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Abstract This work treats the single machine scheduling problem in which the setup
time depends on the sequence and the job family. The objective is to minimize the
makespan and the total weighted tardiness. In order to solve the problem two multi-
objective algorithms are analyzed: one based on Multi-objective Variable Neigh-
borhood Search (MOVNS) and another on Pareto Iterated Local Search (PILS). Two
literature algorithms based on MOVNS are adapted to solve the problem, resulting in
the MOVNS_Ottoni and MOVNS_Arroyo variants. Also, a new perturbation
procedure for the PILS is proposed, yielding the PILS1 variant. Computational
experiments done over randomly generated instances show that PILS1 is statisti-
cally better than all other algorithms in relation to the cardinality, average distance,
maximum distance, difference of hypervolume and epsilon metrics.
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1 Introduction

Scheduling problems have been extensively studied in the literature. This fact is
due to at least two aspects. The first one is the practical interest, since there are
various applications on this class of problems in industry field, as for example,
textile [11], electronics [15] and iron [21]. The other aspect that interests the study
of this kind of problem is the theoretical interest, once most of the scheduling
problems belong to the class of NP-hard problems [3].

Although the problem of scheduling jobs involves various objectives, in most of
the researches in this field only one objective is considered. When more than one is
considered, usually it is defined only one objective represented by the linear
combination of involved objectives, thus, the problem is treated normally in a
single-objective approach.

This work discusses the scheduling problem in single machines, in which the
setup time of the machine depends on the scheduling and family of the jobs.
The grouping of the jobs in the family occurs, for example, in the iron field. In [4],
the author shows a process of manufacturing iron products (corner, rebar, bar, etc.)
in the lamination sector, in which jobs are grouped in families in accordance with
the similarity of the products. In this case, the products from same family are those
which differ between themselves by the thickness. On those circumstances the
setup time is so short and unimportant when compared to the processing time of
jobs that is usual to consider it equivalent to zero. The advantage of making this
grouping, thus, is that the jobs which belong to the same family, when processed
sequentially, do not need setup time.

The problem in hand takes two objectives into account: makespan and total
weighted tardiness minimization. It means that instead of looking for a solution
which satisfies one or other objective separately, the main goal is to obtain a set of
non-dominated solutions, this way each solution that belongs to this set is not
worse than any other, considering both objectives simultaneously.

Noticing the computational complexity of the scheduling problems, the most
used methods to solve them are metaheuristics. Reviews in literature show that
methods inspired by the process of natural evolution, such as Non-dominated
Sorting Genetic Algorithm II— NSGA-II [7] and Strength Pareto Approach—
SPEA2 [25] are among the most used when multi-objective optimization is con-
cerned. On the other hand, recently it were discovered reports of successful
applications of multi-objective methods based on local search, such as Multi-
objective Variable Neighborhood Search—MOVNS [9] and Pareto Iterated Local
Search—PILS [10], as shown in the works of [1, 18] and [20]. In this last, for
example, it is observed a superiority of PILS over SPEA2.
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Due to the good performance of the algorithms in similar problems, in this work
the multi-objective algorithms MOVNS and PILS are tested to solve the scheduling
problem at hand. The MOVNS algorithms of [1] and [20] were adapted to solve the
problem, giving birth to the MOVNS_Ottoni and MOVNS_Arroyo variants,
respectively. Furthermore, a new perturbation procedure is proposed for PILS,
giving birth to the PILS1 variant. Computational experiments showed that the last
algorithm outperforms the other tested algorithms.

The rest of this work is organized as follows. In Sect. 2 the problem charac-
teristics are described. Section 3 presents the proposed multi-objective algorithms,
and in Sect. 4 the used test instances are described as well as the metrics used to
assess and compare the developed algorithms. Also in Sect. 4, the results of the
accomplished experiments are presented and analyzed. Section 5 concludes the
work.

