
W. Zamojski et al. (Eds.): New Results in Dependability & Comput. Syst., AISC 224, pp. 119–129.
DOI: 10.1007/978-3-319-00945-2_11 © Springer International Publishing Switzerland 2013

A Quality Estimation of Mutation Clustering
in C# Programs

Anna Derezińska

Institute of Computer Science, Warsaw University of Technology
Nowowiejska 15/19, 00-665 Warsaw, Poland
A.Derezinska@ii.pw.edu.pl

Abstract. Mutation testing tasks are expensive in time and resources. Different
cost reduction methods were developed to cope with this problem. In this chapter
experimental evaluation of mutation clustering is presented. The approach was
applied for object-oriented and standard mutation testing of C# programs. The
quality metric was used to compare different solutions. It calculates a tradeoff
between mutations score accuracy and mutation costs in terms of number of mu-
tants and number of tests. The results show a substantive decrease in number of
mutants and tests while suffering a small decline of mutation score accuracy.
However the outcome is not superior to other cost reduction methods, as selective
mutation or mutant sampling.

1 Introduction

In mutation testing many faulty versions (so-called mutants) of a program under
test are generated by application of mutation operators. If any test from a given
test set detects an abnormal behavior of a mutant, the mutant is set to be killed.
The ability of a test set to reveal faults specified by mutation operators is named
mutation score (MS) and measured as a ratio of the number of killed mutants over
the number of all non-equivalent mutants. An equivalent mutant generates the
same outcomes as the original program and cannot be killed by any test. Mutation
operators define various kinds of faults. Standard operators deal with expressions
and structural features common to all general purpose programming languages,
whereas object-oriented (OO) operators with flaws specific to OO languages [1].

An important obstacle of mutation testing approach is the computational ex-
pense. For one program many mutants can be generated and one mutant is run
with many test cases. Several cost reduction techniques to mutation testing were
proposed based on “do smarter”, “do faster” or “do fewer” approaches [1,2]. The
mutation clustering belongs to a “do fewer” method that tries to execute fewer
mutants against fewer test cases.

In mutation clustering a set of mutants is divided into disjoint subsets, so-called
groups, based on the ability of tests to kill these mutants. Various groups of mu-
tants can be killed by the same, or similar, subsets of tests. In the further testing

120 A. Derezińska

process, only one mutant representing a group is applied instead of all mutants
from the group. Division of mutants can be realized using one of the clustering
algorithms, such as agglomerative hierarchical or K-means clustering [3, 4] or by
static domain analysis [5].

The analysis on mutation clustering was performed on C programs using stan-
dard mutation operators [3], and on an exemplary, simple Java program [5]. It was
not shown how the approach will scale up for bigger-size and practically used
programs. Another open question was whether the clustering method can give
benefits to the object-oriented mutation testing, as according to the author’s expe-
rience [6,7] the object-oriented mutation evaluates with different characteristics
than mutation with standard operators. Mutation testing of C# programs is sup-
ported by the CREAM tool [6,8,9]. In order to effectively perform experiments on
various cost reduction methods, an extension to CREAM was implemented [7,10].

The aim of the research presented in this chapter is examination whether the
clustering method is worthwhile in mutation testing of C# programs, both in terms
of standard and object-oriented operators. The tradeoff between the quality of
mutation testing result (MS) and its cost (number of mutants and tests) is quantita-
tively evaluated with assessment of an original, tool supported metric [7].

The reminder of this chapter is organized as follows. Next Section describes re-
lated work. In Section 3 the main methodological issues are discussed. The expe-
rimental set-up is presented in Section 4. Section 5 gives experiment results and
their analysis. Finally, Section 6 concludes the work.

2 Related Work

Promising results of mutation clustering with standard operators and C programs
were presented in [3]. They showed, for example, that using a substantially
reduced number of mutants (13%) and of tests (8%) we can obtain almost the
same mutation score, i.e. 99%. In experiments with C# programs so good results
were obtained neither with standard nor with OO operators.

Experiments in [3] focus on the assessment of potential clustering benefits, si-
milarly as in this chapter. Therefore clustering was based on results of runs of
all mutants against all test cases. Ji at al. proposed a practical approach in which
clustering is based on static domain analysis [5]. The experiment proved that the
method is applicable and dealt with a small Java program giving the encouraging
results (e.g. 25% mutants with 62% tests gave 94% of mutation score).

