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    Abstract     Phytoremediation is a promising technology using plants and microbes 
to clean up contaminated air, soil, and water. Pollutants pose a global threat for 
agricultural production, productivity, wildlife and human health. Environmental 
pollution increasing in many parts of the world. Many methods of preventing, 
removing and or correcting the negative effects of pollutants exist but their applica-
tion has either been poorly implemented or not at all. For phytoremediation selected 
or engineered plants and microbes are used to treat effi ciently low to moderate lev-
els of contamination. 

 Phytoremediation uses the age-long abilities of selected plants and microbes to 
remove pollutants from the environment. Phytoremediation will probably become 
a commercially available technology in many parts of the world including India. 
Currently $6–8 billion a year is spent on environmental cleanup in the US. In the 
United Kingdom £4 million are spent on air pollution control and £1.5 million on 
water-treatment plant, and this cost is expected to increase by 50 % over the next 
5 years. The cost of phytoremediation has been estimated as $25–$100 per ton of 
soil, and $0.60–$6.00 per 1,000 gallons of polluted water, with remediation of 
organics being cheaper than remediation of metals. Phytoremediation also offers 
a permanent  in situ  remediation rather than simply translocating the problem. 
This review focuses on the major concerns such as phytoremediation technolo-
gies, plant and microbes in phytoremediation and, ecological considerations of 
phytoremediation.  
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  List of Abbreviations 

   AM    Arbuscular Mycorrhizae   
  EDTA    Ethylene diamine tetra acetic acid   
  PCBs    Polychlorinated biphenyls   
  PCE    Tetrachloroethylene   
  TCE    Trichloroethylene   
  TNT    2,4,6-Trinitrotoluene   

1           Introduction 

 Phytoremediation is a novel strategy for the removal of toxic contaminants from the 
environment by using selected plants and microbes. This concept is increasingly 
being adopted as it is a cost effective and user-friendly alternative to traditional 
methods of treatment (Pilon-Smits and Freeman  2006 ). Toxic metal pollution and 
xenobiotics in water and soil is a major environmental problem and most conven-
tional remediation approaches do not provide acceptable solutions (Wand et al. 
 2002 ). Rapid growth in population and massive industrialisation in recent years has 
resulted in pollution of the biosphere. Plants and microbes possess some character-
istic features which enable them to absorb from soil and water, such heavy metals 
which are essential for their growth and development (Ghosh and Singh  2005 ). 

 Our planet is increasingly polluted with inorganic and organic compounds, pri-
marily as a result of human activities. While inorganic pollutants occur as natural 
elements in the Earth’s crust and atmosphere, anthropogenic activities such as 
industry, mining, motorized traffi c, agriculture, logging, and military actions pro-
mote their release and concentration in the environment, leading to toxicity (Nriagu 
 1979 ; Wand et al.  2002 ). Organic pollutants in the environment are mostly man- 
made and xenobiotic, which are not normally produced or expected to be present in 
organisms (Pulford and Watson  2008 ). Many of them are toxic or carcinogenic. 
Sources of organic pollutants in the environment include accidental releases of fuels 
and solvents, industrial activities releases chemical and petrochemical, agriculture 
activities releases pesticides and herbicides and military activities releases explo-
sives and chemical weapons, among others. Moreover, polluted sites often contain 
a mixture of both organic and inorganic pollutants (Ensley  2000 ;    Reichenauer and 
Germida  2008 ). Currently $6–8 billion a year is spent on environmental cleanup in 
the US, and $25–50 billion per year worldwide with ejected 173 million tons of 
contaminants annually into the atmosphere (Glass  1999 ; Tsao  2003 ;   http://www.
edwardgoldsmith.org/1072/pollution-costs/2/    ). Most remediation activity still 
makes use of conventional methods such as excavation and reburial, capping, and 
soil washing and burning. However, newly emerging biological cleanup methods, 
such as phytoremediation, are often simpler in design and cheaper to implement 
(Chaudhry et al.  1998 ; Khan  2005 ). Phytoremediation incorporates a range of tech-
nologies that use plants to remove, reduce, degrade, or immobilize environmental 
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pollutants from soil and water, thus restoring contaminated sites to a relatively 
clean, non-toxic environment. The cost of phytoremediation has been estimated as 
$25–$100 per ton of soil, and $0.60–$6.00 per 1,000 gallons of polluted water with 
remediation of organics being cheaper than remediation of metals. In many cases 
phytoremediation has been found to be less than half the price of alternative methods. 
Phytoremediation also offers a permanent in situ remediation rather than simply 
translocating the problem. However phytoremediation is not without its faults, it is 
a process which is dependent on the depth of the roots and the tolerance of the plant 
to the contaminant. Exposure of animals to plants which act as hyperaccumulators 
can also be a concern to environmentalists as herbivorous animals may accumulate 
contaminate particles in their tissues which could in turn affect a whole foodweb 
(  http://arabidopsis.info/students/dom/mainpage.html    ). Phytoremediation depends 
on naturally occurring processes, in which plants detoxify inorganic and organic 
pollutants, via degradation, sequestration, or transformation. The different uses of 
plants and their associated microbes for environmental cleanup are discussed (Salt 
et al.  1998 ; Meagher  2000 ; Pilon-Smits  2005 ; Kramer  2010 ).  

