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Abstract. Mutation testing tasks are expensive in time and resources. Different 
cost reduction methods were developed to cope with this problem. In this chapter 
experimental evaluation of mutation clustering is presented. The approach was 
applied for object-oriented and standard mutation testing of C# programs. The 
quality metric was used to compare different solutions. It calculates a tradeoff 
between mutations score accuracy and mutation costs in terms of number of mu-
tants and number of tests. The results show a substantive decrease in number of 
mutants and tests while suffering a small decline of mutation score accuracy. 
However the outcome is not superior to other cost reduction methods, as selective 
mutation or mutant sampling.  

1 Introduction 

In mutation testing many faulty versions (so-called mutants) of a program under 
test are generated by application of mutation operators. If any test from a given 
test set detects an abnormal behavior of a mutant, the mutant is set to be killed. 
The ability of a test set to reveal faults specified by mutation operators is named 
mutation score (MS) and measured as a ratio of the number of killed mutants over 
the number of all non-equivalent mutants. An equivalent mutant generates the 
same outcomes as the original program and cannot be killed by any test. Mutation 
operators define various kinds of faults. Standard operators deal with expressions 
and structural features common to all general purpose programming languages, 
whereas object-oriented (OO) operators with flaws specific to OO languages [1]. 

An important obstacle of mutation testing approach is the computational ex-
pense. For one program many mutants can be generated and one mutant is run 
with many test cases. Several cost reduction techniques to mutation testing were 
proposed based on “do smarter”, “do faster” or “do fewer” approaches [1,2]. The 
mutation clustering belongs to a “do fewer” method that tries to execute fewer 
mutants against fewer test cases.  

In mutation clustering a set of mutants is divided into disjoint subsets, so-called 
groups, based on the ability of tests to kill these mutants. Various groups of mu-
tants can be killed by the same, or similar, subsets of tests. In the further testing 
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process, only one mutant representing a group is applied instead of all mutants 
from the group. Division of mutants can be realized using one of the clustering 
algorithms, such as agglomerative hierarchical or K-means clustering [3, 4] or by 
static domain analysis [5]. 

The analysis on mutation clustering was performed on C programs using stan-
dard mutation operators [3], and on an exemplary, simple Java program [5]. It was 
not shown how the approach will scale up for bigger-size and practically used 
programs. Another open question was whether the clustering method can give 
benefits to the object-oriented mutation testing, as according to the author’s expe-
rience [6,7] the object-oriented mutation evaluates with different characteristics 
than mutation with standard operators. Mutation testing of C# programs is sup-
ported by the CREAM tool [6,8,9]. In order to effectively perform experiments on 
various cost reduction methods, an extension to CREAM was implemented [7,10]. 

The aim of the research presented in this chapter is examination whether the 
clustering method is worthwhile in mutation testing of C# programs, both in terms 
of standard and object-oriented operators. The tradeoff between the quality of 
mutation testing result (MS) and its cost (number of mutants and tests) is quantita-
tively evaluated with assessment of an original, tool supported metric [7]. 

The reminder of this chapter is organized as follows. Next Section describes re-
lated work. In Section 3 the main methodological issues are discussed. The expe-
rimental set-up is presented in Section 4. Section 5 gives experiment results and 
their analysis. Finally, Section 6 concludes the work.  

2 Related Work 

Promising results of mutation clustering with standard operators and C programs 
were presented in [3]. They showed, for example, that using a substantially 
reduced number of mutants (13%) and of tests (8%) we can obtain almost the 
same mutation score, i.e. 99%. In experiments with C# programs so good results 
were obtained neither with standard nor with OO operators. 

Experiments in [3] focus on the assessment of potential clustering benefits, si-
milarly as in this chapter. Therefore clustering was based on results of runs of  
all mutants against all test cases. Ji at al. proposed a practical approach in which 
clustering is based on static domain analysis [5]. The experiment proved that the 
method is applicable and dealt with a small Java program giving the encouraging 
results (e.g. 25% mutants with 62% tests gave 94% of mutation score). 