2 Problem Description

The problem in focus can be defined as follows: there is a set J ¼ f1; 2; 3; . . .; ng
with n jobs that have to be scheduled in a single machine at the starting point zero.
Each job j 2 J has a processing time pj, a due date dj and a weight for tardiness bj.
The jobs are grouped in families f according to their characteristics and each
family i has ni jobs. A setup time sik is required between the execution of two
consecutive jobs of different families i and k and, if they are from the same family,
no setup time is necessary. Given a sequence p, for each job j a tardiness Tj is
associated. Since Cj is the completion time of the job j, its tardiness is calculated
by Eq. (1):

Tj ¼ max fCj � dj; 0g ð1Þ

The objectives of the problem in focus are to minimize the makespan f1ðpÞ and the
total weighted tardiness f2ðpÞ, simultaneously. The values of f1ðpÞ and f2ðpÞ are
calculated by Eqs. (2) and (3):

f1ðpÞ ¼ max
16j6n

fCjg ð2Þ

f2ðpÞ ¼
X

16j6n

bjTj ð3Þ
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3 Methodology

A solution is represented by a sequence p ¼ fp1; p2; . . .; pk; . . .; png in which pk

indicates the kth job to be done.
The proposed algorithms begin with a set of non-dominated solutions generated

by four different heuristics based on the following dispatching rules [22]: Earliest
Due Date (EDD) rule, generating a scheduling of jobs in a non-decreasing order of
their due dates; Shortest Processing Time (SPT) rule, generating a scheduling of
jobs in a non-decreasing order of their processing time; Longest Processing Time
(LPT) rule, generating a scheduling of jobs in a non-increasing order of their
processing time; Minimum Slack Time (MST) rule, generating a scheduling of jobs
in a non-decreasing order of the difference between the due date and processing
time.

In order to explore the solution space of the problem, insertion and exchange
movements are applied changing the scheduling of the jobs, as follows.

Given a sequence p ¼ fp1; p2; . . .; png, the insertion move of a job px consists
in moving this job to a position y (y 6¼ x e y 6¼ x� 1). The group of insertion
movements in a sequence p defines the neighborhood NIðpÞ which is composed by
(n - 1)2 solutions.

Given a sequence p ¼ fp1; p2; ; png, the exchanging move between two jobs px

and py consists in moving the job px to the position y and the job py to the position
x. The group of exchanging movements in a sequence p defines the neighborhood

NTðpÞ, formed by n�ðn�1Þ
2 solutions.

3.1 Algorithms Based on MOVNS

The Multi-objective Variable Neighborhood Search (MOVNS) is an optimization
multi-objective algorithm proposed in [9] and the metaheuristic Variable Neigh-
borhood Search—VNS [19].

Variants of MOVNS Algorithm In literature there are two variants of the
MOVNS algorithm. The first one, named as MOVNS_Ottoni, was proposed by
[20] and consists in adding an intensification procedure to the original MOVNS. The
second variant of MOVNS, named MOVNS_Arroyo, was proposed by [1] and
consists in adding another different intensification.

3.2 Algorithms Based on PILS

Pareto Iterated Local Search—PILSis an optimization multi-objective algorithm
proposed by [10], with a structure based on the meta-heuristic Iterated Local
Search—ILS [17]. PILS basic pseudo-code is presented in Algorithm 1.
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In Algorithm 1, initially it is obtained a set of non-dominated solutions (ND)
(line 1), using four different heuristics described previously. After this, one of the
solutions of the set ND is selected randomly (line 2). In each iteration of the
external loop (lines 3–27) all neighbors of the current solution are explored (lines
5–17). If a neighbor solution dominates the current solution, then this neighbor
solution becomes the new current solution, the neighborhoods are randomly
reordered and the procedure returns to the first neighborhood of the new generated
order. This procedure is repeated while there are non-visited solutions in set ND.
After all solutions of set ND are visited—when the algorithm is in an local opti-
mum concerning the explored neighborhood—is a solution is randomly selected
from set ND (line 23) and a perturbation is applied (line 24), as described as
follows. After this, all neighborhood of the current solution is explored (lines
5–17). In the case that all neighbors of the solution generated through the per-
turbation are dominated by any solution of set ND, then the perturbation procedure
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is repeated. The most external loop (lines 3–27) is repeated while the stopping
criterion is not met.

