
W. Zamojski et al. (Eds.): New Results in Dependability & Comput. Syst., AISC 224, pp. 255–273.
DOI: 10.1007/978-3-319-00945-2_23 © Springer International Publishing Switzerland 2013

Towards Evolution Methodology
for Service-Oriented Systems

Szymon Kijas and Andrzej Zalewski

Warsaw University of Technology,
Institute of Control and Computation Engineering, Warsaw, Poland
s.kijas@elka.pw.edu.pl,
a.zalewski@ia.pw.edu.pl

Abstract. Modern organisations are forced to evolve their IT systems to keep up
with ever-changing business requirements. Service-Oriented Architecture ad-
dresses the challenge of boosting a system’s modifiability by composing a new
functionality out of existing, independent, loosely-coupled services. This makes
SOA a promising design paradigm for rapidly evolving systems. However, exist-
ing development methodologies for SOA, such as IBM’s SOMA, focus more on
the transition from legacy non-SOA to SOA systems, and less on their subsequent
evolution. This makes the development of an evolution methodology suitable for
service-oriented systems an open research problem. The presented evolution me-
thodology comprises an evolution process and an evolution documentation model.
The process is compliant with a popular ISO 20000 norm. Its artefacts have been
defined in terms of the evolution documentation model. The business-driven
changes are documented with architectural decisions that capture changes made to
the system at various levels of scope, together with their motivation. In order to
facilitate the change-making process, a set of typical change scenarios has been
defined. It comprises typical sequences of architectural decisions for cases of
the most important changes. The entire approach is illustrated with a real-world
example of an internet payment system.

1 Introduction

A system’s modifiability is a primary concern for many modern organisations,
which are striving to evolve their system’s to meet frequently changing or emerg-
ing business requirements. Service-oriented architectures support a system’s
modifiability by enabling the development of a new functionality by a loose, easy-
to-modify composition of existing services into new ones and by the extensive
reuse of already existing services. This makes service-oriented architectures a
design paradigm, which is particularly suitable for intensively evolving systems.

However, neither SOA development methodologies such as SOMA [6], SOMF
[7], nor existing traceability methods [20], provide efficient and complete support
for the evolution of SOA systems. This reveals a gap between the real needs of

256 S. Kijas and A. Zalewski

SOA adopters and existing SOA development methodologies. This motivates our
research on a methodology for evolving service-oriented systems presented and
discussed in this paper.

The rest of the paper has been organised as follows: related work is briefly dis-
cussed in section 2, the evolution methodology is presented in section 3, its appli-
cation has been illustrated on a real-world example in section 3, the contribution
of this paper is discussed against the related work in section 4, and finally the
outcomes and further research outlook is presented in section 5.

2 Related Work

The evolution of service-oriented systems is quite a new area of research, with
rather a sparse publication record as the envisaged service-oriented world, in
which services composition is the primary means of developing new functionality,
is a world to come rather than the world we actually live in. In practice, service-
oriented systems are currently built on top of already existing non-service-oriented
ones for integration purposes [1]. Therefore, a lot of research effort has been
devoted to addressing the issue of migrating legacy systems to SOA. Suitable
methods can be found in, for example [6], [7], [8], [9], [10], [13]. So far, the iden-
tification and development of services to “wrap” existing functionality into
services and enable interaction between systems has been the main research focus.
The evolution was understood as making changes to the services, i.e. their inter-
faces, functionality, etc. (compare, for example [6]). The emergence of a market
for third-party services and the deployment of more systems crossing organisa-
tional boundaries, possibly making their services publicly available, will change
the above condition and make the evolution of business processes and service
compositions a primary focus.

The research record on the maintenance and evolution of service-oriented sys-
tems is rather sparse. An idea of a transformation-driven method for evolving
service-oriented systems has been sketched in [22], which seems to be, so far, the
only development of this kind. Most of the research carried out so far only con-
cerned selected evolution issues, such as changes traceability [14] (a framework
for tracing changes between models of service-oriented systems), change propaga-
tion [16], [19], versioning [15], impact analysis [17], model-driven approaches to
service composition, for example [18]. The research challenges in this field have
been investigated in papers [1], [2], [3]. Paper [1] indicates that the development
of maintenance processes is still an open research issue. Nevertheless, mainte-
nance has been included in a post-deployment phase in [11], and has been provi-
sioned for in the methodology presented in [12]. The evolution of services has
been accounted for in the fractal process of SOMA methodology with the concept
of successive iterations. In [18], the authors propose to use change management
mechanisms to control the evolution of service compositions. An extensive
framework for capturing architectural decisions comprising a SOA system design
has been presented in [21].

