
Chapter 1
Fractional Brownian Motion and Related
Processes

Fractional Brownian motion (fBm) is the only Gaussian self-similar process with
stationary increments. It was introduced in [102] in 1940 and the first study dedi-
cated to it [117] appeared in 1968. The stochastic analysis of this process has been
intensively developed, starting in the nineties, due to its various practical applica-
tions. Later, other processes related to fBm came to attention: bifractional Brownian
motion, sub-fractional Brownian motion, multifractional Brownian motion, mixed
fractional Brownian motion, etc. The purpose of this chapter is to review the basic
properties of some of these fractional processes.

1.1 Fractional Brownian Motion

Fractional Brownian motion constitutes the main motivation for the theory of
stochastic integration beyond the world of semi-martingales. The applications of
this process in practice are significant and therefore a stochastic calculus for it was
needed. There already exists a vast literature that describes different aspects of this
stochastic process. We refer to the monographs [75, 95, 121, 136, 160] among oth-
ers. Here we provide only a succinct review of the basic properties of this process.

Definition 1.1 Let H ∈ (0,1). Fractional Brownian motion is defined as a centered
Gaussian process (BH

t )t≥0 with covariance function

RH (t, s) := E
(
BH

t BH
s

) = 1

2

(
t2H + s2H − |t − s|2H

)
, s, t ≥ 0. (1.1)

The index H is called the Hurst parameter and it determines the main properties
of the process BH , such as self-similarity, regularity of the sample paths and long
memory.
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4 1 Fractional Brownian Motion and Related Processes

1.1.1 Basic Properties

Proposition 1.1 Fractional Brownian motion is an H -self-similar process and it
has self-similarity. It is actually the unique H -self-similar Gaussian process with
stationary increments.

Proof For any c > 0 the process (Bct )t≥0 is a centered Gaussian process with co-
variance

E
(
BH

cs B
H
ct

) = 1

2

(
(ct)2H + (cs)2H − c2H |t − s|2H

)
, s, t ≥ 0.

The same holds for the process (cH BH
t )t≥0. Being Gaussian with the same co-

variance, the two stochastic processes therefore have the same finite dimensional
distributions. It can also easily be seen that for every h ≥ 0 the covariance of the
Gaussian process (BH

t+h − BH
h )t≥0 satisfies

E
(
BH

t+h − BH
h

)(
BH

s+h − BH
h

) = RH (t, s)

so it is constant with respect to h. This proves that the process BH has stationary
increments.

The fact that fBm is the only Gaussian self-similar process with stationary incre-
ments follows from Theorem A.1. �

Proposition 1.2 For any s, t ≥ 0 we have

E
∣∣BH

t − BH
s

∣∣2 = |t − s|2H .

In particular, the process BH has δ-Hölder continuous paths for any δ < H .

Proof Fix s, t ≥ 0. Then

E
∣
∣BH

t − BH
s

∣
∣2 = E

∣
∣BH

t

∣
∣2 − 2EBH

t BH
s + E

∣
∣BH

s

∣
∣2

= t2H − 2RH (t, s) + s2H

= |t − s|2H .

Since for any s ≤ t the random variable Bt −Bs has the distribution
√

E|BH
t − BH

s |2
× Z = |t − s|H Z where Z denotes a standard normal random variable, we obtain
that for any p ≥ 1

E
∣
∣BH

t − BH
s

∣
∣p = E|Z|p|t − s|Hp.

The Hölder continuity follows from the Kolmogorov continuity theorem (see Theo-
rem B.1). �
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Proposition 1.3 Fractional Brownian motion is not a Markov process except in the
case H = 1

2 .

Proof Recall that ([155]) a Gaussian process with covariance R is Markovian if and
only if

R(s,u)R(t, t) = R(s, t)R(t, u)

for every s ≤ t ≤ u. One can see that BH does not satisfy this condition if H �= 1
2 . �

We defined in Definition A.3 the concepts of long-memory and short-memory
processes.

Proposition 1.4 If H > 1
2 the fractional Brownian motion exhibits long-range de-

pendence. If H < 1
2 the fractional Brownian motion is a short-memory process.

Proof We have

r(n) = 1

2

(
(n + 1)2H + (n − 1)2H − 2n2H

)

for any n ≥ 1 and the function r(n) behaves as H(2H − 1)n2H−2 for large n. See
Proposition A.2. �

Let us note that

Proposition 1.5 The fBm is not a semimartingale except when H = 1/2.

Proof Again, several proofs, based in general on the expression of the quadratic
variation of the fBm (see Exercise 1.1), have been presented previously. We refer,
for example, to [75, 136] for recent references. �

1.1.2 Stochastic Integral Representation

Fractional Brownian motion can be expressed as a Wiener integral with respect to
the Wiener process in several ways. Let us recall two of them.

Wiener Integral Representation on a Finite Interval Let BH be a fractional
Brownian motion with parameter H ∈ (0,1). The fBm admits a representation as a
Wiener integral of the form

BH =
∫ t

0
KH (t, s)dWs, (1.2)
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where W = {Wt, t ∈ T } is a Wiener process, and KH (t, s) is the kernel

KH (t, s) = dH (t − s)H− 1
2 + sH− 1

2 F1

(
t

s

)
, (1.3)

dH being a constant and

F1(z) = dH

(
1

2
− H

)∫ z−1

0
θH− 3

2
(
1 − (θ + 1)H− 1

2
)
dθ.

