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Abstract In this chapter, a new GP-based algorithm is proposed. The algorithm,
named SGP (Statistical GP), exploits statistical information, i.e. mean, variance
and correlation-based operators, in order to improve the GP performance. SGP
incorporates new genetic operators, i.e. Correlation Based Mutation, Correlation
Based Crossover, and Variance Based Editing, to drive the search process towards
fitter and shorter solutions. Furthermore, this work investigates the correlation
between diversity and fitness in SGP, both in terms of phenotypic and genotypic
diversity. First experiments conducted on four symbolic regression problems
illustrate the goodness of the approach and permits to verify the different behavior
of SGP in comparison with standard GP from the point of view of the diversity and
its correlation with the fitness.

1 Introduction

Maintaining diversity in the genetic programming is important, because it helps to
prevent the GP process from a premature convergence. The lack of diversity may
lead to convergence towards local optima or towards a not optimal behavior in
dynamic environments. Therefore, experimental analysis of diversity can give us a
better perspective about the population transition and the search process in GP.

M. Amir Haeri (<) - M. M. Ebadzadeh

Department of Computer Engineering and Information Technology,
Amirkabir University of Technology, Tehran, Iran

e-mail: haeri@aut.ac.ir

M. M. Ebadzadeh
e-mail: ebadzadeh@aut.ac.ir

G. Folino
ICAR-CNR, Rende, Italy
e-mail: folino@icar.cnr.it

V. Snésel et al. (eds.), Soft Computing in Industrial Applications, 37
Advances in Intelligent Systems and Computing 223, DOI: 10.1007/978-3-319-00930-8_4,
© Springer International Publishing Switzerland 2014



38 M. Amir Haeri et al.

According to this, diversity in genetic programming is studied by many researchers
working in the GP field. Some of them tried to define appropriate phenotypic or
genotypic diversity measures. Rosca [9, 10] suggested a phenotypic measure based
on the number of different fitness values in the population. Analogously, Langdon
[7] defined genotypic diversity as the number of different structures in the popu-
lation. Some of the genotypic diversity measures have been defined on the basis of
the edit distance between structures in the GP population [2, 3].

Folino et al. [5] analyzed the effectiveness of parallel genetic programming
models in maintaining diversity in a population, i.e. island and cellular GP, using
phenotypic and genotypic entropy. Their study confirms that the considered parallel
models help to promote diversity but the authors conclude no relation between
diversity measures and goodness of the fitness can be obtained. Jackson [6]
investigated the effects of mutation operator on enhancing the diversity in GP
population. He reported that the role of mutation operator in enhancing the diversity
depends on the nature of the problem. In three of his test problems mutation did not
have a significant effect on any diversity measures, while in one case, mutation
operator had a strong influence on improving the structural diversity.

Burke et al. [1] analyzed different types of diversity measures and investigated
the importance of these measures and their correlation with the fitness in genetic
programming. Their results demonstrate that there is a correlation between fitness
and diversity. In particular, a positive correlation between the phenotypic diversity
and the fitness and a negative correlation between the genotypic diversity and the
fitness were observed in many problems. However, they concluded that this cor-
relation must not be interpreted as a factor of causality, i.e. “...higher diversity
does not necessarily cause better performance, but better performance is seen with
higher diversity.” Finally, in regression problems, they discovered the weakest
values of correlation and that is one of the reasons why we decided to explore
more deeply the behavior in terms of diversity in this kind of problems.

In recent years, both analyzing diversity and correlation and improving genetic
programming has become the focus of many researchers. Among the desired
properties, a GP-based algorithm should reduce the code growth and efficiently
explore the huge search space of real hard problems considered.