A solution is perturbed in order to explore other local optima. The original
perturbation strategy of PILS, from [10], works in the following way: initially a
solution p from the set ND is randomly selected. Then, a position j� n� 4 and its
four consecutively jobs of p are randomly chosen, i.e., positions j, jþ 1, jþ 2 and
jþ 3. A perturbed solution s00 is then generated by applying an exchanging move
on the jobs in the positions j and jþ 3, as well as the jobs in the positions jþ 1 and
jþ 2. This way, the jobs before j and the jobs ahead of jþ 3 are kept in their
respective positions after the perturbation application.

In this work, the perturbation procedure of a solution (line 24 from Algo-
rithm 1) has been modified when concerning the proposal of [10]. The perturbation
is applied in levels, varying from 1 to ðn=2� 1Þ. In each level p, pþ 1 modifi-
cations are made on the solution. This way, on the lowest pertubation level two
exchanges are applied while on the highest level n=2 exchanges are made.

The level p of perturbation increases as the perturbation is not able to generate a
non-dominated solution related to the set ND. The increasing is made by adding a
unit of value to the current level of perturbation. When a non-dominated solution
related to the set ND is found, the perturbation level returns to its lowest value, 1 in
this case. If the perturbation level reaches its maximum value—(n=2� 1)—and it
is still not possible to generate a non-dominated solution in relation to the set ND,
the perturbation level returns to its lowest value. The proposed procedure works as
follows. A solution p from the set ND is randomly selected. Then it is chosen, also
randomly, a subset of consecutive jobs of p on the positions j; jþ 1; . . .;
jþ 2pþ 1. Then, exchanges are applied between the pairs of jobs
ðj; jþ 2pþ 1Þ; ðjþ 1; jþ 2pÞ; . . .; ðjþ p; jþ pþ 1Þ. This way, the procedure
makes pþ 1 exchanging moves on each call from the perturbation procedure. The
PILS algorithm modified as such was named PILS1.

4 Computational Experiments

All algorithms were coded on C++ language and the tests were done in a Intel
�

CoreTM 2 Quad 2.4 GHz with 6GB RAM.
The stopping criterion of each algorithm is a maximum CPU time proportional

to the size of the instance. This criterion is common in literature and it has been
established as 1000� n ms, in which n is the number of jobs of the instance. For
each instance 30 tests were performed, each one with a different random seed.

4.1 Instances

To assess the algorithms, instances were generated in a random way and with
uniform distribution. As in [14], the number of jobs is a integer number
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n 2 f60; 80; 100g, the number of families f 2 f2; 3; 4; 5g and the processing time
is an integer number in the interval ½1; 99�. The due date of the jobs was generated
as in [2], being defined in the interval ð0; h

P
pjÞ, with h 2 f0:5; 1:5; 2:5; 3:5g.

Finally, the setup time between jobs families are integer numbers whose values
belong to three classes of intervals: class S ½10; 20�; class M ½51; 100� and class L
½101; 200�.

The formation of such setup time intervals is a suggestion proposed in [13]. The
class S setup time is relatively smaller than the average processing time. The class
M setup time is close to the average processing time while the class L setup time is
relatively bigger than the average processing time.

By combining the parameters of the number of jobs, number of families,
number of intervals to the due dates and the number of classes of intervals to the
setup time, an amount of 144 different instances were generated.Note that, for each
n, 48 instances were generated.

4.2 Performance Assessment Metrics

The comparison of two sets of non-dominated points, A and B, obtained respec-
tively through two optimization multi-objective algorithms is not a trivial task.
Many performance assessment metrics have been proposed on literature [6, 8, 12,
23]. However, these metrics must be chosen in a proper way to make a fair
comparison of algorithms.

