Detecting Accelerometer Placement to Improve Activity Classification
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Abstract—This paper describes a method to improve the
classification of everyday activities through detection of the
location of an accelerometer device on the body. The detection
of the device location allows an activity classification model,
produced using a C4.5 decision tree and specifically tailored
for that location, to be applied. Eight male subjects partici-
pated within the study. Participants wore six tri-axial accele-
rometers, positioned at various locations, whilst performing a
number of everyday activities. A C4.5 decision tree was also
used to detect the location of the accelerometer on the body
which achieved an F-measure of 0.63. Based on this approach
and applying the appropriate activity recognition model for
the detected location improved activity recognition perfor-
mance from an F-measure of 0.36 to 0.62, for the worst case,
when using an activity model trained only one location.
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I. INTRODUCTION

Accelerometers are widely integrated into wearable sys-
tems in order to identify various activities. Previous studies
have reported accuracy levels of 85% to 95% for recogni-
tion rates during ambulation, posture and activities of daily
living (ADL) [1-2]. The majority of these studies have in-
corporated multiple accelerometers attached to different
locations on the body. Whilst this provides sufficient con-
textual information, placing accelerometers in multiple
locations can become cumbersome for the wearer and may
also increase the complexity of the classification problem.
For these reasons, a number of studies have opted to use a
single accelerometer. Generally however, using only one
accelerometer decreases the number of activities that can be
accurately recognized [3].

Incorporation of accelerometer technology is becoming
more common in everyday mobile devices such as mobile
phones, gaming consoles and digital music players. Due to
this, interest in mobile device based activity recognition is
increasing.

Bieber et al. [4] presented a mobile phone application for
identifying physical activities and estimating how many
calories were expended. The majority of work on activity
recognition from mobile devices assumes that the device is
fixed in one location. The classifier is generally both trained

and tested in this location. The phone can, however,
change location on a day-to-day or much more frequent
basis [5]. In such applications, changes in the location of the
device may be detrimental to the performance of the clas-
sifier. This is due to the classifier no longer being able to
accurately classify data from one location when it was
trained on data from another [6]. Approaches for dealing
with this may include the use of features which are inde-
pendent of device location or the use of distinct models
depending on where the device is located [7].

This paper describes a method of detecting the location
of an accelerometer device on the body whilst carrying out a
number of everyday activities. The appropriate activity
classification model for the detected location is then used
for the purposes of activity recognition.

1. METHODS

Eight male subjects volunteered to participate in the
study. Subjects were members of staff and students of the
University of Ulster. Subjects ranged in age from 24 to 33
(mean 26.25, sd £2.86). All subjects provided written in-
formed consent to participate in the study. Subjects com-
pleted a physical activity readiness questionnaire (PAR-Q)
to assess their suitability to take part in the study. The study
was approved by the Faculty of Computing and Engineering
Research Governance Filter Committee at the University of
Ulster. Subjects wore six accelerometers at various loca-
tions on the body as shown in Figure 1. Accelerometers
were fixed to the body, over clothing, using elasticized
strapping and holsters. This is a common method of attach-
ment in activity recognition studies [8].

A. Data Collection

Acceleration data was collected using six Shimmer wire-
less sensor platforms (Shimmer 2R, Realtime Technologies,
Dublin, Ireland). These tri-axial accelerometers had a range
of 6 g and sampled data at 50Hz. This sampling frequency
is viewed as being sufficient for the assessment of daily
physical activity [8].

Data were transmitted via Bluetooth to a notebook com-
puter where it was saved for offline analysis. In order to
achieve synchronization, data was recorded using Shimmer
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Fig. 1 Illustration showing the selected locations for the accelerometers.
These include the chest, lower back, hip, thigh, wrist and foot. Accelerome-
ters were fixed on top of clothing using elasticized strapping and holsters.

sync software (Shimmer sync Version 1.0). This synchro-
nizes time stamp data from each of the six accelerometers.
Prior to beginning the study, devices were calibrated using
standard calibration techniques as described in [9].

Eight activities were studied. These consisted of whole
body activities and postures including walking over ground,
walking and jogging on a motorized treadmill, sitting, lying,
standing and walking up and down stairs. All activities were
maintained for a duration of two minutes with the exception
of walking over ground and climbing stairs. These activities
were carried out over approximately 60 meters and 10
flights of stairs (80 steps). These tasks were repeated in
order to capture sufficient data for analysis. For treadmill
based activities, users walked and jogged at a self selected
comfortable speed. The maximum jogging speed was re-
stricted to 10 km/h given that speeds above this are consi-
dered as running [10]. Data were manually labeled offline
by a human observer.

B. Feature Extraction

Features were extracted from acceleration data using a
window size of 256 samples with 128 samples overlapping
between consecutive windows. Feature extraction on 5.12
second windows with a 50% overlap has demonstrated
reasonable results in previous works [1]. This window size
is capable of capturing complete cycles in repetitive action
activities such as walking, running and climbing stairs.

