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Abstract We measure contagion potential and stability of banking system on a
randomized version of the credit contagion model by Steinbacher M, Steinbacher
M, Steinbacher M (2012) Credit contagion in financial markets: a network-based
approach. Available via SSRN. http://papers.ssrn.com/sol3/papers.cfm?abstract id=
2068716. Cited 30 Jan 2013. We introduce two estimators of the contagion
potential of banks (liquidity-loss potential and ˛-criticality index (Steinbacher M,
Steinbacher M, Steinbacher M (2012) Credit contagion in financial markets: a
network-based approach. Available via SSRN. http://papers.ssrn.com/sol3/papers.
cfm?abstract id=2068716. Cited 30 Jan 2013)) and introduce Shannon’s entropy as
a stability estimator. Our approach is systemic in that it enables an overall estimation
of the capacity of the banking system to provide liquidity. Mechanism developed can
be employed for measuring systemic risk of banking system as a whole.

1 Introduction

Schweitzer et al. [15] acknowledge that

We need an approach that stresses the systemic complexity [. . . ] that can be used to revise
and extend established paradigms in economic theory.
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It would need a special anthology to acknowledge all the authors that have
contributed to the knowledge about dynamics and complexities of current financial
system. Specifically, we focus on structural characteristics of banking system and on
credit default contagion by the use of artificial network approach in order to build a
mechanism for identifying and measuring the stability of the banking system relative
to various degrees and types of mutual exposures of banks. The mechanism is tested
on credit contagion model [16], who model idiosyncratic and systemic shocks and
their propagation through a banking system. The model is based on credit events
that spread along the banking system and subsequently influence the behavior of the
system; credit events are exogenous to simulator and are spurred either by financial
markets, business sector, government, or private individuals for whatever reason.

Banking system is a subsystem of a financial system. The latter resembles
a network of interconnected financial and non-financial agents, whose decisions
are likely to produce a rich and unprecedented structure; see [1] for a reference.
Allen et al. [3] provide an extensive list of references to the research conducted
on various aspects of a financial system and credit contagion, focusing basically
on particular applications. Allen and Gale [2] further study banking system and its
responds to contagion in various network structures based on mutual deposits of
banks, which is partly similar to a setup we use.1 Eisenberg and Noe [8] for instance
develop an algorithm of a natural measure of systemic risk based on waves of
defaults needed to induce failure, while Upper and Worms [17] perform a contagion
test on German banking system and show that the failure of a single bank could have
led to the collapse of up to 15 % of overall banking assets.2 Some [1,12,15] studies
show that banking system is characteristic for a few large banks that are linked with
many smaller banks.

2 The Model

The model is taken from [16]. It consists of a finite set of 40 banks; 14 are big
banks each having over $900 billion in assets, 17 are medium with more than
$100 billion and less than $700 billion in assets, and the rest are small with less

1Consult also the studies by Freixas, Parigi and Rochet [9] about banks under uncertainty of
withdrawals, where banks are connected through interbank credits, the desing of financial networks
that minimize the trade-off between risk sharing and the potential for collapse presented in [14] and
Dasgupta’s [6] study about banks’ crossholdings of deposits as a source of contagion. Furthermore,
reader shall also consult de Vries [7] and his dependency between banks’ portfolios of assets
and potential for systemic breakdown, Haldane and May’s [11] study of contagion in financial
markets, Gai and Kapadia’s [10] model of contagion in financial networks, Cifuentes et al. [5]
model of financial institutions that are connected via portfolio holdings, and the study of Jorion
and Zhang [13], who show credit contagion via counterparty effects.
2See [4] for stress test on Austrian interbank network structure with respect to the default of a
single bank.
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than $100 billion in assets. A cumulative initial value of assets in the network is
$25,951.16 billion and it is the same for all network topologies used in simulations.
Initial capital of all banks from the model is taken as of December 31, 2011 from
banks’ annual reports. Mutual exposures of banks as well as their mortgage lending
are distributed among banks at random and once determined remain the same in all
initial periods of all banking network topologies used.

