
W. Zamojski et al. (Eds.): New Results in Dependability & Comput. Syst., AISC 224, pp. 399–407.
DOI: 10.1007/978-3-319-00945-2_36 © Springer International Publishing Switzerland 2013

Universal Platform for Composite Data Stream
Processing Services Management

Paweł Stelmach, Patryk Schauer, Adam Kokot, and Maciej Demkiewicz

Institute of Computer Science, Wrocław University of Technology,
Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
{pawel.stelmach,patryk.schauer,adam.kokot,
maciej.demkiewicz}@pwr.wroc.pl

Abstract. Constant delivery of data and information through streaming methods is
growing in popularity. Streaming is widely used for video and sensor data
delivery, usually directly to the client. In this work we propose architecture of the
platform for composition of several distributed streaming intermediaries, able to
process the data stream on-line. Features of the platform consist of ability to create
a composite stream on demand as well as update, delete or read its current state.
Works on the platform are an on-going research effort and current work, presented
in this work, focuses on separation of platform functionality into distributed soft-
ware components for performance optimization. This distribution allows for opti-
mizing each component's behaviour regarding its usage characteristics. As an
effect the platform's streaming service management functionality is offered as a
stateless service.

1 Introduction

With the rapid evolution of the Internet, which has taken place in the last decade,
many ideas appeared and changed the way we create web applications. Even the
concept of web application itself has replaced a simple and static web-accessible
HTML document. Readers have evolved into contributors and web pages became
web applications but another greatly influential idea came with the Service Ori-
ented Architecture paradigm and brought a concept of services, already widely
known in business, to computer sciences. The notion of remote object access pre-
cedes the current century but the increase in Internet adoption and quality forced
web services into public awareness. Then came standards, like XML-RPC, fol-
lowed by WS-* for SOAP-based web services and WSDL for their description.
Web applications ceased to be monoliths and more and more services started to
extend their functionality.

The Web Service standard is based on request and result behaviour, often re-
questing some operation to be executed. After that the service is expected to stop
working, waiting for the next request. This seems natural; however, some use
cases require a different kind of behaviour. New user needs for continuous access

400 P. Stelmach et al.

to ever-changing data, like video feeds or sensor data, require a different kind of
service and put even more strain on the Internet transporting capabilities.

Streaming services can deliver audio/video surveillance, stock price tracing,
sensor data ([7]) etc. With technology development both the size as well as the
number of concurrent data streams has increased. On top of this we add middle-
ware for on-line data stream processing ([1], [10]), changing video format or col-
our, calculating whether a patient had a heart attack (based on on-line heart rate
monitoring) and more.

Distributed stream processing is becoming more popular, especially in domains
like eHealth, rehabilitation and recreation fields where distributed measurement
data acquisition and processing are indispensable ([11]). In case of such applica-
tions the processing time is crucial. Solution presented in [6] discusses the concept
of distribution of processing services in a peer-to-peer computer networks in order
to meet such requirements and, additionally, increase system availability and pro-
vide appropriate mechanisms for emergency handling. Also, data stream process-
ing finds its use in computational science or meteorological applications, where
there are multiple data sources and multiple recipients interested in the processed
data stream ([8]).

From the architectural standpoint multiplication and distribution of data stream
processing services in fact does not change much the already complex problem of
data stream routing. Both data sources as well as endpoints could potentially be
distributed and, assuming that processing services could be more atomic and com-
posable ([12]), such approach brings more flexibility. Considering the geographi-
cal distribution of data sources and endpoints, distribution of data processing
could be an optimal solution in many cases, especially if it had minimized the size
of data being transferred over large distances at certain steps of the composed
service. Individual data streams could be routed to subsequent processing services,
where appropriate calculations would take place without braking the flow of the
stream ([2], [9]). This approach allows for increasing performance, especially
when streams should be processed in real-time ([1]) and each atomic service could
be optimized for a specific processing task.