The mostly studied “do fewer” method was selective mutation [11-14], in
which only subset of mutation operators is used. Five standard operators were
recognized as selective in experiments with Fortran programs [11]. The research
on OO mutation was neither so promising nor so conclusive [7,14]. A method of
mutant sampling, based on random selection of mutants, gave good results (10%
of mutants with 16% loss of MS accuracy) for standard mutation in Fortran [15].
Sampling according to different criteria was studied in [10] for C# programs.

A Quality Estimation of Mutation Clustering in C# Programs 121

There are several tools for mutation testing of Java programs, but the only tools
that support mutation testing of C# programs with some standard and OO opera-
tors are those implemented under the author’s supervision: CREAM [6,8,9] and
the prototype ILMutator [16]. The latter injects faults directly into Intermediate
Language of .NET and therefore speeds up mutant generation. However the cost
of test execution remains the same as using CREAM.

3 Methodology

In experiments discussed in this chapter the agglomerative clustering algorithm
was applied [4]. Below its general idea is presented. Next, the experiment scenario
and quality metric are discussed.

3.1 Clustering Algorithm

A clustering algorithm returns the division of mutants for a given set of mutants M
and a set of test T that kill the mutants. The algorithm is characterized by a thre-
shold parameter K reflecting a similarity of mutant groups. Two groups are similar
with K degree, if the number of tests that kill at least one mutant from one group
and kill none mutant from the second group is equal to K.

The general idea of the algorithm can be described in following steps:

1) First, for each mutant from the set M, a mutant group is initialized. Therefore
there are |M| groups of one element, where |X| denotes cardinality of set X.

2) A temporary group similarity value is set to 0 (i = 0).
3) All pairs of current groups are compared. Two groups are merged if the similar-

ity of the groups is less then the temporary group similarity value (i). If there
are no more pairs of groups to be merged we go to the next step.

4) The algorithm stops if the current group similarity value reaches the algorithm
threshold (i = K). Otherwise, the temporary similarity value is incremented
(i++) and the algorithm is continued with the step 3.

For example, given a set of mutants M = {m1, m2, m3, m4} killed by the test sets
{t1,t2}, {t1,t2}, {t1}, {t2,t3} accordingly, and the parameter K=1, we obtain the
following two groups of mutants {m1, m2, m3} and {m4}. The first group is killed
by the test set {t1, t2}, whereas the second group is killed by tests {t2, t3}.

3.2 Experimental Scenario on Mutation Clustering

In experiments on cost reduction methods we answer a question how a reduced
number of mutants is able to assess the test quality (MS) in comparison to all
mutants that could be generated. Moreover we look for minimal test sets that
could be as effective in revealing faults as the reference test set. The experiments
on mutation clustering were designed according to the following scenario:

122 A. Derezińska

A) Using a given set of mutation operators, all first order mutants of a program
under test are generated (mutant set MAll).

B) All mutants from MAll are run against all tests from a considered set TAll. The
resulting mutant execution matrix states for each pair <mutant m, test t>
whether the mutant m is killed by the test t or not.

C) A parameter K of the clustering algorithm is selected. Disjoint mutant groups
are determined by the clustering algorithm for given mutants MAll, test set
TAll, and parameter K.

C1) A subset of mutants MC1 ⊆ MAll is created by selection of one representative
mutant from each mutant group. Mutation score MSC1max= MS (MC1, TAll) is
calculated assuming that mutants from this subset were tested by all tests.

C2) In order to optimize a test set, a collection L of test subsets of TAll is created.
Any test set in L has a minimal number of tests and gives the mutation score
equal to MSC1max (from step C1). Tests sets meeting those requirements can
be generated using prime implicant of a monotonous Boolean function [17].
The collection L includes either all test sets of this kind, or a limited number
TestSetLimit of such sets. The value of TestSetLimit is a parameter of an ex-
periment.

C3) For any test set included in L a mutation score is calculated as if all mutants
from MAll were tested by the test set.

C4) The average mutation score MSavg is calculated from the results of step C3.

Investigating an impact of the clustering threshold on the mutation results, we can
repeat steps C(C1-C4) for different values of K. Next the final statistics and quali-
ty metrics are calculated.

3.3 Quality Metric

The primary metric used for evaluating results on mutation testing process is the
mutation score (MS). The original mutation score MSorig= MS (MAll, TAll) is
calculated using execution results of all mutants from set MAll and all tests from set
TAll.. If a reduced number of mutants (Mi ⊆ MAll) and/or a reduced number of tests
(Ti ⊆ TAll) are taken into account, the mutation score can be less accurate that the
original one. In order to estimate the mutation testing approach not only in terms
of the mutation score accuracy but also the cost factors, the quality metrics were
proposed [7]. Using the metrics it is possible to compare results of different
programs and different experiments, as it is based on a normalization function and
takes therefore values from 0 to 1.