Towards Evolution Methodology for Service-Oriented Systems 257

Finally, let us observe that ISO 20000/ITIL [4], [5] is a set of practices
for change management that has been widely accepted and adopted in industrial
practice.

3 Evolution Methodology for Service-Oriented Systems

Software development methodologies, such as object-oriented or structured ones,
have traditionally comprised two basic components: the development process,
being a kind of a design recipe, and the supporting tools, which are used within
the development process (models, notations, modelling and model analysis tech-
niques). Our evolution methodology for service-oriented systems follows this
scheme and comprises:

• Evolution process – defines a workflow, which defines how the modifications
requested by business should be done in a disciplined, repeatable way,
which is compliant with established industrial standards (ISO 20000/ITIL) –
section 3.1;

• Evolution supporting tools – includes models used to capture the evolution
of the SOA system, i.e., the model of the SOA system together with
evolution documentation model, as well as techniques supporting the devel-
opment of changes. The latter include: change scenarios, enriched traceability
mechanism, impact analysis technique – see section 3.2.

3.1 Evolution Process

The evolution process defines a disciplined and controllable way of making nu-
merous changes to the system. The evolution process comprises a set of instances
of the modification process (fig. 1), which are initiated for every submitted Re-
quest for Change document (RFC). The modification process consists of four ba-
sic phases, which are compliant with the change management process defined in
the ISO 20000:2005 standard:

− Change assessment – requested changes, described in the RFC, are assessed
in terms of their impact (on quality attributes, SLAs, other processes, services,
etc.), urgency, cost, benefits and risks;

− Change approval – decision makers accept or reject the submitted change.
This decision is based mainly on business factors. Subsequently, the develop-
ment of the approved changes is scheduled.

− Change development and deployment is a configurable part of the Modifica-
tion process; various development processes can be applied here, e.g., agile
Feature Driven Development, Scrum, XP or non-agile: waterfall, RUP. The
choice should depend on the established development practices and experience
of the development team.

258 S. Kijas and A. Zalewski

Fig. 1 Overall Structure of the Evolution Process

Fig. 2 Detailed workflow of the evolution process for service-oriented systems

− Change review is an optional phase, as required by ISO 20000. However, it
should be defined whether organisation wants to include the reviews of dep-
loyed changes in its change management practices.

The detailed workflow of the modification process has been shown in fig. 2. The
“Change Assessment” phase starts from a “Preliminary Assessment”, in which
changes described in the RFC are assessed on the basis of expert knowledge of
business and system analysts in terms of their impact on functionality, quality
(including Service Level Agreements), the effort needed to complete the changes
and risks connected with implementing and deploying the change. The results of
such an assessment are examined in a “Preliminary Assessment Approval” task, in
order to verify whether they are sufficiently credible and complete in order to
decide about the acceptance or rejection of the change.

“Change Prototyping” is performed if more detailed information on the impact
of a change is needed in order to assess the requested change. A change prototype
is a partially developed model of changes (compare section 3.2) that is supposed

Towards Evolution Methodology for Service-Oriented Systems 259

to facilitate an in-depth impact analysis and will become a basis for further devel-
opment if the change is approved. The final decision about the approval or
rejection of changes takes place in “Change Approval and Scheduling” phase.
Approved changes have to be appropriately scheduled (“Change Scheduling”) to
avoid conflicting changes being developed at the same time. This may also result
in combining two or more changes to be developed as a single chunk. The rest of
the modification process workflow seems to be self-explanatory. The artefacts of
the evolution process have been defined in section 3.3.

3.2 Evolution Documentation Model

The Evolution Documentation Model consists of two basic components:

• SOA System Model (section 3.2.1) – a set of models representing the com-
ponents of service-oriented systems (business processes, services, service
operations and their internal logic, service compositions) at various levels of
detail;

• Evolution Capturing Model (section 3.2.2) – documenting the changes intro-
duced by the evolution steps. Such changes may concern every artefact of the
SOA System Model. The evolution model provides a traceability mechanism
for SOA System Models, and also facilitates impact analysis and capturing
the architectural knowledge emerging during the development of changes.