To this aim, a new GP algorithm, named Statistical Genetic Programming (SGP)
is introduced in this chapter. The novelty of the method is based on the exploitation of
statistical information obtained in the structure of the individuals and in the building
of new powerful genetic operators. SGP introduces three new operators, Correlation
Based Crossover, Correlation Based Mutation and Variance Based Editing. The
effect of these three operators is to decrease the rate of the code growth, while
maintaining efficacy in exploring the search space. SGP is particularly apt to cope
with symbolic regression problems; however we would like to remark that the
algorithm can be also used for other kinds of problems, if the function associated to a
node can be computed as a function of the input variables. It will be clearer in the next
section. To study the behavior of the search process in SGP, and in regression
problems in particular, the population diversity and its correlation with the fitness is
analyzed, using phenotypic and genotypic measure of diversity.
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The rest of the chapter is organized as follows: In the Sect. 2, Statistical Genetic
Programming is introduced. Section 3 presents the diversity measures used in this
chapter. Section 4 is devoted to the description of the test problems and to the
experimental results. Section 5 concludes the chapter.

2 Statistical Genetic Programming

In this section, a new GP algorithm named Statistical Genetic Programming (SGP)
is introduced. The SGP utilizes statistical information to improve the performance
of the standard GP. Before introducing the operators of SGP, firstly, it should be
clarified what we mean by the statistical information of a GP tree.

2.1 Statistical Information of a GP Tree

Statistical information in a GP tree can be exploited in order to drive the evolu-
tionary process in the case in which each node in the GP tree is a function of the
input variables, i.e. in symbolic regression problems.

The SGP algorithm computes, for each node of all its subtrees, the following

M M M
values: Elg;] = 3 - &i(X;), Elg7] = 3 > 87 (X;) and Elg;.y] = 5 > v;8;(X;), where
j=1 j= =1

gi(X;) is the function of node i. X; = (x;1,Xj2, ..., Xj,) is the vector of input variables
and n is the number of variables. M is the number of training data and y; = f(X;) is
the value of the (to be estimated, in the following named regression) function f at
the point X;. In order to compute these values the mean (m) and variance (¢%) of
each node and the correlation coefficient (p) of each node with f can be computed
as follows:

m = E[g;] (1)
o® = Elg;] — Elg)|’ (2)

b Elg;-y] — Elg;E]Y] 3)

Og,0y

An example of a GP tree and its statistical information is shown in Fig. 1. Suppose
that we have a symbolic regression problem with regression data (fitness cases) as
shown in Fig. 1, and let the depicted tree represent an individual of the GP pop-
ulation. Each node of the tree implies some function; for instance, the function of
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node ng is g¢ = 0.6 * x;. The “tree function” is the function implied by the root of
the tree. Based on the regression data, one can compute statistical information—
mean or variance—for each node of the tree (i.e. the function implied by it). For
instance, for node ny4 (g4 = x; + x; * 0.6) and the given regression data, the mean
of output of g4 is equal to E[g4] = 0.68. All relevant data are tabulated in Fig. 1.
Another useful statistical information is the correlation coefficient of the outputs of
each node function with the desired output values of f (Regression function). This
measure can indicate the relation between the function of each node and desired
function, and shows how much a subtree is effective in constructing the desired
function.

Regression Data
X X S (xx5)
0.1 03 1.38
0.4 0.5 1.93
02 02 1.42
0.8 0.6 342
0 0.9 1.65
Node Function (g, )
n g(x),x,)=x(x,+0.6x,)+0.3
n, g,(x . xy)=x,(x, +0.6x,)
ny g3(x,xy)=x,
ny g4(x,x,)=x, +0.6x,
s 8s(x;,x5)=x,
n, 86(c1x5) =061,
n, 23(x,,x,)=0.6
g () =1,
9 8y(x,,x,)=03
| 1 86 [ 800m) [ 8600 [ 80 m) [ g6y | 806 | g6y | g0y | g0,
01 | 03 0336 0036 01 036| 03 006| 06 0.1 03
04 | 05 0.596 0296 | 04 04| 05 02| 06 0.4 03
02 | 02 0.364 0064 02 032] 02 02| 06 02 03
08 | 06 164 0s6a| 08 Tos| 06 04g| 06 0.8 03
0 | 09 03 0 0 0ol 09 o] 06 0 03
Node Statistics
m=E[g;] (73:11'[gf]—b‘[g,]2 p_Elg,f'J*ELg;JEUVJ
9.9
n 0.552 0.130496 0.980357
" 0.252 0.130496 0.980357
n 03 0.1 0.926148
s 0.68 0.111 0.793819
ns 05 0.075 0.324068
s 0.18 0.036 0926148
n, 0.6 0 0
ng 0.3 0.1 0.926148
i, 03 0 0