The quality metric EQ applied in the analysis of mutant clustering is a weighted
sum of three components (Eq. 1)

))(*)(*)(*(),,(MMTTMSMSMTMS ZIWZIWSIWIWWWEQ ++= (1)

The metric is based on three dependent variables that assess a decline of mutation
score accuracy (SMS), a reduced number of tests required to kill mutants (ZT), and a

A Quality Estimation of Mutation Clustering in C# Programs 123

reduced number of mutants (ZM). Contributions of these factors to the metric are
calibrated by weight coefficients WMS, WT, WM, which sum must be equal to 1.
I() denotes a normalization function. The normalization is performed for all results
in an experiment. Detailed formulae of the variable computation are given in [7],
where the quality metric was applied for quality evaluation of selective mutation.

4 Experimental Set-Up

The mutation testing process discussed in this chapter dealt with first order
mutation - a mutant is created by introducing one fault specified by one mutation
operator in a program under test, and strong mutation - a mutant is recognized to
be killed if a result of at least one test differs from the result of the original
program.

Three widely used, open-source programs related to different domains and var-
ious authors were used in the experimental study. The basic statistics of the pro-
grams are given in Table 1. The tests associated with the first project - Enterprise
Logging were unit tests designed and run with MSTest, a part of the Microsoft
Visual Studio, whereas tests of Castle and Mono-Gendarme were NUnit tests.

Table 1 Subject programs and their statistics

No Program
LOC Classes & Interfaces

with tests without tests with tests without tests

1 Enterprise Logging
http://entlib.codeplex.com

87552 57885 991 587

2 Castle http://www.castleproject.org 54496 41288 724 493

3 Mono-Gendarme

http://www.mono-project.com/Gendarme

51228 25692 907 171

 Sum 193276 124865 2622 1251

The experiments were carried out with the CREAM (CREAtor of Mutants) tool

a mutation system for C# programs mutated at the syntax tree level [6,8,9]. It is
the most mature mutation system of C# applications. The latest version of the tool
was extended with a wizard in order to efficiently perform experimental study on
cost reduction techniques. The extension assists in creating mutants, executing
tests, and evaluating test results in respect to three methods: mutation operator
selection, mutant sampling and mutation clustering.

The experimental scenario from Sec. 3.2 and the whole analysis were pre-
formed independently for two sets of mutation operators: 18 object-oriented and 8
standard ones implemented in CREAM v3 [7]. The standard operators cover the
five operators distinguished to be selective [11].

124 A. Derezińska

5 Experiment Results and Quality Analysis

The basic mutation testing results of subject programs are summarized in
Table 2.

The first row includes numbers of mutants referring only to the covered code.
The programs were covered by their unit tests in 82%, 77% and 87% respectively.
None of the mutants generated for uncovered code were killed. Therefore in the
calculations of the mutation score only the covered code was taken into account.

For each program, mutants were run against all tests TAll associated with the
program. The numbers of killed mutants are given in the second row.

Some generated mutants can be equivalent. Equivalent mutants were manually
detected by analyzing mutants generated by selected operators (with the highest
number of not killed mutants and those easily to be analyzed). The numbers of
recognized equivalent mutants are listed in the third row. However, some equiva-
lent mutants could remain undetected. Covered and not recognized as equivalent
mutants were counted as a set of all mutants MAll generated by either OO or stan-
dard operators, respectively. Basing of this data the original mutation score MSorig
was calculated. It is given in the last row and will be counted as a reference value.

Table 2 Mutation results - number of mutants generated, killed, equivalent and mutation
score

1. Enterprise Logging 2.Castle 3. Mono-Gendarme

O-O Standard O-O Standard O-O Standard

Generated covered mutants 1341 1683 1208 2379 998 4153

Killed mutants 558 1151 701 1611 478 3009

Equivalent mutants 438 60 143 60 143 79

Mutation Score (MSorig) [%] 61,79% 70,92% 65,82% 69,56% 55,91% 73,86%

The test results of all mutants were used in further steps C(C1-C4) of the mutation
clustering scenario (Sec. 3.2) performed under the following assumptions:

- the clustering parameter K varied from 0 to 19,
- TestSetLimit - the number of minimal test sets in collection L was set to 15.