The banking system is treated as a complex system built by semi-autonomous
agents that make decisions on their own behalf and follow certain generally imposed
rules. Key assumptions of the model are:

1. Liquidity can either be in passive or active mode;
2. Connections among banks represent liquidity flows;
3. Initial default risk of banks is arbitrary and bank-specific;
4. Liquidity is defined in terms of a monetary unit of value.
5. Banks are not allowed to change their strategies (no autonomous change in

portfolios, no autonomous change in lending, no recapitalization, etc.)
6. There is no lender of last resort.
7. Each network exists for T time units.

2.1 Banks

The dynamics of assets of bank i can be viewed as an ordered sequence fai;tgT
tD0

that develops in time t as shown by (1).

ai;t D hi;t C bi;t C ni;t C
X

j 2E.i/

qij;t : (1)

Here ai;t ; hi;t ; bi;t and ni;t denote values of bank i total assets, mortgage loans,
bonds and non-trading assets in time t, while qij;t denotes its holdings of interbank
assets with bank j at the same time. E.i/ is the subset of all liquidity flows from i

to j ; the sum operator in (1) goes over all banks j in which i holds a portion of its
interbank holdings.

The value of capital of bank i develops according to its profits and losses in time
(Table 1). The dynamics can be depicted as

ci;tC1 D ci;t C pi;t (2)

pi;t D ai;t � ai;t�1 (3)

As for the banking network a standard notation from graph theory applies. G is
a directed random graph that consists of the nodes of the set V � Z and let E �
ŒV �2 include all connections in G; a connection is a two-element pair .ij / 2 E .
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Table 1 Banks’ balance
sheet Assets Liabilities

Interbank assets (non-tradable) Equity
Loans to non-banking entities Interbank liabilities
Tradable assets Other debt
Other non-tradable assets

Connections represent the intensity of flows passing from node i to node j W j ¤
i j fj; ig 2 V and vice versa (i W i ¤ j j fi; j g 2 V). Every connection is ascribed
a non-negative real number k that is defined by the transformation f W ŒV �2 ! k 2
f<C ^ 0g. In our case k is expressed in monetary units and represents interbank
liquidity. An overall liquidity in time t is a sum of flows over all connections in the
network in time t :

Kt D
X

jEjt
f .�; �/t (4)

By assumption banks are not allowed to recapitalize losses and in all cases they
go default when the level of capital they hold in their balance sheets falls short of
the obligatory Tier 1 capital in total assets (4 %). Moreover, a default of any bank
from the banking system affects the whole system through mutual connections of
banks with the defaulted bank.

Say, bank j is a debtor of bank i (i.e. .ij / 2 ŒV �2) and denote its debt as qij.
Now, let F 2 V be a non-empty set of all defaulted banks from the banking system G
and let bank j go bankrupt (i.e. j 2 F ) at time t . Bank j deteriorates balance sheet
of i for the amount of wdi that is now under pressure to finance those write-downs.
For the sake of financing those losses bank i uses capital; in this case capital acts as
a protection buffer from default. Its stock of capital evolves as

ci;tC1 D ci;t C pi;t � wdi (5)

wdi D .1 � rri / � qij;t (6)

Here (6) shows an immediate write-down of wd from the balance sheet of bank i
after bank j went bankrupt, while rri D .0; 1/ are partial recoveries; recovery rates
are exogenous and randomly distributed among banks. In principle, the stronger the
exposure against any defaulted debtor and the lower the reserved capital buffer of
the respective creditors, the greater the potential for credit contagion.