Mean, root mean square (RMS), periodicity (energy), va-
riance and correlation features were extracted from the x, y
and z axis signal within each window. This provided a total
of 15 features for each window from each accelerometer.
These features have been commonly used in activity recog-
nition studies and have been shown to provide reasonable
accuracies [1, 11]. The mean acceleration value was calcu-
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lated by summing the acceleration values within the win-
dow and then dividing this by the number samples within
the window. The mean was also calculated in a similar
manner for both the y yand z zaxis [1].

Periodicity within a signal is reflected in the frequency
domain. To calculate the periodicity, the energy feature was
calculated [11]. The energy feature, is the sum of the
squared discrete FFT component magnitudes of the signal.
Normalization was achieved by dividing the sum by
the length of the window. The energy feature has been
used previously for recognition of certain postures and
activities [12].

Correlation is particularly useful for discriminating activ-
ities that involve movement in just one dimension [11]. For
example, differentiating walking or running from stair
climbing. Walking and running involves movement in one
dimension whereas climbing involves movement in more
than one dimension. Correlation is calculated as the ratio of
the covariance between each pair of axes and the product of
the standard deviations [14].

C. Classification

Activity recognition on features was performed using a
decision tree (DT) based on the C4.5 rule induction algo-
rithm (C4.5 DT) available in the Weka Machine Learning
Algorithms Toolkit (Version 3.6.7). The C4.5 DT has been
shown to perform well for activity recognition in previous
works [1].

The classifier was trained and tested using a leave-one-
subject-out protocol. In this method the classifier is trained
using features from all but one subject. The classifier is
then tested on the features obtained from the subject who
was excluded from the training set. The leave-one-subject-
out validation was repeated for all eight subjects. Popula-
tion based training methods have been previously used
to classify a number of activities [1]. Having a population
trained activity recognition approach is beneficial as
it removes the need to train the classifier on a specific
individual.

The balanced F-measure was used as the performance in-
dex to evaluate the experimental results. For the test
results, the F-measure is calculated for each activity at
each position. The overall F-measure for the classifier is
computed by averaging the F-measures for all subjects.

In order to evaluate the discriminatory power of each lo-
cation, the F-measure was computed using data obtained
from each accelerometer separately. The performance of the
classifier at each location is presented in Table 1. Results
show that the accelerometer placed at the hip was the most
powerful for recognizing the eight activities studied.
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Table 1 F-measure obtained using the leave-one-subject-out
validation for each location. Figures presented are average
F-measures for all subjects + standard deviation

Location Classifier F-measure (sd)
Chest 0.59  (£0.11)
Foot 0.63  (£0.23)

Hip 0.72  (£0.22)
Lower back 045  (+0.13)
Thigh 0.55  (£0.10)
Wrist 0.67 (£0.19)

In order to investigate the effects of training a classifier
using data from one location and then the device being
moved to another location, a classifier model was built
using the C4.5 DT trained on data from the hip. This model
was then tested on data from the foot, thigh and wrist.
The performance of the classifier was then tested using the
leave-one-subject-out validation method. As expected the
performance of the classifier decreased with an average
decrease in F-measure of 0.47, 0.29 and 0.34 for the foot,
thigh and wrist, respectively (Table 2).

Table 2 F-measure for each classifier when trained on the hip
and tested on the other three locations; foot, thigh, wrist.

Tested on data from: F-measure
Hip 0.72  (£0.22)
Foot 0.25 (0.12)
Thigh 043 (£0.08)
Wrist 0.38  (+0.17)

As previously discussed, the position of the accelerometer
can change throughout the day. In an attempt to alleviate this
problem, the current approach uses the C4.5 DT to identify
the location of the accelerometer on the body. The activity
recognition model for that detected location is then applied,
on an instance by instance basis, in order to improve the
classification accuracy. The same 15 features from the activi-
ty recognition study were used as inputs to the classifier.
Again, leave-one-subject-out validation was applied.
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Fig. 2 Flow diagram illustrating the process used to produce
and select the appropriate activity classification model.

To test this technique the model from the DT was
used to detect the location of the accelerometer from 1440
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instances of features from each of the 8 subjects (30 from
each location). The activity recognition model from the
detected location was then applied to the data on an in-
stance-by-instance basis. For example, if the location DT
detected that features were from the hip, then the activity
recognition model from the hip was applied to that instance.
This process was carried out manually. Figure 2 presents a
summary of the approach.

1. RESULTS

This Section presents the results of the C4.5 DT to detect
the location of the accelerometer. Following this, results
demonstrating the effect of applying the activity recognition
model for specifically detected locations will be presented.

A. Detecting Accelerometer Location

The C4.5 DT produced an average F-measure of 0.57 for
detecting the location of the accelerometer on the body
(Table 3). The confusion matrix, indicates that the classifier
confused data from the lower back with other locations such
as the hip and chest (Table 4). This may be due to similari-
ties in body acceleration obtained from these locations as
they are all located close to the body's centre of mass.