Average mutation score (step C4) calculated for different values of the parameter
K=1..19 is shown in Table 3. This value reflects an average mutation result that
could be obtained if we used not all mutants but only its subset - representatives of
groups determined with a given K parameter. In general, higher values of K result
in the drop of mutation score, although the functions are not strictly monotonous.
This effect is caused by selection of one mutant representing a group.

If no clustering is made (K=0), the values are slightly higher than for clustering
with K=1 and equal to the reference values MSorig given in Table 2.

A Quality Estimation of Mutation Clustering in C# Programs 125

Table 3 Average Mutation Score in dependence on the clustering parameter K in [%]

Clustering
parameter

1. Enterprise Logging 2.Castle 3. Mono-Gendarme

O-O Standard O-O Standard O-O Standard

1 61.03% 70.18% 63.89% 67.43% 53.57% 69.43%

2 52.88% 63.96% 54.82% 65.20% 43.76% 65.33%

3 49.45% 62.27% 53.08% 63.04% 40.67% 60.82%

4 40.76% 59.79% 46.57% 61.52% 34.39% 54.97%

5 44.30% 59.12% 46.95% 59.27% 34.63% 55.48%

6 38.29% 49.39% 44.30% 59.47% 34.12% 49.40%

7 36.30% 45.48% 42.00% 54.25% 35.00% 46.14%

8 33.92% 44.85% 39.23% 53.88% 31.44% 47.09%

9 30.34% 43.61% 40.72% 55.98% 29.70% 45.77%

10 33.04% 42.98% 37.86% 56.70% 28.60% 42.97%

11 26.22% 37.56% 38.34% 54.21% 24.35% 44.43%

12 30.74% 41.94% 37.50% 53.10% 23.87% 40.88%

13 27.98% 43.77% 37.61% 50.47% 22.30% 39.29%

14 27.80% 34.36% 36.46% 54.42% 26.23% 36.03%

15 28.45% 29.64% 34.79% 48.46% 22.13% 35.72%

16 25.24% 42.82% 36.16% 52.99% 19.42% 35.20%

17 26.01% 39.02% 33.55% 51.76% 20.88% 33.89%

18 28.52% 28.43% 37.06% 51.16% 19.56% 33.71%

19 24.02% 30.04% 33.15% 47.57% 20.16% 33.88%

Quality analysis was aimed at assessing a tradeoff between the decline of muta-

tion score (visible in Table 3) and a possible cost reduction counted in terms
of mutant and test number. Based on experiment results, the quality metric EQ
(Sec. 3.3) was calculated for different values of the clustering parameter. Table 4
comprises quality values calculated assuming the weight coefficients WMS, WT ,
WM equal to 0.6, 0.2, 0.2 accordingly, i.e. the mutation score accuracy amounts to
60% in the quality measure whereas efficiency factors to 40% (20% for the
number of mutants and 20% for the number of tests). The clustering parameter
K varies from 0 to 7, as the mutation score was too inaccurate for the higher
thresholds.

For OO operators, the best quality of projects 1 and 2 was reached for the clus-
tering parameter K=1. This means that mutants in a cluster are killed by test sets
including only one different test case. The OO quality of 3rd project was the high-
est with no clustering, although the quality for K=1 was also close to 1.

126 A. Derezińska

Table 4 Quality Metrics EQ in dependence of the clustering parameter K

Clustering
parameter

1. Enterprise Logging 2.Castle 3. Mono-Gendarme

O-O Standard O-O Standard O-O Standard

0 0.89 0.73 0.94. 0.89 1.00 0.75

1 1.00 1.00 1.00 0.93 0.97 0.86

2 0.98 0.90 0.73 1.00 0.79 1.00

3 0.82 0.91 0.71 0.87 0.65 0.86

4 0.52 0.98 0.49 0.91 0.47 0.73

5 0.87 0.98 0.55 0.72 0.51 0.80

6 0.51 0.63 0.41 0.84 0.59 0.55

7 0.47 0.47 0.31 0.32 0.67 0.43

Quality metric for standard operators applied to projects 2 and 3 reached max-

imum when K=2. In case of project 1, the maximum is when K equals 1, but other
values (K=2,3,4,5) gave also good results (above 0.9). It should be noted that for
higher values of the parameter (K=3,…7) the results of standard operators were in
the most cases significantly better (0.1-0.3 higher) than the OO results

While generalizing results, the potential data (mutation score, number of mu-
tants and number of required tests) are compared with the original values without
clustering (Table 5). The clustering parameter was assumed to be 1 for OO opera-
tors and 2 for standard ones. Results for OO operators averaged for all projects
showed that while using 32% of all mutants and 17% of tests, we could obtain
97% of the original mutation score. For standard operators the results of 19% of
mutants and 22% of tests could give MS with 91% of the original accuracy.

