
W. Zamojski et al. (Eds.): New Results in Dependability & Comput. Syst., AISC 224, pp. 215–224.
DOI: 10.1007/978-3-319-00945-2_19 © Springer International Publishing Switzerland 2013

Generating Repair Rules for Database Integrity
Maintenance

Feras Hanandeh and Yaser Quasmeh

Prince Al-Hussein bin Abdullah II Faculty of Information Technology
Hashemite University, Jordan
feras@hu.edu.jo, Y_quasmeh@yahoo.com

Abstract. Repair system has two essential components, which are much related to
each other. When the update operation is executed, the first component is the
detection of the erroneous state if any and the second component is to repair this
state by finding the changes to the update operation that would repair it. Failing to
have the second component, which is the repair action, will enforce the user to
manually correcting and reentering an erroneous update operation. Our approach
will take advantage of the integrity before the update operation, which will result
on limiting the detection only to the database state after the update operation. Also
the repair component will take advantage of the integrity before the update
operation and integrity violation after the update operation but before the repair.
The focus of this paper is to generate repairs for all first order constraints, and by
using only substitution with no resolution search. Multiple constraints can be
satisfied in parallel without a sequential process with no possibility of cyclic
violation.

1 Introduction

The reliability of information systems is a major concern for today’s society and
enterprises. The correctness or maintaining database integrity of databases is one
of the main reliability issues. Consequently procedures asserting correct databases
are a chief focus of research. Today the prime obstacles applying these procedures
are their high computational costs. Integrity maintenance is considered one of the
major application fields of rule triggering systems. In the case of a given integrity
constraint being violated by a database transition these systems trigger update
operation (action) to maintain database integrity.

A relational database is a collection of relations; each relation corresponds to a
database predicate. Each relation R is a collection of tuples. Any attempt to update
the database should be controlled by integrity constraints. When any of these
constraints is violated by an update operation then the system should either abort
or take action to repair the erroneous update operation. Such system is called
integrity maintenance subsystem. When detecting any erroneous update operation,
repairing become essential since detection without repairing the erroneous state

216 F. Hanandeh and Y. Quasmeh

will never accommodate users need to guarantee consistency, accuracy and the
integrity of their systems. The integrity maintenance subsystem separate the
database state into two states, the first is before the update operation. The second
state is after the update operation, so the integrity maintenance subsystem has to
detect any new errors introduced by the update operation and if there is any
error to be repaired. Our approach involves algebraically modifying the constraint
definitions into derivative expressions that return the condition for a new
violation to occur. The derived predicate is a predicate defined in terms of the
database predicates. The derived predicate, which denotes a violation of database
constraint, is considered as a negation of the constraint.

2 Related Work

Relational Databases usually contain massive collections of data that rapidly
evolve over time; this makes perfect checking at each update too time consuming
a task to be feasible. In this regard, DBMS needs to be extended with the ability to
automatically verify that database updates do not introduce any violation of
integrity [3; 11].

The primary tool of integrity maintenance subsystem is the database integrity
rules. The aim of integrity rules is to capture the semantics of data. Integrity rules
provide a much more general capability to maintain integrity than the data models
since they can utilize the full power of logic based language. The high cost results
from using integrity rules may become as a restriction since they often involve the
execution of complex queries against a large database.

Automation of the various repairable systems was the main aim for the
researchers in the last decade. Partial automation was the aim of some researchers
like [1, 4, 5, 16 and 18]. They adopted the notion of entrust the final repair to be
manually designed by the users provided that the guidelines which they have to
follow for the repair operation is clearly generated. Other approaches [14, 17 and
19] generated sufficient conditions for repair by the user entrusting to him the
final repair to be manually designed by pruned the necessary repair, a suitable
decision making framework based on encompassing all the actions requested to
repair the erroneous state formulated, since there is not minimal repair actions.
Some approaches resort to impose severe restrictions on the quantifier structure
of the constraints like no existential quantifiers followed by universal quantifiers
[1, 3 and 4].

