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Preface

This monograph is an introduction to the stochastic analysis of self-similar pro-
cesses both in the Gaussian and non-Gaussian case.

The text is mostly self-contained and should be accessible to graduate students
and researchers with a basic background in probability theory and stochastic pro-
cesses. Although Part II of the monograph is based on the Malliavin calculus, the
tools used are basic and consequently readers who are not familiar with the theory
will nevertheless be able to follow the exposition.

The majority of these notes were completed during my research visits to sev-
eral university and research centers such as Purdue University, Keio University,
Universidad de Valparaíso, Humboldt Universität zu Berlin, Centre Interfacultaire
Bernoulli at Lausanne, Ritsumeikan University, University of Trento, Charles Uni-
versity, University of Sydney and Centre de Recerca Matemàtica in Barcelona. I
would like to thank my colleagues Frederi Viens, Makoto Maejima, Soledad Torres,
Peter Imkeller, Robert Dalang, Marco Dozzi, Francesco Russo, Arturo-Kohatsu-
Higa, Stefano Bonaccorsi, Bohdan Maslowski, Qiying Wang, Xavier Bardina and
Marta Sanz-Solé for their kind invitations.

A part of the material presented in this book is contained in the doctoral theses of
my former and present students Khalifa Es-Sebaiy, Solesne Bourguin, Jorge Clarke
De la Cerda and Alexis Fauth.

Introduction

Self-similar processes are stochastic processes that are invariant in distribution un-
der a suitable scaling of time and space. This property is crucial in applications
such as network traffic analysis, mathematical finance, astrophysics, hydrology and
image processing. For this reason, their analysis has long constituted an important
research direction in probability theory. Several monographs, such as [75] or [160],
provide a complete analysis of the properties of this class of stochastic processes
and many other research papers and monographs focus on the practical aspects of
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viii Preface

self-similarity. A bibliographical guide to the applications of self-similar processes
is provided in [191]. In the last few decades, new developments in self-similarity
have been obtained, including the appearance of new classes of (Gaussian or non-
Gaussian) self-similar processes and new techniques to study their behavior, related
to the stochastic calculus (especially the Malliavin calculus). The aim of this text is
to survey these new developments.

This monograph comprises two parts, each of them divided into several chapters,
and Appendices A, B, C.

In Part I we discuss the basic properties of several classes of (Gaussian or non-
Gaussian) self-similar stochastic processes. This part is divided into four chapters.
Chapter 1 focuses on fractional Brownian motion and related processes. Fractional
Brownian motion is the most well known self-similar process with stationary incre-
ments. It includes standard Brownian motion as a particular case. The applications
of this process are now widely recognized. We survey the basic properties of the
process and several other related processes that have recently emerged in scientific
research, such as bifractional Brownian motion and subfractional Brownian motion.
Chapter 2 treats the Gaussian solutions to stochastic heat and wave equations and in
Chap. 3 we introduce some non-Gaussian self-similar processes which are known
as Hermite processes. Chapter 4 contains some examples of multi-parameter self-
similar processes and their basic properties.

Part II is dedicated to the study of quadratic (and other) variations of several
self-similar processes. The variations of a stochastic process play a crucial role in
its probabilistic and statistical analysis. Best known is the quadratic variation of a
semi-martingale, which is crucial for its Itô formula; quadratic variation also has a
direct utility in practice, in estimating unknown parameters, such as volatility in fi-
nancial models, in the so-called “historical” context. For self-similar stochastic pro-
cesses, the study of their variations constitutes a fundamental tool in constructing
good estimators of their self-similarity parameters. These processes are well suited
to modeling various phenomena where scaling and long memory are important fac-
tors (internet traffic, hydrology, econometrics, among others, see [191]). The most
important modeling task is then to determine or estimate the self-similarity param-
eter, because it is also typically responsible for the process’s long memory and its
regularity properties. Studying such processes is thus an important research direc-
tion both in theory and in practice. The approach we use is based on the so-called
Malliavin calculus and multiple Wiener-Itô integrals. Part II comprises two chap-
ters. In the first we study the asymptotic behavior of various types of variations of
fractional Brownian motion, of the Hermite process and of the solution to the linear
heat equation. In the second chapter we study other types of variations for stochas-
tic processes, including Hermite-type variations for self-similar processes and fields
and so-called Spitzer’s and Hsu-Robbins type results.

Each chapter concludes with a collection of exercises.

Ciprian A. TudorParis
January 2013
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Chapter 1
Fractional Brownian Motion and Related
Processes

Fractional Brownian motion (fBm) is the only Gaussian self-similar process with
stationary increments. It was introduced in [102] in 1940 and the first study dedi-
cated to it [117] appeared in 1968. The stochastic analysis of this process has been
intensively developed, starting in the nineties, due to its various practical applica-
tions. Later, other processes related to fBm came to attention: bifractional Brownian
motion, sub-fractional Brownian motion, multifractional Brownian motion, mixed
fractional Brownian motion, etc. The purpose of this chapter is to review the basic
properties of some of these fractional processes.

1.1 Fractional Brownian Motion

Fractional Brownian motion constitutes the main motivation for the theory of
stochastic integration beyond the world of semi-martingales. The applications of
this process in practice are significant and therefore a stochastic calculus for it was
needed. There already exists a vast literature that describes different aspects of this
stochastic process. We refer to the monographs [75, 95, 121, 136, 160] among oth-
ers. Here we provide only a succinct review of the basic properties of this process.

Definition 1.1 Let H ∈ (0,1). Fractional Brownian motion is defined as a centered
Gaussian process (BH

t )t≥0 with covariance function

RH (t, s) := E
(
BH

t BH
s

)= 1

2

(
t2H + s2H − |t − s|2H

)
, s, t ≥ 0. (1.1)

The index H is called the Hurst parameter and it determines the main properties
of the process BH , such as self-similarity, regularity of the sample paths and long
memory.

C.A. Tudor, Analysis of Variations for Self-similar Processes,
Probability and Its Applications, DOI 10.1007/978-3-319-00936-0_1,
© Springer International Publishing Switzerland 2013
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4 1 Fractional Brownian Motion and Related Processes

1.1.1 Basic Properties

Proposition 1.1 Fractional Brownian motion is an H -self-similar process and it
has self-similarity. It is actually the unique H -self-similar Gaussian process with
stationary increments.

Proof For any c > 0 the process (Bct )t≥0 is a centered Gaussian process with co-
variance

E
(
BH

cs B
H
ct

)= 1

2

(
(ct)2H + (cs)2H − c2H |t − s|2H

)
, s, t ≥ 0.

The same holds for the process (cH BH
t )t≥0. Being Gaussian with the same co-

variance, the two stochastic processes therefore have the same finite dimensional
distributions. It can also easily be seen that for every h ≥ 0 the covariance of the
Gaussian process (BH

t+h −BH
h )t≥0 satisfies

E
(
BH

t+h −BH
h

)(
BH

s+h −BH
h

)=RH (t, s)

so it is constant with respect to h. This proves that the process BH has stationary
increments.

The fact that fBm is the only Gaussian self-similar process with stationary incre-
ments follows from Theorem A.1. �

Proposition 1.2 For any s, t ≥ 0 we have

E
∣∣BH

t −BH
s

∣∣2 = |t − s|2H .

In particular, the process BH has δ-Hölder continuous paths for any δ < H .

Proof Fix s, t ≥ 0. Then

E
∣
∣BH

t −BH
s

∣
∣2 = E

∣
∣BH

t

∣
∣2 − 2EBH

t BH
s +E

∣
∣BH

s

∣
∣2

= t2H − 2RH (t, s)+ s2H

= |t − s|2H .

Since for any s ≤ t the random variable Bt−Bs has the distribution
√

E|BH
t −BH

s |2
× Z = |t − s|H Z where Z denotes a standard normal random variable, we obtain
that for any p ≥ 1

E
∣∣BH

t −BH
s

∣∣p = E|Z|p|t − s|Hp.

The Hölder continuity follows from the Kolmogorov continuity theorem (see Theo-
rem B.1). �



1.1 Fractional Brownian Motion 5

Proposition 1.3 Fractional Brownian motion is not a Markov process except in the
case H = 1

2 .

Proof Recall that ([155]) a Gaussian process with covariance R is Markovian if and
only if

R(s,u)R(t, t)=R(s, t)R(t, u)

for every s ≤ t ≤ u. One can see that BH does not satisfy this condition if H �= 1
2 . �

We defined in Definition A.3 the concepts of long-memory and short-memory
processes.

Proposition 1.4 If H > 1
2 the fractional Brownian motion exhibits long-range de-

pendence. If H < 1
2 the fractional Brownian motion is a short-memory process.

Proof We have

r(n)= 1

2

(
(n+ 1)2H + (n− 1)2H − 2n2H

)

for any n ≥ 1 and the function r(n) behaves as H(2H − 1)n2H−2 for large n. See
Proposition A.2. �

Let us note that

Proposition 1.5 The fBm is not a semimartingale except when H = 1/2.

Proof Again, several proofs, based in general on the expression of the quadratic
variation of the fBm (see Exercise 1.1), have been presented previously. We refer,
for example, to [75, 136] for recent references. �

1.1.2 Stochastic Integral Representation

Fractional Brownian motion can be expressed as a Wiener integral with respect to
the Wiener process in several ways. Let us recall two of them.

Wiener Integral Representation on a Finite Interval Let BH be a fractional
Brownian motion with parameter H ∈ (0,1). The fBm admits a representation as a
Wiener integral of the form

BH =
∫ t

0
KH (t, s)dWs, (1.2)



6 1 Fractional Brownian Motion and Related Processes

where W = {Wt, t ∈ T } is a Wiener process, and KH (t, s) is the kernel

KH (t, s)= dH (t − s)H−
1
2 + sH− 1

2 F1

(
t

s

)
, (1.3)

dH being a constant and

F1(z)= dH

(
1

2
−H

)∫ z−1

0
θH− 3

2
(
1− (θ + 1)H−

1
2
)
dθ.

If H > 1
2 , the kernel KH has the simpler expression

KH (t, s)= cH s
1
2−H

∫ t

s

(u− s)H−
3
2 uH− 1

2 du (1.4)

where t > s and cH = (
H(H−1)

β(2−2H,H− 1
2 )

)
1
2 . The fact that the process defined by (1.2)

is a fBm follows from the equality

∫ t∧s

0
KH (t, u)KH (s,u)du=RH (t, s). (1.5)

The kernel KH satisfies the condition

∂KH

∂t
(t, s)= dH

(
H − 1

2

)(
s

t

) 1
2−H

(t − s)H−
3
2 . (1.6)

Moving Average Representation fBm can be represented as an integral with
respect to a standard Brownian motion on the whole real line. Let (Bs)s∈R be a
standard Brownian motion. Then

BH
t = C(H)−1

∫

R

[
(t − s)

H− 1
2+ − (−s)

H− 1
2+
]
dBs, (1.7)

with C(H) > 0 an explicit normalizing constant, is a fractional Brownian motion.

1.1.3 The Canonical Hilbert Space

Consider (BH
t )t∈[0,T ] a fractional Brownian motion with Hurst parameter H ∈ (0,1)

and denote by H its canonical Hilbert space. If H = 1
2 then B

1
2 is the standard

Brownian motion (Wiener process) W and in this case H = L2([0, T ]). Other-
wise H is the Hilbert space on [0, T ] extending the set of indicator function 1[0,T ],
t ∈ [0, T ] (by linearity and closure under the inner product) the rule

〈1[0,s];1[0,t]〉H =RH (s, t) := 2−1(s2H + t2H − |t − s|2H
)
.
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The followings facts will be needed in the sequel (we refer to [147] or [136] for
their proofs):

• If H > 1
2 , the elements of H may be not functions but distributions; it is therefore

more practical to work with subspaces of H that are sets of functions. Such a
subspace is

|H| =
{
f : [0, T ]→R

∣∣∣
∫ T

0

∫ T

0

∣∣f (u)
∣∣∣∣f (v)

∣∣|u− v|2H−2dvdu <∞
}
.

Then |H| is a strict subspace of H and we actually have the inclusions

L2([0, T ])⊂ L
1
H
([0, T ])⊂ |H| ⊂H. (1.8)

• The space |H| is not complete with respect to the norm ‖ · ‖H but it is a Banach
space with respect to the norm

‖f ‖2
|H| =

∫ T

0

∫ T

0

∣∣f (u)
∣∣∣∣f (v)

∣∣|u− v|2H−2dvdu.

• If H > 1
2 and f,g are two elements in the space |H|, their scalar product in H

can be expressed as

〈f,g〉H = αH

∫ T

0

∫ T

0
dudv|u− v|2H−2f (u)g(v) (1.9)

where αH =H(2H − 1).
• For H > 1

2 , define the “transfer” operator

K∗H ϕ(s)=
∫ T

s

ϕ(t)∂1KH (t, s)dt (1.10)

where ∂1KH (t, s) = ∂KH

∂t
(t, s). This operator provides an isometry between the

space H and L2([0, T ]) in the sense that
∥∥K∗ϕ

∥∥
L2([0,T ]) = ‖ϕ‖H.

As a consequence, ϕ ∈H if and only if K∗ϕ ∈ L2([0, T ]).
• If H < 1

2 then the canonical Hilbert space is a space of functions. It can be defined
as the class of function ϕ : [0, T ]→R such that

K∗H ϕ ∈ L2([0, T ])

where the transfer operator K∗H is defined by

K∗H ϕ(s)=KH (T , s)+
∫ T

s

(
ϕ(t)− ϕ(s)

)
∂1(t, s)dt. (1.11)
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The family (BH (ϕ),ϕ ∈H) is an isonormal process in the sense of Appendix C.
Therefore it is possible to construct multiple stochastic integrals and Malliavin
derivatives with respect to this process. We will intensively use these techniques
later in this book. If ϕ ∈H, we define BH (ϕ)= ∫ T

0 ϕsdBH
s and we call this object

the Wiener integral with respect to BH . This Wiener integral can be expressed as a
Wiener integral with respect to the Brownian motion by the transfer formula

∫ T

0
ϕsdBH

s =
∫ T

0
K∗H ϕ(s)dWs (1.12)

where K∗H is given by (1.11) if H < 1
2 and by (1.10) when H > 1

2 .

1.2 Bifractional Brownian Motion

We will now focus our attention on a Gaussian process that generalizes fractional
Brownian motion, called bifractional Brownian motion and introduced in [90]. Re-
call that fBm is the only self-similar Gaussian process with stationary increments
starting from zero. For small increments, in models such as turbulence, fBm seems
a good model but it is sometimes inadequate for large increments. For this reason, in
[90] the authors introduced an extension of fBm which retained some of the proper-
ties (self-similarity, Gaussianity, stationarity for small increments) but enlarged the
modeling tool kit. Moreover, it happens that this process is a quasi-helix, as defined,
for example, in [98, 99].

Definition 1.2 The bifractional Brownian motion (B
H,K
t )t≥0 is a centered Gaussian

process, starting from zero, with covariance

RH,K(t, s) :=R(t, s)= 1

2K

((
t2H + s2H

)K − |t − s|2HK
)

(1.13)

with H ∈ (0,1) and K ∈ (0,1].

Note that, BH,1 is a fractional Brownian motion with Hurst parameter H ∈ (0,1).

1.2.1 Basic Properties

Proposition 1.6 The process is HK-self-similar.

Proof For every c > 0 and s, t ≥ 0 the following holds

RH,K(ct, cs)= c2HKRH,K(t, s).
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Indeed,

RH,K(ct, cs) = 1

2K

((
(ct)2H + (cs)2H

)K − |ct − cs|2HK
)

= c2HKRH,K(t, s)

and this implies that (B
H,K
ct )t≥0 and (cHKB

H,K
t )t≥0 have the same finite dimen-

sional distributions. �

The following inequality plays an important role in the stochastic analysis of
bifractional Brownian motion.

Proposition 1.7 Let T > 0. For every s, t ∈ [0, T ], we have

2−K |t − s|2HK ≤ E
(
B

H,K
t −BH,K

s

)2 ≤ 21−K |t − s|2HK. (1.14)

As a consequence, the process BH,K is Hölder continuous of order δ for any 0 <

δ < H .

Proof The bound (1.14) has been proved in [90]. Since for any s, t ≥ 0 the variable

B
H,K
t − B

H,K
s has the same law as

√
E(B

H,K
t −B

H,K
s )2Z with Z ∼ N(0,1) it

follows that for any p ≥ 1

E
(
B

H,K
t −BH,K

s

)p = E|Z|pE
(
B

H,K
t −BH,K

s

)p/2 ≤ c|t − s|HKp

with c = 2
(1−K)p

2 . It remains to apply the Kolmogorov continuity theorem (Theo-
rem B.1). �

Inequality (1.14) shows that the process BH,K is a quasi-helix in the sense of J.P.
Kahane (see [98] and [99] for various properties and applications of quasi-helices).

The increments of the process BH,K are not stationary, except when K = 1; this
can easily be seen since for every s, t ≥ 0

E
∣∣BH,K

t −BH,K
s

∣∣2 = t2HK + s2HK − 21−K
((

t2H + s2H
)K − |t − s|2HK

)
.

But they do satisfy the following.

Proposition 1.8 If σ 2
ε (t) := E(B

H,K
t+ε −B

H,K
t )2, then

lim
ε→0

σ 2
ε (t)

ε2HK
= 21−K. (1.15)

Proof For every t ∈ [0, T ]

σ 2
ε (t) = 21−Kε2HK + (t + ε)2HK + t2HK − 21−K

(
(t + ε)2H + t2H

)K
.
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Then clearly

lim
ε→0

ε−2HKσ 2
ε (t)= 21−K. �

The above property will be interpreted by saying that, for small increments, the
process BH,K is ‘almost’ with stationary increments.

Unlike fractional Brownian motion, bifractional Brownian motion does not have
a Wiener integral representation. However, it does admit the following decomposi-
tion (see [109]). Define, for 0 < K < 1, the process

XK
t =

∫ ∞

0

(
1− e−θt

)
θ−

1+K
2 dWθ (1.16)

where (Wθ , θ ∈ R+) is a Wiener process. Then XK is a centered Gaussian process
with covariance

EXK
t XK

s :=RX(t, s) =
∫ ∞

0

(
1− e−θt

)(
1− e−θs

)
θ−1−Kdθ

= Γ (1−K)

K

(
tK + sK − (t + s)K

)
. (1.17)

Proposition 1.9 Let (B
H,K
t )t≥0 be a bi-fBm and consider (Wθ , θ ≥ 0) a Wiener

process independent of BH,K . Define for every t ≥ 0

X
H,K
t :=XK

t2H .

Then the processes (C1X
H,K
t + B

H,K
t )t≥0 and (C2B

HK
t )t≥0 have the same law,

where C1 =
√

K2−K

Γ (1−K)
and C2 = 2

1−K
2 .

Proof Let

Y
H,K
t = C1X

H,K
t +B

H,K
t

for every t ≥ 0. Then by (1.17), for every s, t ≥ 0

EY
H,K
t YH,K

s = C2
1EX

H,K
t XH,K

s +EB
H,K
t BH,K

s

= 2−K
(
t2HK + s2HK − (t2H + s2H

)K)

+ 2−K
((

t2H + s2H
)K − |t − s|2HK

)

= 2−K
(
t2HK + s2HK − |t − s|2HK

)
. �

1.2.2 Quadratic Variations when 2HK = 1

The case 2HK = 1 is very interesting. First note that the process BH,K with
2HK = 1 has the same order of self-similarity as the standard Wiener process. But
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it also has the same quadratic variations as Brownian motion, modulo a constant.
Let us discuss the asymptotic behavior of the quadratic variations of the bifractional
Brownian motion in the case 2HK = 1. A general result on variations of bi-fBm
can be found in Exercise 1.7.

We start with the following technical lemma.

Lemma 1.1 Let us consider the following function on [1,∞)

h(y)= y2HK + (y − 1)2HK − 2

2K

(
y2H + (y − 1)2H

)K (1.18)

where H ∈ (0,1) and K ∈ (0,1). Then,

h(y) converges to 0 as y goes to∞. (1.19)

Moreover if 2HK = 1,

lim
y→+∞yh(y)= 1

4
(1− 2H). (1.20)

Proof Let y = 1
ε

, then

h(y)= h

(
1

ε

)
= 1

ε2HK

[
1+ (1− ε)2HK − 2

2K

(
1+ (1− ε)2H

)K
]
.

Using Taylor’s expansion, for ε close to 0, we obtain

h

(
1

ε

)
= 1

ε2HK

(
H 2K(K − 1)ε2 + o

(
ε2)). (1.21)

Thus

lim
y→+∞h(y)= lim

ε→0
h(1/ε)= 0.

For the case 2HK = 1, by (1.21) we have

1

ε
h

(
1

ε

)
= 1

4
(1− 2H)+ 1

ε2
o
(
ε2).

Thus (1.20) is satisfied. This completes the proof. �

Using the above lemma, we can prove that, for 2HK = 1, the bi-fBm has, mod-
ulo a multiplicative constant, the same quadratic variation as Brownian motion.

Proposition 1.10 Suppose that 2HK = 1, fix t ≥ 0 and let 0= t0 < t1 < · · ·< tn = t

be a partition of the interval [0, t] with ti = it
n

for i = 0, . . . , n. Then

V n
t :=

n∑

j=1

(
B

H,K
tj
−B

H,K
tj−1

)2 −→
n→∞

1

2K−1
t in L2(Ω).
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Proof Let h be the function given by (1.18). A straightforward calculation shows
that, using Lemma 1.1,

EV n
t =

t

n

n∑

j=1

h(j)+ t

2K−1
−→
n→∞

t

2K−1
.

To obtain the conclusion it suffices to show that

lim
n→∞E

(
V n

t

)2 =
(

t

2K−1

)2

.

In fact we have,

E
(
V n

t

)2 =
n∑

i,j=1

E
((

B
H,K
ti
−B

H,K
ti−1

)(
B

H,K
tj
−B

H,K
tj−1

))2
.

Let

μn(i, j)= E
((

B
H,K
ti
−B

H,K
ti−1

)(
B

H,K
tj
−B

H,K
tj−1

))2
.

It follows by linear regression that

μn(i, j)= E
(
N2

1

∣∣θn(i, j)N1 +
√

δn(i, j)− (θn(i, j)
)2

N2
∣∣2)

where N1 and N2 are two independent normal random variables,

θn(i, j) := E
((

B
H,K
ti
−B

H,K
ti−1

)(
B

H,K
tj
−B

H,K
tj−1

))

= t

2Kn

[(
i2H + j2H

)K − 2|j − i| − (i2H + (j − 1)2H
)K + |j − i − 1|

− ((i − 1)2H + j2H
)K + |j − i + 1| + ((i − 1)2H + (j − 1)2H

)K]

and

δn(i, j) := E
(
B

H,K
ti
−B

H,K
ti−1

)2E
(
B

H,K
tj
−B

H,K
tj−1

)2
.

Hence

μn(i, j)= 2
(
θn(i, j)

)2 + δn(i, j).

For 1≤ i < j , we define a function fj : (1,∞)→R, by

fj (x) = ((x − 1)2H + j2H
)K − ((x − 1)2H + (j − 1)2H

)K

− (x2H + j2H
)K + (x2H + (j − 1)2H

)K
.
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We compute

f ′j (x) =
(

(x − 1)2H + j2H

(x − 1)2H

)K−1

−
(

(x − 1)2H + (j − 1)2H

(x − 1)2H

)K−1

−
(

x2H + j2H

x2H

)K−1

+
(

x2H + (j − 1)2H

x2H

)K−1

:= g(x − 1)− g(x)≥ 0.

Hence fj is increasing and positive, since the function

g(x)=
(

1+ j2H

x2H

)K−1

−
(

1+ (j − 1)2H

x2H

)K−1

is decreasing on (1,∞). This implies that for every 1≤ i < j

∣∣θn(i, j)
∣∣= t

2Kn
fj (i)≤ t

2Kn
fj (j)≤ t

n

∣∣h(j)
∣∣

and |θn(i, i)| = t
n
|h(i)+ 2| for any i ≥ 1.

Thus

n∑

i,j=1

θn(i, j)2 ≤ 2t2

n2

n∑

i<j
i,j=1

h(j)2 + t2

n2

n∑

i=1

(
h(i)+ 2

)2
.

Combining this with (1.20), we obtain that
∑n

i,j=1 θn(i, j)2 converges to 0 as
n→∞. On the other hand, by (1.20)

n∑

i,j=1

δn(i, j)= t2

n2

n∑

i,j=1

(
h(i)+ 1

2K−1

)(
h(j)+ 1

2K−1

)
−→
n→∞

(
t

2K−1

)2

.

Consequently, E(V n
t )2 converges to ( t

2K−1 )2 as n→∞, and the conclusion fol-
lows. �

Proposition 1.11 If 2HK = 1 and K �= 1, the process BH,K is a short-memory
process. If HK > 1

2 the process BH,K has long memory.

Proof Recall Definition A.3. We can write

r(n) = E
(
B

H,K
1

(
B

H,K
n+1 −BH,K

n

))

= 1

2K

((
(n+ 1)2H + 1

)K − n2HK
)− 1

2K

((
(n)2H + 1

)K − (n− 1)2HK
)

= 1

2K
n2HKf

(
1

n

)



14 1 Fractional Brownian Motion and Related Processes

where

f (x)= ((1+ x)2H + x2H
)K − 1− (1+ x2H

)K + (1− x)2HK

with

f ′(x)= 2HKx2H−1G1(x)− 2HKG2(x)

where ((1 + x)2H + x2H )K−1 − (1 + x2H )K−1 and G2(x) = ((1 + x)2H +
x2H )K−1(1 + x)2H−1 − (1 − x)2HK−1. Note that G1(0) = 0 and G′1(0) =
2H(K − 1) and G2(0)= 0 with

G′2(0)= 2H(K − 1)+ (2H − 1)+ (2HK − 1).

Note that G′2(0) = 0 if 2HK = 1! Therefore f (x) behaves as cst.x2H+1 if
2HK = 1 for x close to zero and f (x) behaves as cst.x2 if 2HK > 1. �

Remark 1.1 Consider K = 1 in Proposition 1.10. Then H = 1
2 and we retrieve a

well-known result concerning Brownian motion.

1.2.3 The Extended Bifractional Brownian Motion

An extension of bi-fBm has been introduced in [21] as follows. Define the process
XK by (1.16) with K ∈ (1,2).

Proposition 1.12 For every K ∈ (1,2) the covariance of the process X is given by

EXK
t XK

s =
Γ (2−K)

K(K − 1)

(
(t + s)k − tK − sK

)

for every s, t ≥ 0.

Proposition 1.13 Assume H ∈ (0,1) and K ∈ (1,2) with HK ∈ (0,1). Consider a
fBmBHK and an independent Wiener process W . Define XK by (1.16) as a Wiener
integral with respect to W .

X
H,K
t :=XK

t2H

for every t ≥ 0. Then the process

B
H,K
t = aBHK

t + bX
H,K
t

with a =√21−K and b =
√

K(K−1)

2KΓ (2−K)
is a centered Gaussian process with covari-

ance

RH,K(t, s) :=R(t, s)= 1

2K

((
t2H + s2H

)K − |t − s|2HK
)

and hence is a bi-fBm.
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Proof One can follow the lines of Proposition 1.9. �

The extended bi-fBm shares the properties of the bi-fBm with K ∈ (0,1): it has
the quasi-helix property (see Exercise 1.4), it has long memory for HK > 1

2 and
short-memory for HK < 1

2 (see Exercise 1.5). On the other hand, it is a semimartin-
gale for HK = 1

2 (see Exercise 1.6).

1.3 Sub-fractional Brownian Motion

This process was introduced in [33].

Definition 1.3 Sub-fractional Brownian motion (sub-fBm) is defined as a centered
Gaussian process (SH

t )t≥0 with covariance

R(t, s)= s2H + t2H − 1

2

(
(s + t)2H + |t − s|2H

)
, s, t ≥ 0

with H ∈ (0,1).

Sub-fractional Brownian motion arises from occupation time fluctuations of
branching particle systems (see [33]). It has properties analogous to those of fBm
(self-similarity, long-range dependence, Hölder paths, variation and renormalized
variation and it is neither a Markov processes nor a semimartingale). Moreover,
sub-fBm has non-stationary increments and the increments over non-overlapping
intervals are more weakly correlated and their covariance decays polynomially at a
higher rate in comparison with fBm (for this reason, in [33] it is called sub-fBm).
The above mentioned properties make sub-fBm a possible candidate for models
which involve long-dependence, self-similarity and nonstationarity.

Remark 1.2 Trivially, for H = 1
2 the sub-fBm reduces to the standard Brownian

motion.

Proposition 1.14 The process SH is self-similar of order H .

Proof Let c > 0. It is immediate that for every s, t ≥ 0

R(ct, cs)= c2H R(t, s)

holds and this implies the H -self-similarity of the process. �

The increments of the process SH behave in the following way.

Proposition 1.15

(
2− 22H−1)|t − s|2H ≤ E

(
SH

t − SH
s

)2 ≤ |t − s|2H , if H > 1/2
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and

|t − s|2H ≤ E
(
SH

t − SH
s

)2 ≤ (2− 22H−1)|t − s|H , if H < 1/2.

Consequently, the process SH has order continuous paths of order 0 < δ < H .

Proof See [33] or [182]. �

This means that sub-fBm is, like bi-fBm, a quasi-helix.

Proposition 1.16 For every s, t ≥ 0,

E
∣∣SH

t − SH
s

∣∣2 =−22H−1(t2H + s2H
)+ (t + s)2H + (t − s)2H

and in particular for every t ≥ 0

E
(
SH

t

)2 = (2− 22H−1)t2H .

From Proposition 1.16 we deduce that sub-fBm is not a process with stationary
increments.

Sub-fBm can also be defined in terms of the sum of the odd part and of the even
part of a fractional Brownian motion on the whole real line. Actually, we have

Proposition 1.17 Let (BH
t )t∈R be a fBmon the whole real line, that is, a centered

Gaussian process with covariance

EBH
t BH

s =
1

2

(|t |2H + |s|2H − |t − s|2H
)
, s, t ∈R.

Define for t ≥ 0

SH
t =

1√
2

(
BH

t +BH−t

)
.

Then SH is a sub-fBm.

Proof It suffices to compute the covariance of SH and to verify that it coincides
with the covariance of sub-fBm. �

See also Exercises 1.9 and 1.10 for other properties of subfractional Brownian
motion.

1.4 Bibliographical Notes

The study of fractional Brownian motion has a long history. As mentioned ear-
lier, this stochastic process was introduced in [102] and first analyzed in [117].
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The original motivation to analyze this process came from empirical studies car-
ried out by the hydrologist Hurst, published in [96], that attested the presence of
long-range dependence in hydrology. The last two decades has seen intensive de-
velopment with regard to the stochastic analysis of this process. Various types of
stochastic integrals with respect to fBm have been introduced and various stochas-
tic equations driven by this process have been considered. We refer to the mono-
graphs [31, 95, 121, 125, 136] and the references therein for a detailed exposition
of this theory. Simultaneously with the development of the stochastic analysis for
fBm, new fractional-type processes have been introduced and studied. Bifractional
Brownian motion was defined in [90] and first analyzed in [159]. Subsequently, var-
ious properties of this stochastic process were revealed in, among other references,
[8, 21, 26, 72, 77, 104, 109, 113, 177]. Sub-fractional Brownian motion first ap-
peared as a limit of branching processes in [33] and has since been studied in many
works, such as [32, 44, 182, 183, 186] and [151] among others. There exist other
self-similar processes related to fractional Brownian motion. We refer, for example,
to mixed fractional Brownian motion which has been used as a model in financial
models (see [46]) or to multifractional Brownian motion (see e.g. [11]). Several ex-
amples of Gaussian self-similar processes related to fractional Brownian motion are
presented in [32].

1.5 Exercises

Exercise 1.1 Let BH be a fBm. Prove that for each T > 0 the following conver-
gences hold in L2(Ω).

n−1∑

i=0

∣∣BH
(i+1)T

n

−BH
iT
n

∣∣p→ 0 if p >
1

H

and

n−1∑

i=0

∣∣BH
(i+1)T

n

−BH
iT
n

∣∣p→ ρ 1
H

t if p = 1

H

and

n−1∑

i=0

∣
∣BH

(i+1)T
n

−BH
iT
n

∣
∣p→∞ if p <

1

H

with ρp = E|N(0,1)|p .

Exercise 1.2 ([90]) Prove that the right-hand side of (1.13) is a covariance function.
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Exercise 1.3 ([90], Proposition 2.3) Assume (B
K,H
t )t≥0 is a bi-fBm. For every H ∈

(0,1) and K ∈ (0,1],

lim
ε→0

sup
t∈[t0−ε,t0+ε]

∣∣∣∣
B

H,K
t −B

H,K
t0

t − t0

∣∣∣∣=+∞

with probability one for every t0. Deduce that the trajectories of the bi-fBm (and
hence those of the fBm) are not differentiable.

Exercise 1.4 ([21]) Let BH,K be a bi-fBm with H ∈ (0,1), K ∈ (1,2) and HK ∈
(0,1). Prove that for every s, t

21−K |t − s|2HK ≤ E
(
B

H,K
t −BH,K

s

)2 ≤ |t − s|2HK if 0 < H ≤ 1

2

and

21−K |t − s|2HK ≤ E
(
B

H,K
t −BH,K

s

)2 ≤ 22−K |t − s|2HK if H ≥ 1

2
.

Exercise 1.5 ([21]) Let BH,K be a bi-fBm with H ∈ (0,1), K ∈ (1,2) and HK ∈
(0,1). Prove that this process has short-memory if HK < 1

2 and it has long memory
if HK > 1

2 .

Exercise 1.6 ([21]) Let BH,K be a bi-fBm with H ∈ (0,1), K ∈ (1,2) and HK ∈
(0,1). Prove that it is a semimartingale when 2HK = 1.

Exercise 1.7 Let BH,K a bi-fBm. Prove that for each T > 0 the following conver-
gences hold in L2(Ω).

n−1∑

i=0

∣∣BH,K
(i+1)T

n

−B
H,K
iT
n

∣∣p→ 0 if p >
1

H

and
n−1∑

i=0

∣
∣BH,K

(i+1)T
n

−B
H,K
iT
n

∣
∣p→ ρ 1

H
t if p = 1

H

and
n−1∑

i=0

∣∣BH,K
(i+1)T

n

−B
H,K
iT
n

∣∣p→∞ if p <
1

H

with ρp = E|N(0,1)|p . Deduce that the bi-fBm is not a semimartingale if
2HK �= 1.

Exercise 1.8 For every K ∈ (0,1] and H ∈ (0,1), the process BH,K is not a
Markov process.
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Hint The argument is the same as in the fBm case. Recall that (see [155]) a Gaussian
process with covariance R is Markovian if and only if

R(s,u)R(t, t)=R(s, t)R(t, u)

for every s ≤ t ≤ u. It is straightforward to check that BH,K does not satisfy this
condition.

Exercise 1.9 Let SH be a sub-fBm and BH be a fBm. Denote by RSH
and RBH

their covariance functions respectively. Prove that for every s, t ≥ 0

RSH

(t, s) > RBH

(t, s) if H <
1

2

and

RSH

(t, s) < RBH

(t, s) if H >
1

2
.

Exercise 1.10 Let SH be a sub-fBm. Prove that for each T > 0 the following con-
vergences hold in L2(Ω).

n−1∑

i=0

∣∣SH
(i+1)T

n

− SH
iT
n

∣∣p→ 0 if p >
1

H

and
n−1∑

i=0

∣∣SH
(i+1)T

n

− SH
iT
n

∣∣p→ ρ 1
H

T if p = 1

H

and
n−1∑

i=0

∣
∣SH

(i+1)T
n

− SH
iT
n

∣
∣p→∞ if p <

1

H

with ρp = E|N(0,1)|p .

Exercise 1.11 (See [163]) Define for s < t and n≥ 1

Kn(t, s) := n

∫ s

s− 1
n

K

( [nt]
n

,u

)
du

where K is the kernel of the fractional Brownian motion (1.3) and put

Bn
t =

∫ t

0
Kn(t, s)dWn

s =
[nt]∑

i=1

n

∫ i
n

i−1
n

K

( [nt]
n

, s

)
ds

ξi√
n

where [·] denotes the integer part. Prove that the disturbed random walk Bn con-
verges weakly, as n→∞, to the fractional Brownian motion in the Skorohod topol-
ogy.
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Exercise 1.12 Let H be the canonical Hilbert space associated to the fBm on [0, T ].
Show that

‖ϕ‖2
H ≤ b2

H t2H−1‖ϕ‖2
L2[0,T ].

Exercise 1.13 ([51]) Let H be the canonical Hilbert space associated to the fBm
with H > 1

2 . Let f (x)= cos(x) and g(x)= sinx for x ∈R. Then for every a, b ∈R,
a < b

‖f 1(a,b)‖2
H = αH

∫ b−a

0
dv cos(v)v2H−2(b− a − v)

+ αH cos(a + b)

∫ b−a

0
dvv2H−2 sin(b− a − v)

and

‖g1(a,b)‖2
H = αH

∫ b−a

0
dv cos(v)v2H−2(b− a − v)

− αH cos(a + b)

∫ b−a

0
dvv2H−2 sin(b− a − v).

Exercise 1.14 ([51]) For every a, b ∈R with a < b,
∫ b

a

∫ b

a

dudv sin(u− v)|u− v|2H−2 = 0

for every H > 1
2 .

Exercise 1.15 ([14]) Let ϕ(t)= sin t , t ∈ [0, T ] and denote by H(0, t) the canonical
space of the fBm on (0, t). Then show that

‖ϕ‖2
H(0,T ) = cH

∫

R

(sin τT − τ sinT )2 + (cos τT − cosT )2

(τ 2 − 1)2
|τ |−(2H−1)dτ,

where cH = Γ (2H + 1) sin(πH)/(2π).

Exercise 1.16 Let BH1 ,BH2 be two fractional Brownian motions with Hurst pa-
rameters H1,H2 respectively. We will assume that the self-similar parameters H1
and H2 are both bigger than 1

2 . We will also assume that the two fractional Brown-
ian motions can be expressed as Wiener integrals with respect to the same Wiener
process B as

B
H1
t = c(H1)

∫

R

dBy

∫ t

0
(u− y)

H1− 3
2+ du,

B
H2
t = c(H2)

∫

R

dBy

∫ t

0
(u− y)

H2− 3
2+ du

(1.22)

where the constants c(H1), c(H2) are such that E[(BH1
1 )2] = E[(BH2

1 )2] = 1.
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1. Prove that

c(H1)
2 = H1(2H1 − 1)

β(2− 2H1,H1 − 1
2 )

. (1.23)

2. Let t > s. Then show that

E
[(

B
H1
t −BH1

s

)(
B

H2
t −BH2

s

)]= b(H1,H2)|t − s|2H

where

b(H1,H2)= c(H1)c(H2)

2H(2H − 1)

(
β

(
2− 2H,H1 − 1

2

)
+ β

(
2− 2H,H2 − 1

2

))

where c(H1), c(H2) are given by (1.23).

Exercise 1.17 Another type of variation for a stochastic process has been defined
by Russo and Vallois in [158]. These variations are mainly used in the context of
stochastic calculus via regularization.

We will use the concept of α-strong variation: that is, we say that the continuous
process X has an α-variation (α > 0) if

ucp− lim
ε→0

1

ε

∫ t

0
|Xs+ε −Xs |αds exists. (1.24)

Here ucp stands for the uniform limit in probability. The limit is denoted by [[X]](α)
t .

Let B be a fBm. Prove that for every t ∈ [0, T ]

[[B]](p)
t = 0 if pH > 1

and

[[B]](p)
t =∞ if pH < 1.

Exercise 1.18 (See [159]) Let (B
H,K
t )t∈[0,T ] be a bifractional Brownian motion

with parameters H ∈ (0,1) and K ∈ (0,1]. Then

[[
BH,K

]](α)

t
= 0, if α >

1

HK

and

[[
BH,K

]](α)

t
= 2

1−K
HK ρHKt if α = 1

HK
,

where ρHK = E|N |1/HK , N being a standard normal random variable. Discuss the
case 2HK = 1.
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Exercise 1.19 ([19]) Consider the family of stochastic processes (ηε)ε>0 defined
by

ηε(t)=
∫ t

0
K(t, s)θε(s)ds (1.25)

where

θε(s)= 1

ε
(−1)

N( s

ε2 )

(these are called the Stroock kernels) or

θε(s)= 1

ε

∞∑

k=1

ξk1[k−1,k[
(

s

ε2

)

(these are called the Donsker kernels) where ξk, k ≥ 1 are independent with zero
mean and variance one. Prove that the family ηε converges weakly in the space
C0(0,1) (the space of continuous functions on [0,1] vanishing at zero) to the fBm.

Exercise 1.20 For every ε > 0, H ∈ (0,1), K ∈ (1,2) with HK ∈ (0,1) and t ∈
[0, T ] define

BH,K
ε (t)= 2

ε

∫ T

0
KHK(t, s) sin

(
θN

2
ε2
)
ds

and

XH,K
ε (t)= 2

ε

∫ ∞

0

(
1− e−st2H )

s−
1+K

2 cos
(
θN

2
ε2
)
ds.

Then prove that the family of stochastic processes Yε given by

Yε(t)= aBHK
ε + bXH,K

ε

converges weakly in the space C[0, T ] (the space of continuous functions on [0, T ])
to the extended bi-fBm.

Exercise 1.21 Let XH,K be the process defined in Proposition 1.9. Prove that, as
h→∞

E
[(

X
H,K
h+t −X

H,K
h

)2]= Γ (1−K)K−12KH 2K(1−K)t2h2(HK−1)
(
1+ o(1)

)
.

Exercise 1.22 Let BH,K be a bi-fBm. Then show that

(
B

H,K
h+t −B

H,K
h , t ≥ 0

)=(d)
(
2(1−K)/2BHK

t , t ≥ 0
)

as h→∞,

where =(d) means convergence of all finite dimensional distributions.
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Exercise 1.23 ([113]) Let us denote by

r(0, n)= E
[
B

H,K
1

(
B

H,K
n+1 −BH,K

n

)]

and for every a ∈N

r(a, a + n)= E
[(

B
H,K
a+1 −BH,K

a

)(
B

H,K
a+n+1 −B

H,K
a+n

)]
. (1.26)

1. Show that for every n≥ 1

r(a, a + n)=: 2−K
(
fa(n)+ g(n)

)
, (1.27)

where

fa(n) = ((a + 1)2H + (a + n+ 1)2H
)K − ((a + 1)2H + (a + n)2H

)K

− (a2H + (a + n+ 1)2H
)K + (a2H + (a + n)2H

)K

and for every n≥ 1

g(n)= (n+ 1)2HK + (n− 1)2HK − 2n2HK.

2. Show that:

(i) The function g is, modulo a constant, the autocorrelation function of the
fractional noise with Hurst index HK . Indeed, for n≥ 1

g(n)= 2E
[
BHK

1

(
BHK

n+1 −BHK
n

)]
.

(ii) g vanishes if 2HK = 1.
(iii)

fa(n) = −2KC2
1E
[(

X
H,K
a+1 −XH,K

a

)(
X

H,K
a+n+1 −X

H,K
a+n

)]

=: rXH,K

(a, a + n)

for every a and n, where XH,K is given in Proposition 1.9.

3. Analyze the function fa to understand “how far” bifractional Brownian noise is
from “fractional Brownian noise”. In other words, how far is bifractional Brow-
nian motion from a process with stationary increments.

Concretely, show that for each n the following holds as a→∞
fa(n)= 2H 2K(K − 1)a2(HK−1)

(
1+ o(1)

)
.

Conclude that lima→∞ fa(n)= 0 for each n.
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Exercise 1.24 ([113]) For a,n≥ 0, let r(a, a + n) be given by (1.26). Then prove
that for large n

r(a, a + n) = 2−K
[
2HK(2HK − 1)n2(HK−1)

+HK(K − 1)
(
(a + 1)2H − a2H

)
n2(HK−1)+(1−2H) + · · · ].

Deduce that for every a ∈N we have

∑

n≥0

r(a, a + n)=∞ if 2HK > 1

and
∑

n≥0

r(a, a + n) <∞ if 2HK ≤ 1.

Exercise 1.25 (See [44]) Let 0 < H < 1 and define

XH
t =

∫ ∞

0

(
1− e−θt

)
θ

3
2−H dWθ

where (Wθ)θ≥0 is a Wiener process. Let BH be a fBm independent from W . Prove
that:

1. If H < 1
2 the process

SH
t =

√

− H(2H − 1)

2Γ (2− 2H)
XH

t +BH
t

is a sub-fBm.
2. If H > 1

2 the process

SH
t =

√
H(2H − 1)

2Γ (2− 2H)
XH

t +BH
t

is a sub-fBm.

Exercise 1.26 ([29]) Consider a fBm (BH
t )t≥0 with H > 1

2 and let

Yt = at +BH
t

with a ∈R. Define

âN =N

∑Nα

i,j=1 jΓ −1
i,j Yi

∑Nα

i,j=1 ijΓ −1
i,j

. (1.28)
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If tj = j
N

, we let Ytj = Yj and

Γi,j = Cov
(
BH

i
N

,BH
j
N

)
.

1. Show that

âN − a =N

∑Nα

i,j=1 jΓ −1
i,j BH

i
N∑Nα

i,j=1 ijΓ −1
i,j

, (1.29)

where the Γ −1
i,j are the entries of the matrix Γ −1.

2. Deduce from (1.29) that âN converges to a almost surely and in Lp , p ≥ 1.
(Actually âN is a consistent estimator for the drift parameter a.)



Chapter 2
Solutions to the Linear Stochastic Heat
and Wave Equation

In this chapter we analyze the basic properties of some self-similar Gaussian pro-
cesses that are solutions to stochastic partial differential equations with additive
Gaussian noise. We will see that some of these processes are closely related to the
fractional-type processes discussed in Chap. 1. The noise of the equation will be
defined in various ways: white (meaning that is behaves as a Brownian motion) or
corelared (“colored”) in time and/or in space. The general context is as follows:
consider the equation

Lu(t, x)=�u(t, x)+ Ẇ (t, x) (2.1)

with t ∈ [0, T ] and x ∈ R
d and with vanishing initial conditions. Here � is the

Laplacian on R
d

�u=
d∑

i=1

∂2u

∂x2
i

,

W is the noise of the equation and L is a first or second order operator with constant
coefficients. In our analysis, we will consider the heat equation and then

Lu(t, x)= ∂u

∂t
(t, x), t ∈ [0, T ], x ∈Rd

or the wave equation and in this case

Lu(t, x)= ∂2u

∂t2
(t, x), t ∈ [0, T ], x ∈Rd .

Usually, the solution to (2.1) is defined through its mild form

u(t, x)=
∫ t

0

∫

Rd

G(t − s, x − y)dW(s, y)

where G is the solution of Lu − �u = 0 and the above integral is a Wiener in-
tegral with respect to W . This Wiener integral can be understood in the sense of

C.A. Tudor, Analysis of Variations for Self-similar Processes,
Probability and Its Applications, DOI 10.1007/978-3-319-00936-0_2,
© Springer International Publishing Switzerland 2013
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Appendix C. Essentially the solution to (2.1) exists when this Wiener integral is
well-defined and this happens when the integrand G belongs to the Hilbert space
associated to the Gaussian noise W . In order to study the existence and the proper-
ties of the solution to (2.1), an important fact is the structure of the canonical Hilbert
spaces associated with the noise and this depends on the covariance structure of the
noise.

We denote by C∞0 (Rd+1) the space of infinitely differentiable functions on R
d+1

with compact support, and S(Rd) the Schwartz space of rapidly decreasing C∞
functions on R

d and by S ′(Rd) its dual. For ϕ ∈ L1(Rd), we let Fϕ be the Fourier
transform of ϕ:

Fϕ(ξ)=
∫

Rd

e−iξ ·xϕ(x)dx.

2.1 The Solution to the Stochastic Heat Equation
with Space-Time White Noise

We will first discuss the properties of the solution to the stochastic heat equation
with additive Gaussian noise that behaves as a Wiener process both in time and in
space.

2.1.1 The Noise

Let us first introduce the noise of the equation. Consider a centered Gaussian field
W = {W(t,A); t ∈ [0, T ],A ∈ Bb(R

d)} with covariance

EW(t,A)W(s,B)= (t ∧ s)λ(A∩B), t ∈ [0, T ],A ∈ Bb

(
R

d
)

(2.2)

where λ denotes the Lebesgue measure. Also consider the stochastic partial differ-
ential equation

∂u

∂t
= 1

2
�u+ Ẇ , t ∈ [0, T ], x ∈Rd

u(0, x)= 0, x ∈Rd ,

(2.3)

where the noise W is defined by (2.2). The noise W is usually referred to as a space-
time white noise because it behaves as a Brownian motion both with respect to both
the time and the space variable.

The canonical Hilbert space associated with the Gaussian process W is defined
as the closure of the linear span generated by the indicator functions 1[0,t]×A, t ∈
[0, T ], A ∈ Bb(R

d) with respect to the inner product

〈1[0,t]×A,1[0,s]×B〉H = (t ∧ s)λ(A∩B).

In our case the space H is L2([0, T ] ×R
d).
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2.1.2 The Solution

This mild solution is defined as

u(t, x)=
∫ T

0

∫

Rd

G(t − s, x − y)W(ds, dy), t ∈ [0, T ], x ∈Rd (2.4)

where the above integral is a Wiener integral with respect to the Gaussian process
W (see e.g. [13] for details) and G is the Green kernel of the heat equation given by

G(t, x)=
{

(2πt)−d/2 exp(−|x|22t
) if t > 0, x ∈Rd

0 if t ≤ 0, x ∈Rd .
(2.5)

The Wiener integral in (2.4) is well-defined whenever the function (s, y) →
G(t − s, x − y) belongs to L2([0, T ] × R

d). As we will see in the sequel, this is
not always the case and it depends on the spatial dimension d . Consequently the
process (u(t, x), t ∈ [0, T ], x ∈ R), when it exists, is a centered Gaussian process.
We also need the following expression of the Fourier transform of the Green kernel

FG(t, ·)(ξ)= exp

(
− t |ξ |2

2

)
, t > 0, ξ ∈Rd (2.6)

where FG(t, ·) denotes the Fourier transform of the function y→G(t, y).

Proposition 2.1 The solution (2.4) exists if and only if d = 1. Moreover, the covari-
ance of the solution (2.4) satisfies the following: for every x ∈R we have

E
(
u(t, x)u(s, x)

)= 1√
2π

(
√

t + s −√|t − s|), for every s, t ∈ [0, T ]. (2.7)

Proof Fix x ∈Rd . For every s, t ∈ [0, T ], using that for any ϕ,ψ ∈ S(Rd),
∫

Rd

ϕ(x)ψ(x)dx = (2π)−d

∫

Rd

Fϕ(ξ)Fψ(ξ)dξ (2.8)

we get

Eu(t, x)u(s, x) =
∫ t∧s

0
du

∫

Rd

G(t − u,x − y)2dy

= (2π)−d

∫ s

0
du

∫

Rd

dξFG(t − u,x − ·)(ξ)FG(s − u,x − ·)(ξ)

= (2π)−d

∫ s

0
du

∫

Rd

dξe−
1
2 (t−u)|ξ |2e−

1
2 (s−u)|ξ |2 (2.9)

and then, if s ≤ t

Eu(t, x)u(s, x) = (2π)−d

∫ s

0
du(t + s − 2u)−

d
2

∫

Rd

dξe−
1
2 |ξ |2
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= (2π)−d/2
∫ s

0
du(t + s − 2u)−

d
2 .

Take t = s. Then

Eu(t, x)2 = (2π)−d/2
∫ t

0
du(t − u)−

d
2

and it is obvious that the integral above is finite if and only if d = 1. In that case,
from (2.9)

Eu(t, x)u(s, x)= (2π)−1/2((t + s)
1
2 − (t − s)

1
2
)
. �

This fact establishes an interesting connection between the law of the solu-
tion (2.4) and the bifractional Brownian motion from Sect. 1.2.

Corollary 2.1 Let (u(t, x), t ∈ [0, T ], x ∈ R
d) be given by (2.4). Then for every

x ∈R
(
u(t, x), t ∈ [0, T ])=(d)

(√
CB

1
2 , 1

2
t , t ∈ [0, T ])

where B
1
2 , 1

2 is a bifractional Brownian motion with parameters H = K = 1
2 and

C := 2−K 1√
2π

. Here =(d) means equivalence of finite dimensional distributions.

Proof The assertion follows from relation (2.7) and Definition 1.2. �

Remark 2.1 From (2.7), it follows that the stochastic process defined by (2.4) is
self-similar of order 1

4 with respect to the variable t .

2.2 The Spatial Covariance

The restriction d = 1 for the existence of the solution with space-time white noise
is not convenient because we need to consider such models in higher dimensions.
This has led researchers in the last few decades to investigate other types of noise
that would allow such consideration of higher dimensions.

We begin by introducing the framework. Let μ be a non-negative tempered mea-
sure on R

d , i.e. a non-negative measure which satisfies:

∫

Rd

(
1

1+ |ξ |2
)l

μ(dξ) <∞, for some l > 0.

Since the integrand is non-increasing in l, we may assume that l ≥ 1 is an integer.
Note that 1+ |ξ |2 behaves as a constant near 0, and as |ξ |2 at∞, and hence (2.10)
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is equivalent to:
∫

|ξ |≤1
μ(dξ) <∞, and

∫

|ξ |≥1
μ(dξ)

1

|ξ |2l
<∞, for some integer l ≥ 1.

(2.10)
Let f :Rd→R+ be the Fourier transform of μ in S ′(Rd), i.e.

∫

Rd

f (x)ϕ(x)dx =
∫

Rd

Fϕ(ξ)μ(dξ), ∀ϕ ∈ S(Rd
)
.

Simple properties of the Fourier transform show that for any ϕ,ψ ∈ S(Rd),
∫

Rd

∫

Rd

ϕ(x)f (x − y)ψ(y)dxdy = (2π)−d

∫

Rd

Fϕ(ξ)Fψ(ξ)μ(dξ). (2.11)

2.3 The Solution to the Linear Heat Equation
with White-Colored Noise

2.3.1 The Noise

Consider the so-called white-colored noise, meaning a Gaussian process W =
{W(t,A); t ∈ [0, T ],A ∈ Bb(R

d)} with zero mean and covariance

EW(t,A)W(t,B)= (t ∧ s)

∫

A

∫

B

f (x − y)dxdy. (2.12)

The noise W behaves as a Brownian motion with respect to the time variable and it
has a correlated spatial covariance. Here the kernel f should be the Fourier trans-
form of a tempered non-negative measure μ on R

d as described in the previous
paragraph.

Under this assumption the right-hand side of (2.12) is a covariance function.
There are several examples of such kernels f .

Example 2.1 The Riesz kernel of order α:

f (x)=Rα(x) := γα,d |x|−d+α, 0 < α < d,

where γα,d = 2d−απd/2Γ ((d − α)/2)/Γ (α/2). In this case, μ(dξ)= |ξ |−αdξ .

Example 2.2 The Bessel kernel of order α:

f (x)= Bα(x) := γ ′α
∫ ∞

0
w(α−d)/2−1e−we−|x|2/(4w)dw, α > 0,

where γ ′α = (4π)α/2Γ (α/2). In this case, μ(dξ)= (1+ |ξ |2)−α/2dξ .
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Example 2.3 The Poisson kernel

f (x)= Pα(x) := γ ′′′α,d

(|x|2 + α2)−(d+1)/2
, α > 0,

where γ ′′′α,d = π−(d+1)/2Γ ((d + 1)/2)α. In this case, μ(dξ)= e−4π2α|ξ |dξ .

Example 2.4 The heat kernel

f (x)=Gα(x) := γ ′′α,de−|x|2/(4α), α > 0,

where γ ′′α,d = (4πα)−d/2. In this case, μ(dξ)= e−π2α|ξ |2dξ .

With the Gaussian process W we can associated a canonical Hilbert space P . The
space P defined as the completion of D((0, T )×R

d) (or the completion of E , the
linear space generated by the indicator functions 1[0,t]×A, t ∈ [0, T ],A ⊂ B(Rd))
with respect to the inner product

〈ϕ,ψ〉P =
∫ T

0

∫

Rd

∫

Rd

ϕ(t, x)f (x − y)ψ(t, y)dydxdt

has been studied by several authors in connection with a Gaussian noise which is
white in time and colored in space. In particular this space may contain distributions.

2.3.2 The Solution

The solution is defined again by (2.4) with W given by (2.12). The necessary and
sufficient condition for (2.4) to exist has been proven in [59].

Proposition 2.2 The stochastic heat equation with white-colored noise given by
(2.12) admits a unique solution if and only if

∫

Rd

1

1+ |ξ |2 μ(dξ) <∞.

Proof For every t ∈ [0, T ] and x ∈Rd , using (2.6) and (2.11)

Eu(t, x)2 =
∫ t

0
du

∫

Rd

∫

Rd

G(t − u,x − y)G
(
t − u,x − y′

)
f
(
y − y′

)
dydy′

= (2π)−d

∫ t

0
du

∫

Rd

μ(dξ)FG(t − u,x − ·)(ξ)FG(t − u,x − ·)(ξ)

= (2π)−d

∫ t

0
du

∫

Rd

μ(dξ)e−
1
2 (t−u)|ξ |2e−

1
2 (t−u)|ξ |2
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= (2π)−d

∫ t

0
du

∫

Rd

μ(dξ)e−(t−u)|ξ |2

= (2π)−d

∫

Rd

μ(dξ)
1

|ξ |2
(
1− e−t |ξ |2).

One can prove that

c1,t

1

1+ |ξ |2 ≤
1

|ξ |2
(
1− e−t |ξ |2)≤ c2,t

1

1+ |ξ |2

with c1,t , c2,t strictly positive constants that may be dependent on t . It can also
be checked that the Green kernel belongs to the space P and the desired result is
obtained. �

Remark 2.2 It has been proved in [59] that even in the non-linear case the stochastic
heat equation ut = 1

2�u + g(u)Ẇ (with standard assumptions on g) with white-
colored noise admits a unique solution if and only if

∫

Rd

(
1

1+ |ξ |2
)

μ(dξ) <∞.

Obviously, this condition is also meaningful in higher dimensions. For example
in the case of the Riesz or Bessel kernels, we have the following.

Corollary 2.2 Suppose that the spatial covariance is given by the Riesz kernel (Ex-
ample 2.1) or by the Bessel kernel (Example 2.2). Then the stochastic heat equation
with white-colored noise admits a unique solution if and only if

d < 2+ α.

This implies that one can consider every dimension d ≥ 1.
It is possible to compute the covariance of the solution with respect to the time

variable; actually for fixed x ∈Rd , d �= 2 and for every s ≤ t we have

Eu(t, x)u(s, x)

=
∫ t∧s

0
du

∫

Rd

∫

Rd

G(t − u,x − y)G
(
s − u,x − y′

)
f
(
y − y′

)
dydy′

= (2π)−d

∫ s

0
du

∫

Rd

μ(dξ)FG(t − u,x − ·)(ξ)FG(s − u,x − ·)(ξ)

= (2π)−d

∫ s

0
du

∫

Rd

μ(dξ)e−
1
2 (t−u)|ξ |2e−

1
2 (s−u)|ξ |2 . (2.13)

For the Riesz kernel, this gives
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Proposition 2.3 Suppose we are in the case of the Riesz kernel f of order α (see
Example 2.1). Then for every x ∈Rd and for every s, t ∈ [0, T ]

Eu(t, x)u(s, x)= C2
0

(
(t + s)−

d−α
2 +1 − (t − s)−

d−α
2 +1)

where

C0 =
[
(2π)−d

∫

Rd

μ(dξ)e−
1
2 |ξ |2 1

− d−α
2 + 1

2−K

] 1
2

. (2.14)

Proof Consider s ≤ t . From (2.13), by the change of variables ξ̃ =√t + s − 2uξ

Eu(t, x)u(s, x) = (2π)−d

∫ s

0
du(t + s − 2u)−

d
2

∫

Rd

μ(dξ)e−
1
2 |ξ |2

= (2π)−d

∫

Rd

μ(dξ)e−
1
2 |ξ |2 1

− d−α
2 + 1

× ((t + s)−
d−α

2 +1 − (t − s)−
d−α

2 +1). �

As a consequence, in the case of the spatial covariance given by the Riesz kernel,
the solution of the heat equation with white noise in time coincides in distribution
with, modulo a constant, a bifractional Brownian motion.

Corollary 2.3 For fixed x ∈ R
d , the solution to the white-colored heat equation

coincides in distribution with

(
C0B

H,K
t

)
t∈[0,T ]

where BH,K is a bifractional Brownian motion with parameters H = 1
2 and K =

1− d−α
2 and C0 is defined in (2.14).

Proof This follows from Proposition 2.3 and the expression of the covariance of the
bi-fBm in Definition 1.2. �

Remark 2.3 In the case α = 0 and d = 1 (corresponding to the space-time white

noise case) we retrieve the formula (2.7) because
∫
R

μ(dξ)e− 1
2 |ξ |2 =√2π .

Corollary 2.4 The solution of the heat equation with additive white-colored noise
and with the spatial covariance given by the Riesz kernel of order α is self-similar
of order 1

2 (1− d−α
2 ).

Proof This is a consequence of Corollary 2.3 and of the self-similarity property of
the bi-fBm (Proposition 1.6). �
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Remark 2.4 Note that 1− d−α
2 > 0 because d < α + 2 and 1− d−α

2 < 1 because
α < d . When α = 0 and d = 1 (the space-time white noise case), the self-similarity
order is 1

4 .

2.4 The Solution to the Fractional-White Heat Equation

In the sequel, the driving noise of the equation will behave as a fractional Brownian
motion with respect to its time variable.

2.4.1 The Noise

On a complete probability space (Ω,F ,P ), we consider a zero-mean Gaussian
process WH = {WH (t,A); t ∈ [0, T ],A ∈ Bb(R

d)} with covariance:

E(WH (t,A)WH (s,B)=RH (t, s)λ(A∩B)=: 〈1[0,t]×A,1[0,s]×B〉H (2.15)

where λ is the Lebesgue measure. This noise is usually called “fractional-white”
because it behaves as a fBm in time and as a Wiener process (“white”) in space.

We will assume throughout that the Hurst parameter H is contained in the inter-
val ( 1

2 ,1).
We introduce now the canonical Hilbert space associated to the noise. Let E

be the set of linear combinations of elementary functions 1[0,t]×A, t ∈ [0, T ],
A ∈ Bb(R

d), and H be the Hilbert space defined as the closure of E with respect
to the inner product 〈·, ·〉H.

We have, for f,h ∈H smooth enough

〈f,g〉H = αH

∫ T

0

∫ T

0
dudv

∫

Rd

dy|u− v|2H−2f (y,u)g(y, v) (2.16)

where αH =H(2H − 1).
The map 1[0,t]×A �→WH

t (A) is an isometry between E and the Gaussian space
of WH , which can be extended by density to H. We denote this extension by:

ϕ �→W(ϕ)=
∫ T

0

∫

Rd

ϕ(t, x)WH (dt, dx).

The above integral is a Wiener integral with respect to the Gaussian process WH .
This Wiener integral can be expressed as a Wiener integral with respect to the space-
time white noise W which has a covariance given by (2.15). Actually, we will use
the following transfer formula (see [112]).
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Proposition 2.4 If f ∈H then

∫ T

0

∫

Rd

f (s, y)dWH (s, y)=
∫

R

∫

Rd

(∫

R

1(0,T )(u)f (u, x)(u−s)
H− 3

2+ du

)
dW(s, y)

(2.17)
where W is a space-time white noise with covariance (2.2).

The representation (2.17) is obtained using the moving average expression of the
fractional Brownian motion (1.7). See also Sect. 3.1.3 in the next chapter. Notice that
a similar transfer formula can be written using the representation of the fractional
Brownian motion as a Wiener integral on a finite interval (see e.g. [136]).

2.4.2 The Solution

Let us consider the linear stochastic heat equation

ut = 1

2
�u+ ẆH , t ∈ [0, T ], x ∈Rd (2.18)

with u(.,0) = 0, where (WH (t, x))t∈[0,T ],x∈Rd is a centered Gaussian noise with
covariance (2.15). The solution of (2.18) can be written in mild form as

U(t, x)=
∫ t

0

∫

Rd

G(t − s, x − y)WH (ds, dy), t ∈ [0, T ], x ∈Rd (2.19)

where the above integral is a Wiener integral with respect to the noise WH and G is
given by (2.5).

Theorem 2.1 The process (U(t, x))t∈[0,T ],x∈Rd exists and satisfies

sup
t∈[0,T ],x∈Rd

E
(
U(t, x)2)<+∞

if and only if d < 4H .

Proof We have, as in the case of white noise, using (2.16) and using the expression
of the Fourier transform of the Green kernel (2.6),

E|U(t, x)|2 = (2π)−dαH

∫ t

0

∫ t

0
dudv|u− v|2H−2

∫

Rd

e−
1
2 |ξ |2(2t−u−v)

= (2π)−d/2αH

∫ t

0

∫ t

0
dudv|u− v|2H−2(2t − u− v)−

d
2

= (2π)−d/2αH

∫ t

0

∫ t

0
dudv|u− v|2H−2(u+ v)−

d
2
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and the last integral is finite if and only if 2H > d
2 . �

Remark 2.5 This implies that, in contrast to the white-noise case, we are allowed to
consider the spatial dimension d to be 1,2 or 3.

Suppose that s, t ∈ [0, T ] and let

R(t, s)= E
(
U(t, x)U(s, x)

)

where x ∈Rd is fixed. We will see that R does not depend on x.

Proposition 2.5 For s, t ∈ [0, T ]

R(t, s)= αH (2π)−d/2
∫ t

0

∫ s

0
|u− v|2H−2((t + s)− (u+ v)

)− d
2 dvdu. (2.20)

Proof The following holds

R(t, s) = (2π)−dαH

∫ t

0

∫ s

0
dudv|u− v|2H−2

∫

Rd

e−
1
2 |ξ |2(t+s−u−v)

= αH (2π)−d/2
∫ t

0

∫ s

0
|u− v|2H−2((t + s)− (u+ v)

)− d
2 dvdu. �

Proposition 2.6 The process U is self-similar (with respect to t) of order H − d
4 .

