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Abstract. Repair system has two essential components, which are much related to 
each other. When the update operation is executed, the first component is the 
detection of the erroneous state if any and the second component is to repair this 
state by finding the changes to the update operation that would repair it. Failing to 
have the second component, which is the repair action, will enforce the user to 
manually correcting and reentering an erroneous update operation.  Our approach 
will take advantage of the integrity before the update operation, which will result 
on limiting the detection only to the database state after the update operation. Also 
the repair component will take advantage of the integrity before the update 
operation and integrity violation after the update operation but before the repair. 
The focus of this paper is to generate repairs for all first order constraints, and by 
using only substitution with no resolution search. Multiple constraints can be 
satisfied in parallel without a sequential process with no possibility of cyclic 
violation. 

1 Introduction 

The reliability of information systems is a major concern for today’s society and 
enterprises. The correctness or maintaining database integrity of databases is one 
of the main reliability issues. Consequently procedures asserting correct databases 
are a chief focus of research. Today the prime obstacles applying these procedures 
are their high computational costs. Integrity maintenance is considered one of the 
major application fields of rule triggering systems. In the case of a given integrity 
constraint being violated by a database transition these systems trigger update 
operation (action) to maintain database integrity. 

A relational database is a collection of relations; each relation corresponds to a 
database predicate. Each relation R is a collection of tuples. Any attempt to update 
the database should be controlled by integrity constraints. When any of these 
constraints is violated by an update operation then the system should either abort 
or take action to repair the erroneous update operation. Such system is called 
integrity maintenance subsystem. When detecting any erroneous update operation, 
repairing become essential since detection without repairing the erroneous state 
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will never accommodate users need to guarantee consistency, accuracy and the 
integrity of their systems. The integrity maintenance subsystem separate the 
database state into two states, the first is before the update operation. The second 
state is after the update operation, so the integrity maintenance subsystem has to 
detect any new errors introduced by the update operation and if there is any  
error to be repaired. Our approach involves algebraically modifying the constraint 
definitions into derivative expressions that return the condition for a new  
violation to occur. The derived predicate is a predicate defined in terms of the 
database predicates. The derived predicate, which denotes a violation of database 
constraint, is considered as a negation of the constraint. 

2 Related Work 

Relational Databases usually contain massive collections of data that rapidly 
evolve over time; this makes perfect checking at each update too time consuming 
a task to be feasible. In this regard, DBMS needs to be extended with the ability to 
automatically verify that database updates do not introduce any violation of 
integrity [3; 11]. 

The primary tool of integrity maintenance subsystem is the database integrity 
rules. The aim of integrity rules is to capture the semantics of data. Integrity rules 
provide a much more general capability to maintain integrity than the data models 
since they can utilize the full power of logic based language. The high cost results 
from using integrity rules may become as a restriction since they often involve the 
execution of complex queries against a large database.  

Automation of the various repairable systems was the main aim for the 
researchers in the last decade. Partial automation was the aim of some researchers 
like [1, 4, 5, 16 and 18]. They adopted the notion of entrust the final repair to be 
manually designed by the users provided that the guidelines which they have to 
follow for the repair operation is clearly generated. Other approaches [14, 17 and 
19] generated sufficient conditions for repair by the user entrusting to him the 
final repair to be manually designed by pruned the necessary repair, a suitable 
decision making framework based on encompassing all the actions requested to 
repair the erroneous state formulated, since there is not minimal repair actions. 
Some approaches resort to impose severe restrictions on the quantifier structure  
of the constraints like no existential quantifiers followed by universal quantifiers 
[1, 3 and 4]. 

Expensive rollback is the repair action adopted by many approaches [1, 4, 5, 
14, 16 and 19] since executing of the update operation first was the condition for 
checking any possible integrity violations.  