Expensive rollback is the repair action adopted by many approaches [1, 4, 5,
14, 16 and 19] since executing of the update operation first was the condition for
checking any possible integrity violations.

Soumya et al [15] proposed a technique to achieve optimization of constraint
checking process in distributed databases by exploiting technique of parallelism,
compile time constraint checking, localized constraint checking, and history of
constraint violations. The architecture mainly consists of two modules: Constraint
Analyzer and Constraint Ranker for analyzing the constraints and for ranking the

Generating Repair Rules for Database Integrity Maintenance 217

constraints, respectively for systems with relational databases. They achieved
optimization in terms of time by executing the constraints in parallel with mobile
agents.

3 Preliminaries

Our approach has been developed in the context of relational databases. A
relational database is a collection of relations, each corresponding to a database
predicate. Each relation P is a collection of tuples Ti satisfying the corresponding
predicate P, i.e., P (Ti) is True. An intentional (derived) predicate is a predicate
defined in terms of the database predicates. Let V be an intentional predicate that
denotes a violation of the database integrity constraint C, (i.e., V is the negation of
C), where an integrity constraint is the primary tool of integrity maintenance
system specifying a condition that should be satisfied by the database. Efficient
computation of V is critical in detecting semantic violations caused by erroneous
database update operations. A database update transaction is defined as a
collection of insertions into and deletions from the database.

Throughout this paper the same example Job Agency database is used, as given
below. This example is taken from [19]:

Person (pid, pname, placed)
Company (cid, cname, totsal)
Job (jid, jdescr)
Placement (pid, cid, jid, sal)
Application (pid, jid)
Offering (cid, jid, no_of_places)

Definition 1. Given an update operation, for each database relation P, the
incessant of the relation P, ΓP means that the tuples exists in relation P and not
being deleted from relation P, such that:

∀x (ΓP(x) ← P(x) ∧ ¬δP(x))

where δ is a deletion operator.

Definition 2. For every database relation P there are three different database states
of the same relation, where P is the state of the relation before an update operation
is performed, P’ is the state of P after the update operation is performed and P'' is
the state of P after the repair operation is executed.

Definition 3. Given an update operation, for each database relation P, the new
database state of the relation P’ means that the tuples incessant in the database
relation P, i.e. ΓP and the tuples to be inserted by the update operation, such that:

∀x (P’(x) ← ΓP(x) ∨ ιP(x))

Assumption 1. Given an update operation, for each database relation P, it is
assumed that:

218 F. Hanandeh and Y. Quasmeh

• ¬ιP means that a tuple(s) were deleted from P, i.e. δP.
• ¬δP means that a tuple(s) were inserted into P, i.e. ιP.

where ι is an insertion operator.
Given the fact that a pre-transaction state of a database is correct, a reduction of

the amount of data to be checked in constraint enforcement can be obtained by
inspecting only those parts of relations that have been changed in a relevant way
by a transaction. This is usually accomplished by the use of differential relations
[6, 8, 9,12 and 13]. In this approach, two auxiliary relations are associated with
each base relation P.

New differential relation. The new differential relation contains the set of tuples
to be inserted into the relation P or the new modified tuples by the current update
operation. The new differential relation associated with relation P is denoted as ιP
and can be defined as:

∀x (ιP(x) ← ¬P(x) ∧ P’(x)), i.e. ιP means that the tuples that is not in the
relation P , but in P’.

Old Differential Relation. The old differential relation contains the set of tuples
to be deleted from the relation P or the old tuples that have been modified by the
current update operation. The old differential relation associated with relation P is
denoted as δP and can be defined as:

∀x (δP(x) ← P(x) ∧ ¬P ′(x)), i.e. δP means that the tuples that is in the relation
P, but not in P’.

Using this auxiliary relations, constraint conditions can be reformulated.