3.2.1 SOA System Model

Service-oriented systems, such as presented in section III, implement one or more
business processes, whose activities are supported by suitable business services.
These services, in turn, comprise a number of service operations. These may be
associated with the composition of a service (composed of other service opera-
tions) or developed source code. These dependencies have been reflected in the
SOA System Model (fig. 3), which comprises the three layers described beneath.

Business Process Layer consists of a set of “Business Processes” supported by a
service-oriented system. These BPMN models abstract from the implementation
details such as service compositions, services definitions, interfaces, operations,
operations’ arguments, etc. Each business process is associated with a set of tasks
(class “Task”), which are also included in the workflow represented in BPMN.
“Task” is described using: name and description, and optionally: input and output
documents (denoted by an associations with “Document” class). “Document” is
described by its name and optionally: description and/or state.

Service Layer comprises a set of models that represent services used to support
business processes. These models form a cascading, recursive structure as a model
of a service is connected with a number of service operations, each of which can

260 S. Kijas and A. Zalewski

be either an invocation of a basic (non-composed) service operation, or of a ser-
vice composition, etc. The Service Layer comprises the following classes:

• “Service” consists of: name, set of service operations (represented as associ-
ations with “Service Operation”). Therefore, service is rather a kind of a con-
tainer, or just a label for the set of its operations.

• “Service Operation” is an entity in which computation actually takes place.
This class contains: operation name and input document – the document fed
into the operation or/and output document that is the outcome of the compu-
tations (expressed as an association to “SOA Document” class).

• “Service Composition”: model in BPMN that expresses the workflow com-
posed of the invocations of service operations (service operations belonging
to various services – internal and provided by the external providers). Ser-
vice composition should be assigned to the service operation that actually
provides its input and output interface.

• “SOA Document” contains: the name of the document and the structure of
its content (i.e. XML, text or binary data). Such a document should corres-
pond to a single “Document” from the business process layer.

Low Level Models Layer – low level, detailed models (typically in UML) and
executable code. Note that these models may concern only basic services devel-
oped in-house, or being in the possession of the system’s owner.

It is worth emphasising that the SOA System Model reflects the structure of
real world service-oriented systems, which is particularly noticeable in the relation
between services and their operations. We also assume that the tasks can be one-
to-one associated with service-operations, which implement them in a service-
oriented system. The same applies to the Documents and SOA Documents. This
imposes certain rigour both on business analysts and SOA system designers,
which is needed to make business even closer to IT.

Fig. 3 Detailed architecture model of SOA system

Towards Evolution Methodology for Service-Oriented Systems 261

Example. Evolution of an Internet payment system

Fig. 4 SOA System Model for the “Payment System”

All the components of the Evolution Documentation Model have been illu-
strated on a real-world example of a portal supporting internet payments (named
“Payment System”). The system comprised among others: web portal for individ-
ual customers’ payments, web module for system administration and service
dedicated for mass payment customers – named as “Payment service”. The initial
version of the system supported only two payment methods: credit or debit card
payments and wire transfer payments.

Fig. 5 Business process “Payment System”

The SOA System Model of the Payment System has been presented in fig. 4
(documents have been omitted for the clarity of the picture). It contains:

− Business Processes “Payment system” (BP.1, fig. 4): the model of a payment
process implemented by the portal (fig. 5).

− Services: “Payment service” (SR.1), external services: “Provider 1 service”
(SR.e1) and “Provider 1 service” (SR.e2).

− Service operations:

o “Process payment” (SO.1), which accepts “Payment request” document
and after processing the “Payment status” document is returned);

262 S. Kijas and A. Zalewski

o Internal and external (“Make payment by provider 1” (SO.e1) and “Make
payment by provider 2” (SO.e2)) services’ operations invoked inside
service composition described below.

− Service compositions: BPMN model of service composition “Payment re-
quest processing” (SC.1), which is assigned to “Process payment” service
operation. It has been composed out of several service operations provided
internally or externally (compare fig. 6).