Soumya et al [15] proposed a technique to achieve optimization of constraint 
checking process in distributed databases by exploiting technique of parallelism, 
compile time constraint checking, localized constraint checking, and history of 
constraint violations. The architecture mainly consists of two modules: Constraint 
Analyzer and Constraint Ranker for analyzing the constraints and for ranking the  
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constraints, respectively for systems with relational databases. They achieved 
optimization in terms of time by executing the constraints in parallel with mobile 
agents. 

3 Preliminaries 

Our approach has been developed in the context of relational databases. A 
relational database is a collection of relations, each corresponding to a database 
predicate. Each relation P is a collection of tuples Ti satisfying the corresponding 
predicate P, i.e., P (Ti) is True. An intentional (derived) predicate is a predicate 
defined in terms of the database predicates. Let V be an intentional predicate that 
denotes a violation of the database integrity constraint C, (i.e., V is the negation of 
C), where an integrity constraint is the primary tool of integrity maintenance 
system specifying a condition that should be satisfied by the database. Efficient 
computation of V is critical in detecting semantic violations caused by erroneous 
database update operations. A database update transaction is defined as a 
collection of insertions into and deletions from the database.   

Throughout this paper the same example Job Agency database is used, as given 
below. This example is taken from [19]: 

 
Person (pid, pname, placed) 
Company (cid, cname, totsal) 
Job (jid, jdescr) 
Placement (pid, cid, jid, sal) 
Application (pid, jid) 
Offering (cid, jid, no_of_places) 

 
Definition 1. Given an update operation, for each database relation P, the 
incessant of the relation P, ΓP means that the tuples exists in relation P and not 
being deleted from relation P, such that: 

∀x (ΓP(x) ← P(x) ∧ ¬δP(x)) 

where δ is a deletion operator. 
 

Definition 2. For every database relation P there are three different database states 
of the same relation, where P is the state of the relation before an update operation 
is performed, P’ is the state of P after the update operation is performed and P'' is 
the state of P after the repair operation is executed. 

 
Definition 3. Given an update operation, for each database relation P, the new 
database state of the relation P’ means that the tuples incessant in the database 
relation P, i.e. ΓP and the tuples to be inserted by the update operation, such that:  

∀x (P’(x) ← ΓP(x) ∨ ιP(x))  

Assumption 1. Given an update operation, for each database relation P, it is 
assumed that: 
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• ¬ιP means that a tuple(s) were deleted from P, i.e. δP. 
• ¬δP means that a tuple(s) were inserted into P, i.e. ιP. 

where ι is an insertion operator. 
Given the fact that a pre-transaction state of a database is correct, a reduction of 

the amount of data to be checked in constraint enforcement can be obtained by 
inspecting only those parts of relations that have been changed in a relevant way 
by a transaction. This is usually accomplished by the use of differential relations 
[6, 8, 9,12 and 13]. In this approach, two auxiliary relations are associated with 
each base relation P. 

New differential relation. The new differential relation contains the set of tuples 
to be inserted into the relation P or the new modified tuples by the current update 
operation. The new differential relation associated with relation P is denoted as ιP 
and can be defined as: 

∀x (ιP(x) ← ¬P(x) ∧ P’(x)), i.e. ιP means that the tuples that is not in the 
relation P , but in P’.  

Old Differential Relation. The old differential relation contains the set of tuples 
to be deleted from the relation P or the old tuples that have been modified by the 
current update operation. The old differential relation associated with relation P is 
denoted as δP and can be defined as: 

∀x (δP(x) ← P(x) ∧ ¬P ′(x)), i.e. δP means that the tuples that is in the relation 
P, but not in P’.  

Using this auxiliary relations, constraint conditions can be reformulated. 