If H > 1
2 , the kernel KH has the simpler expression

KH (t, s) = cH s
1
2 −H

∫ t

s

(u − s)H− 3
2 uH− 1

2 du (1.4)

where t > s and cH = (
H(H−1)

β(2−2H,H− 1
2 )

)
1
2 . The fact that the process defined by (1.2)

is a fBm follows from the equality

∫ t∧s

0
KH (t, u)KH (s,u)du = RH (t, s). (1.5)

The kernel KH satisfies the condition

∂KH

∂t
(t, s) = dH

(
H − 1

2

)(
s

t

) 1
2 −H

(t − s)H− 3
2 . (1.6)

Moving Average Representation fBm can be represented as an integral with
respect to a standard Brownian motion on the whole real line. Let (Bs)s∈R be a
standard Brownian motion. Then

BH
t = C(H)−1

∫

R

[
(t − s)

H− 1
2+ − (−s)

H− 1
2+
]
dBs, (1.7)

with C(H) > 0 an explicit normalizing constant, is a fractional Brownian motion.

1.1.3 The Canonical Hilbert Space

Consider (BH
t )t∈[0,T ] a fractional Brownian motion with Hurst parameter H ∈ (0,1)

and denote by H its canonical Hilbert space. If H = 1
2 then B

1
2 is the standard

Brownian motion (Wiener process) W and in this case H = L2([0, T ]). Other-
wise H is the Hilbert space on [0, T ] extending the set of indicator function 1[0,T ],
t ∈ [0, T ] (by linearity and closure under the inner product) the rule

〈1[0,s];1[0,t]〉H = RH (s, t) := 2−1(s2H + t2H − |t − s|2H
)
.
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The followings facts will be needed in the sequel (we refer to [147] or [136] for
their proofs):

• If H > 1
2 , the elements of H may be not functions but distributions; it is therefore

more practical to work with subspaces of H that are sets of functions. Such a
subspace is

|H| =
{
f : [0, T ] →R

∣∣∣
∫ T

0

∫ T

0

∣∣f (u)
∣∣∣∣f (v)

∣∣|u − v|2H−2dvdu < ∞
}
.

Then |H| is a strict subspace of H and we actually have the inclusions

L2([0, T ]) ⊂ L
1
H

([0, T ]) ⊂ |H| ⊂H. (1.8)

• The space |H| is not complete with respect to the norm ‖ · ‖H but it is a Banach
space with respect to the norm

‖f ‖2
|H| =

∫ T

0

∫ T

0

∣
∣f (u)

∣
∣
∣
∣f (v)

∣
∣|u − v|2H−2dvdu.

• If H > 1
2 and f,g are two elements in the space |H|, their scalar product in H

can be expressed as

〈f,g〉H = αH

∫ T

0

∫ T

0
dudv|u − v|2H−2f (u)g(v) (1.9)

where αH = H(2H − 1).
• For H > 1

2 , define the “transfer” operator

K∗
H ϕ(s) =

∫ T

s

ϕ(t)∂1KH (t, s)dt (1.10)

where ∂1KH (t, s) = ∂KH

∂t
(t, s). This operator provides an isometry between the

space H and L2([0, T ]) in the sense that
∥∥K∗ϕ

∥∥
L2([0,T ]) = ‖ϕ‖H.

As a consequence, ϕ ∈H if and only if K∗ϕ ∈ L2([0, T ]).
• If H < 1

2 then the canonical Hilbert space is a space of functions. It can be defined
as the class of function ϕ : [0, T ] → R such that

K∗
H ϕ ∈ L2([0, T ])

where the transfer operator K∗
H is defined by

K∗
H ϕ(s) = KH (T , s) +

∫ T

s

(
ϕ(t) − ϕ(s)

)
∂1(t, s)dt. (1.11)
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The family (BH (ϕ),ϕ ∈H) is an isonormal process in the sense of Appendix C.
Therefore it is possible to construct multiple stochastic integrals and Malliavin
derivatives with respect to this process. We will intensively use these techniques
later in this book. If ϕ ∈ H, we define BH (ϕ) = ∫ T

0 ϕsdBH
s and we call this object

the Wiener integral with respect to BH . This Wiener integral can be expressed as a
Wiener integral with respect to the Brownian motion by the transfer formula

∫ T

0
ϕsdBH

s =
∫ T

0
K∗

H ϕ(s)dWs (1.12)

where K∗
H is given by (1.11) if H < 1

2 and by (1.10) when H > 1
2 .

1.2 Bifractional Brownian Motion

We will now focus our attention on a Gaussian process that generalizes fractional
Brownian motion, called bifractional Brownian motion and introduced in [90]. Re-
call that fBm is the only self-similar Gaussian process with stationary increments
starting from zero. For small increments, in models such as turbulence, fBm seems
a good model but it is sometimes inadequate for large increments. For this reason, in
[90] the authors introduced an extension of fBm which retained some of the proper-
ties (self-similarity, Gaussianity, stationarity for small increments) but enlarged the
modeling tool kit. Moreover, it happens that this process is a quasi-helix, as defined,
for example, in [98, 99].