2     Plants and Phytoremediation 

 Plants are chemical factories that infl uence their environment not only by uptake of 
substances but also by exudation of many molecules that are produced in primary 
and secondary metabolism (Pilon-Smits  2005 ; Kramer  2010 ). This lively chemical 
and physical interaction of plants with their surrounding environment can be used 
for the remediation of contaminated sites. The contaminants may be taken up and 
metabolized by plants, immobilized on roots, or degraded by microorganisms living 
in the areas around the root of the plants. The methods that use plants for the reme-
diation of contaminated sites are categorized under the term “phytoremediation”. 
The broader term “phytotechnology” is also used; however, this includes other 
methods such as constructed wetlands or ground cover plants for minimizing erosion 
(Zeng-Yei et al.  2010 ).  

3     Phytoremediation Technologies 

 Phytoremediation explores plant’s innate biological mechanisms for human benefi t. 
The subsets of this technology as applicable to remediation process are: 

3.1     Phytoextraction 

 Phytoextraction is the removal of pollutants by the roots of plants, followed by 
translocation to above ground plant tissues, which are subsequently harvested 
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(Weyens et al.  2009 ). Continuous phytoextraction uses plants that accumulate high 
levels of pollutants over their entire lifetime. Induced phytoextraction enhances pol-
lutant accumulation towards the end of the plant’s lifetime, when they attain their 
maximal biomass, by adding chelators to the soil that reversibly bind the pollutant 
(usually a metal), releasing it from the soil and making it available for plant uptake. 
The technique is especially useful when dealing with toxic pollutants that cannot be 
biodegraded, such as metals, metalloids, and radionuclides (Dowling and Doty 
 2009 ). One category of plants that shows potential for phytoextraction, either as a 
gene source or for direct use, are the so-called hyper accumulators, plants that accu-
mulate toxic elements to levels that are at least 100-fold higher than non- accumulator 
species (Baker and Brooks  1989 ; Peer et al.  2005 ). Hyper accumulator plants tend 
to grow slowly, which limits their usefulness for phytoremediation. Nevertheless, 
their growth rate may be improved through selective breeding (Chaney et al.  2007 ), 
and the transfer of metal hyper accumulation genes to high-biomass, fast growing 
species may also help to circumvent the problem (Le Duc et al.  2004 ,  2006 ). This 
technique saves tremendous remediation costs by accumulating low levels of con-
tamination from a widespread area to an easily severable medium. Plants that are 
promising for phyto-extraction include the mustard plant and some varieties of 
broccoli and cabbage, which have the required tissue mass to absorb large quantities 
of metal, tend to pull the metal up into their shoots, and grow relatively quickly 
(Nakamura et al.  2008 ; Bi et al.  2011 ). Nickel and zinc appear to be most easily 
absorbed, although preliminary results for copper and cadmium are encouraging. 
The plants involved must have a relatively short lifecycle to facilitate the process 
which must be economically viable (Kramer et al.  1996 ).  

3.2     Phytotransformation 

 It is the process by which plants chemically transform contaminants to more stable, 
less toxic, or less mobile forms. Metals like chromium can be reduced from the 
carcinogenic, highly mobile hexavalent form to the less toxic, non carcinogenic, 
less mobile trivalent form that easily binds to organic plant matter and renders the 
chromium fairly inert (Lee et al.  2006 ; Newman et al.  1997 ). The phyto- 
transformation activities of plant mainly done by enzymes or enzyme co-factors 
(Dec and Bollag  1990 ). Dec and Bollag ( 1994 ) describe plants that can degrade 
aromatic rings in the absence of micro-organisms. Polychlorinated biphenyls 
(PCBs) have been metabolized by sterile plant tissues. Phenols have been degraded 
by plants such as potato ( Solanum tuberosum ),and white radish ( Raphanus sativus ) 
that contains peroxidase (Dec and Bollag  1994 ; Roper et al.  1996 ). Poplar trees 
( Populus  spp.) are capable of transforming trichloroethylene in soil and ground 
water (Newman et al.  1997 ; Rosselli et al.  2003 ). Enzymes of particular interest for 
phytoremediation include: (1) dehalogenase (transformation of chlorinated com-
pounds) (2) peroxidase (transformation of phenolic compounds) (3) nitroreductase 
(transformation of explosives and other nitrated compounds) (4) nitrilase 
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(transformation of cyanated aromatic compounds) and (5) phosphatise (transformation 
of organophosphate pesticides) (Frova  2003 ; Cobbett and Goldsbrough  2002 ; 
Fletcher et al.  2005 ; Subramanian et al.  2006 ). A list of important enzymes of plant 
involved in phytoremediation process listed in Table  1 .