We have thus seen how a unit of wdi can cause further losses. This spill-over
depends on the importance of bank that was hit by a liquidity shock. We will
use liquidity loss-potential estimator LLPi and bank specific ˛-criticality index as
measures of influence; see Table 2 for the definitions.
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Table 2 Influence estimators used in simulations

Influence estimator Definition

Liquidity-loss potential LLPi D 1 �
R e.Ki;T =Kt /

0 e� d�

e�1

˛-criticality ˛i D
P

jVj

j D1 aj;T Ca�

i;t
P

jVj

kD1 ak;t

j i 2 F ^ fj; kg 2 V W j ¤ i )

) Ai D
R e˛i

0 e� d�

e�1

Ki;T from the table is time T level of liquidity in the network after bank i went
bankrupt in period t , as given by (4), while aj;T is time T level of assets in the
network (1) and a�

i;t are assets of bank i just before it got bankrupt in time t .
Liquidity loss potential is more volatile than ˛-criticality index and less indica-

tive of changes in network structure; the latter responds to actual defaults of banks,
the former measures changes in liquidity that are not necessarily preceeded by
defaults. Potentially useful is also a ŒE.A/=E.LLP /�r ratio that measures a rate at which
a unit of liquidity lost in banking system r leads to a subsequent loss of a unit of its
assets (i.e. both are under expectations’ operator). In measuring capacity of banking
system to provide liquidity we will make use of a composite influence estimator

CIEr D
hp

E.A/ � E.LLP/
i

r
(7)

Say, each connection of the respective system r carries BIr information about the
default of certain portion of liquidity (or assets, respectively). Now, set composite
influence estimator as a proxy for this influence and define BIr as

BIr D ŒCIE=S.V/�r (8)

2.2 Interbank Connections and Risk

By construction every bank i is given a subset of outgoing links L.i/ W jL.i/j D
li j li � U.0; kˇ�.jVj�1/k/I ˇ D Œ0; 1� to banks debtors from the set of all debtors
d 2 D, such that .id / 2 ŒV �2.

Let each debtor be ascribed a non-negative probability pd D .0; 1/ of defaulting
on its debt and let p be derived from logistic function

p.y/ D 1

1 C e�y
; (9)

where y D f .x1; x2; : : : ; xn/ is a function of specific factors xi from a set of
potential factors that are influencing the behavior of d . Typically p.y/ would be
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Table 3 Risk profiles of
banks Risk group .yi / Share in the population of banks.˛i /

y1 � �5 ˛1

�5 < y2 � �2:5 ˛2

�2:5 < y3 � 0 ˛3

0 < y4 � 2:5 ˛4

2:5 < y5 � 5 ˛5

y6 � 5 ˛6

s.t.
P

i ˛i D 1

obtained by maximum likelihood regression on the logit, the inverse of the logistic
function. It is not our aim to analyze the structure of risk profiles as such. We use
simple heuristics instead and assign y to each debtor d by a neutral mechanism
based on Table 3. Probability to default on its obligation is then calculated from (9).
Defaults of those debtors are independent and shall be drawn as random variables.

In case any debtor defaults, .1 � rrd / share of its liquidity leaves the banking
network. Creditors of defaulted debtors need to recover those losses by their capital,
respectively. This capital turns liquid and becomes available for liquidity needs of
the banking network. If there is sufficient capital held with banks to withstand the
losses, the network will suffer no net outflow of liquidity and vice versa.

Now, let the losses of liquidity caused by the defaulted debtor d to bank i be
denoted by LLid and let p.yid / denote a probability that debtor d from risk group
y defaults on its debt to creditor i . As risk profiles of banks are independent by
assumption, a probability that the banking network looses at least a unit of liquidity
is given as

max fp.yid/g (10)

s.t.

d 2 D ^ .id/ 2 ŒV �2 (11)

This loss of liquidity causes certain instability to the banking network and
increases its vulnerability against further liquidity losses; in case liquidity loss is
large enough it induces serious structural changes (i.e. credit contagion).

2.3 Stability of Banking System

Each unit of liquidity that is released to the interbank by creditor i to debtor d

can be seen as a moving particle xi with strictly positive probability of leaving the
network. Say that Xi is a variable, defined on a sample space S D f0; 1g. Say further
that x D 0 means that particle stays in the network and x D 1 that it leaves. Then
the probability mass function for Xi is defined as
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P.xs/i D Pr.Xi D x/ D Pr.fs 2 S W Xi.s/ D xg/ (12)

Creditor i has jL.i/j debtors d . Should any debtor d default on its debts to
creditor i , all of its connections cease to exist and this liquidity is lost3 (e.g. they
share the bank’s risk). Now, let p.xs D 1/ D p.yid / denote the probability that
bank d goes default and let p hold probabilities pi for every bank to go default.
Hence, we can apply Shannon’s information entropy (13) to p and obtain an array
p� of available bits of information about the defaults for all connections from the
banking network.