Proof This is an immediate consequence of relation (2.20). Indeed, for every c > 0,

R(ct, cs)= αH (2π)−d/2
∫ ct

0

∫ cs

0
|u− v|2H−2((ct + cs)− (u+ v)

)− d
2 dvdu

= c2H− d
2 R(t, s)

by the change of variables ũ= u
c
, ṽ = v

c
. �

In this part we will focus our attention on the behavior of the increments of the
solution U(t, x) to (2.18) with respect to the variable t . We will give sharp upper
and lower bounds for the L2-norm of this increment. We will assume in the sequel
that T = 1. Concretely, we prove the following result.

Theorem 2.2 There exists two strictly positive constants C1,C2 such that for any
t, s ∈ [0,1] and for any x ∈Rd

C1|t − s|2H− d
2 ≤ E

∣∣U(t, x)−U(s, x)
∣∣2 ≤ C2|t − s|2H− d

2 . (2.21)
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Proof By c, c(H) . . . we will denote generic constants. We can write, for every x ∈
R

d, s, t ∈ [0,1]
E
∣∣U(t, x)−U(s, x)

∣∣2

=R(t, t)− 2R(t, s)+R(s, s)

= c(H)

∫ s

0

∫ s

0
dvdu|u− v|2H−2[(2t − (u+ v)

)− d
2

− 2
(
(t + s)− (u+ v)

)− d
2 + (2s − (u+ v)

)− d
2
]

+
∫ t

s

∫ t

s

dvdu|u− v|2H−2(2t − (u+ v)
)− d

2

− 2
∫ t

s

du

∫ s

0
dv|u− v|2H−2[((t + s)− (u+ v)

)− d
2 − (2t − (u+ v)

)− d
2
]

=A+B −C.

Since the term C is positive, we clearly have

E
∣∣U(t, x)−U(s, x)

∣∣2 ≤A+B.

The term B can easily be estimated. Indeed, by the change of variables ũ =
s − u, ṽ = v − s and then ũ= u

t−s
, ṽ = v

t−s
,

B = c(H)(t − s)2H− d
2 . (2.22)

Let us now consider the term A. By the change of variables ũ= s − u, ṽ = v− s

and then ũ= u
t−s

, ṽ = v
t−s

we have

A =
∫ s

0

∫ s

0
dudv|u− v|2H−2[(2t − 2s + u+ v)−

d
2

− 2(t − s + u+ v)−
d
2 + (u+ v)−

d
2
]

= (t − s)2H− d
2

∫ s
t−s

0

∫ s
t−s

0
dudv|u− v|2H−2[(2+ u+ v)−

d
2

− (1+ u+ v)−
d
2 + (u+ v)−

d
2
]

≤ (t − s)2H− d
2

∫ ∞

0

∫ ∞

0
dudv|u− v|2H−2[(2+ u+ v)−

d
2

− (1+ u+ v)−
d
2 + (u+ v)−

d
2
]
. (2.23)

Note that the integral
∫∞

0

∫∞
0 dudv|u− v|2H−2[(2+ u+ v)− d

2 − (1+ u+ v)− d
2 +

(u+ v)− d
2 ] is finite: it is finite for u,v close to zero since 2H − d

2 > 0 and it is also
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finite for u,v close to infinity because

[
(2+ u+ v)−

d
2 − (1+ u+ v)−

d
2 + (u+ v)−

d
2
]≤ c(u+ v)−

d
2−2

(this can be seen by analyzing the asymptotic behavior of the function (2+ x)− d
2 −

2(1+ x)− d
2 + x− d

2 ). By (2.22) and (2.23) we obtain the right-hand side of (2.21).
Let us now consider the lower bound. Using the Wiener integral representation

(2.19) of the solution U(t, x), we can write, for every x ∈Rd

U(t, x)−U(s, y) =
∫ 1

0

∫

Rd

(
G(t − a, x − y)1(0,t)(a)

−G(s − a, x − y)1(0,s)(a)
)
dWH (s, y)

and by the transfer rule (2.17)

U(t, x)−U(s, y) =
∫

R

∫

Rd

dW(a, y)

(∫

R

duG(t − u,x − y)1(0,t)(u)(u− a)
H− 3

2+

−
∫

R

duG(s − u,x − y)1(0,s)(u)(u− a)
H− 3

2+
)

where W is a space time white noise given by (2.2).
Now, by the isometry of the Brownian motion W we get

E
∣∣U(t, x)−U(s, x)

∣∣2 =
∫

R

∫

Rd

dady

(∫

R

duG(t − u,x − y)1(0,t)(u)(u− a)
H− 3

2+

−
∫

R

duG(s − u,x − y)1(0,s)(u)(u− a)
H− 3

2+
)2

≥
∫ t

s

∫

Rd

dady

(∫

R

duG(t − u,x − y)1(0,t)(u)(u− a)
H− 3

2+

−
∫

R

duG(s − u,x − y)1(0,s)(u)(u− a)
H− 3

2+
)2

=
∫ t

s

da

∫

Rd

dy

(∫ t

a

duG(t − u,x − y)(u− a)H−
3
2

)2

because the part on the interval (0, s) vanishes. By interchanging the order of inte-
gration,

E
∣∣U(t, x)−U(s, x)

∣∣2

≥
∫ t

s

da

∫

Rd

dy

∫ t

a

∫ t

a

dvdu

×G(t − u,x − y)(u− a)H−
3
2 G(t − v, x − y)(v − a)H−

3
2
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=
∫ t

s

du

∫ t

s

dv

∫

Rd

dyG(t − u,x − y)G(t − v, x − y)

×
∫ u∧v

s

(u− a)H−
3
2 (v − a)H−

3
2 da.

We recall that (see e.g. [13]), for every x ∈Rd

∫

Rd

dyG(t − u,x − y)G(t − v, x − y)= c
(
2t − (u+ v)

)− d
2 (2.24)

and, when v < u, by the change of variable z= v−a
u−a

, we have

∫ u∧v

s

da(u− a)H−
3
2 (v − a)H−

3
2 = (u− v)2H−2

∫ v−s
u−s

0
zH− 3

2 (1− z)1−2H dz.

(2.25)
Therefore, by (2.24) and (2.25)

E
∣∣U(t, x)−U(s, x)

∣∣2

≥
∫ t

s

du

∫ t

s

dv
(
2t − (u+ v)

)− d
2 |u− v|2H−2

∫ (v−s)∧(u−s)
(u−s)∨(v−s)

0
zH− 3

2 (1− z)1−2H dz

=
∫ t−s

0
dudv(u+ v)−

d
2 |u− v|2H−2

∫ v∧u
u∨v

0
zH− 3

2 (1− z)1−2H dz

= (t − s)2H− d
2

∫ 1

0

∫ 1

0
dudv(u+ v)−

d
2 |u− v|2H−2

∫ v∧u
u∨v

0
zH− 3

2 (1− z)1−2H dz

= C(t − s)2H− d
2 ,

where in the third and fourth lines we used successively the change of variables
u− s = ũ, v − s = ṽ and u

t−s
= ũ, v

t−s
= ṽ. The proof of the lower bound follows

since the integral
∫ 1

0

∫ 1
0 dudv(u + v)− d

2 |u − v|2H−2
∫ v∧u

u∨v

0 zH− 3
2 (1 − z)1−2H dz is

clearly finite when H > 1
2 . �

Remark 2.6 The above result implies that the process U is Hölder continuous of or-
der H − d

4 in time (this coincides with the self-similarity order, see Proposition 2.6).
This extends the case of the space-time white noise in dimension d = 1 (recall that
the solution of the heat equation with space-time time white noise is Hölder con-
tinuous of order 1

4 ). Note also that in the case d = 1 the upper bound has also been
obtained in [108] or [36].
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2.4.3 On the Law of the Solution

Consider the process U given by (2.19). Suppose that s ≤ t and recall the notation

R(t, s)= E
(
U(t, x)U(s, x)

)

where x ∈Rd is fixed. Also recall the formula (2.20)

R(t, s)= αH (2π)−
d
2

∫ t

0

∫ s

0
|u− v|2H−2((t + s)− (u+ v)

)− d
2 dvdu

with αH =H(2H − 1).
The purpose of this section is to analyze the covariance of the solution U(t, x)

and to understand its relation with bifractional Brownian motion. Corollaries 2.1
and 2.3 say that, when the noise is white in time, the solution coincides in distribu-
tion with a bi-fBm. Proposition 2.2 shows that its increments have a similar behavior
as those of the bi-fBm. But we will see that the situation is different if the noise is
no longer white in time.

The following proposition gives a decomposition of the covariance function of
U(t, .) in the case d �= 2 i.e. d = 1 or d = 3 since the solution exists for d < 4H .
The lines of the below proof will explain why the case d = 2 has to be excluded.

Proposition 2.7 Suppose d �= 2. The covariance function R(t, s) can be decom-
posed as follows

R(t, s)= (2π)−
d
2 αH Cdβ

(
2H − 1,−d

2
+ 2

)[
(t + s)2H− d

2 − (t − s)2H− d
2
]

+R
(d)
1 (t, s)

where Cd = 2
2−d

, β(x, y) is the Beta function defined for x, y > 0 by β(x, y) =
∫ 1

0 tx−1(1− t)y−1dt and

R
(d)
1 (t, s) = (2π)−

d
2 αH Cd

[∫ s

0
daa2H−2[((t + s)− a

)− d
2+1 − ((t − s)+ a

)− d
2+1]

−
∫ s

0
da(s − a)−

d
2+1[(t − a)2H−2 + (t + a)2H−2]

]
.

Proof Fix t > s. By performing the change of variables u− v = a and u+ v = b

with a + b= 2u ∈ (0,2t) and b− a = 2v ∈ (0,2s) in (2.20), we get

R(t, s) = (2π)−
d
2 αH

∫ t

−s

|a|2H−2
∫ (2t−a)∧(2s+a)

a∨(−a)

(
(t + s)− b

)− d
2 dbda

= (2π)−
d
2 αH

[∫ 0

−s

(−a)2H−2
∫ 2s+a

−a

(
(t + s)− b

)− d
2 dbda
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+
∫ t−s

0
a2H−2

∫ 2s+a

a

(
(t + s)− b

)− d
2 dbda

+
∫ t

t−s

a2H−2
∫ 2t−a

a

(
(t + s)− b

)− d
2 dbda

]
.

By performing the change of variables a �→ (−a) in the first summand, we get

R(t, s) = (2π)−
d
2 αH

[∫ s

0
a2H−2

∫ 2s−a

a

(
(t + s)− b

)− d
2 dbda

+
∫ t−s

0
a2H−2

∫ 2s+a

a

(
(t + s)− b

)− d
2 dbda

+
∫ t

t−s

a2H−2
∫ 2t−a

a

(
(t + s)− b

)− d
2 dbda

]
. �

Remark 2.7 We can see why the case d = 2 must be treated separately in the latter
equation. The integral with respect to db involves logarithms and it cannot lead to
the covariance of the bifractional Brownian motion.

By explicitly computing the inner integrals, we obtain

R(t, s) = (2π)−
d
2 αH Cd

[∫ s

0
a2H−2[−((t + s)− b

)− d
2+1]b=2s−a

b=a
da

+
∫ t−s

0
a2H−2[−((t + s)− b

)− d
2+1]b=2s+a

b=a
da

+
∫ t

t−s

a2H−2[−((t + s)− b
)− d

2+1]b=2t−a

b=a
da

]

= (2π)−
d
2 αH Cd

[∫ s

0
a2H−2((t + s)− a

)− d
2+1

da

−
∫ s

0
a2H−2((t − s)+ a

)− d
2+1

da

]

+ αH Cd

[∫ t−s

0
a2H−2((t + s)− a

)− d
2+1

da

−
∫ t−s

0
a2H−2((t − s)− a

)− d
2+1

da

]

+ αH Cd

[∫ t

t−s

a2H−2((t + s)− a
)− d

2+1
da

−
∫ t

t−s

a2H−2(a − (t − s)
)− d

2+1
da

]
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= (2π)−
d
2 αH Cd

[∫ t+s

0
a2H−2((t + s)− a

)− d
2+1

da

−
∫ t−s

0
a2H−2((t − s)− a

)− d
2+1

da

]

+R
(d)
1 (t, s)

where

R
(d)
1 (t, s)

= (2π)−
d
2 αH Cd

[∫ s

0
a2H−2((t + s)− a

)− d
2+1

da

−
∫ s

0
a2H−2((t − s)+ a

)− d
2+1

da

−
∫ t

t−s

a2H−2(a − (t − s)
)− d

2+1
da −

∫ t+s

t

a2H−2((t + s)− a
)− d

2+1
da

]
.

(2.26)

At this point, we perform the change of variable a �→ a
t+s

and we obtain

∫ t+s

0
a2H−2((t + s)− a

)− d
2+1

da = (t + s)2H− d
2

∫ 1

0
a2H−2(1− a)−

d
2+1da

= β

(
2H − 1,−d

2
+ 2

)
(t + s)2H− d

2

and in the same way, with the change of variable a �→ a
t−s

, we obtain

∫ t−s

0
a2H−2((t − s)− a

)− d
2+1

da = (t − s)2H− d
2

∫ 1

0
a2H−2(1− a)−

d
2+1da

= β

(
2H − 1,−d

2
+ 2

)
(t − s)2H− d

2 .

As a consequence, we obtain

R(t, s)= αH (2π)−
d
2 Cdβ

(
2H−1,−d

2
+2

)[
(t+s)2H− d

2 −(t−s)2H− d
2
]+R

(d)
1 (t, s)

with R
(d)
1 given by (2.26). Let us further analyze the function denoted by R

(d)
1 (t, s).

Note that for every s, t ∈ [0, T ]

(2π)
d
2 R

(d)
1 (t, s)=A(t, s)+B(t, s)
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where

A(t, s) = αH Cd

[∫ s

0
a2H−2((t + s)− a

)− d
2+1

da

−
∫ s

0
a2H−2((t − s)+ a

)− d
2+1

da

]

and

B(t, s)= αH Cd

[
−
∫ t

t−s

a2H−2(a − (t − s)
)− d

2+1
da

−
∫ t+s

t

a2H−2((t + s)− a
)− d

2+1
da

]
.

By the change of variables a − t = ã, we can express B as

B(t, s) = αH Cd

[
−
∫ 0

−s

(a + t)2H−2(a + s)−
d
2+1da

−
∫ s

0
(a + t)2H−2(s − a)−

d
2+1da

]

= −αH Cd

∫ s

0
da(s − a)−

d
2+1[(t − a)2H−2 + (t + a)2H−2]

and the desired conclusion is obtained.
Let us point out that the constant Cd is positive for d = 1 and negative for

d = 3. This partially explains why different decompositions holds in these two
cases. Thanks to the decomposition in Proposition 2.7, we have the following.

Theorem 2.3 Assume d = 1 and let U be the solution to the heat equation (2.18)

with fractional-white noise (2.15). Let B
1
2 ,2H− 1

2 be a bifractional Brownian motion
with parameters H = 1

2 and K = 2H − 1
2 . Let (XH

t )t∈[0,T ] be a centered Gaussian
process with covariance, for s, t ∈ [0, T ]

RXH

(t, s) = 2
1√
2π

αH

∫ s

0
(s − a)2H−2[(t + a)

1
2 − (t − a)

1
2
]
da

= H
1√
2π

∫ s

0
(s − a)2H−1[(t + a)−

1
2 + (t − a)−

1
2
]
da, (2.27)

and let (YH
t )t∈[0,T ] be a centered Gaussian process with covariance

RYH

(t, s)= 2
1√
2π

αH

∫ s

0
(s − a)

1
2
[
(t + a)2H−2 + (t − a)2H−2]da

=H
1√
2π

∫ s

0
(s − a)−

1
2
[
(t + a)2H−1 − (t − a)2H−1]da. (2.28)
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Suppose that U,XH and YH are independent. Then for every x ∈Rd ,

(
U(t, x)+ YH , t ∈ [0, T ]) Law= (

C0B
1
2 , 1

2
t +XH

t , t ∈ [0, T ]),

where C2
0 = 2√

2π
αH β(2H − 1,− d

2 + 2).

Remark 2.8 As it is assumed that H > 1/2, the function RYH
always remains posi-

tive.

Proof Let us first verify that RXH
is a covariance function. Clearly, it is symmetric

and it can be written, for every s, t ∈ [0, T ], as

√
2πRXH

(t, s)

=H

∫ s∧t

0
(t ∧ s − a)2H−1[((t ∨ s)+ a

)− 1
2 + ((t ∨ s)− a

)− 1
2
]

=H

∫ ∞

0
1[0,t](a)1[0,s](a)(t ∧ s − a)2H−1((t + a)−

1
2 ∧ (s + a)−

1
2
)
da

+H

∫ ∞

0
1[0,t](a)1[0,s](a)(t ∧ s − a)2H−1((t − a)−

1
2 ∧ (s − a)−

1
2
)
da

and both summands above are positive definite (the same argument is used in [32],
in the proof of Theorem 2.1). Similarly, the function RYH

is a covariance. If d = 1,
we have Cd = 2 and

R(t, s)= 2αH (2π)−
1
2 β

(
2H − 1,

3

2

)[
(t + s)

1
2 − (t − s)

1
2
]+R

(1)
1 (t, s)

with

√
2πR

(1)
1 (t, s) = 2αH

∫ s

0
(s − a)2H−2[(t + a)

1
2 − (t − a)

1
2
]
da

− 2αH

∫ s

0
(s − a)

1
2
[
(t + a)2H−2 + (t − a)2H−2]da

= H

∫ s

0
(s − a)2H−1[(t + a)−

1
2 + (t − a)−

1
2
]
da

− 2αH

∫ s

0
(s − a)

1
2
[
(t + a)2H−2 + (t − a)2H−2]da

where we used integration by parts in the first integral. �

In the case d = 3 we have the following.
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Theorem 2.4 Assume d = 3. Let B
1
2 ,2H− 3

2 be a bifractional Brownian motion with
H = 1

2 and K = 2H − 3
2 and let (ZH

t )t∈[0,T ] be a centered Gaussian process with

covariance R
(3)
1 (t, s). Then

(
U(t, x)+C0B

1
2 ,2H− 3

2 , t ∈ [0, T ]) Law= (
ZH

t , t ∈ [0, T ]),

with C0 defined as in Theorem 2.3.

Proof We have C3 =−2. In this case we can write

R(t, s)+ 2αH β

(
2H − 1,

1

2

)[
(t + s)2H− 3

2 − (t − s)2H− 3
2
]=R

(3)
1 (t, s)

with

(2π)
3
2 R

(3)
1 (t, s) = −2αH

∫ s

0
(s − a)2H−2[(t + a)−

1
2 − (t − a)−

1
2
]
da

+ 2αH

∫ s

0
(s − a)−

1
2
[
(t + a)2H−2 + (t − a)2H−2].

Note that R
(3)
1 is a covariance function because it is the sum of two covariance

functions. �

Remark 2.9 Let us understand what happens with the decompositions in Theo-
rems 2.3 and 2.4 when H is close to 1

2 . We focus on the case d = 1. The phe-
nomenon is interesting. We first notice that the process YH vanishes in this case.
The covariance of the process XH becomes

RX
1
2
(t, s)= 1

2
√

2π

(
(t + s)

1
2 − (t − s)

1
2
)
.

The constant C2
0 = 2√

2π
αH β(2H − 1, 3

2 ) is not defined for H = 1
2 because of the

presence of 2H − 1 in the argument of the beta function. But the following hap-
pens: since 2αH 1(0,1)(u)(1 − u)2H−2 is an approximation of unity, it follows that
αH β(2H − 1, 3

2 ) converges to 1
2 as H tends to 1

2 . Therefore C2
0 becomes 1

2
√

2π
.

Therefore we retrieve the result established in [166] and recalled in relation (2.7). In
other words, in the fractional case H �= 1

2 the solution “retains” half of the bifrac-

tional Brownian motion B
1
2 , 1

2 while the other half “spreads” into two parts.
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2.5 The Solution to the Heat Equation with Fractional-Colored
Noise

2.5.1 The Noise

The next step is to consider a noise with correlation structure both in time and in
space. Consider the so-called fractional-colored noise, meaning a centered Gaussian
process WH = {WH (t,A); t ∈ [0, T ],A ∈ Bb(R

d)} with covariance:

E
(
WH (t,A)WH (s,B)

)=RH (t, s)

∫

A

∫

B

f
(
y − y′

)
dydy′

=: 〈1[0,t]×A,1[0,s]×B〉HP (2.29)

where f is the spatial covariance kernel and RH denotes the covariance of the frac-
tional Brownian motion (1.1). Recall that f is the Fourier of a tempered nonnegative
measure μ on R

d .
To this Gaussian process we will associate a canonical Hilbert space whose struc-

ture is important in obtaining the existence and the properties of the solution. Let
E be the set of linear combinations of elementary functions 1[0,t]×A, t ∈ [0, T ],
A ∈ Bb(R

d), and HP be the Hilbert space defined as the closure of E with respect
to the inner product 〈·, ·〉HP . (Alternatively, HP can be defined as the completion
of C∞0 (Rd+1), with respect to the inner product 〈·, ·〉HP ; see [13].)

The map 1[0,t]×A �→W(t,A) is an isometry between E and the Gaussian space
HW of W , which can be extended to HP . We denote this extension by:

ϕ �→W(ϕ)=
∫ T

0

∫

Rd

ϕ(t, x)W(dt, dx).

We assume that H > 1/2. From (1.9) and (2.29), it follows that for any ϕ,ψ ∈ E ,

〈ϕ,ψ〉HP

= αH

∫ T

0

∫ T

0

∫

Rd

∫

Rd

ϕ(u, x)ψ(v, y)f (x − y)|u− v|2H−2dxdydudv

= αH (2π)−d

∫ T

0

∫ T

0

∫

Rd

Fϕ(u, ·)(ξ)Fψ(v, ·)(ξ)|u− v|2H−2μ(dξ)dudv.

Moreover, we can interchange the order of the integrals dudv and μ(dξ), since
for indicator functions ϕ and ψ , the integrand is a product of a function of (u, v)

and a function of ξ . Hence, for ϕ,ψ ∈ E , we have:

〈ϕ,ψ〉HP = αH (2π)−d

×
∫

Rd

∫ T

0

∫ T

0
Fϕ(u, ·)(ξ)Fψ(v, ·)(ξ)|u− v|2H−2dudvμ(dξ).

(2.30)
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The space HP may contain distributions, but contains the space |HP| of mea-
surable functions ϕ :R+ ×R

d→R such that

‖ϕ‖2
|HP | := αH

∫ ∞

0

∫ ∞

0

∫

Rd

∫

Rd

∣
∣ϕ(u, x)

∣
∣
∣
∣ϕ(v, y)

∣
∣f (x − y)

× |u− v|2H−2dxdydudv <∞.

2.5.2 The Solution

Let us consider the equation (2.18) with the covariance of the noise WH given
by (2.12) and recall that the solution can be written in the mild form

u(t, x)=
∫ t

0

∫

Rd

G(t − u,x − y)WH (ds, dy), t ∈ [0, T ], x ∈Rd .

We have the transfer formula

u(t, x)=
∫ t

−∞

∫

Rd

(∫ t

a

G(t − u,x − y)(u− a)H−
3
2

)
dW(a, y) (2.31)

where W is a centered Gaussian process with covariance given by (2.12).
Relation (2.31) follows from relation (2.17) using the moving average represen-

tation of the fBm (1.7). See also Sect. 3.1.3.

Remark 2.10 The process W behaves as a Wiener process with respect to the time
variable and it has spatial covariance given by the Riesz kernel. In particular the
increments of W with respect to the time variable are independent, meaning that
W(t, x)−W(s, x) is independent.

We have

Theorem 2.5 The process (u(t, x))t∈[0,T ],x∈Rd given by (2.31) exists and satisfies

sup
t∈[0,T ],x∈Rd

E
(
u(t, x)2)<+∞

if and only if
∫

Rd

(
1

1+ |ξ |2
)2H

μ(dξ) <∞.

Proof Note that gtx =G(t − ·, x − ·) is non-negative. Hence, gtx ∈HP if and only
if gtx ∈ |HP|. This is equivalent to saying that Jt := ‖gtx‖2

|HP | <∞ for all t > 0.



2.5 The Solution to the Heat Equation with Fractional-Colored Noise 49

Note that

Jt = αH

∫ t

0

∫ t

0

∫

Rd

∫

Rd

gtx(u, y)gtx(v, z)f (y − z)|u− v|2H−2dydzdudv

= (2π)−dαH

∫ t

0

∫ t

0

∫

Rd

Fgtx(u, ·)(ξ)Fgtx(v, ·)(ξ)|u− v|2H−2μ(dξ)dudv

= (2π)−dαH

∫ t

0

∫ t

0

∫

Rd

FG(t − u, ·)(ξ)

×FG(t − v, ·)(ξ)|u− v|2H−2μ(dξ)dudv.

Using (2.6) and Fubini’s theorem (whose application is justified since the inte-
grand is non-negative), we obtain:

Jt = αH (2π)−d

∫

Rd

∫ t

0

∫ t

0
exp

(
−u|ξ |2

2

)
exp

(
−v|ξ |2

2

)
|u− v|2H−2dudvμ(dξ).

The existence of the solution follows from Proposition 2.8 below, which also
gives estimates for Jt = E|u(t, x)|2. �

Let H(0, t) denote the canonical Hilbert space of the fBm on the interval (0, t)

and let

Bt(ξ)=
∫ t

0

∫ t

0
exp

(
−u|ξ |2

2

)
exp

(
−v|ξ |2

2

)
|u− v|2H−2dudv.

Proposition 2.8 For any t > 0, ξ ∈Rd ,

1

4

(
t2H ∧ 1

)( 1

1+ |ξ |2
)2H

≤ Bt(ξ)≤ C′H
(
t2H + 1

)( 1

1+ |ξ |2
)2H

,

where C′H = b2
H (4H)2H .

Proof Suppose that |ξ | ≤ 1. Using the fact that ‖ϕ‖2
H(0,t)

≤ b2
H t2H−1‖ϕ‖2

L2(0,t)
(see

Exercise 1.12) for all ϕ ∈ L2(0, t), e−x ≤ 1 for any x > 0, and 1
2 ≤ 1

1+|ξ |2 if |ξ | ≤ 1,

Bt(ξ)≤ b2
H t2H−1

∫ t

0
exp
(−u|ξ |2)du≤ b2

H t2H ≤ b2
H 22H t2H

(
1

1+ |ξ |2
)2H

.

Suppose that |ξ | ≥ 1. Using the fact that

‖ϕ‖2
H(0,t) ≤ b2

H‖ϕ‖2
L1/H (0,t)
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for any ϕ ∈ L1/H (0, t) (see Chap. 1), 1− e−x ≤ 1 for all x > 0, and 1
|ξ |2 ≤ 2

1+|ξ |2 ,
we obtain:

Bt(ξ) ≤ b2
H

[∫ t

0
exp

(
−u|ξ |2

2H

)
du

]2H

= b2
H

(
2H

|ξ |2
)2H[

1− exp

(
− t |ξ |2

2H

)]2H

≤ b2
H (4H)2H

(
1

1+ |ξ |2
)2H

.

This proves the upper bound.
Next, we establish the lower bound. Suppose that t |ξ |2 ≤ 1. For any u ∈ [0, t],

u|ξ |2
2 ≤ t |ξ |2

2 ≤ 1
2 . Using the fact that e−x ≥ 1− x for all x > 0, we conclude that:

exp

(
−u|ξ |2

2

)
≥ 1− u|ξ |2

2
≥ 1

2
, ∀u ∈ [0, t].

Hence

Bt(ξ)≥ αH

(
1

2

)2 ∫ t

0

∫ t

0
|u− v|2H−2dudv = 1

4
t2H ≥ 1

4
t2H

(
1

1+ |ξ |2
)2H

.

For the last inequality, we used the fact that 1≥ 1
1+|ξ |2 .

Suppose that t |ξ |2 ≥ 1. Using the change of variables u′ = u|ξ |2/2, v′ = v|ξ |2/2,
we obtain:

Bt(ξ)= αH

22H

|ξ |4H

∫ t |ξ |2/2

0

∫ t |ξ |2/2

0
e−u′e−v′ ∣∣u′ − v′

∣∣2H−2
du′dv′.

Since the integrand is non-negative,

Bt(ξ) ≥ αH

22H

|ξ |4H

∫ 1/2

0

∫ 1/2

0
e−ue−v|u− v|2H−2dudv

= 22H
∥
∥e−u

∥
∥2
H(0,1/2)

1

|ξ |4H
≥ 22H

(
1

2

)2H+2( 1

1+ |ξ |2
)2H

,

where for the last inequality we used the fact that 1
|ξ |2 ≥ 1

1+|ξ |2 , and ‖e−u‖2
H(0,1/2)

≥
( 1

2 )2H+2. This follows since e−u ≥ 1− u≥ 1
2 for all u ∈ [0, 1

2 ]. �

Corollary 2.5 For the covariance given by Riesz kernels (Example 2.1) and Bessel
kernels (Example 2.2) of order α, the solution exists if and only if

d < 4H + α.
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Proof This follows from Theorem 2.5 using the fact that the integral
∫

Rd

dξ |ξ |−α

(
1

1+ |ξ |2
)2H

converges at zero if α < d and at infinity if α + 4H > d . �
The covariance of the process can be written as (here x ∈Rd is fixed)

Eu(t, x)u(s, y)= αH (2π)−d

∫ t

0

∫ s

0
dudv|u− v|2H−2

×
∫

Rd

μ(dξ)e−
(t−u)|ξ |2

2 e−
(s−v)|ξ |2

2 (2.32)

with αH =H(2H − 1).
The particular case of the Riesz kernel leads to some nice scaling properties.

Proposition 2.9 Assume f is the Riesz kernel from Example 2.1. Then

Eu(t, x)u(s, y)= αH (2π)−d

∫

Rd

μ(dξ)e−
|ξ |2

2

×
∫ t

0

∫ s

0
dudv|u− v|2H−2((t + s)− (u+ v)

)− d−α
2 .

Proof It suffices to make the change of variables ξ̃ =√t + s − u− vξ in (2.32). �
Proposition 2.10 When the spatial covariance is given by the Riesz kernel, the pro-
cess u is self-similar with parameter

H − d − α

2
.

Proof Taking into account the expression of the measure μ in Example 2.1, for
every s, t

R(t, s)= Eu(t, x)u(s, y)= αH (2π)−d

∫ t

0

∫ s

0
dudv|u− v|2H−2

×
∫

Rd

dξ |ξ |−αe−
(t−u)|ξ |2

2 e−
(s−v)|ξ |2

2 .

Let c > 0. By the change of variables ũ = u
c
, ṽ = v

c
in the integral dudv and then

by the change of variables ξ̃ =√cξ in the integral dξ we get

R(ct, cs)= c2H− d−α
2 R(t, s). �

Let us analyze the behavior of the square mean of the increment of the solution
to (2.18), that is,

E
∣∣u(t, x)− u(s, y)

∣∣2.
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We will make the following assumption:

μ(ξ)∼ c|ξ |−αdξ, with 0 < α < d. (2.33)

This means that for every function h such that the below integrals are finite, there
exists two strictly positive constants c and c′ such that

c′
∫

Rd

h(ξ)|ξ |−αdξ ≤
∫

Rd

h(ξ)μ(dξ)≤ c

∫

Rd

h(ξ)|ξ |−αdξ.

Remark 2.11 The Riesz kernel and the Bessel kernel (with α < d) satisfy (2.33).

Theorem 2.6 Assume (2.33). There exists two strictly positive constants C1,C2

such that for any t, s ∈ [0,1] and for any x ∈Rd

C1|t − s|2H− d−α
2 ≤ E

∣∣u(t, x)− u(s, x)
∣∣2 ≤ C2|t − s|2H− d−α

2 . (2.34)

Remark 2.12 In the case α = 0 (corresponding to fractional-white noise) we retrieve
the result in Theorem 2.2.

Proof We will first prove the upper bound. Take s ≤ t, s, t ∈ [0,1].

E
∣∣u(t, x)− u(s, x)

∣∣2

= αH (2π)−d

∫ t

0

∫ t

0
dudv|u− v|2H−2

∫

Rd

μ(dξ)e−
(t−u)|ξ |2

2 e−
(t−v)|ξ |2

2

− 2αH (2π)−d

∫ t

0

∫ s

0
dudv|u− v|2H−2

∫

Rd

μ(dξ)e−
(t−u)|ξ |2

2 e−
(s−v)|ξ |2

2

+ αH (2π)−d

∫ s

0

∫ s

0
dudv|u− v|2H−2

∫

Rd

μ(dξ)e−
(s−u)|ξ |2

2 e−
(s−v)|ξ |2

2

= αH (2π)−d

∫ t

s

du

∫ t

s

dv|u− v|2H−2
∫

Rd

μ(dξ)e−
(t−u)|ξ |2

2 e−
(t−v)|ξ |2

2

+ αH (2π)−d

∫ s

0
du

∫ s

0
dv|u− v|2H−2

∫

Rd

μ(dξ)

× (e− (t−u)|ξ |2
2 e−

(t−v)|ξ |2
2 − 2e−

(t−u)|ξ |2
2 e−

(s−v)|ξ |2
2 + e−

(s−u)|ξ |2
2 e−

(s−v)|ξ |2
2

)

+ 2αH (2π)−d

∫ t

s

du

∫ s

0
dv|u− v|2H−2

×
∫

Rd

μ(dξ)
(
e−

(t−u)|ξ |2
2 e−

(t−v)|ξ |2
2 − 2e−

(t−u)|ξ |2
2 e−

(s−v)|ξ |2
2

)

:=A(t, s)+B(t, s)+C(t, s).
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Let us first note that

C(t, s)= 2αH (2π)−d

∫ t

s

du

∫ s

0
dv|u− v|2H−2

×
∫

Rd

dξe−
(t−u)|ξ |2

2
(
e−

(t−v)|ξ |2
2 − e−

(s−v)|ξ |2
2

)

is negative and therefore it can be neglected for the proof of the upper bound.
Concerning the first term above (denoted by A(t, s)) we can write, by the change

of variables ũ= u− s, ṽ = v − s and then ũ= u
t−s

, ṽ = v
t−s

and using (2.33)

A(t, s) ≤ cαH (2π)−d |t − s|2H

∫ 1

0

∫ 1

0
dudv|u− v|2H−2

×
∫

Rd

deξ |ξ |−αe−
1
2 (t−s)u|ξ |2e−

1
2 (t−s)v|ξ |2

and then, by the change of variables ξ̃ =√t − sξ (meaning that ξ̃i =√t − sξi for
every i = 1, . . . , d) we obtain

A(t, s)≤ |t − s|2H− d−α
2 C0

with

C0 = cαH (2π)−d

∫ 1

0

∫ 1

0
dudv|u− v|2H−2

∫

Rd

dξ |ξ |−αe−
1
2 u|ξ |2e−

1
2 v|ξ |2

= cαH (2π)−d

∫ 1

0

∫ 1

0
dudv|u− v|2H−2(u+ v)−

d−α
2

∫

Rd

dξ |ξ |−αe−
1
2 |ξ |2 .

Note that the integral above is finite since d < 4H + α.
It remains to analyze the term B(t, s). Recall that

B(t, s) = αH (2π)−d

∫ s

0
du

∫ s

0
dv|u− v|2H−2

∫

Rd

dμ(ξ)

× (e− (t−u)|ξ |2
2 e−

(t−v)|ξ |2
2 − 2e−

(t−u)|ξ |2
2 e−

(sv)|ξ |2
2 + e−

(s−u)|ξ |2
2 e−

(s−v)|ξ |2
2

)

and with the change of variables ũ= s−u
t−s

, ṽ = s−v
t−s

and (2.33)

B(t, s) ≤ cαH (2π)−d(t − s)2H

∫ s

0
du

∫ s

0
dv|u− v|2H−2

∫

Rd

dξ |ξ |−α

× (e− (t−s)(2+u+v)|ξ |2
2 − 2e−

(t−s)(1+u+v)|ξ |2
2 + e−

(t−s)(u+v)|ξ |2
2

)

and using ξ̃ =√t − sξ

B(t, s) ≤ cαH (2π)−d(t − s)2H− d−α
2

∫ s
t−s

0
du

∫ s
t−s

0
dv|u− v|2H−2

∫

Rd

dξ |ξ |−α
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× (e− (2+u+v)|ξ |2
2 − 2e−

(1+u+v)|ξ |2
2 + e−

(u+v)|ξ |2
2

)

≤ cαH (2π)−d(t − s)2H− d−α
2

∫ ∞

0
du

∫ ∞

0
dv|u− v|2H−2

∫

Rd

dξ |ξ |−α

×(e− (2+u+v)|ξ |2
2 − 2e−

(1+u+v)|ξ |2
2 + e−

(u+v)|ξ |2
2

)
.

Now, using the changes of variables ξ̃ = (2+ u+ v)ξ, ξ̃ = (1+ u+ v)ξ and ξ̃ =
(u+ v)ξ respectively, we can write (with CH a generic positive constant)

B(t, s) ≤ CH (t − s)2H− d−α
2

∫

Rd

dξ |ξ |−αe−
|ξ |2

2

∫ ∞

0
du

∫ ∞

0
dv|u− v|2H−2

× [(2+ u+ v)−
d−α

2 − 2(1+ u+ v)−
d−α

2 + (u+ v)−
d−α

2
]
.

The integral
∫∞

0

∫∞
0 dudv|uv|2H−2[(2+ u+ v)− d

2 − (1+ u+ v)− d
2 + (u+ v)− d

2 ]
is finite: it is finite for u,v close to zero since 2H − d

2 > 0 and it is also finite for
u,v close to infinitely because

[
(2+ u+ v)−

d
2 − (1+ u+ v)−

d
2 + (u+ v)−

d
2
]≤ c(u+ v)−

d
2−2

(this can be seen by analyzing the asymptotic behavior of the function (2+ x)− d
2 −

2(1+ x)− d
2 + x− d

2 ). The proof of the lower bound follows the lines of the proof of
the lower bound in Theorem 2.2, using the transfer formula (2.31) and the lower
bound in (2.33). �

2.6 The Solution to the Wave Equation with White Noise in Time

The solutions to the linear wave equation with additive Gaussian noise constitute
another interesting class of self-similar processes. In contrast to the other examples
treated earlier in this monograph, they have the following interesting property: the
self-similarity order is not the same as the Hölder regularity order. We first analyze
the case of noise white in time and then we will discuss the situation when the noise
behaves as a fractional Brownian motion with respect to the time variable.

2.6.1 The Equation

Consider the linear stochastic wave equation driven by a white-colored noise W .
That is,
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∂2u

∂t2
(t, x)=�u(t, x)+ Ẇ (t, x), t ∈ [0, T ], x ∈Rd

u(0, x)= 0, x ∈Rd

∂u

∂t
(0, x)= 0, x ∈Rd .

(2.35)

Here � is the Laplacian on R
d and W = {W(t,A); t ∈ [0, T ],A ∈ Bb(R

d)} is a
centered Gaussian field with covariance

E
(
W(t,A)W(s,B)

)= (t ∧ s)

∫

A

∫

B

f (x − y)dxdy (2.36)

where f is the Fourier transform of a tempered measure μ on R
d (see Sect. 2.2).

This is the so-called white-colored noise defined in Sect. 2.3.
Let G1 be the fundamental solution of utt −�u= 0. It is known that G1(t, ·) is

a distribution in S ′(Rd) with rapid decrease. The easiest way to define G1 is via its
Fourier transform

FG1(t, ·)(ξ)= sin(t |ξ |)
|ξ | , (2.37)

for any ξ ∈Rd, t > 0, d ≥ 1 (see e.g. [173]). In particular,

G1(t, x) = 1

2
1{|x|<t}, if d = 1

G1(t, x) = 1

2π

1
√

t2 − |x|2 1{|x|<t}, if d = 2

G1(t, x) = cd

1

t
σt , if d = 3,

where σt denotes the surface measure on the 3-dimensional sphere of radius t .

2.6.2 The Solution

The solution of (2.35) is a square-integrable process u = (u(t, x); t ∈ [0, T ], x ∈
R

d) defined by the Wiener integral representation with respect to the noise (2.36)

u(t, x)=
∫ t

0

∫

Rd

G1(t − s, x − y)W(ds, dy). (2.38)

The solution exists when the above integral is well-defined. As for the heat equa-
tion, it depends on the dimension d and on the spatial covariance of the noise. For
example, when the noise is white both in time and in space the solution exists if and
only if d = 1.
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The necessary and sufficient condition for the existence of the solution follows
from [59].

Theorem 2.7 The stochastic wave equation (2.35) admits a unique mild solution
(u(t, x))t∈[0,T ],x∈Rd if and only if

∫

Rd

(
1

1+ |ξ |2
)

μ(dξ) <∞. (2.39)

Remark 2.13 Recall that the same condition holds in the case of the heat equation
with white-colored noise (Proposition 2.2).

Remark 2.14 When f is the Riesz kernel, condition (2.39) is equivalent to

d < 2+ α.

When the noise is space-time white noise (corresponding to the case α = 0) the
solution exists if and only if d = 1.

Fix x ∈ R
d . Then the covariance of the solution u (viewed as a process with

respect to t) is

Eu(t, x)u(s, x)

= (2π)−d

∫ t∧s

0
du

∫

Rd

dy

∫

Rd

dy′G1(t − u,x − y)G1
(
t − u,x − y′

)
f
(
y − y′

)

=
∫ t∧s

0
du

∫

Rd

dξFG1(t − u, ·)(ξ)FG1(s − u, ·)(ξ)μ(dξ)

where we used (2.11) and (2.37).
We will assume from now on that the spatial covariance of the noise W is given

by the Riesz kernel. We make the change of notation α = d − β in the expression
given in Example 2.1 and assume that the measure μ is

dμ(ξ)= |ξ |−d+βdξ with β ∈ (0, d).

In this case the kernel f is given by

f (ξ)= cβ,d |ξ |−β with β ∈ (0, d). (2.40)

If f is as above, then

Eu(t, x)u(s, x)= (2π)−d

∫ t∧s

0
du

×
∫

Rd

dξ
sin((t − u)|ξ |)

|ξ |
sin((s − u)|ξ |)

|ξ | |ξ |−d+βdξ.
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Proposition 2.11 Suppose f is defined by (2.40). Then the process (u(t, x), t ≥ 0)

given by (2.38) is self-similar of order 3−β
2 .

Proof Let c > 0 and let R be the covariance of the process t→ u(t, x). Then, with
a = (2π)−d , for every s, t ≥ 0

R(ct, cs) = a

∫ ct∧cs

0
du

∫

Rd

dξ
sin((ct − u)|ξ |)

|ξ |
sin((cs − u)|ξ |)

|ξ | |ξ |−d+βdξ

= ac

∫ t∧s

0
du

∫

Rd

dξ
sin((ct − cu)|ξ |)

|ξ |
sin((cs − cu)|ξ |)

|ξ | |ξ |−d+βdξ

= c3−βR(t, s)

where we made successively the change of variable ũ= u
c

and ξ̃ = cξ . �

The solution has the following time regularity (see [63, 64]).

Proposition 2.12 Assume that

β ∈ (0, d ∧ 2). (2.41)

Let t0,M > 0 and fix x ∈ [−M,M]d . Then there exist positive constants c1, c2 such
that for every s, t ∈ [t0, T ]

c1|t − s|2−β ≤ E
∣
∣u(t, x)− u(s, x)

∣
∣2 ≤ c2|t − s|2−β.

Remark 2.15 Let us highlight an interesting fact: the order of self-similarity and
the order of Hölder continuity do not coincide in this case. This is the first exam-
ple among the Gaussian processes discussed in this chapter when this phenomenon
occurs.

Proposition 2.12 implies the following Hölder property for the solution to (2.35).

Corollary 2.6 Assume (2.41). Then for every x ∈Rd the application

t→ u(t, x)

is almost surely Hölder continuous of order δ ∈ (0,
2−β

2 ).

Proof This follows easily from Proposition 2.12 and from the fact that u is Gaus-
sian. �

Remark 2.16 The proof of Theorem 5.1 in [63] implies that the mapping t →
u(t, x) is not Hölder continuous of order 2−β

2 .
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2.7 The Stochastic Wave Equation with Linear
Fractional-Colored Noise

For an interval (a, b)⊂ R, we define the restricted Fourier transform of a function
ϕ ∈ L1(a, b):

Fa,bϕ(τ ) :=
∫ b

a

e−iτxϕ(x)dx =F(ϕ1[a,b])(τ ).

One can prove that Fϕ ∈ L2(R), for any ϕ ∈ L1(R) ∩ L2(R). By Plancharel’s
identity (2.8), for any ϕ,ψ ∈ L1(R)∩L2(R), we have:

∫

R

ϕ(x)ψ(x)dx = (2π)−1
∫

R

Fϕ(τ)Fψ(τ)dξ.

In particular, for any ϕ,ψ ∈ L2(a, b), we have:

∫ b

a

ϕ(x)ψ(x)dx = (2π)−1
∫

R

Fa,bϕ(τ )Fa,bψ(τ)dξ. (2.42)

2.7.1 The Equation

Consider the linear stochastic wave equation driven by a fractional colored noise W

with Hurst parameter H ∈ ( 1
2 ,1). That is

∂2u

∂t2
(t, x)=�u(t, x)+ Ẇ (t, x), t ∈ [0, T ], x ∈Rd

u(0, x)= 0, x ∈Rd

∂u

∂t
(0, x)= 0, x ∈Rd .

(2.43)

Here � is the Laplacian on R
d and W = {W(t,A); t ∈ [0, T ],A ∈ Bb(R

d)} is a
centered Gaussian field with covariance

E
(
W(t,A)W(s,B)

)=RH (t, s)

∫

A

∫

B

f (x − y)dxdy (2.44)

where RH is the covariance of the fractional Brownian motion (1.1) and f is the
Fourier transform of a tempered measure μ on R

d (see Sect. 2.2).



2.7 The Stochastic Wave Equation with Linear Fractional-Colored Noise 59

2.7.2 The Solution

The solution of (2.35) is a square-integrable process u = {u(t, x); t ≥ 0, x ∈ R
d}

defined by:

u(t, x)=
∫ t

0

∫

Rd

G1(t − s, x − y)W(ds, dy). (2.45)

By definition, u(t, x) exists if and only if the stochastic integral above is well-
defined, i.e. gtx :=G1(t − ·, x − ·) ∈HP (this space was introduced in Sect. 2.5).
In this case, E|u(t, x)|2 = ‖gtx‖2

HP .
We begin with an auxiliary result. To simplify the notation, we introduce the

following functions: for λ > 0, τ > 0, let

ft (λ, τ )= sin τλt − τ sinλt, gt (λ, τ )= cos τλt − cosλt. (2.46)

Lemma 2.1 For any λ > 0 and t > 0,

ct

λ3

1+ λ2
≤
∫

R

1

(τ 2 − 1)2

[
f 2

t (λ, τ )+ g2
t (λ, τ )

]
dτ ≤ Ct

λ3

1+ λ2
,

where ct ,Ct are some positive constants.

Proof Using Exercise 1.15, we have

1

(τ 2 − 1)2

[
f 2

t (λ, τ )+ g2
t (λ, τ )

]= ∣∣F0,λtϕ(τ )
∣∣2,

where ϕ(x)= sinx. Using Plancharel’s identity (2.42), we obtain:
∫

R

1

(τ 2 − 1)2

[
f 2

t (λ, τ )+ g2
t (λ, τ )

]
dτ

=
∫

R

∣∣F0,λtϕ(τ )
∣∣2dτ = 2π

∫ λt

0
|sinx|2dx

= 2πλ

∫ t

0
|sinλs|2ds = 2πλ3

∫ t

0

|sinλs|2
λ2

ds.

It now suffices to use the bound (see e.g. Lemma 6.1.2 of [161])

ct

1

1+ λ2
≤
∫ t

0

|sinλs|2
λ2

ds ≤ Ct

1

1+ λ2
. �

We denote by Nt(ξ) the H(0, t)-norm of u �→FG1(u, ·)(ξ), i.e.

Nt(ξ)= αH

|ξ |2
∫ t

0

∫ t

0
sin
(
u|ξ |) sin

(
v|ξ |)|u− v|2H−2dudv.
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We also recall that (see Exercise 1.12) there exists a constant bH > 0 such that

‖ϕ‖2
H(0,t) ≤ b2

H‖ϕ‖2
L1/H (0,t)

≤ b2
H t2H−1‖ϕ‖2

L2(0,t)
(2.47)

for any ϕ ∈ L2(0, t).

Proposition 2.13 For any t > 0, ξ ∈Rd

Nt (ξ) ≤ CH,t t
2H+2

(
1

1+ |ξ |2
)H+1/2

, if |ξ | ≤ 1

Nt(ξ) ≤ cH,t

(
1

1+ |ξ |2
)H+1/2

, if |ξ | ≥ 1.

Proof (a) Suppose that |ξ | ≤ 1. We use (2.47) and | sinx| ≤ x for any x > 0. Hence,

Nt(ξ) ≤ b2
H t2H−1 1

|ξ |2
∫ t

0
sin2(u|ξ |)du≤ b2

H t2H−1
∫ t

0
u2du

= b2
H t2H−1 t3

3
≤ 1

3
b2
H t2H+22H+1/2

(
1

1+ |ξ |2
)H+1/2

,

where for the last inequality we used the fact that 1
2 ≤ 1

1+|ξ |2 if |ξ | ≤ 1.

(b) Suppose that |ξ | ≥ 1. Using the change of variables u′ = u|ξ |, v′ = v|ξ |,

Nt(ξ) = αH

|ξ |2H+2

∫ t |ξ |

0

∫ t |ξ |

0
sin
(
u′
)

sin
(
v′
)∣∣u′ − v′

∣∣2H−2
du′dv′

= 1

|ξ |2H+2

∥∥sin(·)∥∥2
H(0,t |ξ |).

Using the expression of the H(0, t |ξ |)-norm of sin(·) given in Exercise 1.15, we
obtain:

Nt(ξ)= cH

|ξ |2H+2

∫

R

|τ |−(2H−1)

(τ 2 − 1)2

[
f 2

t

(|ξ |, τ)+ g2
t

(|ξ |, τ)]dτ. (2.48)

We split the integral into the regions |τ | ≤ 1/2 and |τ | ≥ 1/2, and we denote the two
integrals by N

(1)
t (ξ) and N

(2)
t (ξ).

Since |ft (λ, τ )| ≤ 1+ |τ | and |gt (λ, τ )| ≤ 2 for any λ > 0, τ > 0, we have:

N
(1)
t (ξ) ≤ cH

1

|ξ |2H+2

∫

|τ |≤1/2

|τ |−(2H−1)

(1− τ 2)2

[(
1+ |τ |)2 + 4

]
dτ

≤ cH

1

|ξ |2H+1

∫

|τ |≤1/2
C|τ |−(2H−1)dτ
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= C
cH

1−H

(
1

2

)2−2H 1

|ξ |2H+1
.

We used the fact that |ξ |2H+2 ≥ |ξ |2H+1 if |ξ | ≥ 1, and 1
(1−τ 2)2 [(1+ |τ |)2 + 4] ≤

1
(3/4)2 [(3/2)2 + 4] := C if |τ | ≤ 1/2.

Using the fact that |τ |−(2H−1) ≤ ( 1
2 )−(2H−1) if |τ | ≥ 1

2 , Lemma 2.1, and the fact
that |ξ |2/(1+ |ξ |2)≤ 1, we obtain:

N
(2)
t (ξ) ≤ cH

2−(2H−1)

1

|ξ |2H+2

∫

|τ |≥1/2

1

(τ 2 − 1)2

[
f 2

t

(|ξ |, τ)+ g2
t

(|ξ |, τ)]dτ

≤ cH

2−(2H−1)

1

|ξ |2H+2

∫

R

1

(τ 2 − 1)2

[
f 2

t

(|ξ |, τ)+ g2
t

(|ξ |, τ)]dτ

≤ cH

2−(2H−1)
c
(2)
t

1

|ξ |2H+2
· |ξ | |ξ |

2

1+ |ξ |2

≤ cH

2−(2H−1)
c
(2)
t

1

|ξ |2H+1
. �

Proposition 2.14

(a) If I
(1)
t <∞ for t = 1, then

∫
|ξ |≤1 μ(dξ) <∞.

(b) Let l ≥ 1 be the integer from (2.10) and m= 2l − 2. For any t > 0,

∫

|ξ |≥1

μ(dξ)

|ξ |2H+1
≤ aH,t

(
m∑

i=0

bi
t

)

I
(2)
t + bm+1

t

∫

|ξ |≥1

μ(dξ)

|ξ |2H+2+m
, (2.49)

where aH,t , bt , ct are positive constants.

In particular, if I
(2)
t <∞ for some t > 0, then

∫
|ξ |≥1 |ξ |−(2H+1)μ(dξ) <∞.

Proof (a) Using the fact that sinx/x ≥ sin 1 for all x ∈ [0,1], we have:

I
(1)
1 =

∫

|ξ |≤1

μ(dξ)

|ξ |2
∫ 1

0

∫ 1

0
sin
(
u|ξ |) sin

(
v|ξ |)|u− v|2H−2dudv

≥ sin2 1
∫

|ξ |≤1
μ(dξ)

∫ 1

0

∫ 1

0
uv|u− v|2H−2dudv.

(b) According to (2.48),

I
(2)
t = cH

∫

|ξ |≥1

μ(dξ)

|ξ |2H+2

∫

R

|τ |−(2H−1)

(τ 2 − 1)2

[
f 2

t

(|ξ |, τ)+ g2
t

(|ξ |, τ)]dτ. (2.50)

For any k ∈ {−1,0, . . . ,m}, let

I (k) :=
∫

|ξ |≥1

1

|ξ |2H+2+k
μ(dξ).
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By (2.10), I (m)= ∫|ξ |≥1 |ξ |−(2H+2+m)μ(dξ)≤ ∫|ξ |≥1 |ξ |−2lμ(dξ) <∞.
We will prove that the integrals I (k) satisfy a certain recursive relation. By re-

verse induction, this will imply that all integrals I (k) with k ∈ {−1,0, . . . ,m} are
finite. For this, for k ∈ {0,1 . . . ,m}, we let

At(k) :=
∫

|ξ |≥1

μ(dξ)

|ξ |2H+2+k

∫

R

1

(τ 2 − 1)2

[
f 2

t

(|ξ |, τ)+ g2
t

(|ξ |, τ)]dτ. (2.51)

We consider separately the regions {|τ | ≤ 2} and {|τ | ≥ 2} and we denote the
corresponding integrals by A′t (k) and A′′t (k). For the region {|τ | ≤ 2}, we use the

expression (2.50) of I
(2)
t . Using the fact that |ξ |2H+2+k ≥ |ξ |2H+2 (since k ≥ 0),

and |τ |−(2H−1) ≥ 2−(2H−1) if |τ | ≤ 2, we obtain:

A′t (k) :=
∫

|ξ |≥1

μ(dξ)

|ξ |2H+2+k

∫

|τ |≤2

1

(τ 2 − 1)2

[
f 2

t

(|ξ |, τ)+ g2
t

(|ξ |, τ)]dτ

≤ 22H−1
∫

|ξ |≥1

μ(dξ)

|ξ |2H+2

∫

|τ |≤2

|τ |−(2H−1)

(τ 2 − 1)2

[
f 2

t

(|ξ |, τ)+ g2
t

(|ξ |, τ)]dτ

≤ 22H−1 1

cH

I
(2)
t , by (2.50).

For the region {|τ | ≥ 2}, we use the fact |ft (λ, τ )| ≤ 1+ |τ | and |gt (λ, τ )| ≤ 2
for all λ > 0, τ > 0. Hence,

A′′t (k) :=
∫

|ξ |≥1

μ(dξ)

|ξ |2H+2+k

∫

|τ |≥2

1

(τ 2 − 1)2

[
f 2

t

(|ξ |, τ)+ g2
t

(|ξ |, τ)]dτ

≤
∫

|ξ |≥1

μ(dξ)

|ξ |2H+2+k

∫

|τ |≥2

1

(τ 2 − 1)2

[(
1+ |τ |)2 + 4

]
dτ = CI (k).

Hence, for any k ∈ {0,1, . . . ,m}

At(k)≤ 22H−1 1

cH

I
(2)
t +CI (k).

Using Lemma 2.1, and the fact that |ξ |2
1+|ξ |2 ≥ 1

2 if |ξ | ≥ 1, we obtain:

At(k)≥ c
(1)
t

∫

|ξ |≥1

μ(dξ)

|ξ |2H+2+k
· |ξ |

3

1+ |ξ |2 ≥
1

2
c
(1)
t I (k− 1),

for all k ∈ {0,1, . . . ,m}. From the last two relations, we conclude that:

1

2
c
(1)
t I (k − 1)≤ 22H−1 1

cH

I
(2)
t +CI (k), ∀k ∈ {0,1, . . . ,m}, (2.52)

or equivalently, I (k − 1) ≤ aH,t I
(2)
t + bt I (k), for all k ∈ {0,1, . . . ,m}. Relation

(2.49) follows by recursion. �
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Remark 2.17 In the previous argument, the recursion relation (2.52) uses the fact
that k is non-negative (see the estimate of A′t (k)). Therefore, the “last” index k for
which this relation remains true (counting downwards from m) is k = 0, leading us
to the conclusion that

∫
|ξ |≥1 |ξ |−(2H+1)μ(dξ) <∞, if I

(2)
t <∞.

Theorem 2.8 The stochastic wave equation (2.35) admits a unique mild solution
(u(t, x))t∈[0,T ],x∈Rd if and only if

∫

Rd

(
1

1+ |ξ |2
)H+ 1

2

μ(dξ) <∞. (2.53)

Proof To have that gtx ∈ HP we need in particular to have It <∞ for all t > 0
(see [14] for more details), where

It := αH

∫

Rd

∫ t

0

∫ t

0
Fgtx(u, ·)(ξ)Fgtx(v, ·)(ξ)|u− v|2H−2dudvμ(dξ),

and E|u(t, x)|2 = ‖gtx‖2
HP = It . Since Fgtx(u, ·)(ξ)= e−iξ ·xFG1(t − u, ·)(ξ),

It = αH

∫

Rd

∫ t

0

∫ t

0
FG1(u, ·)(ξ)FG1(v, ·)(ξ)|u− v|2H−2dudvμ(dξ).

Using (2.37), we obtain:

It = αH

∫

Rd

μ(dξ)

|ξ |2
∫ t

0

∫ t

0
sin
(
u|ξ |) sin

(
v|ξ |)|u− v|2H−2dudv.

We split the integral μ(dξ) into two parts, corresponding to the regions {|ξ | ≤ 1}
and {|ξ | ≥ 1}. We denote the respective integrals by I

(1)
t and I

(2)
t . Since the inte-

grand is non-negative It <∞ if and only if I
(1)
t <∞ and I

(2)
t <∞.

The fact that condition (2.53) is sufficient for It < ∞ follows by Proposi-
tion 2.13. The necessity follows by Proposition 2.14 (using Remark 2.18). �

Remark 2.18 Condition (2.53) is equivalent to
∫

|ξ |≤1
μ(dξ) <∞ and

∫

|ξ |≥1

1

|ξ |2H+1
μ(dξ) <∞.

Corollary 2.7

(i) Let f (x)= γα,d |x|−(d−α) be the Riesz kernel of order α ∈ (0, d). Then μ(dξ)=
|ξ |−αdξ and (2.53) is equivalent to α > d − 2H − 1.

(ii) Let f (x) = γα

∫∞
0 w(α−d)/2−1e−we−|x|2/(4w)dw be the Bessel kernel of order

α > 0. Then μ(dξ)= (1+|ξ |2)−α/2 and (2.53) is equivalent to α > d−2H −1.

The solution to the wave equation is also self-similar.
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Proposition 2.15 Fix x ∈ Rd and assume (2.53). Then the process (u(t, x), t ≥ 0)

defined by (2.45) is self-similar of order

H + 1− d − α

2
.

Proof The covariance of u can be expressed as

Eu(t, x)u(s, x)= a(H)

∫ t

0
du

∫ s

0
dv|u− v|2H−2

×
∫

Rd

dξ
sin((t − u)|ξ |)

|ξ |
sin((s − v)|ξ |)

|ξ | |ξ |−ddξ.

This easily implies the conclusion by a standard change of variables. �

Remark 2.19 Note that the self-similarity index

H + 1− d − α

2

is positive under condition (2.53).

Assume in the sequel that the spatial covariance of the noise W is given by the
Riesz kernel under the form (2.40). Note that in this case condition (2.53) is equiv-
alent to

β ∈ (0, d ∧ (2H + 1)
)
. (2.54)

Remark 2.20 Since H > 1
2 and so 2H + 1 ∈ (2,3), for dimension d = 1,2 we have

β ∈ (0, d) while for d ≥ 3 we have β ∈ (0,2H + 1).

Remark 2.21 As a consequence of Exercise 1.13 we deduce the following:

(i) For any x > 0 the quantity
∫ x

0 v2H−2 cos(v)(x − v)dv is positive (it is the sum
of two norms).

(ii) For every a, b ∈R, a < b

‖f 1(a,b)‖2
H ≤ 2αH

∫ b−a

0
dv cos(v)v2H−2(b− a − v).

(iii) For every a, b ∈R, a < b

‖f 1(a,b)‖2
H ≥ 2αH cos(a + b)

∫ b−a

0
dvv2H−2 sin(b− a − v).

Proposition 2.16 Assume that

β ∈ (2H − 1, d ∧ (2H + 1)
)
. (2.55)
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Let t0,M > 0 and fix x ∈ [−M,M]d . Then there exist positive constants c1, c2 such
that for every s, t ∈ [t0, T ]

c1|t − s|2H+1−β ≤ E
∣∣u(t, x)− u(s, x)

∣∣2 ≤ c2|t − s|2H+1−β.

Proof Let h > 0 and let us estimate the L2(Ω)-norm of the increment u(t +h,x)−
u(t, x). Splitting the interval [0, t + h] into the intervals [0, t] and [t, t + h], and
using the inequality |a + b|2 ≤ 2(a2 + b2), we obtain:

E
∣∣u(t + h,x)− u(t, x)

∣∣2 ≤ 2
{∥∥(gt+h,x − gt,x)1[0,t]

∥∥2
HP + ‖gt+h,x1[t,t+h]‖2

HP
}

=: 2[E1,t (h)+E2(h)
]
. (2.56)

The first summand can be handled in the following way.

E1,t (h) = αH (2π)−d

∫

Rd

μ(dξ)

∫ t

0

∫ t

0
dvdv|u− v|2H−2F(gt+h,x − gtx)(u, ·)(ξ)

×F(gt+h,x − gtx)(v, ·)(ξ)

= αH (2π)−d

∫

Rd

μ(dξ)

×
∫ t

0

∫ t

0
dudv|u− v|2H−2[FG1(u+ h, ·)(ξ)−FG1(u, ·)(ξ)

]

×FG1(v + h, ·)(ξ)−FG1(v, ·)(ξ)

= αH (2π)−d

∫ t

0

∫ t

0
dudv|u− v|2H−2Ih,

where

Ih =
∫

Rd

μ(dξ)
[
FG1(u+ h, ·)(ξ)−FG1(u, ·)(ξ)

]

× [FG1(v + h, ·)(ξ)−FG1(v, ·)(ξ)
]

=
∫

Rd

μ(dξ)
(sin((u+ h)|ξ |)− sin(u|ξ |))

|ξ |
(sin((v + h)|ξ |)− sin(v|ξ |))

|ξ | .

Using trigonometric identities we obtain

E1,t (h) = αH

∫ t

0

∫ t

0
dudv|u− v|2H−2

∫

Rd

μ(dξ)
sin(

h|ξ |
2 )2

|ξ |2 cos

(
(2u+ h)|ξ |

2

)

× cos

(
(2v + h)|ξ |

2

)

= c · αH

∫ t

0

∫ t

0
dudv|u− v|2H−2

∫

Rd

dξ

|ξ |d−β+2
sin
(
h|ξ |)2
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× cos
(
(2u+ h)|ξ |) cos

(
(2v + h)|ξ |),

and by making the change of variables ũ= (2u+ h)|ξ |, ṽ = (2v+ h)|ξ |,

E1,t (h) = c · αH

∫

Rd

dξ

|ξ |d−β+2H+2
sin
(
h|ξ |)2

×
∫ (2t+h)|ξ |

h|ξ |

∫ (2t+h)|ξ |

h|ξ |
dudv|u− v|2H−2 cosu cosv

= c

∫

Rd

dξ

|ξ |d−β+2H+2
sin
(
h|ξ |)2∥∥cos(·)1(h|ξ |,(2t+h)|ξ |)(·)

∥∥2
H, (2.57)

and using Exercise 1.13,

E1,t (h) = c · αH

∫

Rd

dξ

|ξ |d−β+2H+2
sin
(
h|ξ |)2 ×

[∫ 2t |ξ |

0
cos(v)v2H−2(2t |ξ | − v

)
dv

+ cos
(
2t |ξ | + 2h|ξ |)

∫ 2t |ξ |

0
v2H−2(sin

(
2t |ξ | − v

))]

= c · αH

∫

Rd

dξ

|ξ |d−β+2H+2
sin
(
h|ξ |)2 ×

[
2t |ξ |

∫ 2t |ξ |

0
cos(v)v2H−2dv

− sin
(
2t |ξ |)(2t |ξ |)2H−1 + (2H − 1)

∫ 2t |ξ |

0
sin(v)v2H−2dv

+ cos
(
2t |ξ | + 2h|ξ |)

∫ 2t |ξ |

0
v2H−2(sin

(
2t |ξ | − v

))
]

(2.58)

where we use integration by parts. By Remark 2.21, point (ii) we have the upper
bound

E1,t (h) ≤ c · αH

∫

Rd

dξ

|ξ |d−β+2H+2
sin
(
h|ξ |)2

×
[

2t |ξ |
∫ 2t |ξ |

0
cos(v)v2H−2dv− sin

(
2t |ξ |)(2t |ξ |)2H−1

+ (2H − 1)

∫ 2t |ξ |

0
sin(v)v2H−2dv

]
.