3.3        Phytostabilization 

 In this process plant minimize the mobility and migration of potential contaminants 
in soils. This process takes advantage of plant roots ability to alter soil environment 
conditions, such as pH and soil moisture content (EPA  1998 ,  1999 ; Kramer et al. 
 2000 ). Many root exudates cause metals to precipitate, thus reducing bioavailability. 
This is the most experimental form of phytoremediation, but has potential applica-
bility for many metals, especially lead, chromium, and mercury are stabilized in the 
soil (Cunningham et al.  1995 ) and reduce the interaction of these contaminants with 
associated biota. The success of phyto-remediation is dependent on the potential of 
the plants to yield high biomass and withstand the metal stress. Besides, the metal 
bioavailability in rhizosphere soil is considered to be another critical factor that 
determines the effi ciency of metal translocation and phytostabilization process (Ma 
et al.  2011a ). 

 In recent years, several chemical amendments, such as ethylene diamine tetra 
acetic acid (EDTA), limestone have been used to enhance phyto-stabilization 
process (Barrutia et al.  2010 ; Wu et al.  2011 ). Even though these amendments 
increase the effi ciency of phytostabilization process, some chemical amendments 

   Table 1    Important    enzymes of plant useful in transforming organic compounds   

 Sl.No.  Enzyme 
 Plants known to produce 
enzymatic activity  Application 

 1  Dehalogenase  Hybrid poplar ( Populus  spp.), algae 
(various spp.), parrot feather 
( Myriophyllum aquaticum ) 

 Dehalogenates chlorinated 
solvents 

 2  Laccase  Stonewort ( Nitella  spp.), parrot-
feather ( Myriophyllum 
aquaticum ) 

 Cleaves aromatic ring after TNT is 
reduced to triaminotoluene 

 3  Nitrilase  Willow ( Salix  spp.)  Cleaves cyanide groups from 
aromatic rings 

 4  Nitroreductase  Hybrid poplar ( Populus  spp.), 
Stonewort ( Nitella  spp.), parrot 
feather ( Myriophyllum 
aquaticum ) 

 Reduces nitro groups on explo-
sives and other nitroaromatic 
compounds, and removes 
nitrogen from rings structures 

 5  Peroxidase  Horseradish ( Armoracia rusticana  
P. Gaertner, Meyer & Scherb) 

 Degradation of phenols (mainly 
used in wastewater treatment) 

 6  Phosphatase  Giant duckweed ( Spirodela 
polyrhiza ) 

 Cleaves phosphate groups from 
large organophosphate 
pesticides 
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(e.g., EDTA) are not only phytotoxic (Evangelou et al.  2007 ) but also toxic to 
benefi cial soil microbes that play important role in plant growth and development 
(Muhlbachova  2009 ; Ultra et al.  2005 ).  

3.4     Phytovolatilization 

 Phytovolatilization is a mechanism by which plants convert a contaminant into a 
volatile form, thereby removing the contaminant from the soil or water (Singh 
et al.  1980 ; Toro et al.  2006 ; Terry et al.  1992 ) at the contaminated site. In this 
process plants, possibly in association with microorganisms, can convert sele-
nium to dimethyl selenide which is the non toxic form (Kumar et al.  1995 ; Brooks 
et al.  1998 ). Dimethyl selenide is a less toxic, volatile form of selenium. 
Phytovolatilization may be a useful, inexpensive means of removing selenium 
from sites contaminated with high concentration selenium wastes (Zayed et al. 
 1998 ; Zhang and Moore  1997 ; Pilon-Smits and LeDuc  2009 ). Similarly, some 
transgenic plants (e.g.,  Arabidopsis thaliana ) have converted organic and inor-
ganic mercury salts to the volatile, elemental form (Watanabe  1997 ; van Hoewyk 
et al.  2008 ; Zeng-Yei et al.  2010 ).  