The mostly studied “do fewer” method was selective mutation [11-14], in 
which only subset of mutation operators is used. Five standard operators were 
recognized as selective in experiments with Fortran programs [11]. The research 
on OO mutation was neither so promising nor so conclusive [7,14]. A method of 
mutant sampling, based on random selection of mutants, gave good results (10% 
of mutants with 16% loss of MS accuracy) for standard mutation in Fortran [15]. 
Sampling according to different criteria was studied in [10] for C# programs. 
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There are several tools for mutation testing of Java programs, but the only tools 
that support mutation testing of C# programs with some standard and  OO opera-
tors are those implemented under the author’s supervision: CREAM [6,8,9] and 
the prototype ILMutator [16]. The latter injects faults directly into Intermediate 
Language of .NET and therefore speeds up mutant generation. However the cost 
of test execution remains the same as using CREAM. 

3 Methodology 

In experiments discussed in this chapter the agglomerative clustering algorithm 
was applied [4]. Below its general idea is presented. Next, the experiment scenario 
and quality metric are discussed.  

3.1 Clustering Algorithm 

A clustering algorithm returns the division of mutants for a given set of mutants M 
and a set of test T that kill the mutants. The algorithm is characterized by a thre-
shold parameter K reflecting a similarity of mutant groups. Two groups are similar 
with K degree, if the number of tests that kill at least one mutant from one group 
and kill none mutant from the second group is equal to K. 

The general idea of the algorithm can be described in following steps: 

1) First, for each mutant from the set M, a mutant group is initialized. Therefore 
there are |M| groups of one element, where |X| denotes cardinality of set X. 

2) A temporary group similarity value is set to 0 (i = 0). 
3) All pairs of current groups are compared. Two groups are merged if the similar-

ity of the groups is less then the temporary group similarity value (i). If there 
are no more pairs of groups to be merged we go to the next step. 

4) The algorithm stops if the current group similarity value reaches the algorithm 
threshold (i = K). Otherwise, the temporary similarity value is incremented 
(i++) and the algorithm is continued with the step 3. 

For example, given a set of mutants M = {m1, m2, m3, m4} killed by the test sets 
{t1,t2}, {t1,t2}, {t1}, {t2,t3} accordingly, and the parameter K=1, we obtain the 
following two groups of mutants {m1, m2, m3} and {m4}. The first group is killed 
by the test set {t1, t2}, whereas the second group is killed by tests {t2, t3}. 

3.2 Experimental Scenario on Mutation Clustering 

In experiments on cost reduction methods we answer a question how a reduced 
number of mutants is able to assess the test quality (MS) in comparison to all  
mutants that could be generated. Moreover we look for minimal test sets that 
could be as effective in revealing faults as the reference test set. The experiments 
on mutation clustering were designed according to the following scenario:   
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A) Using a given set of mutation operators, all first order mutants of a program 
under test are generated (mutant set MAll). 

B) All mutants from MAll are run against all tests from a considered set TAll. The 
resulting mutant execution matrix states for each pair <mutant m, test t> 
whether the mutant m is killed by the test t or not.  

C) A parameter K of the clustering algorithm is selected. Disjoint mutant groups 
are determined by the clustering algorithm for given mutants MAll, test set 
TAll, and parameter K.  

C1) A subset of mutants MC1 ⊆  MAll is created by selection of one representative 
mutant from each mutant group. Mutation score MSC1max= MS (MC1, TAll) is 
calculated assuming that mutants from this subset were tested by all tests. 

C2) In order to optimize a test set, a collection L of test subsets of TAll is created. 
Any test set in L has a minimal number of tests and gives the mutation score 
equal to MSC1max (from step C1). Tests sets meeting those requirements can 
be generated using prime implicant of a monotonous Boolean function [17]. 
The collection L includes either all test sets of this kind, or a limited number 
TestSetLimit of such sets. The value of TestSetLimit is a parameter of an ex-
periment. 

C3) For any test set included in L a mutation score is calculated as if all mutants 
from MAll were tested by the test set.  

C4) The average mutation score MSavg is calculated from the results of step C3.  

Investigating an impact of the clustering threshold on the mutation results, we can 
repeat steps C(C1-C4) for different values of K. Next the final statistics and quali-
ty metrics are calculated. 

3.3 Quality Metric 

The primary metric used for evaluating results on mutation testing process is the 
mutation score (MS). The original mutation score MSorig= MS (MAll, TAll) is 
calculated using execution results of all mutants from set MAll and all tests from set 
TAll.. If a reduced number of mutants (Mi ⊆  MAll) and/or a reduced number of tests 
(Ti ⊆ TAll) are taken into account, the mutation score can be less accurate that the 
original one. In order to estimate the mutation testing approach not only in terms 
of the mutation score accuracy but also the cost factors, the quality metrics were 
proposed [7]. Using the metrics it is possible to compare results of different 
programs and different experiments, as it is based on a normalization function and 
takes therefore values from 0 to 1. 