Fig. 6 Service composition “Process payment request”

The business process in fig. 5 is the “macro-flow” of the Payment system, while
service composition “Payment Request Processing” defines (fig. 6) the “micro-
flow” of payment processing.

3.2.2 Evolution Capturing Model

The Evolution Capturing Model (fig. 7) documents evolution as a set of “Evolu-
tion Steps”. Each Evolution Step is triggered by RFC document (Request For
Change), which specifies the requested change, describes its motivation, business,
and if needed, technical context. The step itself comprises a cascade of architec-
tural decisions, which capture the changes made to the models of different levels
of SOA System Model. The changes made to a service-oriented system are of a
cascading structure, i.e., change to a business process may force changes to ser-
vices, these in turn may force changes to service compositions, which in turn may
require changes to services etc. Such a cascading effect is reflected by “forces”
associations.

A set of typical modification scenarios has been developed in order to facilitate
the development of changes (table 1). Let us note that the change scenarios can be
applied recursively.

Towards Evolution Methodology for Service-Oriented Systems 263

Architectural decisions connect previous (is_input association), modified ver-
sions resulting from change’s implementation (is_outcome association) as well as
models’ alternatives considered during change’s development (is_alternative asso-
ciation). At the same time they provide rationale for the changes made, e.g., by
justifying the choice between the connected alternatives. This concerns the follow-
ing components of SOA System Model: Business Process Models, Service Mod-
els, Service Composition Models, Detailed Models.

Fig. 7 Evolution Capturing Model

Example. Evolution of Internet Payment System (cont.)
Let us look back at the example to see how changes are captured using the Evolu-
tion Documentation Model presented in fig. 7.

Evolution Step No 1
Summary of RFC Document: The business expects that instant wire transfers
(normally transfers are made during several communication sessions a day) will
also be available.

The cascading changes necessary to implement the modifications described in
RFC have been illustrated in fig. 8. The sequence of modification scenarios ap-
plied in order to develop the changes depicted in fig. 8 has been shown in fig. 9.

264 S. Kijas and A. Zalewski

Table 1 The set of most popular SOA decision-making scenarios

 Creation Removal Modification

Service

composi-

tion

Service

Business

process

(Integra-

tion

proce-

dure)

Towards Evolution Methodology for Service-Oriented Systems 265

Fig. 8 The first evolution step of the payment system

Fig. 9 Sequence of change scenarios applied to modify the system in order to support in-
stant wire transfers

The following artefacts had to be modified:

− Business process “Payment System” – its control flow (fig. 5) remained un-
changed, though, the content of the “payment order” document has been ex-
tended to include data necessary to issue an instant wire transfer.

− Service operations:

266 S. Kijas and A. Zalewski

o Service operation “Process Payment” has been modified in order to sup-
port instant wire transfers – the XML scheme of the “Payment request”
SOA document (corresponding to the workflow’s “Payment request”
document) has been extended with the information necessary for the in-
stant wire transfers.

o Service operation “Make payment by provider 3” (SO.e3) has been added
and invoked in the service composition “Process payment request”.

− Services – service “Provider 3 service” (SR.e3) was added, which contains
operation supporting instant transfers;

− Service composition “Process payment request” has been extended with the
invocation of the service operation “Make payment by provider 3” supporting
instant wire transfers (fig. 10). The composition’s workflow was appropriately
adjusted.

Evolution Step No. 2
Summary of RFC Document: The business expects that international instant
wire transfers will also be available.

Implementation of the above changes required that a cascade of architectural
decisions had to be made. These decisions capture the changes made to the models
of “Internet Payment System” and their rationale. This decision making process
has been illustrated in fig. 11, which extends the model developed in order to cap-
ture changes made in step No. 1. Modified versions of business process “Payment
System” and service compositions “International payment request processing” can
be found in fig. 12 and 13, respectively.