Definition 1.2 The bifractional Brownian motion (B
H,K
t )t≥0 is a centered Gaussian

process, starting from zero, with covariance

RH,K(t, s) := R(t, s) = 1

2K

((
t2H + s2H

)K − |t − s|2HK
)

(1.13)

with H ∈ (0,1) and K ∈ (0,1].

Note that, BH,1 is a fractional Brownian motion with Hurst parameter H ∈ (0,1).

1.2.1 Basic Properties

Proposition 1.6 The process is HK-self-similar.

Proof For every c > 0 and s, t ≥ 0 the following holds

RH,K(ct, cs) = c2HKRH,K(t, s).
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Indeed,

RH,K(ct, cs) = 1

2K

((
(ct)2H + (cs)2H

)K − |ct − cs|2HK
)

= c2HKRH,K(t, s)

and this implies that (B
H,K
ct )t≥0 and (cHKB

H,K
t )t≥0 have the same finite dimen-

sional distributions. �

The following inequality plays an important role in the stochastic analysis of
bifractional Brownian motion.

Proposition 1.7 Let T > 0. For every s, t ∈ [0, T ], we have

2−K |t − s|2HK ≤ E
(
B

H,K
t − BH,K

s

)2 ≤ 21−K |t − s|2HK. (1.14)

As a consequence, the process BH,K is Hölder continuous of order δ for any 0 <

δ < H .

Proof The bound (1.14) has been proved in [90]. Since for any s, t ≥ 0 the variable

B
H,K
t − B

H,K
s has the same law as

√
E(B

H,K
t − B

H,K
s )2Z with Z ∼ N(0,1) it

follows that for any p ≥ 1

E
(
B

H,K
t − BH,K

s

)p = E|Z|pE
(
B

H,K
t − BH,K

s

)p/2 ≤ c|t − s|HKp

with c = 2
(1−K)p

2 . It remains to apply the Kolmogorov continuity theorem (Theo-
rem B.1). �

Inequality (1.14) shows that the process BH,K is a quasi-helix in the sense of J.P.
Kahane (see [98] and [99] for various properties and applications of quasi-helices).

The increments of the process BH,K are not stationary, except when K = 1; this
can easily be seen since for every s, t ≥ 0

E
∣∣BH,K

t − BH,K
s

∣∣2 = t2HK + s2HK − 21−K
((

t2H + s2H
)K − |t − s|2HK

)
.

But they do satisfy the following.

Proposition 1.8 If σ 2
ε (t) := E(B

H,K
t+ε − B

H,K
t )2, then

lim
ε→0

σ 2
ε (t)

ε2HK
= 21−K. (1.15)

Proof For every t ∈ [0, T ]

σ 2
ε (t) = 21−Kε2HK + (t + ε)2HK + t2HK − 21−K

(
(t + ε)2H + t2H

)K
.
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Then clearly

lim
ε→0

ε−2HKσ 2
ε (t) = 21−K. �

The above property will be interpreted by saying that, for small increments, the
process BH,K is ‘almost’ with stationary increments.

Unlike fractional Brownian motion, bifractional Brownian motion does not have
a Wiener integral representation. However, it does admit the following decomposi-
tion (see [109]). Define, for 0 < K < 1, the process

XK
t =

∫ ∞

0

(
1 − e−θt

)
θ− 1+K

2 dWθ (1.16)

where (Wθ , θ ∈ R+) is a Wiener process. Then XK is a centered Gaussian process
with covariance

EXK
t XK

s := RX(t, s) =
∫ ∞

0

(
1 − e−θt

)(
1 − e−θs

)
θ−1−Kdθ

= Γ (1 − K)

K

(
tK + sK − (t + s)K

)
. (1.17)

Proposition 1.9 Let (B
H,K
t )t≥0 be a bi-fBm and consider (Wθ , θ ≥ 0) a Wiener

process independent of BH,K . Define for every t ≥ 0

X
H,K
t := XK

t2H .

Then the processes (C1X
H,K
t + B

H,K
t )t≥0 and (C2B

HK
t )t≥0 have the same law,

where C1 =
√

K2−K

Γ (1−K)
and C2 = 2

1−K
2 .

Proof Let

Y
H,K
t = C1X

H,K
t + B

H,K
t

for every t ≥ 0. Then by (1.17), for every s, t ≥ 0

EY
H,K
t YH,K

s = C2
1EX

H,K
t XH,K

s + EB
H,K
t BH,K

s

= 2−K
(
t2HK + s2HK − (

t2H + s2H
)K)

+ 2−K
((

t2H + s2H
)K − |t − s|2HK

)

= 2−K
(
t2HK + s2HK − |t − s|2HK

)
. �

1.2.2 Quadratic Variations when 2HK = 1

The case 2HK = 1 is very interesting. First note that the process BH,K with
2HK = 1 has the same order of self-similarity as the standard Wiener process. But
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it also has the same quadratic variations as Brownian motion, modulo a constant.
Let us discuss the asymptotic behavior of the quadratic variations of the bifractional
Brownian motion in the case 2HK = 1. A general result on variations of bi-fBm
can be found in Exercise 1.7.

We start with the following technical lemma.

Lemma 1.1 Let us consider the following function on [1,∞)

h(y) = y2HK + (y − 1)2HK − 2

2K

(
y2H + (y − 1)2H

)K (1.18)

where H ∈ (0,1) and K ∈ (0,1). Then,

h(y) converges to 0 as y goes to ∞. (1.19)

Moreover if 2HK = 1,

lim
y→+∞yh(y) = 1

4
(1 − 2H). (1.20)

Proof Let y = 1
ε

, then

h(y) = h

(
1

ε

)
= 1

ε2HK

[
1 + (1 − ε)2HK − 2

2K

(
1 + (1 − ε)2H

)K
]
.