The quality metric EQ applied in the analysis of mutant clustering is a weighted 
sum of three components (Eq. 1)  

))(*)(*)(*(),,( MMTTMSMSMTMS ZIWZIWSIWIWWWEQ ++=   (1) 

The metric is based on three dependent variables that assess a decline of mutation 
score accuracy (SMS), a reduced number of tests required to kill mutants (ZT), and a 
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reduced number of mutants (ZM). Contributions of these factors to the metric are 
calibrated by weight coefficients WMS, WT, WM, which sum must be equal to 1. 
I() denotes a normalization function. The normalization is performed for all results 
in an experiment. Detailed formulae of the variable computation are given in [7], 
where the quality metric was applied for quality evaluation of selective mutation.  

4 Experimental Set-Up  

The mutation testing process discussed in this chapter dealt with first order 
mutation - a mutant is created by introducing one fault specified by one mutation 
operator in a program under test, and strong mutation - a mutant is recognized to 
be killed if a result of at least one test differs from the result of the original 
program. 

Three widely used, open-source programs related to different domains and var-
ious authors were used in the experimental study. The basic statistics of the pro-
grams are given in Table 1. The tests associated with the first project - Enterprise 
Logging were unit tests designed and run with MSTest, a part of the Microsoft 
Visual Studio, whereas tests of Castle and Mono-Gendarme were NUnit tests. 

Table 1 Subject programs and their statistics 

No Program 
LOC Classes & Interfaces 

with tests without tests with tests without tests 

1 Enterprise Logging 
http://entlib.codeplex.com 

87552 57885 991 587 

2 Castle http://www.castleproject.org 54496 41288 724 493 

3 Mono-Gendarme  

http://www.mono-project.com/Gendarme 

51228 25692 907 171 

 Sum 193276 124865 2622 1251 

 
The experiments were carried out with the CREAM (CREAtor of Mutants) tool 

a mutation system for C# programs mutated at the syntax tree level [6,8,9]. It is 
the most mature mutation system of C# applications. The latest version of the tool 
was extended with a wizard in order to efficiently perform experimental study on 
cost reduction techniques. The extension assists in creating mutants, executing 
tests, and evaluating test results in respect to three methods: mutation operator 
selection, mutant sampling and mutation clustering. 

The experimental scenario from Sec. 3.2 and the whole analysis were pre-
formed independently for two sets of mutation operators: 18 object-oriented and 8 
standard ones implemented in CREAM v3 [7]. The standard operators cover the 
five operators distinguished to be selective [11].  
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5 Experiment Results and Quality Analysis 

The basic mutation testing results of subject programs are summarized in  
Table 2.  

The first row includes numbers of mutants referring only to the covered code. 
The programs were covered by their unit tests in 82%, 77% and 87% respectively. 
None of the mutants generated for uncovered code were killed. Therefore in the 
calculations of the mutation score only the covered code was taken into account. 

For each program, mutants were run against all tests TAll associated with the 
program. The numbers of killed mutants are given in the second row. 

Some generated mutants can be equivalent. Equivalent mutants were manually 
detected by analyzing mutants generated by selected operators (with the highest 
number of not killed mutants and those easily to be analyzed). The numbers of 
recognized equivalent mutants are listed in the third row. However, some equiva-
lent mutants could remain undetected. Covered and not recognized as equivalent 
mutants were counted as a set of all mutants MAll generated by either OO or stan-
dard operators, respectively. Basing of this data the original mutation score MSorig 
was calculated. It is given in the last row and will be counted as a reference value.  

Table 2 Mutation results - number of mutants generated, killed, equivalent and mutation 
score 

 
1. Enterprise Logging 2.Castle 3. Mono-Gendarme 

O-O Standard O-O Standard O-O Standard 

Generated covered mutants  1341 1683 1208 2379 998 4153 

Killed mutants 558 1151 701 1611 478 3009 

Equivalent mutants 438 60 143 60 143 79 

Mutation Score (MSorig) [%] 61,79% 70,92% 65,82% 69,56% 55,91% 73,86% 

 
The test results of all mutants were used in further steps C(C1-C4) of the mutation 
clustering scenario (Sec. 3.2) performed under the following assumptions:  

- the clustering parameter K varied from 0 to 19, 
- TestSetLimit - the number of minimal test sets in collection L was set to 15. 