Fig. 1 An example of a GP tree and its statistical information
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Although SGP computes some additional information during the evolution,
these computations do not load considerable overheads and they are not very time
consuming. Because most of the statistical information is reusable, and those need
updating can be computed simultaneity and in parallel with updating the fitnesses.

In practice, SGP uses statistical information of the population to drive the
search process. SGP has three operators that use this information: (1) Correlation
Based Crossover, Correlation Based Mutation and Variance Based Editing,
described in detail in the next subsections.

2.2 Correlation Based Crossover

In the standard crossover, two individuals are selected using a particular selection
method and, from each of the parent trees, a subtree is randomly selected and
swapped with the subtree of the other parent.

In correlation based crossover (CB crossover), for each parent, the subtrees that
are more correlated to the regression function f (i.e. the ones having the maximum
value of the correlation coefficient between the subtree root and the regression
function f, using the absolute value) have more chance to be selected as swapping
subtree. As in tournament selection, the subtrees of each parent compete with each
other based on their absolute value of the correlation coefficient with f. The winner
subtree of each parent is replaced with the winner of the other parent. The tour-
nament size is proportional to the tree size. On the basis of experimental tries, the
tournament size was set from 10 to 20 % of the tree size.

Using this kind of crossover, the nodes, which are more correlated to f, have
more chance to be selected as crossover points; so it is more likely that the
crossover points are located in the most effective parts of the parent trees.
Therefore, the probability of neutral crossover, i.e. is a crossover that results in
generating offspring that is not different from its parents, is decreased. Further-
more, more effective subtrees are selected as a swapping genetic material and this
should lead to the relocation of valuable subtrees in the population and increase the
probability of constructive crossover (crossover generating an offspring that is
fitter than its parents).

2.3 Correlation Based Mutation

In the standard mutation, after that an individual is selected, one of its subtrees,
randomly selected is replaced by a new random subtree. In CB mutation, the
subtrees of the selected individual that are less correlated to the regression function
f are more likely to be chosen as the point of mutation. In practice, the probability
of choosing each node for mutation is inversely proportional to its absolute cor-
relation. The subtree corresponding to the chosen node is replaced by a random
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subtree. Unlike the standard mutation, CB mutation selects the mutant subtree non-
uniformly at random. If a subtree has less correlation (considering the absolute
value) with £, it has less influence in constructing the solution tree. Thus, changing
this subtree may be productive.

2.4 Variance Based Editing

One of the problems of the GP is code bloat, i.e. producing code which is slower
and larger, without a significant improvement in terms of fitness. More precisely,
code bloat is a considerable increase in the average code size of the population
with no significant change of the fitness. In this work, we use a method based on
the editing of the tree in order to perform bloat reduction. In practice, variance and
mean of each node are used to edit the trees. Every subtree of each GP individual
whose variance of its root is zero is replaced with the mean of its root.

Most of the subtrees of GP trees are introns or just for constructing a numeric
constant. The variance of these subtrees is equal to zero. Thus, this editing operator
can restrict the code growth significantly.

3 Diversity in Genetic Programming

One of the objectives of this chapter is to try to understand the correlation between
the performance of our algorithm and some diversity measures, i.e. the phenotypic
and genotypic diversity. This section presents the diversity measures which are
used in this chapter.

Phenotypic diversity is related to different fitness values in the population. In
this chapter phenotypic entropy is utilized as a phenotypic diversity measure. The
phenotypic entropy of the population P can be calculated as follows [9]:

H,(P) == pjlog(p))
=

where p; is the portion (%) of the population P that have fitness j and N is the
number of different fitness values in the population P.