In this work, five performance assessment metrics are used and they are called:
cardinality [12], average distance [5], maximum distance [16], hypervolume [24]
and epsilon [8]. In [8] it is shown that the hypervolume and epsilon metrics
provide trustworthy measures, especially when two algorithms have similar
performances.

The quality of a set of non-dominated points obtained by an algorithm, in a
given instance, is assessed in relation to the set composed by all non-dominated
points found during all experiments. This is called the set of reference points R.

4.3 Results

The results presented on the following tables were obtained by the developed
algorithms with different evaluation metrics. In the first column of these tables is
indicated the group n of 48 instances (with number of jobs n). In the other columns
the results of each algorithm are presented, with 30 algorithm executions. For each
metric the average and best results are presented so as the average of the results in
all instances.
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Table 1 presents the average and best results obtained in 30 runs of the algo-
rithms considering the cardinality metric. As can be seen from Table 1, PILS1
algorithm is able to generate a superior number of non-dominated solutions
compared to the other algorithms. Besides this, the number of reference solutions
generated by the PILS1 algorithm is, in average, at least seven times higher than
the one generated by any other algorithm.

Table 2 presents the average and best results in 30 runs of the algorithms
considering the average distance metric.

From Table 2 we can conclude that the set of non-dominated solutions pro-
duced by the algorithm PILS1 is closer to the reference set than the other
algorithms.

Table 3 presents the results obtained by the implemented algorithms consid-
ering the maximum distance metric.

Table 1 Cardinality metric results

n Algorithm

MOVNS MOVNS_Ottoni MOVNS_Arroyo PILS PILS1

Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best

60 2.18 12.89 2.79 15.40 3.21 17.24 2.78 10.08 32.82 61.07
80 0.25 3.41 0.56 8.67 0.54 9.86 0.36 4.61 11.64 50.10
100 0.07 2.13 0.15 3.97 0.37 8.36 0.15 2.55 4.40 53.87
Average 0.83 6.15 1.17 9.35 1.37 11.82 1.10 5.74 16.29 55.02

Table 2 Average distance metric

n Algorithm

MOVNS MOVNS_Ottoni MOVNS_Arroyo PILS PILS1

Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best

60 4.18 2.44 3.90 2.22 3.78 2.18 4.72 3.27 1.20 0.25
80 5.55 2.62 4.92 2.32 4.83 2.27 6.22 3.82 1.74 0.35
100 7.12 3.34 6.08 2.68 5.92 2.42 7.19 4.14 2.85 0.39
Average 5.62 2.80 4.97 2.41 4.85 2.29 6.04 3.74 1.93 0.33

Table 3 Maximum distance metric

n Algorithm

MOVNS MOVNS_Ottoni MOVNS_Arroyo PILS PILS1

Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best

60 10.22 7.57 10.05 7.73 9.86 7.53 11.07 9.38 5.43 1.03
80 9.16 6.20 8.68 6.01 8.58 5.80 10.00 7.80 5.23 1.05
100 8.71 4.77 7.85 4.03 7.67 3.87 9.05 5.89 4.68 1.04
Average 9.36 6.18 8.86 5.92 8.70 5.73 10.04 7.69 5.11 1.04
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As noticed in Table 3, the set of non-dominated solutions produced by the
algorithm PILS1 is in a shorter distance from the reference set.

Table 4 presents the average and best results for the algorithms considering the
hypervolume difference metric.

On Table 4 it is verified that the formed area between the points from the
PILS1 algorithm solution set and the points from the non-dominated set are the
smallest ones in comparison to the other algorithms. It means that the PILS1
algorithm produces a better cover of the reference set R.

Table 5 presents the average and best results obtained by the algorithms related
to the epsilon metric.

From Table 5 it is noticed that the algorithm PILS1 is the one which produces
the smallest values to the epsilon metric, indicating that the non-dominated
solutions generated by this algorithm are closer to the reference set R.