Example. Given the domain integrity constraint C that states the placed attribute 
in relation Person must be either T or F 

(∀v, ∀ w, ∀x) Person (v, w, x)  x = T ∨ x = F 

Given the fact that the constraint holds on the pre-transaction state of relation 
Person, only the new tuples to be inserted into Person have to be checked. 
Therefore, the constraint can be optimized as follows: 

 (∀v, ∀ w, ∀x) ιPerson (v, w, x)  x = T ∨ x =F 

4 Generating Integrity Tests 

The main aim of this research is to contribute to the solution of constraint 
checking in a parallel database by deriving integrity tests from a given constraint 
and a given update operation. Using integrity tests to detect violations instead of 
integrity constraints is more fruitful because the later is costly since they often 
involve the execution of complex queries against a large database. These integrity 
tests may be necessary, sufficient or complete. 

This section presents the algorithm which can be employed to derive more 
integrity tests than the previous approaches discussed in the related work section. 
The algorithm should be as general as possible, i.e. independent of any specific 
application domain. We take out the quantifiers Q for simplicity. 
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Lemma 1. Given a predicate P(X) in the form: P(X) ← Q(Y) ∧ R(Z), δP(X) will 
be computed as follows: δP(X) ← (δQ(Y) ∧ R(Z)) ∨ (δR(Z) ∧Q(Y)) i.e. either 
deleting a tuple(s) from the relation R or a tuple(s) from the relation Q will result 
in deleting a tuple(s) from the relation P. Deleting a tuples from both relations Q  
and R can be realized from the formula.  

Proof 

δP(X) ← P(X) ∧ ¬P’(X) 
δP(X) ←Q(Y) ∧ R(Z) ∧ ¬(Q’(Y) ∧ R’(Z)) 
δP(X) ←Q(Y) ∧ R(Z) ∧ (¬Q’(Y) ∨ ¬R’(Z)) 
δP(X) ← (δQ(Y) ∧ R(Z)) ∨ (δR(Z) ∧ Q(Y)) 

 
Lemma 2. Given a predicate P(X) in the form: P(X) ← Q(Y) ∨ R(Z), δP(X) will 
be computed as follows: δP(X) ← (¬ΓQ(Y) ∧ δR(Z)) ∨ (¬ΓR(Z) ∧ δQ(Y)) i.e. not 
existence a tuple(s) of both relations R and Q will result in deleting a tuple(s) from 
the relation P. 

Proof 

δP(X) ← P(X) ∧ ¬P’(X) 
P(X) ← (Q(Y) ∨ R(Z)) ∧ ¬(Q’(Y) ∨ R’(Z)) 
         ← (Q(Y) ∨ R(Z)) ∧ (¬Q’(Y) ∧ ¬R’(Z)) 
         ← (Q(Y) ∧ ¬Q’(Y) ∧ ¬R’(Z)) ∨ (R(Z) ∧ ¬Q’(Y) ∧ ¬R’(Z)) 
         ← (δQ(Y) ∧ ¬(R(Z) ∧ ¬δR(Z) ∨ ιR(Z))) ∨ (δR(Z) ∧ ¬(Q(Y) ∧ ¬δQ(Y) ∨ 

ιQ(Y))) 
← (δQ(Y) ∧ (¬R(Z) ∨ δR(Z)) ∧ ¬ιR(Z))) ∨ (δR(Z) ∧ (¬Q(Y) ∨ δQ(Y) ∧ 

¬ιQ(Y))) 
← (δQ(Y) ∧ (¬R(Z) ∧ ¬ιR(Z) ∨ δR(Z) ∧ ¬ιR(Z))) ∨ (δR(Z) ∧ (¬Q(Y) ∧ 

¬ιQ(Y) ∨ δQ(Y)) ∧ ¬ιQ(Y))) 
         ← (¬R(Z) ∧ ¬ιR(Z) ∧ δQ(Y)) ∨ (δR(Z) ∧ ¬ιR(Z) ∧ δQ(Y)) ∨ (¬Q(Y) ∧ 