Fig. 10 Service composition “Process payment request” service operation after the first
evolution step

Towards Evolution Methodology for Service-Oriented Systems 267

F
ig

. 1
1

T
ra

ce
ab

ili
ty

 m
od

el
 a

ft
er

 th
e

se
co

nd
 e

vo
lu

tio
n

st
ep

268 S. Kijas and A. Zalewski

3.3 Evolution Supporting Techniques

The above example illustrates how Evolution Capturing Model can be employed
so as to document the changes made to the system. Let us note that every architec-
tural decision can not only define a traceability link between two consecutive
versions of a certain model but can also be connected with the considered model’s
alternatives. Architectural decision includes also modification’s rationale,
which explains why certain changes have been made to the system. This makes it
possible to understand how system has reached its current shape.

The structure of SOA System Model enables top-down impact analysis as the
models potentially affected by the changes can be discovered by following the
associations between higher- and lower-level (more detailed) models. The set of
potentially affected models tightens as more detailed decisions are made. In such
case the top-down traceability, goes from already affected models down to the
possible affected subcomponents. This way the scope of changes necessary to
implement a given change can be established, which should facilitate time and
cost estimation. Obviously, there is a lot of space for further research in this area,
which was discussed in section 4.

Fig. 12 Business process model “Payment system” after the second evolution step

Fig. 13 Service composition “International payment request processing”

Towards Evolution Methodology for Service-Oriented Systems 269

3.4 Artefacts of the Evolution Process

A detailed description of all the artefacts produced during the evolution process
for service-oriented systems has been summarised in table 2.

Table 2 List of artefacts produced during the evolution process

Artefact Description How the Evolution Cap-
turing Model (ECM) and
supports the artefacts of
the evolution process
artefacts

RFC The change is described in business or techni-
cal terms. The document also contains an
explanation of the change and indications
concerning its importance/priority.

RFC is included in ECM
(class RFC).

Assessment
report [Pre-
liminary] or
[Full]

The document includes:
• scope of change:
o list of business processes / service op-

erations / service compositions modi-
fied/added/removed;

• impact analysis – description of a change’s
impact on:
o quality (including SLAs), e.g. reliabil-

ity, performance, business continuity,
etc.,;

o list of business processes affected by
the changes (e.g. requiring revision);

o overlapping changes;
• cost estimates,
• identified risks,
• attachments (other documents used for or

created during the assessment process), in
the case of the [Full] version of the docu-
ment – change prototypes are included here.

The scope of a change can
be expressed as a set of the
instances of classes (Busi-
ness Process, Service,
Service Operation , etc.) of
an SOA System Model that
are subject to changes.

The associations in an
SOA System Model enable
the impact of changes to be
assessed (section 3.2.1) by
identifying the artefacts
that may require changes.

Change
prototype

Set of business process and service composi-
tion models containing:
• modified versions of existing business

processes, services and service operations
with the associated service compositions,

• models of new processes introduced,
• list of removed business processes, service

compositions, service operations and ser-
vices

• list of detailed models subjected to change /
modification / removal
The above models are drafts of the as-

sessed changes. They have not been fully
developed, verified or tested.

The association
is_alternative of ECM
indicate the variants of
models considered as a
possible solution needed to
develop a certain change.
Chosen (on trial) alterna-
tives of every modified
artefact of the model com-
prise change prototype.

270 S. Kijas and A. Zalewski

Table 2 (continued)

Change
acceptance
report

The document contains:
• notes explaining the need and rationale for

the approved change,
• effort / cost estimated,
• allocation of the cost within budget (the

source of change financing);
• time schedule for change development and

deployment;
• attachments including: RFC, Assessment

reports and Change prototype.

ECM enables an analysis of
the rationale of changes
made to accomplish every
evolution step.

Changes
development
schedule

A document with a schedule of all changes
that have to be implemented.

The components of ECM
identified as being subject
to change can be used as a
basis for developing a
change’s schedule.

Development
plan

The document contains all of the informa-
tion directly connected to the modification of
the system: about business process models,
service composition models and service mod-
els. The development plan contains the system
prototype (if one exists). Additionally, this
document contains all the information about
detailed models and, of course, a complete set
of the architectural decisions that have been
made.

Deployment
plan

The deployment plan contains installa-
tion/deployment instructions for a new re-
lease.

Release notes Report on the deployment containing a list
of bugs that have been corrected or are not in
the developed version.

Change
review report

Defined individually by the organisation.

