communication, regardless of the components' location. In effect, the
architecture may be viewed as a single distributed service, partitioned over different
hosts as illustrated in Figure 4. Inter-component communication is used for a variety
of purposes, including referencing, migration, caching, and replication.

272 H.-K. Kim and R. Lee

Fig. 4 Inter-Component Interactions as Android

In addition to MSAComponent, servers may contain MSAstubs, or aliases,
which are named components that simply forward operation invocations to
another component, transparently to clients. One particular use of aliases is in
implementation of name-servers, since a name-server may be viewed simply as a
collection of named components which alias other components with alternative
names (activity, view and contents in diagram). Components may also contain
stubs to other components. This feature is used in our implementation of
referencing.

3.2.3 Inter-Component Interactions

One method of interfacing with multiple servers is to make use of an HTTP
Gateway, which uses stub components to forward component invocations through
to the appropriate server. The gateway is transparent to clients accessing the
components; incoming requests are simply forwarded to the destination
component, which parses the request and replies accordingly. This is illustrated in
Figure 5, in which backend server manages a number of different types of
component middle server SAP and mobile devices as mobile applications manages
components of a single type. As the processing of operations is entirely the
responsibility of the individual component, the introduction of new component
types is transparent to the gateway.

Applying CBD to Build Mobile Service Applications 273

Fig. 5 Client-Component Communication Through Gateway

3.3 MSAProperties

Based on critiques of the current Mobile by ourselves and others [19], and also our
experience with distributed systems in general, we have attempted to identify the
set of properties that are required by MSAComponent. We have classified these
properties into three categories: core properties, common properties, and class-
specific properties. In this section we shall present what we believe to be the core
properties required by all MSAComponent and give examples of some common
properties.

3.3.1 Core Properties

Four properties have been identified as being the core requirements for
MSAComponent: Naming, Sharing, Mobility, and Referencing. The
implementation of these properties is divided between the components themselves
and the supporting infrastructure, which manages the components. Each property
will be considered in turn.

Naming: One of the fundamental concepts of the component-Based Development
paradigm is identity. The ability to name a component is required in order to
unambiguously communicate with and about it. Context-relative naming is an
essential feature of our environment so as to support interoperability and
scalability. As mentioned previously, different clients may use different local
representations of a remote component (URLs, client-stub components, etc.).
Since it is impractical to impose new naming conventions on existing systems, we
require the ability to translate names between system-boundaries. Furthermore, for
extensibility, we need to be able to incorporate new naming systems. Within our
design, naming is provided via the component infrastructure.

274 H.-K. Kim and R. Lee

Sharing: Implicit within the Mobile domain is the requirement that components
can be shared. Although the basic function of allowing multiple users to interact
with components is simple to achieve, there are a number of other associated
mechanisms that require interaction with the base sharing functionality. Access
control, either user and group based, or access restriction based on the location of
the client, are both likely requirements. Additionally, with components supporting
a rich set of interfaces, the granularity of the control must be configurable.

Mobility: One of the lessons learned from the current Mobile is that support for
component mobility is a necessary requirement for MSAComponent. At
component creation time, migration of the component may not be envisaged, but it
is virtually impossible to predict the future requirements of a particular
component. Mobility may be required for many reasons, including load balancing,
caching, and improved performance through locality etc., with different forms of
migration, including intra- or inter-host.

Referencing: In order to address what may be viewed as the primary problem
with the current Mobile, namely referential integrity, we believe that low-level
referencing support is required by all components. A range of schemes is possible,
including forward referencing, call-backs, and redirection through a location
server (as in the URN approach). Referencing is closely related to mobility, since
referencing schemes may be used to locate components even in the event of
component migration.. There are a potentially large number of common properties
for MSAComponent, which can be encapsulated within appropriate base classes.

Replication: There is a range of replication protocols from active to passive, and
strong consistency to weak consistency. There is no single replication protocol
which is suitable for every component which may need to be replicated and at the
same time can satisfy a user's required quality of service. As such, it is our
intention to implement a suitable base class for component providers, which will
enable them to select the appropriate replication protocol on a per component
basis. In addition component providers will also be able to select the optimum
number and location of these replicas, and modify this as required.