Example. Given the domain integrity constraint C that states the placed attribute
in relation Person must be either T or F

(∀v, ∀ w, ∀x) Person (v, w, x)  x = T ∨ x = F

Given the fact that the constraint holds on the pre-transaction state of relation
Person, only the new tuples to be inserted into Person have to be checked.
Therefore, the constraint can be optimized as follows:

 (∀v, ∀ w, ∀x) ιPerson (v, w, x)  x = T ∨ x =F

4 Generating Integrity Tests

The main aim of this research is to contribute to the solution of constraint
checking in a parallel database by deriving integrity tests from a given constraint
and a given update operation. Using integrity tests to detect violations instead of
integrity constraints is more fruitful because the later is costly since they often
involve the execution of complex queries against a large database. These integrity
tests may be necessary, sufficient or complete.

This section presents the algorithm which can be employed to derive more
integrity tests than the previous approaches discussed in the related work section.
The algorithm should be as general as possible, i.e. independent of any specific
application domain. We take out the quantifiers Q for simplicity.

Generating Repair Rules for Database Integrity Maintenance 219

Lemma 1. Given a predicate P(X) in the form: P(X) ← Q(Y) ∧ R(Z), δP(X) will
be computed as follows: δP(X) ← (δQ(Y) ∧ R(Z)) ∨ (δR(Z) ∧Q(Y)) i.e. either
deleting a tuple(s) from the relation R or a tuple(s) from the relation Q will result
in deleting a tuple(s) from the relation P. Deleting a tuples from both relations Q
and R can be realized from the formula.

Proof

δP(X) ← P(X) ∧ ¬P’(X)
δP(X) ←Q(Y) ∧ R(Z) ∧ ¬(Q’(Y) ∧ R’(Z))
δP(X) ←Q(Y) ∧ R(Z) ∧ (¬Q’(Y) ∨ ¬R’(Z))
δP(X) ← (δQ(Y) ∧ R(Z)) ∨ (δR(Z) ∧ Q(Y))

Lemma 2. Given a predicate P(X) in the form: P(X) ← Q(Y) ∨ R(Z), δP(X) will
be computed as follows: δP(X) ← (¬ΓQ(Y) ∧ δR(Z)) ∨ (¬ΓR(Z) ∧ δQ(Y)) i.e. not
existence a tuple(s) of both relations R and Q will result in deleting a tuple(s) from
the relation P.

Proof

δP(X) ← P(X) ∧ ¬P’(X)
P(X) ← (Q(Y) ∨ R(Z)) ∧ ¬(Q’(Y) ∨ R’(Z))
 ← (Q(Y) ∨ R(Z)) ∧ (¬Q’(Y) ∧ ¬R’(Z))
 ← (Q(Y) ∧ ¬Q’(Y) ∧ ¬R’(Z)) ∨ (R(Z) ∧ ¬Q’(Y) ∧ ¬R’(Z))
 ← (δQ(Y) ∧ ¬(R(Z) ∧ ¬δR(Z) ∨ ιR(Z))) ∨ (δR(Z) ∧ ¬(Q(Y) ∧ ¬δQ(Y) ∨

ιQ(Y)))
← (δQ(Y) ∧ (¬R(Z) ∨ δR(Z)) ∧ ¬ιR(Z))) ∨ (δR(Z) ∧ (¬Q(Y) ∨ δQ(Y) ∧

¬ιQ(Y)))
← (δQ(Y) ∧ (¬R(Z) ∧ ¬ιR(Z) ∨ δR(Z) ∧ ¬ιR(Z))) ∨ (δR(Z) ∧ (¬Q(Y) ∧

¬ιQ(Y) ∨ δQ(Y)) ∧ ¬ιQ(Y)))
 ← (¬R(Z) ∧ ¬ιR(Z) ∧ δQ(Y)) ∨ (δR(Z) ∧ ¬ιR(Z) ∧ δQ(Y)) ∨ (¬Q(Y) ∧

