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Abstract—The present work covers the first validation ef-
forts of the EVA Tracking System for the assessment of mini-
mally invasive surgery (MIS) psychomotor skills. Instrument 
movements were recorded for 42 surgeons (4 expert, 22 resi-
dents, 16 novice medical students) and analyzed for a box 
trainer peg transfer task. Construct validation was established 
for 7/9 motion analysis parameters (MAPs). Concurrent vali-
dation was determined for 8/9 MAPs against the TrEndo 
Tracking System. Finally, automatic determination of surgical 
proficiency based on the MAPs was sought by 3 different ap-
proaches to supervised classification (LDA, SVM, ANFIS), 
with accuracy results of 61.9%, 83.3% and 80.9% respectively. 
Results not only reflect on the validation of EVA for skills’ 
assessment, but also on the relevance of motion analysis of 
instruments in the determination of surgical competence. 

Keywords—MIS, competence, assessment, EVA, TrEndo. 

I. INTRODUCTION 

Skills’ acquisition in minimally invasive surgery (MIS) is 
gradually adapting from the mentor-apprentice-based Hals-
tedian paradigm towards structured, objective training and 
assessment programs, where direct involvement of residents 
in real surgeries is delayed until becoming proficient in the 
required skills. Several motivators can be identified behind 
this: media and public awareness towards medical errors, 
the need to reduce costs in hospitals, or the overloaded 
schedules of surgeons [1].  

In this context, the first stages of basic psychomotor 
training take place in controlled laboratory settings by 
means of box trainers and virtual reality simulators [2]. The 
incorporation of tracking technologies allows them to cap-
ture data on the laparoscopic instruments’ movements when 
performing an exercise. This data, when handled properly, 
may yield a series of motion analysis parameters (MAPs) 
providing useful, objective information on performance [3]. 

Tracking technologies for box trainers and VR simulators 
have traditionally relied on sensor-based systems, based on 
optical, electromagnetic or mechanic technologies [4]. 
However, their use may modify the ergonomics and con-
strain movements of the instruments, altering the users’ 
experience and performance. Moreover, transfer of these 

technologies for training and assessment of skills in the OR 
is compromised as they are often bulky, are not easily steri-
lized, may require a clear line of sight (optical devices) or 
be affected by ferromagnetic materials (electromagnetic 
devices), and thus present errors in position tracking [5]. 

The present work covers the first validation efforts of the 
EVA Tracking System for the assessment of MIS psycho-
motor skills. In its current implementation, the tracking 
algorithm allows offline determination of the 3D position of 
the laparoscopic instruments with respect to the endoscope, 
based solely on their physical and geometrical characteris-
tics. The paper will briefly describe the working principles 
of the algorithm, as well as some of the findings of this 
technology when applied to a real training scenario.  

II. MATERIALS AND METHODS 

A. Working Principles 
Tracking of the instruments in EVA works under the fol-

lowing assumptions: 

• Performing color-based segmentation and applying an 
edge filter, instruments may be isolated from the video 
frame. Ideally, a clean image showing the instrument 
edges yields two neighboring peaks in Hough space. 
Detecting these maxima provides information regarding 
borders’ position on the screen [6]. 

• In case of there being two instruments, it is typical in a 
box trainer setting that they will have opposing en-
trance angles. In this case, a division of Hough space 
for positive and negative values of theta can isolate de-
tection of the left and right instruments respectively. 

• Detection of the instrument’s tip in the screen can be 
performed by color-based gradient analysis along its bi-
secting line (obtained from borders’ information) [7]. 

• 3D reconstruction of the tip and orientation information 
is obtained by means of the geometrical properties of 
the instrument [8].  

B. Data Acquisition and Preparation 
A series of experiments were conducted to validate the 

use of EVA for the assessment of MIS psychomotor skills. 
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Forty-two participants (4 expert surgeons, 22 residents, 16 
novice medical students) performed a box trainer task at the 
skillslab of the Leiden University Medical Centre (LUMC, 
Leiden, The Netherlands), where the goal was to place a 
number of chickpeas into different target holes using one 
laparoscopic grasper. Video recordings of performance were 
taken from the laparoscopic feed for offline analysis with 
EVA. Simultaneously, instrument movements were record-
ed with an optical sensor-based tracking system developed 
at the Delft University of Technology (TUDELFT, Delft, 
The Netherlands), the TrEndo [9]. Nine MAPs were record-
ed using both tracking systems (Table 1). 