Average mutation score (step C4) calculated for different values of the parameter 
K=1..19 is shown in Table 3. This value reflects an average mutation result that 
could be obtained if we used not all mutants but only its subset - representatives of 
groups determined with a given K parameter. In general, higher values of K result 
in the drop of mutation score, although the functions are not strictly monotonous. 
This effect is caused by selection of one mutant representing a group. 

If no clustering is made (K=0), the values are slightly higher than for clustering 
with K=1 and equal to the reference values MSorig given in Table 2.  
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Table 3 Average Mutation Score in dependence on the clustering parameter K in [%] 

Clustering 
parameter 

1. Enterprise Logging 2.Castle 3. Mono-Gendarme 

O-O Standard O-O Standard O-O Standard 

1 61.03% 70.18% 63.89% 67.43% 53.57% 69.43% 

2 52.88% 63.96% 54.82% 65.20% 43.76% 65.33% 

3 49.45% 62.27% 53.08% 63.04% 40.67% 60.82% 

4 40.76% 59.79% 46.57% 61.52% 34.39% 54.97% 

5 44.30% 59.12% 46.95% 59.27% 34.63% 55.48% 

6 38.29% 49.39% 44.30% 59.47% 34.12% 49.40% 

7 36.30% 45.48% 42.00% 54.25% 35.00% 46.14% 

8 33.92% 44.85% 39.23% 53.88% 31.44% 47.09% 

9 30.34% 43.61% 40.72% 55.98% 29.70% 45.77% 

10 33.04% 42.98% 37.86% 56.70% 28.60% 42.97% 

11 26.22% 37.56% 38.34% 54.21% 24.35% 44.43% 

12 30.74% 41.94% 37.50% 53.10% 23.87% 40.88% 

13 27.98% 43.77% 37.61% 50.47% 22.30% 39.29% 

14 27.80% 34.36% 36.46% 54.42% 26.23% 36.03% 

15 28.45% 29.64% 34.79% 48.46% 22.13% 35.72% 

16 25.24% 42.82% 36.16% 52.99% 19.42% 35.20% 

17 26.01% 39.02% 33.55% 51.76% 20.88% 33.89% 

18 28.52% 28.43% 37.06% 51.16% 19.56% 33.71% 

19 24.02% 30.04% 33.15% 47.57% 20.16% 33.88% 

 
Quality analysis was aimed at assessing a tradeoff between the decline of muta-

tion score (visible in Table 3) and a possible cost reduction counted in terms  
of mutant and test number. Based on experiment results, the quality metric EQ 
(Sec. 3.3) was calculated for different values of the clustering parameter. Table 4 
comprises quality values calculated assuming the weight coefficients WMS, WT , 
WM equal to 0.6, 0.2, 0.2 accordingly, i.e. the mutation score accuracy amounts to 
60% in the quality measure whereas efficiency factors to 40% (20% for the  
number of mutants and 20% for the number of tests). The clustering parameter  
K varies from 0 to 7, as the mutation score was too inaccurate for the higher  
thresholds.  

For OO operators, the best quality of projects 1 and 2 was reached for the clus-
tering parameter K=1. This means that mutants in a cluster are killed by test sets 
including only one different test case. The OO quality of 3rd project was the high-
est with no clustering, although the quality for K=1 was also close to 1.  
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Table 4 Quality Metrics EQ in dependence of the clustering parameter K 

Clustering 
parameter 

1. Enterprise Logging 2.Castle 3. Mono-Gendarme 

O-O Standard O-O Standard O-O Standard 

0 0.89 0.73 0.94.  0.89 1.00 0.75 

1 1.00 1.00 1.00  0.93 0.97 0.86 

2 0.98 0.90 0.73 1.00 0.79 1.00 

3 0.82 0.91 0.71 0.87 0.65 0.86 

4 0.52 0.98 0.49 0.91 0.47 0.73 

5 0.87 0.98 0.55 0.72 0.51 0.80 

6 0.51 0.63 0.41 0.84 0.59 0.55 

7 0.47 0.47 0.31 0.32 0.67 0.43 

 
Quality metric for standard operators applied to projects 2 and 3 reached max-

imum when K=2. In case of project 1, the maximum is when K equals 1, but other 
values (K=2,3,4,5) gave also good results (above 0.9). It should be noted that for 
higher values of the parameter (K=3,…7) the results of standard operators were in 
the most cases significantly better (0.1-0.3 higher) than the OO results  

While generalizing results, the potential data (mutation score, number of mu-
tants and number of required tests) are compared with the original values without 
clustering (Table 5). The clustering parameter was assumed to be 1 for OO opera-
tors and 2 for standard ones. Results for OO operators averaged for all projects 
showed that while using 32% of all mutants and 17% of tests, we could obtain 
97% of the original mutation score. For standard operators the results of 19% of 
mutants and 22% of tests could give MS with 91% of the original accuracy.  