4 Discussion

The overarching goal of our research was to develop an approach to the evolution
of a service-oriented system that could be easily adopted by industry. This ex-
plains our devotion to the compliance of ISO 20000/ITIL. This is naturally an
advantage of the proposed solution over the one presented in [22]. This also ap-
plies to the approaches for maintenance suggested in [6], [11], [12].

The Evolution Documentation Model provides a three dimensional traceability:

1. The history of changes made to the components of an SOA System Model
(business processes, services, services’ operation etc.) is captured with archi-
tectural decisions linking previous and modified versions of certain models;

Towards Evolution Methodology for Service-Oriented Systems 271

2. Architectural decisions enable the motivation of changes made to the system to
be captured at various levels of detail;

3. Logic of a change’s development is captured with “forces” association linking
changes made at various levels of detail.

The above traceability mechanism is compliant with a reference model proposed
in [20], i.e. comprising satisfaction links (association between RFC and evolution
step classes), evolution links (is_input and is_outcome associations between con-
secutive model versions and architectural decisions), rationale links (provided by
architectural decisions) and dependency links (associations between the classes of
the SOA System Model). In [14], the authors present a method for automatic trac-
ing changes between models of SOA systems, both vertically (between more and
less detailed models) and horizontally (between models at the same level of de-
tail). We perceive evolution as a process of making intentional changes to the
system. Admittedly, it can be facilitated with automated tools, though they cannot
eliminate a conscious decision-maker – architect.

The idea of exploiting the advantages of architectural decisions for SOA sys-
tems and their evolution is becoming more and more popular. A comprehensive
framework for architectural-decision making was presented in [21]. However, it
does not account for the evolution of SOA systems and focuses on architectural
decisions only, ignoring typical models used for SOA systems and their interrela-
tions. Its intrinsic complexity makes it difficult to comprehend by practitioners,
who have rather little time for learning elaborate methodologies. This observation
became a foundation for our earlier work [23]. The proposed structure of the Evo-
lution Capturing Model allows MAD to be employed, as a number of alternatives
are associated with the architectural decisions documenting the internal logic of a
single evolution step.

5 Summary and Outlook

A methodology for evolving service-oriented systems has been proposed. It com-
prises a disciplined evolution process and a set of models and other tools support-
ing the development of changes. The models have been validated on a real world
example. The process’s compliance with industrial standard ISO 20000 should
facilitate the application of the presented approach in practice. There are obviously
some missing parts of the methodology, which should become the subject of fur-
ther research. Therefore, the research outlook includes:

• The development of a quality model and methods for analysing how changes
impact the quality attributes;

• Supporting the development of changes with predefined model transformations
applied in order to ensure that service compositions meet the quality
requirements;

• The development of a software tool supporting the methodology;
• Carrying out further and more extensive validation.

Acknowledgement. This work was sponsored by the Polish Ministry of Science and High-
er Education under grant number 5321/B/T02/2010/39.

272 S. Kijas and A. Zalewski

References

[1] Lewis, G.A., Smith, D.B., Kontogiannis, K.: A Research Agenda for Service-Oriented
Architecture (SOA): Maintenance and Evolution of Service-Oriented Systems. Tech-
nical Note, CMU/SEI-2010-TN-003 (March 2010)

[2] Lewis, G.A., Smith, D.B.: Service-Oriented Architecture and its Implications for
Software Maintenance and Evolution. In: FoSM 2008, pp. s. 1–s. 10. IEEE (October
2008)

[3] Kontogiannis, K., Lewis, G.A., Smith, D.B.: The Landscape of Service-Oriented Sys-
tems: A Research Perspective for Maintenance and Reengineering. SEI (2007)

[4] ISO/IEC 20000-1:2005 and 20000-2:2005, Information technology Service manage-
ment, ISO 20000-1: Specification. ISO 20000-2. Code of practice. ISO/IEC (2005)

[5] Office of Government Commerce. ITIL V3 Foundation Handbook. The Stationery
Office, Updated edition (June 2009) ISBN: 978-0113311972

[6] Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T., Ganapathy, S., Holley, K.: SOMA:
A method for developing service-oriented solutions. IBM Systems Journal 47(3), s.
377–s. 396 (2008)

[7] Bell, M.: Service-Oriented Modeling: Service Analysis, Design, and Architecture.
Wiley Publishing (February 2008)