Table 1 MAPs definition. 

MAP Definition 
Time Total time to perform a task (s). 
Idle time % of time where the instrument is considered to 

be still (speed<5mm/s). 
Path length Total path covered by the instrument (m). 
Depth Total path covered in the instrument’s axis 

direction (m). 
Average speed Rate of change of the instrument’s position 

(mm/s). 
Average acceleration Rate of change of the instrument’s velocity 

(mm/s2). 
Motion smoothness Jerky movements caused by abrupt changes in 

acceleration (m/s
3
). 

Economy of area Ratio between maximum area covered by the in-
strument on the task surface and path length (-) 

Economy of volume Ratio between maximum volume covered by the 
instrument on the setting and path length (-). 

 
Since the purpose of the experiment was to validate the 

task for evaluation purposes, no prior trials were allowed. A 
brief explanation of the task’s objectives was given to par-
ticipants to let them infer, based on their own experience 
and skills, the best strategy to perform it.  

C. Construct and Concurrent Validation 
Construct validation was performed along the three expe-

rience groups (Kruskal-Wallis analysis) and in pairs (Mann-
Whitney test) to measure statistical significant differences 
between MAPs. Differences were considered significant at 
p<0.05. 

Concurrent validation was performed between EVA and 
TrEndo. Pearson’s correlation (ρ) was employed to measure 
the degree of concurrence. Values between 0.4-0.7 were 
considered as medium correlating values, whilst values >0.7 
showed strong correlation between MAPs [10]. 

D. Supervised Classification of Performance 
Three supervised classification techniques were applied 

to discern whether surgical experience may be derived from  
 

performance in box trainer tasks. Participants were arranged 
according to the number of surgeries performed: more than 
10 (Experienced, Ex: 4 experts + 14 residents) and less than 
10 (Non-experienced, NEx: 16 students + 8 residents). 
Based on the 9 MAPs, classifiers yielded a binary output 
according to performance: {S: skilled, NS: not skilled}.  

MAPs were normalized and principal component analy-
sis (PCA) applied to reduce the number of input dimen-
sions. Three different classifiers were tested: linear discri-
minant analysis (LDA), support vector machines (SVM) 
and artificial neuro fuzzy inference systems (ANFIS).  

Leave one out cross validation was performed, in which 
data from all subjects was employed to train the classifiers 
except for one, who was used for validation. The process is 
repeated until each subject has been used both for training 
and testing. The following parameters were sought: 

• Accuracy: % of subjects correctly classified according 
to the input categories. 

• Sensitivity (S): % of Ex classified as S. 
• Specificity (E): % of NEx classified as NS. 
• RMSE: Main error measurement between expected (Ex, 

NEx) and predicted (S, NS) values per classifier. 

Additionally, receiver operator curves (ROC) were ob-
tained, plotting specificity vs. sensitivity based on the post-
erior probability of each classifier. 

Significant differences between the three classifiers were 
sought by means of Cochran´s Q test (p<0.05) to determine 
the degree with which each classifier is coherent with the 
rest when evaluating a participant. For a more intuitive 
representation of this idea, classifier plots were made for 
each technique, in order to show the expected and predicted 
values, as well as their posterior probability. 

Finally, significant differences between classification re-
sults obtained by using TrEndo and EVA for data acquisi-
tion were measured by means of McNemar’s test (p<0.05). 

III. RESULTS 

A. Construct and Concurrent Validation 
Figure 1 graphically reflects results for construct and 

concurrent validation. Construct validation was obtained 
along the three groups for time, path length, depth, average 
speed, average acceleration and economy of area/volume. 

Paired comparisons showed significant differences for all 
valid MAPs between students and residents/experts except 
for average speed, where differences occurred only between 
novice medical students and residents. 