¬ιQ(Y) ∧ δR(Z)) ∨ (δQ(Y) ∧ ¬ιQ(Y) ∧ δR(Z)) 
         ← (¬R(Z) ∧ ¬ιR(Z) ∧ δQ(Y)) ∨ (δR(Z) ∧ δR(Z) ∧ δQ(Y)) ∨ (¬Q(Y) ∧ 

¬ιQ(Y) ∧ δR(Z)) ∨ (δQ(Y) ∧ δQ(Y) ∧ δR(Z)) 
         ← (¬R(Z) ∧ ¬ιR(Z) ∧ δQ(Y)) ∨  (δR(Z) ∧ δQ(Y)) ∨ (¬Q(Y) ∧ ¬ιQ(Y) ∧ 

δR(Z)) ∨ (δQ(Y) ∧ δR(Z)) 
         ← (¬R(Z) ∧ ¬ιR(Z) ∧ δQ(Y)) ∨ (¬Q(Y) ∧ ¬ιQ(Y) ∧ δR(Z)) ∨ δQ(Y) 

∧δR(Z))) 
               ← ¬(R(Z) ∨ ¬δR(Z)) ∧ δQ(Y)) ∨ (¬Q(Y) ∧ ¬ιQ(Y) ∧ δR(Z)) ∨ 

δQ(Y) ∧δR(Z))) 

The process of generate integrity tests starts by accepting an integrity constraint 
from the constraint base and a given update operation by the user. Figures 1 and 2 
present the algorithms to generate integrity tests for constraints in conjunctive and 
disjunctive normal form respectively. Every generated integrity test is distributed 
to all dynamic virtual partitions [7] through generate distributed integrity test 
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algorithm. This algorithm not presented in this paper because of space constraint. 
A clarified example to illustrate our technique followed the algorithms. 

Checking the validity of the integrity tests against the database is activated at 
run-time once these tests are generated (computed) by logical rules at compile-
time. These logical rules are specified using logical specification language.  Each 
generation rule (conjunctive or disjunctive) has three input expressions. The 
output of the generation rule is sufficient, necessary or complete test(s). 

 
Algorithm (Generate Texp for a constraint in a conjunctive normal form) 
Inputs:   Constraint C in conjunctive normal form    /*V ← P(X) ∧ Q(Y)*/ 
       Update Operation (UO)  
Output: Texp   /*Integrity Test Expression*/ 
Method: 
Begin 
Step 1:  
Exp1 ←ΓP(X) ∧ ιQ(Y)    /*incessant of P(X) and insert a tuple into base relation Q */ 
where: ΓP ← P ∧ ¬δP 
Exp2 ← ΓQ(Y) ∧ ιP(X)   /*incessant of Q(Y) and insert a tuple into base relation P */ 
where: ΓQ ← Q ∧ ¬δQ 
Exp3 ← ιP(X) ∧ ιQ(Y)    /*insert two tuples into both base relations P and Q */ 
Step 2: 
Texp ← Exp1 ∨ Exp2 ∨ Exp3  
Step 3:  
Negate Texp 
End.  

Fig. 1 Generate Texp algorithm for a constraint in a conjunctive normal form 

Algorithm (Generate Texp for a constraint in a disjunctive normal form) 
Inputs: Constraint IC in disjunctive normal form    /*V ← P(X) ∨ Q(Y)*/ 
 Update Operation (UO)  
Output: Texp   /*Integrity Test Expression*/ 
Method: 
Begin 
Step 1:  
Exp1 ← ιP(X) ∧ ¬Q(Y)      /*insert a tuple into the base relation P and Q(Y) is false*/ 
Exp2 ← ¬P(X) ∧ ιQ(Y)     /* P(X) is false and insert a tuple into the base relation Q */ 
Exp3 ← ιP(X) ∧ ιQ(Y)        /*insert two tuples into both base relations P and Q */ 
Step 2: 
Texp ← Exp1 ∨ Exp2 ∨ Exp3 
Step 3:  
Negate Texp 
End.  