Table 3 Average F-measure of the C4.5 classifier to detect the location
of the accelerometer for all six locations studied.

Accelerometer location F-measure (sd)

Chest 0.64 (+0.27)
Foot 0.67 (+0.23)
Hip 0.66  (0.14)

Thigh 0.61 (0.14)

Wrist 052  (+0.27)

Lower back 0.33  (+0.18)
Average 0.57 (£0.23)

Table 4 Confusion matrix from the C4.5 decision tree for classifying the
location of the accelerometer. All six locations are used as classes.

Classified as Chest | Foot | Hip | Thigh | Wrist Lower
— back
Chest 1223 36 224 158 138 181
Foot 53 1312 87 95 97 316
Hip 108 52 1452 58 113 177
Thigh 74 131 58 1166 339 192
Wrist 100 74 287 161 1090 248
Lower back 191 337 244 225 302 661
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By amalgamating data from the hip, chest and lower back
into one class known as the Torso, the accuracy of the clas-
sifier was improved with an average F-measure of 0.63.
Therefore, the subsequent activity recognition experiments
were carried out using data from four locations; Torso,
Foot, Thigh and Wrist, with the Chest, Hip and Lower back
data combined under the single location of Torso.
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Table 5 F-measure for the C4.5 decision tree in classifying the location
of the accelerometer. Hip, chest and lower back classes are combined
into one class referred to as torso.

Accelerometer Location Average F-measure (sd)

Torso 0.76  (+0.06)
Foot 0.69 (+0.24)
Thigh 0.60 (+0.12)
Wrist 048 (+0.28)
Average 0.63  (£0.21)

B. Activity Recognition

For the 11,520 instances tested, the detected location was
the same as the actual location 67.96% of the time. Table 6
presents a summary of the classifier F-measures obtained
using the activity classification model from the detected
and actual locations, as well as that from each of the four
investigated locations.

The F-measure obtained using the detected location was
comparable to that obtained using the actual activity recogni-
tion model for that location. Using the DT to detect the loca-
tion of the accelerometer improved the activity classification
in comparison to always using the model from the same loca-
tion (i.e. always using a model built with data from the torso,
foot, thigh or wrist). The classifier F-measure improved from
0.36 when using only the thigh activity model to 0.63 when
using the model for the detected location.

Table 6 Average F-measure of the activity recognition using
the model for the detected location, the model for the actual location
and the model for each of the four locations.

Average F-measure

Detected  Actual Hip Foot Thigh Wrist

Stand 0.74 0.72 0.65 0.59 0.72 0.81
(£0.10)  (£0.12) (£0.11) (+0.19) (£0.06) (+0.08)

Walk 0.43 0.46 0.29 0.21 0.18 0.13
free (0.13)  (£0.11) (£0.11) (£0.12) (£0.11) (+0.12)

Walk 0.40 0.42 0.29 0.33 0.16 0.19
tread (£0.19)  (£0.16) (£0.16) (£0.15) (£0.16) (+0.18)

Stairs 0.47 0.52 0.38 0.30 0.33 0.31
Up (£0.10)  (£0.09) (£0.09) (£0.12) (£0.12) (+0.12)

Stairs 0.56 0.58 0.47 0.35 0.23 0.36
down | (£0.14)  (£0.14) (£0.16) (£0.14) (£0.14) (£0.10)

Run 0.93 0.93 0.70 0.30 0.69 0.35
(£0.09)  (x0.07) (£0.04) (£0.16) (+0.05) (£0.13)

Sit 0.59 0.60 0.43 0.42 0.18 0.36
(£0.20)  (£0.12) (£0.21) (£0.25) (£0.15) (+0.09)

Lyin 0.81 0.79 0.79 0.82 0.37 0.50
ying (£0.10)  (£0.14) (£0.09) (£0.06) (£0.21) (+0.25)

Avg 0.62 0.63 0.50 0.41 0.36 0.38
(#0.19)  (#0.17) (#0.19) (£0.20) (+0.23) (x0.21)

IV. CONCLUSION

This work investigated the use of the C4.5 DT algorithm
to detect the location of an accelerometer on the body. The
aim of this was to improve the performance of activity recog-
nition by applying the appropriate activity classification mod-
el for a device placed in that location. Results showed the
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performance of the C4.5 DT in correctly identifying the acce-
lerometer position (F-measure 0.63). This improved the activ-
ity classification, also using a C4.5 DT, when compared to
using a model from only one location. It must be noted, how-
ever, that in this case the orientation of the accelerometer is
fixed. When the accelerometer is housed within a mobile
device, it can change orientation in addition to location. This
further complicates the ability to detect the location of the
accelerometer. One solution may be to examine the use of
features which are not affected by device orientation such as
those associated with the magnitude of acceleration. Results
within this paper are of particular interest for activity recogni-
tion using accelerometers within mobile devices taking into
consideration that for mobile applications, the position of the
accelerometer can change throughout the day.
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