For this purpose we propose a platform called the ComSS Platform (abbrevia-
tion for COMposition of Streaming Services) that addresses the requirements
mentioned above and offers management functionalities that allow for creating,
reading the state, updating and stopping compositions of any data stream process-
ing services, provided that they are compatible (that is each two services commu-
nicating have to be able to communicate via a common protocol).

2 Platform Description

2.1 Platform Goals

The main goal of the platform is to manage data stream processing composite ser-
vices (also called composite streaming services). Composite service is a collection

Universal Platform for Composite Data Stream Processing Services Management 401

of several stream-processing services that typically operate on a single data stream.
Each service transforms data (ranging from simple data manipulation – like deter-
mining average – to complex anomaly detection algorithms and more) and transfers
it to the next service in a composition. For example a colour video stream can be
transferred to a service that transforms it to a black and white video and then to a
service that detects objects in a video (which could be more efficient with black
and white video).

This simple example is based on two services in a series structure but compos-
ite services can be more complex: they can process multiple data streams and be
described by complex workflows and not only series structures. Also, although
composite service can merge two streams into a single data stream, this is not their
sole purpose and composite streaming service (or composite data stream process-
ing service) should not be confused with stream composition.

Provided the designer of streaming services would like to utilize the platform
automated management capabilities, he can delegate all the tasks of assembling,
disassembling or monitoring of such services to the platform, simply by using its
basic web interface.

Fig. 1 Overview of the Data Stream Processing Service Framework

In more detail, the ComSS Platform capabilities are mostly based on CRUD-
based web interface, allowing for a specific composite service (treated as a re-
source) management; those are:

• creating a new composite streaming service based on a user request, containing
a set of atomic services to be integrated,

• reading data about the current state of the composite streaming service execu-
tion,

• updating the composite streaming service, given new parameters for communi-
cation or replacing some of its atomic services,

• stopping and deleting the composite streaming service (not the atomic services
themselves but their configuration and instances created for this composition).

402 P. Stelmach et al.

Additionally, the platform is provided with internal components responsible for
events distribution among its components and services, resources registration (es-
pecially atomic and composite streaming services) and communication with and
among atomic streaming services during composite service control sequences
(creation, reading, update, deleting).

2.2 Platform Overview

The ComSS Platform consists of several autonomous software components but
also requires atomic streaming services (external to the platform, provided by the
client) to implement specific communication libraries for control purposes. To
facilitate implementation, those libraries are provided with a programming frame-
work, which will be described in the next section.

In Fig. 1 separate boxes represent platform components: GUI, composite ser-
vice management (e.g. service composition), communication with data stream
services (negotiation supervisor), Event Bus and Service Registry and – outside of
the platform – data stream processing services. We wanted to highlight particular
service interfaces (line with a circle) and service calling capabilities (lines with
unfinished circle) in some of those components when they are crucial to the life-
cycle of the composite streaming service. Straight lines show that some compo-
nents are interconnected but details about what are those internal connections and
interfaces are out of scope of this work.

Components that are part of the platform are autonomous and communicate via
before mentioned web services with SOAP protocol. Notice that the SOAP proto-
col is used only for control aspect of the platform, e.g., for communication proto-
col negotiation or starting and stopping of a composite streaming service. The
streaming service itself is transferring data continuously through a data stream and
uses a proprietary protocol that has been negotiated beforehand. In Fig. 1 only two
streaming services are shown as an example of a simple composite service and the
data stream is considered to come from an external source – not visible for the
platform itself.

The platform itself delivers to its clients a simple web interface to create, read,
update and delete a composite streaming service. Rest of the interfaces were
designed for internal use; however, Service Registry and Event Bus could be
provided from outside of the platform, allowing for sharing of resources and thus
having their own external web interfaces.