¬ιQ(Y) ∧ δR(Z)) ∨ (δQ(Y) ∧ ¬ιQ(Y) ∧ δR(Z))
 ← (¬R(Z) ∧ ¬ιR(Z) ∧ δQ(Y)) ∨ (δR(Z) ∧ δR(Z) ∧ δQ(Y)) ∨ (¬Q(Y) ∧

¬ιQ(Y) ∧ δR(Z)) ∨ (δQ(Y) ∧ δQ(Y) ∧ δR(Z))
 ← (¬R(Z) ∧ ¬ιR(Z) ∧ δQ(Y)) ∨ (δR(Z) ∧ δQ(Y)) ∨ (¬Q(Y) ∧ ¬ιQ(Y) ∧

δR(Z)) ∨ (δQ(Y) ∧ δR(Z))
 ← (¬R(Z) ∧ ¬ιR(Z) ∧ δQ(Y)) ∨ (¬Q(Y) ∧ ¬ιQ(Y) ∧ δR(Z)) ∨ δQ(Y)

∧δR(Z)))
 ← ¬(R(Z) ∨ ¬δR(Z)) ∧ δQ(Y)) ∨ (¬Q(Y) ∧ ¬ιQ(Y) ∧ δR(Z)) ∨

δQ(Y) ∧δR(Z)))

The process of generate integrity tests starts by accepting an integrity constraint
from the constraint base and a given update operation by the user. Figures 1 and 2
present the algorithms to generate integrity tests for constraints in conjunctive and
disjunctive normal form respectively. Every generated integrity test is distributed
to all dynamic virtual partitions [7] through generate distributed integrity test

220 F. Hanandeh and Y. Quasmeh

algorithm. This algorithm not presented in this paper because of space constraint.
A clarified example to illustrate our technique followed the algorithms.

Checking the validity of the integrity tests against the database is activated at
run-time once these tests are generated (computed) by logical rules at compile-
time. These logical rules are specified using logical specification language. Each
generation rule (conjunctive or disjunctive) has three input expressions. The
output of the generation rule is sufficient, necessary or complete test(s).

Algorithm (Generate Texp for a constraint in a conjunctive normal form)
Inputs: Constraint C in conjunctive normal form /*V ← P(X) ∧ Q(Y)*/
 Update Operation (UO)
Output: Texp /*Integrity Test Expression*/
Method:
Begin
Step 1:
Exp1 ←ΓP(X) ∧ ιQ(Y) /*incessant of P(X) and insert a tuple into base relation Q */
where: ΓP ← P ∧ ¬δP
Exp2 ← ΓQ(Y) ∧ ιP(X) /*incessant of Q(Y) and insert a tuple into base relation P */
where: ΓQ ← Q ∧ ¬δQ
Exp3 ← ιP(X) ∧ ιQ(Y) /*insert two tuples into both base relations P and Q */
Step 2:
Texp ← Exp1 ∨ Exp2 ∨ Exp3
Step 3:
Negate Texp
End.

Fig. 1 Generate Texp algorithm for a constraint in a conjunctive normal form

Algorithm (Generate Texp for a constraint in a disjunctive normal form)
Inputs: Constraint IC in disjunctive normal form /*V ← P(X) ∨ Q(Y)*/
 Update Operation (UO)
Output: Texp /*Integrity Test Expression*/
Method:
Begin
Step 1:
Exp1 ← ιP(X) ∧ ¬Q(Y) /*insert a tuple into the base relation P and Q(Y) is false*/
Exp2 ← ¬P(X) ∧ ιQ(Y) /* P(X) is false and insert a tuple into the base relation Q */
Exp3 ← ιP(X) ∧ ιQ(Y) /*insert two tuples into both base relations P and Q */
Step 2:
Texp ← Exp1 ∨ Exp2 ∨ Exp3
Step 3:
Negate Texp
End.