Concurrency control: By enabling users to share arbitrary components it may be
necessary for these component state transitions to be managed through an
appropriate concurrency control mechanism. Consider the theatre booking
example earlier: if user A wishes to examine the seats which are available while
user B is in the process of booking a seat, it would be desirable for B to lock the
seat in order to prevent conflicting updates. There are a number of concurrency
control mechanisms available, but our initial implementation will be based upon
the familiar multiple reader, single writer policy.

Caching: The caching of component states, either at or close to users, can help
alleviate problems of network congestion and latency. However, as with
replication, there is a need for a range of caching policies based upon user
requirements and component properties.

Applying CBD to Build Mobile Service Applications 275

Fault tolerance: In a large-scale distributed system, fault tolerance is an important
property. One way of addressing the issues of fault tolerance is by using atomic
actions to control method invocations. Components inherit necessary persistence
and concurrency control characteristics, and application programmers then
manipulate these components within atomic actions, which guarantee the usual
ACID properties.

3.4 Implementation of MSA

Having described our model in the previous sections, we shall now illustrate how
two of the core properties, referencing and mobility, are implemented within the
model. Our aim is to address the current problem of broken links and provide
transparent component migration. Figure 6 shows our implementation model for
mobile component referencing architecture which consists of service component
accounting and service component accounting business rule. Referencing is
closely related to mobility, since referencing schemes may be used to locate
components even in the event of component migration. There are a potentially
large number of common properties for MSAComponent, which can be
encapsulated within appropriate base classes.

Fig. 6 Mobile applications Component Referencing

4 Conclusions

As a way of serving standard resources, the Mobile has proven extremely
successful but still suffers from a number of shortcomings. Furthermore, in order
to cope with new resource types the Mobile needs improved flexibility and

276 H.-K. Kim and R. Lee

extensibility characteristics. We have illustrated how the application of the
concepts of component-orientation can achieve these extensibility requirements
and how problems, such as the lack of referential integrity, can be addressed
through the application of techniques developed by the distributed component
research community. The MSAmodel, presented in this paper, is intended to
provide a flexible and extensible way of building Mobile applications, where
Mobile resources are encapsulated as components with well-defined interfaces.
Components inherit desirable characteristics, redefining operations as is
appropriate; users interact with these components in a uniform manner. We have
identified three categories of component properties: core, common, and specific,
and have described an implementation using the core properties which addresses
what we believe to be one of the most significant problems facing the current
Mobile --that of referential integrity. A key feature of our design is support for
interoperability; for example, in addition to sophisticated clients which may use
the rich component inter faces that our model provides, our implementation will
also allow MSAComponent to continue to be accessed using existing Mobile
browsers.

When developing mobile based applications, it is important to remember the
following factors involved:

• Usability: Try to keep the forms small, simple and easy to use for the mobile
device being targeted. If scrolling is required, contain it in one direction
(usually vertical). While newer mobile browsers approach desktop browser
capabilities, it is not always wise to increase the complexity of your mobile
forms, because the browser is capable of displaying large desktop forms.

• Testing: Not all browsers work the same, and it is important to test with the
browsers that your target audience will be using. Testing can be carried out
with emulators, but using the physical device is usually a better alternative,
since emulators may not always be up to date with the software levels delivered
on the device itself.

• Design: System Modeler includes a new “FormLayout” property for mobile
forms. Use this property when your Mobile Browser does not support absolute
positioning of controls on the form. Also add
 tags and space labels for
specific placement of elements on the form. Remember to turn the Grid on in
the Painter and enable the SnapToGrid property, to assist in aligning the tope
borders of controls on the form.

• Using Translations: You can add a new language to your application that
contains different presentations to be used for Mobile devices, and the
application logic remains the same for both presentation types.

Mobile browsers are constantly changing and improving in capabilities, and there
is a trend which shows a convergence with desktop browsers. It is important to
test new browser versions as they emerge, to ensure that your application still
behaves correctly.

Applying CBD to Build Mobile Service Applications 277

Acknowledgement. This work was supported by the Korea National Research Foundation
(NRF) granted funded by the Korea Government (Scientist of Regional University No.
2012-0004489).