3.5     Rhizodegradation 

 Rhizodegradation is a biological treatment of a contaminant by enhanced bacte-
rial and fungal activity in the rhizosphere of certain vascular plants. The rhizo-
sphere is a zone of increased microbial density and activity at the root/surface, 
and was described originally for legumes by Lorenz Hiltner in 1904 (Curl and 
Truelove  1986 ; Khan  2005 ). Plants and micro-organisms often have symbiotic 
relationships making the root zone or rhizosphere an area of very active microbial 
activity (Anderson et al.  1993 ; Anderson and Coats  1994 ; Schnoor et al.  1995 ; 
Siciliano and Germida  1998a ,  b ; Khan  2005 ). Plants can moderate the geochemi-
cal environment in the rhizosphere, providing ideal conditions for bacteria and 
fungi to grow and degrade organic contaminants. Plant litter and root exudates 
provide nutrients such as nitrate and phosphate that reduce or eliminate the need 
for costly fertilizer additives. Plant roots penetrate the soil, providing zones of 
aeration and stimulate aerobic biodegradation (Moorehead et al.  1998 ; Singer 
et al.  2003 ; Newman and Reynolds  2004 ). Many plant molecules released by root 
die back and exudation resemble common contaminants chemically and can be 
used as co-substrates. The phenolic substances released by plants have been found 
to stimulate the growth of   Polychlorinated biphenyl     (PCB) degrading bacteria 
(Fletcher and Hedge  1995 ; Fletcher et al.  1995 ; Aken  2008 ; Aken et al.  2010 ). 
Recent studies have described enhanced degradation of penta-chlorophenolin the 
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rhizosphere of wheat grass ( Agropyroncristatum ) (Ferro et al.  1994 ; Alkorta and 
Garbisu  2001 ), increased initial mineralization of surfactants in soil-plant cores 
(Knabel and Vestal  1992 ), and enhanced degradation of   Trichloroethylene     (TCE) 
in soils collected from the rhizospheres. Anderson et al. ( 1993 ) provides a review 
of microbial degradation in the rhizosphere. Thus, current research suggests the 
interaction between plants and soil microbes may be an important factor infl uenc-
ing biological remediation of contaminated soils. 

 Rhizofi ltration: Rhizofi ltration uses plant roots to fi lter contaminants directly out 
of waste streams, in either a hydroponic or a constructed wetland setting. 
Rhizofi ltration is also suitable for inorganics, as the plant material can be replaced 
periodically. Erosion and leaching often mobilize soil contaminants, resulting in 
additional aerial or waterborne pollution. This process is used to reduce contamina-
tion in natural wetlands and estuary areas although the technology has been extended 
to engineered applications like gray water and wastewater treatment. It also includes 
the use of plants to absorb, concentrate, and remove toxic metals from polluted 
streams. Many submerged and fl oating aquatic plants are particularly adept for rhi-
zofi ltration. Also, fl ow-through rhizofi ltration systems can be designed for remov-
ing contaminants from water by pumping the water through a trough planted with 
contaminant accumulating plants (Knox et al.  1984 ; EPA  2001 ). The water moves 
through the cycle until it is clean enough to be discharged. However, metals and 
other contaminants become concentrated in plant biomass, which eventually must 
be disposed (Table  2 ).

   Table 2    Commonly used plant species in phytoremediation of organic compounds   

 Name of the Plant  Common Name  Contaminant  Reference 

 ( Hordeum  v ulgare  
L. cv. Klages) 

 Barley  Hexachlorobenzene, PCBs, 
Pentachlorobenzene, 
Trichlorobenzene 

 McFarlane et al. 
( 1987 ) 

  Panicum antidotale,  
 Panicum maximum,  
 Pennisetum 
Purpureum,   Vetiveria 
zizynoides  etc 

 Forage grasses  Chlorinated benzoic acids  S   iciliano and Germida 
( 1998a ) 

  Myriophyllum aquaticum   Parrot feather  Tetrachloroethane (PCE), 
Trichloroethane (TCE), 
TNT 

 Best et al. ( 1997 ) 

  Populus hybrids   Hybrid poplar  Atrazine, nitrobenzene, 
TCE, TNT 

 Burken and Schnoor 
( 1997 ) 

  Bromus catharticus   Prairie grass  2-chlorobenzoic acid  Topp et al. ( 1989 ) 
  Glycine max  (L.) Merr. 

cv Fiskby v 
 Soyabean  Bromacil, nitrobenzene, 

phenol 
 Fletcher et al. ( 1990 ) 

  Myriophyllum spicatum   Eurasian 
watermilfoil 

 TNT  Hughes et al. ( 1997 ) 

  Helianthus annuus   Sun fl ower  Cd, Cr, and Ni  Turgut et al. ( 2004 ) 
  Jatropha curcas   Baigaba  Soil contaminated with 

lubricating oil 
 Agamuthua et al. 

( 2010 ) 
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4         Characteristics of Plant Species for Phytoremediation 

 Populations of metal-tolerant, hyper accumulating plants can be found in naturally 
occurring metal-rich sites (Baker and Brooks  1989 ). However, these plants are not 
ideal for phyto-remediation since they are usually small and have a low biomass 
production. In contrast, plants with good growth usually show low metal accumula-
tion capability as well as low tolerance to heavy metals. 