Using Taylor’s expansion, for ε close to 0, we obtain

h

(
1

ε

)
= 1

ε2HK

(
H 2K(K − 1)ε2 + o

(
ε2)). (1.21)

Thus

lim
y→+∞h(y) = lim

ε→0
h(1/ε) = 0.

For the case 2HK = 1, by (1.21) we have

1

ε
h

(
1

ε

)
= 1

4
(1 − 2H) + 1

ε2
o
(
ε2).

Thus (1.20) is satisfied. This completes the proof. �

Using the above lemma, we can prove that, for 2HK = 1, the bi-fBm has, mod-
ulo a multiplicative constant, the same quadratic variation as Brownian motion.

Proposition 1.10 Suppose that 2HK = 1, fix t ≥ 0 and let 0 = t0 < t1 < · · · < tn = t

be a partition of the interval [0, t] with ti = it
n

for i = 0, . . . , n. Then

V n
t :=

n∑

j=1

(
B

H,K
tj

− B
H,K
tj−1

)2 −→
n→∞

1

2K−1
t in L2(Ω).
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Proof Let h be the function given by (1.18). A straightforward calculation shows
that, using Lemma 1.1,

EV n
t = t

n

n∑

j=1

h(j) + t

2K−1
−→
n→∞

t

2K−1
.

To obtain the conclusion it suffices to show that

lim
n→∞ E

(
V n

t

)2 =
(

t

2K−1

)2

.

In fact we have,

E
(
V n

t

)2 =
n∑

i,j=1

E
((

B
H,K
ti

− B
H,K
ti−1

)(
B

H,K
tj

− B
H,K
tj−1

))2
.

Let

μn(i, j) = E
((

B
H,K
ti

− B
H,K
ti−1

)(
B

H,K
tj

− B
H,K
tj−1

))2
.

It follows by linear regression that

μn(i, j) = E
(
N2

1

∣∣θn(i, j)N1 +
√

δn(i, j) − (
θn(i, j)

)2
N2

∣∣2)

where N1 and N2 are two independent normal random variables,

θn(i, j) := E
((

B
H,K
ti

− B
H,K
ti−1

)(
B

H,K
tj

− B
H,K
tj−1

))

= t

2Kn

[(
i2H + j2H

)K − 2|j − i| − (
i2H + (j − 1)2H

)K + |j − i − 1|

− (
(i − 1)2H + j2H

)K + |j − i + 1| + (
(i − 1)2H + (j − 1)2H

)K]

and

δn(i, j) := E
(
B

H,K
ti

− B
H,K
ti−1

)2E
(
B

H,K
tj

− B
H,K
tj−1

)2
.

Hence

μn(i, j) = 2
(
θn(i, j)

)2 + δn(i, j).

For 1 ≤ i < j , we define a function fj : (1,∞) → R, by

fj (x) = (
(x − 1)2H + j2H

)K − (
(x − 1)2H + (j − 1)2H

)K

− (
x2H + j2H

)K + (
x2H + (j − 1)2H

)K
.
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We compute

f ′
j (x) =

(
(x − 1)2H + j2H

(x − 1)2H

)K−1

−
(

(x − 1)2H + (j − 1)2H

(x − 1)2H

)K−1

−
(

x2H + j2H

x2H

)K−1

+
(

x2H + (j − 1)2H

x2H

)K−1

:= g(x − 1) − g(x) ≥ 0.

Hence fj is increasing and positive, since the function

g(x) =
(

1 + j2H

x2H

)K−1

−
(

1 + (j − 1)2H

x2H

)K−1

is decreasing on (1,∞). This implies that for every 1 ≤ i < j

∣
∣θn(i, j)

∣
∣ = t

2Kn
fj (i) ≤ t

2Kn
fj (j) ≤ t

n

∣
∣h(j)

∣
∣

and |θn(i, i)| = t
n
|h(i) + 2| for any i ≥ 1.

Thus

n∑

i,j=1

θn(i, j)2 ≤ 2t2

n2

n∑

i<j
i,j=1

h(j)2 + t2

n2

n∑

i=1

(
h(i) + 2

)2
.

Combining this with (1.20), we obtain that
∑n

i,j=1 θn(i, j)2 converges to 0 as
n → ∞. On the other hand, by (1.20)

n∑

i,j=1

δn(i, j) = t2

n2

n∑

i,j=1

(
h(i) + 1

2K−1

)(
h(j) + 1

2K−1

)
−→
n→∞

(
t

2K−1

)2

.

Consequently, E(V n
t )2 converges to ( t

2K−1 )2 as n → ∞, and the conclusion fol-
lows. �

Proposition 1.11 If 2HK = 1 and K �= 1, the process BH,K is a short-memory
process. If HK > 1

2 the process BH,K has long memory.