References

1. Roy, Ramanujan: Understanding Mobile services. IT Professional 3(6), 69–73 (2001)
2. Ogbuji, U.: The Past, Present and Future of Mobile Services (2004),

http://www.Mobileservices.org/index.php/article/
articleview/663/4/61/

3. Litoiu, M.: Migrating to Mobile Services-latency and scalability. In: Proceedings of
Fourth International Workshop on Mobile Site Evolution, pp. 13–20 (October 2002),
http://www.tigris.org/

4. Brown, A.: Using service-oriented architecture and component-based development to
build Mobile service applications. Rational Software white paper from IBM (April
2002)

5. Soley, R., and OMG Staff Strategy Group: Model Driven Architecture, OMG White
Paper Draft 3.2 (2000), http://www.omg.org/~soley/mda.html

6. Poole, J.D.: Model Driven Architecture: Vision, Standards and Emerging
Technologies. In: European Conference on Object-Oriented Programming (April
2004), http://www.omg.org/mda/mda_files/
Model-Driven_Architecture.pdf

7. Rizwan Jameel Qureshi, M.: Reuse and Component Based Development. In: Proc. of
Int. Conf. Software Engineering Research and Practice (SERP 2006), Las Vegas, USA,
June 26-29, pp. 146–150 (2006)

8. Barnawi, A., Rizwan Jameel Qureshi, M., Khan, A.I.: A Framework for Next
Generation Mobile and Wireless Networks Application Development using Hybrid
Component Based Development Model. International Journal of Research and
Reviews in Next Generation Networks (IJRRNGN) 1(2), 51–58 (2011)

9. Champion, M., Ferris, C., Newcomer, E., Orchard, D.: Mobile Services Architecture:
W3C Working Draft (2002), http://www.w3.org/TR/ws-arch/

10. OMG, Common Component Request Broker Architecture and Specification, OMG
Document Number 91.12.1

Author Index

André, Étienne 197
Aslan, Damla 151
Atagoren, Cagla 55
Aziz, Benjamin 17

Babka, Martin 231
Badreddin, Omar 33, 129
Balyo, Tomáš 231
Berrocal, Javier 167
Bilgen, Semih 183
Bruel, Jean-Michel 247

Cao, Tien-Dung 99
Choppy, Christine 197
Chouseinoglou, Oumout 55, 183

Demirörs, ve Onur 151

Forward, Andrew 33, 129

Gallina, Barbara 215
Garćıa-Alonso, José 167
Geisel, Jacob 247

Hamid, Brahim 247

Kacem, Yessine Hadj 73
Keznikl, Jaroslav 231
Kim, Haeng-Kon 1, 263
Kwon, Donghwoon 117
Kwon, Young Jik 117

Lee, Roger 117, 263
Lethbridge, Timothy C. 33, 129
Lundqvist, Kristina 215

Magdich, Amina 73
Mahfoudhi, Adel 73
Murillo, Juan Manuel 167

Ouranos, Iakovos 85

Pitchai, Karthik Raja 215

Reggio, Gianna 197

Salva, Sébastien 99
Song, Yeong-Tae 117
Stefaneas, Petros 85

Tarhan, Ayça 151

	Preface
	Contents
	Security Certification Model for Mobile-Commerce
	1 Introduction
	2 Background Study

	2.1 Security for Mobile Commerce Applications

	2.2 M-Commerce Framework

	2.3 Mobile Applications and XML

	3 Mobile Commerce Security Model

	3.1 M-Commerce Security Issues

	3.2 Mobile Applications Signature

	3.3 Structure for XML Security

	3.4 Execution of Digital Signature

	4 Conclusion and Further Study

	References

	On Formalising Policy Refinement in Grid Virtual Organisations
	1 Introduction
	2 On Virtual Organisations and Their Lifecycle
	3 A Brief Overview of Event-B
	3.1 Our Approach

	4 Case Study: 1/N Cost-Balancing Policy in Auction-BasedRouting VOs
	5 An Abstract Model of Goal-Oriented VOs
	6 Goal-Oriented VOs with Organisations
	7 Goals, Organisations and Services
	8 Related Work
	9 Conclusions
	References

	Exploring a Model-Oriented and Executable Syntax for UML Attributes
	1 Introduction
	1.1 A Quick Look at Umple