We will treat the three summands above separately. For the first one,

∫

Rd

dξ

|ξ |d−β+2H+2
sin
(
h|ξ |)22t |ξ |

∫ 2t |ξ |

0
cos(v)v2H−2dv

= ct,H h2H+1−β

∣∣∣∣

∫

Rd

dξ

|ξ |d−β+2H+1
sin
(|ξ |)2

∫ 2t |ξ |
h

0
cos(v)v2H−2dv

∣∣∣∣
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≤ ct,H h2H+1−β

∫

Rd

dξ

|ξ |d−β+2H+1
sin
(|ξ |)2

∣∣∣∣

∫ 2t |ξ |
h

0
cos(v)v2H−2dv

∣∣∣∣

≤ ct,H h2H+1−β

using condition (2.54) and the fact that the integral
∫∞

0 cos(v)v2H−2dv is conver-
gent (this implies that the function x ∈ [0,∞)→ ∫ x

0 cos(v)v2H−2dv admits a limit
at infinity and is therefore bounded). On the other hand

∫

Rd

dξ

|ξ |d−β+2H+2
sin
(
h|ξ |)2 sin

(
2t |ξ |)(2t |ξ |)2H−1

= cth
3−β

∫

Rd

dξ

|ξ |d−β+3
sin
(|ξ |)2 sin

(
2t |ξ |

h

)

= cth
3−β

∫

|ξ |≤1

dξ

|ξ |d−β+3
sin
(|ξ |)2 sin

(
2t |ξ |

h

)

+ cth
3−β

∫

|ξ |>1

dξ

|ξ |d−β+3
sin
(|ξ |)2 sin

(
2t |ξ |

h

)
.

The second part over the region |ξ | ≥ 1 is bounded by ch3−β simply by majorizing
sine by one. The second integral has a singularity for |ξ | close to zero. Using the
fact that sin(x)≤ x for all x ≥ 0, we will bound it above by

h3−β

∫

|ξ |≤1

dξ

|ξ |d−β+3
sin
(|ξ |)2 sin

(
2t |ξ |

h

)

≤ cth
3−β

∫

|ξ |≤1

dξ

|ξ |d−β+3
|ξ |2

∣∣∣∣sin

(
2t |ξ |

h

)∣∣∣∣

2−2H ∣∣∣∣sin

(
2t |ξ |

h

)∣∣∣∣

2H−1

≤ cth
2H+1−β

∫

|ξ |≤1

dξ

|ξ |d−β+2H−1

where we bounded |sin(
2t |ξ |

h
)|2−2H by ct (|ξ |h−1)2−2H and |sin(

2t |ξ |
h

)|2H−1 by 1.
The last integral is finite since β > 2H − 1 (assumption (2.55)).

Finally

∫

Rd

dξ

|ξ |d−β+2H+2
sin
(
h|ξ |)2

∫ 2t |ξ |

0
sin(v)v2H−2dv

= h2H+2−β

∫

Rd

dξ

|ξ |d−β+2H+2
sin
(|ξ |)2

∫ 2t |ξ |
h

0
sin(v)v2H−2dv

= h2H+2−β

∫

|ξ |≤1

dξ

|ξ |d−β+2H+2
sin
(|ξ |)2

∫ 2t |ξ |
h

0
sin(v)v2H−2dv
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+ h2H+2−β

∫

|ξ |≥1

dξ

|ξ |d−β+2H+2
sin
(|ξ |)2

∫ 2t |ξ |
h

0
sin(v)v2H−2dv

≤ h2H+2−β

∫

|ξ |≤1

dξ

|ξ |d−β+2H+2
|ξ |2

∫ 2t |ξ |
h

0
|sinv|v2H−2dv

+ h2H+2−β

∫

|ξ |≥1

dξ

|ξ |d−β+2H+2

∫ 2t |ξ |
h

0
sin(v)v2H−2dv. (2.59)

Again using the fact that
∫∞

0 sin(v)v2H−2dv it is convergent it is easy to see that
the integral over the region |ξ | ≥ 1 is bounded by cth

2H+2−β . For the integral over
|ξ | ≤ 1 we make the change of variables ṽ = vh

ξ
and we get

h3−β

∫

|ξ |≤1

dξ

|ξ |d−β+1

∫ 2t

0

∣
∣∣∣sin

(
v|ξ |
h

)∣∣∣∣v
2H−2dv

= h3−β

∫

|ξ |≤1

dξ

|ξ |d−β+1

∫ 2t

0

∣∣∣∣sin

(
v|ξ |
h

)∣∣∣∣

2−2H ∣∣∣∣sin

(
v|ξ |
h

)∣∣∣∣

2H−1

v2H−2dv

≤ cth
2h+1−β

∫

|ξ |≤1

dξ

|ξ |d−β+2H−1
,

where we have made the same considerations as for the second summand in the
decomposition of E1,t (h). In this way, we obtain the upper bound for the summand
E1,t (h) in (2.56)

E1,t (h)≤ Ch2H+1−β. (2.60)

We now study the term E2(h) in (2.56) (the notation E2(h) instead of E2,t (h)

is due to the fact that it does not depend on t , see below). Using successively the
change of variables ũ = u

h
, ṽ = v

h
in the integral dudv and ξ̃ = hξ in the integral

dξ , the summand E2(h) can be written as

E2(h) = αH

∫

Rd

∫ t+h

t

∫ t+h

t

FG1(t + h− u, ·)(ξ)

×FG1(t + h− v, ·)(ξ)|u− v|2H−2dudvμ(dξ)

= αH

∫

Rd

μ(dξ)

|ξ |2
∫ h

0

∫ h

0
sin
(
u|ξ |) sin

(
v|ξ |)|u− v|2H−2dudv

= αH h2H

∫

Rd

μ(dξ)

|ξ |2
∫ 1

0

∫ 1

0
sin
(
u|ξ |h) sin

(
v|ξ |h)|u− v|2H−2dudv

= αH h2H+2−β

∫

Rd

μ(dξ)

|ξ |2
∫ 1

0

∫ 1

0
sin
(
u|ξ |) sin

(
v|ξ |)|u− v|2H−2dudv.
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Let us use the following notation:

Nt(ξ)= αH

|ξ |2
∫ t

0

∫ t

0
sin
(
u|ξ |) sin

(
v|ξ |)|u− v|2H−2dudv, t ∈ [0, T ], ξ ∈Rd .

(2.61)
By Proposition 2.13 the term

N1(ξ)= αH

|ξ |2
∫ 1

0

∫ 1

0
sin
(
u|ξ |) sin

(
v|ξ |)|u− v|2H−2dudv

satisfies the inequality

N1(ξ) ≤ CH

(
1

1+ |ξ |2
)H+1/2

,

with CH a positive constant not depending on h. Consequently the term E2(h) is
bounded by

E2(h)≤ Ch2H+2−β

∫

Rd

(
1

1+ |ξ |2
)H+ 1

2

μ(dξ) (2.62)

and this is clearly finite due to (2.53). Relations (2.60) and (2.62) give the first part
of the conclusion.

Let us analyze now the lower bound of the increments of u(t, x) with respect to
the variable t . Let h > 0, x ∈ [−M,M]d and t ∈ [t0, T ] such that t + h ∈ [t0, T ].
From the decomposition

E
∣∣u(t + h,x)− u(t, x)

∣∣2 = ∥∥(gt+h,x − gt,x)1[0,t]
∥∥2
HP + ‖gt+h,x1[t,t+h]‖2

HP

+ 2
〈
(gt+h,x − gt,x)1[0,t], gt+h,x1[t,t+h]

〉
HP

we immediately obtain, since the second summand on the right-hand side is positive,

E
∣∣u(t + h,x)− u(t, x)

∣∣2 ≥ ∥∥(gt+h,x − gt,x)1[0,t]
∥∥2
HP

+ 2
〈
(gt+h,x − gt,x)1[0,t], gt+h,x1[t,t+h]

〉
HP

:= E1,t (h)+E3,t (h).

We can assume, without any loss of the generality, that t = 1
2 . Let E1, 1

2
(h) :=E1(h).

We first prove that

E1(h)≥ ch2H+1−β − c′h2H+2−β (2.63)

for h small enough. Recall that we have an exact expression for E1(h) (see (2.58)).
Indeed,

E1(h) =
∫

Rd

dξ

|ξ |d−β+2H+2
sin
(
h|ξ |)2∥∥cos(·)1(h|ξ |,h|ξ |+|ξ |)

∥∥2
H
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= αH

∫

Rd

dξ

|ξ |d−β+2H+2
sin
(
h|ξ |)2

×
∫ (1+h)|ξ |

h|ξ |

∫ (1+h)|ξ |

h|ξ |
dudv|u− v|2H−2 cosu cosv

= αH

∫

Rd

dξ

|ξ |d−β+2H+2
sin
(
h|ξ |)2

×
∫ |ξ |

0

∫ |ξ |

0
dudv cos

(
u+ h|ξ |) cos

(
v+ h|ξ |)|u− v|2H−2.

By the trigonometric formula cos(x + y)= cos(x) cos(y)− sin(x) sin(y) we have

E1(h) = αH

∫

Rd

dξ

|ξ |d−β+2H+2
sin
(
h|ξ |)2

×
[

cos
(
h|ξ |)2

∫ |ξ |

0

∫ |ξ |

0
dudv cosu cosv|u− v|2H−2

− 2 sin
(
h|ξ |) cos

(
h|ξ |)

∫ |ξ |

0

∫ |ξ |

0
dudv sinu cosv|u− v|2H−2

+ sin
(
h|ξ |)2

∫ |ξ |

0

∫ |ξ |

0
dudv sinu sinv|u− v|2H−2

]

:= A+B +C.

We will neglect the first term since it is positive. We will bound the second term
above by ch2H+2−β . Again using trigonometric identities, Exercise 1.14 (used at
the third line below), and the change of variables ṽ = u− v we have

−2 sin
(
h|ξ |) cos

(
h|ξ |)

∫ |ξ |

0

∫ |ξ |

0
dudv sinu cosv|u− v|2H−2

=− sin
(
h|ξ |) cos

(
h|ξ |)

∫ |ξ |

0

∫ |ξ |

0
dudv

(
sin(u+ v)+ sin(u− v)

)|u− v|2H−2

=− sin
(
h|ξ |) cos

(
h|ξ |)

∫ |ξ |

0

∫ |ξ |

0
dudv sin(u+ v)|u− v|2H−2

= c · sin
(
h|ξ |) cos

(
h|ξ |)

∫ |ξ |

0
v2H−2(cos

(
2|ξ | − v

)− cos(v)
)
dv

and thus

B = c · αH

∫

Rd

dξ

|ξ |d−β+2H+2
sin
(
h|ξ |)2 sin

(
h|ξ |) cos

(
h|ξ |)

×
∫ |ξ |

0
v2H−2(cos

(
2|ξ | − v

)− cos(v)
)
dv
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= −c · αH

∫

Rd

dξ

|ξ |d−β+2H+2
sin
(
h|ξ |)3 cos

(
h|ξ |) sin

(|ξ |)

×
∫ |ξ |

0
v2H−2 sin

(|ξ | − v
)
dv

= −c · αH

∫

Rd

dξ

|ξ |d−β+2H+2
sin
(
h|ξ |)3 cos

(
h|ξ |) sin

(|ξ |)

×
∫ |ξ |

0
v2H−2(sin

(|ξ |) cos(v)− cos
(|ξ |) sin(v)

)
dv

= −c · αH

∫

Rd

dξ

|ξ |d−β+2H+2
sin
(
h|ξ |)3 cos

(
h|ξ |) sin

(|ξ |)

×
(

sin
(|ξ |)

∫ |ξ |

0
v2H−2 cos(v)dv− cos

(|ξ |)
∫ |ξ |

0
v2H−2 sin(v)dv

)

= −c · αH

∫

|ξ |≤1

dξ

|ξ |d−β+2H+2
sin
(
h|ξ |)3 cos

(
h|ξ |) sin

(|ξ |)

×
(

sin
(|ξ |)

∫ |ξ |

0
v2H−2 cos(v)dv− cos

(|ξ |)
∫ |ξ |

0
v2H−2 sin(v)dv

)

− c · αH

∫

|ξ |≥1

dξ

|ξ |d−β+2H+2
sin
(
h|ξ |)3 cos

(
h|ξ |) sin

(|ξ |)

×
(

sin
(|ξ |)

∫ |ξ |

0
v2H−2 cos(v)dv− cos

(|ξ |)
∫ |ξ |

0
v2H−2 sin(v)dv

)
.

Taking the absolute value we see that the part over the set |ξ | ≤ 1 is bounded by ch3

simply by majorizing sin(h|ξ |) by h|ξ |, cos(h|ξ |) sin(|ξ |) by one, and

∣∣∣∣sin
(|ξ |)

∫ |ξ |

0
v2H−2 cos(v)dv − cos

(|ξ |)
∫ |ξ |

0
v2H−2 sin(v)dv

∣∣∣∣

by a constant. For the part over the region |ξ | ≥ 1 we again bound the last expression
by a constant and we use the change of variables ξ̃ = hξ . This part will by bounded
by

h2H+2−β

∫

|ξ |≥h

dξ

|ξ |d−β+2H+2

∣
∣sin

(|ξ |)3 cos
(|ξ |) sin

(|ξ |/h
)∣∣

≤ h2H+2−β

∫

Rd

dξ

|ξ |d−β+2H+2

∣∣sin
(|ξ |)3∣∣

≤ ch2H+2−β
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since the last integral is convergent at infinity by bounding sine by one and at zero
by bounding sin(x) by x and using the assumption β > 2H − 1. Therefore

B ≤ ch2H+2−β. (2.64)

We now bound the summand C below. In this summand the H norm of the sine
function appears and this has been analyzed in [14]. We have, after the change of
variables ũ= u

|ξ | , ṽ = v
|ξ | ,

C = αH

∫

Rd

dξ

|ξ |d−β+2
sin
(
h|ξ |)4

∫ 1

0

∫ 1

0
sin
(
u|ξ |) sin

(
v|ξ |)|u− v|2H−2dudv

≥ αH

∫

|ξ |≥1

dξ

|ξ |d−β+2
sin
(
h|ξ |)4

∫ 1

0

∫ 1

0
sin
(
u|ξ |) sin

(
v|ξ |)|u− v|2H−2dudv.

We will use the proof of Proposition 2.14. For h small, we will have that

C ≥ αH

∫

|ξ |≥1

dξ

|ξ |d−β
sin
(
h|ξ |)4 1

|ξ |2
∫ 1

0

∫ 1

0
sin
(
u|ξ |) sin

(
v|ξ |)|u− v|2H−2dudv

≥ αH

∫

|ξ |≥1

dξ

|ξ |d−β
sin
(
h|ξ |)4 1

|ξ |2H+1

= αH h2H+1−β

∫

|ξ |≥h

dξ

|ξ |d−β+2H+1
sin
(|ξ |)4

≥ αH h2H+1−β

∫

|ξ |≥1

dξ

|ξ |d−β+2H+1
sin
(|ξ |)4

= c · αH h2H+1−β. (2.65)

Relations (2.64) and (2.65) imply (2.63). Now, from relation (2.63), for every
t0 ≤ s < t < T with s, t close enough

E1(t − s) ≥ c(t − s)2H+1−β − c′(t − s)2H+2−β ≥ c

2
(t − s)2H+1−β

if |t − s| ≤ c
2c′ . To extend the above inequality to arbitrary values of |t − s|, we

proceed as in [64], proof of Proposition 4.1. Notice that the function g(t, s, x, y) :=
E|u(t, x) − u(s, x)|2 is positive and continuous with respect to all its arguments
and therefore it is bounded below on the set {(t, s, x, y) ∈ [t0, T ]2 × [−M,M]2d ;
|t − s| ≥ ε} by a constant depending on ε > 0. Hence for |t − s| ≥ c

2c′ it also holds
that

E1(t − s)≥ c1|t − s|2H+1−β .

On the other hand, from (2.57) and (2.62) and the Cauchy-Schwarz inequality,
we obtain

E3,t (h) = 〈(gt+h,x − gt,x)1[0,t], gt+h,x1[t,t+h]
〉
HP
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≤ ∥∥(gt+h,x − gt,x)1[0,t]
∥∥
HP‖gt+h,x1[t,t+h]‖HP

≤ ch
2H+1−β

2 + 2H+2−β
2 .

Consequently,

E
∣∣u(t + h,x)− u(t, x)

∣∣2 ≥ Ch2H+1−β −C′h
2H+1−β

2 + 2H+2−β
2

and this implies that for every s, t ∈ [t0, T ] and x ∈ [−M,M]d

E
∣
∣u(t, x)− u(s, x)

∣
∣2 ≥ C

2
|t − s|2H+1−β if |t − s| ≤

(
C

2C′

) 1
2

.

Similarly as above, the previous inequality can be extended to arbitrary values of
s, t ∈ [t0, T ]. �

Proposition 2.16 implies the following Hölder property for the solution to (2.35).

Corollary 2.8 Assume (2.55). Then for every x ∈Rd the application

t→ u(t, x)

is almost surely Hölder continuous of order δ ∈ (0,
2H+1−β

2 ).

Proof This is consequence of the relations (2.57) and (2.62) in the proof of Propo-
sition 2.16 and of the fact that u is Gaussian. �

Let us make some remarks on the result in Proposition 2.16.

Remark 2.22

• Following the proof of Theorem 5.1 in [63] we can show that the mapping t→
u(t, x) is not Hölder continuous of order 2H+1−β

2 .
• When H is close to 1

2 we retrieve the regularity in time of the solution to the wave
equation with white noise in time (see [63, 64]).

2.8 Bibliographical Notes

The study of stochastic partial differential equations (SPDEs) driven by a Gaus-
sian noise which is white in time and has a non-trivial correlation structure in space
(called “color”) now constitutes a classical line of research. These equations repre-
sent an alternative to the standard SPDEs driven by a space-time white noise. A first
step in this direction was made in [60], where the authors identify the necessary and
sufficient conditions for the existence of the solution to the stochastic wave equa-
tion (in spatial dimension d = 2), in the space of real-valued stochastic processes.
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The fundamental reference in this area is Dalang’s seminal article [59], in which
the author gives the necessary and sufficient conditions under which various SPDEs
with a white-colored noise (e.g. the wave equation, the damped heat equation, the
heat equation) have a process solution, in arbitrary spatial dimension. The meth-
ods used in this article exploit the temporal martingale structure of the noise, and
cannot be applied when the noise is “colored” in time. Other related references are,
among others: [61, 120, 143, 190] and [62]. The development of stochastic calcu-
lus with respect to fractional Brownian motion naturally led to the study of SPDEs
driven by this Gaussian process. The motivation comes from the wide area of appli-
cations of fBm. We refer, among other references, to [84, 119, 139, 150] and [170]
for theoretical studies of SPDEs driven by fBm and to [51] or [140] for the sample
paths properties of the solution. To list only a few examples of the appearance of
fractional noises in practical situations, we mention [103] for biophysics, [25] for
financial time series, [66] for electrical engineering, and [42] for physics.

2.9 Exercises

Exercise 2.1 Let u be the solution of the heat equation with space-time white noise.
Show that there exist two positive constants C1,C2 such that for every s, t ∈ [0, T ]

C1|t − s| 12 ≤ E
∣∣u(t, x)− u(s, y)

∣∣2 ≤ C2|t − s| 12 .

Study the variations of this process.

Hint Use the fact that u has the same law as a bi-fBm, modulo a constant.

Exercise 2.2 ([51]) Let u be the solution of the fractional-(Riesz) colored wave
equation. Let us denote by � the following metric on [0, T ] ×R

d

�
(
(t, x); (s, y)

)= |t − s|2H+1−β + |x − y|2H+1−β. (2.66)

Fix M > 0 and assume (2.55). Prove that for every t, s ∈ [t0, T ] and x, y ∈
[−M,M]d there exist positive constants C1,C2 such that

C1�
(
(t, x); (s, y)

)≤ E
∣∣u(t, x)− u(s, y)

∣∣2 ≤ C2�
(
(t, x); (s, y)

)
.

Exercise 2.3 ([13]) Consider the linear heat equation with white-colored noise
where the spatial covariance is given by the heat kernel (Example 2.4) or by the
Poisson kernel (Example 2.3). Give the necessary and sufficient conditions in terms
of d and α for the existence of the solution.

Exercise 2.4 Consider the linear heat equation with white-colored noise where the
spatial covariance is given by the Riesz or Bessel kernel. Prove that the solution is
Hölder continuous with respect to time of order 0 < δ < 1

2 − d−α
2 .
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Exercise 2.5 Consider the Gaussian processes with covariances given by (2.27) and
(2.28) respectively. Prove that these processes are self-similar and give the self-
similarity order.

Exercise 2.6 Consider the heat equation with fractional-colored noise and spatial
covariance given by a kernel f . If f is the heat kernel of order α, or the Poisson
kernel of order α, then prove that the solution exists for any H > 1/2 and d ≥ 1.

Exercise 2.7 Let f be the Riesz kernel of order α ∈ (0, d), and set

It = αH

∫

Rd

dξ |ξ |−α−2H−2
∫

R

|τ |−(2H−1)

(τ 2 − 1)2

[
f 2

t

(|ξ |, τ)+ g2
t

(|ξ |, τ)]dτ

with ft , gt given by (2.46).

1. Show that

It = 2αH cd

∫

R

|τ |−(2H−1)

(τ 2 − 1)2

(∫ ∞

0

(sin τλt − τ sinλt)2

λ2
λ−θdλ

+
∫ ∞

0

(cos τλt − cosλt)2

λ2
λ−θdλ

)
,

where θ = α + 1− d + 2H > 0.
2. If θ < 1, show that the two integrals dλ can be expressed in terms of the covari-

ance functions of the odd and even parts of the fBm (see [70]).

Exercise 2.8 Consider f (x) = ∏d
i=1(αHi

|xi |2Hi−2) with Hi > 1/2 for all i =
1, . . . , d .

1. Prove that f is the Fourier transform of the measure μ(dξ) = ∏d
i=1(cHi

×
|ξi |−(2Hi−1)).

2. Prove that (2.53) is equivalent to
∑d

i=1(2Hi − 1) > d − 2H − 1.

Hint This can be seen by using the change of variables to polar coordinates.

Exercise 2.9 Prove that the solutions to the heat and wave equation with white or
fractional noise in time and with white or colored noise in space are all continuous
with respect to the space variable.



Chapter 3
Non-Gaussian Self-similar Processes

An interesting class of self-similar processes can be defined as limits that appear in
the so-called Non-Central Limit Theorem (see e.g. [168] or [67]). We briefly recall
the context.

Let us recall the notion of Hermite rank. Denote by Hm(x) the Hermite poly-

nomial of degree m given by Hm(x) = (−1)me
x2
2 dm

dxm e− x2
2 and let g be a function

on R such that E[g(ξ0)] = 0 and E[g(ξ0)
2]<∞. Assume that g has the following

expansion in Hermite polynomials

g(x) =
∞∑

l=0

clHl(x)

where cl = 1
l!E[g(ξ0)Hl(ξ0)]. The Hermite rank of g is defined by

k = min{l | cl �= 0}.
Since E[g(ξ0)] = 0, we have k ≥ 1.

Let g be a function of Hermite rank k and let (ξn)n∈Z be a stationary Gaussian
sequence with mean 0 and variance 1 which exhibits long range dependence in the
sense that the correlation function satisfies

r(n) := E(ξ0ξn)= n
2H−2

k L(n)

where H ∈ ( 1
2 ,1), k ≥ 1 and L is a slowly varying function at infinity (see e.g. [75]

for the definition). Then the following family of stochastic processes

1

nH

[nt]∑

j=1

g(ξj ) (3.1)

converges as n→∞, in the sense of finite dimensional distributions, to a self-
similar stochastic process with stationary increments that lives in the kth Wiener

C.A. Tudor, Analysis of Variations for Self-similar Processes,
Probability and Its Applications, DOI 10.1007/978-3-319-00936-0_3,
© Springer International Publishing Switzerland 2013
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chaos (as presented in Appendix C). This process is called the Hermite process
of order k. The class of Hermite processes includes fractional Brownian motion
which is the only Gaussian process in this class. Their practical aspects are striking:
they provide a wide class of processes from which to model long memory, self-
similarity, and Hölder-regularity, allowing significant deviation from fBm and other
Gaussian processes. Since they are non-Gaussian and self-similar with stationary in-
crements, the Hermite processes can also be an input in models where self-similarity
is observed in empirical data which appears to be non-Gaussian. The need for non-
Gaussian self-similar processes in practice (for example in hydrology) is mentioned
in the paper [169] based on the study of stochastic modeling for river-flow time se-
ries in [107]. This chapter contains an analysis of the basic properties of the Hermite
process with a special focus on the Rosenblatt process which is, after fBm, the most
well known Hermite process.

3.1 The Hermite Process

3.1.1 Definition and Basic Properties

We will adopt the following definition of the Hermite process.

Definition 3.1 Let (B(t))t∈R be a Wiener process. The Hermite process (Zk
H (t))t≥0

of order k and with self-similarity index H ∈ ( 1
2 ,1) is defined as

Zk
H (t)= c(H,k)

∫

Rk

∫ t

0

(
k∏

j=1

(s − yi)
−( 1

2+ 1−H
k

)

+

)

dsdB(y1) · · ·dB(yk), (3.2)

where x+ = max(x,0). The above integral is a multiple integral of order k with
respect to the Brownian motion W (in the sense of Appendix C) and the constant
c(H,k) is a normalizing constant that ensures E(Zk

H (t))2 = 1.

Remark 3.1 Throughout, a random variable which has the same law as Zk
H (1) will

be called a Hermite random variable.

The most studied Hermite process is of course fractional Brownian motion
(which is obtained in (3.2) for k = 1; compare (3.2) with (1.7)) due to its large
range of applications. The process obtained in (3.2) for k = 2 is known as the Rosen-
blatt process. It was introduced by Rosenblatt in [157] and was given its name by
M. Taqqu in [167].

Let us first compute the covariance of the Hermite process and the constant
c(H,k) from (3.2).

We need the following lemma.
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Lemma 3.1 For a + b <−1

∫ u∧v

−∞
(u− y)a(v − y)bdy = β(−1− a − b, b+ 1)|u− v|a+b+1. (3.3)

Proof Suppose u > v. Then use the change of variables z= v−y
z−y

. �

In the sequel we will denote Zk
H by Zk .

Proposition 3.1 The constant c(H,k) in (3.2) is given by

c(H,k)2 =
(

β( 1
2 − 1−H

k
, 2H−2

k
)k

k!H(2H − 1)

)−1

. (3.4)

Moreover, for every k ≥ 1, the process Zk
H satisfies, for every s, t ≥ 0,

R(t, s) := EZk(t)Zk(s)= 1

2

(
t2H + s2H − |t − s|2H

)
.

Proof By Fubini and the isometry of multiple Wiener-Itô integrals, one has

R(t, s) = k!c(H,k)2
∫

Rk

(∫ t

0

∫ s

0

k∏

j=1

(u− yi)
−( 1

2+ 1−H
k

)

+

× (v − yi)
−( 1

2+ 1−H
k

)

+ dvdu

)

dy1 · · ·dyk

= k!c(H,k)2
∫ t

0

∫ s

0

∫

Rk

[
k∏

j=1

(u− yi)
−( 1

2+ 1−H
k

)

+

× (v − yi)
−( 1

2+ 1−H
k

)

+ dy1 · · ·dyk

]

dvdu

= k!c(H,k)2
∫ t

0

∫ s

0

[∫

R

(u− y)
−( 1

2+ 1−H
k

)

+ (v − y)
−( 1

2+ 1−H
k

)

+ dy

]k

dvdu.

Let β(p,q) = ∫ 1
0 zp−1(1 − z)p−1dz,p, q > 0 be the beta function. By using the

identity (see (3.3))

∫

R

(u− y)a−1+ (v − y)a−1+ dy = β(a,1− 2a)|u− v|2a−1
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we get

R(t, s)= k!c(H,k)2β

(
1

2
− 1−H

k
,

2H − 2

k

)k ∫ t

0

∫ s

0

(|u− v| 2H−2
k
)k

dvdu

= k!c(H,k)2 β( 1
2 − 1−H

k
, 2H−2

k
)k

H(2H − 1)

1

2

(
t2H + s2H − |t − s|2H

)
.

In order to obtain E(Zk
H (t))2 = 1, we will choose c(H,k) to be given by (3.4) and

we will have

R(t, s)= 1

2

(
t2H + s2H − |t − s|2H

)
, s, t ≥ 0.

�

Remark 3.2 Note that the covariance does not suffice to deduce the law of the pro-
cess, since the Hermite process is not Gaussian (except when k = 1).

As mentioned earlier, the Hermite process shares many of the properties of fBm.

Proposition 3.2 The process Zk
H given by (3.2) is H -self-similar.

Proof Let c > 0. We will use the self-similarity property of the Wiener process. We
have

Zk(ct)= c(H,k)

∫

Rk

∫ ct

0

(
k∏

j=1

(s − yi)
−( 1

2+ 1−H
k

)

+

)

dsdB(y1) · · ·dB(yk)

= cc(H,k)

∫

Rk

∫ t

0

(
k∏

j=1

(cs − yi)
−( 1

2+ 1−H
k

)

+

)

dsdB(y1) · · ·dB(yk)

= cc(H,k)

∫

Rk

∫ t

0

(
k∏

j=1

(cs − cyi)
−( 1

2+ 1−H
k

)

+

)

dsdB
(
c−1y1

) · · ·dB
(
c−1yk

)

= cc−( 1
2+ 1−H

k
)c(H, k)

×
∫

Rk

∫ t

0

(
k∏

j=1

(s − yi)
−( 1

2+ 1−H
k

)

+

)

dsdB
(
c−1y1

) · · ·dB
(
c−1yk

)

=(d) cc−( 1
2+ 1−H

k
)c−

k
2 c(H,k)

×
∫

Rk

∫ t

0

(
k∏

j=1

(s − yi)
−( 1

2+ 1−H
k

)

+

)

dsdB(y1) · · ·dB(yk)
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= cH Zk(t).

Recall that=(d) denotes the equivalence of finite dimensional distributions. �

Proposition 3.3 The increments of the process Zk are stationary.

Proof It follows immediately from (3.2) that for every h > 0 the processes
(Zk(t + h)−Zk(t))t≥0 and (Zk(t))t≥0 coincide in law. �

Remark 3.3 From Propositions 3.2 and 3.3 one can deduce the expression of the
covariance of the Hermite process by using Proposition A.1.

Proposition 3.4 All moments of the Hermite process are finite and for every p ≥ 1

E
∣∣Zk(t)

∣∣p = E
∣∣Zk(1)

∣∣pt2H

for every t ≥ 0.

Proof This is a consequence of Proposition 3.2. �

From the stationarity of increments and the self-similarity, it follows that

Proposition 3.5 For any p ≥ 1

E
[∣∣Zk

H (t)−Zk
H (s)

∣∣p]= E
∣∣Zk(1)

∣∣p|t − s|pH .

As a consequence the Hermite process has Hölder continuous paths of order δ with
0 < δ < H .

Proof To get the Hölder continuity, one applies the Kolmogorov criterium (Propo-
sition A.2). �

Proposition 3.6 The Hermite process exhibits long-range dependence.

Proof This follows from Proposition A.2 because the self-similarity index is
H > 1

2 . �

We mention that different expressions of the exponent in (3.2) are used in the
literature, but we have chosen this one so that the order of similarity is equal to H .

3.1.2 Other Representations

One can express the Hermite process as a multiple integral with respect to a Wiener
process on a finite time interval. This representation uses the kernel KH of the
fractional Brownian motion (1.3).
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Theorem 3.1 Let H ∈ ( 1
2 ,1). Consider the process (Y

(q,H)
t )t∈[0,T ] with q ≥ 1 given

by

Y
(q,H)
t = d(H)

∫ t

0
· · ·
∫ t

0
dWy1 · · ·dWyq

×
(∫ t

y1∨···∨yq

∂1K
H ′(u, y1) · · · ∂1K

H ′(u, yq)du

)
, t ∈ [0,1] (3.5)

where KH ′ is the usual kernel of the fractional Brownian motion (1.3), (Wt )t∈[0,T ]
is a Wiener process and

H ′ = 1+ H − 1

q
⇐⇒ (

2H ′ − 2
)
q = 2H − 2. (3.6)

Then, if d(H) is such that E|Y (q,H)

1 |2 = 1, the process (Y
q,H
t )t∈[0,T ] has the same

finite dimensional distributions as the Hermite process (Zk
H (t))t∈[0,T ] given by (3.2).

Proof See [148]. We will prove the result for the case k = 2 in Sect. 3.2. �

Remark 3.4 There is an alternative way to define Z
(q,H)
t as a multiple integral with

respect to fractional Brownian motion. Some details can be found in [133]. Let BH ′

be a fractional Brownian motion with Hurst parameter H ′ given by (3.6) and denote
by IBH

q the multiple integral of order q with respect to this process. We define

Z
(q,H)
t = c(H)IBH ′

q (μt ), t ∈ [0,1] (3.7)

where μt denotes the uniform measure on the diagonal Dt of [0, t]q . The constant
c(H) is chosen so that the covariance of Z(q) is equal to 1

2 (t2H + s2H − |t − s|2H ).

3.1.3 Wiener Integrals with Respect to the Hermite Process

In this section, we introduce Wiener integrals with respect to the Hermite process.
Consider a Hermite process given by (3.2).

Let us denote by E the class of elementary functions on R of the form

f (u) =
n∑

l=1

al1(tl ,tl+1](u), tl < tl+1, al ∈R, l = 1, . . . , n. (3.8)

For f ∈ E as above, it is natural to define its Wiener integral with respect to the
Hermite process Zk

H by

∫

R

f (u)dZk
H (u) =

n∑

l=1

al

(
Zk

H (tl+1)−Zk
H (tl)

)
. (3.9)
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In order to extend the definition (3.9) to a larger class of integrands, let us first make
some observations. By formula (3.2) we can write

Zk
H (t) =

∫

Rk

I (1[0,t])(y1, . . . , yk)dB(y1) · · ·dB(yk),

where by I we denote the mapping on the set of functions f : R→ R to the set of
functions f :Rk→R

I (f )(y1, . . . , yk) = c(H,k)

∫

R

f (u)

k∏

j=1

(u− yi)
−( 1

2+ 1−H
k

)

+ du.

Note that for k = 1 this operator can be expressed in terms of fractional integrals
and derivatives (see [9, 147]). Thus the definition (3.9) can also be written in the
following form, due to the obvious linearity of I

∫

R

f (u)dZk
H (u) =

n∑

l=1

al

(
Zk

H (tl+1)−Zk
H (tl)

)

=
n∑

l=1

al

∫

Rk

I (1(tl ,tl+1])(y1, . . . , yk)dB(y1) · · ·dB(yk)

=
∫

Rk

I (f )(y1, . . . , yk)dB(y1) · · ·dB(yk). (3.10)

We now introduce the following space

H =
{
f :R→R

∣∣∣
∫

Rk

(
I (f )(y1, . . . , yk)

)2
dy1 · · ·dyk <∞

}

endowed with the norm

‖f ‖2
H =

∫

Rk

(
I (f )(y1, . . . , yk)

)2
dy1 · · ·dyk.

We have

‖f ‖2
H = c(H,k)2

∫

Rk

(∫

R

∫

R

f (u)f (v)

k∏

j=1

(u− yi)
−( 1

2+ 1−H
k

)

+

× (v − yi)
−( 1

2+ 1−H
k

)

+ dvdu

)

dy1 · · ·dyk

= c(H,k)2
∫

R

∫

R

f (u)f (v)

(∫

R

(u− y)
−( 1

2+ 1−H
k

)

+



84 3 Non-Gaussian Self-similar Processes

× (v − y)
−( 1

2+ 1−H
k

)

+ dy

)k

dvdu

= H(2H − 1)

∫

R

∫

R

f (u)f (v)|u− v|2H−2dvdu.

Hence

H=
{
f :R→R

∣
∣∣
∫

R

∫

R

f (u)f (v)|u− v|2H−2dvdu <∞
}

and

‖f ‖2
H = H(2H − 1)

∫

R

∫

R

f (u)f (v)|u− v|2H−2dvdu.

Let us observe that the mapping

f �→
∫

R

f (u)dZk
H (u) (3.11)

provides an isometry from E to L2(Ω). Indeed, for f of the form (3.8), we have

E
[
I (f )2] =

n−1∑

i,j=0

aiaj E
[(

ZH (ti+1)−ZH (ti)
)(

ZH (tj+1)−ZH (tj )
)]

=
n−1∑

i,j=0

aiaj

(
R(ti+1, tj+1)−R(ti+1, tj )−R(ti, tj+1)+R(ti, tj )

)

=
n−1∑

i,j=0

aiajH(2H − 1)

∫ ti+1

ti

∫ tj+1

tj

|u− v|2H−2dvdu

=
n−1∑

i,j=0

aiaj 〈1(ti ,ti+1],1(tj ,tj+1]〉H = ‖f ‖2
H .

On the other hand, it has been proved in [147] that the set of elementary functions E
is dense in H. As a consequence the mapping (3.11) can be extended to an isometry
from H to L2(Ω) and relation (3.10) still holds.

This extension will be called the Wiener integral with respect to the Hermite
process.

The space H coincides with the canonical Hilbert space associated to the fBm
(see Sect. 1.1.3). Therefore the followings facts hold (see [147] or [136]):

• The elements of H may be not functions but distributions; it is therefore more
practical to work with subspaces of H that are sets of functions. Such a subspace
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is

|H| =
{
f :R→R

∣∣∣
∫

R

∫

R

∣∣f (u)
∣∣∣∣f (v)

∣∣|u− v|2H−2dvdu <∞
}
.

Then |H| is a strict subspace of H and we actually have the inclusions

L2(R)∩L1(R)⊂ L
1
H (R)⊂ |H| ⊂H. (3.12)

• The space |H| is not complete with respect to the norm ‖ · ‖H but it is a Banach
space with respect to the norm

‖f ‖2
|H| =

∫

R

∫

R

∣∣f (u)
∣∣∣∣f (v)

∣∣|u− v|2H−2dvdu.

• A spectral domain included in H can also be defined as

Ĥ =
{
f ∈ L2(R)

∣∣∣
∫

R

∣∣f̂ (x)
∣∣2|x|−2H+1dx <∞

}
, (3.13)

where f̂ denotes the Fourier transform of f . We have again that Ĥ is a strict
subspace of H and the inclusion

L2(R)∩L1(R)⊂ L
1
H (R)⊂ Ĥ⊂H

holds. We define

‖f ‖2
Ĥ =

∫

R

∣∣f̂ (x)
∣∣2|x|−2H+1dx.

• There are elements in |H| that are not in Ĥ and vice versa.

3.2 A Particular Case: The Rosenblatt Process

In this section we will analyze some basic properties of the Rosenblatt process; in
particular we are interested in its representation as a stochastic integral on a finite
interval. As mentioned earlier, this process is obtained by taking k = 2 in the relation
(3.2), so

Z2(t) := Z(t)= a(H)

∫

R

∫

R

(∫ t

0
(s − y1)

− 2−H
2+ (s − y2)

− 2−H
2+ ds

)
dB(y1)dB(y2)

(3.14)
where (B(y), y ∈ R) is a standard Brownian motion on R. The constant a(H) is
a positive normalizing constant and it is chosen so that E(Z(1)2) = 1. Indeed, it
follows from (3.4) that

a(H)2 =
(

β(H
2 ,H − 1)2

2H(2H − 1)

)−1

.
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Recall that the process (Z(t))t∈[0,T ] is self-similar of order H and it has stationary
increments; it admits a Hölder continuous version of order δ < H . Since H ∈ ( 1

2 ,1),
it follows that the process Z exhibits long-range dependence.

3.2.1 Stochastic Integral Representation on a Finite Interval

As in the fBm case, we would like to represent Zt as a stochastic integral with
respect to a Brownian motion with time interval [0, T ]. Recall that a fBm with
H > 1

2 can be written as (relation (1.2))

BH
t =

∫ t

0
KH (t, s)dWs (3.15)

with (Wt , t ∈ [0, T ]) a standard Wiener process and

KH (t, s)= cH s
1
2−H

∫ t

s

(u− s)H−
3
2 uH− 1

2 du

where t > s and cH = (
H(2H−1)

β(2−2H,H− 1
2 )

)
1
2 .

Note that to prove the representation (3.15) (at least in law) it suffices to see that
the right-hand side has the same covariance R as the fBm; otherwise, it can easily
be seen from the expression of the kernel K that the right-hand side of (3.15) is H -
self-similar with stationary increments and as a consequence it cannot be anything
else but a fractional Brownian motion with parameter H .

Since the Rosenblatt process is not Gaussian, the proof of a similar representation
to (3.15) in this case needs a supplementary argument. We will use the concept of
cumulants. The cumulants of a random variable X having all moments appear as the
coefficients in the Maclaurin series of g(t)= log EetX , t ∈R. The first cumulant c1

is the expectation of X while the second one is the variance of X. Generally, the nth
cumulant is given by g(n)(0). The key fact is that for random variables in the second
Wiener chaos the cumulants characterizes the law.

Let us consider a multiple integral I2(f ) with f ∈ L2(R2) symmetric. Then the
mth cumulant of the random variable I2(f ) is given by (see [131] or [80])

cm

(
I2(f )

)= 2m−1(m− 1)!
∫

Rm

f (y1, y2)f (y2, y3)

× · · · × f (ym−1, ym)f (ym,y1)dy1 · · ·dym. (3.16)

In fact we have the following
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Proposition 3.7 Let K be the kernel (1.4) and let (Z(t))t∈[0,T ] be a Rosenblatt
process given by (3.14) with parameter H . Then it follows that

Z(t)=(d) d(H)

∫ t

0

∫ t

0

[∫ t

y1∨y2

∂KH ′

∂u
(u, y1)

∂KH ′

∂u
(u, y2)du

]
dB(y1)dB(y2)

(3.17)
where (Bt , t ∈ [0, T ]) is a Brownian motion,

H ′ = H + 1

2
(3.18)

and

d(H)= 1

H + 1

(
H

2(2H − 1)

)− 1
2

. (3.19)

Remark 3.5

(i) The constant d(H) is a normalizing constant, it has been chosen so that
E(Z(t)Z(s))= 1

2 (t2H + s2H − |t − s|2H ). Indeed,

E
(
Z(t)Z(s)

)= 2d(H)2
∫ t∧s

0

∫ t∧s

0
dy1dy2

×
(∫ t

y1∨y2

∫ s

y1∨y2

∂KH ′

∂u
(u, y1)

∂KH ′

∂u
(u, y2)

∂KH ′

∂u
(v, y1)

× ∂KH ′

∂v
(v, y2)dudv

)

= 2d(H)2
∫ t

0

∫ s

0
dvdu

(∫ u∧v

0

∂KH ′

∂u
(u, y1)

∂KH ′

∂u
(v, y1)dy1

)2

= 2d(H)2(H ′
(
2H ′ − 1

))2
∫ t

0

∫ s

0
|u− v|2H−2dvdu=R(t, s).

(ii) It can be seen without difficulty that the process

Z′(t) := d(H)

∫ t

0

∫ t

0

[∫ t

y1∨y2

∂KH ′

∂u
(u, y1)

∂KH ′

∂u
(u, y2)du

]
dB(y1)dB(y2)

defines an H -self-similar process. Indeed, for any c > 0,

Z′(ct) =
∫ ct

0

∫ ct

0

[∫ ct

y1∨y2

∂KH ′

∂u
(u, y1)

∂KH ′

∂u
(u, y2)du

]
dB(y1)dB(y2)

=
∫ ct

0

∫ ct

0

[∫ t

y1
c
∨ y2

c

∂KH ′

∂u
(cu, y1)

∂KH ′

∂u
(cu, y2)cdu

]
dB(y1)dB(y2)
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=
∫ t

0

∫ t

0

[∫ t

y1∨y2

∂KH ′

∂u
(cu, cy1)

∂KH ′

∂u
(cu, cy2)cdu

]
dB(cy1)dB(cy2)

and since B(cy) =(d) c
1
2 B(y) and ∂KH ′

∂u
(cu, cyi) = cH

′− 3
2 ∂KH ′

∂u
(u, yi) we ob-

tain Z(ct)=(d) cH Z(t).

Proof Let us denote by Z′(t) the right-hand side of (3.17). Consider b1, . . . , bn ∈R
and t1, . . . , tn ∈ [0, T ]. We need to show that the random variables

n∑

l=1

blZ(tl),

n∑

l=1

blZ
′(tl)

have the same distribution.
As mentioned above, the law of the multiple Wiener-Itô integral I2(f ) is

uniquely determined by its cumulants (3.16).
We will show that, for every t, s ∈ [0, T ], the random variables Zt + Zs and

Z′t +Z′s have the same law; the general case will follow by a similar calculation. It
follows that

Z′t +Z′s = I2(ft,s)

where

ft,s(y1, y2)= 1[0,t](y1)1[0,t](y2)

∫ t

y1∨y2

∂KH ′

∂u
(u, y1)

∂KH ′

∂u
(u, y2)du

+ 1[0,s](y1)1[0,s](y2)

∫ s

y1∨y2

∂KH ′

∂u
(u, y1)

∂KH ′

∂u
(u, y2)duv. (3.20)

Putting am := (m−1)!
2 2md(H)m we have

cm(fs,t )= a(m)

∫

Rm

ft,s(y1, y2) · · ·ft,s(ym, y1)dy1 · · ·dym

= a(m)

∫

Rm

dy1 · · ·dym

(∫ t

y1∨y2

∂KH ′

∂u
(u1, y1)

∂KH ′

∂u
(u1, y2)du1

+
∫ s

y1∨y2

∂KH ′

∂u
(u1, y1)

∂KH ′

∂u
(u1, y2)du1

)

×
(∫ t

y2∨y3

∂KH ′

∂u
(u2, y2)

∂KH ′

∂u
(u2, y3)du2

+
∫ s

y2∨y3

∂KH ′

∂u
(u2, y2)

∂KH ′

∂u
(u2, y3)du2

)

× · · ·
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×
(∫ t

ym∨y1

∂KH ′

∂u
(um,ym)

∂KH ′

∂u
(um,y1)dum

+
∫ s

ym∨y1

∂KH ′

∂u
(um,y1)

∂KH ′

∂u
(um,ym)dum

)

and by the classical Fubini theorem

cm(fs,t ) = a(m)
∑

tj∈{t,s}

∫ t1

0
· · ·
∫ tm

0
du1 · · ·dum

×
(∫ u1∧um

0

∂KH ′

∂u1
(u1, y1)

∂KH ′

∂um

(um,y1)dy1

)

×
(∫ u1∧u2

0

∂KH ′

∂u1
(u1, y2)

∂KH ′

∂u2
(u2, y2)dy2

)

× · · ·

×
∫ um−1∧um

0

∂KH ′

∂um−1
(um,ym)

∂KH ′

∂um

(um,ym)dym

= a(m)
∑

tj∈{t,s}

∫ t1

0
· · ·
∫ tm

0
du1 · · ·dum

× |u1 − u2|2H ′−2|u2 − u3|2H ′−2 · · · |um − u1|2H ′−2 (3.21)

with a′(m)= a(m)(H ′(2H ′ − 1))m.
The computation of the cumulant of Zt +Zs is similar. Indeed, we can write, for

s, t ∈ [0, T ],
Z(t)+Z(s)= I2(gs,t )

where

gs,t = a(H)

(∫ t

0
(u− y1)

H−2
2+ (u− y2)

H−2
2+ du+

∫ s

0
(u− y1)

H−2
2+ (u− y2)

H−2
2+ du

)

and the mth cumulant of the kernel gs,t is given by (here b(m)= (m−1)!
2 2ma(H)m)

cm(gs,t ) = b(m)

∫

Rm

dy1 · · ·dym

(∫ t

0
(u1 − y1)

H−2
2+ (u1 − y2)

H−2
2+ du1

+
∫ s

0
(u1 − y1)

H−2
2+ (u1 − y2)

H−2
2+ du1

)

×
(∫ t

0
(u2 − y2)

H−2
2+ (u2 − y3)

H−2
2+ du2
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+
∫ s

0
(u2 − y2)

H−2
2+ (u2 − y3)

H−2
2+ du2

)

× · · ·
×
(∫ t

0
(um − ym)

H−2
2+ (um − y1)

H−2
2+ du1

×+
∫ s

0
(um − ym)

H−2
2+ (um − y1)

H−2
2+ dum

)

= b(m)
∑

tj∈{t,s}

∫ t1

0
· · ·
∫ tm

0
du1 · · ·dum

=
∫

R

(u1 − y1)
H−2

2+ (um − y1)
H−2

2+ dy1

∫

R

(u1 − y2)
H−2

2+ (u2 − y2)
H−2

2+ dy2

× · · ·
×
∫

R

(um−1 − ym)
H−2

2+ (um − ym)
H−2

2+ dym.

Using identity (3.3) we get

cm(gs,t ) = b(m)β

(
H

2
,H − 1

)m ∑

tj∈{t,s}

∫ t1

0
· · ·
∫ tm

0
du1 · · ·dum

× |u1 − u2|2H ′−2|u2 − u3|2H ′−2 · · · |um − u1|2H ′−2 (3.22)

and it remains to observe that a′(m)= b(m)β(H
2 ,H −1)m which implies that (3.21)

equals (3.22). �

We will conclude this section by proving that the Rosenblatt process possesses
a similar property to fBm, that is, it can be approximated by a sequence of semi-
martingales (in fact, since here we have H > 1

2 , by a sequence of bounded variation
processes). See also [10] for related results.

The basic observation is that, if one formally interchanges the stochastic and
Lebesgue integrals in (3.17), one gets

Z(t)“= ”
∫ t

0

(∫ u

0

∫ u

0

∂KH ′

∂u
(u, y1)

∂KH ′

∂u
(u, y2)dB(y1)dB(y2)

)
du

but the above expression cannot hold because the kernel ∂KH ′
∂u

(u, y1)
∂KH ′

∂u
(u, y2)

does not belong to L2([0, T ]2) since the partial derivative ∂KH ′
∂u

(u, y1) behaves on

the diagonal as (u− y1)
H−2

2 .
Let us define, for every ε > 0,

Zε(t) = d(H)

∫ t

0

∫ t

0

[∫ t

y1∨y2

∂KH ′

∂u
(u+ ε, y1)

∂KH ′

∂u
(u+ ε, y2)du

]
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× dB(y1)dB(y2)

=
∫ t

0

(∫ u

0

∫ u

0

∂KH ′

∂u
(u+ ε, y1)

∂KH ′

∂u
(u+ ε, y2)dB(y1)dB(y2)

)
du

:=
∫ t

0
Aε(u)du.

Since Aε ∈ L2([0, T ] × Ω) for every ε > 0 and it is adapted, it follows that the
process Zε is a semimartingale.

Proposition 3.8 For every t ∈ [0, T ], Zε(t)→ Z(t) in L2(Ω).

Proof We have

Zε(t)−Z(t) =
∫ t

0

∫ t

0
dB(y1)dB(y2)

×
(∫ t

y1∨y2

(
∂KH ′

∂u
(u+ ε, y1)

∂KH ′

∂u
(u+ ε, y2)

− ∂KH ′

∂u
(u, y1)

∂KH ′

∂u
(u, y2)

)
du

)

and

E
∣∣Zε(t)−Z(t)

∣∣2

= 2
∫ t

0

∫ t

0
dy1dy2

∫ t

y1∨y2

∫ t

y1∨y2

dvdu

×
(

∂KH ′

∂u
(u+ ε, y1)

∂KH ′

∂u
(u+ ε, y2)− ∂KH ′

∂u
(u, y1)

∂KH ′

∂u
(u, y2)

)

×
(

∂KH ′

∂v
(v + ε, y1)

∂KH ′

∂v
(v + ε, y2)− ∂KH ′

∂v
(v, y1)

∂KH ′

∂v
(v, y2)

)
.

Clearly the quantity ( ∂KH ′
∂u

(u + ε, y1)
∂KH ′

∂u
(u + ε, y2) − ∂KH ′

∂u
(u, y1)

∂KH ′
∂u

(u, y2))

converges to zero as ε→ 0 for every u,y1, y2 and the conclusion follows by the
dominated convergence theorem. �

Remark 3.6 Another representation in law of the Rosenblatt process can be
given as follows. Let W be a complex-valued Gaussian random measure on
R such that for Borel sets in R, A,B,Aj , E[W(A)] = 0,E[W(A)W(B)] =
the Lebesgue measure of A ∩ B,W(

⋃n
j=1 Aj) =∑n

j=1 W(Aj ) for mutually dis-
joint A1, . . . ,An and W(A)=W(−A).
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Let

HD =
{
h : h is a complex-valued function on R, h(x)

= h(−x),

∫

R

h(x)2|x|D−1dx <∞
}

with D = 1−H and for every t ≥ 0 define an integral operator At by

Ath(x)= C(D)

∫ ∞

−∞
eit (x−y)−1

i(x − y)
h(y)|y|D−1dy, h ∈HD. (3.23)

Then At is a self-adjoint Hilbert-Schmidt operator (see [67]), all eigenvalues
λn(t), n= 1,2, . . ., are real and satisfy

∑∞
n=1 λ2

n(t) <∞.
Then for every t1, . . . , td ≥ 0,

(
ZD(t1), . . . ,ZD(td)

)=(d)

( ∞∑

n=1

λn(t1)
(
ε2
n − 1

)
, . . . ,

∞∑

n=1

λn(td)
(
ε2
n − 1

)
)

,

where {εn} are i.i.d. N(0,1) random variables.
The case d = 1 was shown in Proposition 2 of [67] while the case d ≥ 1 can be

found in [115].

3.3 The Non-symmetric Rosenblatt Process

We will introduce here a variant of the Rosenblatt process called the non-symmetric
Rosenblatt process. As we will see in this section, this process is also H -self-similar
with stationary increments and it lives in the second Wiener chaos. This shows that
in the second Wiener chaos we can have many self-similar processes with stationary
increments. This does not happens in the first Wiener chaos, where fBm is the only
self-similar process with stationary increments.

Let H1,H2 ∈ (0,1) such that

H1 +H2 > 1. (3.24)

Consider the stochastic process YH1,H2 = (Y
H1,H2
t )t≥0 given by, for every t ≥ 0,

Y
H1,H2
t = c(H1,H2)

∫

R2

(∫ t

0
(u− y1)

H1
2 −1
+ (u− y2)

H2
2 −1
+ du

)
dBy1dBy2, (3.25)

where the integral above is a multiple Wiener-Itô stochastic integral of order 2.
Let us denote by ft the kernel of Y

H1,H2
t , that is,

ft (y1, y2)= c(H1,H2)

∫ t

0
(u− y1)

H1
2 −1
+ (u− y2)

H2
2 −1
+ du (3.26)
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for every y1, y2 ∈ R. The kernel ft is in general not symmetric with respect to the
variables y1, y2 (except the case H1 =H2). We denote by f̃t its symmetrization

f̃t (y1, y2)= 1

2

(
ft (y1, y2)+ ft (y2, y1)

)
.

In this way, using the usual notation for multiple integrals, we can write Y
H1,H2
t =

I2(ft ) for every t ≥ 0. Condition (3.24) ensures that the kernel ft belongs to
L2([0,∞)2) for every t (this can be seen in the sequel of this section) and thus
the double integral in (3.25) is well-defined.

The constant c(H1,H2) will be chosen so that E[Y 2
1 ] = 1. This constant, which

will be explicitly calculated later, plays an important role.

Proposition 3.9 Assume (3.24). Then the process (Y
H1,H2
t )t∈[0,∞) is 1

2 (H1 + H2)

self-similar and it has stationary increments.

Proof Let c > 0. We have

Y
H1,H2
ct = c(H1,H2)

∫

R2

(∫ ct

0
(u− y1)

H1
2 −1
+ (u− y2)

H2
2 −1
+ du

)
dBy1dBy2

= c(H1,H2)c

∫

R2

(∫ t

0
(cu− y1)

H1
2 −1
+ (cu− y2)

H2
2 −1
+ du

)
dBy1dBy2

= c(H1,H2)c

∫

R2

(∫ t

0
(cu− cy1)

H1
2 −1
+ (cu− cy2)

H2
2 −1
+ du

)
dBcy1dBcy2

d= c
H1+H2

2 Yt

where we have used the 1
2 -self-similarity of the Wiener process B . Here

d= means
equivalence of all finite dimensional distributions. It is obvious that the process
(Y

H1,H2
t ) has self-similarity since for every h > 0 and t ≥ 0 we have (Y

H1,H2
t+h −

Y
H1,H2
h )

d= (Y
H1,H2
t ). �

Remark 3.7 The particular case H1 = H2 = H corresponds to the Rosenblatt pro-
cess as defined in [67, 167]. We will call this process the symmetric Rosenblatt pro-
cess. The process YH1,H2 with H1 �=H2 will be called the non-symmetric Rosenblatt
process. Also note that the self-similar parameter of YH1,H2 is always contained in
the interval ( 1

2 ,1).

We will now compute the renormalizing constant appearing in (3.25).
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Lemma 3.2 Assume H1,H2 ∈ (0,1) and (3.24). The normalizing constant
c(H1,H2) appearing in the definition of YH1,H2 in (3.25) is given by

c(H1,H2)
−2 = 1

H(2H − 1)

(
β

(
1−H1,

H1

2

)
β

(
1−H2,

H2

2

)

+ β

(
1−H,

H1

2

)
β

(
1−H,

H2

2

))

where 2H =H1 +H2.

Remark 3.8 In the particular case H1 =H2 =H we have

c(H,H)−2 := c(H)= 2

H(2H − 1)
β

(
1−H,

H

2

)2

and it coincides with the constant (3.4) with k = 2.

Remark 3.9 Using again β(a, b)= Γ (a)Γ (b)
Γ (a+b)

, the renormalizing constant C(H1,H2)

can be expressed in terms of gamma functions as follows:

c(H1,H2)
−2 = 1

H(2H − 1)

[
Γ (1−H1)Γ (H1

2 )

Γ (1− H1
2 )

Γ (1−H2)Γ (H2
2 )

Γ (1− H2
2 )

+ Γ (1−H)Γ (H1
2 )

Γ (1− H2
2 )

Γ (1−H)Γ (H2
2 )

Γ (1− H1
2 )

]

= 1

H(2H − 1)

Γ (H1
2 )Γ (H2

2 )

Γ (1− H1
2 )Γ (1− H2

2 )

× (Γ (1−H1)Γ (1−H2)+ Γ (1−H)2).

We will prove in the next section that the processes YH1,H2 given by (3.25) have
different laws depending upon the values of the self-similarity parameters H1 and
H2. We will use the cumulants (3.16).

Remark 3.10 Recall that the law of a multiple integral of order two is completely
determined by its cumulants in the sense that, if two multiple integrals of order 2
have the same cumulants, then their distributions are the same (see [80]).

Let us compute the cumulants of the random variable I2(f̃t ) with fixed t ≥ 0 and
ft given by (3.26). Using formula (3.16) and the expression of the kernel f̃ , we get

cm

(
I2(f̃t )

)= 2m−1(m− 1)!2−mc(H1,H2)
m

×
∫

Rm

(∫ t

0
(u1 − y1)

H1
2 −1
+ (u1 − y2)

H2
2 −1
+ du1
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+
∫ t

0
(u1 − y2)

H1
2 −1
+ (u1 − y1)

H2
2 −1
+ du1

)

×
(∫ t

0
(u2 − y2)

H1
2 −1
+ (u2 − y3)

H2
2 −1
+ du2

+
∫ t

0
(u2 − y2)

H1
2 −1
+ (u2 − y3)

H2
2 −1
+ du2

)

× · · ·

×
(∫ t

0
(um−1 − ym−1)

H1
2 −1
+ (um−1 − ym)

H2
2 −1
+ dum−1

+
∫ t

0
(um−1 − ym)

H1
2 −1
+ (um−1 − ym−1)

H2
2 −1
+ dum−1

)

×
(∫ t

0
(um − ym)

H1
2 −1
+ (um − y1)

H2
2 −1
+ dum

+
∫ t

0
(um − y1)

H1
2 −1
+ (um − ym)

H2
2 −1
+ dum

)
dy1 · · ·dym.

We can state the main result of this section.

Proposition 3.10 Let us consider the process (Y
H1,H2
t )t≥0 given by (3.25). There

exist pairs (H1,H2), (H
′
1,H

′
2) ∈ (0,1)2 with H1 +H2 = H ′1 +H ′2 = 2H > 1 such

that (H1,H2) �= (H ′1,H ′2) and for any t > 0, the laws of the random variables

Y
H1,H2
t and Y

H ′1,H ′2
t are different.

Proof It suffices to show that for fixed t the two random variables Y
H1,H2
t and

Y
H ′1,H ′2
t have at least one different cumulant. The first two cumulants (that is, the

expectation and the variance) of these two random variables are the same since
YH1,H2 is an H -self-similar process with stationary increments. Let us compute the
third cumulant.

Let us consider the case m = 3. Then, by changing the order of integration, we
get

c3
(
I2(f̃t )

)

= c(H1,H2)
3
∫ t

0

∫ t

0

∫ t

0

[(∫

R

(u1 − y)
H1
2 −1
+ (u3 − y)

H2
2 −1
+ dy

)

×
(∫

R

(u1 − y)
H2
2 −1
+ (u2 − y)

H1
2 −1
+ dy

)

×
(∫

R

(u2 − y)
H2
2 −1
+ (u3 − y)

H1
2 −1
+ dy

)
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+
(∫

R

(u1 − y)
H1
2 −1
+ (u3 − y)

H1
2 −1
+ dy

)(∫

R

(u1 − y)
H2
2 −1
+ (u2 − y)

H1
2 −1
+ dy

)

×
(∫

R

(u2 − y)
H2
2 −1
+ (u3 − y)

H2
2 −1
+ dy

)

+
(∫

R

(u1 − y)
H1
2 −1
+ (u3 − y)

H2
2 −1
+ dy

)(∫

R

(u1 − y)
H2
2 −1
+ (u2 − y)

H2
2 −1
+ dy

)

×
(∫

R

(u2 − y)
H1
2 −1
+ (u3 − y)

H1
2 −1
+ dy

)

+
(∫

R

(u1 − y)
H1
2 −1
+ (u3 − y)

H1
2 −1
+ dy

)(∫

R

(u1 − y)
H2
2 −1
+ (u2 − y)

H2
2 −1
+ dy

)

×
(∫

R

(u2 − y)
H1
2 −1
+ (u3 − y)

H2
2 −1
+ dy

)

+
(∫

R

(u1 − y)
H2
2 −1
+ (u3 − y)

H2
2 −1
+ dy

)(∫

R

(u1 − y)
H1
2 −1
+ (u2 − y)

H1
2 −1
+ dy

)

×
(∫

R

(u2 − y)
H2
2 −1
+ (u3 − y)

H1
2 −1
+ dy

)

+
(∫

R

(u1 − y)
H2
2 −1
+ (u3 − y)

H1
2 −1
+ dy

)(∫

R

(u1 − y)
H1
2 −1
+ (u2 − y)

H1
2 −1
+ dy

)

×
(∫

R

(u2 − y)
H2
2 −1
+ (u3 − y)

H2
2 −1
+ dy

)

+
(∫

R

dy(u1 − y)
H2
2 −1
+ (u3 − y)

H2
2 −1
+

)(∫

R

(u1 − y)
H1
2 −1
+ (u2 − y)

H2
2 −1
+ dy

)

×
(∫

R

(u2 − y)
H1
2 −1
+ (u3 − y)

H1
2 −1
+ dy

)

+
(∫

R

dy(u1 − y)
H2
2 −1
+ (u3 − y)

H1
2 −1
+

)(∫

R

(u1 − y)
H1
2 −1
+ (u2 − y)

H2
2 −1
+ dy

)

×
(∫

R

(u2 − y)
H1
2 −1
+ (u3 − y)

H2
2 −1
+ dy

)]
du1du2du3.

Therefore

c3
(
I2(f̃t )

) =: c(H1,H2)
3
∫ t

0

∫ t

0

∫ t

0

[
gH1,H2(u1, u2, u3)+ gH1,H2(u3, u2, u1)

+ fH1,H2(u1, u2, u3)

+ fH1,H2(u1, u3, u3)+ fH1,H2(u2, u1, u3)+ fH1,H2(u2, u3, u1)

+ fH1,H2(u3, u1, u2)+ fH1,H2(u3, u2, u1)
]
du1du2du3,
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where

gH1,H2(u1, u2, u3) =
(∫

R

(u1 − y)
H1
2 −1
+ (u3 − y)

H2
2 −1
+ dy

)

×
(∫

R

(u1 − y)
H2
2 −1
+ (u2 − y)

H1
2 −1
+ dy

)

×
(∫

R

(u2 − y)
H2
2 −1
+ (u3 − y)

H1
2 −1
+ dy

)

and

fH1,H2(u1, u2, u3) =
(∫

R

(u1 − y)
H1
2 −1
+ (u3 − y)

H1
2 −1
+ dy

)

×
(∫

R

(u1 − y)
H2
2 −1
+ (u2 − y)

H1
2 −1
+ dy

)

×
(∫

R

(u2 − y)
H2
2 −1
+ (u3 − y)

H2
2 −1
+ dy

)
.

Therefore, the function under the integral du1du2du3 is symmetric with respect to
the variables u1, u2, u3. The integral

∫ t

0

∫ t

0

∫ t

0 du1du2du3 is then equal to

3!
∫

u3<u2<u1,u1,u2,u3∈[0,t]
du1du3du3.