As in our case, fitness is a continuous quantity, in order to discretize the fitness
values, we used an adaptive procedure, in which the ranges are determined on the
fly, while the fitness values become known gradually. In practice, for each gen-
eration, the first fitness value computed becomes the representative for the first
range. Subsequently, we compute the following quantity for each fitness range i:

5 new fitness value — avg. fitness in the range i
i =

3

avg. fitness in the range i
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and if it is less than a predefined threshold 7, we put the new fitness value into that
range (in case of ties, the i having minimum J; wins). Otherwise, if no such i is
found, a new range is created. In the experiments, 7 is set to 0.02.

In order to measure the genotypic diversity, the genotypic entropy is used in the
chapter. Genotypic diversity is related to the different structures in the population.
A tree distance measure is needed to keep into account the different structures. We
use the tree edit distance measure, as defined by Ekart and Németh [4].

The distance between two trees 77 and 7, can be computed as follows:

d(a,b) if neither T} nor T, has any children

dist(Ty, T2) = d(a,b) + K x 3 dist(s;,1;) ~otherwise
=1

where a and b are the roots of 77 and 7. T1 and T, have m possible subtrees s and
t. The parameter K is set to 1/2 . d(a,b) is 0 if the nodes a and b are equal, 1 if
they are different. The edit distance is calculated for each individual against the
best individual in the run so far (note that it is different from the best individual in
the current population).

As in the case of the phenotypic entropy, genotypic entropy is computed as
follows:

N
Hye(P) = = gejlog(ge;)
=

where ge; is the portion of the population that has a given distance from the best
individual in the run so far.

4 Experimental Results and Discussion

This section is devoted to assessing the performance of SGP and the effects of the
new genetic operators. Specifically, we aim to understand the effect of the new
operators on the diversity in the population, using the measure of genotypic and
phenotypic diversity, introduced in the previous section.

4.1 Test Problems and GP Parameter Settings

Four real valued symbolic regression problems were chosen in order to perform an
experimental evaluation. The benchmark functions were selected from [8, 11]. The
benchmark problems are illustrated in Table 1. Each experiment were performed
over 30 runs.
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Table 1 Test problems

Benchmark Benchmark Function formula Domain Number of

number function instances

Benchmarkl  fi(xy,x2) (01-3)*+ (2 =3)’ +(2-3) X1,X € [-6,6] 50
(n—2)*+10

Benchmark2  f>(x1,x2) xixp +sin((x; — D)(x2 + 1)) x1,x € [=3,3] 20

Benchmark3  f3(xy,x2) 6sin(x;) cos(xz) x1,x € [-3,3] 20

Benchmarkd  f4(x) A3+ +x xe[-1,1] 20

Table 2 GP settings

Population size 100

Function set F={+-,%x,=+}

Fitness function Mean squared error (MSE)
Initial population method Ramped half and half
Selection method Tournament selection
Tournament size 4

Crossover rate 90%

Mutation rate 5%

Maximum tree depth in initial population 6

Maximum tree depth 17

Maximum generation 200

Number of runs 30 independent runs for each test

The function set is the set F = {4+, —, x, +}. Note that the + represents pro-
tected division. The terminal set consists of random numbers, and of the function
variables. Standard GP parameters are used, as shown in Table 2. The fitness
function is the Mean Squared Error (MSE).

4.2 Accuracy Evaluation

In order to compare the accuracy of standard GP and SGP, we run GP and SGP for
200 generations using a population of 100 individuals on the above described
benchmarks.

Figure 2a shows the result of the comparison. According to the figure, SGP
performs better than the standard GP in terms of accuracy. Probably, lower
probability of neutral crossover, higher constructive crossover rate and more
effective mutation lead SGP to explore the GP search space more properly. Fur-
thermore, variance based editing removes introns and decreases the computational
cost by making the tree shorter. This can be seen in Fig. 2b, in which standard and
statistical GP are compared in terms of average size of trees in the overall
population.
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Fig. 2 a Comparison of SGP and GP accuracy, b Comparison of SGP and GP bloat control

4.3 Diversity and SGP

In this subsection, we want to investigate the correlation between diversity and
fitness in SGP, using both the phenotypic and genotypic diversity as defined in the
diversity section, and the Spearman correlation, defined later in this section.