We also apply the non-parametrical Kruskal–Wallis test in order to verify the
statistical superiority of the PILS1 algorithm. According to this test, there is
statistical difference between the pairs of algorithms: MOVNS � PILS1, MOV-
NS_Ottoni � PILS1, MOVNS_Arroyo � PILS1 and PILS � PILS1.

5 Conclusions

This work dealt with the scheduling problem in single machine where the setup time
of the jobs depends on the sequence and on the family, and there are two optimi-
zation criteria to be satisfied: makespan and total weight tardiness minimization.

Table 4 Hypervolume difference metric
n Algorithm

MOVNS MOVNS_Ottoni MOVNS_Arroyo PILS PILS1

Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best

60 1060.92 556.08 996.74 498.32 969.70 482.68 1205.04 806.87 267.09 14.74
80 1375.61 660.69 1239.66 568.42 1212.16 534.70 1548.32 968.64 433.27 33.90
100 1618.76 767.46 1406.73 601.10 1367.94 527.21 1677.25 1015.85 705.22 45.01
Average 1351.76 661.41 1214.37 555.95 1183.26 514.86 1476.87 930.45 468.53 31.22

Table 5 Epsilon metric

n Algorithm

MOVNS MOVNS_Ottoni MOVNS_Arroyo PILS PILS1

Avg. Best Avg. Best Avg. Best Avg. Best Avg. Best

60 1.40 1.21 1.37 1.19 1.36 1.18 1.45 1.30 1.11 1.03
80 1.20 1.10 1.18 1.08 1.18 1.08 1.21 1.14 1.07 1.02
100 1.16 1.07 1.13 1.06 1.13 1.05 1.14 1.09 1.06 1.01
Average 1.25 1.13 1.23 1.11 1.22 1.11 1.27 1.18 1.08 1.02
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To solve this problem, five multi-objective algorithms based on Pareto Iterated
Local Search (PILS) and Multi-objective Variable Neighborhood Search (MOVNS)
were implemented. Of these algorithms, three are based on the MOVNS; one of them
is the original algorithm and the other two variants of this one found in the liter-
ature. And on the other two remaining algorithms, one is the original PILS and the
second is a variant proposed in this work, named PILS1. This variant consists in
changing the perturbation strategy of PILS.

The algorithms were compared considering Cardinality, Average Distance,
Maximum Distance, Hypervolume Difference and Epsilon metrics. The compu-
tational results performed in generated instances for the problem were validated by
statistical analysis, thus showing that the PILS1 variant is superior to every other
algorithm considering the assessed metrics. This way, it is clear the contribution of
the perturbation procedure proposed in this work.

Acknowledgments The authors would like to thank CNPq and FAPEMIG for the financial
support on the development of this work.

References

1. Arroyo, J.E.C., Ottoni, R.S., Oliveira, A.P.: Multi-objective variable neighborhood search
algorithms for a single machine scheduling problem with distinct due windows. Electron.
Notes Theor. Comput. Sci. 281, 5–19 (2011)

2. Baker, K.R., Magazine, M.J.: Minimizing maximum lateness with job families. Eur. J. Oper.
Res. 127(1), 126–139 (2000)

3. Brucker, P.: Scheduling Algorithms. Springer, Berlin (2007)
4. Bustamante, L.M.: Minimização do custo de antecipação e atraso para o problema de

sequenciamento de uma máquina com tempo de preparação dependente da sequência:
aplicação em uma usina siderúrgica. Dissertação de mestrado, Programa de Pós-Graduação
em Engenharia de Produção, Universidade Federal de Minas Gerais, Belo Horizonte (2007)

5. Czyz _zak, P., Jaszkiewicz, A.: Pareto simulated annealing—a metaheuristic technique for
multiple-objective combinatorial optimization. J. Multi-Criteria Decis. Anal. 7(1), 34–47
(1998)

6. Deb, K., Jain, S.: Running performance metrics for evolutionary multi-objective
optimization. Technical report (2002). doi:10.1.1.9.159

7. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic
algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