Furthermore, it follows from Lemma 3.1 that, for u3 < u3 < u1

gH1,H2(u1, u2, u3) = β

(
1− H1 +H2

2
,
H2

2

)
(u1 − u3)

H1+H2
2 −1

× β

(
1− H1 +H2

2
,
H1

2

)
(u1 − u2)

H1+H2
2 −1

× β

(
1− H1 +H2

2
,
H1

2

)
(u2 − u3)

H1+H2
2 −1

and

fH1,H2(u1, u2, u3) = β

(
1−H1,

H1

2

)
(u1 − u3)

H1+H2
2 −1

× β

(
1−H2,

H1

2

)
(u1 − u2)

H1+H2
2 −1

× β

(
1− H1 +H2

2
,
H2

2

)
(u2 − u3)

H1+H2
2 −1.
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Thus we have

c3
(
I2(f̃t )

) = 3!c(H1,H2)
3
[
β

(
1− H1 +H2

2
,
H1

2

)
β

(
1− H1 +H2

2
,
H2

2

)

×
(

β

(
1− H1 +H2

2
,
H1

2

)
+ β

(
1− H1 +H2

2
,
H2

2

))

+ 2β

(
1−H1,

H1

2

)
β

(
1−H2,

H2

2

)(
β

(
1− H1 +H2

2
,
H1

2

)

+ β

(
1− H1 +H2

2
,
H2

2

))]

×
∫

u3<u2<u1,u1,u2,u3∈[0,t]
(u1 − u3)

H1+H2
2 −1(u1 − u2)

H1+H2
2 −1

× (u2 − u3)
H1+H2

2 −1du1du2du3

= 3!c(H1,H2)
3
(

β

(
1− H1 +H2

2
,
H1

2

)
+ β

(
1− H1 +H2

2
,
H2

2

))

×
(

2β

(
1−H1,

H1

2

)
β

(
1−H2,

H2

2

)

+ β

(
1− H1 +H2

2
,
H1

2

)
β

(
1− H1 +H2

2
,
H2

2

))

×
∫

u3<u2<u1,u1,u2,u3∈[0,t]
(u1 − u3)

H1+H2
2 −1(u1 − u2)

H1+H2
2 −1

× (u2 − u3)
H1+H2

2 −1du1du2du3

= 3!c(H1,H2)
3
(

β

(
1−H,

H1

2

)
+ β

(
1−H,

H2

2

))

×
(

2β

(
1−H1,

H1

2

)
β

(
1−H2,

H2

2

)

+ β

(
1−H,

H1

2

)
β

(
1−H,

H2

2

))

×
∫

u3<u2<u1,u1,u2,u3∈[0,t]
(u1 − u3)

H−1(u1 − u2)
H−1

× (u2 − u3)
H−1du1du2du3

and using gamma integrals we get

c3
(
I2(f̃t )

)

= 3!c(H1,H2)
3

× Γ (1−H)Γ (H1
2 )Γ (H2

2 )

(Γ (1− H1
2 )Γ (1− H2

2 ))2

(
Γ

(
H1

2

)
Γ

(
1− H1

2

)
+ Γ

(
H2

2

)
Γ

(
1− H2

2

))
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× (2Γ (1−H1)Γ (1−H2)+ Γ (1−H)2)

×
∫

u3<u2<u1,u1,u2,u3∈[0,t]
(u1 − u3)

H−1(u1 − u2)
H−1

× (u2 − u3)
H−1du1du2du3.

It is obvious, given the expression of the normalizing constant c(H1,H2), that there
exist (H1,H2) �= (H ′1,H ′2) with c3(I2(fH1,H2)) �= c3(I2(fH ′1,H ′2)) (see also the fol-
lowing remark for a numerical example). �

Remark 3.11 Since the gamma function can be numerically calculated for any value
of the parameter (see for example http://www.efunda.com/math/gamma/findgamma.
cfm), the constant appearing in the expression of the third cumulant above can
also be numerically computed and it can be seen that it has different values
when (H1,H2) �= (H ′1,H ′2) and H1 + H2 = H ′1 + H ′2. Take for example H1 =
H2 = 0.4 and H ′1 = 0.3,H ′2 = 0.5. Then Γ (0,4) = 2.21, Γ (0.2) = 4.49,
Γ (0.8)= 1.16, Γ (0.6) = 1.48, Γ (0.3) = 2.99, Γ (0.5) = 1.77, Γ (0.15) = 6.22,
Γ (0.25) = 3.32, Γ (0.75) = 1.22, Γ (0.85) = 1.11 and this leads, after exact com-
putation, to different values for the cumulants.

Remark 3.12 There are other classes of self-similar processes with stationary incre-
ments in the second Wiener chaos. See Exercise 3.5.

3.4 Bibliographical Notes

Although defined during the 60s and 70s ([67, 157, 168]) due to their appearance
in the Non-Central Limit Theorem, the systematic analysis of Hermite processes
has only been developed during the last ten years, motivated by their nice prop-
erties (self-similarity, stationarity of the increments, long-range dependence). As
attested by the empirical data, these stochastic processes are well suited to appli-
cations featuring non-Gaussian long-range dependence. An example is provided in
[169], which uses an empirical study from [107], see also the bibliographical guide
[191]. Results on several aspects (stochastic integration, weak approximation, dis-
tributional properties, estimation) related to this class of stochastic processes can be
found in [6, 7, 30, 34, 45, 81, 112, 144, 148, 174, 188], among others. The non-
symmetric Rosenblatt process has been studied in [114].

3.5 Exercises

Exercise 3.1 ([171]) Define the following approximation for the Rosenblatt process

Zn
t =

n∑

i,j=1;i �=j

n2
∫ i

n

i−1
n

∫ j
n

j−1
n

F

( [nt]
n

,u, v

)
dvdu

ξi√
n

ξj√
n
, t ∈ [0, T ] (3.27)

http://www.efunda.com/math/gamma/findgamma.cfm
http://www.efunda.com/math/gamma/findgamma.cfm
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where F is the kernel of the Rosenblatt process in the representation (3.17)

F(t, y1, y2)= 1[0,t](y1)1[0,t](y2)

∫ t

y1∨y2

∂KH ′

∂u
(u, y1)

∂KH ′

∂u
(u, y2)du.

Prove that the family of stochastic processes (Zn
t )t∈[0,T ] converges in the sense

of finite dimensional distributions to the Rosenblatt process (ZH
t )t∈[0,T ] (with self-

similarity index H = 2H ′ − 1). (Compare with Exercise 1.11.)

Remark 3.13 We eliminate the diagonal “i = j” because the Rosenblatt process is
defined as a double Wiener-Itô integral and as a consequence it has zero mean.
When the diagonal i = j is included in (3.27) then the limit is in general a double
Stratonovich integral (see [92] or [162]).

Exercise 3.2 Let (Z
(H)
t )t∈[0,1] be a Rosenblatt process with self-similarity index

H ∈ ( 1
2 ,1). Then, for every s, t ∈ [0,1], prove that

E
(
Z

(H)
t −Z(H)

s

)3 = C(H)|t − s|3H (3.28)

where

C(H)= 8a(H)3d(H)3
∫

[0,1]3
(|u− v|∣∣u− u′

∣∣∣∣v− u′
∣∣)2H ′−2

dudu′dv. (3.29)

(Observe a significant difference from the Gaussian case: here this cubic mean is
not zero.)

Exercise 3.3 ([148]) Prove the following positive half-axis representation of the
Hermite process:

cK,H

∫

(0∞)k

∫ t

0

k∏

j=1

x
1
2−H ′
j (1− sxj )

H ′− 3
2 dB(x1) · · ·dB(xk).

Exercise 3.4 ([47, 112]) Let (Zk
H (t))t∈R be a Hermite process of order k and let

ξ ∈ L0(R). Show that the following are true for almost all ω and for every λ,σ > 0.

(i) For all t > a, the integral
∫ t

a
eλudZk

H (u,ω) exists in the Riemann-Stieltjes
sense and it is equal to

eλtZk
H (t,ω)− eλaZk

H (a,ω)− λ

∫ t

a

Zk
H (u,ω)eλudu.

Moreover, the function t �→ ∫ t

a
eλudZk

H (u,ω) is continuous.
(ii) The unique continuous solution of the equation

yξ (t) = ξ(ω)− λ

∫ t

0
yξ (s)ds + σZk

H (t,ω), t ≥ 0
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is given by

yξ (t) = e−λt

(
ξ(ω)+ σ

∫ t

0
eλudZk

H (u,ω)

)
, t ≥ 0.

The above integral is a Wiener integral with respect to the Hermite process. In
particular, if ξ = σ

∫ 0
−∞ eλudZk

H (u,ω), then

y(t) = σ

∫ t

−∞
e−λ(t−u)dZk

H (u,ω), t ≥ 0.

(iii) Prove that y exhibits long-range dependence for H ∈ ( 1
2 ,1) and that, when

t ∈R, N = 1,2, . . . and s→∞, its covariance function behaves as

E
[
y(t)y(t + s)

]= 1

2
σ 2

N∑

m=1

λ−2n

(
2n−1∏

j=0

(2H − j)

)

s2H−2n +O
(
s2H−2N−2).

(3.30)

Exercise 3.5 ([157] and [122]) Consider α,β such that 1
2 < α < 3

4 and 0 < 2 −
2α− β < 1. Define for every t ≥ 0 (B is a Brownian motion)

Xt =
∫

R

∫

R

(∫ ∞

0
(u− y1)

−α+ (u− y2)
−α+
(|u|−β − |u− t |−β

)
du

)
dBy1dBy2 .

1. Prove that the process X = (Xt )t≥0 defined above is H -self-similar with station-
ary increments where H = 2− β − 2α.

2. Prove that for suitable choices of α,β , the law of the process X defined above is
different from the law of the process Y (3.25).



Chapter 4
Multiparameter Gaussian Processes

A two-parameter stochastic process is a stochastic process indexed by a time interval
which is a subset of R2. The most studied cases is two-parameter Brownian motion
(also called the Brownian sheet).

The stochastic analysis of two-parameter Brownian motion and more generally,
of two-parameter martingales, was mostly developed in the eighties. There are sev-
eral monographs (e.g. [69, 101]) that discuss various aspects of the multiparam-
eter martingales. Later, some classes of stochastic processes that are not (semi)-
martingales came to attention. One of them is the so-called fractional Brownian
sheet. In this part of the monograph we survey its basic properties, as well as those
of the two-parameter Hermite processes. We also generalize these processes to the
multiparameter case (i.e. where the number of time parameters is greater than 2).

4.1 The Anisotropic Fractional Brownian Sheet

Let us define the anisotropic fractional Brownian sheet.

Definition 4.1 A fractional Brownian sheet (W
α,β
s,t )(s,t)∈[0,∞)2 with Hurst indices

(α,β) ∈ (0,1)2 is a centered two-parameter Gaussian process whose covariance
function is given by

E
(
W

α,β
t,s Wα,β

u,v

) = Rα(t, u)Rβ(s, v)

= 1

2

(
t2α + u2α − |t − u|2α

)1

2

(
s2β + v2β − |s − v|2β

)
.

Recall that Rα is the covariance function of the one-parameter fractional Brown-
ian motion (1.1). The process was introduced in [100] and then studied in [12].

Remark 4.1 The process Wα,β is called anisotropic because the covariance is de-
fined as the product of two-covariances of a one-parameter fBm. There exists an
isotropic fractional Brownian sheet, see Remark 4.3.
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When α = β = 1
2 we obtain the Brownian sheet, which is a centered Gaussian

process (Ws,t )s,t≥0 with covariance

EWs,tWu,v = (t ∧ u)(s ∧ v)

for every s, t, u, v ≥ 0.

Remark 4.2 The partial processes t →W
α,β
t,s and s→W

α,β
t,s are “weighted” frac-

tional Brownian motions (see Exercise 4.1).

4.1.1 Basic Properties

The basic properties of Wα,β are listed below.

Proposition 4.1 The process Wα,β is self-similar of order (α,β) (in the sense of
Definition A.4 in Appendix A).

Proof From Definition A.4, we need to prove that for every h, k > 0, the process
Ŵα,β defined by

(
Ŵ

α,β
s,t

)
s,t
= (hαkβW

α,β
s
h
, t
k

)
s,t

has the same law as Wα,β . For every s, t, u, v ≥ and h, k > 0 we have

EŴ
α,β
s,t Ŵ α,β

u,v = h2αk2βEW
α,β
s
h
, t
k

W
α,β
u
h
, v
k

= h2αk2βRα

(
s

h
,
u

h

)
Rβ

(
t

k
,
v

k

)

= Rα(s,u)Rβ(t, v)

= EW
α,β
s,t Wα,β

u,v .

Since both Wα,β and Ŵα,β are centered Gaussian processes, we obtain the equiva-
lence of their finite dimensional distributions. �

Proposition 4.2 The process Wα,β has stationary increments.

Proof Recall Definition A.5. It suffices to check that for every h, k > 0 the process

(
W

α,β
s+h,t+k −W

α,β
h,t+k −W

α,β
s+h,k +W

α,β
h,k , s, t ≥ 0

)

has the same law as (Wα,β
s,t , s, t ≥ 0). To this end, it suffices to compute the covari-

ance of the first process and, using the fact that the fBm has stationary increments,
to conclude that it coincides with the covariance of Wα,β . �
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Proposition 4.3 The fractional Brownian sheet (W
α,β
s,t )s,t≥0 admits a version W̃α,β

with continuous trajectories. Moreover, its paths are Hölder continuous of order
(α′, β ′) with α′ < α and β ′ < β in the sense that: for every ω there exists a Cω > 0
such that for every s, s1, t, t1

∣∣W̃α,β
s,t − W̃

α,β
s,t1
− W̃

α,β
s1,t
+ W̃

α,β
s1,t1

∣∣≤ Cω|s − s1|α′ |t − t1|β ′ .

Proof From the self-similarity and the stationarity of the increments of the frac-
tional Brownian sheet Wα,β , it follows that for every p ≥ 1

E
∣∣Wα,β

s+h,t+k −W
α,β
h,t+k −W

α,β
s+h,k +W

α,β
h,k

∣∣p = Cp|h|pα|k|pβ

with Cp > 0 depending only on p. Then it suffices to use the Kolmogorov continuity
criterium for two-parameter processes (see Theorem B.2). �

4.1.2 Stochastic Integral Representation

There exists a two-parameter version of the Wiener integral representation (1.2).
The fractional Brownian sheet with Hurst parameters α,β ∈ (0,1) and with time
parameters s, t ∈ [0, T ] can be defined as (see [20])

W
α,β
s,t =

∫ t

0

∫ s

0
Kα(t, u)Kβ(s, v)dWu,v, for every s, t ∈ [0, T ], (4.1)

where (Wu,v)u,v∈[0,T ] is the Brownian sheet and the deterministic kernels Kα,Kβ

are defined by (1.3). The stochastic integral in (4.1) is a Wiener integral with re-
spect to the Wiener sheet W . There also exists a moving average representation (see
formula (4.5) with k = 1). It is immediate that the process given by (4.1) is a frac-
tional Brownian sheet. Indeed, the isometry of the Wiener integral implies that for
all s, t, u, v

EW
α,β
s,t Wα,β

u,v =
∫ t∧u

0
Kα(t, a)Kα(u, a)da

∫ s∧v

0
Kβ(s, b)Kβ(v, b)db

= Rα(t, u)Rβ(s, v)

by (1.5).
The canonical Hilbert Space Hα,β of the fractional Brownian sheet is the closure

of the linear space generated by the indicator functions on [0, T ]2 with respect to
the scalar product

〈1[0,t]×[0,s],1[0,u]×[0,v]〉Hα,β =Rα(t, u)Rβ(s, v).
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Fix α,β > 1
2 . Notice that in this case, by tensorization of the scalar product in the

space H of the fBm, we have for every f,g ∈Hα,β

〈f,g〉Hα,β = c(α)c(β)

∫ T

0

∫ T

0

∫ T

0

∫ T

0
f (a, b)g(m,n)|a −m|2α−2

× |b− n|2β−ndadbdmdn (4.2)

and c(α)= α(2α − 1). Define the operator K
∗,2
α,β on the space of step functions on

[0, T ]2 to L2([0, T ]2) given by

(
K
∗,2
α,βf

)
(s, t)=

∫ T

t

∫ T

s

f
(
r, r ′

)∂Kα

∂r
(r, t)

∂Kβ

∂r ′
(
r ′, s

)
drdr ′. (4.3)

We have
〈
K
∗,2
α,βf,K

∗,2
α,βg

〉
L2([0,T ]2) = 〈f,g〉Hα,β . (4.4)

Indeed,

〈
K
∗,2
α,βf,K

∗,2
α,βg

〉
L2([0,T ]2)

=
∫ T

0

∫ T

0

(∫ T

u

∫ T

v

f (a, b)
∂Kα

∂a
(a,u)

∂Kβ

∂b
(b, v)dadb

)

×
(∫ T

u

∫ T

v

g(m,n)
∂Kα

∂m
(m,u)

∂Kβ

∂n
(n, v)dmdn

)
dudv

=
∫ T

0

∫ T

0

∫ T

0

∫ T

0
f (a, b)g(m,n)

×
(∫ a∧m

0

∫ b∧n

0

∂Kα

∂m
(m,u)

∂Kβ

∂n
(n, v)dmdndudv

)
dadbdmdn

=
∫ T

0

∫ T

0

∫ T

0

∫ T

0
f (a, b)g(m,n)

∂2Rα

∂a∂m
(a,m)

∂2Rβ

∂b∂n
(b,n)

= c(α)c(β)

∫ T

0

∫ T

0

∫ T

0

∫ T

0
f (a, b)g(m,n)|a −m|2α−2

× |b− n|2β−ndadbdmdn

= 〈f,g〉Hα,β .

Therefore, a function f : [0, T ]2→ R belongs to Hα,β if and only if K∗,2f is in
L2([0, T ]2). This also implies the transfer formula

∫

[0,T ]2
f (x, y)dWα,β

x,y =
∫

[0,T ]2
K
∗,2
α,βf (x, y)dWx,y

where W is the Wiener process from (4.1).
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In the case when α < 1
2 and/or β < 1

2 we can also define a transfer operator K∗,2
but the expression is more complicated.

4.2 Two-Parameter Hermite Processes

Let (W(x, y), x, y ∈ R) be a two-parameter Brownian motion. For k ≥ 1 and
H1,H2 ∈ ( 1

2 ,1) define, for s, t ≥ 0

Z
k,H
t,s = cH,k

∫

(R2)k
dW(x1, y1) · · ·dW(xk, yk)

×
(∫ t

0
da

∫ s

0
db

k∏

j=1

(a − xj )
−( 1

2− 1−H1
k

)

+ (b− yj )
−( 1

2− 1−H2
k

)

+

)

. (4.5)

The above integral represents a multiple integral of order k with respect to the
Wiener sheet W . The constant cH,k is given by

cH,k = cH1,kcH2,k

with cH1,k, cH2,k the constants from the integral representation of the Hermite pro-
cess (3.4). This constant guarantees that E(Z

k,H
t,s )2 = 1.

The two-parameter Hermite process has the same covariance as the fractional
Brownian sheet with Hurst indices H1,H2.

Proposition 4.4 For all s, t, u, v ≥ 0

EZ
k,H1
t,s Zk,H2

u,v =RH1(t, u)RH2(s, v)

with RH1 ,RH2 given by (1.1).

Proof By the isometry of multiple integrals and using identity (3.3)

EZ
k,H
t,s Zk,H

u,v = c2
k,H k!

∫

R2k

dx1 · · ·dxkdy1 · · ·dyk

×
(∫ t

0
da

∫ s

0
db

k∏

j=1

(a − xj )
−( 1

2− 1−H1
2 )

+ (b− yj )
−( 1

2− 1−H2
2 )

+

)

×
(∫ u

0
da′

∫ v

0
db′

k∏

j=1

(
a′ − xj

)−( 1
2− 1−H1

2 )

+
(
b′ − yj

)−( 1
2− 1−H2

2 )

+

)

= c2
k,H k!

∫ t

0
da

∫ s

0
db

∫ u

0
da′

∫ v

0
db′
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×
(∫

R

(a − x)
−( 1

2− 1−H1
2 )

+
(
a′ − x

)−( 1
2− 1−H1

2 )

+

)k

×
(∫

R

(b− y)
−( 1

2− 1−H2
2 )

+
(
b′ − y

)−( 1
2− 1−H2

2 )

+

)k

= c2
k,H k!β

(
1

2
− 1−H1

k
,

2H1 − 2

k

)k

β

(
1

2
− 1−H2

k
,

2H2 − 2

k

)k

×
∫ t

0
da

∫ s

0
db

∫ u

0
da′

∫ v

0
db′
∣∣a − a′

∣∣2H1−2∣∣b− b′
∣∣2H2−2

= RH1(t, u)RH2(s, v). �

Proposition 4.5 The process Zk,H1,H2 has stationary increments in the sense of
Definition A.5.

Proof From the representation (4.5) one can see that for every a, b > 0,

Z
k,H1,H2
t+a,s+b −Z

k,H1,H2
t,s+b −Z

k,H1,H2
t+a,s +Z

k,H1,H2
a,b

=(d) cH,k

∫

(R2)k
dW(x1, y1) · · ·dW(xk, yk)

×
(∫ t

0
da

∫ s

0
db

k∏

j=1

(a − xj )
−( 1

2− 1−H1
k

)

+ (b− yj )
−( 1

2− 1−H2
k

)

+

)

= Z
k,H
t,s . �

Proposition 4.6 The process Zk,H1,H2 is self-similar in the sense of Definition A.4.

Proof For every h1, h2 > 0, consider the process

Ẑ
k,H1,H2
t,s = h

H1
1 h

H2
2 Z

k,H1,H2
t

h1
, s
h2

.

We want to show that it has the same law as Zk,H1,H2 . We have

h
H1
1 h

H2
2 Z

k,H1,H2
t

h1
, s
h2

= h
H1
1 h

H2
2 cH,k

∫

(R2)k
dW(x1, y1) · · ·dW(xk, yk)

×
(∫ t

h1

0
da

∫ s
h2

0
db

k∏

j=1

(a − xj )
−( 1

2− 1−H1
k

)

+ (b− yj )
−( 1

2− 1−H2
k

)

+

)

= h
H1−1
1 h

H2−1
2 cH,k

∫

(R2)k
dW(x1, y1) · · ·dW(xk, yk)
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×
(∫ t

0
da

∫ s

0
db

k∏

j=1

(ah1 − xj )
−( 1

2− 1−H1
k

)

+ (bh2 − yj )
−( 1

2− 1−H2
k

)

+

)

= h
H1−1
1 h

H2−1
2 h

−k( 1
2− 1−H1

k
)

1 h
−k( 1

2− 1−H2
k

)

2 cH,k

×
∫

(R2)k
dW

(
x1h
−1
1 , y1h

−1
2

) · · ·dW
(
xkh
−1
1 , ykh

−2
2

)

×
(∫ t

0
da

∫ s

0
db

k∏

j=1

(a − xj )
−( 1

2− 1−H1
k

)

+ (b− yj )
−( 1

2− 1−H2
k

)

+

)

=(d) cH,k

∫

(R2)k
dW(x1, y1) · · ·dW(xk, yk)

×
(∫ t

0
da

∫ s

0
db

k∏

j=1

(a − xj )
−( 1

2− 1−H1
k

)

+ (b− yj )
−( 1

2− 1−H2
k

)

+

)

where in the last line we use the scaling property of the Brownian sheet. �

Proposition 4.7 The process Zk,H1,H2 admits a version with continuous trajecto-
ries. Moreover, its paths are Hölder continuous of order (α′, β ′) with α′ < α and
β ′ < β in the sense that: for every ω there exists a Cω > 0 such that for every
s, s1, t, t1

∣
∣Zk,H1,H2

s,t −Z
k,H1,H2
s,t1

−Z
k,H1,H2
s1,t

+Zk,H1,H2
∣
∣≤ Cω|s − s1|α′ |t − t1|β ′ .

Proof This is a consequence of Propositions 4.5, 4.6 and of the Kolmogorov conti-
nuity criterium (Theorem B.2). �

As for the fractional Brownian sheet, it is possible to define the two-parameter
Hermite process as a multiple integral with respect to the Wiener sheet on a finite
time interval. Let H1,H2 ∈ ( 1

2 ,1), k ≥ 1 and define

Y
k,H1,H2
s,t = bk,H1,H2

∫ t

0

∫ s

0
dWu1,v1 · · ·

∫ t

0

∫ s

0
dWuk,vk

×
(∫ t

u1∨···∨uk

da∂1KH ′1(a,u1)KH ′1(a,u2) · · ·KH ′1(a,uk)

)

×
(∫ t

v1∨···∨vk

db∂1KH ′2(b, v1)∂1KH ′2(b, v2) · · · ∂1KH ′2(b, vk)

)
(4.6)

with KH ′i , i = 1,2 given by (1.4) and

H ′ = 1+ H − 1

q
⇐⇒ (

2H ′ − 2
)
q = 2H − 2.
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The constant bk,H1,H2 is chosen so that E(Y
k,H1,H2
s,t )2 = 1. It can be proven that

the process (Y
k,H1,H2
s,t )s,t∈[0,T ] has the same covariance as the process defined

through (4.5) and it is stationary increments of order (H1,H2) (in the sense of Def-
inition A.4). This implies that when k = 1 both (4.5) and (4.6) are fractional Brow-
nian sheets. For k = 2 one can show that the two representations (4.5) and (4.6)
have the same distribution by using the cumulants of a multiple integral of order
two (see (3.16)).

4.3 Multiparameter Hermite Processes

Throughout this section we use the following notation. Fix d ∈N\{0} and consider
multi-parametric processes indexed in R

d . We shall use bold notation for multi-
indexed quantities, i.e., a = (a1, a2, . . . , ad), ab = (a1b1, a2b2, . . . , adbd), a/b =
(a1/b1, a2/b2, . . . , ad/bd), [a,b] = ∏d

i [ai, bi], (a,b) = ∏d
i (ai, bi),∑

i∈[0,N] ai =∑N1
i1

∑N2
i2

. . .
∑Nd

id
ai1,i2,...,id , ab =∏d

i=1 a
bi

i , and a < b if and only
if a1 < b1, a2 < b2, . . . , ad < bd (analogously for the other inequalities).

Before introducing the Hermite sheet we briefly recall the fractional Brownian
sheet and the standard Brownian sheet.

The d-parametric anisotropic fractional Brownian sheet is the centered Gaussian
process {BH

t : t = (t1, . . . , td ) ∈ R
d} with Hurst multi-index H =

(H1, . . . ,Hd) ∈ (0,1)d . It is equal to zero on the hyperplanes {t : ti = 0}, 1≤ i ≤ d ,
and its covariance function is given by

RH(s, t) = E
[
BH

s BH
t
]

=
d∏

i=1

RHi
(si, ti)=

d∏

i=1

s
2Hi

i + t
2Hi

i − |ti − si |2Hi

2
. (4.7)

This extends Definition 4.1 for d = 2.

Remark 4.3 There also exists an isotropic version of the fractional Brownian sheet
(see e.g. [5]). It is defined as a centered Gaussian process with covariance

EX(t)X(s)= 1

2

(‖t‖2H + ‖s‖2H − ‖t− s‖2H
)
, t, s ∈ [0,∞)d

where ‖ · ‖ denotes the Euclidian norm.

The d-parametric standard Brownian sheet is the Gaussian process {Wt : t =
(t1, . . . , td ) ∈ Rd} equal to zero on the hyperplanes {t : ti = 0}, 1≤ i ≤ d , and with
covariance function given by

R(s, t)= E[Ws,Wt] =
d∏

i

R(si, ti )=
d∏

i

si ∧ ti . (4.8)



4.3 Multiparameter Hermite Processes 111

Let q ≥ 1, q ∈ Z and the Hurst multi-index H= (H1,H2, . . . ,Hd) ∈ ( 1
2 ,1)d . The

Hermite sheet of order q is given by

Z
q

H(t)= c(H, q)

∫

Rd·q

∫ t1

0
· · ·

×
∫ td

0

(
q∏

j=1

(s1 − y1,j )
−( 1

2+ 1−H1
q

)

+ · · · (sd − yd,j )
−( 1

2+ 1−Hd
q

)

+

)

× dsd · · ·ds1 dW(y1,1, . . . , yd,1) · · ·dW(y1,q , . . . , yd,q)

= c(H, q)

∫

Rd·q

∫ t

0

q∏

j=1

(s− yj )
−( 1

2+ 1−H
q

)

+ dsdW(y1) · · ·dW(yq) (4.9)

where x+ = max(x,0). For a better understanding of multiple stochastic integrals
we refer to [136]. As pointed out before, when q = 1, (4.9) is the fractional Brow-
nian sheet with Hurst multi-index H = (H1,H2, . . . ,Hd) ∈ ( 1

2 ,1)d . For q ≥ 2 the
process Z

q

H(t) is not Gaussian and for q = 2 we denominate it as the Rosenblatt
sheet.

Now let’s calculate the covariance R
q

H(s, t) of the Hermite sheet. Using the isom-
etry of multiple Wiener-Itô integrals and Fubini’s theorem one obtains

R
q

H(s, t) = E
[
Z

q

H(s)Zq

H(t)
]

= E

{

c(H, q)2
∫

Rd·q

∫ s

0

q∏

j=1

(u− yj )
−( 1

2+ 1−H
q

)

+ dudW(y1) · · ·dW(yq)

×
∫

Rd·q

∫ t

0

q∏

j=1

(v− yj )
−( 1

2+ 1−H
q

)

+ dvdW(y1) · · ·dW(yq)

}

= c(H, q)2
∫

Rd·q

{∫ s1

0
· · ·
∫ sd

0

q∏

j=1

d∏

i=1

(ui − yi,j )
−( 1

2+ 1−Hi
q

)

+ dud · · ·du1

×
∫ t1

0
· · ·
∫ td

0

q∏

j=1

d∏

i=1

(vi − yi,j )
−( 1

2+ 1−Hi
q

)

+ dvd · · ·dv1

}

× dy1,1 · · ·dyd,1 · · ·dy1,q · · ·dyd,q

= c(H, q)2
∫ t1

0

∫ s1

0

∫

Rq

q∏

j=1

(u1 − y1,j )
−( 1

2+ 1−H1
q

)

+

× (v1 − y1,j )
−( 1

2+ 1−H1
q

)

+ dy1,1 · · ·dy1,qdu1dv1

...
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×
∫ td

0

∫ sd

0

∫

Rq

q∏

j=1

(ud − yd,j )
−( 1

2+ 1−Hd
q

)

+

× (vd − yd,j )
−( 1

2+ 1−Hd
q

)

+ dyd,1 · · ·dyd,qduddvd

but

∫

Rq

q∏

j=1

(u− xj )
−( 1

2+ 1−H
q

)

+ (v− xj )
−( 1

2+ 1−H
q

)

+ dx1 · · ·dxq

=
[∫

R

(u− x)
−( 1

2+ 1−H
q

)

+ (v − x)
−( 1

2+ 1−H
q

)

+
]q

, (4.10)

so

R
q

H(s, t) = c(H, q)2
∫ t1

0

∫ s1

0

[∫

R

(u1 − y1)
−( 1

2+ 1−H1
q

)

+ (v1 − y1)
−( 1

2+ 1−H1
q

)

+
]q

du1dv1

...

×
∫ td

0

∫ sd

0

[∫

R

(ud − yd)
−( 1

2+ 1−Hd
q

)

+ (vd − yd)
−( 1

2+ 1−Hd
q

)

+
]q

duddvd.

Recalling that the Beta function β(p,q)= ∫ 1
0 zp−1(1− z)p−1dz,p, q > 0, satisfies

the following identity
∫

R

(u− y)a−1+ (v − y)a−1+ dy = β(a,2a − 1)|u− v|2a−1 (4.11)

we see that

R
q

H(s, t) = c(H, q)2
∫ t1

0

∫ s1

0
β

(
1

2
− 1−H1

q
,

2(H1 − 1)

q

)q

× |u1 − v1|2(H1−1)du1dv1

× · · ·
×
∫ td

0

∫ sd

0
β

(
1

2
− 1−Hd

q
,

2(Hd − 1)

q

)q

· |ud − vd |2(Hd−1)duddvd

= c(H, q)2β

(
1

2
− 1−H1

q
,

2(H1 − 1)

q

)q 1

2H1(2H1 − 1)

× (s2H1
1 + t

2H1
1 − |t1 − s1|2H1

)

× · · ·
× β

(
1

2
− 1−Hd

q
,

2(Hd − 1)

q

)q 1

2Hd(2Hd − 1)
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× (s2Hd

d + t
2Hd

d − |td − sd |2Hd
)
.

So now we choose

c(H, q)2 =
(

β( 1
2 − 1−H1

q
,

2(H1−1)
q

)q

H1(2H1 − 1)

)−1

· · ·
(

β( 1
2 − 1−Hd

q
,

2(Hd−1)
q

)q

Hd(2Hd − 1)

)−1

(4.12)
and in this way we obtain E(Z

q

H(t)2)= t2H = t
2H1
1 · · · t2Hd

d , and finally

R
q

H(s, t) = 1

2

(
s

2H1
1 + t

2H1
1 − |t1 − s1|2H1

) · · · (s2Hd

d + t
2Hd

d − |td − sd |2Hd
)

=
d∏

i

s
2Hi

i + t
2Hi

i − |ti − si |2Hi

2

=
d∏

i

RHi
(si , ti)=RH(s, t). (4.13)

Remark 4.4 As mentioned at the beginning, from the previous development we see
that the covariance structure is the same for all q ≥ 1, hence it coincides with the
covariance of the fractional Brownian sheet.

We will next establish the basic properties of the Hermite sheet: self-similarity,
stationarity of the increments and Hölder continuity.

The concept of self-similarity for multiparameter stochastic processes is intro-
duced in Definition A.6.

Proposition 4.8 The Hermite sheet is self-similar of order H= (H1, . . . ,Hd).

Proof The scaling property of the Wiener sheet implies that for every 0 < c =
(c1, . . . , cd) ∈ Rd the processes (W(ct)t≥0) and (

√
cW(t))t≥0 have the same finite

dimensional distributions. Therefore, if 1= (1, . . . ,1) ∈Rd , using obvious changes
of variables in the integrals ds and dW ,

Ẑ
q

H(t)= hHZ
q
t
h

= c(H, q)hH
∫

Rd·q

∫ t
h

0

q∏

j=1

(s− yj )
−( 1

2+ 1−H
q

)

+ dsdW(y1) · · ·dW(yq)

= c(H, q)hH−1
∫

Rd·q

∫ t

0

q∏

j=1

(
s
h
− yj

)−( 1
2+ 1−H

q
)

+
dsdW(y1) · · ·dW(yq)

= c(H, q)hH−1
∫

Rd·q

∫ t

0

q∏

j=1

(
s
h
− yj

h

)−( 1
2+ 1−H

q
)

+
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× dsdW
(
h−1y1

) · · ·dW
(
h−1yq

)

= c(H, q)hH−1hq( 1
2+ 1−H

q
)

∫

Rd·q

∫ t

0

q∏

j=1

(s− yj )
−( 1

2+ 1−H
q

)

+

× dsdW
(
h−1y1

) · · ·dW
(
h−1yq

)

=(d) c(H, q)hH−1hq( 1
2+ 1−H

q
)h−

q
2

∫

Rd·q

∫ t

0

q∏

j=1

(s− yj )
−( 1

2+ 1−H
q

)

+

× dsdW(y1) · · ·dW(yq)

= Z
q

H(t)

where =(d) means equivalence of finite dimensional distributions. �

Proposition 4.9 The Hermite sheet (Zq(t))t≥0 has stationary increments (in the
sense of Definition A.7).

Proof Developing the increments of the process using the definition of the Hermite
sheet and using the change of variables s′ = s − h, it is immediate that for every
h > 0,h ∈Rd ,

�Z
q

[h,h+t] =(d) �Z
q

[0,t]

for every t. �

Proposition 4.10 The trajectories of the Hermite sheet (Zq(t), t ≥ 0) are Hölder
continuous of any order δ = (δ1, . . . , δd) ∈ [0,H] in the following sense: for every
ω ∈Ω , there exists a constant Cω > 0 such that for every s, t ∈Rd, s, t≥ 0,

∣∣�Z
q
[s,t]
∣∣≤ Cω|t1 − s1|δ1 · · · |td − sd |δd = Cω|t− s|δ.

Proof Using Cencov’s criteria (see [43]) and the fact that the process Zq is almost
surely equal to 0 when ti = 0, it suffices to check that

E
∣∣�Z

q
[s,t]
∣∣p ≤ C

(|t1 − s1| · · · |td − sd |
)1+γ (4.14)

for some p ≥ 2 and γ > 0. From the self-similarity and the stationarity of the incre-
ments of the process Zq , we have for every p ≥ 2

E
∣∣�Z

q
[s,t]
∣∣p = E|Z1|p

(|t1 − s1| · · · |td − sd |
)pH

and this obviously implies (4.14). �
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4.4 Bibliographical Notes

Several two-parameter (or multiparameter) processes related to fractional Brownian
motion have been proposed in the literature. These include for example the frac-
tional Brownian field ([35, 110]), Lévy’s fractional Brownian field ([50]) and the
anisotropic fractional Brownian sheet ([12, 185]). Each process has been intensively
studied in the last few decades. Various aspects of these processes have been studied:
stochastic integration ([178, 179]), sample path properties [189], chaos expansion
and local times [71], stochastic equations ([76]), quadratic variations ([152–154])
etc., to cite only a few. The study of multiparameter non-Gaussian self-similar pro-
cesses, including the Hermite class, is incipient at the time of writing. We refer to
[40, 53], or [152].

4.5 Exercises

Exercise 4.1 Consider now the processes s → W
α,β
s,t and t → W

α,β
s,t . These pro-

cesses are real fractional Brownian motions with the same law as tβWα and sαWβ

respectively and with covariances

R1(s1, s2)= t2β 1

2

(
s2α

1 + s2α
2 − |s1 − s2|2α

)

and

R2(t1, t2)= s2α 1

2

(
t
2β

1 + t
2β

2 − |t1 − t2|2β
)

respectively.

Exercise 4.2 ([12]) Show that the fractional Brownian sheet (W
α,β
s,t )s,t≥0 admits a

continuous version with respect to (α,β) ∈ (0,1)2.

Exercise 4.3 Find the constant C in Proposition 4.3.

Exercise 4.4 ([20]) Consider

yε(s, t)=
∫ t

0

∫ s

0

1

ε2

√
xy(−1)N(x/ε,y/ε)dxfy

with N a Poisson process in the plane. Then yε converges weakly to the Brownian
sheet as ε→ 0 (see [18]). Prove that the family of stochastic processes (Xε)ε>0
defined by

Xε(s, t)=
∫ t

0

∫ s

0
Kα(s,u)Kβ(t, v)

1

ε2

√
xy(−1)N(x/ε,y/ε)dudv

with (α,β) ∈ (0,1)2, converges weakly to the fBs with parameters α,β in the space
C0([0,1]2) (the space of continuous functions on [0,1]2 vanishing at the origin).
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Exercise 4.5 Show that the two-parameter Hermite process has moments of every
order p ≥ 2.

Exercise 4.6 Consider the process (Y
k,H1,H2
s,t )s,t∈[0,T ] given by (4.6).

1. Find the constant bk,H1,H2 .
2. Prove that the covariance of the process (Y

k,H1,H2
s,t )s,t∈[0,T ] is given by

EY
k,H1,H2
s,t Y k,H1,H2

u,v =RH1(t, u)RH2(s, v)

where RH1,RH2 denotes the covariance of the fBm (1.1).
3. Prove that the process (Y

k,H1,H2
s,t )s,t∈[0,T ] is self-similar of order (H1,H2) (in the

sense of Definition A.4).
4. For k = 2 prove that the process Y k,H1,H2 has the same finite dimensional distri-

butions as the process (4.5).

Hint Use the cumulants and follow the lines of the proof of Proposition 3.7.

Exercise 4.7 ([52]) Consider the two-parameter fractional Ornstein-Uhlenbeck
process defined as the solution of the stochastic equation

Xt,s =−θ

∫ t

0

∫ s

0
Xv,udvdu+B

α,β
t,s , (t, s) ∈ [0, T ] × [0, S]. (4.15)

Here Bα,β denotes a fractional Brownian sheet with Hurst parameters α,β ∈ ( 1
2 ,1).

We also suppose that X0,0 =Xt,0 =X0,s = 0 for every t, s.

1. Show that (4.15) admits a unique strong solution which can be expressed as

Xt,s =
∫ T

0

∫ S

0
f (t, s, t0, s0)dB

α,β
t0,s0

(4.16)

where

f (t, s, t0, s0)= 1[0,t](t0)1[0,s](s0)
∑

n≥0

(−1)nθn (t − t0)
n(s − s0)

n

(n!)2
. (4.17)

We will call the solution X to (4.15) the fractional Ornstein-Uhlenbeck sheet.
2. Let us consider the Bessel function of order 0 given, for every x ∈R, by

J0(x)=
∑

n≥0

(−1)n

n!2
(

x

2

)2n

.

This Bessel function admits the integral representation, for every x ∈R

J0(x)= 1

π

∫ π

0
cos(x sinρ)dρ.
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Prove that the kernel f (4.17) of the solution (Xt,s)t,s∈[0,T ]×[0,S] can be ex-
pressed as

f (t, s, u, v)= 1[0,t](u)1[0,s](v)J0
(
2
√

θ(t − u)(s − v)
)

= 1[0,t](u)1[0,s](v)
1

π

∫ π

0
cos
(
2
√

θ(t − u)(s − v) sinρ
)
dρ. (4.18)
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Variations of Self-similar Processes:

Central and Non-Central Limit Theorems



Chapter 5
First and Second Order Quadratic Variations.
Wavelet-Type Variations

Let (Xt )t∈[0,T ] be a stochastic process on a probability space (Ω,F ,P ). We will
focus on the study of the quadratic variation statistic of the process X which is
defined by

VN(X)=
N−1∑

i=0

(Xti+1 −Xti )
2 (5.1)

where 0 = t0 < t1 < · · · < tn = T denotes a partition of the interval [0, T ]. We
will discuss the asymptotic behavior, as N→∞, of the sequence VN(X) in several
situations: when X is a fractional Brownian motion, a Rosenblatt process, a Hermite
process or the solution to a linear heat equation with fractional noise in time.

Generally, the quadratic variations play an important role, in various aspects, in
the analysis of a stochastic process. For example, in the case of Brownian motion,
the limit of the sequence (5.1) is an important element in the Itô stochastic cal-
culus with respect to Brownian motion. The same is true for martingales and also
for several processes which are not semi-martingales (fractional Brownian motion,
bifractional Brownian motion, etc.). Another field where the asymptotic behavior
of (5.1) is important is in estimation theory: for self-similar processes the quadratic
variations are used to construct consistent estimators for the self-similarity order.
Understanding the limit in distribution of the sequence VN directly gives the asymp-
totic behavior of the associated estimators. For a complete presentation of various
estimators for the self-similarity index, see [28].

In this chapter our aim is to understand the limit in distribution of the sequence
(5.1) when the mesh of the partition tends to zero. We will treat several examples
of self-similar processes: fractional Brownian motion, the Rosenblatt process and
more generally, a Hermite process with arbitrary Hermite rank, and the solution
to a linear heat equation with fractional noise. We will also discuss other types
of variations: quadratic variations with high order increments (that is, where one
replaces the first order increment Xti+1 −Xti in (5.1) by the second order increment
Xti+1 − 2Xti +Xti−1 ) or the variations based on wavelet expansion.

The techniques that we used to prove the asymptotic behavior in distribution of
the quadratic variations are based on the Malliavin calculus and multiple Wiener-Itô

C.A. Tudor, Analysis of Variations for Self-similar Processes,
Probability and Its Applications, DOI 10.1007/978-3-319-00936-0_5,
© Springer International Publishing Switzerland 2013
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http://dx.doi.org/10.1007/978-3-319-00936-0_5


122 5 First and Second Order Quadratic Variations. Wavelet-Type Variations

integrals. We recall in this chapter the criteria, in terms of the Malliavin derivatives,
for a sequence of random variables to converge to the normal distribution. We will
use only the basic tools of the Malliavin calculus described in Appendix C, so we
believe that a reader who is not very familiar with it will nevertheless still be able to
follow the presentation.

5.1 Quadratic Variations of Fractional Brownian Motion

Let (BH
t )t∈[0,1] be a fractional Brownian motion with time interval [0,1] and Hurst

parameter H ∈ (0,1). Let 0= t0 < t1 · · ·< tN = 1 be a partition of the unit interval
[0,1] such that ti = i

N
for i = 0, . . . ,N and define, for N ≥ 1,

VN = 1

N

N−1∑

i=0

[
(BH

ti+1
−BH

ti
)2

E(BH
ti+1
−BH

ti
)2
− 1

]
. (5.2)

Clearly,

E
(
BH

ti+1
−BH

ti

)2 = (ti+1 − ti )
2H =N−2H

and thus

VN = 1

N

N−1∑

i=0

[
N2H

(
BH

ti+1
−BH

ti

)2 − 1
]
.

The sequence (5.2) is usually called the centered quadratic variations statistic since
EVN = 0 for every N ≥ 1. The aim is to find the limit in distribution of the sequence
VN when N→∞.

5.1.1 Evaluation of the L2-Norm of the Quadratic Variations

We first analyze the asymptotic behavior of the sequence EV 2
N as N→∞. We will

use the properties of multiple stochastic integrals listed in Appendix C.

Lemma 5.1 Let VN be given by (5.2). Then

VN =N2H−1I2

(
N∑

i=1

Ai ⊗1 Ai

)

(5.3)

where

Ai,N :=Ai = 1((i−1)/N,i/N] (5.4)

for i = 1, . . . ,N . Here I2 denotes the multiple integral of order 2 with respect to the
fractional Brownian motion BH .
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Proof The basic and trivial observation is that BH
ti
− BH

ti−1
= I1(Ai) for 1 =

1, . . . ,N . The product formula of multiple integrals (see (C.4)) in our present case
yields

VN =N2H−1I2

(
N∑

i=1

Ai ⊗1 Ai

)

.

�

Then, by the isometry of multiple integrals (C.1), we get from (5.3)

E|VN |2 = 2N4H−2
N∑

i=1

N∑

j=1

∣∣〈Ai,Aj 〉H
∣∣2 (5.5)

where H is the canonical Hilbert space of the fBm BH := B . To calculate this
quantity, we observe that

〈Ai,Aj 〉H = E
[
B(Ai)B(Aj )

]

= 2−1
(

2

∣∣∣
∣
i − j

N

∣∣∣
∣

2H

−
∣∣∣
∣
i − j − 1

N

∣∣∣
∣

2H

−
∣∣∣
∣
i − j + 1

N

∣∣∣
∣

2H)

with B(Ai)= B i
n
−Bi−1

n
, i = 1, . . . , n.

This expression is close to H(2H − 1)N−2|(i − j)/N |2H−2, but we must take
care whether the series

∑
k k4H−4 converges or diverges; this will depend on

whether H is less or greater than 3
4 .

Let

ρH (k)= 1

2

(|k + 1|2H + |k − 1|2H − 2|k|2H
)

for every k ∈ Z. Then, by Proposition 1.4,

ρH (k)∼|k|→∞ H(2H − 1)|k|2H−2. (5.6)

Recall that the symbol ∼ means that both sides have the same limit as k→∞.

Proposition 5.1 If H < 3/4, then

lim
N→∞E

[|√NVN |2
]= c1,H

where

c1,H = 2
∑

k∈Z
ρH

(|k|)2. (5.7)
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Proof We have, using the change of index i − j = k

E|VN |2 = 2N−2
N−1∑

i,j=0

(
ρH

(|i − j |))2 = 2N−2
N−1∑

k=−(N−1)

k+(N−1)∑

i=k

(
ρH

(|k|))2

= 2N−1
N−1∑

k=−(N−1)

ρH

(|k|)2

and then

NEV 2
N −−−−→

N→∞ c1,H = 2
∑

k∈Z

(
ρH

(|k|))2.

Note that the series
∑

k∈Z(ρH (|k|))2 is convergent if and only if H < 3
4 , by (5.6). �

When H > 3
4 the series

∑
k∈Z |k|4H−4 does not converge and therefore EV 2

N will
have a different asymptotic behavior. Actually,

Proposition 5.2 If H > 3/4

lim
N→∞E

[∣∣N2−2H VN

∣∣2]= c2,H

with

c2,H := 2H 2(2H − 1)/(4H − 3). (5.8)

Proof In this case, we will instead compare the series in E[|VN |2] to an integral;
in the sum defining this quantity (5.5), the diagonal term corresponding to |i−j | = 0
can be ignored. Indeed,

N4−4H N4H−2
N∑

i=1

∣∣〈Ai,Ai〉H
∣∣2 =N3−4H

and this converges to zero when H > 3
4 . Thus, since

∣∣〈Ai,Aj 〉
∣∣∼N−2H |i − j |2H−2

for i, j large enough (i �= j ), we have that

N4−4H EV 2
N ∼ 2

(
H(2H − 1)

)2
N−2

N∑

i,j=1;i �=j

∣∣∣∣
i

j
− j

N

∣∣∣∣

4H−4

−→
N

2
(
H(2H − 1)

)2
∫ 1

0

∫ 1

0
|x − y|4H−4dxdy.
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Notice that the integral
∫ 1

0

∫ 1
0 |x−y|4H−4dxdy is finite when H > 3

4 . Consequently

lim
N→∞E

[∣∣N2−2H VN

∣∣2] = 4
(
H(2H − 1)

)2
∫ 1

0

∫ x

0
(x − y)4H−4

= 4(H(2H − 1))2

(4H − 3)(4H − 2)
= c2,H

with c2,H given by (5.8). �

In the case H = 3
4 we have the following renormalization of EV 2

N .

Proposition 5.3 If H = 3/4, let

c′1,H :=
(
2H(2H − 1)

)2 = 9/16 (5.9)

then

E
[√

N

logN
VN

]2

−−−−→
N→∞ c′1,H . (5.10)

Proof In this case, we have from (5.5)

E(VN)2 = 2

N
+ 1

N

N−1∑

k=0

(
2k2H − (k − 1)2H − (k + 1)2H

)2

− 1

N2

N−1∑

k=0

k
(
2k2H − (k − 1)2H − (k + 1)2H

)2

and since 2k2H − (k − 1)2H − (k + 1)2H behaves as (3/4)k−1/2 we get

E(VN)2 ∼ c′1,H (logN)/N.

Thus, limN→∞E[|F̃N |2] = 1 where c′1,H = 9/16 and

F̃N :=
(

N

c′1,H logN

) 1
2

VN. (5.11)

�

5.1.2 The Malliavin Calculus and Stein’s Method

For H < 3
4 , let

FN := c
− 1

2
1,H N

1
2 VN (5.12)
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where VN and c1,H are defined by (5.2) and (5.7) respectively. From Proposition 5.1
it follows that

EF 2
N →N→∞ 1.

We prove that FN converges in law to the standard normal law and we give the
rate of convergence. Our approach is based on the now classical Stein’s method
combined with the Malliavin calculus. The reader is referred to Appendix C for the
basic tools of the Malliavin calculus.

Let us recall the context. Let (Ω,F ,P ) be a probability space and (Wt )t≥0 a one-
dimensional Brownian motion on this space. Let F be a random variable defined on
Ω which is differentiable in the sense of the Malliavin calculus. Then, using the
so-called Stein method introduced by Nourdin and Peccati in [127] (see also [128]
and [129]), it is possible to measure the distance between the law of F and the
standard normal law N(0,1). This distance, denoted by d , can be defined in several
ways, for example as the Kolmogorov distance, the Wasserstein distance, the total
variation distance or as the Fortet-Mourier distance.

Concretely, let X,Y be two random variables. The distance between the law of
X and the law of Y is usually defined by (here L(F ) denotes the law of F )

d
(
L(X),L(Y )

)= sup
h∈A

∣∣Eh(X)−Eh(Y )
∣∣

where A is a suitable class of functions.
For example, if A is the set of indicator functions

1(−∞,z], z ∈R
we obtain the Kolmogorov distance

dK

(
L(X),L(Y )

)= sup
z∈R

∣∣P(X ≤ z)− P(Y ≤ z)
∣∣.

If A is the set of 1B with B a Borel set, one has the total variation distance

dT V

(
L(X),L(Y )

)= sup
B∈B(R)

∣∣P(X ∈ B)− P(Y ∈ B)
∣∣.

If

A= {h; ‖h‖L ≤ 1
}

(‖ · ‖L is the Lipschitz norm) one has the Wasserstein distance.
Other examples of distances between the distributions of random variables are

the Fortet-Mourier and Kantorovich distances.
One can give a bound for the distance between the law of a random variable and

the standard normal law in terms of the Malliavin derivatives. More precisely we
have,

d
(
L(F ),N(0,1)

)≤ c

√

E
(
1− 〈DF,D(−L)−1F

〉
L2([0,1])

)2
. (5.13)
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Here D denotes the Malliavin derivative with respect to W , and L is the generator
of the Ornstein-Uhlenbeck semigroup defined in Appendix C. When the underlying
Gaussian process is an arbitrary isonormal process X then the space L2([0,1]) has
to be replaced by the Hilbert space H associated to X. The constant c is equal to
1 in the case where d is the Kolmogorov distance as well as in the case where d

is the Wasserstein distance, c = 2 for the case where d is the total variation dis-
tance and c = 4 in the case where d is the Fortet-Mourier distance. See also [126,
Appendix C].

In the case when the random variable F in (5.13) belongs to a Wiener chaos of
fixed order, we have the following result from [127] (see also the recent book [126]).
In the sequel d will denote any of the distances defined above.

Theorem 5.1 Let Iq(f ) be a multiple integral of order q ≥ 1 with respect to an
isonormal process X. Then

d
(
L
(
Iq(f )

)
,N(0,1)

)≤ cq

[
E
(∥∥DIq(f )

∥∥2
H − q

)2] 1
2 .

Here D is the Malliavin derivative with respect to X and H is the canonical Hilbert
space associated to X.

We will also use the following result (see Theorem 4 in [137] and also [138]),
known as the Fourth Moment Theorem.

Theorem 5.2 Fix n≥ 2 and let (Fk, k ≥ 1), Fk = In(fk) (with fk ∈H�n for every
k ≥ 1) be a sequence of square integrable random variables in the nth Wiener chaos
of an isonormal process X such that E[F 2

k ]→ 1 as k→∞. Then the following are
equivalent:

(i) The sequence (Fk)k≥0 converges in distribution to the normal law N(0,1).
(ii) One has E[F 4

k ]→ 3 as k→∞.
(iii) For all 1≤ l ≤ n− 1 it holds that limk→∞‖fk ⊗l fk‖H⊗2(n−l) = 0.
(iv) ‖DFk‖2

H→ n in L2(Ω) as k→∞, where D is the Malliavin derivative with
respect to X.

Criterion (iv) is due to [137]; we will refer to it as the Nualart–Ortiz-Latorre
criterion. It shows that the bound in Theorem 5.1 is “sharp” in the case of multiple
stochastic integrals.

There also exists a multidimensional version of Theorem 5.2. This exhibits an
interesting and useful result: for a vector of multiple stochastic integrals the con-
vergence in distribution to the normal law of each component of the vector implies
the convergence in distribution to the (multivariate) normal law of the vector. This
result was proved in [142].

Theorem 5.3 For every n≥ 1, let

Fn =
(
F 1

n , . . . ,F d
n

)
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where for every i = 1, . . . , d the random variable F i
n is a multiple integral of order

qi ≥ 1. Assume that

lim
n→∞EF i

nF
j
n = Ci,j

for every 1 ≤ i, j ≤ n. Assume that C = (Ci,j )1≤i,j≤d is a symmetric non-negative
definite matrix. Then the following are equivalent:

(i) The sequence (Fn)n≥1 converges in distribution to the d-dimensional normal
law N(0,C).

(ii) For every 1 ≤ i ≤ d the sequence (F i
n)n≥1 converges in law to the normal law

N(0,Ci,i).

5.1.3 The Central Limit Theorem of the Quadratic Variations
for H ≤ 3

4

Clearly Theorem 5.1 applies to FN given by (5.12) since it is a multiple integral of
order 2. We will use

Lemma 5.2 With Ai given by (5.4) and if H ∈ (0,3/4),

〈Ai,Aj 〉H = 2−1
(

2

∣
∣∣∣
i − j

N

∣
∣∣∣

2H

−
∣
∣∣∣
i − j − 1

N

∣
∣∣∣

2H

−
∣
∣∣∣
i − j + 1

N

∣
∣∣∣

2H)
,

as N→∞, we have

N∑

i,i′=1

i∑

j=1

i′∑

j ′=1

〈Ai;Ai′ 〉H〈Ai;Aj 〉H〈Ai′ ;Aj ′ 〉H〈Aj ;Aj ′ 〉H = o
(
N−4).

Proof As a general rule that we will exemplify below, we have the following: if
i = i′ or i = i′ ± 1 the term 〈Ai;Ai′ 〉H will give a contribution of order 1

N2H while

if |i − i′| ≥ 2 the same term will have a contribution less that cst. |i−i′|2H−2

N2H−2 N−2.
Using this rule, although several cases appear, the main term will be obtained when
all indices are separated by a distance of at least two.

We can deal with the diagonal terms first. With i = i′ and j = j ′, the correspond-
ing contribution is of order

N−4H

(
N∑

i,j=1

∣
∣〈Ai;Aj 〉H

∣
∣
)2

�N−8H =O
(
N−4).

It is trivial to check that the terms with i = i′ and j = j ′ ± 1, as well as the terms
with i = i′ ± 1 and j = j ′ ± 1, again yield the order N−1. By changing the roles of
the indices, we also treat all terms of the type |i − i′| ≤ 2 and |j − i| ≤ 2.
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Now for the hyperplane terms with i = i′ and |j−j ′| ≥ 2, |j−i| ≥ 2, |j ′−i| ≥ 2,
we can use the relations of the form

〈Ai;Aj 〉H ≤ 22−2H H(2H − 1)N−2
∣∣(i − j)/N

∣∣2H−2
,

also holding for the pairs (i, j ′) and (j, j ′), to obtain that the corresponding contri-
bution is of the order

N∑

i=1

∑

|j−j ′|≥2;|j−i|≥2;|j ′−i|≥2

N−2H N−6
∣∣(i − j)/N

∣∣2H−2

× ∣∣(i − j ′
)/

N
∣∣2H−2∣∣(j − j ′

)/
N
∣∣2H−2

=N−3−2H
N∑

i=1

∑

|j−j ′|≥2;|j−i|≥2;|j ′−i|≥2

N−3
∣∣(i − j)/N

∣∣2H−2∣∣(i − j ′
)/

N
∣∣2H−2

× ∣∣(j − j ′
)/

N
∣
∣2H−2

�N−3−2H =O
(
N−4)

where we used the fact that the last summation above converges as a Riemann sum
to the finite integral

∫
[0,1]3 |(x − y)(x − z)(y − z)|2H−2dxdydz, and then the fact

that H < 3/4. For the hyperplanes term of the form i = i′ ± 1 and |j − j ′| ≥ 2,
|j − i| ≥ 2, |j ′ − i| ≥ 2, or |i− i′| ≥ 2, |i− j | ≥ 2, and |j − j ′| ≥ 2, the calculation
is identical.

Lastly, and similarly to the case just treated, when all indices are distant by at
least 2 units, we can again use the upper bound N−2|(i− j)/N |2H−2 for 〈Ai;Aj 〉H
and the other three pairs, obtaining a contribution of the form

∑

|i−i′|≥2;|j−j ′|≥2;|j−i|≥2;|j ′−i|≥2

N−8
∣∣∣∣
i − i′

N

∣∣∣∣

2H−2∣∣∣∣
i − j

N

∣∣∣∣

2H−2

×
∣∣∣∣
i − j ′

N

∣∣∣∣

2H−2∣∣∣∣
j − j ′

N

∣∣∣∣

2H−2

�N−4
∫

[0,1]4
∣∣(x − x′

)
(x − y)

(
x′ − z

)
(y − z)

∣∣2H−2
dx′dxdydz;

since H < 3/4, we have 8H − 6 < 0, and the above also tends to 0 albeit more
slowly than the other terms. �

Theorem 5.4 Assume H < 3
4 and let FN be given by (5.12). Then as N→∞, the

sequence (FN)N converges in distribution to the standard normal law. Moreover

d
(
L(FN),N(0,1)

)≤ cN2H− 3
2 . (5.14)
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Proof Using Theorem 5.1 one needs to show that ‖DFN‖2
H converges in L2(Ω) to

n= 2 and to understand the rate of convergence to this limit.
We will see that this only works for H ≤ 3/4. Using the rule

DrI2(f )= 2I1
(
f (·, r))

when f is symmetric, we have

DrVN = 2N2H−1
N∑

i=1

Ai(r)I1(Ai).

Hence

‖DVN‖2
H = 4N4H−2

N∑

i,j=1

I1(Ai)I1(Aj )〈Ai;Aj 〉H (5.15)

and therefore

E
[‖DVN‖2

H
]= 4N4H−2

N∑

i,j=1

∣∣〈Ai;Aj 〉H
∣∣2.

We note immediately from (5.5) and Proposition 5.1 that

E
[‖DVN‖2

H
]= 2E

[
V 2

N

]
,

and from the results of the previous section, limN→∞E[‖DFN‖2
H] = 2.

Thus it now suffices to show that

‖DFN‖2
H −E

[‖DFN‖2
H
]+E

[‖DFN‖2
H
]− 2

converges to 0 in L2(Ω).
A simple use of the product formula for multiple integrals gives

‖DVN‖2
H −E

[‖DVN‖2
H
]= 4N4H−2

N∑

i,j=1

〈Ai;Aj 〉HI2(Ai ⊗Aj)

and thus

E
[‖DFN‖2

H −E
[‖DFN‖2

H
]]2

= (c1,H )−2N2(4N4H−2)24

×
N∑

i,i′=1

i∑

j=1

i′∑

j ′=1

〈Ai;Ai′ 〉H〈Ai;Aj 〉H〈Ai′ ;Aj ′ 〉H〈Aj ;Aj ′ 〉H.
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Since 1/2 < H < 3/4, by Lemma 5.2, the conclusion is that

E
[‖DFN‖2

H −E
[‖DFN‖2

H
]]2

is asymptotically equivalent to a constant multiple of N8H−6 and thus it converges
to zero for H < 3

4 .
On the other hand, the rate of convergence to zero of

E
[‖DVN‖2

H
]− 2= 2EF 2

N − 2

is of order less than N4H−3 (the reader may consult the proof of Theorem 6.2). �

The convergence to a Gaussian distribution also holds in the limit case H = 3
4 .

Proposition 5.4 Let F̃N be given by (5.11). Then, as N→∞, (F̃N )N converges in
law to the standard normal distribution N(0,1). Moreover

d
(
L(F̃N ),N(0,1)

)≤ c
1√

logN
.

Proof This case is treated similarly to the previous one. We record the following for
later use. As N→∞

E
[‖DF̃N‖2

H
]= N

logN

(
c′1,H

)−14N4H−2
N∑

i,j=1

〈Ai,Aj 〉2H→ 2. (5.16)

For the rate of convergence in the base H = 3
4 , we refer to [39]. �

Note that Theorem 5.4 and Proposition 5.4 are particular cases of the more gen-
eral results stated in Theorem 6.1.

5.1.4 The Non-Central Limit of the Quadratic Variations
for H > 3

4

We assume here that H > 3/4. In this case, using the scaling

F̄N =N2−2H VN/
√

c2,H

one checks that

‖DF̄N‖2
H −E‖DF̄N‖2

H

does not converge to 0. Therefore, the Nualart–Ortiz-Latorre characterization (The-
orem 5.2) says that the limit of FN is not Gaussian. But we can also prove directly
that the limit is not Gaussian. Indeed, we have
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Theorem 5.5 If H ∈ (3/4,1), let c2,H be defined by (5.8). Then

F̄N :=
√

N4−4H /c2,H VN (5.17)

converges in L2(Ω) to a standard Rosenblatt random variable with (self-similarity)
parameter H0 = 2H − 1; this random variable is equal to by is equal to (see (3.17))

(4H − 3)1/2

H(2(2H − 1))1/2

∫∫

[0,1]2

(∫ 1

r∨s

∂KH

∂u
(u, s)

∂KH

∂u
(u, r)du

)
dW(r)dW(s) (5.18)

where W is the standard Brownian motion used in the representation Bt =
I1(K

H (t, ·)) (1.2).

Proof In order to find the limit of F̄N , let us return to the definition of this quantity
in terms of the Wiener process W such that

Bt =
∫ t

0
KH (t, s)dW(s)

(see Chap. 1, (1.2)). We then note that F̄N can be written as

F̄N = Ĩ2(fN)

where Ĩ2 is the double Wiener integral operator with respect to W , and fN =
Nc
−1/2
2,H

∑N
i=1 Ãi ⊗ Ãi where

Ãi(s)= 1[0, i+1
N
](s)K

H

(
i + 1

N
,s

)
− 1[0, i

N
](s)K

H

(
i

N
, s

)
. (5.19)

Lemma 5.3 below shows that fN converges in L2([0,1]2) to c
−1/2
2,H L2H−1

1 where

L2H−1
1 is the function

(r, s) �→ L2H−1
1 (r, s) :=

∫ 1

r∨s

∂KH

∂u
(u, s)

∂KH

∂u
(u, r)du. (5.20)

Now define the random variable Y := d(H0)Ĩ2(L
2H−1
1 ) where

d(H0)= (H0 + 1)−1(2(2H0 − 1)/H0
)1/2

= (4H − 3)1/2(2H − 1)−1/2/(
√

2H)= c
−1/2
2,H .

This Y is a standard Rosenblatt random variable with parameter H0 = 2H − 1,
as can be seen for instance in Sect. 3.2. By the isometry property for stochastic
integrals,

E
[|F̄N − Y |2]= ∥∥fN − c

−1/2
2,H L2H−1

1

∥∥2
L2([0,1]2),
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which, by the convergence of Lemma 5.3, proves that F̄N converges to the Rosen-
blatt random variable Y = c

−1/2
2,H Ĩ2(L

2H−1
1 ) in L2(Ω). �

Lemma 5.3 With H ∈ (3/4,1), and

Ãi(s)= 1[0, i+1
N
](s)K

H

(
i + 1

N
,s

)
− 1[0, i

N
](s)K

H

(
i

N
, s

)
,

we have that LN(r, s) := N
∑N

i=1 Ãi(r)Ãi(s) converges in L2([0,1]2) to the func-
tion

(r, s) �→ L2H−1
1 (r, s) :=

∫ 1

r∨s

∂KH

∂u
(u, s)

∂KH

∂u
(u, r)du.

Proof Ãi(s) can be rewritten as

Ãi(s) = 1[0, i
N
](s)

(
KH

(
i + 1

N
,s

)
−KH

(
i

N
, s

))
+ 1[ i

N
, i+1

N
](s)K

H

(
i + 1

N
,s

)

=N−11[0, i
N
](s)

∂KH

∂u
(ξi, s)+ 1[ i

N
, i+1

N
](s)K

H

(
i + 1

N
,s

)

=: Bi(s)+Ci(s)

where ξi = ξi(s) depends on s but is nonetheless in the interval [i/N,

(i + 1)/N ]. The product Ãi(r)Ãi(s) yields square-type terms with Bi(s)Bi(r)

and Ci(s)Ci(r), and a cross-product term. This last term is treated like the term
involving Ci(s)Ci(r), and we leave it to the reader. Now, using the fact that
K(t, s)≤ c(t/s)H−1/2(t − s)H−1/2 we write

∫∫

[0,1]2
drds

∣∣∣∣∣
2Nc

−1/2
2,H

N∑

i=1

Ci(s)Ci(r)

∣∣∣∣∣

2

≤ 4N2c−1
2,H

∫∫

[0,1]2
drds

N∑

i=1

N∑

j=1

1[ i
N

, i+1
N
](s)1[ j

N
,
j+1
N
](r)

×
(

i + 1

Ns

)H−1/2(
j + 1

Nr

)H−1/2

N2−4H

≤ 4N2−4H c−1
2,H

∫∫

[0,1]2
dtdu

N∑

i=1

N∑

j=1

N−2

×
(

1+ 1

i

)H−1/2(
1+ 1

j

)H−1/2

≤ 8N2−4H c−1
2,H .
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Since H > 1/2, this proves that the portion of D̃2F̄N corresponding to Ci tends to
0 in L2([0,1]2). For the dominant term, we calculate

∣∣∣∣∣
2Nc

−1/2
2,H

N∑

i=1

Bi(r)Bi(s)− 2c
−1/2
2,H L(r, s)

∣∣∣∣∣

= 2c
−1/2
2,H

∣∣∣∣∣

N∑

i=1

1[0, i
N
](r ∨ s)

∂KH

∂u

(
ξi(r), r

)∂KH

∂u

(
ξi(s), s

)

−
∫ 1

r∨s

∂KH

∂u
(u, s)

∂KH

∂u
(u, r)du

∣∣∣∣∣
.