Table 5 Clustering results for OO and standard mutation

Program
 Object-oriented (cluster K = 1) Standard (cluster K = 2)

Mutation
Score [%]

Mutant
number

Test
number

Mutation
Score [%]

Mutant
number

Test
number

1.Enterprise
Logging

Original 61.79% 903 1148 70.92% 1623 1148

Cluster. 61.03% 295 139 63.96% 221 110

2. Castle
Original 65.82% 1065 642 69.56% 2316 642

Cluster. 63.89% 333 154 65.20% 681 145

3. Mono-
Gendarme

Original 55.91% 855 899 73.86% 4074 899

Cluster. 53.57% 282 140 65.33% 545 312

Average change [%] 97.2 % 32.3% 17.2% 90.8% 18.8% 22.3%

Time of mutation testing should be decreased when the reduced number of mu-

tants and tests are applied. Effective times of mutant generation and test execution
are given in Table 6 and compared with times necessary to generate all mutants

A Quality Estimation of Mutation Clustering in C# Programs 127

Table 6 Times of mutant generation (including compilation) and of test execution
[h:min:sec]

Program

Object-oriented (cluster K = 1) Standard (cluster K = 2)

Mut. gener.
time Test exec. time

Mut. gener.
time

Test exec.
time

1 All 06:26:11.2 06:32:36.6 07:22:44.2 11:45:39.2

1 Cluster. 02:07:34.0 00:20:24.0 01:01:44.0 00:07:58.7

2 All 05:37:43.9 07:14:14.2 10:36:59.7 15:44:18.9

2 Cluster. 01:50:54.0 00:56:05.6 01:49:21.0 01:27:42.8

3 All 03:49:32.0 02:02:28.7 13:53:38.9 09:43:36.0

3 Cluster. 01:05:49.0 00:12:45.4 01:54:29.0 00:24:52.2

and execute all mutants with all tests. On average, time of generating a reduced
number of mutants took about 30% and 15% of the original time, and time of
execution of all test 9% and 5%, for OO and standard mutants respectively.

The programs were quite complex and widely used; however, conclusion valid-
ity of experiments is limited due to a small number of programs (three). All pro-
grams were of open-source origin that could object external validity.

Mutation score measured with test sets distributed with the projects was low.
To alleviate this threat to construct validity additional tests were designed, but the
results were still below 100%. Construct validity can also be influenced by metrics
and parameter selection. Therefore the analysis was performed for a wide range of
K parameter. It also was repeated for another set of weight coefficients: WMS, WT ,
WM equal to 0.8, 0.1, 0.1. In this case mutation score accuracy was more important
(0.8) and the quality was maximal when K=0 for both OO and standard operators.

6 Conclusions

It was shown, that potential profits of mutation clustering for C# programs could
be considerable. While using only 32% or 19% of all mutants and 18% or 22% of
tests, the mutation score could be of 97% or 91% close to the original one, for OO
and standard mutation operators respectively. In comparison, analogous results for
mutant sampling were about 33%, 30% of mutants, 10%, 15% of tests resulting in
85% and 93% of mutation score accuracy [10]. Another method for reduction of
mutant and test number - selective mutation gave better accuracy but with a
smaller decline of mutant number and analogous number of tests [7].

However, mutation clustering is more difficult to be implemented than selective
mutation or mutant sampling, because we generate unnecessary mutants. In a
practical approach to clustering, applying statically domain analysis [5], all
mutants should be generated but we could benefit from reduced number of test
runs with a reduced number of mutants. Concluding, if the potential lowering of

128 A. Derezińska

mutation testing complexity and accuracy of mutation results are comparable it
would be worthwhile implement methods that are easier to be generalize.

Combining those methods with other approaches to cost reduction, e.g. omit-
ting of redundant mutants [18] or test prioritization [19], remains an open issue.

Acknowledgments. I am very thankful to my student M. Rudnik for extending the
CREAM tool and performing mutation testing experiments.