	2 Attributes in Practice: A Study of Seven Systems
	2.1 Analysis and Results
	2.2 Key Findings

	3 Umple Syntax for Attributes
	4 Generating Code for Attributes: Existing Tools
	5 Generating Code for Attributes Using Umple
	5.1 Basic Attributes
	5.2 Immutable Attributes
	5.3 Defaulted Attributes
	5.4 Unique Attributes
	5.5 Constant Class Attributes
	5.6 Injecting Constraints Using Before/After

	6 Related Work
	7 Threats to Validity
	8 Conclusion
	References

	A Case Study in Defect Measurement and Root Cause Analysis in a Turkish Software Organization
	1 Introduction
	2 Related Work
	3 Case Study
	3.1 Application of the Case Study
	3.2 Root Cause Analyses
	3.3 Case Study Effort Analysis

	4 Conclusion
	References

	Extending UML/MARTE-GRM for Integrating Tasks Migrations in Class Diagrams
	1 Introduction
	2 State-of-the-Art and Related Works
	3 Scheduling Theory
	3.1 Partitioned Approach
	3.2 Global Approach
	3.3 Half-Partitioned Approach

	4 Model Driven Engineering (MDE) and RTES Development
	4.1 MARTE Capabilities for RTES Modeling
	4.2 GRM
	4.3 DRM (Detailed Resource Modeling)

	5 Our Proposal: GRM Extension
	5.1 Amendments to Be Used in Both Approaches
	5.2 Changes to Be Used within a Half-Partitioned Approach

	6 Pedagogic Case Study
	7 Conclusion
	References

	Towards a Protocol Algebra Based on Algebraic Specifications
	1 Introduction
	2 Behavioural Specification and OTSs
	3 Reasoning About Protocols
	4 Protocol Algebra
	5 Verifying Protocol Specifications
	6 Conclusions and Future Work
	References

	A Model-Based Testing Approach Combining Passive Conformance Testing and Runtime Verification: Application to Web Service Compositions Deployed in Clouds
	1 Introduction
	2 Model Definition and Notations
	3 Passive Testing with Proxy-Testers and Runtime Verification
	3.1 Verification of Safety Properties
	3.2 Ioco Testing with Proxy-Testers

	4 Combining Runtime Verification and Proxy-Testing
	4.1 Proxy-Tester and Observer Composition

	5 Application to Web Service Composition Deployed in Clouds
	5.1 Experimentation

	6 Related Works
	7 Conclusion
	References

	An Empirical Study on the Relationship between User Characteristics and Quality Factors for Effective Shopping Mall Websites Implementation
	1 Introduction
	2 Related Work
	3 An Empirical Study
	3.1 Outline
	3.2 Methodology
	3.3 The Demographic of the Participants
	3.4 Reliability Coefficient

	4 Hypotheses Formulation
	5 Hypotheses Verification
	5.1 H1 Verification Analysis
	5.2 H2 & H3 Verification Analysis
	5.3 H4 Verification Analysis
	5.4 H5 Verification Analysis
	5.5 H6 Verification Analysis

	6 Conclusion
	References

	Improving Code Generation for Associations: Enforcing Multiplicity Constraints and Ensuring Referential Integrity
	1 Introduction
	2 Associations in Practice
	3 Textual Associations in Umple
	4 Analyzing Association Multiplicity
	4.1 Bidirectional Associations Between Two Different Classes
	4.2 Unidirectional (Directed) Associations
	4.3 Reflexivity and Symmetry
	4.4 Implications for Code Generation

	5 Existing Code Generators
	5.1 Code Generation Patterns
	5.2 ArgoUML
	5.3 StarUML
	5.4 Bouml
	5.5 Green Code Generator
	5.6 Rational Software Architect (RSA)

	6 Association Code Generation in Umple
	6.1 Defining Association Variables
	6.2 Constructor Parameters for Associations
	6.3 Get Method Code Generation Patterns
	6.4 Set Method Code Generation Patterns
	6.5 Patterns for Generated Support Methods

	7 Related Work
	8 Conclusion
	References

	How Process Enactment Data Affects Product Defectiveness Prediction – A Case Study
	1 Introduction
	2 Related Studies
	3 Methodology
	4 Analysis Results
	5 Lessons Learned
	References