This converges to 0 pointwise as a limit of Riemann sums. At this point we can
conclude that the sequence LN(y1, y2) converges (in probability for instance) to
L2H−1

1 (y1, y2) for every y1, y2 ∈ [0,1]. Our desired result will follow if we prove
that the sequence (LN)N≥1 is a Cauchy sequence in L2([0,1]2). We have

‖LN −LM‖2
L2([0,1]2)

=N2
N−1∑

i,j=0

[
E
(

BH

(
i + 1

N

)
−BH

(
i

N

))(
BH

(
j + 1

N

)
−BH

(
j

N

))]2

+M2
M−1∑

i,j=0

[
E
(

BH

(
i + 1

M

)
−BH

(
i

M

))(
BH

(
j + 1

M

)
−BH

(
j

M

))]2

− 2MN

N−1∑

i=0

M−1∑

j=0

[
E
(

BH

(
i + 1

N

)
−BH

(
i

N

))

×
(

BH

(
j + 1

M

)
−BH

(
j

M

))]2

and we have already seen that

N2
N−1∑

i,j=0

[
E
(

BH

(
i + 1

N

)
−BH

(
i

N

))(
BH

(
j + 1

N

)
−BH

(
j

N

))]2

converges to the constant H 2(2H − 1)/(H − 3/4).
We now consider the sum

MN

N−1∑

i=0

M−1∑

j=0

[
E
(

BH

(
i + 1

N

)
−BH

(
i

N

))(
BH

(
j + 1

M

)
−BH

(
j

M

))]2
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=MN

N−1∑

i=0

M−1∑

j=0

[∣∣∣∣
i + 1

N
− j + 1

M

∣∣∣∣

2H

+
∣∣∣∣

i

N
− j

M

∣∣∣∣

2H

−
∣∣∣∣
i + 1

N
− j

M

∣∣∣∣

2H

−
∣∣∣
∣

i

N
− j + 1

M

∣∣∣
∣

2H]2

.

For any two-variable function g such that ∂g
∂x∂y

(x, y) exists and belongs to

L2([0,1]2) it can easily be shown (by a Riemann sum argument) that

MN

N−1∑

i=0

M−1∑

j=0

[
g

(
i + 1

N
,
j + 1

M

)
+g

(
i

N
,

j

M

)
−g

(
i + 1

N
,

j

M

)
−g

(
i

N
,
j + 1

M

)]2

can be written as

1

MN

N−1∑

i=0

M−1∑

j=0

(
∂g

∂x∂y
(ai, bj )

)2

with ai located between i
N

and i+1
N

and bj located between j
M

and j+1
M

and conse-
quently it converges to

(
2H(2H − 1)

)2
∫ 1

0

∫ 1

0
|x − y|4H−4dxdy =H 2(2H − 1)/(H − 3/4)= c2,H

with c2,H defined by (5.8). �

To obtain the error bound in the Non-Central Limit Theorem (for H > 3
4 ) we will

use a criterium proved in [65]. This criterium applies to the total variation distance.
Recall that the total variation distance between the probability distributions of two
real-valued random variables X and Y is defined by

dTV

(
L(X),L(Y )

)= sup
A∈B(R)

∣∣P(Y ∈A)− P(X ∈A)
∣∣ (5.21)

where B(R) denotes the class of Borel sets of R. We have the following result (see
[65]) on the total variation distance between elements of a fixed Wiener chaos.

Theorem 5.6 Fix an integer q ≥ 2 and let f ∈H�q\{0}. Then, for any sequence
{fn}n≥1 ⊂H�q converging to f , there exists a constant cq,f , depending only on q

and f , such that

dTV

(
Iq(fn), Iq(f )

)≤ cq,f ‖fn − f ‖1/q

H�q .

Using Theorem 5.6, the rate of convergence in the Non-Central Limit Theorem
is as follows.
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Theorem 5.7 For H > 3
4 ,

dT V

(
L(F̄N ),Z

)≤ cN
3
4−H .

Proof See Theorem 1.2 in [39]. �

5.1.5 Multidimensional Convergence of the 2-Variations

This section is devoted to the study of the vectorial convergence of the 2-variations
statistics. We will restrict ourselves to the case H ≤ 3

4 in which the limit of the
components are Gaussian random variables. Our strategy is based on Theorem 5.3.

Define the following filters constructed from the filter a = {1,−1}:
a1 = {1,−1}, a2 = {1,−2,1}, a3 = {1,0,0,−1}, . . .

aM = (1,0,0, . . . ,−1}
where M is an integer and at each step p, the vector ap has p − 1 zeros. Note that
for every p = 1, . . . ,M , the filter ap is a p+ 1 dimensional vector.

Consider the statistics based on the above filters (1≤ p ≤M)

VN

(
2, ap

) = 1

N − p+ 1

N∑

i=p

[
(B( i

N
)−B(

i−p
N

))2

E(B( i
N

)−B(
i−p
N

))2
− 1

]

= 1

N − p+ 1

N∑

i=p

[(
I1(Ai,p)

)2
(

p

N

)−2H

− 1

]

= 1

N − p+ 1

(
p

N

)−2H N∑

i=p

I2(Ai,p ⊗Ai,p)

where

Ai,p = 1[ i−p
N

, i
N
], 1≤ p ≤M,p ≤ i ≤N.

We have the following vectorial limit theorem.

Theorem 5.8 Let B be a fBm with H ∈ (0,3/4) and let M ≥ 1. For 1≤ p,q ≤M

define

cp,q,H := 1

(pq)2H

∑

k≥1

(|k|2H + |k − p+ q|2H − |k − p|2H − |k + q|2H
)2

+ c′p,q,H , and cp,H := cp,p,H
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with c′p,q,H = (|p−q|2H−p2H−q2H )2

2(pq)2H and

F̄N

(
ap
) := √Nc−1

p,H VN(2, ap). (5.22)

Then the vector (F̄N (a1), . . . ,FN(aM)) converges, as N→∞, to a Gaussian vec-
tor with covariance matrix C = Ci,j where Cp,q = cp,q,H√

cp,H cq,H
.

If H = 3
4 , define

dp,q,H := 1

(pq)2H

3

16
, and dp,H := dp,p,H ,

and

F̃N

(
ap
)=

√
N

logN
d
−1/2
p,H VN

(
2, ap

)
.

Then the vector (FN(a1), . . . ,FN(aM)) converges, as N→∞, to a Gaussian vec-

tor with covariance matrix D =Di,j where Dp,q = dp,q,H√
dp,H dq,H

.

Proof Let us estimate the covariance of two such statistics

E
[
VN

(
2, ap

)
VN

(
2, aq

)]

= N4H

(N − p+ 1)(N − q + 1)

1

(pq)2H
2

N∑

i=p

N∑

j=q

〈Ai,p ⊗Ai,p,Aj,q ⊗Aj,q〉H⊗H

= N4H

(N − p+ 1)(N − q + 1)

2

(pq)2H

N∑

i=p

N∑

j=q

〈Ai,p ⊗Aj,q〉2H.

The next step is to compute the scalar product

〈Ai,p ⊗Aj,q〉H = 〈1[ i−p
N

, i
N
],1[ j−q

N
,

j
N
]〉H

= 1

2

[∣∣∣
∣
i − j

N

∣∣∣
∣

2H

+
∣∣∣
∣
i − j − p+ q

N

∣∣∣
∣

2H

−
∣∣∣∣
i − j − p

N

∣∣∣∣

2H

−
∣∣∣∣
i − j + q

N

∣∣∣∣

2H]
.

Assume that p ≥ q . We need to estimate the sum

N∑

i=p

N∑

j=q

[∣∣∣∣
i − j

N

∣
∣∣∣

2H

+
∣
∣∣∣
i − j − p+ q

N

∣
∣∣∣

2H

−
∣
∣∣∣
i − j − p

N

∣
∣∣∣

2H

−
∣
∣∣∣
i − j + q

N

∣
∣∣∣

2H]2
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= 1

N4H

p−1∑

j=q

N∑

i=p

(|i − j |2H + |i − j − p+ q|2H

− |i − j − p|2H − |i − j + q|2H
)2

+ 1

N4H

N∑

j=p

N∑

i=p

(|i − j |2H + |i − j − p+ q|2H

− |i − j − p|2H − |i − j + q|2H
)2 + c′p,q,H

= 2

N4H

N∑

j=p

N−j∑

k=1

(|k|2H + |k − p+ q|2H − |k − p|2H − |k + q|2H
)2 + c′p,q,H

= 2

N4H

N−p∑

k=1

(N − k− p)
(|k|2H + |k − p+ q|2H − |k − p|2H − |k + q|2H

)2

= 2

N4H

N−p∑

k=1

(N − k− p)k4H g

(
1

k

)2

+ c′p,q,H

where

g(x)= 1+ (1− (p− q)x
)2H − (1− px)2H − (1+ qx)2H .

By the asymptotic behavior of the function g near zero, we obtain for large k

g

(
1

k

)
∼ 2H(2H − 1)pq

1

k2
.

We distinguish again the cases H < 3
4 and k = 3

4 and we conclude that

E
[
VN

(
2, ap

)
VN

(
2, aq

)]∼N→∞ cp,q,H

1

N
, for H <

3

4

and

E
[
VN

(
2, ap

)
VN

(
2, aq

)]∼N→∞ dp,q,H

logN

N
for H = 3

4
where the constants cp,q,H and dp,q,H are defined in the statement of the theorem.
The conclusion then follows from Proposition 5.3. �

5.2 Quadratic Variations of the Rosenblatt Process

Our observed process is a Rosenblatt process (Z(t))t∈[0,1] with self-similarity pa-
rameter H ∈ ( 1

2 ,1). Recall from Sect. 3.2 that this centered process is self-similar
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with stationary increments, and lives in the second Wiener chaos. Its covariance is
identical to that of fractional Brownian motion. Our goal is to study the asymp-
totic behavior of its quadratic variations. The classical techniques (e.g, those from
[67, 167], or [168]) do not work well for this process. Therefore, the use of the
Malliavin calculus and multiple stochastic integrals is of interest.

We will use the representation of the Rosenblatt process on a finite interval given
in Sect. 3.2. The Rosenblatt process can be represented as follows (see (3.17)): for
every t ∈ [0,1]

ZH (t) := Z(t)

= d(H)

∫ t

0

∫ t

0

[∫ t

y1∨y2

∂1K
H ′(u, y1)∂1K

H ′(u, y2)du

]
dW(y1)dW(y2)

where (W(t), t ∈ [0,1]) is some standard Brownian motion, KH ′ is the standard
kernel of fractional Brownian motion (see (1.4)), H ′ = H+1

2 and the constant d(H)

is defined by (3.19).
For every t ∈ [0,1] we will denote the kernel of the Rosenblatt process with

respect to W by

LH
t (y1, y2) := Lt(y1, y2)

:= d(H)

[∫ t

y1∨y2

∂1K
H ′(u, y1)∂1K

H ′(u, y2)du

]
1[0,t]2(y1, y2). (5.23)

In other words, in particular, for every t

Z(t)= I2
(
Lt(·)

)

where I2 denotes the multiple integral of order 2 introduced in Appendix C.
Consider now the 2-variations (or the quadratic variations) given by

VN = 1

N

N∑

i=1

(Z( i
N

)−Z( i−1
N

))2

E(Z( i
N

)−Z( i−1
N

))2
− 1

= N2H−1
N∑

i=1

[(
Z

(
i

N

)
−Z

(
i − 1

N

))2

−N−2H

]
. (5.24)

The first step is to decompose in chaos the random variable VN (5.24).

Proposition 5.5 For every N ,

VN =N2H−1
N∑

i=1

(
I4(Ai ⊗Ai)+ 4I2(Ai ⊗1 Ai)

) := T4 + T2
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where, for i = 1, . . . ,N and for y1, y2 ∈ [0,1]

Ai(y1, y2) := LH
i
N

(y1, y2)−LH
i−1
N

(y1, y2) (5.25)

and LH is defined by (5.23).

Proof The product formula for multiple Wiener-Itô integrals (C.4) yields

I2(f )2 = I4(f ⊗ f )+ 4I2(f ⊗1 f )+ 2I0(f ⊗2 f ).

With Ai defined by (5.25) we can thus write

(
Z

(
i

N

)
−Z

(
i − 1

N

))2

= (I2(Ai)
)2

= I4(Ai ⊗Ai)+ 4I2(Ai ⊗1 Ai)+ 2I0(Ai ⊗2 Ai)

and this implies that the 2-variation decomposes into a 4th chaos term and a 2nd
chaos term:

VN =N2H−1
N∑

i=1

(
I4(Ai ⊗Ai)+ 4I2(Ai ⊗1 Ai)

) := T4 + T2.
�

A detailed study of the two terms above will shed light on some interesting facts:
if H ≤ 3

4 the term T4 continues to exhibit “normal” behavior (when renormalized,
it converges in law to a Gaussian distribution), while the term T2, which turns out
to be dominant, never converges to a Gaussian law. One can say that the second
Wiener chaos portion is “ill-behaved”; however, once it is subtracted, one obtains a
sequence converging to N(0,1) (for H ∈ ( 1

2 , 2
3 )), which has an impact for statistical

applications.

5.2.1 Evaluation of the L2-Norm

We now analyze the asymptotic behavior of the sequence EV 2
N . From Proposi-

tion 5.5, one needs to evaluate the two terms T2 and T4 appearing in the chaos
expansion of VN .

The Term in the Second Wiener Chaos Let us evaluate the mean square of the
second term

T2 :=N2H−14
N∑

i=1

I2(Ai ⊗1 Ai).
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Proposition 5.6 Let a(H), d(H) be given by (5.27) and (3.19) respectively. Then

lim
N→∞E

[
T 2

2

]
N2−2H = 64a(H)2d(H)4

(
1

2H − 1
− 1

2H

)
= 16d(H)2 := c3,H .

Proof We use the notation Ii = ( i−1
N

, i
N
] for i = 1, . . . ,N . The contraction Ai⊗1 Ai

is given by

(Ai ⊗1 Ai)(y1, y2) =
∫ 1

0
Ai(x, y1)Ai(x, y2)dx

= d(H)2
∫ 1

0
dx 1[0, i

N
](y1 ∨ x)1[0, i

N
](y2 ∨ x)

×
(∫ i

N

x∨y1

∂1K
H ′(u, x)∂1K

H ′(u, y1)du− 1[0, i−1
N
](y1 ∨ x)

×
∫ i−1

N

x∨y1

∂1K
H ′(u, x)∂1K

H ′(u, y1)du

)

×
(∫ i

N

x∨y2

∂1K
H ′(v, x)∂1K

H ′(v, y2)dv− 1[0, i−1
N
](y2 ∨ x)

×
∫ i−1

N

x∨y2

∂1K
H ′(v, x)∂1K

H ′(v, y2)dv

)
. (5.26)

With

a(H) :=H ′
(
2H ′ − 1

)=H(H + 1)/2 (5.27)

note the following fact (see [136], Chap. 5):
∫ u∧v

0
∂1K

H ′(u, y1)∂1K
H ′(v, y1)dy1 = a(H)|u− v|2H ′−2; (5.28)

in fact, this relation can be easily derived from
∫ t∧s

0 KH ′(t, u)KH ′(s, u)du =
RH ′(t, s) (relation (1.5)), and will be used repeatedly in the sequel.

To use this relation, we first expand the product in the expression for the con-
traction in (5.26), taking care to keep track of the indicator functions. The resulting
initial expression for (Ai ⊗1 Ai)(y1, y2) contains four terms, which are all of the
following form:

Ca,b := d(H)2
∫ 1

0
dx1[0,a](y1 ∨ x)1[0,b](y2 ∨ x)

×
∫ a

u=y1∨x

∂1K
H ′(u, x)∂1K(u,y1)du

×
∫ b

v=y2∨x

∂1K
H ′(v, x)∂1K

H ′(v, y2)dv.
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Here in order to use Fubini’s theorem, bringing the integral over x inside, we first
note that x < u ∧ v while u ∈ [y1, a] and v ∈ [y2, b]. Also note that the conditions
x ≤ u and u≤ a imply x ≤ a, and thus 1[0,a](y1 ∨ x) can be replaced, after Fubini,
by 1[0,a](y1). Therefore, using (5.28), the above expression equals

Ca,b = d(H)21[0,a]×[0,b](y1, y2)

∫ a

y1

∂1K
H ′(u, y1)du

∫ b

y2

∂1K
H ′(v, y2)dv

×
∫ u∧v

0
∂1K

H ′(u, x)∂1K
H ′(v, x)dx

= d(H)21[0,a]×[0,b](y1, y2)

×
∫ a

u=y1

∫ b

v=y2

∂1K
H ′(u, y1)∂1K

H ′(v, y2)|u− v|2H ′−2dudv

= d(H)2
∫ a

u=y1

∫ b

v=y2

∂1K(u,y1)∂1K
H ′(v, y2)|u− v|2H ′−2dudv.

The last inequality above comes from the fact that the indicator functions in y1, y2
are redundant: they can be pulled back into the integral over dudv and therein, the
functions ∂1K

H ′(u, y1) and ∂1K
H ′(v, y2) are, by definition, as functions of y1 and

y2, supported by smaller intervals than [0, a] and [0, b], namely [0, u] and [0, v]
respectively.

Now, the contraction (Ai ⊗1 Ai)(y1, y2) equals Ci/N,i/N + C(i−1)/N,(i−1)/N −
C(i−1)/N,i/N −Ci/N,(i−1)/N . Therefore, from the last expression above,

(Ai ⊗1 Ai)(y1, y2)

= a(H)d(H)2
(∫ i

N

y1

du

∫ i
N

y2

dv∂1K
H ′(u, y1)∂1K

H ′(v, y2)|u− v|2H ′−2

−
∫ i

N

y1

du

∫ i−1
N

y2

dv∂1K
H ′(u, y1)∂1K

H ′(v, y2)|u− v|2H ′−2

−
∫ i−1

N

y1

du

∫ i
N

y2

dv∂1K
H ′(u, y1)∂1K

H ′(v, y2)|u− v|2H ′−2

+
∫ i−1

N

y1

du

∫ i−1
N

y2

dv∂1K
H ′(u, y1)∂1K

H ′(v, y2)|u− v|2H ′−2
)

. (5.29)

Since the integrands in the above four integrals are identical, we can simplify the
above formula, grouping the first two terms, for instance, to obtain an integral of v

over Ii = ( i−1
N

, i
N
], with integration over u in [y1,

i
n
]. The same operation on the

last two terms gives the negative of the same integral over v, with integration over u

in [y1,
i−1
n
]. Then grouping these two resulting terms yields a single term, which is

an integral for (u, v) over Ii × Ii . We obtain the following final expression for our
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contraction:

(Ai ⊗1 Ai)(y1, y2)= a(H)d(H)2

×
∫∫

Ii×Ii

∂1K
H ′(u, y1)∂1K

H ′(v, y2)|u− v|2H ′−2dudv.

(5.30)
Now, since the integrands in the double Wiener integrals defining T2 are sym-

metric, we get

E
[
T 2

2

]=N4H−216 · 2!
N∑

i,j=1

〈Ai ⊗1 Ai,Aj ⊗1 Aj 〉L2([0,1]2).

To evaluate the inner product of the two contractions, we first use Fubini’s the-
orem with expression (5.30); by doing so, one must realize that the support of
∂1K

H ′(u, y1) is {u > y1}, which then makes the upper endpoint 1 for the integration
in y1 redundant; similar remarks hold with u′, v, v′, and y2. In other words, we have

〈Ai ⊗1 Ai,Aj ⊗1 Aj 〉L2([0,1])2

= a(H)2d(H)4
∫ 1

0

∫ 1

0
dy1dy2

∫

Ii

∫

Ii

∫

Ij

∫

Ij

du′dv′dudv|u− v|2H ′−2

× ∣∣u′ − v′
∣∣2H ′−2

∂1K
H ′(u, y1)∂1K

H ′(v, y2)∂1K
H ′(u′, y1

)
∂1K

H ′(v′, y2
)

= a(H)4d(H)4
∫

Ii

∫

Ii

∫

Ij

∫

Ij

|u− v|2H ′−2
∣∣u′ − v′

∣∣2H ′−2
du′dv′dvdu

×
∫ u∧u′

0
∂1K

H ′(u, y1)∂1K
H ′(u′, y1

)
dy1

×
∫ v∧v′

0
∂1K

H ′(v, y2)∂1K
H ′(v′, y2

)
dy2

= a(H)4d(H)4
∫

Ii

∫

Ii

∫

Ij

∫

Ij

|u− v
∣∣2H ′−2∣∣u′ − v′

∣∣2H ′−2

× ∣∣u− u′
∣∣2H ′−2∣∣v − v′

∣∣2H ′−2
du′dv′dvdu (5.31)

where we used the expression (5.28) in the last step. Therefore we have immediately

E
[
T 2

2

] = N4H−232a(H)4d(H)4
N∑

i,j=1

∫

Ii

∫

Ii

∫

Ij

∫

Ij

du′dv′dvdu

× |u− v|2H ′−2
∣∣u′ − v′

∣∣2H ′−2∣∣u− u′
∣∣2H ′−2∣∣v− v′

∣∣2H ′−2
. (5.32)
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By Lemma 5.4 below, we conclude that

lim
N→∞E

[
T 2

2

]
N2−2H = 64a(H)2d(H)4

(
1

2H − 1
− 1

2H

)
= 16d(H)2 := c3,H .

(5.33)
�

Lemma 5.4 For all H > 1/2, with Ii = ( i−1
N

, i
N
], (i = 1, . . . ,N )

lim
N→∞N2H

N∑

i,j=1

∫

Ii

∫

Ii

∫

Ij

∫

Ij

|u− v|2H ′−2
∣∣u′ − v′

∣∣2H ′−2

× ∣∣u− u′
∣∣2H ′−2∣∣v− v′

∣∣2H ′−2
du′dv′dvdu

= 2a(H)−2
(

1

2H − 1
− 1

2H

)
. (5.34)

Proof We make the change of variables

ū=
(

u− i − 1

N

)
N

with dū = Ndu and we proceed similarly for the other variables u′, v, v′. For the
integral we need to calculate:

∫

Ii

∫

Ii

∫

Ij

∫

Ij

|u− v|2H ′−2
∣∣u′ − v′

∣∣2H ′−2∣∣u− u′
∣∣2H ′−2∣∣v− v′

∣∣2H ′−2
du′dv′dvdu

= 1

N4H

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
dudvdu′dv′|u− v|2H ′−2

∣∣u′ − v′
∣∣2H ′−2

× ∣∣u− u′ + i − j
∣∣2H ′−2∣∣v− v′ + i − j

∣∣2H ′−2
,

where we used the fact that 8H ′ − 8 = 4H − 4. This needs to be summed over∑N
i,j=1; the sum can be divided into two parts: a diagonal part containing the terms

i = j and a non-diagonal part containing the terms i �= j . As in the calculations con-
tained in the previous sections, one can see that the non-diagonal part is dominant.
Indeed, the diagonal part of (5.34) is equal to

N−2H

N∑

i=1

∫

[0,1]4
dudvdu′dv′|u− v|2H ′−2

∣∣u′ − v′
∣∣2H ′−2∣∣u− u′

∣∣2H ′−2

× ∣∣v− v′
∣∣2H ′−2



5.2 Quadratic Variations of the Rosenblatt Process 145

=N1−2H

∫

[0,1]4
dudvdu′dv′|u− v|2H ′−2

∣∣u′ − v′
∣∣2H ′−2

× ∣∣u− u′
∣
∣2H ′−2∣∣v− v′

∣
∣2H ′−2

and this tends to zero because H > 1
2 .

Therefore the behavior of the quantity in the statement of the lemma will be given
by that of

2

N2H

∑

i>j

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
dudvdu′dv′

× |u− v|2H ′−2
∣∣u′ − v′

∣∣2H ′−2∣∣u− u′ + i − j
∣∣2H ′−2∣∣v − v′ + i − j

∣∣2H ′−2

= 2

N2H

N∑

i=1

N−i∑

k=1

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
dudvdu′dv′

× |u− v|2H ′−2
∣∣u′ − v′

∣∣2H ′−2∣∣u− u′ + k
∣∣2H ′−2∣∣v− v′ + k

∣∣2H ′−2

= 2

N2H

N∑

k=1

(N − k)

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
dudvdu′dv′

× |u− v|2H ′−2
∣∣u′ − v′

∣∣2H ′−2∣∣u− u′ + k
∣∣2H ′−2∣∣v− v′ + k

∣∣2H ′−2
.

Note that

1

N2H

N∑

k=1

(N − k)
∣∣u− u′ + k

∣∣2H ′−2∣∣v − v′ + k
∣∣2H ′−2

= 1

N

N∑

k=1

(
1− k

N

)∣∣∣
∣
u− u′

N
+ k

N

∣∣∣
∣

2H ′−2∣∣∣
∣
v − v′

N
+ k

N

∣∣∣
∣

2H ′−2

.

Because the terms of the form (u− u′)/N are negligible in comparison with k/N

for all but the smallest k’s, the above expression is asymptotically equivalent to the
Riemann sum approximation of the Riemann integral

∫ 1

0
(1− x)x4H ′−4dx = 1/(2H − 1)− 1/(2H)

where 2H ′ − 2=H − 1. The lemma follows. �
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The Term in the Fourth Wiener Chaos Now for the L2-norm of the term de-
noted by

T4 :=N2H−1
N∑

i=1

I4(Ai ⊗Ai),

by the isometry formula for multiple stochastic integrals, and using a correction
term to account for the fact that the integrand in T4 is non-symmetric, we have

E
[
T 2

4

] = 8N4H−2
N∑

i,j=1

〈Ai ⊗Ai;Aj ⊗Aj 〉L2([0,1]4)

+ 4N4H−2
N∑

i,j=1

4〈Ai ⊗1 Aj ;Aj ⊗1 Ai〉L2([0,1]2) =: T4,0 + T4,1.

We separate the calculation of the two terms T4,0 and T4,1 above. We will see that
these two terms are of exactly the same magnitude, so both calculations have to be
performed precisely.

The first term T4,0 can be written as

T4,0 = 8N4H−2
N∑

i,j=1

∣∣〈Ai,Aj 〉L2([0,1]2)
∣∣2.

We calculate each individual scalar product 〈Ai,Aj 〉L2([0,1]2) as

〈Ai,Aj 〉L2([0,1]2) =
∫ 1

0

∫ 1

0
Ai(y1, y2)Aj (y1, y2)dy1dy2

= d(H)2
∫ 1

0

∫ 1

0
dy1dy21[0, i

N
∧ j

N
](y1 ∨ y2)

×
(∫ i

N

y1∨y2

∂1K
H ′(u, y1)∂1K

H ′(u, y2)du− 1[0, i−1
N
](y1 ∨ y2)

×
∫ i−1

N

y1∨y2

∂1K
H ′(u, y1)∂1K

H ′(u, y2)du

)

×
(∫ j

N

y1∨y2

∂1K
H ′(v, y1)∂1K

H ′(v, y2)dv− 1[0,
j−1
N
](y1 ∨ y2)

×
∫ j−1

N

y1∨y2

∂1K
H ′(v, y1)∂1K

H ′(v, y2)dv

)

= d(H)2
∫ i

N

i−1
N

∫ j
N

j−1
N

dudv

[∫ u∧v

0
∂1K

H ′(u, y1)∂1K
H ′(v, y1)dy1

]2

.
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Here (5.28) yields

〈Ai,Aj 〉L2([0,1]2) = d(H)2a(H)2
∫

Ii

∫

Ij

|u− v|2H−2dudv

where again we have used the notation Ii = ( i−1
N

, i
N
] for i = 1, . . . ,N . We finally

obtain

〈Ai,Aj 〉L2([0,1]2) =
d(H)2a(H)2

H(2H − 1)

1

2

[
2

∣∣∣∣
i − j

N

∣∣∣∣

2H

−
∣∣∣∣
i − j + 1

N

∣∣∣∣

2H

−
∣∣∣∣
i − j − 1

N

∣∣∣∣

2H]

(5.35)
where, more precisely, d(H)2a(H)2(H(2H − 1))−1 = 2. In particular, with some
positive constants c1,H , c2,H , and c′1,H using the proofs of Propositions 5.1, 5.2 and
5.3, we get, asymptotically for large N ,

lim
N→∞NT4,0 = c1,H , 1/2 < H <

3

4
, (5.36)

lim
N→∞N4−4HT4,0 = c2,H , H >

3

4
, (5.37)

lim
N→∞

N

logN
T4,0 = c′1,H = 16, H = 3

4
. (5.38)

The second term T4,1 can be dealt with by obtaining an expression for

〈Ai ⊗1 Aj ;Aj ⊗1 Ai〉L2([0,1]2)

in the same way as the expression obtained in (5.31). We get

T4,1 = 16N4H−2
N∑

i,j=1

〈Ai ⊗1 Aj ;Aj ⊗1 Ai〉L2([0,1]2)

= 16d(H)4a(H)4N−2
N∑

i,j=1

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
dydzdy′dz′

× |y − z+ i − j |2H ′−2
∣∣y′ − z′ + i − j

∣∣2H ′−2

× ∣∣y − y′ + i − j
∣∣2H ′−2∣∣z− z′ + i − j

∣∣2H ′−2
.

Now similarly to the proof of Lemma 5.4, we find the following three asymptotic
behaviors for the term T4,1 (here τ1,H , τ2,H , τ2,H are positive constants):

• if H ∈ ( 1
2 , 3

4 ), then τ−1
1,H NT4,1 converges to 1;

• if H > 3
4 , then τ−1

2,H N4−4HT4,1 converges to 1;

• if H = 3
4 then τ−1

3,H (N/ logN)T4,1 converges to 1.
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Combining these results for T4,1 with those for T4,0 in lines (5.36), (5.37)
and (5.38), we obtain the asymptotics of E[T 2

4 ] as N→∞:

lim
N→∞NE

[
T 2

4

] = e1,H , if H ∈
(

1

2
,

3

4

)
,

lim
N→∞N4−4H E

[
T 2

4

] = e2,H , if H ∈
(

3

4
,1

)

lim
N→∞

N

logN
E
[
T 2

4

] = e3,H , if H = 3

4

where

e1,H := (1/2)c1,H +τ1,H , e2,H := (1/2)c2,H +τ2,H , e3,H := c3,H +τ3,H .

(5.39)
Taking into account the estimates (5.36), (5.37), (5.38), with c3,H in (5.33), we

see that E[T 2
4 ] is always of smaller order than E[T 2

2 ]; therefore the mean-square
behavior of VN is given by that of the term T2 only.

Theorem 5.9 For every H > 1/2

lim
N→∞E

[(
N1−H VN

1√
c3,H

)2]
= 1. (5.40)

5.2.2 The Limit of the Quadratic Variations of the Rosenblatt
Process

In this subsection we study the asymptotic behavior of the term denoted by T2 which
appears in the decomposition of VN . Recall that this is the dominant term, given by

T2 = 4N2H−1I2

(
N∑

i=1

(Ai ⊗1 Ai)

)

and, with
√

c3,H = 4d(H) given in (5.33), we showed that

lim
N→∞E

[(
N1−H T2c

−1/2
3,H

)2]= 1.

With TN :=N1−H T2c
−1/2
3,H , one can show that in L2(Ω), limN→∞‖DTN‖2

L2([0,1]) =
2+ c where c is a strictly positive constant. As a consequence the Nualart-Ortiz cri-
terium (Theorem 5.2, point iv.) cannot be used. However, it is straightforward to
find the limit of T2, and thus of VN , in L2(Ω) in this case. We have the following
result.
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Theorem 5.10 For all H ∈ (1/2,1), the normalized 2-variation N1−H VN/(4d(H))

converges in L2(Ω) to the Rosenblatt random variable Z(1). Note that this is the
actual observed value of the Rosenblatt process at time 1.

Proof Since we have already proved that N1−H T4 converges to 0 in L2(Ω), it is
sufficient to prove that N1−H T2/(4d(H))− Z(1) converges to 0 in L2(Ω). Since
T2 is a second-chaos random variable, i.e. is of the form I2(fN) where fN is a
symmetric function in L2([0,1]2), it suffices to prove that

N1−H

4d(H)
fN

converges to L1 in L2([0,1]2), where L1 is given by (5.23). From (5.30) we get

fN(y1, y2)= 4N2H−1a(H)d(H)2

×
N∑

i=1

(∫∫

Ii×Ii

|u− v|2H ′−2∂1K
H ′(u, y1)∂1K

H ′(v, y2)dudv

)
.

(5.41)

We now show that N1−H

4d(H)
fN converges pointwise, for y1, y2 ∈ [0,1], to the ker-

nel of the Rosenblatt random variable. On the interval Ii × Ii , we may replace the
evaluation of ∂1K

H ′ and ∂1K
H ′ at u and v by setting u= v = i/N . We then get that

fN(y1, y2) is asymptotically equivalent to

4N2H−1a(H)d(H)2
N∑

i=1

1i/N≥y1∨y2∂1K
H ′(i/N,y1)∂1K

H ′(i/N,y2)

×
∫∫

Ii×Ii

dudv|u− v|2H ′−2

= 4NH−1d(H)2 1

N

N∑

i=1

1i/N≥y1∨y2∂1K
H ′(i/N,y1)∂1K

H ′(i/N,y2)

where we used the identity
∫∫

Ii×Ii
dudv|u − v|2H ′−2 = a(H)−1N−2H ′ =

a(H)−1N−H−1. Therefore we can write for every y1, y2 ∈ (0,1)2, by invoking a
Riemann sum approximation,

lim
N→∞

N1−H

4d(H)
fN(y1, y2)

= d(H) lim
N→∞

1

N

N∑

i=1

1i/N≥y1∨y2∂1K
H ′(i/N,y1)∂1K

H ′(i/N,y2)

= d(H)

∫ 1

y1∨y2

∂1K
H ′(u, y1)∂1K

H ′(u, y2)du= L1(y1,y2).



150 5 First and Second Order Quadratic Variations. Wavelet-Type Variations

To finish the proof, it suffices to check that the sequence N1−H fN is Cauchy in
L2([0,1]2). This can be checked by a straightforward calculation. Indeed, one has,
with C(H) a positive constant not depending on M and N ,
∥
∥N1−H fN −M1−H fM

∥
∥2

L2([0,1]2)

= C(H)N2H
N∑

i,j=1

∫

Ii

∫

Ii

∫

Ij

∫

Ij

|u− v|2H ′−2
∣∣u′ − v′

∣∣2H ′−2

× ∣∣u− u′
∣∣2H ′−2∣∣v − v′

∣∣2H ′−2
du′dv′dudv

+C(H)M2H

M∑

i,j=1

∫ i
M

i−1
M

∫ i
M

i−1
M

∫ j
M

j−1
M

∫ j
M

j−1
M

|u− v|2H ′−2
∣∣u′ − v′

∣∣2H ′−2

× ∣∣u− u′
∣∣2H ′−2∣∣v − v′

∣∣2H ′−2
du′dv′dudv

− 2C(H)M1−H N1−H M2H−1N2H−1
N∑

i=1

M∑

j=1

∫

Ii

∫

Ii

∫ j
M

j−1
M

∫ j
M

j−1
M

du′dv′dudv

× |u− v|2H ′−2
∣∣u′ − v′

∣∣2H ′−2∣∣u− u′
∣∣2H ′−2∣∣v− v′

∣∣2H ′−2
. (5.42)

The first two terms have already been studied in Lemma 5.4. We have shown that

N2H

N∑

i,j=1

∫

Ii

∫

Ii

∫

Ij

∫

Ij

|u− v|2H ′−2
∣∣u′ − v′

∣∣2H ′−2

× ∣∣u− u′
∣∣2H ′−2∣∣v − v′

∣∣2H ′−2
du′dv′dudv

converges to (a(H)2H(2H − 1))−1. Thus each of the first two terms in (5.42) con-
verge to C(H) times that same constant as M,N go to infinity. By the change of
variables already used several times ū= (u− i

N
)N , the last term in (5.42) is equal

to

C(H)(MN)H
1

N2M2
(NM)2H ′−2

N∑

i=1

M∑

j=1

∫

[0,1]4
dudvdu′dv′|u− v|2H ′−2

× ∣∣u′ − v′
∣∣2H ′−2

∣∣∣∣
u

N
− u′

M
+ i

N
− j

M

∣∣∣∣

2H ′−2∣∣∣∣
v

N
− v′

M
+ i

N
− j

M

∣∣∣∣

2H ′−2

= C(H)

MN

N∑

i=1

M∑

j=1

∫

[0,1]4
dudvdu′dv′|u− v|2H ′−2

∣∣u′ − v′
∣∣2H ′−2

×
∣∣∣∣
u

N
− u′

M
+ i

N
− j

M

∣∣∣∣

2H ′−2∣∣∣∣
v

N
− v′

M
+ i

N
− j

M

∣∣∣∣

2H ′−2

.



5.2 Quadratic Variations of the Rosenblatt Process 151

For large i, j the term u
N
− u′

M
is negligible in comparison with i

N
− j

M
and it can be

ignored. Therefore, the last term in (5.42) is equivalent to a Riemann sum than tends
as M,N →∞ to the constant (

∫ 1
0

∫ 1
0 |u − v|2H ′−2dudv)2

∫ 1
0

∫ 1
0 |x − y|2(2H ′−2).

This is precisely equal to 2(a(H)2H(2H −1))−1, i.e. the limit of the sum of the first
two terms in (5.42). Since the last term has a leading negative sign, the announced
Cauchy convergence is established, completing the proof of the theorem. �

Remark 5.1 One can show that the variations VN (5.24) converge to zero almost
surely as N goes to infinity. Indeed, the results in this section already show that VN

converges to 0 in L2(Ω), and thus in probability, as N→∞; to obtain almost sure
convergence we only need to use an argument in [172] based on the Borel-Cantelli
lemma.

5.2.3 Normality of the 4th Chaos Term T4 when H ≤ 3/4

The calculations for T4 above prove that limN→∞E[G2
N ] = 1 for H < 3/4 where

e1,H is given in (5.39) and

GN :=
√

NN2H−1e
−1/2
1,H I4

(
N∑

i=1

Ai ⊗Ai

)

. (5.43)

Similarly, for H = 3
4 , we showed that limN→∞E[G̃2

N ] = 1 where e3,H is given in
(5.39) and

G̃N :=
√

N

logN
N2H−1e−1

3,H I4

(
N∑

i=1

Ai ⊗Ai

)

. (5.44)

Using the criterion of Nualart and Ortiz-Latorre (Part (iv) in Theorem 5.2), we prove
the following asymptotic normality for GN and G̃N .

Theorem 5.11 If H ∈ (1/2,3/4), then GN given by (5.43) converges in distribution
as

lim
N→∞GN =N(0,1). (5.45)

If H = 3/4 then G̃N given by (5.44) converges in distribution as

lim
N→∞ G̃N =N(0,1). (5.46)

Proof See [181]. �
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5.3 Quadratic Variations of the Hermite Process

5.3.1 Chaos Expansion and Evaluation of the L2-Norm

Let Z(q,H) be a Hermite process of order q with self-similarity parameter H ∈
( 1

2 ,1) as defined by (3.5) using the kernel KH (1.4). Define the centered quadratic
variation statistic

VN := 1

N

N−1∑

i=0

[ (Z
(q,H)
i+1
N

−Z
(q,H)
i
N

)2

E[(Z(q,H)
i+1
N

−Z
(q,H)
i
N

)2]
− 1

]
. (5.47)

Also for H ∈ (1/2,1), and q ∈ N \ {0}, we define a constant which will recur
throughout:

d(H,q) : = (H(2H − 1))1/2

(q!(H ′(2H ′ − 1))q)1/2
, H ′ = 1+ (H − 1)

q
. (5.48)

We prove that, under suitable normalization, this sequence converges in L2(Ω) to a
Rosenblatt random variable.

Taking into account the results in Sects. 5.1 and 5.2, this shows that fBm is the
only Hermite process for which there exists a range of parameters allowing nor-
mal convergence of the quadratic variations, while for all other Hermite processes,
convergence to a second chaos random variable is universal. Our proofs are again
based on chaos expansions into multiple Wiener integrals and the Malliavin calcu-
lus. The main line of the proof is as follows: since the variable Z

(q,H)
t is an element

of the qth Wiener chaos, the product formula for multiple integrals (C.4) implies
that the statistics VN can be decomposed into a sum of multiple integrals from or-
der 2 to order 2q . The dominant term in this decomposition, which gives the final
renormalization order N(2−2H)/q , is the term which is a double Wiener integral,
and one proves it always converges to a Rosenblatt random variable; all other terms
are of much lower orders, which is why the only remaining term, after renormal-
ization, converges to a second chaos random variable. The difference with the fBm
case comes from the limit of the term of order 2, which in that case is sometimes
Gaussian and sometimes Rosenblatt-distributed, depending on the value of H .

Since E(Z
(q,H)
i+1
N

− Z
(q,H)
i
N

)2 = N−2H , the centered quadratic variation statistic

VN of the Hermite process can be written as

VN =N2H−1
N−1∑

i=0

[(
Z

(q,H)
i+1
N

−Z
(q,H)
i
N

)2 −N−2H
]
.

Let Ii := [ i
N

, i+1
N
]. In preparation for calculating the variance of VN we will find

an explicit expansion of VN in Wiener chaos. We have Z
(q,H)
i+1
N

−Z
(q,H)
i
N

= Iq(fi,N )
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where we denoted by fi,N (y1, . . . , yq) the kernel of q variables

1[0, i+1
N
](y1 ∨ · · · ∨ yq)d(H,q)

∫ i+1
N

y1∨···∨yq

∂1K
H ′(u, y1) · · · ∂1K

H ′(u, yq)du

−1[0, i
N
](y1 ∨ · · · ∨ yq)d(H,q)

∫ i
N

y1∨···∨yq

∂1K
H ′(u, y1) · · · ∂1K

H ′(u, yq)du.

Using the product formula for multiple integrals (C.4), we obtain

Iq(fi,N )Iq(fi,N )=
q∑

l=0

l!
(

q

k

)2

I2q−2l (fi,N ⊗l fi,N )

where f ⊗l g denotes the l-contraction of the functions f and g given by (C.5). Let
us compute these contractions; for l = q we have

〈fi,N ⊗q fi,N 〉 = q!〈fi,N , fi,N 〉L2([0,1])⊗q = E
[(

Z
(q,H)
i+1
N

−Z
(q,H)
i
N

)2]=N−2H .

In the following the notation ∂1K(t, s) will be used for ∂1K
H ′(t, s). For l = 0 we

have

〈fi,N ⊗0 fi,N )(y1, . . . yq, z1, . . . , zq〉 = (fi,N ⊗ fi,N )(y1, . . . yq, z1, . . . , zq)

= fi,N (y1, . . . , yq)fi,N (z1, . . . , zq)

while for 1≤ k ≤ q − 1

〈fi,N ⊗k fi,N )(y1, . . . yq−k, z1, . . . , zq−k〉

= d(H,q)2
∫

[0,1]k
dα1 · · ·dαk

(
1yi

i+1,q−k1αi

i+1,k

×
∫

Iyi+1,k

du∂1K(u,y1) · · · ∂1K(u,yq−k)∂1K(u,α1) · · · ∂1K(u,αk)

− 1yi

i,q−k1αi

i,k

∫

Iyi,k

du∂1K(u,y1) · · · ∂1K(u,yq−k)∂1K(u,α1) · · · ∂1K(u,αk)

)

×
(

1zi

i+1,q−k1αi

i+1,k

×
∫ i+1

N

Izi+1,k

dv∂1K(v, z1) · · · ∂1K(v, zq−k)∂1K(v,α1) · · · ∂1K(v,αk)

− 1zi

i,q−k1αi

i,k

∫ i
N

Izi,k

dv∂1K(v, z1) · · · ∂1K(v, zq−k)∂1K(v,α1) · · · ∂1K(v,αk)

)
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where 1
xj

i,k denotes the indicator function 1[0, i
N
]k (xj ) with x being y, z, or α, and

Ix
i,k denotes the interval [x1 ∨ · · · ∨ xq−k ∨ α1 · · · ∨ αk; i/N], with x being y or z.

By interchanging the order of the integration we get

〈fi,N ⊗k fi,N )(y1, . . . yq−k, z1, . . . , zq−k〉

= d(H,q)2
{

1[0, i+1
N
]2q−2k (yi, zi)

∫ i+1
N

y1∨···∨yq−k

du∂1K(u,y1) · · · ∂1K(u,yq−k)

×
∫ i+1

N

z1∨···∨zq−k

dv∂1K(v, z1) · · · ∂1K(v, zq−k)

(∫ u∧v

0
∂1K(u,α)∂1K(v,α)dα

)k

− 1[0, i+1
N
]q−k (yi)1[0, i

N
]q−k (zi)

∫ i+1
N

y1∨···∨yq−k

du∂1K(u,y1) · · · ∂1K(u,yq−k)

×
∫ i

N

z1∨···∨zq−k

dv∂1K(v, z1) · · · ∂1K(v, zq−k)

(∫ u∧v

0
∂1K(u,α)∂1K(v,α)dα

)k

− 1[0, i
N
]q−k (yi)1[0, i+1

N
]q−k (zi)

∫ i
N

y1∨···∨yq−k

du∂1K(u,y1) · · · ∂1K(u,yq−k)

×
∫ i+1

N

z1∨···∨zq−k

dv∂1K(v, z1) · · · ∂1K(v, zq−k)

(∫ u∧v

0
∂1K(u,α)∂1K(v,α)dα

)k

+ 1[0, i
N
]q−k (yi)1[0, i

N
]q−k (zi)

∫ i
N

y1∨···∨yq−k

du∂1K(u,y1) · · · ∂1K(u,yq−k)

×
∫ i

N

z1∨···∨zq−k

dv∂1K(v, z1) · · · ∂1K(v, zq−k)

×
(∫ u∧v

0
∂1K(u,α)∂1K(v,α)dα

)k}

and since
∫ u∧v

0
∂1K(u,α)∂1K(v,α)dα = a

(
H ′
)|u− v|2H ′−2

with a(H ′)=H ′(2H ′ − 1), we obtain

〈fi,N ⊗k fi,N 〉(y1, . . . yq−k, z1, . . . , zq−k)

= d(H,q)2a
(
H ′
)k

×
{

1[0, i+1
N
]q−k (yi)1[0, i+1

N
]q−k (zi)

∫ i+1
N

y1∨···∨yq−k

du∂1K(u,y1) · · · ∂1K(u,yq−k)
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×
∫ i+1

N

z1∨···∨zq−k

dv∂1K(v, z1) · · · ∂1K(v, zq−k)|u− v|(2H ′−2)k

− 1[0, i+1
N
]q−k (yi)1[0, i

N
]q−k (zi)

∫ i+1
N

y1∨···∨yq−k

du∂1K(u,y1) · · · ∂1K(u,yq−k)

×
∫ i

N

z1∨···∨zq−k

dv∂1K(v, z1) · · · ∂1K(v, zq−k)|u− v|(2H ′−2)k

− 1[0, i
N
]q−k (yi)1[0, i+1

N
]q−k (zi)

∫ i
N

y1∨···∨yq−k

du∂1K(u,y1) · · · ∂1K(u,yq−k)

×
∫ i+1

N

z1∨···∨zq−k

dv∂1K(v, z1) · · · ∂1K(v, zq−k)|u− v|(2H ′−2)k

+ 1[0, i
N
]q−k (yi)1[0, i

N
]q−k (zi)

∫ i
N

y1∨···∨yq−k

du∂1K(u,y1) · · · ∂1K(u,yq−k)

×
∫ i

N

z1∨···∨zq−k

dv∂1K(v, z1) · · · ∂1K(v, zq−k)|u− v|(2H ′−2)k

}
. (5.49)

As a consequence, we can write

Proposition 5.7

VN = T2q + c2q−2T2q−2 + · · · + c4T4 + c2T2 (5.50)

where

c2q−2k := k!
(

q

k

)2

(5.51)

are the combinatorial constants from the product formula for 0≤ k ≤ q − 1, and

T2q−2k :=N2H−1I2q−2k

(
N−1∑

i=0

fi,N ⊗k fi,N

)

, (5.52)

where the integrands in the last formula above are given explicitly in (5.49).

This Wiener chaos decomposition of VN allows us to find VN ’s precise order of
magnitude via its variance’s asymptotics.

Proposition 5.8 With

c1,H = 4d(H,q)4(H ′(2H ′ − 1))2q

(4H ′ − 3)(4H ′ − 2)[(2H
′ − 2)(q − 1)+ 1]2[(H ′ − 1)(q − 1)+ 1]2 ,

(5.53)
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we have

lim
N→∞E

[
c−1

1,H N(2−2H ′)2c−2
2 V 2

N

]= 1.

Proof We only need to estimate the L2-norm of each term appearing in the chaos
decomposition (5.50) of VN , since these terms are orthogonal in L2. We can write,
for 0≤ k ≤ q − 1,

E
[
T 2

2q−2k

] = N4H−2(2q − 2k)!
∥∥∥∥∥

(
N−1∑

i=0

fi,N ⊗k fi,N

)s∥∥∥∥∥

2

L2([0,1]2q−2k)

= N4H−2(2q − 2k)!
N−1∑

i,j=0

〈fi,N ⊗̃kfi,N , fj,N ⊗̃kfj,N 〉L2([0,1]2q−2k)

where (g)s = g̃ and fi,N ⊗̃kfi,N denotes the symmetrization of the function
fi,N ⊗k fi,N . We will consider first the term T2 obtained for k = q − 1. In this case,
the kernel

∑N−1
i=0 fi,N ⊗q−1 fi,N is symmetric and we can avoid its symmetrization.

Therefore

E
[
T 2

2

] = 2!N4H−2

∥∥∥∥∥

N−1∑

i=0

fi,N ⊗q−1 fi,N

∥∥∥∥∥

2

L2([0,1]2)

= 2!N4H−2
N−1∑

i,j=0

〈fi,N ⊗q−1 fi,N , fj,N ⊗q−1 fj,N 〉L2([0,1]2).

We compute now the scalar product in the above expression. By using Fubini’s
theorem, we end up with the following easier expression

〈fi,N ⊗q−1 fi,N , fj,N ⊗q−1 fj,N 〉L2([0,1]2)

= a
(
H ′
)2q

d(H,q)4
∫

Ii

∫

Ii

∫

Ij

∫

Ij

|u− v|(2H ′−2)(q−1)
∣∣u′ − v′

∣∣(2H ′−2)(q−1)

× ∣∣u− u′
∣∣2H ′−2∣∣v− v′

∣∣2H ′−2
dv′du′dvdu.

Using the change of variables y = (u− i
N

)N and similarly for the other variables,
we now obtain

E
[
T 2

2

] = 2d(H,q)4(H ′
(
2H ′ − 1

))2q
N4H−2N−4N−(2H ′−2)2q

×
N−1∑

i,j=0

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
dydzdy′dz′|y − z|(2H ′−2)(q−1)

∣∣y′ − z′
∣∣(2H ′−2)(q−1)

× ∣∣y − y′ + i − j
∣∣(2H ′−2)∣∣z− z′ + i − j

∣∣(2H ′−2)
.
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This can be viewed as the sum of a diagonal part (i = j ) and a non-diagonal part
(i �= j ), where the non-diagonal part is dominant, as the reader will readily check.
Therefore, the behavior of E[T 2

2 ] will be given by

E
[
T ′22

] := 2!d(H,q)4(H ′
(
2H ′ − 1

))2q
N−22

×
∑

i>j

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
dydzdy′dz′

(|y − z|∣∣y′ − z′
∣∣)(2H ′−2)(q−1)

× (∣∣y − y′ + i − j
∣∣∣∣z− z′ + i − j

∣∣)(2H ′−2)

= 2!d(H,q)4(H ′
(
2H ′ − 1

))2q
N−22

×
N−2∑

i=0

N−i∑

�=2

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
dydzdy′dz′

(|y − z|∣∣y′ − z′
∣∣)(2H ′−2)(q−1)

× (∣∣y − y′ + �− 1
∣
∣
∣
∣z− z′ + �− 1

∣
∣)(2H ′−2)

= 2!d(H,q)4(H ′
(
2H ′ − 1

))2q
N−22

×
N∑

�=2

(N − �+ 1)

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0
dydzdy′dz′

× (|y − z|∣∣y′ − z′
∣∣)(2H ′−2)(q−1)

× (∣∣y − y′ + �− 1
∣∣∣∣z− z′ + �− 1

∣∣)(2H ′−2)
.

Note that

1

N2

N∑

�=2

(N − �+ 1)
∣∣y − y′ + �− 1

∣∣(2H ′−2)∣∣z− z′ + �− 1
∣∣(2H ′−2)

=N2(2H ′−2) 1

N

N∑

�=2

(
1− �− 1

N

)∣∣∣∣
y − y′

N
+ �− 1

N

∣∣∣∣

2H ′−2∣∣∣∣
z− z′

N
+ �− 1

N

∣∣∣∣

2H ′−2

.

Using a Riemann sum approximation argument we conclude that

E
[
T ′22

]∼ 4d(H,q)4(H ′(2H ′ − 1))2q ×N2(2H ′−2)

(4H ′ − 3)(4H ′ − 2)[((2H ′ − 2)(q − 1)+ 1)]2[(H ′ − 1)(q − 1)+ 1]2 .

Therefore, it follows that

E
[
c−1

1,H N2(2−2H ′)T 2
2

]→N→∞ 1, (5.54)

with c1,H as in (5.53).
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Let us now study the term T4, . . . , T2q given by (5.52). Here the function
∑N−1

i=0 fi,N ⊗k fi,N is no longer symmetric but we will show that the behavior of
its L2-norm is dominated by E[T 2

2 ]. Since for any square integrable function g one
has ‖g̃‖L2 ≤ ‖g‖L2 , we have for k = 0, . . . , q − 2

1

(2q − 2k)!E
[
T 2

2q−2k

]=N4H−2

∥∥∥∥∥

N−1∑

i=0

fi,N ⊗̃kfi,N

∥∥∥∥∥

2

L2([0,1]2q−2k)

≤N4H−2

∥∥∥∥∥

N−1∑

i=0

fi,N ⊗k fi,N

∥∥∥∥∥

2

L2([0,1]2q−2k)

=N4H−2
N−1∑

i,j=0

〈fi,N ⊗k fi,N , fj,N ⊗k fj,N 〉L2([0,1]2q−2k)

(5.55)

and proceeding as above, with eH,q,k := (2q − 2k)!(H ′(2H ′ − 1))2qd(H,q)4, we
can write

E
[
T 2

2q−2k

] ≤ eH,q,kN
4H−2

N−1∑

i,j=0

∫

Ii

∫

Ii

dy1dz1

∫

Ij

∫

Ij

dy′1dz′1|y1 − z1|(2H ′−2)k

× ∣∣y′1 − z′1
∣
∣(2H ′−2)k∣∣y1 − y′1

∣
∣(2H ′−2)(q−k)∣∣z1 − z′1

∣
∣(2H ′−2)(q−k)

and using a change of variables as before,

E
[
T 2

2q−2k

] ≤ eH,q,kN
4H−2−4N−(2H ′−2)2q

×
N−1∑

i,j=0

∫

[0,1]4
dydzdy′dz′

(|y − z|∣∣y′ − z′
∣∣)(2H ′−2)k

× ∣∣y − y′ + i − j
∣∣(2H ′−2)(q−k)∣∣z− z′ + i − j

∣∣(2H ′−2)(q−k)

= (2q − 2k)!d(H,q)4

a(H ′)−2q

N(2H ′−2)(2q−2k)

N2

×
N∑

�=2

(
1−

(
�− 1

N

))∫

[0,1]4
dydzdy′dz′

(|y − z|∣∣y′ − z′
∣∣)(2H ′−2)k

×
(∣∣∣∣

y − y′

N
+ �− 1

N

∣∣∣∣

∣∣∣∣
z− z′

N
+ �− 1

N

∣∣∣∣

)(2H ′−2)(q−k)

. (5.56)
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Since off a diagonal term (again of lower order), the terms z−z′
N

are dominated by
�
N

for large l,N it follows that, for 1≤ k ≤ q − 1

E
[
c−1
q−k,H N(2−2H ′)(2q−2k)T 2

2q−2k

]=O(1) (5.57)

when N→∞, with

cq−k,H = 2

(∫ 1

0
(1− x)x(2H ′−2)(2q−2k)dx

)
a
(
H ′
)−2

(2q − 2k)!d(H,q)2a
(
H ′
)2q

.

(5.58)
It is obvious that the dominant term in the decomposition of VN is the term in
the chaos of order 2. [The case k = 0 is in the same situation for H > 3

4 and for
H ∈ ( 1

2 , 3
4 ) the term T2q obtained for k = 0 has to be renormalized by N ; in any

case it is dominated by the term T2]. More specifically we have for any k ≤ q − 2,

E
[
N2(2−2H ′)T 2

2q−2k

]=O
(
N−2(2−2H ′)2(q−k−1)

)
. (5.59)

Combining this with the orthogonality of chaos integrals, we immediately get that,
up to terms that tend to 0, N2−2H ′VN and N2−2H ′T2 have the same norm in L2(Ω).
This completes the proof of the proposition. �

Summarizing the spirit of the proof of Proposition 5.8, to understand the behavior
of the renormalized sequence VN it suffices to study the limit of the term

I2

(

N2H−1N(2−2H ′)
N−1∑

i=0

fi,N ⊗q−1 fi,N

)

(5.60)

with

(fi,N ⊗q−1 fi,N )(y, z)

= d(H,q)2a
(
H ′
)q−1

(
1[0, i

N
](y ∨ z)

×
∫

Ii

∫

Ii

dvdu∂1K(u,y)∂1K(v, z)|u− v|(2H ′−2)(q−1)

+ 1[0, i
N
](y)1Ii

(z)

∫

Ii

∫ i+1
N

z

dvdu∂1K(u,y)∂1K(v, z)|u− v|(2H ′−2)(q−1)

+ 1Ii
(y)1[0, i

N
](z)

∫ i+1
N

y

∫

Ii

dvdu∂1K(u,y)∂1K(v, z)|u− v|(2H ′−2)(q−1)

+ 1Ii
(y)1Ii

(z)

∫ i+1
N

y

∫ i+1
N

z

dvdu∂1K(u,y)∂1K(v, z)|u− v|(2H ′−2)(q−1)

)
.

(5.61)
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We will see in the proof of the next theorem that, of the contribution of the four terms
on the right-hand side of (5.61), only the first one does not tend to 0 in L2(Ω).
Hence the following notation will be useful: f N

2 will denote the integrand of the
contribution to (5.60) corresponding to that first term, and r2 will be the remainder
of the integrand in (5.60). In other words,

f N
2 + r2 =N2H−1N(2−2H ′)

N−1∑

i=0

fi,N ⊗q−1 fi,N (5.62)

and

f N
2 (y, z) := N2H−1N(2−2H ′)d(H,q)2a

(
H ′
)q−1

×
N−1∑

i=0

1[0, i
N
](y ∨ z)

×
∫

Ii

∫

Ii

dvdu∂1K(u,y)∂1K(v, z)|u− v|(2H ′−2)(q−1). (5.63)

Theorem 5.12 The sequence given by (5.60) converges in L2(Ω) as N→∞ to the

constant c
1/2
1,H times a standard Rosenblatt random variable Z

(2,2H ′−1)
1 with self-

similarity parameter 2H ′ − 1 and H ′ is given by (3.6). Consequently, we also have
that c

−1/2
1,H N(2−2H ′)c−1

2 VN converges in L2(Ω) as N→∞ to the same Rosenblatt
random variable.

Proof The first statement of the theorem is that N2−2H ′T2 converges to

c
1/2
1,H Z

(2,2H ′−1)
1

in L2(Ω). From (5.60) it follows that T2 is a second-chaos random variable, with
kernel

N2H−1
N−1∑

i=0

(fi,N ⊗q−1 fi,N )

(see the expression in (5.61)), so we only need to prove this kernel converges in
L2([0,1]2). The first observation is that r2(y, z) defined in (5.62) converges to zero
in L2([0,1]2) as N→∞. The crucial fact is that the intervals Ii , which are disjoint,
appear in the expression of this term and this implies that the non-diagonal terms
vanish when we take the square norm of the sum; in fact it can easily be seen that the
norm in L2 of r2 corresponds to the diagonal part in the evaluation in ET 2

2 which is
clearly dominated by the non-diagonal part, so this result comes as no surprise. The
proof follows the lines of Sect. 5.2. This shows N(2−2H ′)T2 is the sum of I2(f

N
2 ) and

a term which tends to 0 in L2(Ω). Our next step is thus simply to calculate the limit
in L2(Ω), if any, of I2(f

N
2 ) where f N

2 has been defined in (5.63). By the isometry
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property (C.1), limits of second-chaos r.v.’s in L2(Ω) are equivalent to limits of
their symmetric kernels in L2([0,1]2). Note that f N

2 is symmetric. Therefore, it
is sufficient to prove that f N

2 converges to the kernel of the Rosenblatt process at
time 1. We have by definition

f N
2 (y, z)= (H ′(2H ′ − 1

))(q−1)
d(H,q)2N2H−1N2−2H ′

×
N−1∑

i=0

∫

Ii

∫

Ii

|u− v|(2H ′−2)(q−1)∂1K
H ′(u, y)∂1K

H ′(v, z).

Thus for every y, z,

f N
2 (y, z) = d(H,q)2(H ′

(
2H ′ − 1

))(q−1)
N2H−1N2−2H ′

×
N−1∑

i=0

∫

Ii

∫

Ii

|u− v|(2H ′−2)(q−1)∂1K
H ′(u, y)∂1K

H ′(v, z)dudv

= d(H,q)2(H ′
(
2H ′ − 1

))(q−1)
N2H−1N2−2H ′

×
N−1∑

i=0

∫

Ii

∫

Ii

|u− v|(2H ′−2)(q−1)

× (∂1K
H ′(u, y)∂1K

H ′(v, z)− ∂1K
H ′(i/N, z)∂1K

H ′(i/N, z)
)
dudv

+ d(H,q)2(H ′
(
2H ′ − 1

))(q−1)
N2H−1N2−2H ′

×
∑

i=0

∫

Ii

∫

Ii

|u− v|(2H ′−2)(q−1)∂1K
H ′(i/N,y)∂1K

H ′(i/N, z)dudv

=: AN
1 (y, z)+AN

2 (y, z).

As in the proof of Theorem 5.10, one can show that E[‖AN
1 ‖2

L2([0,1]2)] → 0

as N→∞. Regarding the second term AN
2 (y, z), the summand is zero if i/N <

y ∨ z, therefore we get that f N
2 is equivalent to

N2H−1N2−2H ′d(H,q)2(H ′
(
2H ′ − 1

))(q−1)
N−1∑

i=0

∫

Ii

∫

Ii

|u− v|(2H ′−2)(q−1)

× ∂1K
H ′(i/N,y)∂1K

H ′(i/N, z)dudv

= (H ′(2H ′ − 1
))(q−1)

d(H,q)2N2H−1N2−2H ′

×
N−1∑

i=0

∂1K
H ′(i/N,y)∂1K

H ′(i/N, z)1y∨z<i/N

∫

Ii

∫

Ii

|u− v|(2H ′−2)(q−1)dudv
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= (H ′(2H ′ − 1
))(q−1)[((2H ′ − 2

)
(q − 1)+ 1

)((
H ′ − 1

)
(q − 1)+ 1

)]−1

× N2H−1N(2−2H ′)q

N2

N−1∑

i=0

∂1K
H ′(i/N,y)∂1K

H ′(i/N, z)1y∨z<i/N

= d(H,q)2

d(2H ′ − 2,2)

(H ′(2H ′ − 1))(q−1)

((2H ′ − 2)(q − 1)+ 1)((H ′ − 1)(q − 1)+ 1)

× d
(
2H ′ − 2,2

)
N−1

N−1∑

i=0

∂1K
H ′(i/N,y)∂1K

H ′(i/N, z)1y∨z<i/N .

The sequence d(2H ′ − 2,2)N−1∑N−1
i=0 ∂1K

H ′(i/N,y)∂1K
H ′(i/N, z)1y∨z<i/N is

a Riemann sum that converges pointwise on [0,1]2 to the kernel of the Rosenblatt
process Z2H ′−1,2 at time 1. To obtain the convergence in L2([0,1]2) we will apply
the dominated convergence theorem. Indeed,

∫ 1

0

∫ 1

0

∣∣∣∣∣
1

N

N−1∑

i=0

∂1K
H ′(i/N,y)∂1K

H ′(i/N, z)1y∨z<i/N

∣∣∣∣∣

2

dydz

= 1

N2

N−1∑

i,j=0

∣∣∣∣

∫ 1

0
∂1K

H ′(i/N,y)∂1K
H ′(j/N,y)1y<(i∧j)/Ndy

∣∣∣∣

2

≤ 1

N2

N−1∑

i,j=0

∣∣E[�Zi/N�Zj/N ]
∣∣2,

where �Zi/N is the difference Z( i
N

)−Z( i−1
N

) for a Rosenblatt process Z. We now
show that the above sum is always � N2, which proves that the last expression,
with the N−2 factor, is bounded. In fact for H1 = 2H ′ − 1

N−1∑

i,j=0

∣
∣E[�Zi/N�Zj/N ]

∣
∣2

=
N−1∑

i,j=0

∣∣∣∣

∣∣∣∣
i − j + 1

N

∣∣∣∣

2H1

+
∣∣∣∣
i − j − 1

N

∣∣∣∣

2H1

− 2

∣∣∣∣
i − j

N

∣∣∣∣

2H1
∣∣∣∣

2

= N−4H1

4

N−1∑

i,j=0

∣∣|i − j + 1|2H1 + |i − j − 1|2H1 − 2|i − j |2H1
∣∣2

≤ N−4H1

4
2N

N−1∑

�=−N+1

∣∣|�+ 1|2H1 + |�− 1|2H1 − 2|�|2H1
∣∣2.
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The function g(�) = |�+ 1|2H1 + |�− 1|2H1 − 2|�|2H1 behaves like H1(2H1 − 1)

|�|2H1−2 for large �. We need to separate the cases of convergence and divergence
of the series

∑∞
−∞ |g(�)|2. It is divergent as soon as H1 ≥ 3/4, or equivalently

H ′ ≥ 7/8, in which case we get for some constant c not dependent on N ,

N−1∑

i,j=0

∣∣E[�Zi/N�Zj/N ]
∣∣2 ≤ cN−4H1+1+4H1−3 = cN−2�N2.