The main assumption for the ComSS Platform was to focus on performing op-
erations, which were fully defined using the CRUD-based web interface, exactly
when they were needed and shutting down when they were completed. Such state-
less behaviour has been introduced to minimize the chance of error during runtime
and to shift the responsibility for service performance to the streaming services
themselves. Following this concept was the decision to register composite services
only for identification and logging purposes, so that the ComSS Platform could
support the composite service only when requested, for instance the platform

Universal Platform for Composite Data Stream Processing Services Management 403

reacts to errors reported by the streaming service. For that purpose the Event Bus,
(the always-up component) is listening for events coming from atomic streaming
services informing about errors or exceptions needed be handled, both their own
or based on the unexpected behaviour of other services in the composition.

The basic scenario for the ComSS Platform is to create a new composite
streaming service given a graph of atomic streaming services. It is assumed
that those services have been implemented using the provided framework or im-
plement necessary libraries (fig 1.1) and are registered in the service registry
(Fig. 1.2). This step is not necessary but is useful for logging and identification
purposes or when dynamically searching for service candidates if user request was
not precise enough or requested services are not responding. For user create re-
quest (fig 1.3) the ComSS Platform searches for appropriate atomic streaming
services and requests their participation in the composite service (Fig. 1.4). Using
SOAP protocol the Platform informs each of the atomic streaming services about
their immediate neighbours in the composition (e.g. next in a sequence), with
which they will have to negotiate the communication protocol.

Streaming services start negotiating (Fig. 1.5) and create new service instances
to handle the new composite service request. Each physical service is actually a
server that can handle multiple requests and multiple streams – one atomic service
can be a part of various composite services. To avoid confusion in the implemen-
tation, parts of the service that handle different streams are separated from each
other by creating instances. Physically it is still one service, but for the purpose of
identification in the system, each service instance can be treated as a separate ser-
vice with different id, address and port etc. but with the same functionality and
quality. Using the concept of service instances we can assure that each service
(instance) is used only in one composite service and data streams are always cor-
rectly separated and transferred among services in a single composite service.

Finally, the ComSS Platform finishes its work and the streaming to the
composite streaming service can start.

3 Streaming Service Framework

Part of the effort to make the streaming service composable lies with the service
designer himself. He has to follow conventions for the streaming service design
and implement necessary libraries for control, negotiation and communication.
Using the framework provided with the ComSS Platform allows him to focus on
implementation of the data stream processing algorithms alone (Fig. 2).

It should be noted that – in contrast to Web Services using the SOAP protocol –
streaming services are not limited to a single protocol. The proposed framework
allows for the use of any protocols for communication; however, it uses web ser-
vices for control over the atomic streaming services. With web services the
ComSS Platform conveys requests for creating new instances, reading their status
or updating their parameters and, finally, deleting the appropriate instance.

404 P. Stelmach et al.

Fig. 2 Overview of the Data Stream Processing Service Framework

The atomic streaming services also can send SOAP messages, mostly error or
exception messages for the Event Bus to handle, but the designer can also imple-
ment other behaviours for scenario specific purpose – like email sending request
etc. Some capabilities could be implemented in each streaming service, but they
could be outsourced and shared via a web service, preferably using the Event Bus
to execute specialized web services when necessary (which could implement vari-
ous scenarios, like stopping or recomposing the composite streaming service).

In general, streaming services perform two types of communication.
SOAP-based communication, which is used for:

• sending a negotiation request (streaming service is delivered a list of neighbour
services in a composite service with which it will start a communication proto-
col negotiation process),

• creating a new service instance (this is not to be confused with starting the data
stream, because after creation each service is ready to receive, process and
transfer the data stream and actually awaits for the stream to be transferred
from external sources),

• control over the service when it is running (transferring and processing data
stream) – reading its state, stopping it (deleting a service instance),

• standard error messages (events) propagation when services express unwanted
behaviour,

• personalized messages (events) propagation, when service designer deliberately
implemented such behaviour (sometimes sending a message via a Web Service
is more natural then sending it via stream – e.g. when an anomaly is discovered
then alert is a single event that should be directed to a specific recipient that can
react to it, and not transferred with the stream).