References

[1] Jia, Y., Harman, M.: An analysis and survey of the development of mutation testing.
IEEE Transactions on Software Engineering 37(5), 649–678 (2011), doi:10.1109/
TSE.2010.62

[2] Usaola, M.P., Mateo, P.R.: Mutation testing cost reduction techniques: a survey.
IEEE Software 27(3), 80–86 (2010), doi:10.1109/MS.2010.79

[3] Hussain, S.: Mutation Clustering. Ms. Thesis, King’s College London, Strand, Lon-
don (2008)

[4] Jain, A.K., Murty, M.N., Flynn, P.J.: Data Clustering: A Review. ACM Computing
Surveys 31(3), 264–323 (1999)

[5] Ji, C., Chen, Z.Y., Xu, B.W., Zhao, Z.H.: A novel method of mutation clustering
based on domain analysis. In: Proc. of 21st Inter. Conf. on Softw. Eng. & Know-
ledge Eng., pp. 422–425 (2009)

[6] Derezińska, A., Szustek, A.: Object-oriented testing capabilities and performance
evaluation of the C# mutation system. In: Szmuc, T., Szpyrka, M., Zendulka, J.
(eds.) CEE-SET 2009. LNCS, vol. 7054, pp. 229–242. Springer, Heidelberg (2012)

[7] Derezińska, A., Rudnik, M.: Quality evaluation of object-oriented and standard mu-
tation operators applied to C# programs. In: Furia, C.A., Nanz, S. (eds.) TOOLS
2012. LNCS, vol. 7304, pp. 42–57. Springer, Heidelberg (2012)

[8] Derezińska, A., Szustek, A.: Tool-supported mutation approach for verification of
C# programs. In: Zamojski, W., et al. (eds.) Proc. of Inter. Conf. on Dependability of
Computer Systems, DepCoS-RELCOMEX 2008, pp. 261–268 (2008),
doi:10.1109/DepCoS-RELCOMEX.2008.51

[9] CREAM, http://galera.ii.pw.edu.pl/~adr/CREAM/
[10] Derezińska, A., Rudnik, M.: Empirical evaluation of cost reduction techniques of

mutation testing for C# Programs, Warsaw University of Technology, ICS Res. Rep.
1/2012 (2012)

[11] Offut, J., Rothermel, G., Zapf, C.: An experimental evaluation of selective mutation.
In: Proc. of 15th Inter. Conf. on Software Engineering, pp. 100–107 (1993)

[12] Zhang, L., Hou, S.-S., Hu, J.-J., Xie, T., Mei, H.: Is operator-based mutant selection
superior to random mutant selection? In: Proc. of the 32nd International Conference on
Software Engineering, ICSE 2010, pp. 435–444 (2010), doi:10.1145/1806799.1806863

[13] Kaminski, G., Praphamontripong, U., Ammann, P., Offutt, J.: A logic mutation ap-
proach to selective mutation for programs and queries. Inform. and Softw. Tech-
nol. 53, 1137–1152 (2011), doi:10.1016/j.infsof.2011.03.009

[14] Hu, J., Li, N., Offutt, J.: An analysis of OO mutation operators. In: Proc. of 4th Inter.
Conf. Softw. Test. Verif. and Validation Workshops, pp. 334–341 (2011),
doi:10.1109/ICSTW.2011.47

A Quality Estimation of Mutation Clustering in C# Programs 129

[15] Mathur, A.P., Wong, W.E.: Reducing the cost of mutation testing: an empirical
study. J. of Systems and Softw. 31, 185–196 (1995)

[16] Derezińska, A., Kowalski, K.: Object-oriented mutation applied in Common Inter-
mediate Language programs originated from C#. In: Proc. of 4th International Con-
ference Software Testing Verification and Validation Workshops, pp. 342–350
(2011), doi:10.1109/ICSTW.2011.54

[17] Kryszkiewicz, M.: Fast algorithm finding minima in monotonic Boolean functions,
Warsaw Univ. of Technology, ICS Res. Rep. 42/93 (1993)

[18] Just, R., Kapfhammer, G.M., Schweiggert, F.: Do redundant mutants affects the ef-
fectiveness and efficiency of mutation analysis? In: Proc. IEEE 5th Inter. Conf. on
Software Testing, Verification and Validation, pp. 720–725 (2012),
doi:10.1109/ICST.2012.162

[19] Zhang, L., Marionov, D., Zhang, L., Khurshid, S.: Regression mutation testing. In:
Proc. of Int. Symp. on Software Testing, ISSTA 2012, pp. 331–341 (2012)

	A Quality Estimation of Mutation Clustering in C# Programs
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Clustering Algorithm
	3.2 Experimental Scenario on Mutation Clustering
	3.3 Quality Metric

	4 Experimental Set-Up
	5 Experiment Results and Quality Analysis
	6 Conclusions
	References