The series
∑∞
−∞ |g(�)|2 is convergent if H ′ < 7/8, in which case we get

N−1∑

i,j=0

∣
∣E[�Zi/N�Zj/N ]

∣
∣2 ≤ cN−4H1+1.

For this to be�N2, we simply need −4H1 + 1 < 2, i.e. H ′ > 5/8. However, since
q ≥ 2 and H > 1/2 we always have H ′ > 3/4. Therefore in all cases, the sequence
AN

2 (y, z) is bounded in L2([0,1]2) and in this way we obtain the L2-convergence
to the kernel of a Rosenblatt process of order 1. The first statement of the theorem
is proved. In order to show that c

−1/2
1,H N(2−2H ′)c−1

2 VN converges in L2(Ω) to the
same Rosenblatt random variable as the normalized version of the quantity in (5.60),
it is sufficient to show that, after normalization by N2−2H ′ , each of the remaining
terms in the chaos expansion (5.50) of VN converge to zero in L2(Ω), i.e. that
N(2−2H ′)T2q−2k converges to zero in L2(Ω), for all 1≤ k < q − 1. From (5.59) we
have

E
[
N2(2−2H ′)T 2

2q−2k

]=O
(
N−2(2−2H ′)2(q−k−1)

)

which is all that is needed, concluding the proof of the theorem. �

5.3.2 The Reproduction Property for Hermite Processes

We also study the limits of the other terms in the decomposition (Proposition 5.7)
of VN , (5.47) those of order higher than 2, and we notice interesting facts: all these
terms, except the term of highest order 2q , have limits which are Hermite random
variables of various orders and self-similarity parameters. We call this the reproduc-
tion property for Hermite processes, because from one Hermite process of order q ,
one can reconstruct other Hermite processes of all lower orders. The exception to
this rule is that the normalized term of highest order 2q converges to a Hermite r.v.
of order 2q if H > 3/4, but converges to Gaussian limit if H ∈ (1/2,3/4].
Theorem 5.13

• For every H ∈ ( 1
2 ,1) and for every k = 1, . . . , q − 2 we have

lim
N→∞

N(2−2H ′)(q−k)T2q−2k = zk,H Z(2q−2k,(2q−2k)(H ′−1)+1), in L2(Ω) (5.64)
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where Z(2q−2k,(2q−2k)(H ′−1)+1) denotes a Hermite random variable with self-
similarity parameter (2q − 2k)(H ′ − 1) + 1 and zk,H = d(H,q)2a(H ′)k ×
((H ′ − 1)k + 1)−1(2(H ′ − 1)+ 1)−1.
• Moreover, if H ∈ ( 3

4 ,1) then

lim
N→∞

N2−2H x
−1/2
2,H T2q = Z(2q,2H−1), in L2(Ω). (5.65)

5.4 Quadratic Variations of the Solution to the Stochastic Heat
Equation

We analyze here the quadratic variations of the Gaussian process (u(t, x), t ∈
[0, T ], x ∈ R

d) given by the solution (2.31) to the linear stochastic heat equation
driven by a fractional-colored noise (meaning a centered Gaussian process with co-
variance (2.29)). We will assume that the spatial covariance is given by the Riesz
kernel from Example 2.1. In this case, the covariance of the process u has been com-
puted in Proposition 2.9. In particular, it follows that this covariance does not depend
on x ∈Rd . Therefore we will consider a centered Gaussian process (Ut )t∈[0,1] with
covariance

R(t, s)= d(α,H)

∫ t

0

∫ s

0
|u− v|2H−2((t + s)− (u+ v)

)− dα
2 dvdu (5.66)

with 0 < dα ≤ d and dα < 4H and

d(α,H)= αH (2π)−d

∫

Rd

dξ |ξ |−αe−
|ξ |2

2 .

We put dα = d − α.
Define the centered quadratic variations of the process U

VN :=
N−1∑

i=0

[
(Uti+1 −Uti )

2 −E(Uti+1 −Uti )
2]. (5.67)

We study the limit behavior of this sequence as N →∞. This will give the be-
havior of the associated estimators for the parameter H . Other works on statistical
inference for fractional equations with the Malliavin calculus include [94, 180].

Since

Uti+1 −Uti = IU
1 (1(ti ,ti+1))

(IU
n denotes the multiple integral with respect to U ; in the sequel we will simply

denote it by In) we can express the sequence VN as a multiple integral of order 2

VN = I2

(
N−1∑

i=0

1⊗2
(ti ,ti+1)

)

by the product formula (C.4).
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5.4.1 The L2-Norm of the Sequence VN

Let 0 = t0 < t1 < · · · < tn = 1 be a partition of the unit interval [0,1] with ti = i
N

for i = 0, . . . ,N . We have, using the isometry of multiple stochastic integrals (C.1)

EV 2
N = 2!

N−1∑

i,j=0

〈
1⊗2
(ti ,ti+1)

,1⊗2
(tj ,tj+1)

〉

= 2!
N−1∑

i,j=0

〈1(ti ,ti+1),1(tj ,tj+1)〉2.

Here 〈·, ·〉U := 〈·, ·〉 denotes the scalar product in the canonical Hilbert space U
associated with the process U which is defined as the closure of the set of indicator
functions (1[0,t], t ∈ [0, T ]) with respect to the scalar product

〈1[0,t],1[0,s]〉 =R(t, s)

where R(t, s) is given by (5.66). Then

d(α,H)−1〈1(ti ,ti+1),1(tj ,tj+1)〉

=
∫ i+1

N

0
du

∫ j+1
N

0
dv|u− v|2H−2

(
i + 1

N
+ j + 1

N
− (u+ v)

)− dα
2

−
∫ i+1

N

0
du

∫ j
N

0
dv|u− v|2H−2

(
i + 1

N
+ j

N
− (u+ v)

)− dα
2

−
∫ i

N

0
du

∫ j+1
N

0
dv|u− v|2H−2

(
i

N
+ j + 1

N
− (u+ v)

)− dα
2

+
∫ i

N

0
du

∫ j
N

0
dv|u− v|2H−2

(
i

N
+ j

N
− (u+ v)

)− dα
2

.

By the change of variables ũ= uN, ṽ = vN we get

d(α,H)−1〈1(ti ,ti+1),1(tj ,tj+1)〉

=N−2H+ dα
2

[∫ i+1

0
du

∫ j+1

0
dv|u− v|2H−2(i + 1+ j + 1− (u+ v)

)− dα
2

−
∫ i+1

0
du

∫ j

0
dv|u− v|2H−2(i + 1+ j − (u+ v)

)− dα
2

−
∫ i

0
du

∫ j+1

0
dv|u− v|2H−2(i + j + 1− (u+ v)

)− dα
2
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+
∫ i

0
du

∫ j

0
dv|u− v|2H−2(i + j − (u+ v)

)− dα
2

]

:=N−2H+ dα
2
[
A(i, j)+B(i, j)+C(i, j)

]

where

A(i, j) =
∫ i+1

i

du

∫ j+1

j

dv|u− v|2H−2(i + j + 2− (u+ v)
)− dα

2 (5.68)

B(i, j) =
∫ i+1

i

du

∫ j

0
dv|u− v|2H−2

× [(i + j + 2− (u+ v)
)− dα

2 − (i + j + 1− (u+ v)
)− dα

2
]

+
∫ i

0
du

∫ j+1

j

dv|u− v|2H−2

× [(i + j + 2− (u+ v)
)− dα

2 − (i + j + 1− (u+ v)
)− dα

2
]

(5.69)

and

C(i, j) =
∫ i

0
du

∫ j

0
dv|u− v|2H−2[(i + j + 2− (u+ v)

)− dα
2

− 2
(
i + j + 1− (u+ v)

)− dα
2 + (i + j − (u+ v)

)− dα
2
]
. (5.70)

Therefore

EV 2
N = 2d(α,H)2N−4H+dα

N−1∑

i,j=0

[
A(i, j)+B(i, j)+C(i, j)

]2

= 2d(α,H)2N−4H+dα

N−1∑

i,j=0

[
A(i, j)2 +B(i, j)2 +C(i, j)2

+ 2Ai,jB(i, j)+ 2Ai,jC(i, j)+ 2Bi,jC(i, j)
]

:= 2d(α,H)2(T1,N + T2,N + T3,N + T4,N + T5,N + T6,N ). (5.71)

We will evaluate the asymptotic behavior, as N→∞, of the six terms above. Ac-
tually, it happens that the six summands that appear in the decomposition of EV 2

N
are all of the same magnitude. There is no negligible part that can be ignored in the
estimation of EV 2

N .
The following renormalization result holds.

Theorem 5.14 For H < 3
4 , and for i = 1, . . . ,6

N4H−dα−1Ti,N −−−−→
N→∞ Ki,1
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and for H > 3
4 and i = 1, . . . ,6

N2−dαTi,N −−−−→
N→∞ Ki,2

with Ki,1,Ki,2 strictly positive constants, i = 1, . . . ,6. Consequently, for H < 3
4 ,

N4H−dα−1EV 2
N −−−−→

N→∞ 2d(α,H)2
6∑

i=1

Ki,1 :=K1

and for H > 3
4 ,

N2−dα EV 2
N −−−−→

N→∞ 2d(α,H)2
6∑

i=1

Ki,2 :=K2.

5.4.2 Limit Behavior of the Quadratic Variations

Suppose first that H < 3
4 . Let us denote by ṼN the sequence

ṼN =
N−1∑

i=0

[
(Uti+1 −Uti )

2

E(Uti+1 −Uti )
2
− 1

]
.

Using the behavior of the increments of the process U (Theorem 2.6) and Theo-
rem 5.14, we notice that E( 1√

N
ṼN)2 converges to a constant. This suggests that VN

converges to a Gaussian distribution.
We will prove this claim in the sequel. Our approach is based on the Stein method

(Theorem 5.1). Let

FN :=K
− 1

2
1 N2H− dα

2 − 1
2 VN (5.72)

where the constant K1 is defined in Theorem 5.14. From Theorem 5.14 it follows
that

EF 2
N −→

N
1.

Theorem 5.15 For H < 3
4

d
(
FN,N(0,1)

)2 −−−−→
N→∞ 0.

Proof We start by computing the Malliavin derivative of FN and then we evaluate
its norm. We have, for every s

DsFN = 2K
− 1

2
1 N2H− dα

2 − 1
2

N−1∑

i=0

I1(1( i
N

, i+1
N

)
)1

( i
N

, i+1
N

)
(s)
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and

‖DFN‖2
L2([0,1]) = 4K−1

1 N4H−dα−1

×
N−1∑

i,j=0

I1(1( i
N

, i+1
N

)
)I1(1(

j
N

,
j+1
N

)
)〈1

( i
N

, i+1
N

)
,1

(
j
N

,
j+1
N

)
〉L2([0,1]).

Therefore

d
(
FN,N(0,1)

)2

≤ cN8H−2dα−2E

[
N−1∑

i,j=0

〈1
( i

N
, i+1

N
)
,1

(
j
N

,
j+1
N

)
〉L2([0,1])I2(1(

j
N

,
j+1
N

)
⊗ 1

(
j
N

,
j+1
N

)
)

]2

+ (EF 2
N − 1

)
.

We will first analyze the convergence of the multiple integral in the second Wiener
chaos. We have, with c denoting a generic strictly positive constant,

E

[
N−1∑

i,j=0

〈1
( i

N
, i+1

N
)
,1

(
j
N

,
j+1
N

)
〉L2([0,1])I2(1(

j
N

,
j+1
N

)
⊗ 1

(
j
N

,
j+1
N

)
)

]2

= 2
N−1∑

i,j,i′,j ′=0

〈1
( i

N
, i+1

N
)
,1

(
j
N

,
j+1
N

)
〉L2([0,1])〈1( i′

N
, i′+1

N
)
,1

(
j ′
N

,
j ′+1
N

)
〉L2([0,1])

× 〈1
( i

N
, i+1

N
)
⊗ 1

(
j
N

,
j+1
N

)
,1

( i′
N

, i′+1
N

)
⊗ 1

(
j ′
N

,
j ′+1
N

)
〉

= c

N−1∑

i,j,i′,j ′=0

〈1
( i

N
, i+1

N
)
,1

(
j
N

,
j+1
N

)
〉L2([0,1])〈1( i′

N
, i′+1

N
)
,1

(
j ′
N

,
j ′+1
N

)
〉L2([0,1])

× 〈1
( i

N
, i+1

N
)
,1

( i′
N

, i′+1
N

)
〉L2([0,1])〈1(

j
N

,
j+1
N

)
,1

(
j ′
N

,
j ′+1
N

)
〉L2([0,1]).

One can show that

〈1
( i

N
, i+1

N
)
,1

(
j
N

,
j+1
N

)
〉L2([0,1]),

which equals N−2H+ dα
2 (A(i, j) + B(i, j) + C(i, j)) (these terms are given by

(5.68), (5.69) and (5.70)), “behaves” for large i, j as N−2H+ dα
2 |i − j |2H−2 and

similar results hold for the other factors above. Thus
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N8H−2dα−2E

[
N−1∑

i,j=0

〈1
( i

N
, i+1

N
)
,1

(
j
N

,
j+1
N

)
〉L2([0,1])I2(1(

j
N

,
j+1
N

)
⊗ 1

(
j
N

,
j+1
N

)
)

]2

≤ CN−2
N−1∑

i,j,i′,j ′=0

∣∣i′ − j ′
∣∣2H−2∣∣i − i′

∣∣2H−2∣∣j − j ′
∣∣2H−2

≤ CN8H−6 1

N4

N−1∑

i,j,i′,j ′=0

( |i − j |
N

)2H−2( |i′ − j ′|
N

)2H−2

×
( |i − i′|

N

)2H−2( |j − j ′|
N

)2H−2

≤ CN8H−6
∫

[0,1]4
|u− v|2H−2

∣∣u′ − v′
∣∣2H−2∣∣u− u′

∣∣2H−2∣∣v − v′
∣∣2H−2

.

On the other hand from Theorem 5.14 we have that EF 2
N − 1→N→∞ 0. This con-

cludes the proof of the theorem. �

When H > 3
4 , the quadratic variations of the solution to the fractional-colored

heat equation satisfy a non-central limit theorem.

Theorem 5.16 Suppose H > 3
4 . The renormalized quadratic variation V̂N =

K
− 1

2
2 N1− d

2 VN , with K2 defined in Theorem 5.14, converges in distribution, as
N→∞, to a Rosenblatt random variable.

Proof See Exercise 5.11 for the main lines of the proof. �

We refer to [149] and [166] for related results on the stochastic heat equation
with time-space white noise.

5.5 Estimators for the Self-similarity Parameter

In this part we construct estimators for the self-similarity exponent of a Hermite pro-
cess based on the discrete observations of the driving process at times 0, 1

N
, . . . ,1.

It is known that the asymptotic behavior of the statistics VN (5.2) is related to the
asymptotic properties of a class of estimators for the Hurst parameter H . This is
mentioned for instance in [57].

We recall how this is set up. Suppose that the observed process X is a Hermite
process; it may be Gaussian (fractional Brownian motion) or non-Gaussian (the
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Rosenblatt process or even a higher order Hermite process). Let

SN = 1

N

N∑

i=1

(
X

(
i

N

)
−X

(
i − 1

N

))2

. (5.73)

Recall that E[SN ] =N−2H . By estimating E[SN ] by SN we can construct the esti-
mator

ĤN =− logSN

2 logN
. (5.74)

To prove that this is a strongly consistent estimator for H , we begin by writing

1+ VN = SNN2H

where VN is the original 2-variation, and thus

log(1+ VN) = logSN + 2H logN

= −2(ĤN −H) logN.

One can show that VN converges almost surely to 0 (this can be done by using
the Borel-Cantelli lemma and the hypercontractivity property of multiple stochastic
integrals (2.33)), and thus log(1+ VN)= VN(1+ o(1)) where o(1) converges to 0
almost surely as N→∞. Hence we obtain

VN = 2(H − ĤN)(logN)
(
1+ o(1)

)
. (5.75)

Relation (5.75) means that VN ’s behavior immediately gives the behavior of ĤN −
H .

Specifically, we can now state our convergence results in the Gaussian case.

Theorem 5.17 Suppose that H > 1
2 and assume that the observed process is a fBm

with Hurst parameter H . Then strong consistency holds for ĤN , i.e. almost surely,

lim
N→∞ ĤN =H (5.76)

and

• if H ∈ ( 1
2 , 3

4 ), then, in distribution as N→∞,

√
N log(N)

2√
c1,H

(ĤN −H)→N(0,1);

• if H ∈ ( 3
4 ,1), then, in distribution as N→∞,

N2−2H log(N)
2√
c2,H

(ĤN −H)→ Z

where Z is the law of a standard Rosenblatt random variable (see (5.18));
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• if H = 3
4 , then, in distribution as N→∞,

√
N logN

2
√

c′1,H

(ĤN −H)→N(0,1).

The constants c1,H , c2,H , c′1,H are those from Sect. 5.1.

Proof This follows from Theorems 5.4, 5.5 and Proposition 5.4. �

See also Exercises 5.5 and 5.6.

5.6 Quadratic Variation with Higher Order Increments

In its simplest form, the kth power variation statistic of a process (Xt : t ∈ [0,1]),
calculated using N data points, is defined as the following quantity (the absolute
value of the increment may be used in the definition for non-even powers):

VN := 1

N

[
N−1∑

i=0

(X i+1
N
−X i

N
)k

E(X i+1
N
−X i

N
)k
− 1

]

. (5.77)

There exists a direct connection between the behavior of the variations and the
convergence of an estimator for the self-similarity order based on these variations
(see Sect. 5.5 and also [28, 57, 68, 181]): if the renormalized variation satisfies
a central limit theorem then so does the estimator, a desirable fact for statistical
purposes.

We have seen in Sect. 5.2 that the quadratic variations of the Rosenblatt process
Z (the VN above with k = 2), exhibit the following facts: the normalized sequence
N1−H VN satisfies a Non-Central Limit Theorem, it converges in the mean square
to the Rosenblatt random variable Z(1) (the value of the process Z at time 1); from
this, we can construct an estimator for H whose behavior is still non-normal. The
same result is also obtained in the case of estimators based on the wavelet coeffi-
cients (see the next Chap. 5.7). In the simpler case of fBm, this situation still occurs
when H > 3/4 (Sect. 5.1). For statistical applications, a situation in which asymp-
totic normality holds might be preferable. To achieve this we will use “longer fil-
ters” (i.e., we replace the increments Xi+1

N
− X i

N
by the second-order increments

Xi+1
N
− 2X i

N
+ Xi−1

N
), or higher order increments for instance. We will see that

this approach leads to a Gaussian limit for the variations of fBm without any re-
striction on the Hurst parameter H . But in the case of the Rosenblatt method the
asymptotic behavior of the quadratic variations based on longer filters is still non-
normal.
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5.6.1 Longer Filters

By a “filter” we mean the following:

Definition 5.1 A filter α of length � ∈ N and order p ∈ N \ 0 is an (� + 1)-
dimensional vector α = {α0, α1, . . . , α�} such that

�∑

q=0

αqqr = 0, for 0≤ r ≤ p− 1, r ∈ Z

�∑

q=0

αqqp �= 0

with the convention 00 = 1.

If we associate such a filter α with the fbm or to the Rosenblatt process (both
denoted by Z below) we get the filtered process V α according to the following
scheme:

V α

(
i

N

)
:=

�∑

q=0

αqZ

(
i − q

N

)
, for i = �, . . . ,N − 1. (5.78)

Some examples are the following:

1. For α = {1,−1}

V α

(
i

N

)
= Z

(
i

N

)
−Z

(
i − 1

N

)
.

This is a filter of length 1 and order 1.
2. For α = {1,−2,1}

V α

(
i

N

)
= Z

(
i

N

)
− 2Z

(
i − 1

N

)
+Z

(
i − 2

N

)
.

This is a filter of length 2 and order 2.
3. More generally, longer filters produced by finite-differencing are such that the

coefficients of the filter α are the binomial coefficients with alternating signs.
Therefore, borrowing the notation ∇ from time series analysis, ∇Z(i/N) =
Z(i/N) − Z((i − 1)/N), we define ∇j = ∇∇j−1 and we may write the j th-
order finite-difference-filtered process as follows

V αj

(
i

N

)
:= (∇jZ

)( i

N

)
.
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From Now on We Assume the Filter Order Is Strictly Greater than 1 (p ≥ 2)
For such a filter α the quadratic variation statistic is defined as

VN := 1

N − �

N−1∑

i=�

[ |V α( i
N

)|2
E|V α( i

N
)|2 − 1

]
.

Using the definition of a filter, we can compute the covariance of the filtered
process V α( i

N
).

Proposition 5.9 Consider the sequence (5.78) and let

πα
H (j) := E

[
V α

(
i

N

)
V α

(
i + j

N

)]
.

Then

πα
H (j)=−N−2H

2

�∑

q,r=0

αqαr |j + q − r|2H . (5.79)

Proof We have for every j

πα
H (j) := E

[
V α

(
i

N

)
V α

(
i + j

N

)]

=
�∑

q,r=0

αqαrE
[
Z

(
i − q

N

)
Z

(
i + j − r

N

)]

= N−2H

2

�∑

q,r=0

αqαr

(|i − q|2H + |i + j − r|2H − |j + q − r|2H
)

= −N−2H

2

�∑

q,r=0

αqαr |j + q − r|2H

+ N−2H

2

�∑

q,r=0

αqαr

(|i − q|2H + |i + j − r|2H
)
.

Since the term
∑�

q,r=0 αqαr(|i−q|2H +|i+j−r|2H ) vanishes we get that (5.79). �

Therefore, we can rewrite the variation statistic as follows

VN = 1

N − �

N−1∑

i=�

[ |V α( i
N

)|2
πα

H (0)
− 1

]
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= 2N2H

N − �

(

−
�∑

q,r=0

αrαq |q − r|2H

)−1 N−1∑

i=�

[∣∣∣∣V
α

(
i

N

)∣∣∣∣

2

− πα
H (0)

]

= 2N2H

c(H)(N − �)

N−1∑

i=�

[∣∣
∣∣V

α

(
i

N

)∣∣
∣∣

2

− πα
H (0)

]
,

where

c(H)=−
�∑

q,r=0

αrαq |q − r|2H . (5.80)

The next lemma is informative, and will be useful in the sequel.

Lemma 5.5 c(H) is positive for all H ∈ (0,1]. Also, c(0)= 0.

Proof For H < 1, we may rewrite c(H) by using the representation of the function
|q− r|2H via the fBm BH and its covariance function RH given in (1.1). Indeed we
have

c(H) =−
�∑

q,r=0

αrαqE
[(

BH (q)−BH (r)
)2]

=−
�∑

q,r=0

αrαq

(
RH (q, q)+RH (r, r)− 2RH (q, r)

)

=−2

(
�∑

q=0

αq

)(
�∑

r=0

αrRH (r, r)

)

+ 2
�∑

q,r=0

αrαqRH (q, r)

= 0+ 2
�∑

q,r=0

αrαqRH (q, r)= E

[(
�∑

q=0

αqBH (q)

)2]

> 0

where in the second-to-last line we used the filter property which implies∑�
q=0 αq = 0, and the last inequality follows from the fact that

∑�
q=0 αqBH (q)

is Gaussian and non-constant. When H = 1, the same argument as above holds be-
cause the Gaussian process X such that X(0)= 0 and E[(X(t)−X(s))2] = |t − s|2
is evidently equal in law to X(t)= tN where N is a fixed standard normal r.v. The
assertion that c(0)= 0 comes from the filter property. �
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5.6.2 The Case of Fractional Brownian Motion

Let Z be a fBm. Observe that we can write the filter ed process as an integral be-
longing to the first Wiener chaos: since for every t we have Z(t)= I1(Lt (·)) with L

given by (1.4)

V α

(
i

N

)
=

�∑

q=0

αqZ

(
i − q

N

)
= I1

(
�∑

q=0

αqL i−q
N

)

:= I1(Ci),

where

Ci :=
�∑

q=0

αqL i−q
N

. (5.81)

Proposition 5.10 With Ci as in (5.81), the variation statistic VN is given by

VN = 2N2H

c(H)(N − l)

N−1∑

i=�

[∣∣I1(Ci)
∣∣2 − πα

H (0)
]

= 2N2H

c(H)(N − �)

N−1∑

i=�

I2(Ci ⊗Ci).

Then

Proposition 5.11

E[√NVN ]2 −→
N

c1(H)

with

c1(H)= 2c(H)−2
∞∑

k=1

∣
∣∣∣∣

�∑

q,r=0

αqαr |k + q − r|2H

∣
∣∣∣∣

2

+ 2. (5.82)

and c(H) is defined by (5.80).

Proof

EV 2
N = 2

(
2N2H

c(H)(N − l)

)2 N−1∑

i,j=
〈Ci ⊗Ci,Cj ⊗Cj 〉

= 2

(
2N2H

c(H)(N − l)

)2 N−1∑

i,j=l

〈Ci,Cj 〉2
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with

〈Ci,Cj 〉L2([0,1])

= α(H)2d(H)2

H(2H − 1)

�∑

q,r=0

αqαr

[∣∣∣∣
i − q

N

∣∣∣∣

2H

+
∣∣∣∣
j − r

N

∣∣∣∣

2H

−
∣∣∣∣
j − i + q − r

N

∣∣∣∣

2H]

= 1

2

�∑

q,r=0

αqαr

[∣∣∣∣
i − q

N

∣∣∣∣

2H

+
∣∣∣∣
j − r

N

∣∣∣∣

2H

−
∣∣∣∣
j − i + q − r

N

∣∣∣∣

2H]

= 1

2

[(
�∑

q=0

αq

∣∣∣∣
i − q

N

∣∣∣∣

2H
)(

�∑

r=0

αr

)

+
(

�∑

r=0

αr

∣∣∣∣
j − r

N

∣∣∣∣

2H
)(

�∑

q=0

αq

)

−
�∑

q,r=0

αqαr

∣∣∣∣
i − j + q − r

N

∣∣∣∣

2H
]

=−1

2

�∑

q,r=0

αqαr

∣∣∣
∣
i − j + q − r

N

∣∣∣
∣

2H

= πα
H (i − j).

The last equality holds since
∑�

q=0 αq = 0 by the filter definition. Therefore, we
have

N−1∑

i,j=�

∣∣〈Ci,Cj 〉L2([0,1]2)
∣∣2

= 1

4

N−1∑

i,j=�

∣∣∣∣∣

�∑

q,r=0

αqαr

∣∣∣∣
i − j + q − r

N

∣∣∣∣

2H
∣∣∣∣∣

2

= 1

4

N−1∑

i=�

N−2∑

k=0

∣∣∣∣∣

�∑

q,r=0

αqαr

∣∣∣∣
k+ q − r

N

∣∣∣∣

2H
∣∣∣∣∣

2

= N−4H

4
(N − �− 1)

∣
∣∣∣∣

�∑

q,r=0

αqαr |q − r|2H

∣
∣∣∣∣

2

+ 1

4

N−1∑

i=�

N−2∑

k=1

∣∣∣∣∣

�∑

q,r=0

αqαr

∣∣∣∣
k + q − r

N

∣∣∣∣

2H
∣∣∣∣∣

2

= c(H)2 N−4H (N − �− 1)

4
+ 1

4

N−2∑

k=0

(N − k − 2)

∣∣∣∣∣

�∑

q,r=0

αqαr

∣∣∣∣
k+ q − r

N

∣∣∣∣

2H
∣∣∣∣∣

2
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= c(H)2 (N − l − 1)N−4H

4
+ N−4H+1

4

N−2∑

k=0

∣∣∣∣∣

�∑

q,r=0

αqαr |k + q − r|2H

∣∣∣∣∣

2

− 2
N−4H

4

N−2∑

k=0

∣∣∣∣∣

�∑

q,r=0

αqαr |k + q − r|2H

∣∣∣∣∣

2

− N−4H

4

N−2∑

k=0

k

∣∣∣
∣∣

�∑

q,r=0

αqαr |k + q − r|2H

∣∣∣
∣∣

2

.

At this point we need the next lemma to estimate the behavior of the above quantity.
This lemma is the key point which implies the fact that the longer variation statis-
tics has, in the case when the observed process is the fractional Brownian motion,
a Gaussian limit without any restriction on H (this was first noticed in [85]).

Lemma 5.6 For all H ∈ (0,1), we have that

(i)
∑∞

k=1 |
∑�

q,r=0 αqαr |k + q − r|2H |2 <+∞; and

(ii)
∑∞

k=1 k|∑�
q,r=0 αqαr |k + q − r|2H |2 <+∞.

Proof of (i) Let f (x) =∑�
q,r=0 αqαr(1 + (q − r)x)2H , so the summand can be

written as

�∑

q,r=0

αqαr |k + q − r|2H = k2H f

(
1

k

)
.

Using a Taylor expansion at x0 = 0 for the function f (x) we get that

(
1+ (q − r)x

)2H ≈ 1+ 2H(q − r)x + · · ·

+ 2H(2H − 1) · · · (2H − n+ 1)

n! (q − r)nxn.

For small x we observe that the function f (x) is asymptotically equivalent to

2H(2H − 1) · · · (2H − (p− 1)
)
x2p,

where p is the order of the filter. Therefore, the general term of the series is equiva-
lent to

(2H)2(2H − 1)2 · · · (2H − (p− 1)
)2

k4H−4p.

Therefore for all H < p− 1
4 the series converges to a constant depending only on H .

Due to our choice for the order of the filter p ≥ 2, we obtain the desired result.
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Proof of (ii) Similarly as before, we can write the general term of the series as

k

∣∣∣∣
∣

�∑

q,r=0

αqαr |k + q − r|2H

∣∣∣∣
∣

2

= k

∣∣∣
∣k

2H f

(
1

k

)∣∣∣
∣

2

≈ (2H)2(2H − 1)2 · · · (2H − (p− 1)
)2

k4H−4p−1.

Therefore for all H < p the series converges to a constant depending only on H . �

This concludes the proof of Proposition 5.11. �

Theorem 5.18 Let

GN = c1(H)−
1
2
√

NVN (5.83)

with c1(H) from (5.82). For all H ∈ (1/2,1) GN as defined above converges in
distribution to the standard normal law.

Proof Since

DGN = cN2H+ 1
2

1

N − l

N−1∑

i=l

I1(Ci)1Ci

we get

E
(‖DGN‖2 − 2

)2 = E
(‖DGN‖2 −E‖DGN‖2)2 +E‖DGN‖2 − 2

= cN8H+2(N − l)−4

×
N−1∑

i,j,i′,j ′=l

〈Ci,Cj 〉〈Ci′ ,Cj ′ 〉〈Ci,Ci′ 〉〈Cj ,Cj 〉 + 2EV 2
N − 2.

The series
∑N−1

i,j,i′,j ′=l〈Ci,Cj 〉〈Ci′ ,Cj ′ 〉〈Ci,Ci′ 〉〈Cj ,Cj 〉 can be written as N−8H

multiplied by a convergent series, therefore the first summand above is of or-
der N−2. We have previously proved that the difference 2EV 2

N − 2 converges to
zero. �

5.6.3 The Case of the Rosenblatt Process

To ensure asymptotic normality in the case of the Rosenblatt process, it was shown
in Sect. 5.2 (Exercise 5.3) that one may perform a compensation of the non-normal
component of the quadratic variation. In fact, this is possible only in the case of the
Rosenblatt process; it is not possible for higher-order Hermite processes, and is not
possible for fBm with H > 3/4 (recall that the case of fBm with H ≤ 3/4 does not
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require any compensation). The compensation technique for the Rosenblatt process
yields asymptotic variances which are difficult to calculate and may be very high.

The question then arises to find out whether using longer filters for the Rosenblatt
process might yield asymptotically normal estimators, and/or might result in low
asymptotic variances.

Let Z be a Rosenblatt process with Z(t)= I2(Lt ) and L given by (5.23). Using
the product formula (C.4) for multiple stochastic integrals now results in the Wiener
chaos expansion of VN .

Proposition 5.12 With Ci as in (5.81), the variation statistic VN is given by

VN = 2N2H

c(H)(N − l)

N−1∑

i=�

[∣∣I2(Ci)
∣∣2 − πα

H (0)
]

= 2N2H

c(H)(N − �)

[
N−1∑

i=�

I4(Ci ⊗Ci)+ 4
N−1∑

i=�

I2(Ci ⊗1 Ci)

]

:= T4 + T2, (5.84)

where T4 is a term belonging to the 4th Wiener chaos and T2 a term living in the
2nd Wiener chaos.

Evaluation of the L2-Norm In order to determine the convergence of VN , us-
ing the orthogonality of the integrals belonging in different chaos, we will study
each term separately. This section begins by calculating the second moments of T2

and T4.
We use an alternative expression for the filtered process. More specifically,

putting bq :=∑q

r=0 αr , we rewrite Ci as follows, for any i = �, . . . ,N − 1:

Ci,� := Ci =
�∑

q=0

αqL i−q
N

= α0(L i
N
−Li−1

N
)+ (α0 + α1)(L i−1

N
−Li−2

N
)

+ · · · + (α0 + · · · + α�−1)(L i−(�−1)
N
−Li−�

N
)

=
�∑

q=0

bq(L i−(q−1)
N

−Li−q
N

). (5.85)

Recall that the filter properties imply
∑�

q=0 αq = 0 and α� =−∑�−1
q=0 αq .
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The Term in the Second Wiener Chaos By Proposition 5.12, we can express
E(T 2

2 ) as:

E
(
T 2

2

)= 64N4H

c(H)2(N − �)2
E

[(
N−1∑

i=�

I2(Ci ⊗1 Ci)

)2]

= 2!64N4H

c(H)2(N − �)2

N−1∑

i,j=�

〈Ci ⊗1 Ci,Cj ⊗1 Cj 〉L2([0,1]2).

Proposition 5.13 We have

lim
N→∞E

[∣∣N1−H T2
∣∣2]= c2,H ,

where

c2,H = 64

c(H)2

(
2H − 1

H(H + 1)2

)

×
{

�∑

q,r=0

bqbr

[|1+ q − r|2H ′ + |1− q + r|2H ′ − 2|q − r|2H ′]
}2

. (5.86)

Proof We start by computing the contraction term Ci ⊗1 Ci :

(Ci ⊗1 Ci)(y1, y2) =
∫ 1

0
Ci(x, y1)Ci(x, y2)dx

=
�∑

q,r=0

bqbr

∫ 1

0

(
Li−(q−1)

N

(x, y1)−Li−q
N

(x, y1)
)

× (Li−(r−1)
N

(x, y2)−Li−r
N

(x, y2)
)
dx

= d(H)2
�∑

q,r=0

bqbr1[0,
i−q+1

N
](y1)1[0, i−r+1

N
](y2)

∫ i−q+1
N
∧ i−r+1

N

0
dx

×
(∫ i−q+1

N

i−q
N

∂KH ′

∂u
(u, x)

∂KH ′

∂u
(u, y1)du

)

×
(∫ i−r+1

N

i−r
N

∂KH ′

∂v
(v, x)

∂KH ′

∂v
(v, y2)dv

)

= d(H)2
�∑

q,r=0

bqbr1[0,
i−q+1

N
](y1)1[0, i−r+1

N
](y2)
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×
∫

Iiq

∫

Iir

dudv
∂KH ′

∂u
(u, y1)

∂KH ′

∂u
(v, y2)dudv

×
(∫ u∧v

0
dx

∂KH ′

∂u
(u, x)

∂KH ′

∂v
(v, x)

)

= α(H)d(H)2
�∑

q,r=0

bqbr1[0,
i−q+1

N
](y1)1[0, i−r+1

N
](y2)

×
∫

Iiq

∫

Iir

dudv|u− v|2H ′−2 ∂KH ′

∂u
(u, y1)

∂KH ′

∂v
(v, y2)dudv,

where Iiq = (
i−q
N

,
i−q+1

N
].

Now, the inner product computes as

〈Ci ⊗1 Ci,Cj ⊗1 Cj 〉L2[0,1]2

= α(H)2d(H)4
�∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫ 1

0

∫ 1

0
dy1dy2

×
∫

Iiq1

∫

Iir1

∫

Ijq2

∫

Ijr2

dudvdu′dv′|u− v|2H ′−2
∣
∣u′ − v′

∣
∣2H ′−2

× ∂KH ′

∂u
(u, y1)

∂KH ′

∂v
(v, y2)

∂KH ′

∂u′
(
u′, y1

)∂KH ′

∂v′
(
v′, y2

)
dudvdu′dv′

= α(H)2d(H)4
�∑

q1,r1,q2,r2=0

bq1br1bq2br2

×
∫

Iiq1

∫

Iir1

∫

Ijq2

∫

Ijr2

dudvdu′dv′|u− v|2H ′−2
∣∣u′ − v′

∣∣2H ′−2

×
(∫ u∧u′

0

∂KH ′

∂u
(u, y1)

∂KH ′

∂u′
(
u′, y1

)
dy1

)

×
(∫ v∧v′

0

∂KH ′

∂u
(u, y1)

∂KH ′

∂v′
(
v′, y2

)
dy2

)

= α(H)4d(H)4
�∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

Iiq1

∫

Iir1

∫

Ijq2

∫

Ijr2

dudvdu′dv′

× |u− v|2H ′−2
∣∣u′ − v′

∣∣2H ′−2∣∣u− u′
∣∣2H ′−2∣∣v − v′

∣∣2H ′−2
.
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We make the following change of variables

ū=
(

u− i − q1

N

)
N

and the second moment of T2 becomes

E
(
T 2

2

) = 128α(H)4d(H)4

c(H)2

N4H

(N − �)2

×
N−1∑

i,j=�

�∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

Iiq1

∫

Iir1

∫

Ijq2

∫

Ijr2

dudvdu′dv′

× |u− v|2H ′−2
∣∣u′ − v′

∣∣2H ′−2∣∣u− u′
∣∣2H ′−2∣∣v− v′

∣∣2H ′−2

= 128α(H)4d(H)4

c(H)2

N4H

(N − �)2

1

N4N8H ′−8

N−1∑

i,j=�

�∑

q1,r1,q2,r2=0

bq1br1bq2br2

×
∫

[0,1]4
dudvdu′dv′|u− v− q1 + r1|2H ′−2

∣∣u′ − v′ − q2 + r2
∣∣2H ′−2

× ∣∣u− u′ + i − j − q1 + q2
∣∣2H ′−2∣∣v− v′ + i − j − r1 + r2

∣∣2H ′−2

= 128α(H)4d(H)4

c(H)2

1

(N − �)2

N−1∑

i,j=�

�∑

q1,r1,q2,r2=0

bq1br1bq2br2

×
∫

[0,1]4
dudvdu′dv′|u− v− q1 + r1|2H ′−2

∣∣u′ − v′ − q2 + r2
∣∣2H ′−2

× (∣∣u− u′ + i − j − q1 + q2
∣∣2H ′−2∣∣v− v′ + i − j − r1 + r2

∣∣2H ′−2)
.

Let cst.= 128α(H)4d(H)4

c(H)2 . We study first the diagonal terms of the above double sum

E
(
T 2

2−diag

) = cst.
N − �− 1

(N − �)2

�∑

q1,r1,q2,r2=0

bq1br1bq2br2

∫

[0,1]4
dudvdu′dv′

× |u− v− q1 + r1|2H ′−2
∣∣u′ − v′ − q2 + r2

∣∣2H ′−2

× ∣∣u− u′ − q1 + q2
∣∣2H ′−2∣∣v− v′ − r1 + r2

∣∣2H ′−2
.

We conclude that

E
(
T 2

2−diag

)=O
(
N−1).



5.6 Quadratic Variation with Higher Order Increments 183

Let us now consider the non-diagonal terms

E
(
T 2

2−off

) = 2cst.
�∑

q1,r1,q2,r2=0

bq1br1bq2br2

×
∫

[0,1]4
dudvdu′dv′|u− v− q1 + r1|2H ′−2

∣∣u′ − v′ − q2 + r2
∣∣2H ′−2

× 1

(N − �)2

(
N−1∑

i,j=�,i �=j

∣
∣u− u′ + i − j − q1 + q2

∣
∣2H ′−2

× ∣∣v− v′ + i − j − r1 + r2
∣∣2H ′−2

)

. (5.87)

Observe that the term (5.87) can be calculated as follows:

1

(N − �)2

N−1∑

i,j=�i �=j

∣∣u− u′ + i − j − q1 + r1
∣∣2H ′−2∣∣v− v′ + i − j − r1 + r2

∣∣2H ′−2

= 1

(N − �)2

N−1∑

i=�

N−i∑

k=1

∣∣u− u′ + k− q1 + q2
∣∣2H ′−2∣∣v− v′ + k− r1 + r2

∣∣2H ′−2

= 1

(N − �)2

N−1∑

k=�

(N − k − 1)
∣∣u− u′ + k − q1 + q2

∣∣2H ′−2

× ∣∣v − v′ + k− r1 + r2
∣∣2H ′−2

=N4H ′−4 N

(N − �)2

N−1∑

k=�

(
1− k+ 1

N

)∣∣∣∣
u− u′

N
+ k

N
− q1 − q2

N

∣∣∣∣

2H ′−2

×
∣∣∣∣
v− v′

N
+ k

N
− r1 − r2

N

∣∣∣∣

2H ′−2

.

We may now use a Riemann sum approximation and the fact that 4H ′ − 4= 2H −
2 >−1. Since � is fixed and q1 and q2 are less than �, we get that the term in (5.87)
is asymptotically equivalent to

N−1∑

k=�

(
1− k

N

)∣∣
∣∣
k

N

∣∣
∣∣

2H ′−2∣∣
∣∣
k

N

∣∣
∣∣

2H ′−2

=
∫ 1

0
(1− x)x2H−2dx + o(1)

= 1

2H(2H − 1)
+ o(1).
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We conclude that

E
(
T 2

2

)+ o
(
N2H−2)

= cst.N2H−2

H(2H − 1)

�∑

q1,r1,q2,r2=0

bq1br1bq2br2

×
∫

[0,1]4
dudvdu′dv′|u− v− q1 + r1|2H ′−2

∣∣u′ − v′ − q2 + r2
∣∣2H ′−2

.

Using the fact that
∫

[0,1]2
|u− v− q + r|2H ′−2dudv

= 1

2H ′(2H ′ − 1)

[|1+ q − r|2H ′ + |1− q + r|2H ′ − 2|q − r|2H ′]

the proposition follows. �

The Term in the Fourth Wiener Chaos In this paragraph we estimate the sec-
ond moment of T4, the fourth chaos term appearing in the decomposition of the
variation VN . Here the function

∑N−1
i=� (Ci ⊗ Ci) is no longer symmetric and we

need to symmetrize this kernel to calculate T4’s second moment. In other words, by
Proposition 5.12, we have that

E
(
T 2

4

) = 4N4H

c(H)2(N − �)2
E

[(
N−1∑

i=�

I4(Ci ⊗Ci)

)2]

= 4N4H

c(H)2(N − �)2
4!

N−1∑

i,j=�

〈Ci⊗̃Ci,Cj ⊗̃Cj 〉L2([0,1]4)

where Ci⊗̃Ci := C̃i ⊗Ci . Thus, we can use the following combinatorial formula:
If f and g are two symmetric functions in L2([0,1]2), then

4!〈f ⊗̃f,g⊗̃g〉L2([0,1]4) = (2!)2〈f ⊗ f,g⊗ g〉L2([0,1]4)
+ (2!)2〈f ⊗1 g,g⊗1 f 〉L2([0,1]2).

This implies

E
(
T 2

4

) = 4N4H

c(H)2(N − �)2
4!

N−1∑

i,j=�

〈Ci⊗̃Ci,Cj ⊗̃Cj 〉L2([0,1]4)

= 4N4H

c(H)2(N − �)2
4

N−1∑

i,j=�

〈Ci ⊗Ci,Cj ⊗Cj 〉L2([0,1]4)
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+ 4N4H

c(H)2(N − �)2
4

N−1∑

i,j=�

〈Ci ⊗1 Cj ,Cj ⊗1 Ci〉L2([0,1]2)

:= T4,(1) + T4,(2).

The next proposition shows that the two terms T4,(1) and T4,(2) have the same order
of magnitude, with only the normalizing constant being different.

Proposition 5.14 Recall the constant c(H) defined in (5.80). Let

τ1,H :=
∞∑

k=�

�∑

q1,q2,r1,r1=0

bq1bq2br1br2

∫

[0,1]4
dudvdu′dv′

× [|u− v + k − q1 + r1|2H ′−2
∣∣u′ − v′ + k− q2 + r2

∣∣2H ′−2

× ∣∣u− u′ + k − q1 + q2
∣
∣2H ′−2∣∣v− v′ + k − r1 + r2

∣
∣2H ′−2]

and

ρα
H (k) :=

∑�
q,r=0 αqαr |k + q − r|2H

c(H)
.

Then we have the following asymptotic variance for
√

NT4:

lim
N→∞E

[|√NT4|2
]= c1,H := 4!

(

1+
∞∑

k=0

∣∣ρα
H (k)

∣∣2
)

+ τ1,H . (5.88)

The proof is left as an exercise (Exercise 5.14). Observe that in the Wiener
chaos decomposition of VN the leading term is the term in the second Wiener chaos
(i.e. T2) since it is of order NH−1, while T4 is of the smaller order N−1/2. We note
that, in contrast to the case of filters of length 1 and power 1, the barrier H = 3/4
no longer appears in the estimate of the magnitude of T4. Thus, the asymptotic be-
havior of VN is determined by the behavior of T2. In other words, the previous three
propositions imply the following.

Theorem 5.19 For all H ∈ (1/2,1) we have that

lim
N→∞E

[∣∣N1−H VN

∣∣2]= c2,H ,

where c2,H is defined in (5.86).

5.6.4 The Asymptotic Distribution of the Quadratic Variations

For the asymptotic distribution of the variation statistic we have the following propo-
sition.
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Theorem 5.20 For all H ∈ (1/2,1), both N1−H√
c2,H

T2 and the normalized quadratic

variation N1−H√
c2,H

VN converge in L2(Ω) to the Rosenblatt random variable Z(1).

Proof The strategy for proving this theorem is simple. First of all Proposition 5.14
implies immediately that N1−H T4 converges to zero in L2(Ω). Thus if we can prove
the theorem’s statement about T2, the statement about VN will follow immediately
from Proposition 5.12.

Next, to show N1−H√
c2,H

T2 converges to the random variable Z(1) in L2(Ω), recall

that T2 is a second-chaos random variable of the form I2(fN), where fN(y1, y2)

is a symmetric function in L2([0,1]2), and that this double Wiener-Itô integral is
with respect to the Brownian motion W used to define Z(1), i.e. that Z(1)= I2(L1)

where L1 is the kernel of the Rosenblatt process at time 1, as defined in (5.23).
Therefore, by the isometry property of Wiener-Itô integrals (see (C.1)), it is neces-

sary and sufficient to show that N1−H√
c2,H

fN converges in L2([0,1]2) to L1. This can

be proved as in Theorem 5.10. �

5.7 Wavelet-Type Quadratic Variations

There are different types of variations of stochastic processes that are used in statis-
tics. One of these is the wavelet-type variation. The context is as follows. Let
ψ : R→ R be a continuous function with support included in the interval [0,1]
(called the “mother wavelet”). Assume that there exists an integer Q≥ 1 such that

∫

R

tpψ(t)dt = 0 for p = 0,1, . . . ,Q− 1 (5.89)

and
∫

R

tQψ(t)dt �= 0.

We will call the integer Q ≥ 1 the number of vanishing moments. For a stochastic
process (Xt )t∈[0,N ] and for a “scale” a ∈N∗ we define its wavelet coefficient by

d(a, i)= 1√
a

∫ ∞

−∞
ψ

(
t

a
− i

)
Xtdt =√a

∫ 1

0
ψ(x)Xa(x+i)dx (5.90)

for i = 1,2, . . . ,Na with Na := [N/a] − 1. Let us set

d̃(a, i)= d(a, i)

(Ed2(a, i))
1
2

and

VN(a)= 1

Na

Na∑

i=1

(
d̃2(a, i)− 1

)
. (5.91)
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The wavelet analysis consists in studying the behavior of the sequence VN(a) when
N→∞. But if X is respectively a stationary long memory or a self-similar second-
order process, Ed2(a, i) is a power-law function of a with, respectively, an exponent
2H − 1 (when a→∞) or 2H + 1. Therefore, if VN(a) is proved to converge to 0,
a log-log-regression of 1

Na

∑Na

i=1 d2(aj , i) onto aj will provide an estimator of H

(with an appropriate choice of (aj )j ). Hence, the asymptotic behavior of VN(a) will
completely give the behavior of the estimator. For examples of the applications of
wavelets to parameter identification the reader is referred, among other references,
to [2, 4, 15–17, 79, 123, 124] and [3].

Our purpose is to develop a wavelet-based analysis of fBm and the Rosenblatt
process using multiple Wiener-Itô integrals.

5.7.1 Wavelet-Type Variations of Fractional Brownian Motion

A Presentation Using Chaos Expansion We will assume in this part that X =
BH is a fBm with Hurst parameter H ∈ (0,1). Recall also that the fBm (BH

t )t∈[0,N ]
with Hurst parameter H ∈ (0,1) can be written as (Chap. 1)

BH
t =

∫ t

0
KH (t, s)dWs, t ∈ [0,N]

where (Wt , t ∈ [0,N]) is a standard Wiener process and for s < t and H > 1
2 , KH

is the kernel given by (1.4).
In this case it is trivial to decompose in chaos the wavelet coefficient d(a, i). By

the stochastic Fubini theorem we can write

d(a, i) =√a

∫ 1

0
ψ(x)BH

a(x+i)dx =√a

∫ 1

0
ψ(x)dx

(∫ a(x+i)

0
dBH

u

)

=√a

∫ 1

0
ψ(x)dx

∫ a(x+i)

0
KH

(
a(x + i), u

)
dWu = I1

(
fa,i(·)

)

where I1 denotes the multiple integral of order one (actually, the Wiener integral
with respect to W ) and

fa,i(u) := 1[0,a(i+1)](u)
√

a

∫ 1

( u
a
−i)∨0

ψ(x)KH
(
a(x + i), u

)
dx. (5.92)

Lemma 5.7 For all a > 0 and i ∈N,

E
(
d2(a, i)

)= ‖fa,i‖2
H = a2H+1Cψ(H)

with Cψ(H) := −1

2

∫ 1

0

∫ 1

0
ψ(x)ψ

(
x′
)∣∣x − x′

∣∣2H
dxdx′. (5.93)
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Using the product formula (C.4)

I1(f )I1(g)= I2(f ⊗ g)+ 〈f,g〉H
(here and in the sequel H denotes the space L2([0,N])) and we get

VN(a)= 1

Na

Na∑

i=1

(
I2(f

⊗2
a,i )+ ‖fa,i‖2

H
(Ed(a, i))2

− 1

)
= I2

(
f

(a)
N

)

where

f
(a)
N := a−2H−1Cψ(H)−1 1

Na

Na∑

i=1

f⊗2
a,i . (5.94)

A Multidimensional Central Limit Theorem Satisfied by (VN(ai))1≤i≤m

When the observed process is the fBm with H < 3/4, the statistics VN(a) sat-
isfy a Central Limit Theorem. Since EI 2

2 (f ) = 2!‖f ‖2
H we have for (ai)1≤i≤m a

family of integers such that ai = ia for i = 1, . . . ,m and a ∈N∗,
Cov

(
VN(ap),VN(aq)

)

= 2!(pqa2)−2H−1
Cψ(H)−2 1

Nap

1

Naq

Nap∑

j=1

Naq∑

j ′=1

〈
f⊗2

ap,j , f
⊗2
aq ,j ′

〉
H⊗2

= 2
(
pqa2)−2H−1

Cψ(H)−2 1

Nap

1

Naq

Nap∑

j=1

Naq∑

j ′=1

〈fap,i , faq ,j 〉2H.

Lemma 5.8 If Q > 1 and H ∈ (0,1) or if Q= 1 and H ∈ (0,3/4),

N

a
Cov

(
VN(ap),VN(aq)

)−−−−→
N→∞ �1(p, q,H) with

�1(p, q,H)= 1

2dpq(pq)2H−1

∞∑

k=−∞

(
1

Cψ(H)

∫ 1

0

∫ 1

0
ψ(x)ψ

(
x′
)

× ∣∣px − qx′ + kdpq

∣∣2H
dxdx′

)2

,

(5.95)

where dpq =GCD(p, q).

Proof We have

〈fap,j , faq ,j ′ 〉H
= E

(
d(ap, j)d

(
aq, j ′

))



5.7 Wavelet-Type Quadratic Variations 189

=−1

2

(
pqa2)1/2

a2H

∫ 1

0

∫ 1

0
ψ(x)ψ

(
x′
)∣∣px − qx′ + pj − qj ′

∣∣2H
dxdx′

(5.96)

and from a Taylor expansion and using property (5.89) satisfied by ψ ,

〈fap,j , faq ,j ′ 〉2H = pqa4H+2O
(
1+ ∣∣pj − qj ′

∣∣)4H−4Q

=⇒ ∣∣Cov
(
VN(ap),VN(aq)

)∣∣≤ C
1

N2
aq

Nap∑

j=1

Naq∑

j ′=1

O
(
1+ ∣∣pj − qj ′

∣∣)4H−4Q
.
�

Using Lemma 5.8 we can prove the following limit theorem.

Theorem 5.21 Let VN(a) be defined by (5.91) and L1(H)= (�1(p, q,H))1≤p,q≤m.
Then if Q > 1 and H ∈ (0,1) or if Q= 1 and H ∈ (0,3/4), for all a > 0,

(√
N

a
VN(ia)

)

1≤i≤m

D−−−−→
N→∞ Nm

(
0,L1(H)

)
.

Proof See [15]. �

Remark 5.2 To go from the one-dimensional limit theorem to the multidimensional
one, one can use Lemma 5.8 and Theorem 5.3.

A Non-Central Limit Theorem Satisfied by VN(a) Suppose now Q = 1 and
H > 3

4 . We obtain the following non-central limit theorem for the wavelet coeffi-
cient of the fBm with H > 3

4 . Define

�2(H) :=
(

2H 2(2H − 1)

4H − 3

)1/2 (
∫ 1

0 xψ(x)dx)2

Cψ(H)
. (5.97)

Then,

Theorem 5.22 For fBm, if Q= 1 and 3
4 < H < 1 then

�−1
2 (H)N2−2H

a VN(a)−→
N

Z2H−1
1 ,

where Z2H−1
1 is a Rosenblatt random variable with self-similarity index 2H − 1

given by (3.17).

Proof With f
(a)
N defined as in (5.94), we can write

N2−2H
a VN(a)=N2−2H

a I2
(
f

(a)
N

)
.
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But using the expression of fa,i provided in (5.92),

f
(a)
N (y1, y2) := 1

a2H Cψ(H)

1

Na

Na∑

i=1

1[0,a(i+1)](y1)1[0,a(i+1)](y2)

×
∫ 1

(
y1
a
−i)∨0

∫ 1

(
y2
a
−i)∨0

ψ(x)ψ(z)

×KH
(
a(x + i), y1

)
KH

(
a(z+ i), y2

)
dxdz.

To show that the sequence �−1
2 (H)N2−2H

a I2(f
(a)
N ) converges in law to the Rosen-

blatt random variable Z2H−1 it suffices to show that its cumulants converge to the
cumulants of Z2H−1

1 (recall that the law of a multiple integral of order 2 is given by
the cumulants). The k-cumulant of a random variable I2(f ) in the second Wiener
chaos can be computed by (3.16) and thus

ck

(
N2−2H

a I2
(
f

(a)
N

))

=N(2H−2)k
a N−k

a

Na∑

i1,...,ik=1

∫

[0,1]k
dy1 · · ·dyk

×
∫

[0,1]2k

dx1dz1 · · ·dxkdzkψ(x1)ψ(z1)ψ(x2)ψ(z2) · · ·ψ(xk)ψ(zk)

×KH
(
a(x1 + i1), y1

)
KH

(
a(z1 + i1), y2

)

×KH
(
a(x2 + i2), y2

)
KH

(
a(z2 + i2), y3

)

× · · ·
×KH

(
a(xk−1 + ik−1), yk−1

)
KH

(
a(zk + ik), yk

)

×KH
(
a(xk + ik), yk

)
KH

(
a(zk + ik), y1

)
.

Using Fubini’s theorem and the fact that

∫ a(x+i)∧a(x′+j)

0
KH

(
a(x+i), y1

)
KH

(
a
(
x′+j

)
, y1
)
dy1 = ZH

(
a(x+i), a

(
x′+j

))

we get

ck

(
N2−2H

a I2
(
f

(a)
N

))

=N(2H−2)k
a a2HkN−k

a

×
Na∑

i1,...,ik=1

∫

[0,1]2k

dx1dz1 · · ·dxkdzkψ(x1)ψ(z1)ψ(x2)ψ(z2) · · ·ψ(xk)ψ(zk)
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×ZH (z1 + i1, x2 + i2)Z
H (z2 + i2, x3 + i3)

× · · ·
×ZH (zk−1 + ik−1, xk + ik)Z

H (zk + ik, x1 + i1)

=N(2H−2)k
a a2HkN−k

a

×
Na∑

i1,...,ik=1

∫

[0,1]2k

dx1dz1 · · ·dxkdzkψ(x1)ψ(z1)ψ(x2)ψ(z2) · · ·ψ(xk)ψ(zk)

× [|z1 − x2 + i1 − i2| · |z2 − x3 + i2 − i3|
× · · ·
×|zk−1 − xk + ik−1 − ik| · |zk − x1 + ik − i1|

]2H

=N(2H−2)k
a a2HkN−k

a

Na∑

i1,...,ik=1

(|i1 − i2| · · · · · |ik−1 − ik| · |ik − i1|
)2H

×
∫

[0,1]2k

dx1dz1 · · ·dxkdzkψ(x1)ψ(z1)ψ(x2)ψ(z2) · · ·ψ(xk)ψ(zk)

×
∣
∣∣∣

(
1+ z1 − x2

i1 − i2

)2H

· · ·
(

1+ zk − x1

ik − i1

)2H ∣∣∣∣

∼N(2H−2)k
a a2HkH 2k(2H − 1)2kN−k

a

×
Na∑

i1,...,ik=1

(|i1 − i2| · · · · · |ik−1 − ik| · |ik − i1|
)2H−2

×
∫

[0,1]2k

dx1dz1 · · ·dxkdzkψ(x1)ψ(z1)ψ(x2)ψ(z2)

×· · ·
×ψ(xk)ψ(zk)x1z1 · · ·xkzk

where we used the fact that the integral of the mother wavelet vanishes and a Tay-
lor expansion of second order of the function (1 + x)2H . As a consequence, by a
Riemann sum argument it is clear that the cumulant of �−1

2 (H)N2−2H
a I2(f

(a)
N ) con-

verges to

∫

[0,1]2k

[|x1 − x2| · · · · · |xk−1 − xk| · |xk − x1|
]2H−2

dx1 · · ·dxk

which represents the k cumulant of the Rosenblatt random variable Z2H−1
1

(see [167, 174]). �
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In the case of the statistics based on the variations of fBm, in the case H ∈
(3/4,1) the statistic 1

N

∑N−1
i=0

(BH
i+1
N

−BH
i
N

)2

N−2H − 1, renormalized by a constant times

N2−2H , converges in L2(Ω) to a Rosenblatt random variable at time 1 (see
Sect. 5.1). In the wavelet world, the above result gives only convergence in law. The
following question is then natural: can we get L2 convergence for the renormalized
statistics VN(a)? The answer is negative (see Exercise 5.17).

5.7.2 Wavelet Variations in the Rosenblatt Case

Chaotic Expansion of the Wavelet Variation We study in this section the
wavelet-based statistics VN given by (5.91) in the situation when the observed pro-
cess is the Rosenblatt process. Throughout this section, we assume that ZH is a
Rosenblatt process with self-similarity order H given by the right-hand side of
(3.17). In this case, the wavelet coefficient can be written as

d(a, i) =√a

∫ 1

0
ψ(x)ZH

a(x+i)dx

=√a

∫ 1

0
ψ(x)dx

(∫ a(x+i)

0

∫ a(x+i)

0
LH

a(x+i)(y1, y2)dWy1dWy2

)

= I2
(
ga,i(·, ·)

)

with

ga,i(y1, y2) := dH

√
a1[0,a(i+1)](y1)1[0,a(i+1)](y2)

×
∫ 1

y1∨y2
a
−i

dxψ(x)

(∫ a(x+i)

y1∨y2

∂1K
H ′(u, y1)∂1K

H ′(u, y2)du

)
.

(5.98)

The product formula for multiple stochastic integrals (C.4) gives

I2(f )I2(g)= I4(f ⊗ g)+ 4I2(f ⊗1 g)+ 2〈f,g〉L2[0,N ]2

if f,g ∈ L2([0,N ]2) are two symmetric functions and the contraction f ⊗1 g is
defined by

(f ⊗1 g)(y1, y2)=
∫ N

0
f (y1, x)g(y2, x)dx.

Thus, we obtain

d2(a, i) = I4
(
g⊗2

a,i

)+ 4I2(ga,i ⊗1 ga,i)+ 2‖ga,i‖2
L2[0,N ]2
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and noting that, since the covariance of the Rosenblatt process is the same as the
covariance of the fractional Brownian motion, we will also have

E
(
d2(a, i)

)= E
(
I2(ga,i)

)2 = 2‖ga,i‖2
L2[0,N ]2 = a2H+1Cψ(H).

Therefore, we obtain the following decomposition for the statistic VN(a):

VN(a)= a−2H−1Cψ(H)−1 1

Na

[
Na∑

i=1

I4
(
g⊗2

a,i

)+ 4
Na∑

i=1

I2(ga,i ⊗1 ga,i)

]

= T2 + T4

with

{
T2 := a−2H−1Cψ(H)−1 4

Na

∑Na

i=1 I2(ga,i ⊗1 ga,i),

T4 := a−2H−1Cψ(H)−1 1
Na

∑Na

i=1 I4(g
⊗2
a,i ).

(5.99)

To understand the limit of the sequence VN we need to regard the two terms above
(note that similar terms appear in the decomposition of the variation statistics of
the Rosenblatt process, see [181]). In essence, the following will happen: the term
T4 which lives in the fourth Wiener chaos retains some characteristics of the fBm
case (since it has to be renormalized by

√
Na except in the case Q = 1 where the

normalization is N2−2H
a for H > 3

4 ) and its limit will be Gaussian (except for Q= 1
and H > 3

4 ). Unfortunately, this apparent good behavior does not affect the limit of
VN which is non-normal. The same phenomenon occurs for the limit behavior of
the quadratic variations of the Rosenblatt process, see Sect. 5.2.

Now, let us study the asymptotic behavior of the term ET 2
4 . From (5.99), we have

T4 = I4
(
g

(a)
N

)

where

g
(a)
N := a−2H−1Cψ(H)−1 1

Na

Na∑

i=1

g⊗2
a,i , (5.100)

and thus, by the isometry of multiple stochastic integrals,

ET 2
4 = 4!Cψ(H)−2a−4H−2 1

N2
a

Na∑

i,j=1

〈
g⊗2

a,i , g
⊗2
a,j

〉
L2[0,N ]4

= 4!Cψ(H)−2a−4H−2 1

N2
a

Na∑

i,j=1

〈ga,i , ga,j 〉2L2[0,N ]2 .

But,

〈ga,i , ga,j 〉L2[0,N ]2 =
1

2
E
(
d(a, i)d(a, j)

)

and we obtain the same behavior (up to a multiplicative constant) as in the case of
fractional Brownian motion. That is, using (5.95) and the proof of Theorem 5.22,
we will have
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Proposition 5.15 If Q > 1 and H ∈ ( 1
2 ,1) or if Q= 1 and H ∈ ( 1

2 , 3
4 ), then

N

a
E
(
T 2

4

)→N 3�1(1,1,H) (5.101)

and, if Q= 1 and H ∈ ( 3
4 ,1), then

(
N

a

)4−4H

E
(
T 2

4

)→N 3�2(H). (5.102)

The constants �(1,1,H) and �2(H) are given by (5.95), (5.97) respectively.

Asymptotic Behavior of the Term T2 Recall that we have

T2 = I2
(
h

(a)
N

)

with

h
(a)
N := 4

1

a2H+1Cψ(H)

1

Na

Na∑

i=1

ga,i ⊗1 ga,i . (5.103)

We compute the contraction ga,i ⊗1 ga,i . We have

(ga,i ⊗1 ga,i)(y1, y2)

=
∫ Na

0
ga,i(y1, z)ga,i(y2, z)dz

= ad2
H 1[0,a(i+1)](y1)1[0,a(i+1)](y2)

×
∫ a(i+1)

0
dz

[∫ 1

y1∨z

a
−i

dxψ(x)

(∫ a(x+i)

y1∨z

∂1K
H ′(u, y1)∂1K

H ′(u, z)du

)]

×
[∫ 1

y2∨z

a
−i

dx′ψ
(
x′
)(∫ a(x′+i)

y2∨z

∂1K
H ′(u′, y2

)
∂1K

H ′(u′, z
)
du′
)]

= ad2
H 1[0,a(i+1)](y1)1[0,a(i+1)](y2)

[∫ 1

y1
a
−i

dxψ(x)

∫ 1

y2
a
−i

dx′ψ
(
x′
)

×
∫ a(x+i)

y1

∫ a(x′+i)

y2

M
(
u,y1, u

′, y2
)
dudu′

∫ u∧u′

0
M
(
u, z,u′, z

)
dz

]

where M(u,y1, u
′, y2) := ∂1K

H ′(u, y1)∂1K
H ′(u′, y2) and H ′ = (H + 1)/2. Now,

we have already seen that
∫ t∧s

0 KH (t, z)KH (s, z)dz = ZH (t, s) with ZH (t, s)

given in (1.1) and therefore

∫ u∧u′

0
M
(
u, z,u′, z

)
dz=H ′

(
2H ′ − 1

)∣∣u− u′
∣∣2H ′−2

. (5.104)
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(In fact, this relation can easily be derived from
∫ u∧v

0 KH ′(u, y1)K
H ′(v, y1)dy1 =

RH ′(u, v), and will be used repeatedly in the sequel.) Thus putting αH :=H ′(2H ′ −
1)=H(H + 1)/2 and since ψ is [0,1]-supported, we obtain

(ga,i ⊗1 ga,i)(y1, y2) = ad2
H αH 1[0,a(i+1)](y1)1[0,a(i+1)](y2)

×
∫ 1

(
y1
a
−i)∨0

∫ 1

(
y2
a
−i)∨0

dxdx′ψ(x)ψ
(
x′
)

×
∫ a(x+i)

y1

∫ a(x′+i)

y2

|u− u′|2H ′−2M
(
u,y1, u

′, y2
)
dudu′.