H.X/i D �
X

s

ŒP.xs/ � log2 P.xs/�i (13)

The higher the H.X/i the higher uncertainty in predicting the default of bank i .
Distribution function (13) has four turning points important to our analysis:

p�
1 W min ŒH.p�

1 /0=H.p�

1 /00�;

p�
2 W H.p�

2 /0 D 1;

p�
3 W H.p�

3 /0 D �1;

p�
4 W max ŒH.p�

4 /0=H.p�

4 /00�

Based on those turning points and two rules of thumb are seven stability domains as
summarized in Table 4.4 Vector p� carries liquidity-loss potentials and ˛-criticality
of all connections from the network. Stability index of the banking system Vr is
obtained as a weighted average of all values in .p�/r .

S.V/r D .wT � p�/r (14)

where w is a vector of weights.
Ranks of stability and contagion potential of the banking systems are based on

the following corollaries:

1. The higher the stability index, the less stable the system, expected contagion
potential unchanged.

2. The higher the expected contagion potential, the weaker the system in terms of
providing liquidity, stability unchanged.

3. Banks from safe and stable domain are not contagious.
4. Contagion potential and stability are independent.

3Recoveries are kept on creditors’ balance sheets and do not enter the interbank lending market.
437 banks are in the 1st domain with two bordering on the 2nd; one bank is in the 6th domain and
it has relatively weak liquidity loss potential and low ˛-criticality index.
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Table 4 Stability domains

Domain Conditions Description of stability domain

1: P.yid/ D Œ0; 0:025/ )
) HŒP.yid /� D Œ0; 0:169/

Safe and stable. Limited uncertainty.
Eventual default would come as a
surprise as it would carry at most
0.169 bits of unknown information.

2: P.yid/ D Œ0:025; 0:176/ )
) HŒP.yid/� D
Œ0:169; 0:671/

Relatively less safe and less stable domain
than domain 1. Domain with relatively
large volatiliy in terms of risk profiles
and the quality of information
available about banks. Defaults come
at lower surprise than in the previous
domain.

3: P.yid/ D Œ0:176; 1=3/ )
) HŒP.yid/� D

Œ0:671; 0:918/

Stabilized safety at yet lower levels. The
domain is more homogeneous than the
previous one. Some information (at
most 0.329 bits) is available about the
default risk of respective banks. Some
banks from the group might actually
default.

4: P.yid/ D Œ1=3; 2=3/ )
) HŒP.yid/� D Œ0:918; 1�

The most unpredictable domain. The least
information is available about the risk
profiles of banks; we effectively
dispose off only at most 0.082 bits.

5: P.yid/ D Œ2=3; 0:823/ )
) HŒP.yid/� D
Œ0:671; 0:918/

Stabilized to some degree and yet less safe
than previous domain. The domain is
also less homogeneous than the
previous one. Information (at most
0.329 bits) that is available about the
default risk of respective banks is
negative. The majority of banks from
the group might actually default.

6: P.yid/ D Œ0:823; 0:975/ )
) HŒP.yid/� D
Œ0:169; 0:671/

Unsafe and on average relatively stable
domain. The domain shows large
volatiliy in terms of safety and the
quality of information available.
Survival comes at higher surprise than
in the previous domain.

7: P.yid/ D Œ0:975; 1/ )
) HŒP.yid/� D Œ0; 0:169/

Unsafe and stable. Limited uncertainty.
Eventual survival would come as a
surprise as it would carry at most
0.169 bits of unknown information.