Table 5 Clustering results for OO and standard mutation  

Program 
 Object-oriented (cluster K = 1) Standard (cluster K = 2) 

Mutation 
Score [%] 

Mutant 
number 

Test 
number 

Mutation 
Score [%] 

Mutant 
number 

Test 
number 

1.Enterprise 
Logging  

Original 61.79% 903 1148 70.92% 1623 1148 

Cluster. 61.03% 295 139 63.96% 221 110 

2. Castle  
Original 65.82% 1065 642 69.56% 2316 642 

Cluster. 63.89% 333 154 65.20% 681 145 

3. Mono-
Gendarme  

Original 55.91% 855 899 73.86% 4074 899 

Cluster. 53.57% 282 140 65.33% 545 312 

Average change [%] 97.2 % 32.3% 17.2% 90.8% 18.8% 22.3% 

 
Time of mutation testing should be decreased when the reduced number of mu-

tants and tests are applied. Effective times of mutant generation and test execution 
are given in Table 6 and compared with times necessary to generate all mutants  
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Table 6 Times of mutant generation (including compilation) and of test execution 
[h:min:sec] 

 

Program 

Object-oriented (cluster K = 1) Standard (cluster K = 2) 

Mut. gener. 
time Test exec. time 

Mut. gener. 
time 

Test exec. 
time 

1 All 06:26:11.2 06:32:36.6 07:22:44.2 11:45:39.2 

1 Cluster. 02:07:34.0 00:20:24.0 01:01:44.0 00:07:58.7 

2 All 05:37:43.9 07:14:14.2 10:36:59.7 15:44:18.9 

2 Cluster. 01:50:54.0 00:56:05.6 01:49:21.0 01:27:42.8 

3 All 03:49:32.0 02:02:28.7 13:53:38.9 09:43:36.0 

3 Cluster. 01:05:49.0 00:12:45.4 01:54:29.0 00:24:52.2 

 
and execute all mutants with all tests. On average, time of generating a reduced 
number of mutants took about 30% and 15% of the original time, and time of 
execution of all test 9% and 5%, for OO and standard mutants respectively. 

The programs were quite complex and widely used; however, conclusion valid-
ity of experiments is limited due to a small number of programs (three). All pro-
grams were of open-source origin that could object external validity.  

Mutation score measured with test sets distributed with the projects was low. 
To alleviate this threat to construct validity additional tests were designed, but the 
results were still below 100%. Construct validity can also be influenced by metrics 
and parameter selection. Therefore the analysis was performed for a wide range of 
K parameter. It also was repeated for another set of weight coefficients: WMS, WT , 
WM equal to 0.8, 0.1, 0.1. In this case mutation score accuracy was more important 
(0.8) and the quality was maximal when K=0 for both OO and standard operators. 

6 Conclusions 

It was shown, that potential profits of mutation clustering for C# programs could 
be considerable. While using only 32% or 19% of all mutants and 18% or 22% of 
tests, the mutation score could be of 97% or 91% close to the original one, for OO 
and standard mutation operators respectively. In comparison, analogous results for 
mutant sampling were about 33%, 30% of mutants, 10%, 15% of tests resulting in 
85% and 93% of mutation score accuracy [10]. Another method for reduction of 
mutant and test number - selective mutation gave better accuracy but with a 
smaller decline of mutant number and analogous number of tests [7]. 

However, mutation clustering is more difficult to be implemented than selective 
mutation or mutant sampling, because we generate unnecessary mutants. In a 
practical approach to clustering, applying statically domain analysis [5], all  
mutants should be generated but we could benefit from reduced number of test 
runs with a reduced number of mutants. Concluding, if the potential lowering of 
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mutation testing complexity and accuracy of mutation results are comparable it 
would be worthwhile implement methods that are easier to be generalize.  

Combining those methods with other approaches to cost reduction, e.g. omit-
ting of redundant mutants [18] or test prioritization [19], remains an open issue. 

Acknowledgments. I am very thankful to my student M. Rudnik for extending the 
CREAM tool and performing mutation testing experiments. 
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