 A plant suitable for phytoremediation should possess the following character-
istics: -

    1.    Ability to accumulate the metal (s) intended to be extracted, preferably in the 
above ground parts   

   2.    Plants which do not translocate metals to the above-ground parts could be useful 
for phytostabilization and landscape recreation   

   3.    Tolerance to the metal concentrations accumulated   
   4.    Fastgrowth and effective for metal accumulating biomass and be ideally repul-

sive to herbivores to avoid the escape of accumulated metal (loid)s to the food 
chain   

   5.    Have a widely distributed and highly-branched root system   
   6.    Easy to cultivate and have a wide geographic distribution   
   7.    Easily harvestable      

5     Transgenic Plants and Phytoremediation 

 Transgenic plants are genetically modifi ed organisms. In genetic engineering, plants 
are induced to take up a piece of DNA containing one or a few genes originating 
from either the same plant species or from any different species, including bacteria 
or animals (Kassel et al.  2002 ; Ruiz et al.  2003 ). The foreign piece of DNA is usu-
ally integrated into the nuclear genome, but can also be engineered into the genome 
of the chloroplast. Foreign DNA may cause an existing enzymatic activity to become 
up-regulated (over expression) or down-regulated (knockout/knockdown), or may 
introduce an entirely new enzymatic activity altogether. The expression of the intro-
duced gene can be regulated by using different promoters. The gene product, a 
protein, may be present at all times, in all tissues (constitutive expression), or only 
in specifi c tissues (only in roots) or at specifi c times (only in the presence of light or 
a chemical inducer) (Cherian and Margaridaoliveira  2005 ). Moreover, using differ-
ent targeting sequences, which function as “address labels”, the protein may be 
directed to different cellular compartments, such as the chloroplast, the vacuole, or 
the cell wall. In addition to the gene of interest, a marker gene is usually included in 
the gene construct so that transgenics can be selected for after the transformation 
event. Usually these marker genes confer herbicide or antibiotic resistance. The 
introduced genes integrate into the host DNA and are inherited by the offspring like 
any other gene. In the context of phytoremediation, it is desirable to engineer 
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high- biomass producing, fast-growing plants with an enhanced capacity to tolerate 
pollutants. In addition, if a pollutant is remediated via accumulation, as is often the 
case for inorganics, transgenics may be engineered to possess improved pollutant 
uptake and root shoot translocation abilities. If the pollutant is remediated by degra-
dation, as organics often are, enzymes that facilitate degradation in either the plant 
tissue or the rhizosphere (the region just outside of the root) may be over expressed. 
In cases where pollutants are volatilized, enzymes involved in the volatilization 
process may be over expressed. If a transgenic approach is to be used to breed plants 
with superior phytoremediation properties, it is necessary to understand the under-
lying mechanisms involved. Once potential rate-limiting steps have been identifi ed 
by means of physiological and biochemical experiments, the specifi c membrane 
transporters or enzymes responsible can be singled out for over expression. If the 
genes encoding these proteins are available from any organism, they can be intro-
duced into the plant and the transgenics can be compared with the wild type with 
respect to pollutant remediation. A great deal of research has been carried out to 
investigate mechanisms involved in plant uptake of inorganic and organic pollutants 
and their fate in the plant (Meagher  2000 ; Burken  2003 ). Generally, inorganics are 
taken up by transporters for essential elements, advertently if they are indeed essen-
tial, or in advertently if they are chemically similar to essential elements. Once 
inside the plant they may be detoxifi ed by chelation and by compartmentation in a 
safe place such as the vacuole. Organics can move passively across plant mem-
branes if they have the right degree of hydrophobicity, corresponding to a log Kow 
(octanol: water partition coeffi cient) of 0.5–3.0 (Wu et al.  2006 ). More hydrophilic 
organics cannot pass the hydrophobic interior of membranes passively, and there are 
usually no suitable transporters if they are foreign to the plant. Organic pollutants 
that do make it into the plant can be detoxifi ed by enzymatic degradation. They may 
also be stored in the vacuole or cell wall, after enzymatic modifi cation and conjuga-
tion to glutathione or glucose, the latter referred to as the “green liver model 
(Sandermann  1994 ; Coleman et al.  1997 ).  