Fig. 2 Generate Texp algorithm for a constraint in a disjunctive normal form 

We now present detailed example to generate Texp algorithm which will clarify 
the steps presented above. 

Example: when a company offers a Director job it must offer a Senior Secretary 
job first. 
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C1 ← (∀x∀y∀z)(Offering(x, y, z) ∧ Job(y, ‘Director’) ∧ ¬S(x)) 

where S(x) ← Offering(x, p, q) ∧ Job (p, ‘Senior Secretary’) 

Update: Insert(Offering(x, y, z)) = {x/C, y/J, z/N} 

C1 ← (∀x∀y∀z)(Offering(x, y, z) ∧ M(x, y)) 

where M(x, y) ← Job(y, Director) ∧ ¬S(x) 

Step1 

Exp1 (Texp) ← ΓOffering(x, y, z) ∧ ιM(x, y) 
Exp2 (Texp) ← ΓM(x, y) ∧ ιOffering(x, y, z) 
Exp3 (Texp) ← ιOffering(x, y, z) ∧ ιM(x, y) 

Computing δS(x) using Lemma1 

S(x) ← Offering(x, p, q) ∧ Job (p, ‘Senior Secretary’) 
Exp1 ← δOffering(x, p, q) ∧ Job(p, ‘Senior Secretary’) 
         ← False ∧ Job(p, ‘Senior Secretary’) 
         ← False 
Exp2 ← Offering(x, p, q) ∧ δJob(p, ‘Senior Secretary’) 
         ← Offering(x, p, q) ∧ False 
         ← False 
δS(x) ← Exp1 ∨ Exp2 
δS(x) ← False ∨ False 
δS(x) ← False 

Computing δM(x, y) using Lemma1 

M(x, y) ← Job(y, ‘Director’) ∧ ¬S(x) 
Exp1 ← Job(y, ‘Director’) ∧ ιS(x) 
Exp2 ← ¬S(x) ∧ δJob(y, ‘Director’) 
δM(x, y) ← Exp1 ∨ Exp2 
δM(x, y) ← Job(y, ‘Director’) ∧ ιS(x) ∨ False 
δM(x, y) ← Job(y, ‘Director’) ∧ ιS(x) 

Computing ιM(x, y) 

M(x, y) ← Job(y, ‘Director’) ∧ ¬S(x) 
Exp1 ← ΓJob(y, Director) ∧ ¬ιS(x) 
         ← ΓJob(y, Director) ∧ δS(x)  
         ← ΓJob(y, Director) ∧ False  
         ← False 
Exp2 ← ¬ΓS(x) ∧ ιJob(y, ‘Director’) 
         ← ¬(S(x) ∧ ¬δS(x)) ∧ ιJob(y, ‘Director’) 
         ← (¬S(x) ∨ δS(x)) ∧ ιJob(y, ‘Director’) 
         ← (¬S(x) ∨ δS(x)) ∧ False 
         ← False 
Exp3← ιJob(y, ‘Director’) ∧ δS(x) 
        ← False ∧ δS(x) 
        ← False 
ιM(x, y) ← Exp1 ∨ Exp2 ∨ Exp3 
ιM(x, y) ← False ∨ False ∨ False 
ιM(x, y) ← False 
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Computing ιS(x) 

S(x) ← Offering(x, p, q) ∧ Job(p, ‘Senior Secretary’) 

Exp1 ← ΓOffering(x, p, q) ∧ ιJob(p, ‘Senior Secretary’) 

Exp2 ← ΓJob(p, ‘Senior Secretary’) ∧ ιOffering(x, p, q) 

Exp3 ← ιOffering(x, p, q) ∧ ιJob(p, ‘Senior Secretary’) 

ιS(x) ← Exp1 ∨ Exp2 ∨ Exp3 

ιS(x) ← False ∨ Job(J, ‘Senior Secretary’) ∧ x = C ∨ False 

ιS(x) ← Job(J, ‘Senior Secretary’) ∧ x = C  

 
Substituting the result of ιS(x) into δM(x, y): 