8. Fonseca, C.M., Knowles, J.D., Thiele, L., Zitzler, E.: A tutorial on the performance
assessment of stochastic multiobjective optimizers. In: 3rd International Conference on
Evolutionary Multi-Criterion Optimization (EMO), vol. 216 (2005)

9. Geiger, M.J.: Randomised variable neighbourhood search for multi objective optimisation.
In: 4th EU/ME: Design and Evaluation of Advanced Hybrid Meta-Heuristics, pp. 34–42
(2004)

10. Geiger, M.J.: Improvements for multi-objective flow shop scheduling by pareto iterated local
search. In: 8th Metaheuristics International Conference (MIC), pp. 195.1–195.10 (2009)

11. Gendreau, M., Laporte, G., Guimaraes, E.M.: A divide and merge heuristic for the
multiprocessor scheduling problem with sequence dependent setup times. Eur. J. Oper. Res.
133(1), 183–189 (2001)

126 M. F. Rego et al.

http://dx.doi.org/10.1.1.9.159


12. Hansen, M.P., Jaszkiewicz, A.: Evaluating the quality of approximations to the non-
dominated set. IMM, Department of Mathematical Modelling, Technical Universityof
Denmark (1998)

13. Hariri, A.M.A., Potts, C.N.: Single machine scheduling with batch set-up times to minimize
maximum lateness. Ann. Oper. Res. 70, 75–92 (1997)

14. Jin, F., Gupta, J.N.D., Song, S., Wu, C.: Single machine scheduling with sequence-dependent
family setups to minimize maximum lateness. J. Oper. Res. Soc. 61(7), 1181–1189 (2010)

15. Kim, D.W., Kim, K.H., Jang, W., Chen, F.F.: Unrelated parallel machine scheduling with
setup times using simulated annealing. Robot Comput. Integr. Manuf. 18(3–4), 223–231
(2002)

16. Knowles, J., Corne, D.: On metrics for comparing nondominated sets. In: Proceedings of the
Congress on Evolutionary Computation (CEC), vol. 1, pp. 711–716. IEEE (2002)

17. Lourenço, H.R., Martin, O., Stützle, T.: Iterated local search. Handbook of Metaheuristics,
pp. 320–353, Springer, New York (2003)

18. Minella, G., Ruiz, R., Ciavotta, M.: A review and evaluation of multiobjective algorithms for
the flowshop scheduling problem. INFORMS J. Comput. 20(3), 451 (2010)

19. Mladenovic, N., Hansen, P.: Variable neighborhood search. Comput. Oper. Res. 24(11),
1097–1100 (1997)

20. Ottoni, R.S., Arroyo, J.E.C., Santos, A.G.: Algoritmo vns multi-objetivo para um problema
de programação de tarefas em uma máquina com janelas de entrega. In: Simpósio Brasileiro
de Pesquisa Operacional (SBPO), pp. 1801–1812 (2011)

21. Tang, L., Wang, X.: Simultaneously scheduling multiple turns for steel color-coating
production. Eur. J. Oper. Res. 198(3), 715–725 (2009)

22. Valente, J.: An analysis of the importance of appropriate tie breaking rules in dispatch
heuristics. Pesquisa Operacional 26(1), 169–180 (2006)

23. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms:
empirical results. Evol. Comput. 8(2), 173–195 (2000)

24. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms—a
comparative case study. In: Parallel Problem Solving from Nature-PPSN V, pp. 292–301.
Springer, Berlin (1998)

25. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and
the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

Multi-objective Algorithms for the Single Machine Scheduling Problem 127


	11 Multi-objective Algorithms for the Single Machine Scheduling Problem with Sequence-dependent Family Setups
	Abstract
	1…Introduction
	2…Problem Description
	3…Methodology
	3.1 Algorithms Based on MOVNS
	3.2 Algorithms Based on PILS

	4…Computational Experiments
	4.1 Instances
	4.2 Performance Assessment Metrics
	4.3 Results

	5…Conclusions
	Acknowledgments
	References