6     Microbes and Phytoremediation 

 A promising alternative to chemical amendments could be the application of 
microbe-mediated processes, in which the microbial metabolites/processes in the 
rhizosphere affect plant metal uptake by altering the mobility and bioavailability 
(Aafi  et al.  2012 ; Glick  2010 ; Ma et al.  2011a ; Miransari  2011 ; Rajkumar et al. 
 2010 ; Wenzel  2009 ; Yang et al.  2012 ). When considering approaches to alter heavy 
metal mobilization, there are several advantages to the use of benefi cial microbes 
rather than chemical amendments because the microbial metabolites are biodegrad-
able, less toxic, and it may be possible to produce them in situ at rhizosphere soils. 
In addition, plant growth promoting substances such as siderophores, plant growth 
hormones, 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase produced by 
plant-associated microbes improve the growth of the plant in metal contaminated 
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soils (Babu and Reddy  2011 ; Glick  2010 ; Glick et al.  2007 ; Kuffner et al.  2008 ; 
Lebeau et al.  2008 ; Luo et al.  2011 ,  2012 ; Ma et al.  2011a ,  b ; Miransari  2011 ; 
Rajkumar et al.  2010 ; Wang et al.  2011 ; Wu et al.  2006 ). Overall the microbial 
activities in the root/rhizosphere soils enhance the effectiveness of phytoremedia-
tion processes in metal contaminated soil by two complementary ways: (i) Direct 
promotion of phytoremediation in which plant associated microbes enhance metal 
translocation (facilitate phytoextraction) or reduce the mobility/availability of metal 
contaminants in the rhizosphere (phytostabilization) and (ii) Indirect promotion of 
phytoremediation in which the microbes confer plant metaltolerance and/or enhance 
the plant biomass production in order to remove/arrest the pollutants. 

 Plant associated-microbes can also immobilize the heavy metals in the rhizo-
sphere through metal reduction reactions. Chatterjee et al. ( 2009 ) reported that the 
inoculation of Cr-resistant bacteria  Cellulosimicrobium cellulans  to seeds of green 
chilli grownin Cr (VI) contaminated soils decreased Cr uptake into the shoot by 
37 % and root by 56 % compared with uninoculated controls. This study indicates 
that bacteria reduced the mobile and toxic Cr (VI) to nontoxic and immobile Cr (III) 
in the soil. According to Abou-Shanab et al. ( 2007 ) the lower Cr translocation from 
root to shoots of water hyacinth is indicative of a Cr reducing potential of rhizo-
sphere microbes. In a similar study Di Gregorio et al. ( 2005 ) demonstrated the Se 
reducing potential of  Stenotrophomonas maltophilia  isolated from the rhizosphere 
of  Astragalus bisulcatus . They reported that this bacterium signifi cantly reduced 
soluble and harmful Se (IV) to insoluble and unavailable Se (0) and thereby reduc-
ing the plant Se uptake. These examples illustrate mechanisms, by which metal 
reducing microbes immobilize metals within the rhizosphere soil and refl ect the 
suitability of these microbes for phytostabilization applications. 

 Besides, the synergistic interaction of metal oxidizing and reducing microbes on 
heavy metal mobilization in contaminated soils has also been studied. Beolchini 
et al. ( 2009 ) reported the inoculation of Fe-reducing bacteria and the Fe/S oxidizing 
bacteria together signifi cantly increased the mobility of Cu, Cd, Hg and Zn by 90 % 
and they attributed this effect to the coupled and synergistic metabolism of oxidiz-
ing and reducing microbes. Though these results open new perspectives for the 
bioremediation technology for metal mobilization, further investigations are needed 
to utilize such bacteria in phytoextraction practices. 

6.1     Endophytic Bacteria and Phytoremediation 

 Endophyte-assisted phytoremediation is a promising new fi eld to improve reme-
diation by utilizing microorganisms that live within plants to improve plant 
growth, increase stress tolerance, and degrade pollutants. These are the bacteria 
colonizing the internal tissues of plants without causing symptomatic infections 
or negative effects on their host (Schulz and Boyle  2006 ). Endophytic bacteria 
reside in apoplasm or symplasm. Although bacterial endophytes exist in plants 
variably and transiently (van Overbeek and van Elsas  2008 ), they are often 

K.K. Behera



75

capable of triggering physiological changes that promote the growth and development 
of the plant (Conrath et al.  2002 ).In general, the benefi cial effects of endophytes 
are greater than those of many rhizobacteria (Pillay and Nowak  1997 ) and these 
might be aggravated when the plant is growing under either biotic or abiotic 
stress conditions (Barka et al.  2002 ; Hardoim et al.  2008 ). Endophytic bacteria 
have been isolated from many different plant species (Lodewyckx et al.  2002 ; 
Idris et al.  2004 ; Barzanti et al.  2007 ; Sheng et al.  2008 ; Mastretta et al.  2009 ); 
in some cases, they may confer to the plant higher tolerance to heavy metal stress 
and may stimulate host plant growth through several mechanisms including bio-
logical control, induction of systemic resistance in plants to pathogens, nitrogen 
fi xation, production of growth regulators, and enhancement of mineral nutrients 
and water uptake (Ryan et al.  2009 ). Additionally observed benefi cial effects due 
to bacterial endophytes inoculation are plant physiological changes including 
accumulation of osmolytes and osmotic adjustment, stomatal regulation, reduced 
membrane potentials, as well as changes in phospholipid content in the cell 
membranes (Compant et al.  2005 ). Further, the endophytic bacteria isolated 
from metal hyper accumulating plants exhibit tolerance to high metal concentra-
tions (Idris et al.  2004 ). This may be due to the presence of high concentration of 
heavy metals in hyper accumulators, modulating endophytes to resist/adapt to 
such environmental conditions. It is also possible that the metal hyper accumu-
lating plants may simultaneously be colonized by different metal-resistant 
 endophytic bacteria ranging wide variety of gram-positive and gram-negative 
bacteria (Rajkumar et al.  2009 ).  