δM(x, y) ← Job(y, ‘Directory’) ∧ Job(J, ‘Senior Secretary’) ∧ x = C 

Substituting the results of ιM(x, y) into Exp1 (Texp) and Exp3 (Texp): 

Exp1 (Texp) ←False 
Exp3 (Texp) ←False 
Exp2 (Texp) ← ΓM(x, y) ∧ ιOffering(x, y, z) 

      ← M(x, y) ∧ ¬δM(x, y) ∧ ιOffering(x, y, z) 
               ← Job(y, ‘Director’) ∧ ¬S(x) ∧ ¬(Job(y, ‘Director’) ∧ Job(J, ‘Senior  

                              Secretary’) ∧ x = C) ∧ (x, y, z) = (C, J, N) 

Step2 

Texp← Job (J, ‘Director’) ∧ ¬S(C) ∧ (¬Job(J, ‘Director’) ∨ ¬Job(J, ‘Senior 
Secretary’) ∨ ¬(C = C)) 
By substitution and negation rule 
Texp ← Job(J, ‘Director’) ∧ ¬S(C) ∧ ¬ Job(J, ‘Senior Secretary’) 

Step3 

¬Texp ← ¬Job(J, ‘Director’) ∨ S(C) ∨ Job(J, ‘Senior Secretary’) 
where 
S(C) ← Offering(C, p, q) ∧ Job(p, ‘Senior Secretary’) 

A number of sufficient tests can be computed by applying the substitution and 
resolution rules[2] to the sufficient and complete integrity tests  in ¬Texp and the 
original constraint C1. These sufficient tests are often easier to test than the 
complete tests, and only one of them needs to be tested to prove that there are no 
violations. Given integrity constraint C, let negation of its violation be  ¬Texp ← 
SCT, where SCT is the sufficient and complete tests for integrity checking.  
¬Texp ← SCT ∨ C1 from identity rules[2], since C is not violated from the 
assumption of integrity before the transaction. A strengthen of our method is the 
more generated number of useful integrity tests than the previous methods like in 
[McC95].  The following sufficient tests are generated for the previous example. 

¬Texp ← ¬Job(J, ‘Director’) ∨ S(C) ∨ Job(J, ‘Senior Secretary’)  
∨ Offering(x, y, z) ∧ Job(y, ‘Director’) ∧ ¬S(x)   /*assuming C1 is not 

    violated before the transaction*/  
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∨ Offering(C, y, z) ∧ Job(y, ‘Director’) ∨ Offering(x, J, z) ∧ ¬S(x) ∨ 
Offering(C, J, z) 

Since all the tests distributed over OR, the satisfaction of any disjunct alone is 
sufficient for integrity.  ¬Job(J, ‘Director’) ∨ S(C) ∨ Job(J, ‘Senior Secretary’)  
is the complete and sufficient tests, Offering(x, y, z) ∧ Job(y, ‘Director’) ∧ ¬S(x) 
is the original constraint,   Offering(C, y, z) ∧ Job(y, ‘Director’) and Offering(x, J, 
z) ∧ ¬S(x) are subsumed tests. Hence, Offering(C, J, z) is the only new sufficient 
test. 

5 Conclusion 

Increasing the semantic content of the database model and a separate integrity 
maintenance subsystem are two approaches to maintaining integrity in database 
systems. The former leads to additional complexity for the users. The later creates 
additional overheads for the system. Separating integrity maintenance subsystem 
is more useful in minimizing the complexity faced by the users, since the overhead 
on the system can be managed and carefully optimized. It detects errors caused by 
database update operations and computes the repairs for these errors. The 
computed repairs are attached to the original erroneous update operation to create 
a correct and complete update operation. Our approach generates all minimal 
repairs to be presented to the user or the system administrator to select one of 
them to correct the update operation. 
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