3 Results

We tested the stability of 100 independent banking systems consisting of 40 banks.
As for the risk, the majority of banks belong to the safe and stable domain.
Nine banks are somewhat less predictive and bank 18 is unpredictive; it carries
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Fig. 1 Liquidity loss potential (LLPi ) of individual banks in respective topologies. Banks are
indexed on bottom axis and topologies on the left. Right axis shows expected probability of default
(black dots) and Shannon’s entropy (white dots) for the banks as derived from (13)

low to moderate power to disrupt the banking system and spur contagion. On the
other hand, bank 4 carries the strongest power to disrupt the banking system and
cause contagion, but it is well within the safe and stable domain (i.e. tenth safest).
Capacity of banking system to provide liquidity and remain stable thus depends
essentially on the influence and risk profiles of the least stable group of banks.5

Banking system 18 shows the lowest overall stability .SŒV18� D 22:756/; 76 %
of the score is due to banks from domains 3–7 and 28 % of the score is due to its
9 connections with bank 18. The system has 236 connections, making it ninth most
uncertain on average. Excluding safe and stable banks from the score makes the
system 52 the least stable .S.V52j pi > 0:025/ D 17:38/ and followed by system 18
.SŒV18j pi > 0:025� D 17:283/. Figures 1–6 in the sequel confirm a relatively large
potential for disrupting the banking system of some banks. The last two suggest
to remove banks from the safe and stabe domain when ranking banking systems’
contagion potential relative to their stability.

5See Figs. 7 and 8 for expected stability index and the contributions to the overall stability
by stability domains. Figures suggest elimination of the safe and stable domain from further
comparative analysis of stability and contagious potential of banking systems.
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Fig. 2 Expected liquidity loss potential of respective banking system. A line is an ordered
sequence

Fig. 3 ˛-criticality of individual banks. Scaling, topologies and indexation are the same as in
Fig. 1
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Fig. 4 Expected ˛-criticality of respective banking system. The same scales as in Fig. 2. A line is
an ordered (in descending order) sequence

Fig. 5 A structure of stability index (columns; left axis). Black is a contribution of banks from
domains 3–7; gray is the contribution of banks from domain 2 and light gray is the contribution
of banks from domain 1 to the overall score. Lines present expected uncertainty per connection
expressed in available bits of information about its default. Red are banks from domains 3–7;
white banks from 2–7; yellow includes all banks
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Fig. 6 A structure of stability index. Ordered descending per overall score. Scaling and topologies
are the same as in Fig. 7, indexation of bottom axis presents ranks of banking networks, respectively

Prime result of this paper is a distribution of information about the default of any
bank from banking system as measured by BIr ; see Eq. (8). According to the BIr

estimator, banking system 90 has potentially the most fragile connections .BI90 D
0:01616/ and system 52 the least .BI58 D 0:00229/; see Figs. 7–9 for more results).

4 Concluding Remarks

We have constructed a BI estimator for detecting a default potential of each unit
of interbank liability (on average) within any banking system. The estimator is
based on a composite influence estimator and a stability index and it depends on
the quality of information about risk profiles of banks and information about their
mutual exposures. The composite influence estimator is a measure for detecting
the affinity of banking system to loosing its ability for providing liquidity (i.e. it
is a combination of liquidity loss potential and ˛-criticality), while stability index
measures a level of information that is available within the banking system about
the default of any of its banks. The latter is based on Shannon’s information entropy
and can also serve as a tool for detecting the stability domain of banks and banking
systems; we showed an example of its use in this respect and constructed seven
fuzzy stability domains.

We tested the mechanism on a credit contagion model of 40 real banks connected
in 100 random banking systems. Results are robust and the method can be easily
employed to any banking system. Neither econometric nor statistical tests have
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Fig. 7 Stability index (ascending order; left axis) and composite influence estimator (matched to
stability index; right axis) of banking systems, given pi > 0:025

Fig. 8 Estimated contagion influence per one bit of information within the banking system
(descending), given pi > 0:025
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Fig. 9 Ranks of banking systems per their BI estimate (in descending order). Left axis shows
identities of respective banking systems, bottom axis shows their ranks, accordingly

been performed on the final results. However, there is a huge potential to devise
data-based statistical methods for studying the structural characteristics of banking
system and its stability as driven by the network approach.
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