By direct computation, it is possible to evaluate the expectation of T 2
2 . It is as follows

N2−2H
a ET 2

2 →N 32
α4

H d4
H

H(2H − 1)C2
ψ(H)

×
(∫

[0,1]4
ψ(x)ψ

(
x′
)
xx′
∣∣ux − vx′

∣∣2H ′−2
dxdx′dudv

)2

:= C2
T2

(H).

(5.105)

We shall not prove this estimate here because it is a consequence of the follow-
ing proposition which shows that the sequence C−1

T2
(H)N1−H

a T2 (and therefore the

sequence VN(a)) converges in L2(Ω) to a Rosenblatt random variable with self-
similarity index H .

Proposition 5.16 Let (ZH
t )t≥0 be a Rosenblatt process with self-similarity index

H ∈ ( 1
2 ,1) and let T2 be the sequence given by (5.99) and computed from (ZH

t )t≥0.
Then, for any Q≥ 1 and H ∈ ( 1

2 ,1), there exists a Rosenblatt random variable ZH
1

with self-similarity order H such that

C−1
T2

(H)N1−H
a T2 −→

N
ZH

1

where CT2 is given by (5.105).

Proof This proof follows the lines of the proof of Theorem 5.22. With T2 = I2(h
(a)
N )

in mind, as in the proof of Theorem 5.22, a direct proof that the cumulants of the
sequence N1−H

a I2(h
(a)
N ) converge to those of the Rosenblatt process can be given.

Indeed, by combining formula (3.16), the proof of Theorem 5.22 and the estimation
of the square mean of T2 we will obtain

ck

(
N1−H

a I2
(
h

(a)
N

))

= ca,H Nk(1−H)
a N−k

a

Na∑

i1,...,ik=1

∫

[0,1]4k

k∏

j=1

ψ(xj )ψ
(
x′j
)
ψ(zj )ψ

(
z′j
)
dxjdx′j dzj dz′j
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×
∫

[0,1]4k

dujdu′j dvjdv′j
k∏

j=1

(∣∣ujxj − vjx
′
j

∣∣ · ∣∣u′j zj − v′j z′j
∣∣)2H ′−2

×
k∏

j=1

(∣∣ujxj − u′j zj + ij − ij+1
∣∣ · ∣∣vjx

′
j − v′j z′j + ik − ij+1

∣∣)2H ′−2

with the convention ik+1 := i1. The key fact is that the sequence

Sk
Na
=N−k

a

×
Na∑

i1,...,ik=1

k∏

j=1

( |uj xj − u′
j
zj + ij − ij+1| · |vj x′

j
− v′

j
z′
j
+ ik − ij+1|

Na

)2H ′−2

converges as a Riemann sum (for fixed xj , x
′
j , zj , z

′
j , uj , vj , u

′
j , v
′
j ) to, modulo a

constant, the integral
∫

[0,1]k
dx1 · · ·dxk

(|x1 − x2| · |x2 − x3| · · · · · |xk − x1|
)2H ′−2

which is the cumulant of ZH
1 . �

We will finally state our main result on the convergence of the wavelet statistic
constructed from a Rosenblatt process. Its proof is a consequence of (5.101) and
Proposition 5.16.

Theorem 5.23 Let (ZH
t )t≥0 be a Rosenblatt process. Then, for any Q≥ 1 and H ∈

( 1
2 ,1), there exists a Rosenblatt random variable ZH

1 with self-similarity order H

such that

C−1
T2

(H)N1−H
a VN(a)−→

N
ZH

1 ,

where CT2 is given by (5.105).

It is also possible to give a multidimensional counterpart of Theorem 5.23 in the
case when the scale a is the vector (ai)1≤i≤m.

Theorem 5.24 Let VN(a) be the wavelet variation statistic of the Rosenblatt pro-
cess. Then for every Q > 1 and H ∈ ( 1

2 ,1)

((
N

a

)1−H

VN(ai)

)

1≤i≤m

−→
N

(
ZH

1,1, . . . ,Z
H
1,m

)

where ZH
1,j is a Rosenblatt random variable for every j = 1, . . . ,m and

EZH
1,pZH

1,q =
cp,q,H√

cp,p,H cq,q,H
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with

cp,q,H = 32(pq)−1 α4
H d4

H

C2
ψ(H)

(∫

[0,1]4
ψ(x)ψ

(
x′
)
xx′
∣
∣ux − vx′

∣
∣2H ′−2

dxdx′dudv

)2

×
(∫ 1

0

∫ 1

0
|px − qy|2H−2dydx

)
.

Proof Since for every λ1, . . . , λm ∈ R the linear combination
∑m

j=1 λj (
N
aj

)1−H ×
VN(aj ) behaves as a multiple integral of order two and it is possible to compute
its cumulants by using the formula (3.16) and to show that they converge to the
corresponding cumulants of the Rosenblatt vector. �

It is possible and instructive to study the behavior of the term T4 in the cases
Q > 1 and H ∈ ( 1

2 ,1) or Q = 1 and H ∈ ( 1
2 , 3

4 ). It can be already seen from its
asymptotic variance that it is very close to the Gaussian case. Actually this term
converges in law to a Gaussian random variable (see Exercise 5.19). This fact does
not influence the limit of the statistic VN but we find that it is interesting from a
theoretical point of view.

5.8 Bibliographical Notes

In martingale theory, the quadratic variations play a crucial role. The construction
of the Itô integral is based in a significant measure on this object. For self-similar
processes, the original motivation to study the quadratic variations is rather closely
related to statistics and to the construction of consistent and asymptotically normal
estimators for the self-similarity parameter. This research direction has an old his-
tory. We refer to the monographs [28, 68, 75, 160]. Some important papers that first
derived the limit of the long range dependent time series are [41, 67, 82, 167, 168].

The motivation to study the quadratic variations based on higher order increments
comes from Theorem 5.4 which shows that in the case of fractional Brownian mo-
tion the asymptotic normality of the quadratic variation statistic depends on whether
the index H is smaller or greater than 3

4 and this fact is not very convenient for prac-
tical purposes (confidence intervals, simulation etc.). The asymptotic normality of
the second order quadratic variations for every H ∈ (0,1) was first noticed in [85]
and [97]. The method was then applied to other Gaussian processes and sequences.
Other references related to the study of higher order variations are [27, 57, 58] in
the Gaussian case, and [49] in the non-Gaussian case. See also [22–24] for limit
theorems for the power variations of fBm and related processes. The wavelet esti-
mator is an alternative approach to the estimator based on quadratic variations. To
study self-similar and long range phenomena in data (that is, to put in light their
presence and to estimate the relevant parameters) wavelet transforms have proved
to be tools of particular interest. There also exists a slightly different approach,
based on discrete wavelet transforms and applied to stationary sequences instead
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of continuous time stochastic processes. We refer, among other references, to [2–
4, 54–56, 123, 124, 156, 187]. This research has had a strong impulse in recent
years since the publication of the papers [138] and [138] (see also [137]) which
brought new tools, based on the Malliavin calculus and multiple stochastic inte-
grals, and found important applications to limit theorems and statistics. Later, the
paper [127] by Nourdin and Peccati on Stein’s method combined with the Malliavin
calculus provided an elegant method to find the rate of convergence in the Central
Limit Theorem. A series of papers, by several authors, then followed, with various
extensions of the Stein method. We refer, among a long list, to [132] for the multidi-
mensional Stein method, to [130] or [105] for the approximation of other probability
distributions, to [135] for a density formula in terms of the Malliavin derivatives, to
[38] and [175] for applications to Cramer’s theorem, [93] for applications to local
times etc. See also the monographs [118, 125, 126] and [141].

5.9 Exercises

Exercise 5.1 Consider the sequences given by (5.43) and (5.44). Prove that these
sequences converge in law, as N→∞, to the standard normal law.

Hint Use Theorem 5.1 in order to prove that the distance between these sequences
and the standard normal law tends to zero as n→∞.

Exercise 5.2 ([48]) Prove Theorem 5.13.

Exercise 5.3 ([181]) Let

f1,H := 32d(H)4a(H)2
∞∑

k=1

k2H−2F

(
1

k

)
(5.106)

where the function F is defined by

F(x)=
∫

[0,1]4
dudvdu′dv′

∣
∣(u− u′

)
x + 1

∣
∣2H ′−2

× [a(H)2(|u− v|∣∣u′ − v′
∣∣∣∣(v− v′

)
x + 1

∣∣)2H ′−2

− 2a(H)
(|u− v|∣∣(v − u′

)
x + 1

∣∣)2H ′−2 + ∣∣(u− u′
)
x + 1

∣∣2H ′−2]
.

(5.107)

Let (Z(t), t ∈ [0,1]) be a Rosenblatt process with self-similarity parameter H ∈
(1/2,2/3) and let previous notations for constants prevail. Prove that the following
convergence occurs in distribution:

lim
N→∞

√
N

√
e1,H + f1,H

[
VN −

√
c3,H

N1−H
Z(1)

]
=N(0,1)
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where VN is given by (5.24) and the constants a(H), d(H), e1,H , f1,H , c3,H are
those in Sect. 5.2.

Exercise 5.4 Consider the notation from Sect. 5.1.5. Define, for p = 1, . . . ,M , the
sequence F̄N (ap) = bp,H N2−2H VN(2, ap) where bp,H is a suitable normalizing
constant such that E(F̄N (ap))2 converges to 1 as N →∞. Then show that for
H > 3

4 the vector (F̄N (a1), . . . ,FN(aM)) converges, as N →∞, in L2(Ω) to the

vector (Z2H−1
1 (1), . . . ,Z2H−1

M (1)) with Z2H−1
p (1) (p = 1, . . . ,M) Rosenblatt ran-

dom variables with self-similarity index 2H − 1. Give the covariance matrix of the
limit.

Exercise 5.5 Suppose that H > 1
2 , X = Z (the Rosenblatt process with self-

similarity parameter H ) in (5.73) and consider the estimator (5.74). Then, strong
consistency holds for ĤN , i.e. almost surely,

lim
N→∞ ĤN =H. (5.108)

In addition, prove that we have the following convergence in L2(Ω):

lim
N→∞

N1−H

2d(H)
log(N) (ĤN −H)= Z(1), (5.109)

where Z(1) is the Rosenblatt process at time 1.

Exercise 5.6 (see [48]) Study the asymptotic behavior of the estimator (5.74) when
X is the Hermite process.

Exercise 5.7 (see [1]) Let 1
N

, i = 0, . . . ,N be a partition of the unit interval [0,1]
and let

VN =
N−1∑

i=0

(
N2HKE

(
B

H,K
i+1
N

−B
H,K
i
N

)2 − θ(i, i)
)

where BH,K is a bi-fBm with K ∈ (0,1],H ∈ (0,1) and

θ(i, j)= 2−K
[(

(i + 1)2H + (j + 1)2H
)K − ((i + 1)2H + j2H

)K

− (i2H + (j + 1)2H
)K + (i2H + j2H

)K + 2−K+1ρ(i − j)
]

with ρ given by ρ(r)= 1
2 (|r + 1|2HK + |r − 1|2HK − 2|r|2HK).

1. Assume 0 < HK < 3
4 . Show that

VarVN

N
−→
N

c1

where c1 is a positive constant.
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2. Assume HK = 3
4 . Prove that

VarVN

N logN
−→
N

c2

where c2 is a positive constant.
3. Define

ṼN = VN

VarVN

.

Show that for any HK ≤ 3
4 , the sequence ṼN converges in distribution as

N→∞ to the standard normal law.
4. Give a bound for the Kolmogorov distance between the law of ṼN and the stan-

dard normal law.

Exercise 5.8 ([184]) Let SH be a sub-fBm and define

VN =
N−1∑

i=0

[
N2H E

(
SH

i+1
N

− SH
i
N

)2 −Var
(
SH

i+1
N

− SH
i
N

)]
.

1. Define

ṼN = VN

VarVN

.

Show that for any H ≤ 3
4 , the sequence ṼN converges in distribution as N→∞

to the standard normal law.
2. Give a bound for the Kolmogorov distance between the law of ṼN and the stan-

dard normal law.

Exercise 5.9 ([114]) Define, for every N ≥ 2, t ≥ 0, the sequence

VN(t)=
[Nt]−1∑

i=0

[ (B
H1
i+1
N

−B
H1
i
N

)(B
H2
i+1
N

−B
H2
i
N

)

E(B
H1
i+1
N

−B
H1
i
N

)(B
H2
i+1
N

−B
H2
i
N

)
− 1

]
. (5.110)

1. Show that, in the case H1 = H2 = H ∈ ( 3
4 ,1), the (renormalized) sequence

(VN(t))t≥0 converges, as N →∞, in the sense of finite dimensional distribu-
tions, to a symmetric Rosenblatt process with self-similarity parameter 2H − 1.

2. Show that, after suitable normalization, the sequence (5.110) converges in the
sense of finite dimensional distributions to the non-symmetric Rosenblatt process
YH1,H2 given by (3.25).
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Exercise 5.10 ([114]) Let us define, for every t ≥ 0

WN(t)=N1−2H

[Nt]−1∑

i=0

[(
B

H1
i+1 −B

H1
i

)
g
(
B

H2
i+1 −B

H2
i

)− c0
]

(5.111)

where c0 = E[(BH1
i+1−B

H1
i )g(B

H2
i+1−B

H2
i )] and where g is a deterministic function

with Hermite rank equal to one which has a finite expansion into Hermite polyno-
mials of the form

g(x)=
M∑

q=1

cqHq(x) (5.112)

where M ≥ 1 and Hn denotes the nth Hermite polynomial

Hn(x)= (−1)n

n! exp

(
x2

2

)
dn

dxn

(
exp

(
−x2

2

))
, x ∈R. (5.113)

Consider two fractional Brownian motions BH1 and BH2 given by (1.22) with
H1 + H2 = 2H > 3

2 . Let g : R→ R be a deterministic function given by (5.112)
such that for every q ≥ 2

(2H2 − 2)(q − 1) <−1. (5.114)

Prove that the sequence of stochastic processes (WN(t))t≥0 converges in the
sense of finite dimensional distributions as N →∞ to the process c1c(H1,H2)

−1

c(H1)c(H2)b(H1,H2)
−1YH1,H2 with YH1,H2 defined in (3.25).

Notice that assumption (5.114) excludes the existence of terms with q = 2 in the
expansion of g.

Exercise 5.11 ([172]) Consider the Gaussian process (u(t, x), t ∈ [0, T ], x ∈ Rd)

given by the solution (2.31) to the linear stochastic heat equation driven by a
fractional-white noise.

1. Express u(t, x) as a Wiener integral with respect to the Brownian sheet.
2. Express the cumulants of the random variable (5.67) using the formula for the

cumulants of a random variable in the second Wiener chaos (see (3.16)).
3. Prove Theorem 5.16.

Exercise 5.12 ([49]) Consider the quadratic variation statistic for a filter α of order
p based on the observations of our Rosenblatt process Z:

SN := 1

N

N∑

i=�

(
�∑

q=0

αqZ

(
i − q

N

))2

. (5.115)

1. Prove that E[SN ] = −N−2H

2

∑�
q,r=0 αqαr |q − r|2H = c(H) where c(H) is as

defined in (5.80).
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2. Consider the following non-linear equation for fixed N :

−N−2x

2

�∑

q,r=0

αqαr |q − r|2x − SN(2, α)= 0. (5.116)

Show that there exists a non-random value N0 depending only on α such that if
N ≥N0, (5.116) has exactly one solution in (1/2,1).

Define the estimator ĤN of H to be the unique solution of (5.116).
3. Prove that for any H ∈ (1/2,1), almost surely, limN→∞N2H SN = c(H)/2.
4. Prove that strong consistency holds for ĤN , i.e.

lim
N→∞ ĤN =H, a.s.

5. Prove that for any H ∈ ( 1
2 ,1), we have

lim
N→∞2c

−1/2
2,H N1−H (ĤN −H) logN = Z(1)

in L2(�), where Z(1) is a Rosenblatt random variable (c2,H is given by (5.86)).

Exercise 5.13 ([49]) Compute

d
(
GN,N(0,1)

)
(5.117)

where GN is defined by (5.83).

Exercise 5.14 Prove Proposition 5.14.

Exercise 5.15 Let c1,H be the constant (5.88) and T4 from (5.84). Show that the
sequence

GN :=
√

N

c1,H

T4

converges in distribution, as N→∞, to a standard normal random variable.

Exercise 5.16 Prove Theorem 5.21 using the Malliavin calculus.

Hint Use Theorem 5.1 in order to show that every component of the vector con-
verges in distribution to the normal law. Then use Theorem 5.3 to obtain the conver-
gence of the vector.

Exercise 5.17 Suppose Q= 1 and H > 3
4 . Consider the sequence VN(a) (5.91) and

let fN(a) be the kernel of VN(a).
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1. Show that the term f
(a)
N can be written as

f
(a)
N (y1, y2)= 1

a2H Cψ(H)

1

Na

×
Na∑

i=1

1[0,a(i+1)](y1)1[0,a(i+1)](y2)

(
1[0,ai](y1)1[0,ai](y2)

×
∫ 1

0

∫ 1

0
dxdzψ(x)ψ(z)KH

(
a(x + i), y1

)
KH

(
a(z+ i), y2

)

+ 1[0,ai](y1)1[ai,a(1+i)](y2)

×
∫ 1

0

∫ 1

y2
a
−i

dxdzψ(x)ψ(z)KH
(
a(x + i), y1

)
KH

(
a(z+ i), y2

)

+ 1[0,ai](y2)1[ai,a(1+i)](y1)

×
∫ 1

y1
a
−i

∫ 1

0
dxdzψ(x)ψ(z)KH

(
a(x + i), y1

)
KH

(
a(z+ i), y2

)

+ 1[ai,a(1+i)](y1)1[ai,a(1+i)](y2)

∫ 1

y1
a
−i

∫ 1

y2
a
−i

dxdzψ(x)ψ(z)KH

× (a(x + i), y1
)
KH

(
a(z+ i), y2

))

:= f
(a,1)
N (y1, y2)+ f

(a,2)
N (y1, y2)+ f

(a,3)
N (y1, y2)+ f

(a,4)
N (y1, y2).

2. Show that the terms N2−2H
a f

(a,2)
N , N2−2H

a f
(a,3)
N and N2−2H

a f
(a,4)
N converge to

zero in L2([0,∞)2) as Na→∞.
3. Show that �−1

2 (H)N2−2H
a f

(a,1)
N is equivalent (in the sense that it has the same

pointwise limit) to N1−2H L2H−1
N where L2H−1

N is the kernel of the Rosenblatt
process with self-similarity index 2H − 1,

LH
t (y1, y2) := dH 1[0,t](y1)1[0,t](y2)

∫ t

y1∨y2

∂1K
H ′(u, y1)∂1K

H ′(u, y2)du,

(5.118)
with KH the standard kernel defined in (1.4) and H ′ = H+1

2 .

4. Deduce that �−1
2 (H)N2−2H

a VN(a) is equivalent to N1−2H I2(L
2H−1
N ) =

N1−2H Z2H−1
N = Z2H−1

1 where the equivalence is asymptotically in law.
5. Prove that the sequence N1−2H Z2H−1

N is not Cauchy in L2.
6. Deduce that VN(a) (renormalized) does not converge in L2 to the Rosenblatt

random variable with index 2H − 1 given by (3.17).

Exercise 5.18 Prove the limit (5.105).
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Exercise 5.19 Use the notation in Sect. 5.7. Denote by CT4(H) the positive constant
such that

C2
T4

(H) := 3�(1,1,H),

where �(p, q,H) is defined in (5.95).
Suppose that ZH is a Rosenblatt process with self-similarity order H . Suppose

that Q > 1 or Q= 1 and H ∈ ( 1
2 , 3

4 ). Then prove that

√
NaT4→N N

(
0,C2

T4
(H)

)
.

Exercise 5.20 Use the notation in Sect. 5.7. Use the argument of Exercise 5.17 to
show that in the Rosenblatt case VN(a) (5.91) (renormalized) does not converge in
L2 to the Rosenblatt random variable with index H .



Chapter 6
Hermite Variations for Self-similar Processes

The quadratic variation of a stochastic process (Xt )t∈[0,T ] defined by the expres-
sion (5.1) involves the square of the increments (Xti+1 − Xti )

2 along a partition
0 = t0 < t1 < · · · < tn = T of the time interval [0, T ]. It can be generalized to p-
variations, with p ≥ 2, meaning that the power two in (5.1) is replaced by a power
p ≥ 2. A variant of the p-variation is the so called Hermite variation of order p.

This is usually defined as vn(X)=∑n−1
i=0 Hp(

Xti+1−Xti√
E(Xti+1−Xti

)2
) where Hp denotes the

Hermite polynomial of order p. To employ the method based on multiple stochastic
integrals and the Malliavin calculus, it is often more convenient to study the Hermite
variations of order p instead of the p-variations.

6.1 Hermite Variations of Fractional Brownian Motion

Consider a fBm (BH
t )t∈[0,1] with H ∈ (0,1) and define its Hermite variations of

order q by

Vn =
n−1∑

k=0

Hq

(
nH (Bk+1

n
−Bk

n
)
)

(6.1)

(in the sequel we will omit the superscript H for B) where Hq is the Hermite poly-
nomial of degree q ≥ 1 given by (5.113).

The behavior of the sequence Vn (6.1) is as follows.

Theorem 6.1 Let q ≥ 2 be an integer and let (Bt )t≥0 be a fractional Brownian
motion with Hurst parameter H ∈ (0,1). Then, with some explicit positive constants
c1,q,H , c2,q,H , c3,q,H depending only on q and H , we have:

(i) If 0 < H < 1− 1
2q

then

Vn

c1,q,H

√
n

Law−−−→
n→∞ N(0,1). (6.2)
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Probability and Its Applications, DOI 10.1007/978-3-319-00936-0_6,
© Springer International Publishing Switzerland 2013

205

http://dx.doi.org/10.1007/978-3-319-00936-0_6


206 6 Hermite Variations for Self-similar Processes

Moreover, if Z
(1)
n := Vn

c1,q,H

√
n

sup
x∈R

∣∣P
(
Z(1)

n > x
)− P

(
Z(1) > x

)∣∣≤ c

⎧
⎪⎪⎨

⎪⎪⎩

1√
n
, H ∈ (0, 1

2 ]
nH−1, H ∈ [ 12 ,

2q−3
2q−2 )

nqH−q+ 1
2 , H ∈ [ 2q−3

2q−2 ,1− 1
2q

).

(6.3)
(ii) If 1− 1

2q
< H < 1 then

Vn

c2,q,H n1−q(1−H)

L2−−−→
n→∞ Z (6.4)

where Z is a Hermite random variable given by (3.2). Moreover, if Z
(2)
n :=

Vn

c2,q,H n1−q(1−H) then

sup
x∈R

∣∣P
(
Z(2)

n > x
)− P

(
Z(2) > x

)∣∣≤ cn
1− 1

2q
−H

. (6.5)

(iii) If H < 1− 1
2q

then

Vn

c3,q,H

√
n logn

Law−−−→
n→∞ N(0,1). (6.6)

Moreover, if Z
(3)
n := Vn

c3,q,H

√
n logn

, then

sup
x∈R

∣∣P
(
Z(3)

n > x
)− P

(
Z(3) > x

)∣∣≤ c
1√

logn
.

The proof of point (i) and (iii) is based on Stein’s method combined with the
Malliavin calculus. Notice that, since

Hq

(
nH (Bk+1

n
−Bk

n
)
)=Hq

(
I1
(
nH 1

( k
n
, k+1

n
)

))= 1

q!n
qH Iq

(
1⊗q

( k
n
, k+1

n
)

)

the Hermite variation (6.1) can be expressed as a multiple integral of order q and
then one can apply Theorem 5.1 in order to obtain a bound for the distance between
the law of the renormalized sequence Vn and the standard normal law. To prove
point (ii), one can apply Theorem 5.6. We will not give the details (the reader may
consult [126] for a detailed study of the Hermite variations of the fBm) but the proof
of Theorem 6.1 can be obtained by following the lines of Theorems 6.2 and 6.3 for
moving average processes in the next section. Notice that Theorem 6.1 covers the
results in Sect. 5.1. for the quadratic variations of fractional Brownian motion (by
letting q = 2).
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6.2 Hermite Variations of the Moving Average Process

We will consider a long memory moving average sequence defined by

Xn =
∑

i≥1

aiεn−i , n ∈ Z

where the innovations εi are centered i.i.d. random variables having at least fi-
nite second moments and the moving averages ai are of the form ai = i−βL(i)

with β ∈ ( 1
2 ,1) and L slowly varying towards infinity. The covariance function

ρ(m) = E(X0Xm) behaves as cβm−2β+1 when m→∞ and consequently is not
summable since β < 1. Therefore Xn is usually called a long memory or “long-
range dependence” moving average. The long memory moving average processes
considered in this part cover the model known as the fractional ARIMA process
(cf. [83, 89]), which has motivated considerable interest in applied areas such as
econometrics and hydrology (see, e.g., [87, 111]).

Note that the autocorrelation function of the sequence Xm behaves when m goes
to infinity as the autocorrelation of the fractional Brownian motion with Hurst pa-
rameter H = 3

2 − β .
Let K be a deterministic function which has Hermite rank q and satisfies

E(K2(Xn)) <∞ and define

SN =
N∑

n=1

[
K(Xn)−E

(
K(Xn)

)]
. (6.7)

Then it has been proven in [88] (see also [192]) that, with c1(β, q), c2(β, q) being
positive constants depending only on q and β: (a) if q > 1

2β−1 , then the sequence

c1(β, q) 1√
N

SN converges in law to a standard normal random variable; and (b) if

q < 1
2β−1 , then the sequence c2(β, q)Nβq− q

2−1SN converges in law to a Hermite
random variable of order q . We will prove this result by using the Stein’s method
and the Malliavin calculus and we will compute the rate of the convergence of the
sequence SN toward its limit.

In order to apply the techniques based on the Malliavin calculus and multiple
Wiener-Itô integrals, we will restrict our focus to the following situation: the inno-
vations εi are chosen to be the increments of a Brownian motion W on the real line
while the function K is a Hermite polynomial of order q . In this case the random
variable Xn is a Wiener integral with respect to W , and Hq(Xn) can be expressed
as a multiple Wiener-Itô stochastic integral of order q with respect to W .

Here, we will focus on the sequence SN (6.7) where

Xn =
∞∑

i=1

αi(Wn−i −Wn−i−1), (6.8)
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with αi ∈ R, αi = ci−β,β ∈ ( 1
2 ,1) and

∑∞
i=1 α2

i = 1. The autocorrelation function
of Xn is given by (see Exercise 6.3)

ρ(m) :=
∞∑

i=1

αiαi+|m|. (6.9)

Note that Xn can also be written as (In is the multiple integral with respect to W )

Xn =
∞∑

i=1

αi(Wn−i−1 −Wn−i )=
∞∑

i=1

αiI1(1[n−i−1,ni])

= I1

( ∞∑

i=1

αi1[n−i−1,n−i]
︸ ︷︷ ︸

fn

)

= I1(fn). (6.10)

As K =Hq , we have

SN =
N∑

n=1

[
Hq(Xn)−E

(
Hq(Xn)

)]=
N∑

n=1

[
Hq

(
I1(fn)

)−E
(
Hq

(
I1(fn)

))]
.

We know that, if ‖f ‖H = 1, we have Hq(I1(f ))= 1
q!Iq(f⊗q). In this part H will

be L2(R). Furthermore, we have

‖fn‖2
H = 〈fn,fn〉H =

〈 ∞∑

i=1

αi1[n−i−1,ni],
∞∑

r=1

αr1[n−r−1,nr]

〉

H

=
∞∑

i,r=1

αiαr 〈1[n−i−1,n−i],1[n−r−1,nr]〉H.

It is easily verified that if i > r ⇔ n − i ≤ n − r − 1 or i < r ⇔ n − r ≤
n − i − 1, we have [n − i − 1, n − i] ∩ [n − r − 1, n − r] = ∅ and thus
〈1[n−i−1,n−i],1[n−r−1,n−r]〉H = 0. It follows that

‖fn‖2
H =

∞∑

i=1

α2
i ‖1[n−i−1,n−i]‖2

H =
∞∑

i=1

α2
i = 1.

Thanks to this result, SN can be represented as

SN =
N∑

n=1

[
Hq

(
I1(fn)

)−E
(
Hq

(
I1(fn)

))]= 1

q!
N∑

n=1

[
Iq

(
f
⊗q
n

)−E
(
Iq

(
f
⊗q
n

))]

= 1

q!
N∑

n=1

Iq

(
f
⊗q
n

)= 1

q!Iq

(
N∑

n=1

f
⊗q
n

)

.
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6.2.1 Berry-Esséen Bounds for the Central Limit Theorem

We will first focus on the case where q > (2β − 1)−1, i.e. the Central Limit Theo-
rem. Let ZN = 1

σ
√

N
SN where σq,β is given by

σ := σ 2
q,β = q!

+∞∑

m=−∞

( ∞∑

i=1

αiαi+|m|

)q

= q!
+∞∑

m=−∞
ρq(m). (6.11)

The following result gives the Berry-Esséen bounds in the Central Limit Theorem.

Theorem 6.2 Under the condition q > (2β − 1)−1, ZN converges in law towards
Z ∼N (0,1). Moreover, there exists a constant Cβ , depending uniquely on β , such
that, for any N ≥ 1,

sup
z∈R

∣∣P(ZN ≤ z)− P(Z ≤ z)
∣∣≤ Cβ

{
N

q
2+ 1

2−qβ if β ∈ ( 1
2 ,

q
2q−2 ]

N
1
2−β if β ∈ [ q

2q−2 ,1).

Remark 6.1

(a) The same result, modulo a change of the constant, holds for other distances
between the laws of random variables (e.g. total variations distance, Wasserstein
etc. See Theorem 5.1).

(b) Actually, the condition β ∈ ( 1
2 ,

q
2q−2 ] reads β ∈ ( 1

2q
+ 1

2 ,
q

2q−2 ] since q >

(2β − 1)−1.

Proof To apply Theorem 5.1, we need to evaluate the quantity

E
((

1− q−1‖DZN‖2
H
)2)

.

We will start by computing ‖DZN‖2
H. We have the following lemma.

Lemma 6.1 The following result on ‖DZN‖H holds.

1

q
‖DZN‖2

H − 1 =
q−1∑

r=0

Ar(N)− 1

where

Ar(N)= qr!
σ 2N

(
q − 1

r

)2 N∑

k,l=1

I2q−2−2r

(
f
⊗q−1−r
k ⊗̃f

⊗q−1−r
l

)〈fk, fl〉r+1
H .

(6.12)
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Proof We have

DZN = D

(
1

σ
√

N

N∑

n=1

Iq

(
f
⊗q
n

)
)

= q

σ
√

N

N∑

n=1

Iq−1
(
f
⊗q−1
n

)
fn

and

‖DZN‖2
H =

q2

σ 2N

N∑

k,l=1

Iq−1
(
f
⊗q−1
k

)
Iq−1

(
f
⊗q−1
l

)〈fk, fl〉H. (6.13)

The multiplication formula between multiple stochastic integrals gives us that

Iq−1
(
f
⊗q−1
k

)
Iq−1

(
f
⊗q−1
l

)

=
q−1∑

r=0

r!
(

q − 1
r

)2

I2q−2−2r

(
f
⊗q−1−r
k ⊗̃f

⊗q−1−r
l

)〈fk, fl〉rH.

By substituting this into (6.13), we obtain

‖DZN‖2
H =

q2

σ 2N

q−1∑

r=0

r!
(

q − 1
r

)2 N∑

k,l=1

I2q−2−2r

(
f
⊗q−1−r
k ⊗̃f

⊗q−1−r
l

)〈fk, fl〉r+1
H

and the conclusion follows easily. �

By using Lemma 6.1 and the fact that E(ImIn)= 0 if m �= n, we can now evaluate
E((1− q−1‖DZN‖2

H)2). We have

E
((

1− q−1‖DZN‖2
H
)2) =

q−2∑

r=0

E
(
A2

r (N)
)+E

(
Aq−1(N)− 1

)2
. (6.14)

We need to evaluate the behavior of those two terms as N→∞, but first, recall that
the αi are of the form αi = i−β with β ∈ (1/2,1). We will use the notation an ∼ bn

meaning that an and bn have the same limit as n→∞ and an # bn meaning that
supn≥1|an|/|bn|<∞. Below is a useful lemma we will use throughout.

Lemma 6.2

1. We have

ρ(n)∼ ccβn−2β+1

with cβ =
∫∞

0 y−β(y + 1)−βdy = β(2β − 1,1− β).
2. For any α ∈R, we have

n−1∑

k=1

kα # 1+ nα+1.
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3. If α ∈ (−∞,−1), we have

∞∑

k=n

kα # nα+1.

Proof Points 2. and 3. follow from [127], Lemma 4.3. We will only prove the
first point of the lemma. We know that ρ(n) =∑∞i=1 i−β(i + |n|)−β behaves as∫∞

0 x−β(x + |n|)−βdx and the following holds
∫ ∞

0
x−β

(
x + |n|)−β

dx =
∫ ∞

0
x−β |n|−β

(
x

|n| + 1

)−β

dx

= |n|−2β+1
∫ ∞

0
y−β(y + 1)−βdy

︸ ︷︷ ︸
cβ

.

Thus,

ρ(n)∼
∞∑

i=1

i−β
(
i + |n|)−β ∼ cβn−2β+1. �

We will start the evaluation of (6.14) with the term E(Aq−1(N)− 1)2. Note that
we have E(Aq−1(N)− 1)2 = (Aq−1(N)− 1)2 because Aq−1(N)− 1 is determinis-
tic. We can write

Aq−1(N)− 1= q!
σ 2N

N∑

k,l=1

〈fk, fl〉qH − 1.

Note that we have

〈fk, fl〉H =
∞∑

i=1

αiαi+|l−k| = ρ(l − k).

Hence

Aq−1(N)− 1 = q!
σ 2N

N∑

k,l=1

( ∞∑

i=1

αiαi+|l−k|

)q

− 1

= 1

σ 2N

(

q!
N∑

k,l=1

( ∞∑

i=1

αiαi+|l−k|

)q

−Nσ 2

)

= 1

σ 2N

(

q!
N∑

k,l=1

( ∞∑

i=1

αiαi+|l−k|

)q

−Nq!
+∞∑

m=−∞

( ∞∑

i=1

αiαi+|m|

)q)

. (6.15)



212 6 Hermite Variations for Self-similar Processes

Observe that

N∑

k,l=1

( ∞∑

i=1

αiαi+|l−k|

)q

=
N∑

k≤l

( ∞∑

i=1

αiαi+|l−k|

)q

+
N∑

k>l

( ∞∑

i=1

αiαi+|l−k|

)q

=
N∑

k=1

N∑

l=k

( ∞∑

i=1

αiαi+|l−k|

)q

+
N∑

l=1

N∑

k=l+1

( ∞∑

i=1

αiαi+|l−k|

)q

.

Let m= l − k. We obtain

N∑

k,l=1

( ∞∑

i=1

αiαi+|l−k|

)q

=
N∑

k=1

N−k∑

m=0

( ∞∑

i=1

αiαi+|m|

)q

+
N∑

l=1

−1∑

m=−N+l

( ∞∑

i=1

αiαi+|m|

)q

=
N−1∑

m=0

N−m∑

k=1

( ∞∑

i=1

αiαi+|m|

)q

+
−1∑

m=−(N−1)

N+m∑

l=1

( ∞∑

i=1

αiαi+|m|

)q

=
N−1∑

m=0

(N −m)

( ∞∑

i=1

αiαi+|m|

)q

+
−1∑

m=−(N−1)

(N +m)

( ∞∑

i=1

αiαi+|m|

)q

=N

N−1∑

m=−(N−1)

( ∞∑

i=1

αiαi+|m|

)q

− 2
N−1∑

m=0

m

( ∞∑

i=1

αiαi+|m|

)q

.

Substituting this into (6.15), we get

Aq−1(N)− 1 = q!
σ 2N

(

N

N−1∑

m=−(N−1)

( ∞∑

i=1

αiαi+|m|

)q

−N

+∞∑

m=−∞

( ∞∑

i=1

αiαi+|m|

)q

− 2
N−1∑

m=0

m

( ∞∑

i=1

αiαi+|m|

)q)

= q!
σ 2N

(

−N

−N∑

m=−∞

( ∞∑

i=1

αiαi+|m|

)q

−N

∞∑

m=N

( ∞∑

i=1

αiαi+|m|

)q

− 2
N−1∑

m=0

m

( ∞∑

i=1

αiαi+|m|

)q)
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= q!
σ 2N

(

−2N

∞∑

m=N

( ∞∑

i=1

αiαi+|m|

)q

− 2
N−1∑

m=0

m

( ∞∑

i=1

αiαi+|m|

)q)

.

By noticing that the condition q > (2β − 1)−1 is equivalent to −q(2β − 1) <−1,
we can apply Lemma 6.2 to get

Aq−1(N)− 1 #
∞∑

m=N

m−q(2β−1) +N−1
N−1∑

m=0

m−q(2β−1)+1

# N−q(2β−1)+1 +N−1(1+N−q(2β−1)+2)

and finally

Aq−1(N)− 1#N−1 +Nq−2qβ+1.

Thus, we obtain a bound on (Aq−1(N)− 1)2 = E(Aq−1(N)− 1)2,

E
(
Aq−1(N)− 1

)2 #N−2 +Nq−2qβ +N2q−4qβ+2. (6.16)

Let us now treat the second term of (6.14), i.e.
∑q−2

r=0 E(A2
r (N)). Here we can as-

sume that r ≤ q − 2 is fixed. We have

E
(
A2

r (N)
) = E

(
q2r!2
σ 4N2

(
q − 1

r

)4 N∑

i,j,k,l=1

〈fk, fl〉r+1
H 〈fi, fj 〉r+1

H

× I2q−2−2r

(
f
⊗q−1−r
k ⊗̃f

⊗q−1−r
l

)
I2q−2−2r

(
f
⊗q−1−r
i ⊗̃f

⊗q−1−r
j

))

= c(r, q)N−2
N∑

i,j,k,l=1

〈fk, fl〉r+1
H 〈fi, fj 〉r+1

H

× 〈f⊗q−1−r
k ⊗̃f

⊗q−1−r
l , f

⊗q−1−r
i ⊗̃f

⊗q−1−r
j

〉
H⊗2q−2r−2

=
∑

α,ν≥0
α+ν=q−r−1

∑

γ,δ≥0
γ+δ=q−r−1

c(r, q,α, ν, γ, δ)Br,α,ν,γ,δ(N)

where

Br,α,ν,γ,δ(N)

=N−2
N∑

i,j,k,l=1

〈fk, fl〉r+1
H 〈fi, fj 〉r+1

H 〈fk, fi〉αH〈fk, fj 〉νH〈fl, fi〉γH〈fl, fj 〉δH

=N−2
N∑

i,j,k,l=1

ρ(k− l)r+1ρ(i − j)r+1ρ(k − i)αρ(k− j)νρ(l − i)γ ρ(l − j)δ.
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When α,ν,γ and δ are fixed, we can decompose the sum
∑N

i,j,k,l=1 which appears
in Br,α,ν,γ,δ(N) just above, as follows:

∑

i=j=k=l

+
( ∑

i=j=k
l �=i

+
∑

i=j=l
k �=i

+
∑

i=l=k
j �=i

+
∑

j=k=l
i �=j

)
+
( ∑

i=j,k=l
k �=i

+
∑

i=k,j=l
j �=i

+
∑

i=l,j=k
j �=i

)

+
( ∑

i=j,k �=i
k �=l,l �=i

+
∑

i=k,j �=i
j �=l,k �=l

+
∑

i=l,k �=i
k �=j,j �=i

+
∑

j=k,k �=i
k �=l,l �=i

+
∑

j=l,k �=i
k �=l,l �=i

+
∑

k=l,k �=i
k �=j,j �=i

)
+

∑

i,j,k,l
i �=j �=k �=l

.

We will have to evaluate each of these fifteen sums separately. Before that, we will
give a useful lemma that we will be using regularly throughout.

Lemma 6.3 For any α ∈R, we have

n∑

i �=j=1

|i − j |α =
n−1∑

i,j=0

|i − j |α # n

n−1∑

j=0

jα.

Proof The following upper bounds prove this lemma

∣∣∣∣

∑n−1
i,j=0 |i − j |α
n
∑n−1

j=0 jα

∣∣∣∣=
∣∣∣∣

∑n−1
m=0(n−m)mα

n
∑n−1

j=0 jα

∣∣∣∣ ≤
∣∣∣∣
n
∑n−1

m=0 mα

n
∑n−1

j=0 jα

∣∣∣∣+
∣∣∣∣

∑n−1
m=0 mα+1

n
∑n−1

j=0 jα

∣∣∣∣

≤ 1+
∣∣∣∣

∑n−1
m=0 mα+1

∑n−1
j=0 jα+1

∣∣∣∣≤ 2.
�

Let us return to our sums and begin by treating the first one. The first sum can be
rewritten as

N−2
∑

i=j=k=l

ρ(k − l)r+1ρ(i − j)r+1ρ(k − i)αρ(k − j)νρ(l − i)γ ρ(l − j)δ

=N−2
N∑

i=1

ρ(0)2r+2+α+ν+γ+δ =N−2N #N−1.

For the second sum, we have

N−2
∑

i=j=k
l �=i

ρ(k− l)r+1ρ(i − j)r+1ρ(k − i)αρ(k − j)νρ(l − i)γ ρ(l − j)δ

=N−2
∑

i=j=k
l �=i

ρ(l − i)r+1+γ+δ =N−2
∑

i �=l

ρ(l − i)q .
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At this point, we will use Lemma 6.2 and then Lemma 6.3 to write

N−2
∑

i=j=k
l �=i

ρ(k − l)r+1ρ(i − j)r+1ρ(k− i)αρ(k − j)νρ(l − i)γ ρ(l − j)δ

#N−2
N∑

i �=l=1

|l − i|q(−2β+1) #N−1
N−1∑

l=1

lq(−2β+1) #N−1(1+N−2βq+q+1)

#N−1 +N−2βq+q .

For the third sum, we are in exactly the same case, therefore we obtain the same

bound N−1 +N−2βq+q . The fourth sum can be handled as follows

N−2
∑

i=k=l
j �=i

ρ(k − l)r+1ρ(i − j)r+1ρ(k− i)αρ(k − j)νρ(l − i)γ ρ(l − j)δ

=N−2
∑

i=k=l
j �=i

ρ(i − j)r+1+ν+δ #N−2
∑

j �=i

|i − j |(r+1+ν+δ)(−2β+1).

Note that r + 1+ ν + δ ≥ 1, so we get

N−2
∑

i=k=l
j �=i

ρ(k − l)r+1ρ(i − j)r+1ρ(k− i)αρ(k − j)νρ(l − i)γ ρ(l − j)δ

#N−2
∑

j �=i

|i − j |−2β+1 #N−1
N−1∑

j=1

j−2β+1 #N−1(1+N−2β+2)

#N−1 +N−2β+1.

For the fifth sum, we are in exactly the same case and we obtain the same bound

N−1 +N−2β+1. For the sixth sum, we can proceed as follows

N−2
∑

i=j,k=l
k �=i

ρ(k− l)r+1ρ(i − j)r+1ρ(k − i)αρ(k − j)νρ(l − i)γ ρ(l − j)δ

=N−2
∑

k �=i

ρ(k − i)α+ν+γ+δ =N−2
∑

k �=i

ρ(k− i)2q−2r−2.

Recalling that r ≤ q − 2⇔ 2(q − r − 1)≥ 2, we obtain

N−2
∑

i=j,k=l
k �=i

ρ(k− l)r+1ρ(i − j)r+1ρ(k − i)αρ(k− j)νρ(l − i)γ ρ(l − j)δ

#N−2
∑

k �=i

|k − i|(2q−2r−2)(−2β+1) #N−2
∑

k �=i

|k − i|−4β+2 #N−1
N−1∑

k=1

k−4β+2

#N−1 +N−4β+2.
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We obtain the same bound, N−1 + N−4β+2, for the seventh and eighth sums. For
the ninth sum, we have to deal with the following quantity:

N−2
∑

i=j,k �=i
k �=l,l �=i

ρ(k − l)r+1ρ(i − j)r+1ρ(k− i)αρ(k− j)νρ(l − i)γ ρ(l − j)δ

=N−2
∑

k �=i
k �=l,l �=i

ρ(k − l)r+1ρ(k − i)q−r−1ρ(l − i)q−r−1.

For
∑

k �=i
k �=l,l �=i

, observe that it can be decomposed into

∑

k>l>i

+
∑

k>i>l

+
∑

l>i>k

+
∑

i>l>k

+
∑

i>k>l

. (6.17)

For the first of the above sums, we can write

N−2
∑

k>l>i

ρ(k− l)r+1ρ(k − i)q−r−1ρ(l − i)q−r−1

#N−2
∑

k>l>i

(k − l)(r+1)(−2β+1)(k − i)(q−r−1)(−2β+1)(l − i)(q−r−1)(−2β+1)

#N−2
∑

k>l>i

(k − l)q(−2β+1)(l − i)(q−r−1)(−2β+1) since k − i > k− l

=N−2
∑

k

∑

l<k

(k − l)q(−2β+1)
∑

i<l

(l − i)(q−r−1)(−2β+1)

#N−2
∑

k

∑

l<k

(k − l)q(−2β+1)
∑

i<l

(l − i)−2β+1 since q − r − 1≥ 1

#N−2
N∑

k=1

k−1∑

l=1

(k − l)q(−2β+1)
l−1∑

i=1

(l − i)−2β+1.

Note that
∑k−1

l=1 (k − l)q(−2β+1) =∑k−1
l=1 lq(−2β+1) and that

∑l−1
i=1(l − i)−2β+1 =

∑l−1
i=1 i−2β+1. We can also bound the terms

∑k−1
l=1 lq(−2β+1) (resp.

∑l−1
i=1 i−2β+1)

from above by
∑N−1

l=1 lq(−2β+1) (resp.
∑N−1

i=1 i−2β+1). It follows that

N−2
∑

k>l>i

ρ(k− l)r+1ρ(k− i)q−r−1ρ(l − i)q−r−1

#N−2
N∑

k=1

N−1∑

l=1

lq(−2β+1)

N−1∑

i=1

i−2β+1
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#N−1
N−1∑

l=1

lq(−2β+1)
N−1∑

i=1

i−2β+1

#N−1(1+N−2βq+q+1)(1+N−2β+2)

#N−1 +N−2β+1 +N−2βq+q +N−2βq−2β+2.

Since −2β+ 1 < 0, −2βq+ q < 0 and −2βq− 2β+ 2 < 0, it is easy to check that

−2βq − 2β + 2 <−2βq + q <−2β + 1.

Consequently,

N−2
∑

k>l>i

ρ(k − l)r+1ρ(k− i)q−r−1ρ(l − i)q−r−1 #N−1 +N−2β+1.

We obtain exactly the same bound N−1+N−2β+1 for the other terms of the decom-
position (6.17) as well as for the tenth, eleventh, twelfth, thirteenth and fourteenth
sums by applying the same method.

This leaves us with the last (fifteenth) sum. We can decompose
∑

i,j,k,l
i �=j �=k �=l

as fol-

lows
∑

k>l>i>j

+
∑

k>l>j>i

+· · · . (6.18)

For the first term, we have

N−2
∑

k>l>i>j

ρ(k− l)r+1ρ(i − j)r+1ρ(k − i)αρ(k− j)νρ(l − i)γ ρ(l − j)δ

#N−2
∑

k>l>i>j

(k − l)q(−2β+1)(i − j)(r+1)(−2β+1)(l − i)(q−r−1)(−2β+1)

=N−2
∑

k

∑

l<k

(k − l)q(−2β+1)
∑

i<l

(l − i)(q−r−1)(−2β+1)
∑

j<i

(i − j)(r+1)(−2β+1)

#N−1
N−1∑

l=1

lq(−2β+1)
N−1∑

i=1

i(q−r−1)(−2β+1)
N−1∑

j=1

j (r+1)(−2β+1)

#N−1(1+N−2βq+q+1)(1+N(q−r−1)(−2β+1)+1)(1+N(r+1)(−2β+1)+1)

#N−1(1+N−2βq+q+1)

× (1+N(r+1)(−2β+1)+1 +Nq(−2β+1)−(r+1)(−2β+1)+1 +Nq(−2β+1)+2)

#N−1(1+N−2βq+q+1)

× (1+N−2β+2 +N−2β+2 +Nq(−2β+1)+2) since r + 1, q − r − 1≥ 1
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#N−1(1+N−2β+2 +Nq(−2β+1)+2)

#N−1 +N−2β+1 +Nq(−2β+1)+1.

We find the same bound N−1 +N−2β+1 +Nq(−2β+1)+1 for the other terms of the
decomposition (6.18).

Finally, by combining all these bounds, we find that

max
r=1,...,q−1

E
(
A2

r

)#N−2β+1 +Nq(−2β+1)+1,

and we obtain

E
((

1

q
‖DZN‖2

H − 1

)2)
#N−2β+1 +Nq(−2β+1)+1,

which allow us to complete the proof. �

Remark 6.2

1. When q = 2, q
2q−2 = 1, so the second line of Theorem 6.2 vanishes. If q > 2,

both lines exist and q
2q−2 −→q→+∞

1
2 .

2. When q < (2β − 1)−1, the sequence ZN does not converge in law towards
N (0,1). It converges (with another normalization) to a Hermite random vari-
able.

3. The results in the above theorem are consistent with those found in [127], The-
orem 4.1. Indeed, in [127] one works with Yn = BH

n+1 − BH
n instead of Xn,

where BH is a fractional Brownian motion. Note that the covariance function
ρ′(m) = E(Y0Ym) of Y behaves as m2H−2 while, as follows from Lemma 6.2,
the covariance of X behaves as m−2β+1. Thus β corresponds to 3

2 −H . It can
be seen that Theorem 6.2 is in concordance with Theorem 6.1 (or Theorem 4.1
in [127]).

6.2.2 Error Bounds in the Non-Central Limit Theorem

We will now turn our attention to the case where q < (2β − 1)−1, where we will
use the total variation distance instead of the Kolmogorov distance because that is
the distance which appears in Theorem 5.6.

We will use the scaling property of Brownian motion to introduce a new sequence
UN that has the same law as SN . Recall that SN is defined by

SN =
N∑

n=1

Hq

( ∞∑

i=1

αi(Wn−i −Wn−i−1)

)

.
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Let UN be defined by

UN =
N∑

n=1

Hq

( ∞∑

i=1

αiN
1
2 (Wn−i

N
−Wn−i−1

N
)

)

.

Based on the scaling property, UN has the same law as SN for every fixed N . We
will show that

h−1
q,βNβq− q

2−1SN −→
N→+∞ Z(q)

where Z(q) is a Hermite random variable of order q (it is actually the value at time
1 of the Hermite process of order q with self-similarity index

q

2
− qβ + 1

defined in (3.2)). Let us first prove the following renormalization result.

Lemma 6.4 Let

h2
q,β =

2c
q
β

q!(−2βq + q + 1)(−2β + q + 2)
. (6.19)

Then

E
(
h−1

q,βNβq− q
2−1SN

)2 −→
N→+∞ 1.

Proof Define fN =∑N
n=1 f⊗n

n . Since SN = 1
q!Iq(fN) we have

E
(
h−1

q,βNβq− q
2−1SN

)2 = h−2
q,β

1

(q!)N
2βq−q−2

N∑

n,m=1

ρ
(|n−m|)q

= h−2
q,β

1

(q!)N
2βq−q−2Nρ(0)q

+ 2h−2
q,β

1

(q!)N
2βq−q−2

N∑

n,m=1;n>m

ρ(n−m)q

∼ 2h−2
q,β

1

(q!)2
N2βq−q−2

N∑

n,m=1;n>m

ρ(n−m)q

where for the last equivalence we notice that the diagonal term h−2
q,β

1
(q!)N

2βq−q−2

Nρ(0)q converges to zero since q < 1
2β−1 . Therefore, by using the change of indices
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n−m= k we can write

E
(
h−1

q,βNβq− q
2−1SN

)2 = h−2
q,β

1

(q!)N
2βq−q−2

N∑

n,m=1

ρ
(|n−m|)q

∼ 2h−2
q,β

1

(q!)N
2βq−q−2

N∑

k=1

(N − k)ρ(k)q

∼ 2h−2
q,β

c
q
β

(q!)N
2βq−q−2

N∑

k=1

(N − k)k−2βq+q

because, according to Lemma 6.2, ρ(k) behaves as cβk−2β+1 when k goes to ∞.
Consequently,

E
(
h−1

q,βNβq− q
2−1SN

)2 ∼ 2h−2
q,β

c
q
β

q!
1

N

N∑

k=1

(
1− k

N

)(
k

N

)−2βq+q

and this converges to 1 as N→∞ because 1
N

∑N
k=1(1− k

N
)( k

N
)−2βq+q converges

to
∫ 1

0
(1− x)x−2βq+qdx = 1

(−2βq + q + 1)(−2βq + q + 2)
. �

Let ZN be defined here by

ZN =Nβq− q
2−1UN =Nβq− q

2−1
N∑

n=1

Hq

( ∞∑

i=1

αiN
1
2 (Wn−i

N
−Wn−i−1

N
)

)

.

We also know that h−1
q,βZN −→

N→+∞ Z(q) in law (because UN has the same law

as SN ), with Z(q) given by (3.2). Let us give a proper representation of ZN as an
element of the qth-chaos. We have

ZN = Nβq− q
2−1

N∑

n=1

Hq

( ∞∑

i=1

αiN
1
2 (Wn−i

N
−Wn−i−1

N
)

)

= Nβq− q
2−1

N∑

n=1

Hq

(

I1

(

N
1
2

∞∑

i=1

αi1[ n−i−1
N

, n−i
N
]

))

= Nβq− q
2−1

N∑

n=1

1

q!Iq

((

N
1
2

∞∑

i=1

αi1[ n−i−1
N

, n−i
N
]

)⊗q)

= 1

q!Iq

(

Nβq−1
N∑

n=1

( ∞∑

i=1

αi1[ n−i−1
N

, n−i
N
]

)⊗q)
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:= 1

q!Iq

(

Nβq−1
N∑

n=1

g
⊗q
n

︸ ︷︷ ︸
gN

)

with gn =∑∞i=1 αi1[ n−i−1
N

, n−i
N
] and gN = Nβq−1∑N

n=1 g
⊗q
n ∈ H�q . We will see

that h−1
q,βZN converges towards Z(q) in L2(Ω), or equivalently that { 1

q!h
−1
q,βgN }N≥1

converges in L2(R⊗q)=H⊗q to the kernel

g(y1, . . . , yq)= h−1
q,β

∫ 1

y1∨···∨yq

du(u− y1)
−β
+ · · · (u− yq)

−β
+ (6.20)

(which is the kernel of the Hermite random variable, see (3.2)) by computing the
following L2-norm

E
(∣∣h−1

q,βZN −Z(q)
∣∣2)= E

(∣∣∣∣Iq

(
1

q!h
−1
q,βgN

)
− Iq(g)

∣∣∣∣

2)
= q!

∥∥∥∥
1

q!h
−1
q,βgN − g

∥∥∥∥

2

H⊗q

.

We will now study ‖gN − g‖2
H⊗q and establish the rate of convergence of this quan-

tity.

Proposition 6.1 We have
∥∥∥
∥h
−1
q,β

1

q!gN − g

∥∥∥
∥

2

H⊗q

=O
(
N2βq−q−1).

In particular the sequence h−1
q,β

1
q!gN converges in L2(R⊗q) as N→∞ to the kernel

of the Hermite process g (6.20).

Proof We have

‖gN‖2
H⊗q = N2βq−2

N∑

n,k=1

〈gn, gk〉qH

= N2βq−2
N∑

n,k=1

(∫

R

∞∑

i=1

∞∑

j=1

αiαj 1[ n−i−1
N

, n−i
N
](u)1[ k−j−1

N
,
k−j
N
](u)du

)q

= N2βq−2
N∑

n,k=1

( ∞∑

i=1

αiαi+|n−k|
∫ n−i

N

n−i−1
N

du

)q

= N2βq−q−2
N∑

n,k=1

( ∞∑

i=1

i−β
(
i + |n− k|)−β

)q

. (6.21)
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In addition, based on the definition of the Hermite process (3.2) (with self-similarity
order q

2 − β + 1 and with the notation d(q,β)= c(
q
2 − β + 1, q) in (3.4)), we have

d(q,β)2q!‖g‖2
H⊗q = 1.

Let us now compute the scalar product 〈gN,g〉⊗q

H where g is given by (6.20). We
have

〈gN,g〉H⊗q

= d(q,β)Nβq−1
N∑

n=1

〈
g
⊗q
n , g

〉
H⊗q

= d(q,β)Nβq−1
N∑

n=1

∫ 1

0

(∑

i≥1

αi

∫

R

(u− y)
−β
+ 1

( n−i−1
N

, n−i
N
](y)dy

)q

du

= d(q,β)Nβq−1
N∑

n=1

N∑

k=1

∫ k
N

k−1
N

(∑

i≥1

αi

∫

R

(u− y)
−β
+ 1

( n−i−1
N

, n−i
N
](y)dy

)q

du.

We will now perform the change of variables u′ = (u − k−1
N

)N and y′ =
(y − n−i−1

N
)N (renaming the variables u and y), obtaining

〈gN,g〉H⊗q = d(q,β)Nβq−1N−q−1

×
N∑

n=1

N∑

k=1

∫ 1

0

(∑

i≥1

αi

∫ 1

0

(
u− y + k − n+ i

N

)−β

+
dy

)q

du

∼ d(q,β)Nβq−q−2
N∑

n=1

N−1∑

k=1

(∑

i≥1

αi

(
k − n+ i

N

)−β

+

)q

where we used the fact that, when N→∞, the quantity u−y
N

is negligible. Hence,
by eliminating the diagonal term as above,

〈gN,g〉H⊗q ∼ d(q,β)N2βq−q−2
∑

k,n=1;k>n

(∑

i≥1

αi(i + k − n)−β

)q

+ d(q,β)N2βq−q−2
∑

k,n=1;k<n

( ∑

i≥n−k

αi(i + k − n)−β

)q

and by using the change of indices k − n = l in the first summand above and
n− k = l in the second summand we observe that
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〈gN,g〉H⊗q ∼ d(q,β)N2βq−q−2
N∑

l=1

(N − l)

(∑

i≥1

i−β(i + l)−β

)q

+ d(q,β)N2βq−q−2
N∑

l=1

(N − l)

(∑

i≥l

i−β(i − l)−β

)q

. (6.22)

By summarizing the above estimates (6.21) and (6.22), we establish that

∥∥∥∥h
−1
q,β

1

q!gN − g

∥∥∥∥

2

H⊗q

∼N2βq−q−1

[

2h−2
q,β

1

(q!)2

1

N

N∑

k=1

(N − k)

(∑

i≥1

i−β(i + k)−β

)q

− 2d(q,β)h−1
q,β

1

q!
1

N

N∑

k=1

(N − k)

(∑

i≥1

i−β(i + k)−β

)q

− 2d(q,β)h−1
q,β

1

N

N∑

k=1

(N − k)

(∑

i≥k

i−β(i − k)−β

)q

+ 1

d(q,β)2q!N
−2βq+q+1

]

.

To obtain the conclusion, it suffices to check that the sequence

aN := 2h−2
q,β

1

(q!)2

1

N

N∑

k=1

(N − k)

(∑

i≥1

i−β(i + k)−β

)q

−2d(q,β)h−1
q,β

1

q!
1

N

N∑

k=1

(N − k)

(∑

i≥1

i−β(i + k)−β

)q

−2d(q,β)h−1
q,β

1

q!
1

N

N∑

k=1

(N − k)

(∑

i≥k

i−β(i − k)−β

)q

+ 1

q!N
−2βq+q+1

is uniformly bounded by a constant with respect to N . Since d(q,β)h−1
q,β = 1

q!h
−2
q,β ,

∑
i≥1 i−β(i + k)−β ∼ cβk−2βq+q and

∑

i≥k

i−β(i − k)−β =
∑

i≥1

i−β(i + k)−β
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(by the change of notation i − k = j ), the sequence aN can be written as

aN ∼ 1

q!

(

−(−2βq + q + 1)(−2βq + q + 2)
1

N

×
N∑

k=1

(N − k)k−2βq+q +N−2βq+q+1

)

.

It is easy to check that

N−2βq+q+1 = N−2βq+q+1(−2βq + q + 1)(−2βq + q + 2)

∫ 1

0
(1− x)x−2βq+qdx

= (−2βq + q + 1)(−2βq + q + 2)
1

N

∫ N

0
(N − y)y−2βq+qdy

(by the change of variables xN = y). Thus,

q!aN ∼ c
1

N

N∑

k=1

∫ k

k−1
dy
(
(N − y)y−2βq+q − (N − k)k−2βq+q

)

≤
N∑

k=1

∫ k

k−1
dy
∣∣y−2βq+q − k−2βq+q

∣∣

+ 1

N

N∑

k=1

∫ k

k−1
dy
∣∣y−2βq+q+1 − k−2βq+q+1

∣∣

≤
N∑

k=1

(
(k − 1)−2βq+q − k−2βq+q

)+ 1

N

N∑

k=1

(
k−2βq+q+1 − (k − 1)−2βq+q+1)

and elementary computations show that the terms in the last line above are of order

N−2βq+q+1. �

As a consequence of Proposition 6.1 and of Theorem 5.6, we obtain

Theorem 6.3 Let q < 1
2β−1 and let SN be given by (6.7).

dT V

(
h−1

q,βNβq− q
2−1SN,Z(q)

)≤ C0(q,β)N2βq−q−1

where Z(q) is a Hermite random variable with self-similarity index H = q
2 −qβ+1

given by (3.2), hq,β is given by (6.19) and C0(q,β) is a positive constant.
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6.3 Hsu-Robbins and Spitzer’s Theorems for Fractional
Brownian Motion

A famous result by Hsu and Robbins [91] says that if X1,X2, . . . is a sequence
of independent identically distributed random variables with zero mean and finite
variance and Sn :=X1 + · · · +Xn, then

∑

n≥1

P
(|Sn|> εn

)
<∞

for every ε > 0. Later, Erdös ([73, 74]) showed that the converse implication also
holds, namely if the above series is finite for every ε > 0 and X1,X2, . . . are inde-
pendent and identically distributed, then EX1 = 0 and EX2

1 <∞. Since then, many
authors have extended this result in several directions.

Spitzer showed in [165] that

∑

n≥1

1

n
P
(|Sn|> εn

)
<∞

for every ε > 0 if and only if EX1 = 0 and E|X1|<∞. Spitzer’s theorem has also
been the object of various generalizations and variants. One of the problems related
to Hsu-Robbins’ and Spitzer’s theorems is to find the precise asymptotic as ε→ 0
of the quantities

∑
n≥1 P(|Sn|> εn) and

∑
n≥1

1
n
P (|Sn|> εn). Heyde [86] showed

that

lim
ε→0

ε2
∑

n≥1

P
(|Sn|> εn

)= EX2
1 (6.23)

whenever EX1 = 0 and EX2
1 <∞.

Our purpose is to prove Hsu-Robbins’ and Spitzer’s theorems for sequences of
correlated random variables, related to the increments of fractional Brownian mo-
tion, in the spirit of [86]. This gives a better picture of the convergences in The-
orem 6.1. Concretely, we will study the behavior of the tail probabilities of the
sequence (6.1). Recall that the sequence Vn behaves as follows (see Theorem 6.1):
if 0 < H < 1 − 1

2q
, a central limit theorem holds for the renormalized sequence

Z
(1)
n = Vn

c1,q,H

√
n

while if 1− 1
2q

< H < 1, the sequence Z
(2)
n = Vn

c2,q,H n1−q(1−H) con-

verges in L2(Ω) to a Hermite random variable of order q .
We note that the techniques generally used in the literature to prove the Hsu-

Robbins and Spitzer’s results are strongly related to the independence of the ran-
dom variables X1,X2, . . . . In our case the variables are correlated. Indeed, for any
k, l ≥ 1 we have E(Hq(Bk+1−Bk)Hq(Bl+1−Bl))= 1

(q!)2 ρH (k− l) where the cor-

relation function is ρH (k)= 1
2 ((k+1)2H + (k−1)2H −2k2H ) which is not equal to

zero unless H = 1
2 (which is the case for standard Brownian motion). We use new

techniques based on the estimates for the multiple Wiener-Itô integrals obtained in
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Theorem 5.1 and Theorem 5.6. Concretely, we study the behavior as ε→ 0 of the
quantities

∑

n≥1

1

n
P (Vn > εn)=

∑

n≥1

1

n
P
(
Z(1)

n > c−1
1,q,H ε

√
n
)

(6.24)

and
∑

n≥1

P(Vn > εn)=
∑

n≥1

P
(
Z(1)

n > c−1
1,q,H ε

√
n
)

(6.25)

if 0 < H < 1− 1
2q

and of

∑

n≥1

1

n
P
(
Vn > εn2−2q(1−H)

)=
∑

n≥1

1

n
P
(
Z(2)

n > c−1
2,q,H εn1−q(1−H)

)
(6.26)

and
∑

n≥1

P
(
Vn > εn2−2q(1−H)

)=
∑

n≥1

P
(
Z(2)

n > c−1
2,q,H εn1−q(1−H)

)
(6.27)

if 1− 1
2q

< H < 1. The basic idea in the proofs is that, if we replace Z
(1)
n and Z

(2)
n

by their limits (standard normal random variable or Hermite random variable) in the
above expressions, the behavior as ε→ 0 can be obtained by standard calculations.
Then we need to estimate the difference between the tail probabilities of Z

(1)
n ,Z

(2)
n

and the tail probabilities of their limits. To this end, we will use the estimates ob-
tained in Theorems 5.1 and 5.6 via the Malliavin calculus and we will be able to
prove that this difference converges to zero in all cases.