[8] Winter, A., Ziemann, J.: Model-Based Migration to Service-Oriented Architectures.
In: Proceedings of the International Workshop on SOA Maintenance Evolution
(SOAM 2007), 11th European Conference on Software Maintenance and Reengineer-
ing (CSMR 2007), Amsterdam, March 20-23. IEEE Computer Society (2007)

[9] Lewis, G., Morris, E.J., Smith, D.B., Simanta, S.: SMART: Analyzing the Reuse Po-
tential of Legacy Components in a Service-Oriented Architecture Environment.
CMU/SEI-2008-TN-008, Software Engineering Institute, Carnegie Mellon University
(2008)

[10] Ziemann, J., Leyking, K., Kahl, T., Werth, D.: SOA Development Based on Enter-
prise Models and Existing IT Systems. In: Cunningham, P. (ed.) Exploiting the
Knowledge Economy: Issues, Applications and Case Studies. IOS Press (2006)

[11] High Jr., R., Kinder, K., Graham, S.: IBMs SOA Foundation: An Architectural Intro-
duction and Overview (November 2005)

[12] Mittal, K.: Build Your SOA, Part 1: Maturity and Methodology. IBM (May 2005)
[13] Erl, T.: SOA Design Patterns. Prentice Hall (2009) ISBN: 0136135161
[14] Sindhgatta, R., Sengupta, B.: An extensible framework for tracing model evolution in

SOA solution design. In: OOPSLA Companion, pp. 647–658 (2009)
[15] Laskey, K.: Considerations for SOA Versioning. In: 2008 12th Enterprise Distributed

Object Computing Conference Workshops, September 16, 2008, pp. 333–337. IEEE
(2009)

[16] Dam, H.K., Ghose, A.: Supporting Change Propagation in the Maintenance and Evo-
lution of Service-Oriented Architectures. In: 17th Asia Pacific Software Engineering
Conference (APSEC) 2010, November 30-December 3, pp. 156–165. IEEE (2010)

[17] Hirzalla, M.A., Zisman, A., Cleland-Huang, J.: Using Traceability to Support SOA
Impact Analysis. In: 2011 IEEE World Congress on Services (SERVICES), July 4-9,
pp. 145–152. IEEE (2011)

[18] Orriëns, B., Yang, J., Papazoglou, M.P.: Model driven service composition. In: Or-
lowska, M.E., Weerawarana, S., Papazoglou, M.P., Yang, J. (eds.) ICSOC 2003.
LNCS, vol. 2910, pp. 75–90. Springer, Heidelberg (2003)

Towards Evolution Methodology for Service-Oriented Systems 273

[19] Ravichandar, R., Narendra, N.C., Ponnalagu, K., Gangopadhyay, D.: Morpheus: Se-
mantics-based Incremental Change Propagation in SOA-based Solutions. In: IEEE In-
ternational Conference on Services Computing, SCC 2008, July 7-11, pp. 193–201.
IEEE (2008)

[20] Ramesh, B., Jarke, M.: Toward reference models for requirements traceability. IEEE
Transactions on Software Engineering 27(1), 58–93 (2001)

[21] Zimmermann, O., et al.: Managing architectural decision models with dependency re-
lations, integrity constraints, and production rules. Journal of Systems and Soft-
ware 82(8), 1249–1267 (2009)

[22] Ahmad, A., Pahl, C.: Customisable transformation-driven evolution for service archi-
tectures. In: Proceedings of the European Conference on Software Maintenance and
Reengineering (CSMR), pp. 373–376. IEEE Computer Society (2011)

[23] Zalewski, A., Kijas, S., Sokołowska, D.: Capturing Architecture Evolution with Maps
of Architectural Decisions 2.0. In: Crnkovic, I., Gruhn, V., Book, M. (eds.) ECSA
2011. LNCS, vol. 6903, pp. 83–96. Springer, Heidelberg (2011)

	Towards Evolution Methodology for Service-Oriented Systems
	1 Introduction
	2 Related Work
	3 Evolution Methodology for Service-Oriented Systems
	3.1 Evolution Process
	3.2 Evolution Documentation Model
	3.3 Evolution Supporting Techniques
	3.4 Artefacts of the Evolution Process

	4 Discussion
	5 Summary and Outlook
	References