Proof Recall Definition A.3. We can write

r(n) = E
(
B

H,K
1

(
B

H,K
n+1 − BH,K

n

))

= 1

2K

((
(n + 1)2H + 1

)K − n2HK
) − 1

2K

((
(n)2H + 1

)K − (n − 1)2HK
)

= 1

2K
n2HKf

(
1

n

)
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where

f (x) = (
(1 + x)2H + x2H

)K − 1 − (
1 + x2H

)K + (1 − x)2HK

with

f ′(x) = 2HKx2H−1G1(x) − 2HKG2(x)

where ((1 + x)2H + x2H )K−1 − (1 + x2H )K−1 and G2(x) = ((1 + x)2H +
x2H )K−1(1 + x)2H−1 − (1 − x)2HK−1. Note that G1(0) = 0 and G′

1(0) =
2H(K − 1) and G2(0) = 0 with

G′
2(0) = 2H(K − 1) + (2H − 1) + (2HK − 1).

Note that G′
2(0) = 0 if 2HK = 1! Therefore f (x) behaves as cst.x2H+1 if

2HK = 1 for x close to zero and f (x) behaves as cst.x2 if 2HK > 1. �

Remark 1.1 Consider K = 1 in Proposition 1.10. Then H = 1
2 and we retrieve a

well-known result concerning Brownian motion.

1.2.3 The Extended Bifractional Brownian Motion

An extension of bi-fBm has been introduced in [21] as follows. Define the process
XK by (1.16) with K ∈ (1,2).

Proposition 1.12 For every K ∈ (1,2) the covariance of the process X is given by

EXK
t XK

s = Γ (2 − K)

K(K − 1)

(
(t + s)k − tK − sK

)

for every s, t ≥ 0.

Proposition 1.13 Assume H ∈ (0,1) and K ∈ (1,2) with HK ∈ (0,1). Consider a
fBmBHK and an independent Wiener process W . Define XK by (1.16) as a Wiener
integral with respect to W .

X
H,K
t := XK

t2H

for every t ≥ 0. Then the process

B
H,K
t = aBHK

t + bX
H,K
t

with a = √
21−K and b =

√
K(K−1)

2KΓ (2−K)
is a centered Gaussian process with covari-

ance

RH,K(t, s) := R(t, s) = 1

2K

((
t2H + s2H

)K − |t − s|2HK
)

and hence is a bi-fBm.
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Proof One can follow the lines of Proposition 1.9. �

The extended bi-fBm shares the properties of the bi-fBm with K ∈ (0,1): it has
the quasi-helix property (see Exercise 1.4), it has long memory for HK > 1

2 and
short-memory for HK < 1

2 (see Exercise 1.5). On the other hand, it is a semimartin-
gale for HK = 1

2 (see Exercise 1.6).

1.3 Sub-fractional Brownian Motion

This process was introduced in [33].

Definition 1.3 Sub-fractional Brownian motion (sub-fBm) is defined as a centered
Gaussian process (SH

t )t≥0 with covariance

R(t, s) = s2H + t2H − 1

2

(
(s + t)2H + |t − s|2H

)
, s, t ≥ 0

with H ∈ (0,1).

Sub-fractional Brownian motion arises from occupation time fluctuations of
branching particle systems (see [33]). It has properties analogous to those of fBm
(self-similarity, long-range dependence, Hölder paths, variation and renormalized
variation and it is neither a Markov processes nor a semimartingale). Moreover,
sub-fBm has non-stationary increments and the increments over non-overlapping
intervals are more weakly correlated and their covariance decays polynomially at a
higher rate in comparison with fBm (for this reason, in [33] it is called sub-fBm).
The above mentioned properties make sub-fBm a possible candidate for models
which involve long-dependence, self-similarity and nonstationarity.

Remark 1.2 Trivially, for H = 1
2 the sub-fBm reduces to the standard Brownian

motion.

Proposition 1.14 The process SH is self-similar of order H .

Proof Let c > 0. It is immediate that for every s, t ≥ 0

R(ct, cs) = c2H R(t, s)

holds and this implies the H -self-similarity of the process. �

The increments of the process SH behave in the following way.

Proposition 1.15

(
2 − 22H−1)|t − s|2H ≤ E

(
SH

t − SH
s

)2 ≤ |t − s|2H , if H > 1/2
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and

|t − s|2H ≤ E
(
SH

t − SH
s

)2 ≤ (
2 − 22H−1)|t − s|H , if H < 1/2.

Consequently, the process SH has order continuous paths of order 0 < δ < H .

Proof See [33] or [182]. �

This means that sub-fBm is, like bi-fBm, a quasi-helix.

Proposition 1.16 For every s, t ≥ 0,

E
∣
∣SH

t − SH
s

∣
∣2 = −22H−1(t2H + s2H

) + (t + s)2H + (t − s)2H

and in particular for every t ≥ 0

E
(
SH

t

)2 = (
2 − 22H−1)t2H .

From Proposition 1.16 we deduce that sub-fBm is not a process with stationary
increments.

Sub-fBm can also be defined in terms of the sum of the odd part and of the even
part of a fractional Brownian motion on the whole real line. Actually, we have

Proposition 1.17 Let (BH
t )t∈R be a fBmon the whole real line, that is, a centered

Gaussian process with covariance

EBH
t BH

s = 1

2

(|t |2H + |s|2H − |t − s|2H
)
, s, t ∈ R.

Define for t ≥ 0

SH
t = 1√

2

(
BH

t + BH−t

)
.

Then SH is a sub-fBm.

Proof It suffices to compute the covariance of SH and to verify that it coincides
with the covariance of sub-fBm. �

See also Exercises 1.9 and 1.10 for other properties of subfractional Brownian
motion.