For concurrent validation, all MAPs except motion 
smoothness obtained values of ρ>0.7, reflecting a strong 
correlation between values obtained with TrEndo and EVA. 
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B. Classification Results 
SVM and ANFIS showed the highest accuracy rates 

(Fig.2; Table 2) at 83.3% and 80.9% respectively, and a 
better identification of NEx subjects (91.7% and 87.5% 
respectively). On the other hand, the three classifiers per-
formed similarly on classification of Ex surgeons (72.2%). 
Differences according to Cochran’s test were considered 
significant (p = 0.02). Visual inspection of classifiers’ plots 
(Fig. 3) and accuracy results point at the higher number of 
misclassifications for LDA as possible cause. McNemar test 
for each classifier revealed no significant differences be-
tween using the EVA and TrEndo data. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Fig. 2 ROC curves. Left: EVA. Right: TrEndo. Green: LDA; Blue: SVM; 
Red: ANFIS. X-axis: (1-E), Y-axis: S. 

 
 
 

Fig. 1 Top: Construct validation: Results are expressed as notched box diagrams, in which every box distinguishes lower, median and upper  
quartile value. Significance is shown where the notched sections of the boxes do not overlap each other. N: Novice medical students; R: Resident; E: 

Experts. Bottom: Concurrent validation scores per subject, in order of participation (x-axis). Black: Scores obtained by EVA. Red: Scores obtained by 
TrEndo. 
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Table 2 EVA classification results for the proposed classifiers (boldface). 
In parenthesis, homologous results obtained by TrEndo are given. 

Classifier Accuracy RMSE S E 
LDA 61.9 (61.9) 0.62 (0.62) 72.2 (66.7) 54.2 (58.3)

SVM 83.3 (76.2) 0.41 (0.48) 72.2 (72.2) 91.7 (79.2)

ANFIS 80.9 (76.2) 0.44 (0.48) 72.2 (66.7) 87.5 (83.3)

 

 

Fig. 3 Classifier plots: Top to bottom: LDA, SVM, ANFIS. Default classes 
(NEx=1; Ex=2) are shown as circles (o). Output levels (NS=1; S=2) are 

defined. Probabilistic outputs are shown as dots (•). A threshold for classifi-
cation is set at 1.5, results given as asterisks (*). Blue: NEx; Red: Ex  

IV. DISCUSSION 

This study covers the first validation efforts of the EVA 
Tracking System applied to MIS psychomotor skills’ as-
sessment. Results not only give proof of its usefulness for 
this purpose, but serve as confirmation on the importance of 
motion analysis when determining surgical competence. 

Construct validation was established for 7 out of 9 possi-
ble MAPs. To a greater or lesser extent most of them have 
been featured in the literature and validated for different 
tasks and abilities, and thus this study helps corroborate 
their relevance for assessment purposes [2]. More impor-
tantly, concurrent validation was established with data reg-
istered by the gold standard system employed, the TrEndo. 
In this sense, only motion smoothness did not present sig-
nificant differences between systems. A possible reason for 
this may reside in the post-processing stage of EVA, which 
effectively applies low pass filtering of the signal that dam-
pens the influence of movements’ jerkiness. 

The relevance of motion analysis manifests also in the 
correlation between experience and expertise detected by 

the supervised classifiers. While it is true that SVM and 
ANFIS performed better than LDA for this specific task, the 
former fact is more important at this point of our research 
rather than finding an optimal classifier (if indeed there is 
one). However, certain trends in the data (e.g.: subjects 
misclassified for 2 or 3 classifiers) suggest that other factors 
besides prior experience may be conditioning performance 
of the task, whether subject- (musical aptitudes, stress, etc.) 
or setting-related (box trainer, endoscope position, etc.). 

V. CONCLUSIONS 

The EVA Tracking System has been proven valid for as-
sessment of MIS psychomotor skills. The current MATLAB 
implementation is being migrated to C++/OpenCV to in-
crease processing speed and allow for real time tracking, 
and research continues in order to increase robustness of the 
segmentation stages. Our final goal is to achieve a system 
combining real time tracking and intelligent data analysis to 
provide immediate, relevant feedback on performance in a 
stress-free, patient-safe environment. 
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