Fig. 2 Generate Texp algorithm for a constraint in a disjunctive normal form

We now present detailed example to generate Texp algorithm which will clarify
the steps presented above.

Example: when a company offers a Director job it must offer a Senior Secretary
job first.

Generating Repair Rules for Database Integrity Maintenance 221

C1 ← (∀x∀y∀z)(Offering(x, y, z) ∧ Job(y, ‘Director’) ∧ ¬S(x))

where S(x) ← Offering(x, p, q) ∧ Job (p, ‘Senior Secretary’)

Update: Insert(Offering(x, y, z)) = {x/C, y/J, z/N}

C1 ← (∀x∀y∀z)(Offering(x, y, z) ∧ M(x, y))

where M(x, y) ← Job(y, Director) ∧ ¬S(x)

Step1

Exp1 (Texp) ← ΓOffering(x, y, z) ∧ ιM(x, y)
Exp2 (Texp) ← ΓM(x, y) ∧ ιOffering(x, y, z)
Exp3 (Texp) ← ιOffering(x, y, z) ∧ ιM(x, y)

Computing δS(x) using Lemma1

S(x) ← Offering(x, p, q) ∧ Job (p, ‘Senior Secretary’)
Exp1 ← δOffering(x, p, q) ∧ Job(p, ‘Senior Secretary’)
 ← False ∧ Job(p, ‘Senior Secretary’)
 ← False
Exp2 ← Offering(x, p, q) ∧ δJob(p, ‘Senior Secretary’)
 ← Offering(x, p, q) ∧ False
 ← False
δS(x) ← Exp1 ∨ Exp2
δS(x) ← False ∨ False
δS(x) ← False

Computing δM(x, y) using Lemma1

M(x, y) ← Job(y, ‘Director’) ∧ ¬S(x)
Exp1 ← Job(y, ‘Director’) ∧ ιS(x)
Exp2 ← ¬S(x) ∧ δJob(y, ‘Director’)
δM(x, y) ← Exp1 ∨ Exp2
δM(x, y) ← Job(y, ‘Director’) ∧ ιS(x) ∨ False
δM(x, y) ← Job(y, ‘Director’) ∧ ιS(x)

Computing ιM(x, y)

M(x, y) ← Job(y, ‘Director’) ∧ ¬S(x)
Exp1 ← ΓJob(y, Director) ∧ ¬ιS(x)
 ← ΓJob(y, Director) ∧ δS(x)
 ← ΓJob(y, Director) ∧ False
 ← False
Exp2 ← ¬ΓS(x) ∧ ιJob(y, ‘Director’)
 ← ¬(S(x) ∧ ¬δS(x)) ∧ ιJob(y, ‘Director’)
 ← (¬S(x) ∨ δS(x)) ∧ ιJob(y, ‘Director’)
 ← (¬S(x) ∨ δS(x)) ∧ False
 ← False
Exp3← ιJob(y, ‘Director’) ∧ δS(x)
 ← False ∧ δS(x)
 ← False
ιM(x, y) ← Exp1 ∨ Exp2 ∨ Exp3
ιM(x, y) ← False ∨ False ∨ False
ιM(x, y) ← False

222 F. Hanandeh and Y. Quasmeh

Computing ιS(x)

S(x) ← Offering(x, p, q) ∧ Job(p, ‘Senior Secretary’)

Exp1 ← ΓOffering(x, p, q) ∧ ιJob(p, ‘Senior Secretary’)

Exp2 ← ΓJob(p, ‘Senior Secretary’) ∧ ιOffering(x, p, q)

Exp3 ← ιOffering(x, p, q) ∧ ιJob(p, ‘Senior Secretary’)