6.3.1 Spitzer’s Theorem

We set

Z(1)
n =

Vn

c1,q,H

√
n
, Z(2)

n =
Vn

c2,q,H n1−q(1−H)
(6.28)

with the constants c1,q,H , c2,q,H from Theorem 6.1.
For every ε > 0 let

f1(ε)=
∑

n≥1

1

n
P (Vn > εn)=

∑

n≥1

1

n
P
(
Z(1)

n > c−1
1,q,H ε

√
n
)

(6.29)

and

f2(ε)=
∑

n≥1

1

n
P
(
Vn > εn2−2q(1−H)

)=
∑

n≥1

1

n
P
(
Z(2)

n > c−1
2,q,H εn1−q(1−H)

)
.

(6.30)
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Remark 6.3 It is natural to consider the tail probability of order n2−2q(1−H) in (6.30)
because the L2-norm of the sequence Vn is in this case of order n1−q(1−H).

We are interested in studying the behavior of fi(ε) (i = 1,2) as ε→ 0. For a
given random variable X, we set ΦX(z)= 1− P(X < z)+ P(X <−z).

The first lemma gives the asymptotics of the functions fi(ε) as ε→ 0 when Z
(i)
n

are replaced by their limits.

Lemma 6.5 Let c > 0.

(i) Let Z(1) be a standard normal random variable. Then

1

− log cε

∑

n≥1

1

n
ΦZ(1) (cε

√
n)−−→

ε→0
2.

(ii) Let Z(2) be a Hermite random variable of order q given by (3.2). Then, for any
integer q ≥ 1

1

− log cε

∑

n≥1

1

n
ΦZ(2)

(
cεn1−q(1−H)

)−−→
ε→0

1

1− q(1−H)
.

Proof We can write (see [164])

∑

n≥1

1

n
ΦZ(1) (cε

√
n)=

∫ ∞

1

1

x
ΦZ(1) (cε

√
x)dx − 1

2
ΦZ(1) (cε)

−
∫ ∞

1
P1(x)d

[
1

x
ΦZ(1) (cε

√
x)

]

with P1(x)= [x] − x + 1
2 . Clearly as ε→ 0, 1

log ε
ΦZ(1) (cε)→ 0 because ΦZ(1) is a

bounded function and regarding the last term it is also trivial to observe that

1

− log cε

∫ ∞

1
P1(x)d

[
1

x
ΦZ(1) (cε

√
x)

]

= 1

− log cε

(
−
∫ ∞

1
P1(x)

(
1

x2
ΦZ(1) (cε

√
x)dx

+ cε
1

2
x−

1
2

1

x
Φ ′

Z(1) (ε
√

x)

)
dx

)
−−→
ε→0

0

since ΦZ(1) and Φ ′
Z(1) are bounded. Therefore the asymptotics of the function f1(ε)

as ε→ 0 will be given by
∫∞

1
1
x
ΦZ(1) (cε

√
x)dx. By making the change of variables
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cε
√

x = y, we get

lim
ε→0

1

− log cε

∫ ∞

1

1

x
ΦZ(1) (cε

√
x)dx = lim

ε→0

1

− log cε
2
∫ ∞

cε

1

y
ΦZ(1) (y)dy

= lim
ε→0

2ΦZ(1) (cε)= 2.

Let us consider now the case of the Hermite random variable. We will have as
above

lim
ε→0

1

− log cε

∑

n≥1

1

n
ΦZ(2)

(
cεn1−q(1−H)

)

= lim
ε→0

1

− log cε

(∫ ∞

1

1

x
ΦZ(2)

(
cεx1−q(1−H)

)
dx

−
∫ ∞

1
P1(x)d

[
1

x
ΦZ(2)

(
cεx1−q(1−H)

)])
.

By making the change of variables cεx1−q(1−H) = y we will obtain

lim
ε→0

1

− log cε

∫ ∞

1

1

x
ΦZ(2)

(
cεx1−q(1−H)

)
dx

= lim
ε→0

1

− log cε

1

1− q(1−H)

∫ ∞

cε

1

y
ΦZ(2) (y)dy

= lim
ε→0

1

1− q(1−H)
ΦZ(2) (cε)= 1

1− q(1−H)

where we used the fact that ΦZ(2) (y) ≤ y−2E|Z(2)|2 and so limy→∞ logyΦZ(2) (y)

= 0.
It remains to show that 1

− log cε

∫∞
1 P1(x)d[ 1

x
ΦZ(2) (cεx1−q(1−H))] converges to

zero as ε tends to 0. This is equal to

lim
ε

1

− log cε

∫ ∞

1
P1(x)cε

(
1− q(1−H)

)
x−q(1−H)−1Φ ′

Z(2)

(
cεx1−q(1−H)

)
dx

= c
ε

− log ε
(cε)

q(1−H)
1−q(1−H)

∫ ∞

cε

P1

((
y

cε

) 1
1−q(1−H)

)
Φ ′

Z(2) (y)y
− 1

1−q(1−H) dy

≤ c
1

− log ε

∫ ∞

cε

P1

((
1

cε

) 1
1−q(1−H)

)
Φ ′

Z(2) (y)dy

which clearly tends to zero since P1 is bounded and
∫∞

0 Φ ′
Z(2) (y)dy = 1. �

The next result estimates the limit of the difference between the functions fi(ε)

given by (6.29), (6.30) and the sequence in Lemma 6.5.
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Proposition 6.2 Let q ≥ 2 and c > 0.

(i) If H < 1− 1
2q

, let Z
(1)
n be given by (6.28) and let Z(1) be a standard normal

random variable. Then

1

− log cε

[∑

n≥1

1

n
P
(∣∣Z(1)

n

∣
∣> cε

√
n
)−

∑

n≥1

1

n
P
(∣∣Z(1)

∣
∣> cε

√
n
)]−−→

ε→0
0.

(ii) Let Z(2) be a Hermite random variable of order q ≥ 2 and H > 1− 1
2q

. Then

1

− log cε

[∑

n≥1

1

n
P
(∣∣Z(2)

n

∣∣> cεn1−q(1−H)
)

−
∑

n≥1

1

n
P
(∣∣Z(2)

∣∣> cεn1−q(1−H)
)]−−→

ε→0
0.

Proof Let us start with point (i). Assume H < 1− 1
2q

. We can write

∑

n≥1

1

n
P
(∣∣Z(1)

n

∣∣> cε
√

n
)−

∑

n≥1

1

n
P
(∣∣Z(1)

∣∣> cε
√

n
)

=
∑

n≥1

1

n

[
P
(
Z(1)

n > cε
√

n
)− P

(
Z(1) > cε

√
n
)]

+
∑

n≥1

[
1

n
P
(
Z(1)

n <−cε
√

n
)− P

(
Z(1) <−cε

√
n
)]

≤ 2
∑

n≥1

1

n
sup
x∈R

∣∣P
(
Z(1)

n > x
)− P

(
Z(1) > x

)∣∣.

Using point (i) of Theorem 6.1 we obtain

∑

n≥1

1

n
sup
x∈R

∣∣P
(
Z(1)

n > x
)− P

(
Z(1) > x

)∣∣

≤ c

⎧
⎪⎪⎨

⎪⎪⎩

∑
n≥1

1
n
√

n
, H ∈ (0, 1

2 ]
∑

n≥1 nH−2, H ∈ [ 12 ,
2q−3
2q−2 )

∑
n≥1 nqH−q− 1

2 , H ∈ [ 2q−3
2q−2 ,1− 1

2q
)

(6.31)

and the last sums are finite (for the last one we use H < 1− 1
2q

). The conclusion
follows.
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Concerning point (ii) (the case H > 1− 1
2q

), by point (ii) in Theorem 6.1 (rela-
tion (6.5)) we have

∑

n≥1

1

n
P
(∣∣Z(2)

n

∣∣> cεn1−q(1−H)
)−

∑

n≥1

1

n
P
(∣∣Z(2)

∣∣> cεn1−q(1−H)
)≤ c

∑

n≥1

n
− 1

2q
−H

and the above series is convergent because H > 1− 1
2q

. �

We now state Spitzer’s theorem for variations of fractional Brownian motion.

Theorem 6.4 Let f1, f2 be given by (6.29), (6.30) and the constants c1,q,H , c2,q,H

be those from Theorem 6.1.

(i) If 0 < H < 1− 1
2q

then

lim
ε→0

1

log(c−1
1,H,qε)

f1(ε)= 2.

(ii) If 1 > H > 1− 1
2q

then

lim
ε→0

1

log(c−1
2,H,qε)

f2(ε)= 1

1− q(1−H)
.

Proof This is a consequence of Lemma 6.5 and Proposition 6.2. �

Remark 6.4 Concerning the case H = 1− 1
2q

, note that the correct normalization

of Vn (6.1) is 1
(logn)

√
n

. Because of the appearance of the term logn our approach is
not directly applicable to this case.

6.3.2 The Hsu-Robbins Theorem

In this section we prove a version of the Hsu-Robbins theorem for variations of
fractional Brownian motion. Concretely, for every ε > 0 we let

g1(ε)=
∑

n≥1

P
(|Vn|> εn

)
(6.32)

if H < 1− 1
2q

and

g2(ε)=
∑

n≥1

P
(|Vn|> εn2−2q(1−H)

)
(6.33)



6.3 Hsu-Robbins and Spitzer’s Theorems for Fractional Brownian Motion 231

if H > 1− 1
2q

and we estimate the behavior of the functions gi(ε) as ε→ 0. Note
that we can write

g1(ε)=
∑

n≥1

P
(∣∣Z(1)

n

∣∣> c−1
1,q,H ε

√
n
)
,

g2(ε)=
∑

n≥1

P
(∣∣Z(2)

n

∣∣> c−1
2,q,H εn1−q(1−H)

)

with Z
(1)
n ,Z

(2)
n given by (6.28).

We decompose it as: for H < 1− 1
2q

g1(ε) =
∑

n≥1

P
(∣∣Z(1)

∣∣> c−1
1,q,H ε

√
n
)

+
∑

n≥1

[
P
(∣∣Z(1)

n

∣
∣> c−1

1,q,H ε
√

n
)− P

(∣∣Z(1)
∣
∣> c−1

1,q,H ε
√

n
)]

and for H > 1− 1
2q

g2(ε) =
∑

n≥1

P
(∣∣Z(2)

∣
∣> εc−1

2,q,H n1−q(1−H)
)

+
∑

n≥1

[
P
(∣∣Z(2)

n

∣∣> c−1
2,q,H εn1−q(1−H)

)− P
(∣∣Z(2)

∣∣> c−1
2,q,H εn1−q(1−H)

)]
.

We start again by consider the situation when the Z
(i)
n are replaced by their limits.

Lemma 6.6

(i) Let Z(1) be a standard normal random variable. Then

lim
ε→0

(cε)2
∑

n≥1

P
(∣∣Z(1)

∣∣> cε
√

n
)= 1.

(ii) Let Z(2) be a Hermite random variable with H > 1− 1
2q

. Then

lim
ε→0

(cε)
1

1−q(1−H)

∑

n≥1

P
(∣∣Z(2)

∣∣> cεn1−q(1−H)
)= E

∣∣Z(2)
∣∣

1
1−q(1−H) .

Proof Part (i) is a consequence of the result of Heyde [86]. Indeed take Xi ∼
N(0,1) in (6.23). Concerning part (ii) we can write
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lim
ε→0

(cε)
1

1−q(1−H)

∑

n≥1

ΦZ(2)

(
cεn1−q(1−H)

)

= lim
ε→0

(cε)
1

1−q(1−H)

[∫ ∞

1
ΦZ(2)

(
cεx1−q(1−H)

)
dx

−
∫ ∞

1
P1(x)d

[
ΦZ(2)

(
cεx1−q(1−H)

)]]

:= lim
ε→0

(
A(ε)+B(ε)

)

with P1(x)= [x] − x + 1
2 . Moreover

A(ε) = (cε)
1

1−q(1−H)

∫ ∞

1
ΦZ(2)

(
cεx1−q(1−H)

)
dx

= 1

1− q(1−H)

∫ ∞

cε

ΦZ(2) (y)y
1

1−q(1−H)
−1

dy.

Since ΦZ(2) (y)≤ y−2 we have ΦZ(2) (y)y
1

1−q(1−H) →y→∞ 0 and therefore

A(ε)=−ΦZ(2) (cε)(cε)
1

1−q(1−H) −
∫ ∞

cε

Φ ′
Z(2) (y)y

1
1−q(1−H) dy

where the first terms tends to zero and the second to E|Z(2)| 1
1−q(1−H) . The proof that

the term B(ε) converges to zero is similar to the proof of Lemma 6.6, point (ii). �

Remark 6.5 The Hermite random variable has moments of all orders (in particular
the moment of order 1

1−q(1−H)
exists) since it is the value at time 1 of a self-similar

process with self-similarity.

Proposition 6.3

(i) Let H < 1 − 1
2q

and let Z
(1)
n be given by (6.28). Let also Z(1) be a standard

normal random variable. Then

(cε)2
∑

n≥1

[
P
(∣∣Z(1)

n

∣∣> cε
√

n
)− P

(∣∣Z(1)
∣∣> cε

√
n
)]−−→

ε→0
0.

(ii) Let H > 1− 1
2q

and let Z
(2)
n be given by (6.28). Let Z(2) be a Hermite random

variable. Then

(cε)
1

1−q(1−H)

∑

n≥1

[
P
(∣∣Z(2)

n

∣∣> cεn1−q(1−H)
)

− P
(∣∣Z(2)

∣∣> cεn1−q(1−H)
)]−−→

ε→0
0.
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Remark 6.6 Note that the bounds (6.3) and (6.5) do not help here because the series
that appear after their use are not convergent.

Proof Case H < 1− 1
2q

. We have, for some β > 0 to be chosen later,

ε2
∑

n≥1

[
P
(∣∣Z(1)

n

∣∣> cε
√

n
)− P

(∣∣Z(1)
∣∣> cε

√
n
)]

= ε2
[ε−β ]∑

n=1

[
P
(∣∣Z(1)

n

∣∣> cε
√

n
)− P

(∣∣Z(1)
∣∣> cε

√
n
)]

+ ε2
∑

n>[ε−β ]

[
P
(∣∣Z(1)

n

∣∣> cε
√

n
)− P

(∣∣Z(1)
∣∣> cε

√
n
)]

:= I1(ε)+ J1(ε).

Consider first the situation when H ∈ (0, 1
2 ]. Let us choose a real number β such

that 2 < β < 4. By using (6.3),

I1(ε)≤ cε2
[ε−β ]∑

n=1

n−
1
2 ≤ cε2ε−

β
2 −−→

ε→0
0

since β < 4. Next, by using the bound for the tail probabilities of multiple integrals
and since E|Z(1)

n |2 converges to 1 as n→∞

J1(ε) = ε2
∑

n>[ε−β ]
P
(
Z(1)

n > cε
√

n
)≤ cε−2

∑

n>[ε−β ]
exp

( −cε
√

n

(E|Z(1)
n |2) 1

2

) 2
q

≤ ε2
∑

n>[ε−β ]
exp
((−cn

− 1
β
√

n
) 2

q
)

which converges to zero for β > 2. The same argument shows that ε2∑
n>[ε−β ]

P(Z(1) > cε
√

n) converges to zero.
The case when H ∈ ( 1

2 ,
2q−3
2q−2 ) can be obtained by taking 2 < β < 2

H
(which is

possible since H < 1) while in the case H ∈ (
2q−3
2q−2 ,1 − 1

2q
) we have to choose

2 < β < 2
qH−q+ 3

2
(which is possible because H < 1− 1

2q
!).

Case H > 1− 1
2q

. We have, for some suitable β > 0

ε
1

1−q(1−H)

∑

n≥1

[
P
(∣∣Z(2)

n

∣∣> cεn1−q(1−H)
)− P

(∣∣Z(2)
∣∣> cεn1−q(1−H)

)]

= ε
1

1−q(1−H)

[ε−β ]∑

n=1

[
P
(∣∣Z(2)

n

∣∣> cεn1−q(1−H)
)− P

(∣∣Z(2)
∣∣> cεn1−q(1−H)

)]
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+ ε
1

1−q(1−H)

∑

n≥[ε−β ]

[
P
(∣∣Z(2)

n

∣∣> cεn1−q(1−H)
)− P

(∣∣Z(2)
∣∣> cεn1−q(1−H)

)]

:= I2(ε)+ J2(ε).

Choose 1
1−q(1−H)

< β < 1
(1−q(1−H))(2−H− 1

2q
)

(again, this is always possible when

H > 1− 1
2q

!). Then

I2(ε)≤ ce
1

1−q(1−H) ε
(−β)(2−H− 1

2q
) −−→

ε→0
0

and by (C.6)

J2(ε)≤ c
∑

n>[ε−β ]
exp

((−cεn1−q(1−H)

(E|Z(2)
n |2) 1

2

) 2
q
)

≤ c
∑

n>[ε−β ]
exp
(
cn
− 1

β n1−q(1−H)
) 2

q −−→
ε→0

0.

�

We state the main result of this section which is a consequence of Lemma 6.6
and Proposition 6.3.

Theorem 6.5 Let q ≥ 2 and let c1,q,H , c2,q,H be the constants from Theorem 6.1.
Let Z(1) be a standard normal random variable, Z(2) a Hermite random variable of
order q ≥ 2 and let g1, g2 be given by (6.32) and (6.33). Then

(i) If 0 < H < 1− 1
2q

, we have (c−1
1,q,H ε)2g1(ε)→ε→0 1= E(Z(1))2.

(ii) If 1− 1
2q

< H < 1, we have (c−1
2,q,H ε)

1
1−q(1−H) g2(ε)→ε→0 E|Z(2)| 1

1−q(1−H) .

Remark 6.7 In the case H = 1
2 we retrieve the result (6.23) of [86]. The case

q = 1 is trivial, because in this case, since Vn = Bn and EV 2
n = n2H , we obtain

the following (by applying Lemma 6.5 and 6.6 with q = 1)

1

log ε

∑

n≥1

1

n
P
(|Vn|> εn2H

)−−→
ε→0

1

H

and

ε2
∑

n≥1

P
(|Vn|> εn2H

)→ε→0 E
∣∣Z(1)

∣∣
1
H .

6.4 Hermite Variations of the Fractional Brownian Sheet

Let (W
α,β
s,t )s,t≥0 be an anisotropic fractional Brownian sheet with Hurst parameter

(α,β) ∈ (0,1)2 given in Definition 4.1. The reader should refer to Sect. 4.1 for its
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basic properties. We introduce a two-parameter counterpart of the sequence (6.1).
Actually, we will define the Hermite variations of order q ≥ 1 of the fractional
Brownian sheet by

VN,M :=
N−1∑

i=0

M−1∑

j=0

Hq

(
NαMβ

(
W

α,β
i+1
N

,
j+1
M

−W
α,β
i
N

,
j+1
M

−W
α,β
i+1
N

,
j
M

+W
α,β
i
N

,
j
M

))
, (6.34)

where Hq is the Hermite polynomial of order q . Note that the self-similarity and the
stationarity of the increments of the fractional Brownian sheet (Propositions 4.1 and
4.2) imply that

E
(
W

α,β
i+1
N

,
j+1
M

−W
α,β
i
N

,
j+1
M

−W
α,β
i+1
N

,
j
M

+W
α,β
i
N

,
j
M

)2 =N−2αM−2β,

which explains the appearance of the factor NαMβ in (6.34): with this factor the
random variable NαMβ(W

α,β
i+1
N

,
j+1
M

− W
α,β
i
N

,
j+1
M

− W
α,β
i+1
N

,
j
M

+ W
α,β
i
N

,
j
M

) has L2-norm

equal to 1.
We will use the notation

�i =
[

i

N
,
i + 1

N

]
and �i, j =

[
i

N
,
i + 1

N

]
×
[

j

M
,
j + 1

M

]
=�i ×�j,

for i ∈ {0, . . . ,N − 1}, j ∈ {0, . . . ,M − 1}. In principle �i =�i(N) depends on N

but we will omit the superscript N to simplify the notation. With this notation we
can write

W
α,β
i+1
N

,
j+1
M

−W
α,β
i
N

,
j+1
M

−W
α,β
i+1
N

,
j
M

+W
α,β
i
N

,
j
M

= I1(1[ i
N

, i+1
N
]×[ j

M
,
j+1
M
])

= I1(1�i,j )= I1(1�i×�j ).

Here, and in the sequel, In indicates the multiple integral of order n > 1 with re-
spect to the fractional Brownian sheet Wα,β . Since for any deterministic function
h ∈Hα,β (Hα,β represents the canonical Hilbert space associated with the fractional
Brownian sheet, see Sect. 4.1) with norm one we have

Hq

(
I1(h)

)= 1

q!Iq

(
h⊗q

)
,

we derive

VN,M = 1

q!
N∑

i=1

M∑

j=1

NαqMβqIq

(
1⊗q

[ i
N

, i+1
N
]×[ j

M
,
j+1
M
]
)
.

We want to study the limit of the (suitably normalized) sequence VN,M as
N,M→∞. Since this normalization depends on the choice of α and β , we will
normalize it with a function ϕ(α,β,N,M).
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Let us define

ṼN,M := 1

q!ϕ(α,β,N,M)

N∑

i=1

M∑

j=1

Iq

(
1⊗q

[ i
N

, i+1
N
]×[ j

M
,
j+1
M
]
)
. (6.35)

By a renormalization of the sequence VN,M we understand a function ϕ(α,β,N,M)

fulfilling the property EṼ 2
N,M

N,M→∞→ 1.

It turns out that the limit of the sequence ṼN,M is either Gaussian, or a Her-
mite random variable, which is the value at time (1,1) of a two-parameter Hermite
process.

In the case when ṼN,M converges to a Gaussian random variable, our proof will
be based on Stein’s bound given in Theorem 5.1. Throughout d will denote one of
the distances mentioned in Theorem 5.1. We will also assume that q ≥ 2 because for
q = 1 we have H1 = x and then VN,M is Gaussian; this case is trivial. As in the pre-
vious chapters, our argumentation has the following structure. We first compute the
Malliavin derivative (with respect to the fractional Brownian sheet Wα,β ) DṼN,M

and we compute its norm in the space Hα,β . We will get

DṼN,M = 1

(q − 1)!ϕ(α,β,N,M)

N∑

i=1

M∑

j=1

Iq−1
(
1⊗q−1

[ i
N

, i+1
N
]×[ j

M
,
j+1
M
]
)
1[ i

N
, i+1

N
]×[ j

M
,
j+1
M
],

and

‖DṼN,M‖2
Hα,β = 1

(q − 1)!2
(
ϕ(α,β,N,M)

)2 ×
N−1∑

i,i′=0

M−1∑

j,j ′=0

〈
1�i,j (·),1�i′,j ′(·)

〉
Hα,β

×Iq−1
(
1⊗q−1
�i,j

)
Iq−1

(
1⊗q−1
�i′,j ′

)
.

The product formula for multiple integrals (C.4) reads

Iq−1
(
1⊗q−1
�i,j

)
Iq−1

(
1⊗q−1
�i′,j ′

) =
q−1∑

p=0

p!(Cp

q−1

)2〈1�i,j (·),1�i′,j ′(·)
〉p
Hα,β

×I2q−2−2p

(
1⊗q−1−p
�i,j ⊗̃1⊗q−1−p

�i′,j ′
)
,

where C
p

q−1 :=
( q−1

p

)
for q ≥ 2,p ≤ q − 1 and f ⊗̃g denotes the symmetrization

of the function f ⊗ g. Hence, we have

‖DṼN,M‖2
Hα,β = 1

(q − 1)!2
(
ϕ(α,β,N,M)

)2

×
N−1∑

i,i′=0

M−1∑

j,j ′=0

q−1∑

p=0

〈
1�i,j (·),1�i′,j ′(·)

〉p+1
Hα,β p!

× (Cp

q−1

)2
I2q−2−2p

(
1⊗q−1−p
�i,j ⊗̃1⊗q−1−p

�i′,j ′
)
.
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Let us isolate the term p = q − 1 in the above expression. In this case 2q − 2 −
2p = 0 and this term gives the expectation of ‖DṼN,M‖2

Hα,β .

‖DṼN,M‖2
Hα,β = 1

(q − 1)!2
(
ϕ(α,β,N,M)

)2 (6.36)

×
N−1∑

i,i′=0

M−1∑

j,j ′=0

q−2∑

p=0

〈
1�i,j (·),1�i′,j ′(·)

〉p+1
Hα,β p!(Cp

q−1

)2
I2q−2−2p

× (1⊗q−1−p
�i,j ⊗̃1⊗q−1−p

�i′,j ′
)

+ 1

(q − 1)!
(
ϕ(α,β,N,M)

)2
N−1∑

i,i′=0

M−1∑

j,j ′=0

〈
1�i,j (·),1�i′,j ′(·)

〉q
Hα,β

=: T1 + T2. (6.37)

The term T2 is a deterministic term which is equal to E‖DṼN,M‖2
Hα,β .

With the correct choice of normalization we will show that T2 converges to q as
N,M goes to infinity and T1 converges to zero in the L2 sense. Using Theorem 5.1
we will prove the convergence to a standard normal random variable of ṼN,M and
we give bounds for the speed of convergence. The distinction between the two cases
(when the limit is normal and when the limit is non-Gaussian) will be made by the
term T1: it converges to zero if α ≤ 1− 1

2q
or β ≤ 1− 1

2q
, while for α,β > 1− 1

2q
this term converges to a constant.

Let us first discuss the normalization ϕ(α,β,N,M) and the convergence of T2.
Given two sequences of real numbers (an)n≥1 and (bn)n≥1, recall that we write
an � bn for supn≥1

|an|
|bn| <∞.

Lemma 6.7 Let γ in (0,1) and q be an integer with q ≥ 2. We set

rγ (z) := 1

2

(|z+ 1|2γ + |z− 1|2γ − 2|z|2γ
)
, z ∈ Z.

We have:

(i) If 0 < γ < 1− 1
2q

, then

lim
N→∞N2γ q−1

N−1∑

i,i′=0

〈1�i,1�i′ 〉qHγ =
∑

r∈Z
rγ (z)q =: sγ ,

and |N2γ q−1∑N−1
i,i′=0〈1�i,1�i′ 〉qHγ − sγ |�N−1 +N2qγ−2q+1.

(ii) If γ = 1− 1
2q

, then

lim
N→∞ log(N)−1N2q−2

N−1∑

i,i′=0

〈1�i,1�i′ 〉qHγ = 2

(
(2q − 1)(q − 1)

2q2

)q

=: ιγ ,
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and | log(N)−1N2q−2∑N−1
i,i′=0〈1�i,1�i′ 〉qHγ − ιγ |� log(N)−1.

(iii) If γ > 1− 1
2q

, then

lim
N→∞N2q−2

N−1∑

i,i′=0

〈1�i,1�i′ 〉qHγ = γ q(2γ − 1)q

(γ q − q + 1)(2γ q − 2q + 1)
=: κγ ,

and |N2q−2∑N−1
i,i′=0〈1�i,1�i′ 〉qHγ − κγ |�N2q−1−2γ q .

Proof The first two claims can be found respectively in [127, p. 102] and [39,

pp. 491–492]. For the third part we define fN := Nq−1∑N−1
k=0 1⊗q

[ k
N

, k+1
N
]. Then fN

is a Cauchy sequence in (Hγ )⊗q with limit f and ‖f ‖2
(Hγ )⊗q = κγ . For the rate of

convergence we have

‖fN‖2
(Hγ )⊗q − ‖f ‖2

(Hγ )⊗q = ‖fN − f ‖2
(Hγ )⊗q + 2〈fN − f,f 〉(Hγ )⊗q

≤ ‖fN − f ‖2
(Hγ )⊗q + 2‖fN − f ‖2

(Hγ )⊗q‖f ‖2
(Hγ )⊗q .

The reader should refer to [39, Proposition 3.1] for the details and to get that the
order is O(N2q−1−2γ q) (a direct argument as in the proof of the next lemma can be
also employed). �

We also state the following estimates which have been obtained respectively in
[127, pp. 102, 104] and in [39, pp. 491–492].

Lemma 6.8 Let γ in (0,1). We let q,p, a, b be integers such that: q ≥ 2, p ∈
{0, . . . , q − 2} and a + b= q − 1− p. We have:

(i) If 0 < γ < 1− 1
2q

, then

N4qγ−2
N−1∑

i,i′,k,k′=0

〈1�i,1�i′ 〉p+1
Hγ 〈1�k,1�k′ 〉p+1

Hγ 〈1�i,1�k〉aHγ 〈1�i′ ,1�k′ 〉bHγ

× 〈1�i′,1�k〉bHγ 〈1�i′ ,1�k′ 〉aHγ

�N−1 +N2γ−2 +N2γ q−2q+1.

(ii) If γ = 1− 1
2q

, then

N4q−4

log(N)2

N−1∑

i,i′,k,k′=0

〈1�i,1�i′ 〉p+1
Hγ 〈1�k,1�k′ 〉p+1

Hγ 〈1�i,1�k〉aHγ 〈1�i′ ,1�k′ 〉bHγ

×〈1�i′ ,1�k〉bHγ 〈1�i′ ,1�k′ 〉aHγ

� log(N)−1.
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(iii) If γ > 1− 1
2q

, then

N4q−4
N−1∑

i,i′,k,k′=0

〈1�i,1�i′ 〉p+1
Hγ 〈1�k,1�k′ 〉p+1

Hγ 〈1�i,1�k〉aHγ 〈1�i′,1�k′ 〉bHγ

×〈1�i′,1�k〉bHγ 〈1�i′ ,1�k′ 〉aHγ

�1.

Proof The first point is proved in [127, pp. 102, 105]. Point (ii) is proved in [39,
pp. 491–492]. The proofs follows the lines of Sect. 6.2. The last case can be treated
in the following way. The quantity 〈1�i,1�i′ 〉Hγ is equivalent to a constant times
N−2γ |i − i′|2γ−2 and the sum appearing in (iii) is then equivalent to

N4q−4N−4γ q

N−1∑

i,i′,k,k′=0

∣∣i − i′
∣∣(2γ−2)(p+1)∣∣k − k′

∣∣(2γ−2)(p+1)

× |i − k|(2γ−2)a
∣∣i′ − k′

∣∣(2γ−2)b∣∣i′ − k
∣∣(2γ−2)c∣∣i − k′

∣∣(2γ−2)d

=N−4
N−1∑

i,i′,k,k′=0

N−2q(2γ−2)
∣∣i − i′

∣∣(2γ−2)(p+1)∣∣k − k′
∣∣(2γ−2)(p+1)

× |i − k|(2γ−2)a
∣∣i′ − k′

∣∣(2γ−2)b∣∣i′ − k
∣∣(2γ−2)c∣∣i − k′

∣∣(2γ−2)d
,

for N large enough and this is a Riemann sum which converges to a constant. �

Lemma 6.9 Let T2 be as in (6.37). Then q−1T2
N,M→∞→ 1 for the following choices

of ϕ:

(1) ϕ(α,β,N,M) =
√

q!
sαsβ

Nαq−1/2Mαq−1/2, if 0 < α,β < 1 − 1
2q

and q−1T2 −
1 �N−1 +N2qα−2q+1 +M−1 +M2qβ−2q+1;

(2) ϕ(α,β,N,M)=
√

q!
sαιβ

Nαq−1Mq−1(logM)−1/2, if 0 < α < 1− 1
2q

, β = 1− 1
2q

and q−1T2 − 1 �N−1 +N2qα−2q+1 + (logM)−1;

(3) ϕ(α,β,N,M)=
√

q!
ιαιβ

Nq−1(logN)−1/2Mq−1(logM)−1/2, if α = β = 1− 1
2q

and q−1T2 − 1 � (logN)−1 + (logM)−1;

(4) ϕ(α,β,N,M) =
√

q!
sακβ

Nαq−1/2Mq−1, if 0 < α < 1 − 1
2q

, β > 1 − 1
2q

and

q−1T2 − 1 �N−1 +N−2qα+2q−1 +M−2qβ+2q−1;

(5) ϕ(α,β,N,M)=
√

q!
ιακβ

Nq−1(logN)−1/2Mq−1, if 0 < α = 1− 1
2q

, β > 1− 1
2q

and q−1T2 − 1 � (logN)−1 +M−2qβ+2q−1;
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(6) ϕ(α,β,N,M) =
√

q!
κακβ

Nq−1Mq−1, if α > 1− 1
2q

, β > 1− 1
2q

and q−1T2 −
1 �N−2qα+2q−1 +M−2qβ+2q−1,

where s·, ι· and κ· are as defined in Lemma 6.7.

Proof Using the properties of the scalar product in Hilbert spaces we have

T2 = 1

(q − 1)!
(
ϕ(α,β,N,M)

)2 ×
N−1∑

i,i′=0

M−1∑

j,j ′=0

〈
1�i,j (·),1�i′,j ′(·)

〉q
Hα,β

= 1

(q − 1)!
(
ϕ(α,β,N,M)

)2 ×
(

N−1∑

i,i′=0

〈
1�i(·),1�i′(·)

〉q
Hα

)

×
(

M−1∑

j,j ′=0

〈
1�j (·),1�j ′(·)

〉q
Hβ

)

.

The result then follows from Lemma 6.7. �

Remark 6.8 As mentioned above, T2 = E‖DṼN,M‖Hα,β . On the other hand, we also
have

qT2 = EṼ 2
N,M.

Indeed, this is true because for every multiple integral F = Iq(f ), it holds that
EF 2 = qE‖DF‖2

Hα,β .

6.4.1 The Central Limit Case

We will prove that for every α,β ∈ (0,1)2 \ (1− 1
2q

,1− 1
2q

)2 a Central Limit The-

orem holds, where ṼN,M was defined in (6.35). Using Stein’s method we also give
the Berry-Esséen bounds for this convergence. The reader may compare the below
result with Theorem 6.1.

Theorem 6.6 (Central Limits) Let ṼN,M be defined by (6.35). For every (α,β) ∈
(0,1)2, we denote by cα,β a generic positive constant which depends on α,β, q and
on the distance d and which is independent of N and M . We have:

(1) If 0 < α,β < 1− 1
2q

, then ṼN,M converges in law to a standard normal r.v. N

with normalization ϕ(α,β,N,M)=
√

q!
sαsβ

Nαq−1/2Mαq−1/2. In addition

d(ṼN,M,N )≤ cα,β

√
N−1 +N2α−2 +N2αq−2q+1 +M−1 +M2β−2 +M2βq−2q+1.

(2) If 0 < α < 1 − 1
2q

and β = 1 − 1
2q

, then ṼN,M converges in law to a stan-

dard normal r.v. N with normalization ϕ(α,β,N,M) =
√

q!
sαιβ

Nαq−1Mq−1
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(logM)−1/2. In addition

d(ṼN,M,N )≤ cα,β

√
N−1 +N2α−2 +N2αq−2q+1 + (logM)−1.

(3) If both α = β = 1− 1
2q

, then ṼN,M converges in law to a standard normal r.v. N

with normalization ϕ(α,β,N,M)=
√

q!
ιαιβ

Nq−1(logN)−1/2Mq−1(logM)−1/2.

In addition

d(ṼN,M,N )≤ cα,β

√
logN−1 + logM−1.

(4) If α < 1− 1
2q

and β > 1− 1
2q

, then ṼN,M converges in law to a standard normal

r.v. N with normalization ϕ(α,β,N,M)=
√

q!
sακβ

Nαq−1/2Mq−1. In addition

d(ṼN,M,N )≤ cα,β

√
N−1 +N2α−2 +N2βq−2q+1 +M2βq−2q+1.

(5) If α = 1− 1
2q

and β > 1− 1
2q

, then ṼN,M converges in law to a standard normal

r.v. N with normalization ϕ(α,β,N,M) =
√

q!
ιακβ

Nq−1(logN)−1/2Mq−1. In

addition

d(ṼN,M,N )≤ cα,β

√
log(N)−1 +M2βq−2q+1.

Proof Recall that

‖DṼN,M‖2
Hα,β = : T1 + T2,

where the summands T1 and T2 are given as in (6.37). We apply Lemma 6.9 to see
that 1− q−1T2 converges to zero as N,M goes to infinity.

Let us show that T1 converges to zero in L2(Ω). We use the orthogonality of the
iterated integrals to compute

ET 2
1 =

1

(q − 1)!4
(
ϕ(α,β,N,M)

)4
N−1∑

i,i′,k,k′=0

M−1∑

j,j ′,�,�′=0

q−2∑

p=0

(p!)2

× (Cp

q−1

)4〈1�i,j (·),1�i′,j ′(·)
〉p+1
Hα,β

〈
1�k,�(·),1�k′,�′(·)

〉p+1
Hα,β

×E
[
I2q−2−2p

(
1⊗q−1−p
�i,j ⊗̃1⊗q−1−p

�i′,j ′
)
I2q−2−2p

(
1⊗q−1−p

�k,� ⊗̃1⊗q−1−p

�k′,�′
)]

= 1

(q − 1)!4
(
ϕ(α,β,N,M)

)4
N−1∑

i,i′,k,k′=0

M−1∑

j,j ′,�,�′=0

q−2∑

p=0

(p!)2

× (Cp

q−1

)4〈1�i,j (·),1�i′,j ′(·)
〉p+1
Hα,β

〈
1�k,�(·),1�k′,�′(·)

〉p+1
Hα,β

× (2q − 2− 2p)!〈1⊗q−1−p
�i,j ⊗̃1⊗q−1−p

�i′,j ′ ,1⊗q−1−p

�k,� ⊗̃1⊗q−1−p

�k′,�′
〉
Hα,β .
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Now, let us discuss the tensorized terms. We use the fact that

〈
1⊗q−1−p
�i,j ⊗̃1⊗q−1−p

�i′,j ′ ,1⊗q−1−p

�k,� ⊗̃1⊗q−1−p

�k,�′
〉
Hα,β

=
∑

a+b=q−1−p;c+d=q−1−p

〈1�i,j ,1�k,�〉aHα,β 〈1�i,j ,1�k′,�′ 〉bHα,β

× 〈1�i′,j ′ ,1�k,�〉cHα,β 〈1�i′,j ′ ,1�k′,�′ 〉dHα,β

=
∑

a+b=q−1−p;c+d=q−1−p

〈1�i,1�k〉aHα 〈1�j ,1��〉aHβ

× 〈1�i,1�k′ 〉bHα 〈1�j ,1��′ 〉bHβ 〈1�i′ ,1�k〉cHα 〈1�j ′ ,1��〉cHβ

× 〈1�i′ ,1�k′ 〉dHα 〈1�j ′ ,1��′ 〉dHβ

(we recall that 1�i := 1[ i
N

, i+1
N
]). Therefore we finally have

ET 2
1 =

1

(q − 1)!4
(
ϕ(α,β,N,M)

)4
q−2∑

p=0

(
C

p

q−1

)4
(p!)2

×
∑

a+b=q−1−p;c+d=q−1−p

aN(p,α, a, b, c, d)bM(p,β, a, b, c, d),

with

aN(p,α, a, b, c, d) =
N−1∑

i,i′,k,k′=0

〈1�i,1�k〉aHα 〈1�i,1�k′ 〉bHα

× 〈1�i′ ,1�k〉cHα 〈1�i′ ,1�k′ 〉dHα

× 〈1�i,1�i′ 〉p+1
Hα 〈1�k,1�k′ 〉p+1

Hα

and bM(p,β, a, b, c, d) similarly defined. We apply Lemma 6.8 to the terms aN and
bM to conclude the convergence of T1 to zero. Hence, E[(1−q−1‖DṼN,M‖2

Hα,β )2] =
q−2E[|T1|2]+ (1− q−1T2)

2 which converges to zero for α ≤ 1− 1
2q

or β ≤ 1− 1
2q

.
The bounds on the rate of convergence are given by Lemmas 6.8 and 6.9. Using
Theorem 5.1, the conclusion of the theorem follows. �

The fact that the term T1 converges to zero is the essential difference between the
situations treated in the above theorem and the non-central limit case proved in the
next section.
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6.4.2 The Non-Central Limit Theorem

We will assume throughout this section that the Hurst parameters α,β satisfy

1 > α,β > 1− 1

2q
.

We will study the limit of the sequence ṼN,M given by the formula (6.35) with the
renormalization factor ϕ from Lemma 6.9, point (6). Let us denote by hN,M the
kernel of the random variable ṼN,M which is an element of the qth Wiener chaos,
i.e.

hN,M = 1

q!ϕ(α,β,N,M)

N−1∑

i=0

M−1∑

j=0

1⊗q

[ i
N

, i+1
N
]×[ j

M
,
j+1
M
].

We will prove that (hN,M)N,M≥1 is a Cauchy sequence in the Hilbert space
(Hα,β)⊗q . Using relation (4.2), we obtain

〈hN,M,hN ′,M ′ 〉(Hα,β )⊗q

= 1

q!2 ϕ(α,β,N,M)ϕ
(
α,β,N ′,M ′

)

× (α(2α − 1)
)q

N−1∑

i=0

N ′−1∑

i′=0

(∫ i+1
N

i
N

∫ i′+1
N

i′
N

|u− v|2α−2dudv

)q

× (β(2β − 1)
)q

M−1∑

j=0

M ′−1∑

j ′=1

(∫ j+1
M

j
M

∫ j ′+1
M ′

j ′
M ′
|u− v|2β−2dudv

)q

and this converges to (see also [39] or [181])

c2(α,β)
1

q!2
(
α(2α − 1)

)q(
β(2β − 1)

)q
∫ 1

0

∫ 1

0
|u− v|(2α−2)qdudv

×
∫ 1

0

∫ 1

0
|u− v|(2β−2)qdudv,

where c2(α,β)= q!
κακβ

. The above constant is equal to

c2(α,β)
1

q!2
(
α(2α − 1)

)q(
β(2β − 1)

)q 1

(αq − q + 1)(2αq − 2q + 1)

× 1

(βq − q + 1)(2βq − 2q + 1)
= 1

q! .
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It follows that the sequence hN,M is Cauchy in the Hilbert space (Hα,β)⊗q and
as N,M →∞ it has a limit in (Hα,β)⊗q denoted by μ(q). In the same way, the
sequence

hN,M(t, s) = 1

q!ϕ(α,β,N,M)

[(N−1)t]∑

i=0

[(M−1)s]∑

j=0

1⊗q

[ i
N

, i+1
N
]×[ j

M
,
j+1
M
]

is Cauchy in (Hα,β)⊗q for every fixed s, t and it has a limit in this Hilbert space
which will be denoted by μ

(q)
s,t . Notice that μ(q) = μ(q)(1,1) and that μ(q) is a

normalized uniform measure on the set ([0, t] × [0, s])q .

Definition 6.1 We define the Hermite sheet process of order q and with Hurst pa-
rameters α,β ∈ (0,1), denoted by (Z

(q)
t,s )s,t∈[0,1], by

Z
(q),α,β
t,s := Z

(q)
t,s = Iq

(
μ

(q)
s,t

)
, ∀s, t ∈ [0,1].

The previous computations lead to the following theorem.

Theorem 6.7 Let ṼN,M be given by (6.35) with the function ϕ defined in Lemma 6.9,
point (6). Consider the Hermite sheet introduced in Definition 6.1. Then for q ≥ 2

lim
N,M→∞E

[|ṼN,M −Z|2]= 0,

where Z := Z
(q)

1,1.

Proof Note that 1
q!E[|ṼN,M − Z|2] = ‖hN,M‖2

(Hα,β )⊗q + ‖μ(q)‖2
(Hα,β )⊗q −

2〈hN,M,μ(q)〉(Hα,β )⊗q . The computations at the beginning of this section complete
the proof. �

Remark 6.9 As we will see below, the Hermite sheet from Definition 6.1 has the
same properties as the process defined in Sect. 4.2. These two processes should
coincide in the sense of finite dimensional distributions but a proof has not been
provided. For the one-parameter case, such a result has been proven in [148].

Let us prove below some basic properties of the Hermite sheet.

Proposition 6.4 Let us consider the Hermite sheet (Z
(q)
s,t )s,t∈[0,1] from Defini-

tion 6.1. We have the following:

(a) The covariance of the Hermite sheet is given by

EZ
(q)
s,t Z

(q)
u,v =Rq(α−1)+1(s, u)Rq(β−1)+1(t, v).

Consequently, it has the same covariance as the fractional Brownian sheet with
Hurst parameters q(α− 1)+ 1 and q(β − 1)+ 1.
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(b) The Hermite process is self-similarin the following sense: for every c, d > 0, the
process

Ẑ
(q)
s,t :=

(
Z(q)

)
cs,dt

has the same law as cq(α−1)+1dq(β−1)+1Z
(q)
s,t .

(c) The Hermite process has stationary increments in the sense of Definition A.5.
(d) The paths are Hölder continuous of order (α′, β ′) with 0 < α′

< α and 0 < β ′ < β .

Proof Let f be an arbitrary function in (Hα,β)⊗q . It follows that

〈
hN,M(t, s), f

〉
(Hα,β )⊗q

= c2(α,β)−1/2 1

q!N
q−1Mq−1

[(N−1)t]∑

i=0

[(M−1)s]∑

j=0

〈
1⊗q

[ i
N

, i+1
N
]×[ j

M
,
j+1
M
], f
〉
(Hα,β )⊗q

= a(α)qa(β)qc2(α,β)−1/2 1

q!N
q−1Mq−1

×
[(N−1)t]∑

i=0

[(M−1)s]∑

j=0

∫

[0,1]2q

dx1 · · ·dxqdy1 · · ·dyqf
(
(x1, y1), . . . , (xq, yq)

)

×
∫

[ i
N

, i+1
N
]q

da1 · · ·daq

∫

[ j
M

,
j+1
M
]q

db1 · · ·dbq

×
q∏

k=1

|ak − xk|2α−2
q∏

k=1

|bk − yk|2β−2

N,M→∞−−−−−→ a(α)qa(β)qc2(α,β)−1/2 1

q!
∫ t

0
da

∫ s

0
db

∫

[0,1]2q

dx1 · · ·dxqdy1 · · ·dyq

× f
(
(x1, y1), . . . , (xq, yq)

) q∏

k=1

|a − xk|2α−2
q∏

k=1

|b− yk|2β−2.

By applying the above formula for f = μ
(q)
u,v and using the fact that

E
(
Z

(q)
s,t Z

(q)
u,v

)= q!〈μ(q)
s,t ,μ

(q)
u,v

〉
(Hα,β )⊗q ,

we prove assertion (a).
Concerning (b), let us denote by

HN,M(t, s)= 1

q!ϕ(α,β,N,M)

[(N−1)t]∑

i=0

[(M−1)]s∑

j=0

Iq

(
1⊗q

[ i
N

, i+1
N
]×[ j

M
,
j+1
M
]
)
.
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We know that

HcN,dM(t, s)
N,M→∞−−−−−→ Z

(q)
t,s (6.38)

in L2(Ω) for every s, t ∈ [0,1]. But

HcN,dM(t, s) = c2(α,β)−1/2

(cN)1−(1−α)q(dM)1−(1−β)q

[(N−1)t]∑

i=0

[(M−1)s]∑

j=0

Iq

(
1⊗q

[ i
N

, i+1
N
]×[ j

M
,
j+1
M
]
)

= 1

(c)1−(1−α)q(d)1−(1−β)q
HN,M(t, s)

N,M→∞−−−−−→ Z
(q)
t,s . (6.39)

Point (b) then follows easily from (6.38) and (6.39).
Point (c) is a consequence of the fact that the fractional Brownian sheet has sta-

tionary increments in the sense of Definition A.5 while point (d) can easily be proved
by using the Kolmogorov continuity criterion together with points (b) and (c) above
(see also Sect. 4, pp. 35–36 in [12]).

�

6.5 Bibliographical Notes

The Hermite variations, although related to the historical limit theorems by [41, 67,
82, 167, 168], started to be systematically studied after the publications of the papers
[137, 138, 142] and [127]. This is because the Hermite polynomials fit well into the
Malliavin calculus context. Some important references on the Hermite variations for
fractional Brownian motion are [127, 133, 134]. These variations have in turn been
applied to other Gaussian processes (bifractional Brownian motion, subfractional
Brownian motion, moving averages [1, 37, 182] etc.) or to multiparameter processes
([40, 152]). The Hsu-Robbins and Spitzer theorems for fBm are proven in [176].

6.6 Exercises

Exercise 6.1 Find the constants c1,q,H , c2,q,H , c3,q,H in Theorem 6.1.

Exercise 6.2 Prove point (iii) in Theorem 6.1.

Exercise 6.3 The process (Zt )t∈Z is said to be a white noise with zero mean and
variance σ 2, written

(Zt )∼WN
(
0, σ 2),

if and only if {Zt } has zero mean and covariance function γ (h)= E(Zt+hZt ), h ∈
N, defined by

γ (h)=
{

σ 2 if h= 0
0 if h �= 0.
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If {Zt } ∼WN (0, σ 2) then we say that {Xt } is a moving average (MA(∞)) of
{Zt } if there exists a sequence {ψj } with

∑∞
j=0 |ψj |<∞ such that

Xt =
∞∑

j=0

ψjZt−j , t = 0,±1,±2, . . . . (6.40)

Prove that the (MA(∞)) process defined by (6.40) is stationary with mean zero
and covariance function

γ (k)= σ 2
∞∑

j=0

ψjψj+|k|. (6.41)

Exercise 6.4 ([127]) Give the rate of the convergences in Theorem 6.1.

Hint Follow the proofs in Sect. 6.2.

Exercise 6.5 ([78]) Let (Z
(H)
t )t∈[0,1] be a Rosenblatt process with self-similarity

index H ∈ ( 1
2 ,1) and define its cubic variation by

V 3,N = 1

N

N−1∑

i=0

( (Z
(H)
i+1
N

−Z
(H)
i
N

)3

E(Z
(H)
i+1
N

−Z
(H)
i
N

)3
− 1

)
. (6.42)

Let LH be the kernel of the Rosenblatt process

LH
t (y1, y2) := Lt(y1, y2)

= d(H)1[0,t](y1)1[0,t](y2)

∫ t

y1∨y2

∂KH ′

∂u
(u, y1)

∂KH ′

∂u
(u, y2)du

with

H ′ := H + 1

2
and d(H) := 1

H + 1

(
H

2(2H − 1)

)− 1
2

and with KH the standard kernel defined in (1.4) appearing in the Wiener integral
representation of the fBm. For = 1, . . . ,N set

fi,N = L
(H)
i+1
N

−L
(H)
i
N

.

1. Prove that for any symmetric function f ∈ L2([0,1]2),
I2(f )3 = I6

(
(f ⊗̃f )⊗ f

)+ 8I4
(
(f ⊗̃f )⊗1 f

)+ 4I4
(
(f ⊗1 f )⊗ f

)

+ 12I2
(
(f ⊗̃f )⊗2 f

)+ 16I2
(
(f ⊗1 f )⊗1 f

)

+ 2〈f,f 〉L2([0,1]2)I2(f )+ 8
〈
(f ⊗1 f ),f

〉
L2([0,1]2).
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2. Deduce that

(
I2(fi,N )

)3 = 8(fi,N ⊗1 fi,N )⊗2 fi,N + I2(gi,N )+ 4I4(hi,N )

+ I6
(
(fi,N ⊗̃fi,N )⊗ fi,N

)
(6.43)

with

gi,N = 2‖fi,N‖2
L2fi,N + 12(fi,N ⊗̃fi,N )⊗2 fi,N + 16(fi,N ⊗1 fi,N )⊗1 fi,N

(6.44)
and

hi,N = 2(fi,N ⊗̃fi,N )⊗1 fi,N + fi,N ⊗ (fi,N ⊗1 fi,N ) := h
(1)
i,N + h

(2)
i,N . (6.45)

3. Prove that gi,N ∈ L2([0,1]2) and hi,N ∈ L2([0,1]4).
4. Deduce the Wiener chaos expansion of (6.42).
5. Prove that

E
(
N1−H V 3,N

)2 −−−−→
N→∞ C̄(H) (6.46)

where C̄(H) := C(H)2C0(H) with

C0(H)= (9+ 36C′(H)H(2H − 1)+ 144
[
C′(H)H(2H − 1)

]2)

and

C′(H)=
∫

[0,1]3
|v1 − v2|2H ′−2|v2 − v3|2H ′−2dv1dv2dv3.

6. Prove that the renormalized cubic variation statistics based on the Rosen-
blatt process N1−H V 3,N with V 3,N given by (6.42) converges in L2(Ω)

as N→∞ to the Rosenblatt random variable D(H)Z
(H)
1 where D(H) =

C(H)−1(3+ 24d(H)2a(H)2C′(H)).

Exercise 6.6 Consider the sequences (6.7) where

Xn =
∞∑

i=1

αi(Wn−i −Wn−i−1),

with W a Brownian motion on the whole real line, αi ∈ R, αi = ci−β , β ∈ ( 1
2 ,1)

and
∑∞

i=1 α2
i = 1. Recall that under the condition q > (2β− 1)−1, ZN converges in

law towards Z ∼N (0,1) and the rate of convergence is given in Theorem 6.2.
Define

f1(ε)=
∑

N≥1

1

N
P
(|SN |> εN

)

and



6.6 Exercises 249

f2(ε)=
∑

N≥1

1

N
P
(|SN |> εN−2βq+q+2).

Prove that when q > 1
2β−1 ,

lim
ε→0

1

− log(ε)
f1(ε)= 2

and when q < 1
2β−1 then

lim
ε→0

1

− log(ε)
f2(ε)= 1

1+ q
2 − βq

.

Hint Follow the proof of Theorem 6.2.

Exercise 6.7 Let the notation in Exercise 6.6 prevail and define

g1(ε)=
∑

N≥1

P
(|SN |> εN

)

and

g2(ε)=
∑

N≥1

P
(|SN |> εN−2βq+q+2).

Prove that when q > 1
2β−1 ,

lim
ε→0

(
σ−1

q,βε
)2

g1(ε)= 1= E
(
Z2)

and when q < 1
2β−1 then

lim
ε→0

(
h−1

qβ ε
) 1

1+ q
2 −βq g2(ε)= E

∣∣Z(q)
∣∣

1
1+ q

2−βq .

Exercise 6.8 ([40]) Let ṼN,M be given by (6.35) with the function ϕ defined in
Lemma 6.9, point (6). Show that

dT V (ṼN,M,Z)≤ cN
2q−1−2qα

2q M
2q−1−2qβ

2q

where dT V denotes the total variation distance.

Hint Use Theorem 5.6.

Exercise 6.9 Prove that for q = 2 the process defined in Definition 6.1 coincides
with the Hermite process of order q = 2 and self-similarity index (q(α − 1) +
1, q(β − 1)+ 1) (recall Definition A.4).

Hint Use formula (3.16).



Appendix A
Self-similar Processes with Self-similarity:
Basic Properties

The first paper to give a rigorous mathematical analysis of self-similar processes
is [106]. There are several monographs (see e.g. [75, 160]) that the reader can con-
sult in order to build a more complete picture of self-similarity and related topics.

A.1 One-Parameter Self-similar Processes

Let us define the concept of self-similarity.

Definition A.1 A stochastic process (Xt )t≥0 is called self-similar if there exists a
real number H > 0 such that for any c > 0 the processes (Xct )t≥0 and (cH Xt )t≥0

have the same finite dimensional distributions.

Remark A.1 A self-similar process satisfies X0 = 0 almost surely.

Definition A.2 A stochastic process (Xt )t≥0 is said to be with stationary increments
if for any h > 0 the distribution of the process

(Xt+h −Xh)t≥0

does not depend on h.

The self-similar processes with stationary increments all have the same covari-
ance.

Theorem A.1 Let (Xt )t≥0 be a non-trivial H -self-similar process with stationary
increments such that EX2

1 <∞. Then

EXtXs = 1

2
EX2

1

(
t2H + s2H − |t − s|2H

)
.
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Proof Let s ≤ t . Writing

XtXs = 1

2

(
X2

t +X2
s − (Xt −Xs)

2)

we get

EXtXs = 1

2

(
X2

t +X2
s −EX2

t−s

)

= 1

2
EX2

1

(
t2H + s2H − |t − s|2H

)
. �

Functions of the moments of a self-similar process with stationary increments
can yield information concerning the self-similarity index.

Proposition A.1 Let (Xt )t≥0 be a non-trivial H -self-similar process with station-
ary increments. Then

(i) If E|X1|<∞, then 0 < H ≤ 1.
(ii) If E|X1|<∞ and H = 1 then

Xt = tX1 a.s.

(iii) If E|X1|α <∞ for some α ≤ 1 then H < 1
α

.

Proposition A.2 Let (Xt )t≥0 be a non-trivial H -self-similar process with station-
ary increments such that EX2

1 <∞. Define, for any integer n≥ 1

r(n)= E
(
X1(Xn+1 −Xn)

)
.

Then, if H �= 1
2 , as n→∞

r(n)∼H(2H − 1)n2H−2EX2
1.

Proof From Proposition A.1,

r(n)= 1

2
EX2

1

(
(n+ 1)2H + (n− 1)2H − 2n2H

)

and it suffices to study the asymptotic behavior of the sequence on the right-hand
side above when n→∞. �

Remark A.2 If H = 1
2 then r(n)= 0 for any n≥ 1.

Definition A.3 We say that a process X exhibits long-range dependence (or it is a
long-memory process) if

∑

n≥0

rn =∞

where r(n)= E(X1 −X0)(Xn+1 −Xn). Otherwise, if
∑

n≥0

rn <∞

we say that X is a short-memory process.
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From Proposition A.2 and Definition A.3 we conclude that if (Xt )t≥0 is a non-
trivial H -self-similar process with stationary increments and with EX2

1 <∞ then
X is with long-range dependence for H > 1

2 and with short-memory if H ≤ 1
2 .

A.2 Multiparameter Self-similar Processes

We first introduce the concept of self-similarity and stationary increments for two-
parameters processes.

Definition A.4 A two-parameter stochastic process (Xs,t )(s,t)∈T , T ⊂ R
2, is self-

similar with order (α,β) if for any h, k > 0 the process (X̂s,t )(s,t)∈T defined as

X̂s,t := hαkβX s
h
, t
k
, (s, t) ∈ T

has the same finite dimensional distributions as the process X.

Definition A.5 A process (Xs,t )(s,t)∈I with I ⊂ R
2 is said to be stationary if for

every integer n ≥ 1 and (si , tj ) ∈ I , i, j = 1, . . . , n, the distribution of the random
vector

(Xs+s1,t+t1,Xs+s2,t+t2 , . . . ,Xs+sn,t+tn )

does not depends on (s, t), where s, t ≥ 0, (s + si , t + ti ) ∈ I , i = 1, . . . , n.
We will say that a two-parameter stochastic process (Xs,t )(s,t)∈R2 has stationary

increments if for every h, k > 0 the process

(Xt+h,s+k −Xt,s+k −Xt+h,s +Xt,s)(s,t)∈R2

is stationary.

So, a two-parameter stochastic process has stationary increments if its rectan-
gular increments are stationary. The concept can be extended to multiparameter
stochastic processes.

Definition A.6 A stochastic process (Xt)t∈T , where T ⊂ R
d , is called self-similar

with self-similarity order α = (α1, . . . , αd) > 0 if for any h= (h1, . . . , hd) > 0 the
stochastic process (X̂t)t∈T given by

X̂t = hαX t
h
= h

α1
1 · · ·hαd

d X t1
h1

,...,
td
hd

has the same law as the process X.

Let us recall the notion of the increment of a d-parameter process X on a rect-
angle [s, t] ⊂ R

d , s = (s1, . . . , sd), t = (t1, . . . , td ), with s ≤ t. This increment is
denoted by �X[s,t] and it is given by

�X[s,t] =
∑

r∈{0,1}d
(−1)d−

∑
i ri Xs+r·(t−s). (A.1)
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When d = 1 one obtains �X[s,t] = Xt − Xs while for d = 2 one gets �X[s,t] =
Xt1,t2 −Xt1,s2 −Xs1,t2 +Xs1,s2 .

Definition A.7 A process (Xt, t ∈Rd) has stationary increments if for every h > 0,
h ∈ Rd the stochastic processes (�X[0,t], t ∈ Rd) and (�X[h,h+t], t ∈ Rd) have the
same finite dimensional distributions.



Appendix B
The Kolmogorov Continuity Theorem

This result is used to obtain the continuity of sample paths of stochastic processes.

Theorem B.1 Consider a stochastic process (Xt )t∈T where T ⊂ R is a compact
set. Suppose that there exist constants p,C > 0 and β > 1 such that for every
s, t ∈ T

E|Xt −Xs |p ≤ C|t − s|β.

Then X has a continuous modification X̃. Moreover for every 0 < γ <
β−1
p

E
(

sup
s,t∈T ;s �=t

|X̃t − X̃s |
|t − s|γ

)p

<∞.

In particular X admits a modification which is Hölder continuous of any order
α ∈ (0,

β−1
p

).

There exists a two-parameter version of the Kolmogorov continuity theorem (see
e.g. [12]).

Theorem B.2 Let (Xs,t )s,t∈T be a two-parameter process, vanishing on the axis,
with T a compact subset of R. Suppose that there exist constants C,p > 0 and
x, y > 1 such that

E|Xs+h,t+k −Xs+h,t −Xs,t+k +Xs,t |p ≤ Chxky

for every h, k > 0 and for every s, t ∈ T such that s+h, t + k ∈ T . Then X admits a
continuous modification X̃. Moreover X̃ has Hölder continuous paths of any orders
x′ ∈ (0, x−1

p
), y′ ∈ (0,

y−1
p

) in the following sense: for every ω ∈Ω , there exists a

Cω > 0 such that for every a s, t, s′, t ′ ∈ T
∣∣Xs,t (ω)−Xs,t ′(ω)−Xs′,t (ω)+Xs′,t ′(ω)

∣∣≤ Cω

∣∣t − t ′
∣∣∣∣s − s′

∣∣.
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Appendix C
Multiple Wiener Integrals and Malliavin
Derivatives

Here we describe the elements from the Malliavin calculus that we need in the
monograph. As mentioned, we give only a flavor of the Malliavin calculus, the basic
tools necessary to follow the exposition in Part II of the monograph. Consider a
real separable Hilbert space H and (B(ϕ),ϕ ∈H) an isonormal Gaussian process
on a probability space (Ω,A,P ), which is a centered Gaussian family of random
variables such that E(B(ϕ)B(ψ))= 〈ϕ,ψ〉H. Denote by In the multiple stochastic
integrals with respect to B (see [136]). This In is actually an isometry between
the Hilbert space H�n(symmetric tensor product) equipped with the scaled norm

1√
n! ‖ · ‖H⊗n and the Wiener chaos of order n which is defined as the closed linear

span of the random variables Hn(B(ϕ)) where ϕ ∈ H,‖ϕ‖H = 1 and Hn is the
Hermite polynomial of degree n≥ 1

Hn(x)= (−1)n

n! exp

(
x2

2

)
dn

dxn

(
exp

(
−x2

2

))
, x ∈R.

The isometry of multiple integrals can be written as: for m,n positive integers,

E
(
In(f )Im(g)

)= n!〈f̃ , g̃〉H⊗n if m= n,

E
(
In(f )Im(g)

)= 0 if m �= n.
(C.1)

We also have

In(f )= In(f̃ )

where f̃ denotes the symmetrization of f defined by f̃ (x1, . . . , xn) =
1
n!
∑

σ∈Sn
f (xσ(1), . . . , xσ(n)).

We recall that any square integrable random variable which is measurable with
respect to the σ -algebra generated by B can be expanded into an orthogonal sum of
multiple stochastic integrals

F =
∑

n≥0

In(fn) (C.2)

where fn ∈ H�n are (uniquely determined) symmetric functions and I0(f0) =
E[F ].
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Let L be the Ornstein-Uhlenbeck operator

LF =−
∑

n≥0

nIn(fn)

where F is given by (C.2) such that
∑∞

n=1 n2n‖fn‖2
H⊗n <∞.

For p > 1 and α ∈ R we introduce the Sobolev-Watanabe space D
α,p as the

closure of the set of polynomial random variables with respect to the norm

‖F‖α,p =
∥∥((I −L)F

) α
2
∥∥

Lp(Ω)

where I represents the identity. We denote by D the Malliavin derivative operator
that acts on smooth functions of the form F = g(B(ϕ1), . . . ,B(ϕn)) (g is a smooth
function with compact support and ϕi ∈H, i = 1, . . . , n)

DF =
n∑

i=1

∂g

∂xi

(
B(ϕ1), . . . ,B(ϕn)

)
ϕi.

The operator D is continuous from D
α,p into D

α−1,p(H). What is important for the
reader of this monograph is how the Malliavin derivative acts on the Wiener chaos.
Actually, if F = In(f ) with f ∈H�n then

DαF = nIn−1
(
f (·, α)

)
(C.3)

for every α > 0, where · represents n− 1 variables. Also, the pseudo-inverse of L

satisfies (−L)−1In(f )= 1
n
In(f ) if n≥ 1.

We will need the general formula for calculating products of Wiener chaos in-
tegrals of any orders p,q for any symmetric integrands f ∈ H�p and g ∈ H�q ;
it is

Ip(f )Iq(g)=
p∧q∑

r=0

r!
(

p

r

)(
q

r

)
Ip+q−2r (f ⊗r g) (C.4)

as given for instance in [136, Proposition 1.1.3]; for example, if H is the space
L2([0, T ]n), then the contraction f ⊗r g is the element of H⊗(p+q−2r) defined by

(f ⊗� g)(s1, . . . , sn−�, t1, . . . , tm−�)

=
∫

[0,T ]m+n−2�

f (s1, . . . , sn−�, u1, . . . , u�)

× g(t1, . . . , tm−�, u1, . . . , u�)du1 · · ·du�. (C.5)

We will need the following bound for the tail probabilities of multiple Wiener-Itô
integrals (see [116], Theorem 4.1)

P
(∣∣In(f )

∣∣> u
)≤ c exp

((−cu

σ

) 2
n
)

(C.6)

for all u > 0, n≥ 1, with σ = ‖f ‖L2([0,1]n).
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