Transferring the data stream:

• there are many different data stream formats and communication protocols and
each service can support a selection of those solutions,

• it is the negotiation phase task to determine which protocol, format, port etc.,
will be used for the data stream transfer,

Universal Platform for Composite Data Stream Processing Services Management 405

• the data stream is transferred independently of the control messages transfer
(via Web Services) – usually the exchange of control messages takes place be-
fore the data is streamed or can end the stream transfer (requesting its deleting);
during the data stream the Platform should be offline and only respond to errors
or special events handled via the Event Bus.

In the basic scenario of creating a new composite streaming service, a request for
a new service instance is sent to the streaming service via the web service inter-
face (Fig. 2) in the negotiation phase. The framework communicates with
neighbour streaming services, indicated by the ComSS Platform as next or previ-
ous in the composition. If the service confirms that it knows the requested proto-
col, gives an address and opens a port for communication, then a new atomic
streaming service instance can be generated.

Then, when all services are ready to communicate, first messages are sent to the
streaming interface of the streaming service. The role of the streaming module is
to receive the data stream and prepare it for processing, which is de facto the func-
tion-providing part of the service. Next, data is prepared to be sent to the appropri-
ate address and port of the next atomic streaming service in the composition.

4 Relation to Previous Works

Work presented in this work is part of an on-going research on a Universal Com-
munication Platform ([3], [4], [5]). As a result of that research streaming services
composition mechanisms were proposed in a prototype form. Our goal is to out-
source those tasks to a specialized platform and extend its scope to end-to-end
composite streaming service management. Compared to the earlier, prototype
version a greater focus was put on performance of the service management layer
as well as the performance and method of creating instances of data stream
processing services. A complete separation of the service composition and usage –
making them time and physically independent (by loose coupling of interfaces) –
increased the flexibility and scalability of the system. The new version of the
platform is stateless and mostly active only on demand, which results in better
resource management. However, in effect the composite streaming service is not
directly monitored during execution. With the ComSS Platform libraries imple-
mented in streaming services, each service can report on its own state as well as
on the state of neighbour services, especially if they behave contrary to the expec-
tations, but the platform does not actively request those reports and if some
services stop working it is up to their neighbours to report this behaviour.

Another major improvement lies in using external services in various manage-
ment scenarios, mainly during emergency and unpredicted situations. Web ser-
vices are used for recomposition or replanning purposes but it is planned to further
develop this mechanism to use automatically composed reactions to emergency
scenarios, based on user preferences, system policies and current situation.

406 P. Stelmach et al.

5 Example of Platform Use

Consider a simplified example that some developer has built a streaming service
that detects specific objects or people in a video stream. He has noticed that the
algorithm performs better when it is provided with a black and white video. He
could further develop his service so that it would change the video signal to black
and white but two things stop him from doing that: one the service would be too
specialized that he would want it to be, because perhaps someday he would want
to analyse video in colour and, more importantly, he has found another service
that already does what he needs. What he has to do is to somehow connect those
services. But he cannot access the other services’ code to statically implement his
service address or communication protocol and in fact he should not do this.

Using the ComSS Platform he only has to point which services should be com-
bined in a composite service and used in his specific scenario. The protocol nego-
tiation, starting and stopping of those services will be handled by the platform
with no need for additional code implementation. Also, with no direct addressing
(and creating instances) those services can services multiple purposes and after
this purpose is fulfilled no legacy code (statically connecting one service to
another) remains.

The above example is simplified and intentionally omits matters concerning
data transport through the network (which in case of video will introduce delay).
In fact, with this platform and our on-going work on service composition and op-
timization such services could be discovered and composed dynamically and after
automated consideration of various scenarios non-functional properties (service
and transport costs, delay, etc.) an optimal solution can be selected and provided
as a single service (treated as a black box).