6.2     Arbuscular Mycorrhizae and Phytoremediation 

 AM fungi are ubiquitous soil microbes occurring in almost all habitats and climates, 
including metal contaminated soils (Chaudhry and Khan  2002 ; Mastretta et al. 
 2006 ) and are considered essential for the survival and growth of plants growing in 
nutrient especially phosphorus defi cient derelict soils. However, polluted waste-
lands contain reduced population diversity and numbers of autochthonous AM 
strains which are heavy metal tolerant (Chaudhry and Khan  2003 ). Studies with AM 
fungi have focused on their ability to enhance nutrient uptake in a nutrient defi cient 
soil and have ignored the role they may play in phytoremediation. The prospect of 
fungal symbionts existing in metal contaminated soils has important implications 
for phytoremediation (mycorrhizo-remediation) of metal contaminated soils as AM 
fungi help plant growth through enhanced nutrient uptake. Plant species belonging 
to plant families  Chenopodiaceae ,  Cruciferaceae ,  Plumbaginaceae ,  Juncaceae , 
 Juncaginaceae ,  Amaranthaceae  and few members of  Fabaceae , are believed not to 
form a symbiosis with AM (Smith and Read  1997 ). In some cases, arbuscular 
mycorrhizal fungi have been shown to increase uptake of metals (Liao et al.  2003 ; 
Whitfi eld et al.  2004 ; Citterio et al.  2005 ) and arsenic (Liu et al.  2005 ; Leung 
et al.  2006 ) in plants but other studies showed no effect (Trotta et al.  2006 ; 
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Wu et al.  2007 ) or decreased concentrations in plant tissues. The contrasting results 
are diffi cult to evaluate and may be partly due to different experimental settings 
(Liu et al.  2005 ; Leung et al.  2006 ) versus fi eld studies (Trotta et al.  2006 ; Wu et al. 
 2007 ) as in the case of arsenic uptake in  Pteris vittata  inoculated with arbuscular 
mycorhizal fungi.  

6.3     Importance of Endophytic Bacteria 

     (i)    Genetic engineering of endophytic bacteria is easier than the genetic engineer-
ing of plants. In addition, if strains are selected that can successfully colonize 
multiple plants, only one bacterial line would need to be created.   

   (ii)    Gene expression within endophytes might be useful as a site-monitoring 
tool. Using plants as soil and groundwater samplers would yield both active 
and passive sampling characteristics at a low cost. Specifi c gene expression 
within endophytes, such as that possible with quantitative polymerase 
chain reaction, might then be an effective measurement tool. This approach 
would lessen the need for expensive sampling and analysis on heteroge-
neous sites.   

   (iii)    Bacterial endophytes might function more effectively than bacteria added to 
soil would because of a process known as bioaugmentation. The plant provides 
aready-made environment for endophytic bacteria so competition pressure 
against colonization of the desired organism, as often occurs in soils, would be 
reduced.   

   (iv)    If bacterial lines are carefully selected so that the strains are at a competitive 
disadvantage when not living as a plant endophyte, the movement of engi-
neered genes in the environment would be greatly reduced.       

7     Advantage and Disadvantage of Phytoremediation 

 Advantages  Disadvantages 

 It works on a variety of organic 
and inorganic compounds 

 It may take several years to remediate 

 It can be either in  situ / ex situ   It may depends on climatic conditions 
 The technique is easy to implement 

and maintain 
 The technique restricted to sites with shallow 

contamination within rooting zone 
 Less costly compared to other treatment 

methods 
 Harvested biomass from phytoextraction may contain 

hazardous waste 
 Ecofriendly and aesthetically pleasing 

to the public 
 Consumption of contaminated plant tissue is also a 

concern 
 Reduces the amount wastes to be 

landfi lled 
 Possible effect on the food chain 
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8        Ecological Considerations 