	Modeling Business and Requirements Relationships for Architectural Pattern Selection
	1 Introduction
	2 Motivation
	3 Documenting the Relationships
	3.1 Model the Context Information
	3.2 Define the Requirement Relationships
	3.3 Analyse the Requirement Relationships

	4 Related Work
	5 Conclusions and Future Works
	References

	Introducing Critical Thinking to Software Engineering Education
	1 Introduction
	2 Related Work
	2.1 Software Engineering Practicum
	2.2 Personality and Learning Types

	3 Comparative Study
	3.1 General Structure of the Course
	3.2 Implementing the SQ4R Approach

	4 Lessons Learned / Experience and Evaluation
	5 Conclusion
	References

	Activity Diagrams Patterns for Modeling Business Processes
	1 Introduction
	2 Business Process Modeling
	2.1 Precise Business Process Models
	2.2 Precise Activity Diagrams
	2.2.1 UML Activity Diagrams
	2.2.2 Activity Diagrams Patterns

	3 Translation of the Activity Diagram
	3.1 Colored Petri Nets with Global Variables
	3.2 Translation
	3.2.1 Assumptions
	3.2.2 Translation of the Rules

	4 Translation of the Static View and of the Participant List
	4.1 State Definition
	4.2 Expressions
	4.3 Initial Process Execution State

	5 Conclusion and Future Work
	References

	S-TunExSPEM: Towards an Extension of SPEM 2.0 to Model and Exchange Tunable Safety-Oriented Processes
	1 Introduction
	2 Background
	2.1 Safety-Oriented Processes and Their Role in Certification
	2.2 DO-178B
	2.3 SPEM 2.0
	2.4 XPDL 2.2

	3 S-TunExSPEM
	3.1 Modelling Safety-Oriented Information
	3.2 Exchangeability of Safety-Related Processes

	4 Case Study
	5 Related Work
	6 Conclusion and Future Work
	References

	Solving SMT Problems with a Costly Decision Procedure by Finding Minimum Satisfying Assignments of Boolean Formulas
	1 Introduction
	2 Motivation
	2.1 SMT Solving with a Costly Decision Procedure
	2.2 Stochastic Performance Logic

	3 Preliminaries
	4 Related Work
	5 Solving the Shortest Implicant Problem
	5.1 Dual Rail Encoding
	5.2 Solving via Pseudo-Boolean Optimization
	5.3 Solving via Partial Maximum Satisfiability
	5.4 Solving via Partial Minimum Satisfiability
	5.5 Solving via Iterative SAT Solving
	5.6 Solving via Incomplete Methods

	6 Experiment Setup
	7 Experiment Results
	8 Conclusion
	References

	Repository-Centric Process Modeling – Example of a Pattern Based Development Process
	1 Introduction
	Development Context and Background
	2.1 Development Context
	2.2 Process Models and Artefacts
	2.3 DSL Buildung Process
	2.4 Working Example

	3 Repository Interaction Metamodel
	3.1 RCPM
	3.2 Repository Interaction Sub-Metamodel

	4 Tool Architecture and Implementation
	4.1 How the Process Model Editor Is Built?
	4.2 Process Model Designer: Naravas
	4.2.1 Library Design
	4.2.2 Process Model Design
	4.2.3 Conformance Validation
	4.2.4 Documentation Generation

	5 Process Model Enactment
	6 State of the Art
	7 Conclusion
	References

	Applying CBD to Build Mobile Service Applications
	1 Introduction
	2 Related Works
	2.1 Characteristics of Mobile Application Development Model
	2.2 Mobile Applications Referential Integrity
	2.3 Component Based Mobile Applications Development
	2.4 Quality of Service of Mobile Applications

	3 Design of MSA(Mobile Service Application) Components
	3.1 Component Model for Mobile Applications
	3.2 Mobile Component Architecture
	3.2.1 Client-Component Interactions
	3.2.2 Inter-Component Interactions
	3.2.3 Inter-Component Interactions

	3.3 MSAProperties
	3.3.1 Core Properties

	3.4 Implementation of MSA

	4 Conclusions
	References

	Author Index