ιS(x) ← Exp1 ∨ Exp2 ∨ Exp3

ιS(x) ← False ∨ Job(J, ‘Senior Secretary’) ∧ x = C ∨ False

ιS(x) ← Job(J, ‘Senior Secretary’) ∧ x = C

Substituting the result of ιS(x) into δM(x, y):

δM(x, y) ← Job(y, ‘Directory’) ∧ Job(J, ‘Senior Secretary’) ∧ x = C

Substituting the results of ιM(x, y) into Exp1 (Texp) and Exp3 (Texp):

Exp1 (Texp) ←False
Exp3 (Texp) ←False
Exp2 (Texp) ← ΓM(x, y) ∧ ιOffering(x, y, z)

 ← M(x, y) ∧ ¬δM(x, y) ∧ ιOffering(x, y, z)
 ← Job(y, ‘Director’) ∧ ¬S(x) ∧ ¬(Job(y, ‘Director’) ∧ Job(J, ‘Senior

 Secretary’) ∧ x = C) ∧ (x, y, z) = (C, J, N)

Step2

Texp← Job (J, ‘Director’) ∧ ¬S(C) ∧ (¬Job(J, ‘Director’) ∨ ¬Job(J, ‘Senior
Secretary’) ∨ ¬(C = C))
By substitution and negation rule
Texp ← Job(J, ‘Director’) ∧ ¬S(C) ∧ ¬ Job(J, ‘Senior Secretary’)

Step3

¬Texp ← ¬Job(J, ‘Director’) ∨ S(C) ∨ Job(J, ‘Senior Secretary’)
where
S(C) ← Offering(C, p, q) ∧ Job(p, ‘Senior Secretary’)

A number of sufficient tests can be computed by applying the substitution and
resolution rules[2] to the sufficient and complete integrity tests in ¬Texp and the
original constraint C1. These sufficient tests are often easier to test than the
complete tests, and only one of them needs to be tested to prove that there are no
violations. Given integrity constraint C, let negation of its violation be ¬Texp ←
SCT, where SCT is the sufficient and complete tests for integrity checking.
¬Texp ← SCT ∨ C1 from identity rules[2], since C is not violated from the
assumption of integrity before the transaction. A strengthen of our method is the
more generated number of useful integrity tests than the previous methods like in
[McC95]. The following sufficient tests are generated for the previous example.

¬Texp ← ¬Job(J, ‘Director’) ∨ S(C) ∨ Job(J, ‘Senior Secretary’)
∨ Offering(x, y, z) ∧ Job(y, ‘Director’) ∧ ¬S(x) /*assuming C1 is not

 violated before the transaction*/

Generating Repair Rules for Database Integrity Maintenance 223

∨ Offering(C, y, z) ∧ Job(y, ‘Director’) ∨ Offering(x, J, z) ∧ ¬S(x) ∨
Offering(C, J, z)

Since all the tests distributed over OR, the satisfaction of any disjunct alone is
sufficient for integrity. ¬Job(J, ‘Director’) ∨ S(C) ∨ Job(J, ‘Senior Secretary’)
is the complete and sufficient tests, Offering(x, y, z) ∧ Job(y, ‘Director’) ∧ ¬S(x)
is the original constraint, Offering(C, y, z) ∧ Job(y, ‘Director’) and Offering(x, J,
z) ∧ ¬S(x) are subsumed tests. Hence, Offering(C, J, z) is the only new sufficient
test.

5 Conclusion

Increasing the semantic content of the database model and a separate integrity
maintenance subsystem are two approaches to maintaining integrity in database
systems. The former leads to additional complexity for the users. The later creates
additional overheads for the system. Separating integrity maintenance subsystem
is more useful in minimizing the complexity faced by the users, since the overhead
on the system can be managed and carefully optimized. It detects errors caused by
database update operations and computes the repairs for these errors. The
computed repairs are attached to the original erroneous update operation to create
a correct and complete update operation. Our approach generates all minimal
repairs to be presented to the user or the system administrator to select one of
them to correct the update operation.