 Many ecological issues need to be evaluated when developing a remediation strategy 
for a polluted site. In particular, one has to consider how the phytoremediation 
efforts might affect local ecological relationships. As described above and shown in 
Fig.  1 , phytoremediation-related processes can change the location or chemical 
makeup of contaminants in the polluted area. The question is, how do those pro-
cesses affect the ecological interactions among the biota in the ecosystem? The 
choice of plant species for remediation will, of course, greatly infl uence which eco-
logical partners and interactions will be present at the site, and consequently the fate 
of the pollutant. The direct ecological partners of phytoremediator plants include 
bacteria, fungi, animals, and other plants, all occurring inside, on, or in the vicinity 
of the roots and shoots of the phytoremediator plants (Fig.  1 ). These partners may 
be affected positively or negatively by the ongoing phytoremediation process. If the 
plants stabilize or degrade the pollutant, there by limiting its bioavailability and 
concentration, the phytoremediation process will probably benefi t other organisms 
in the area. If, on the other hand, the plants accumulate the pollutant or its degrada-
tion products in their tissues, this may adversely affect microorganisms that live on 
or inside the plant (Angle and Heckman  1986 ), as well as root and shoot herbivores, 
and pollinators. Volatilization of a pollutant will simultaneously dilute and disperse 
the pollutant, which may affect ecosystems both on and off the site (Li et al.  2003 ; 
Lai et al.  2008 ). In addition to the direct ecological partners of the phytoremediator 
plants, the phytoremediation processes may also affect other trophic levels. If a 

  Fig. 1    Schematic overview of phytoremediation methods. Shown on the  right  are some ecological 
partners of the plants that may infl uence phytoremediation       
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pollutant is accumulated by the plant, this may facilitate its entry into the food 
chain, as depicted in Fig.  1 . Conversely, these ecological partners may affect the 
remediation process positively or negatively, by interacting with the pollutant 
directly or with the plants. Herbivores or pathogens may hamper plant growth and 
thus the phytoremediation effi ciency. On the other hand, rhizosphere or endophytic 
microorganisms may make pollutants more bio available for plant uptake, or may 
assist in the biodegradation process. While it is known that plant–microbe consortia 
often work together in remediation of organic pollutants (Olson et al.  2003 ; Barac 
et al.  2004 ; Van Aken et al.  2004 ; Taghavi et al.  2005 ), much still remains to be 
discovered about the nature of the interactions and the molecular mechanisms 
involved (e.g., signal molecules, genes induced).

   Chaney et al. ( 1997 ) calculated that metal tolerance and hyper accumulation 
would be more important to phytoremediation than high biomass production. For an 
effective development of phytoremediation, each element must be considered sepa-
rately because of its unique soil and plant chemistry. On the other hand, metals 
rarely occur alone and adaptive tolerance may be needed for several metals simulta-
neously, even though phytoextraction of only one metal would be the goal. In some 
cases it might be desirable also to extract more than one metal at the same time. To 
merge the high metalloid accumulation capacity with such preferable plant anatomy 
and growth characteristics, efforts are being made for the genetic manipulation of 
candidate plants in order to improve their uptake, translocation and tolerance.  

9     Conclusion 

 A polluted site and pollutant poses a risk to the environment as well as to the biota. 
This risk is correlated with the toxicity and concentration of the pollutant, the likeli-
ness of its mobilization and spread by water and wind, and the proximity of sensi-
tive and interaction to the ecosystems. The remediation strategies available for site 
specifi c cleanup will vary in their effectiveness in alleviating the existing risks and 
in the characteristics of their associated risks, and will also have different timelines 
and price tags. For each individual site, these initial risks will need to be addressed 
and evaluated in order to design an optimal remediation approach. Once the reme-
diation strategy is decided, steps must be taken to lessen the associated risks. In the 
case of phytoremediation, careful choice of plant species and management practices 
are key to promoting ecological restoration and preventing pollutant dispersal. 
Where possible, native plant species with effective remediation properties and that 
provide natural hydraulic control (e.g., trees) and soil stabilization (e.g., grasses) 
should be selected. Drip irrigation can be used to prevent leaching, and fencing will 
minimize pollutant entry into the food chain. Phytoremediation is an interdisciplinary 
technology that will benefi t from research in many different areas. Much still 
remains to be discovered about the biological processes that underlie a plant’s ability 
to detoxify and accumulate pollutants. Better knowledge of the biochemical mecha-
nisms involved may lead to: (1) the identifi cation of novel genes and the subsequent 
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development of transgenic plants with superior remediation capacities; (2) a better 
understanding of the ecological interactions involved (e.g., plant microbe interactions); 
(3) the effect of the remediation process on the existing ecological interactions; and 
(4) the entry and movement of the pollutant in the ecosystem. In addition to being 
desirable from a fundamental biological perspective, this knowledge will help 
improve risk assessment during the design of remediation plans (including the 
additional risks of transgenic plants) as well as alleviation of the associated risks 
during remediation.     
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