1.4 Bibliographical Notes

The study of fractional Brownian motion has a long history. As mentioned ear-
lier, this stochastic process was introduced in [102] and first analyzed in [117].
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The original motivation to analyze this process came from empirical studies car-
ried out by the hydrologist Hurst, published in [96], that attested the presence of
long-range dependence in hydrology. The last two decades has seen intensive de-
velopment with regard to the stochastic analysis of this process. Various types of
stochastic integrals with respect to fBm have been introduced and various stochas-
tic equations driven by this process have been considered. We refer to the mono-
graphs [31, 95, 121, 125, 136] and the references therein for a detailed exposition
of this theory. Simultaneously with the development of the stochastic analysis for
fBm, new fractional-type processes have been introduced and studied. Bifractional
Brownian motion was defined in [90] and first analyzed in [159]. Subsequently, var-
ious properties of this stochastic process were revealed in, among other references,
[8, 21, 26, 72, 77, 104, 109, 113, 177]. Sub-fractional Brownian motion first ap-
peared as a limit of branching processes in [33] and has since been studied in many
works, such as [32, 44, 182, 183, 186] and [151] among others. There exist other
self-similar processes related to fractional Brownian motion. We refer, for example,
to mixed fractional Brownian motion which has been used as a model in financial
models (see [46]) or to multifractional Brownian motion (see e.g. [11]). Several ex-
amples of Gaussian self-similar processes related to fractional Brownian motion are
presented in [32].

1.5 Exercises

Exercise 1.1 Let BH be a fBm. Prove that for each T > 0 the following conver-
gences hold in L2(Ω).

n−1∑

i=0

∣∣BH
(i+1)T

n

− BH
iT
n

∣∣p → 0 if p >
1

H

and

n−1∑

i=0

∣∣BH
(i+1)T

n

− BH
iT
n

∣∣p → ρ 1
H

t if p = 1

H

and

n−1∑

i=0

∣
∣BH

(i+1)T
n

− BH
iT
n

∣
∣p → ∞ if p <

1

H

with ρp = E|N(0,1)|p .

Exercise 1.2 ([90]) Prove that the right-hand side of (1.13) is a covariance function.
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Exercise 1.3 ([90], Proposition 2.3) Assume (B
K,H
t )t≥0 is a bi-fBm. For every H ∈

(0,1) and K ∈ (0,1],

lim
ε→0

sup
t∈[t0−ε,t0+ε]

∣∣∣∣
B

H,K
t − B

H,K
t0

t − t0

∣∣∣∣ = +∞

with probability one for every t0. Deduce that the trajectories of the bi-fBm (and
hence those of the fBm) are not differentiable.

Exercise 1.4 ([21]) Let BH,K be a bi-fBm with H ∈ (0,1), K ∈ (1,2) and HK ∈
(0,1). Prove that for every s, t

21−K |t − s|2HK ≤ E
(
B

H,K
t − BH,K

s

)2 ≤ |t − s|2HK if 0 < H ≤ 1

2

and

21−K |t − s|2HK ≤ E
(
B

H,K
t − BH,K

s

)2 ≤ 22−K |t − s|2HK if H ≥ 1

2
.

Exercise 1.5 ([21]) Let BH,K be a bi-fBm with H ∈ (0,1), K ∈ (1,2) and HK ∈
(0,1). Prove that this process has short-memory if HK < 1

2 and it has long memory
if HK > 1

2 .

Exercise 1.6 ([21]) Let BH,K be a bi-fBm with H ∈ (0,1), K ∈ (1,2) and HK ∈
(0,1). Prove that it is a semimartingale when 2HK = 1.

Exercise 1.7 Let BH,K a bi-fBm. Prove that for each T > 0 the following conver-
gences hold in L2(Ω).

n−1∑

i=0

∣∣BH,K
(i+1)T

n

− B
H,K
iT
n

∣∣p → 0 if p >
1

H

and
n−1∑

i=0

∣
∣BH,K

(i+1)T
n

− B
H,K
iT
n

∣
∣p → ρ 1

H
t if p = 1

H

and
n−1∑

i=0

∣∣BH,K
(i+1)T

n

− B
H,K
iT
n

∣∣p → ∞ if p <
1

H

with ρp = E|N(0,1)|p . Deduce that the bi-fBm is not a semimartingale if
2HK �= 1.

Exercise 1.8 For every K ∈ (0,1] and H ∈ (0,1), the process BH,K is not a
Markov process.
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Hint The argument is the same as in the fBm case. Recall that (see [155]) a Gaussian
process with covariance R is Markovian if and only if

R(s,u)R(t, t) = R(s, t)R(t, u)

for every s ≤ t ≤ u. It is straightforward to check that BH,K does not satisfy this
condition.

Exercise 1.9 Let SH be a sub-fBm and BH be a fBm. Denote by RSH
and RBH

their covariance functions respectively. Prove that for every s, t ≥ 0

RSH

(t, s) > RBH

(t, s) if H <
1

2

and

RSH

(t, s) < RBH

(t, s) if H >
1

2
.