Figure 3a shows the phenotypic entropy for SGP in comparison with the
standard GP. It can be seen that SGP has a higher phenotypic diversity than the
standard GP, probably because the CB crossover operator increases the rate of
constructive crossover. In addition to that, CB mutation decreases the rate of
ineffective mutation and increases the rate of constructive mutation. Thus, in SGP,
the probability of generating offspring, which are better than its parents is higher
than in standard GP. Furthermore, VB editing is effective in eliminating the introns
and this could help to significantly decrease the rate of neutral genetic operations.

In a sub-optimal tree, higher nodes are more correlated to the regression
function f. Hence, in CB crossover the higher nodes of the trees have more chance
to be selected as a swapping subtrees. In the measure of genotypic diversity the
higher nodes of trees have more influence, because the coefficient K is less than 1
(here is 0.5) . Therefore, as can be seen in Fig. 3b, in SGP the genotypic diversity
is higher than in GP.

A second set of experiments aims to answer to the hard question whether
populations with higher phenotypic or genotypic diversity can obtain a better
solution. In practice, we want to investigate the correlation between the fitness and
these measures of diversity.

Similar to [1], Spearman correlation is adopted in order to determinate if a
relation between fitness and diversity exists. The Spearman correlation can be

6 EN: &
defined as 1 — w7, where d; is the difference between the rank of the best fitness
and the rank of the diversity of population i. The population that have a better
fitness (less MSE) have a greater fitness rank. Similarly, the diversity rank is
higher for the population having higher diversity.
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Fig. 3 Phenotypic and genotypic entropy in GP and SGP populations

Figure 4 illustrates the Spearman correlation between the fitness and the phe-
notypic entropy and the correlation between the fitness and the genotypic entropy.
Each point in the graphs depicts the correlation between 30 populations, collected
from 30 independent runs in the different phases of the evolutive process.

As can be seen in Fig. 4a, for all benchmarks, at the beginning, as the popu-
lation is randomly created there is no positive (or negative) correlation between
fitness and diversity. Afterwards, a positive correlation can be found both for SGP
and GP, then the correlation decreases and no significant correlation can be found.
This is probably due, in accordance with the results found in the chapter of Burke,
to the presence of many local optima.

In the case of genotypic diversity (see Fig. 4b) in SGP, in very early genera-
tions the correlation between the fitness and genotypic entropy is positive. After
these early generations, the correlation becomes lower and close to zero and
afterward becomes negative. In the experimental results of Burke et al., a similar
behavior have been evidenced.
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Fig. 4 a Correlation between fitness and phenotypic diversity, b Correlation between fitness and
genotypic diversity
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Our investigation results are similar to those of [1]. There is a positive corre-
lation between the phenotypic entropy and fitness and a negative correlation
between genotypic diversity and fitness.

It should be considered that, the correlation coefficient represents the associa-
tion between fitness and diversity, not the causality. This means that, for example,
higher phenotypic diversity is not necessarily the cause of better fitness. However,
better performance is observed with higher phenotypic diversity. Burke et al. [1]
expressed that crossover and selection methods have very important roles in
constructing the structures of GP population. Any simple implementation differ-
ence may change the diversity of the population. Therefore, care must be taken
when inferring causality from diversity.

5 Conclusions

This chapter proposed a new GP paradigm, Statistical Genetic Programming,
exploiting the statistical information of the population in order to improve the
accuracy of GP, mainly for symbolic regression problems. Experiments conducted
on four symbolic regression problems confirm the improvement obtained using the
new paradigm. A diversity analysis, based on genotypic and phenotypic diversity
measures and on the study of correlation coefficients obtains results comparable
with other classical model of GP, with the exception of the capacity of SGP to
maintain a higher genotypic diversity. Future works will be conducted in order to
try to understand better the relation between the performance of SGP and diversity
and to study the different contributions of the three operators introduced.
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