References

[1] Ceri, S., Widom, J.: Deriving Production Rules for Constraint Maintenance. In: Very
Large Data Bases Conference, vol. 16, pp. 566–577 (1990)

[2] Chang, C., Lee, R.C.: Symbolic Logic and Mechanical Theorem Proving. Academic
Press (1973)

[3] Christiansen, H., Martinenghi, D.: On simplification of database integrity constraints.
Fundamental Informaticae 71(2), 371–417 (2006)

[4] Ceri, S., Fraternali, P., Paraborchi, S., Tanca, L.: Automatic Generation of Production
Rules for Integrity Maintenance. ACM Transaction Database Systems 19(3), 366–421
(1994)

[5] Gertz, M., Lipeck, U.W.: Deriving Integrity Maintenance Triggers From Transaction
Graphs. In: Ninth IEEE Conference Data Eng., pp. 22–30 (1993)

[6] Grefen, P.W.P.J.: Integrity Control in Parallel Database Systems. PhD Thesis,
University of Twente (Netherlands) (October 1992)

[7] Hanandeh, F., Ibrahim, H., Mamat, A., Johari, R.: Virtual rule partitioning method for
maintaining database integrity. Int. Arab J. of Information Technology 1(1), 103–108
(2004)

[8] Ibrahim, H.: Semantic Integrity Constraints Enforcement for Distributed Database.
PhD Thesis, University of Wales College of Cardiff, Cardiff (UK) (June 1998)

224 F. Hanandeh and Y. Quasmeh

[9] Ibrahim, H.: A Strategy for Semantic Integrity Checking in Distributed Databases. In:
Proceedings of the 9th International Conference on Parallel and Distributed Systems
(ICPADS 2002), Taiwan, December 17-20, pp. 139–144 (2002)

[10] Ibrahim, H.: Extending Transactions with Integrity Rules for Maintaining Database
Integrity. In: Proceedings of the International Conference on Information and
Knowledge Engineering, Las Vegas, USA, June 24-27, pp. 341–347 (2002)

[11] Martinenghi, D.: Advanced techniques for efficient data integrity checking. PhD
dissertation, Roskilde University, Denmark (2005)

[12] McCarroll, N.F.: Semantic Integrity Enforcement in Parallel Database Machines. PhD
Thesis, Department of Computer Science, University of Sheffield, Sheffield (UK)
(May 1995)

[13] Moerkotte, G., Lockemann, P.C.: Reactive Consistency Control in Deductive
Databases. ACM Trans. Database Systems 16(4), 670–702 (1991)

[14] Schewe, K.D., Thalheim, B., Schmidt, J.W., Wetzel, I.: Integrity Enforcement in
Object Oriented Database. In: Modeling Database Dynamics, pp. 174–195 (1993)

[15] Soumya, B., Madiraju, P., Ibrahim, H.: Constraint optimization for a system of
relational databases. In: Proc. of the IEEE Int. Conf. on Computer and Info.
Technology, Sydney, pp. 155–160 (2008)

[16] Urban, S.D., Delcambre, L.M.: Constraint Analysis: A Design Process for Specifying
Operations on Objects. IEEE Trans. Knowledge and Database Eng. 2(4), 391–400
(1990)

[17] Urban, S.D., Lim, B.B.L.: An Intelligent Framework for Active Support of Database
Semantics. Int’1 J. Expert Systems 6(1), 1–37 (1993)

[18] Wuethrich, B.: On Updates and Inconsistency Repairing in Knowledge Bases. In:
IEEE Conference of Data Eng. (1993)

[19] Wang, X.Y.: The Development of a Knowledge-Based Transaction Design Assistant.
PhD Thesis, Department of Computing Mathematics, University of Wales College of
Cardiff, Cardiff, UK (1992)

	Generating Repair Rules for Database Integrity Maintenance
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Generating Integrity Tests
	5 Conclusion
	References