Exercise 1.10 Let SH be a sub-fBm. Prove that for each T > 0 the following con-
vergences hold in L2(Ω).

n−1∑

i=0

∣∣SH
(i+1)T

n

− SH
iT
n

∣∣p → 0 if p >
1

H

and
n−1∑

i=0

∣∣SH
(i+1)T

n

− SH
iT
n

∣∣p → ρ 1
H

T if p = 1

H

and
n−1∑

i=0

∣
∣SH

(i+1)T
n

− SH
iT
n

∣
∣p → ∞ if p <

1

H

with ρp = E|N(0,1)|p .

Exercise 1.11 (See [163]) Define for s < t and n ≥ 1

Kn(t, s) := n

∫ s

s− 1
n

K

( [nt]
n

,u

)
du

where K is the kernel of the fractional Brownian motion (1.3) and put

Bn
t =

∫ t

0
Kn(t, s)dWn

s =
[nt]∑

i=1

n

∫ i
n

i−1
n

K

( [nt]
n

, s

)
ds

ξi√
n

where [·] denotes the integer part. Prove that the disturbed random walk Bn con-
verges weakly, as n → ∞, to the fractional Brownian motion in the Skorohod topol-
ogy.
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Exercise 1.12 Let H be the canonical Hilbert space associated to the fBm on [0, T ].
Show that

‖ϕ‖2
H ≤ b2

H t2H−1‖ϕ‖2
L2[0,T ].

Exercise 1.13 ([51]) Let H be the canonical Hilbert space associated to the fBm
with H > 1

2 . Let f (x) = cos(x) and g(x) = sinx for x ∈ R. Then for every a, b ∈R,
a < b

‖f 1(a,b)‖2
H = αH

∫ b−a

0
dv cos(v)v2H−2(b − a − v)

+ αH cos(a + b)

∫ b−a

0
dvv2H−2 sin(b − a − v)

and

‖g1(a,b)‖2
H = αH

∫ b−a

0
dv cos(v)v2H−2(b − a − v)

− αH cos(a + b)

∫ b−a

0
dvv2H−2 sin(b − a − v).

Exercise 1.14 ([51]) For every a, b ∈ R with a < b,
∫ b

a

∫ b

a

dudv sin(u − v)|u − v|2H−2 = 0

for every H > 1
2 .

Exercise 1.15 ([14]) Let ϕ(t) = sin t , t ∈ [0, T ] and denote by H(0, t) the canonical
space of the fBm on (0, t). Then show that

‖ϕ‖2
H(0,T ) = cH

∫

R

(sin τT − τ sinT )2 + (cos τT − cosT )2

(τ 2 − 1)2
|τ |−(2H−1)dτ,

where cH = Γ (2H + 1) sin(πH)/(2π).

Exercise 1.16 Let BH1 ,BH2 be two fractional Brownian motions with Hurst pa-
rameters H1,H2 respectively. We will assume that the self-similar parameters H1
and H2 are both bigger than 1

2 . We will also assume that the two fractional Brown-
ian motions can be expressed as Wiener integrals with respect to the same Wiener
process B as

B
H1
t = c(H1)

∫

R

dBy

∫ t

0
(u − y)

H1− 3
2+ du,

B
H2
t = c(H2)

∫

R

dBy

∫ t

0
(u − y)

H2− 3
2+ du

(1.22)

where the constants c(H1), c(H2) are such that E[(BH1
1 )2] = E[(BH2

1 )2] = 1.



1.5 Exercises 21

1. Prove that

c(H1)
2 = H1(2H1 − 1)

β(2 − 2H1,H1 − 1
2 )

. (1.23)

2. Let t > s. Then show that

E
[(

B
H1
t − BH1

s

)(
B

H2
t − BH2

s

)] = b(H1,H2)|t − s|2H

where

b(H1,H2) = c(H1)c(H2)

2H(2H − 1)

(
β

(
2 − 2H,H1 − 1

2

)
+ β

(
2 − 2H,H2 − 1

2

))

where c(H1), c(H2) are given by (1.23).

Exercise 1.17 Another type of variation for a stochastic process has been defined
by Russo and Vallois in [158]. These variations are mainly used in the context of
stochastic calculus via regularization.

We will use the concept of α-strong variation: that is, we say that the continuous
process X has an α-variation (α > 0) if

ucp − lim
ε→0

1

ε

∫ t

0
|Xs+ε − Xs |αds exists. (1.24)

Here ucp stands for the uniform limit in probability. The limit is denoted by [[X]](α)
t .

Let B be a fBm. Prove that for every t ∈ [0, T ]

[[B]](p)
t = 0 if pH > 1

and

[[B]](p)
t = ∞ if pH < 1.

Exercise 1.18 (See [159]) Let (B
H,K
t )t∈[0,T ] be a bifractional Brownian motion

with parameters H ∈ (0,1) and K ∈ (0,1]. Then

[[
BH,K

]](α)

t
= 0, if α >

1

HK

and

[[
BH,K

]](α)

t
= 2

1−K
HK ρHKt if α = 1

HK
,

where ρHK = E|N |1/HK , N being a standard normal random variable. Discuss the
case 2HK = 1.
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Exercise 1.19 ([19]) Consider the family of stochastic processes (ηε)ε>0 defined
by

ηε(t) =
∫ t

0
K(t, s)θε(s)ds (1.25)

where

θε(s) = 1

ε
(−1)

N( s

ε2 )

(these are called the Stroock kernels) or

θε(s) = 1

ε

∞∑

k=1

ξk1[k−1,k[
(

s

ε2

)

(these are called the Donsker kernels) where ξk, k ≥ 1 are independent with zero
mean and variance one. Prove that the family ηε converges weakly in the space
C0(0,1) (the space of continuous functions on [0,1] vanishing at zero) to the fBm.