6 Conclusions

This work presents a platform for distributed data stream processing services
management. All its software components have been discussed from an architec-
tural perspective, describing how the platform realizes its basic goals, which
are lightweight and stateless composite services creation, monitoring, update
and deletion. The framework for atomic streaming services enables service
communication protocol negotiation and error reporting to the platform via the
Event Bus.

Acknowledgments. The research presented in this work has been co-financed by the Euro-
pean Union as part of the European Social Fund and within the European Regional Devel-
opment Fund programs no. POIG.01.01.02-00-045/09 \& POIG.01.03.01-00-008/08.

Universal Platform for Composite Data Stream Processing Services Management 407

References

[1] Chen, L., Reddy, K., Agrawal, G.: Gates: a grid-based middleware for processing dis-
tributed data streams. In: Proceedings of the 13th IEEE International Symposium on
High performance Distributed Computing, pp. 192–201 (2004)

[2] Frossard, P., Verscheure, O., Venkatramani, C.: Signal processing challenges in dis-
tributed stream processing systems. In: Proceedings of the 2006 IEEE International
Conference on Acoustics, Speech and Signal Processing, ICASSP 2006, vol. 5, p. V
(2006)

[3] Grzech, A., Juszczyszyn, K., Świątek, P., Mazurek, C., Sochan, A.: Applications of
the future internet engineering project. In: 2012 13th ACIS International Conference
on Software Engineering, Artificial Intelligence, Networking and Parallel Distributed
Computing (SNPD), pp. 635–642 (2012)

[4] Grzech, A., Rygielski, P., Świątek, P.: Translations of service level agreement in sys-
tems based on service-oriented architectures. Cybernetics and Systems 41(8), 610–
627 (2010)

[5] Grzech, A., Świątek, P., Rygielski, P.: Dynamic resources allocation for delivery of
personalized services. In: Cellary, W., Estevez, E. (eds.) Software Services for e-
World. IFIP AICT, vol. 341, pp. 17–28. Springer, Heidelberg (2010)

[6] Gu, X., Nahrstedt, K.: On composing stream applications in peer-to-peer environ-
ments. IEEE Trans. Parallel Distrib. Syst. 17(8), 824–837 (2006)

[7] Gu, X., Yu, P., Nahrstedt, K.: Optimal component composition for scalable stream
processing. In: Proceedings of the 25th IEEE International Conference on Distributed
Computing Systems, ICDCS 2005, pp. 773–782 (2005)

[8] Liu, Y., Vijayakumar, N., Plale, B.: Stream processing in data-driven computational
science. In: 7th IEEE/ACM International Conference on Grid Computing, pp. 160–
167 (2006)

[9] Rueda, C., Gertz, M., Ludascher, B., Hamann, B.: An extensible infrastructure for
processing distributed geospatial data streams. In: 18th International Conference on
Scientific and Statistical Database Management, pp. 285–290 (2006)

[10] Schmidt, S., Legler, T., Schaller, D., Lehner, W.: Real-time scheduling for data
stream management systems. In: Proceedings of the 17th Euromicro Conference on
Real-Time Systems (ECRTS 2005), pp. 167–176 (2005)

[11] Świątek, P., Klukowski, P., Brzostowski, K., Drapała, J.: Application of wearable
smart system to support physical activity. In: Advances in Knowledge-based and In-
telligent Information and Engineering Systems, pp. 1418–1427. IOS Press (2012)

[12] Świątek, P., Stelmach, P., Prusiewicz, A., Juszczyszyn, K.: Service composition in
knowledge-based soa systems. New Generation Computing 30, 165–188 (2012)

	Universal Platform for Composite Data Stream Processing Services Management
	1 Introduction
	2 Platform Description
	2.1 Platform Goals
	2.2 Platform Overview

	3 Streaming Service Framework
	4 Relation to Previous Works
	5 Example of Platform Use
	6 Conclusions
	References