Exercise 1.20 For every ε > 0, H ∈ (0,1), K ∈ (1,2) with HK ∈ (0,1) and t ∈
[0, T ] define

BH,K
ε (t) = 2

ε

∫ T

0
KHK(t, s) sin

(
θN

2
ε2

)
ds

and

XH,K
ε (t) = 2

ε

∫ ∞

0

(
1 − e−st2H )

s− 1+K
2 cos

(
θN

2
ε2

)
ds.

Then prove that the family of stochastic processes Yε given by

Yε(t) = aBHK
ε + bXH,K

ε

converges weakly in the space C[0, T ] (the space of continuous functions on [0, T ])
to the extended bi-fBm.

Exercise 1.21 Let XH,K be the process defined in Proposition 1.9. Prove that, as
h → ∞

E
[(

X
H,K
h+t − X

H,K
h

)2] = Γ (1 − K)K−12KH 2K(1 − K)t2h2(HK−1)
(
1 + o(1)

)
.

Exercise 1.22 Let BH,K be a bi-fBm. Then show that

(
B

H,K
h+t − B

H,K
h , t ≥ 0

) =(d)
(
2(1−K)/2BHK

t , t ≥ 0
)

as h → ∞,

where =(d) means convergence of all finite dimensional distributions.
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Exercise 1.23 ([113]) Let us denote by

r(0, n) = E
[
B

H,K
1

(
B

H,K
n+1 − BH,K

n

)]

and for every a ∈ N

r(a, a + n) = E
[(

B
H,K
a+1 − BH,K

a

)(
B

H,K
a+n+1 − B

H,K
a+n

)]
. (1.26)

1. Show that for every n ≥ 1

r(a, a + n) =: 2−K
(
fa(n) + g(n)

)
, (1.27)

where

fa(n) = (
(a + 1)2H + (a + n + 1)2H

)K − (
(a + 1)2H + (a + n)2H

)K

− (
a2H + (a + n + 1)2H

)K + (
a2H + (a + n)2H

)K

and for every n ≥ 1

g(n) = (n + 1)2HK + (n − 1)2HK − 2n2HK.

2. Show that:

(i) The function g is, modulo a constant, the autocorrelation function of the
fractional noise with Hurst index HK . Indeed, for n ≥ 1

g(n) = 2E
[
BHK

1

(
BHK

n+1 − BHK
n

)]
.

(ii) g vanishes if 2HK = 1.
(iii)

fa(n) = −2KC2
1 E

[(
X

H,K
a+1 − XH,K

a

)(
X

H,K
a+n+1 − X

H,K
a+n

)]

=: rXH,K

(a, a + n)

for every a and n, where XH,K is given in Proposition 1.9.

3. Analyze the function fa to understand “how far” bifractional Brownian noise is
from “fractional Brownian noise”. In other words, how far is bifractional Brow-
nian motion from a process with stationary increments.

Concretely, show that for each n the following holds as a → ∞
fa(n) = 2H 2K(K − 1)a2(HK−1)

(
1 + o(1)

)
.

Conclude that lima→∞ fa(n) = 0 for each n.
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Exercise 1.24 ([113]) For a,n ≥ 0, let r(a, a + n) be given by (1.26). Then prove
that for large n

r(a, a + n) = 2−K
[
2HK(2HK − 1)n2(HK−1)

+ HK(K − 1)
(
(a + 1)2H − a2H

)
n2(HK−1)+(1−2H) + · · · ].

Deduce that for every a ∈N we have

∑

n≥0

r(a, a + n) = ∞ if 2HK > 1

and
∑

n≥0

r(a, a + n) < ∞ if 2HK ≤ 1.

Exercise 1.25 (See [44]) Let 0 < H < 1 and define

XH
t =

∫ ∞

0

(
1 − e−θt

)
θ

3
2 −H dWθ

where (Wθ)θ≥0 is a Wiener process. Let BH be a fBm independent from W . Prove
that:

1. If H < 1
2 the process

SH
t =

√

− H(2H − 1)

2Γ (2 − 2H)
XH

t + BH
t

is a sub-fBm.
2. If H > 1

2 the process

SH
t =

√
H(2H − 1)

2Γ (2 − 2H)
XH

t + BH
t

is a sub-fBm.

Exercise 1.26 ([29]) Consider a fBm (BH
t )t≥0 with H > 1

2 and let

Yt = at + BH
t

with a ∈R. Define

âN = N

∑Nα

i,j=1 jΓ −1
i,j Yi

∑Nα

i,j=1 ijΓ −1
i,j

. (1.28)
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If tj = j
N

, we let Ytj = Yj and

Γi,j = Cov
(
BH

i
N

,BH
j
N

)
.

1. Show that

âN − a = N

∑Nα

i,j=1 jΓ −1
i,j BH

i
N∑Nα

i,j=1 ijΓ −1
i,j

, (1.29)

where the Γ −1
i,j are the entries of the matrix Γ −1.

2. Deduce from (1.29) that âN converges to a almost surely and in Lp , p ≥ 1.
(Actually âN is a consistent estimator for the drift parameter a.)
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