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Sébastien Boucksom � Philippe Eyssidieux
Vincent Guedj
Editors

An Introduction to the
Kähler–Ricci Flow

123



Editors
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Preface

In 2010–2011 we organized several meetings of our ANR project MACK. These
consisted of series of lectures centered around the Kähler–Ricci flow, which took
place, respectively, in

• IMT (Toulouse, France), February 2010: mini course by H.-D. Cao:
An introduction to the Kähler–Ricci flow on Fano manifolds;

• LATP (Marseille, France), March 2010: mini course by J. Song:
The Kähler–Ricci flow on complex surfaces;

• CIRM (Luminy, France), February 2011: mini course B. Weinkove:
An introduction to the Kähler–Ricci flow;

• CIRM (Luminy, France), February 2011: mini course J. Song:
Kähler–Ricci flow and the Minimal Model Program;

• IMT (Toulouse, France), June 2011: mini course by D.-H. Phong:
The normalized Kähler–Ricci flow on Fano manifolds;

• IMT (Toulouse, France), June 2011: mini course by S. Boucksom and V. Guedj:
Regularizing properties of the Kähler–Ricci flow;

• FSSM (Marrakech, Morocco), October 2011: mini course by C. Imbert:
Introduction to fully nonlinear parabolic equations;

• FSSM (Marrakech, Morocco), October 2011: mini course by V. Guedj:
Convergence of the Kähler–Ricci flow on Kähler–Einstein Fano manifolds.

There were other lectures on more algebraic aspects (e.g., an introduction to the
Minimal Model Program and finite generation of the canonical ring by S. Druel
at the CIRM), or on elliptic problems (e.g., Moser–Trudinger inequalities by
B. Berndtsson in Marrakech). Some of the speakers have produced a set of lecture
notes, working hard to make them accessible to non-experts. This volume presents
them in a unified way.
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vi Preface

It is a pleasure to thank all the participants of these meetings for their enthusiasm
and for creating a very pleasant atmosphere of work. Special thanks of course to the
following lecturers:

• Sébastien Boucksom (CNRS and IMJ, Paris, France);
• Huai Dong Cao (Lehigh University, Bethlehem, USA);
• Vincent Guedj (IUF and IMT, Toulouse, France)
• Cyril Imbert (CNRS and Université Paris-Est Créteil, France);
• Duong Hong Phong (Columbia University, USA);
• Jian Song (Rutgers University, Piscataway, USA);
• Ben Weinkove (University of California, San Diego, USA).

We acknowledge financial support from the French ANR project MACK. We also
would like to thank the CIRM and their staff for providing wonderful conditions
of work during the thematic month “Complex and Riemannian geometry,” as well
as the LATP and the IMT for providing “professeur invité” positions (resp. for
H.-D. Cao, J. Song, and D.-H. Phong).

Our last meeting in Marrakech was also extremely useful, we thank the orga-
nizers (Said Asserda and Ahmed Zeriahi), the other speakers (B. Berndtsson,
S. Boucksom, A. Broustet, J.-P. Demailly, S. Diverio, N.C. Nguyen, S. Lamy) as
well as all the participants for their help in creating a successful event.

Paris, France S. Boucksom
Grenoble, France P. Eyssidieux
Toulouse, France V. Guedj
1 July 2012
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Chapter 1
Introduction

Sébastien Boucksom, Philippe Eyssidieux, and Vincent Guedj

Abstract This book is the first comprehensive reference on the Kähler–Ricci
flow. It provides an introduction to fully non-linear parabolic equations, to the
Kähler–Ricci flow in general and to Perelman’s estimates in the Fano case, and
also presents the connections with the Minimal Model program.

1.1 Motivation

1.1.1 Some Historical Remarks

According to Weil [Weil57], the notion of a Kähler manifold, introduced by Kähler
in 1933 [Käh33], became important through the work of Hodge [Hod41] that
put on a firm footing the theorems of Lefschetz on the topology of complex
projective manifolds [Lef24]. As Hodge remarks, the introduction of a metric
on a complex projective manifold is a somewhat artificial operation. However
artificial, this operation turned out to be very fruitful. Kodaira developed Hodge’s
ideas into his famous theorem giving a differential geometric characterization of

S. Boucksom (�)
Institut de Mathématiques de Jussieu, CNRS-Université Pierre et Marie Curie, 4 place Jussieu,
75251, Paris, France
e-mail: boucksom@math.jussieu.fr
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Institut Fourier and Institut Universitaire de France, Université Joseph Fourier, 100 rue des Maths,
38402, Saint-Martin d’Hères, France
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2 S. Boucksom et al.

complex projective manifolds; this, together with Hörmander’sL2-estimates for the
N@-equation, now form the basis of a unified approach to complex algebraic geometry
and complex analysis (see for instance the book [Dem09]).

Hodge’s remark raised the question of constructing canonical metrics on complex
projective manifolds (or more generally on compact manifolds of Kähler type).
Obvious candidates for such canonical metrics are Kähler–Einstein metrics that
were actually introduced in [Käh33]. A more sophisticated guess for canonical
Kähler metrics (in a given Kähler class) is Calabi’s theory of extremal metrics. Their
investigation is a very active field nowadays, which lies outside the scope of these
lecture notes except for the Kähler–Einstein case.

1.1.2 Kähler–Einstein Metrics

A Kähler–Einstein metric on a complex manifold X is a Kähler metric g whose
Ricci tensor is proportional to the metric tensor. The Kähler assumption is
unnecessary for this definition to make sense, and Einstein metrics are indeed
classical objects in Riemannian geometry (see [Bes87]). They were introduced in
Lorentzian geometry by Einstein, the proportionality constant being known as the
cosmological constant in that context.

If .X; !/1 is a compact Kähler–Einstein manifold of complex dimension n, the
cosmological constant is essentially

Ns D
Z
X

c1.X/f!gn�1=
Z
X

f!gn;

a topological invariant of the pair .X; f!g/ where f!g 2 H1;1.X;R/ is the
cohomology class of !.

If Ns is negative, the manifold is canonically polarized (i.e. its canonical bundle
KX is ample), and f!g 2 R<0c1.X/. Canonically polarized manifolds form a rather
special class of varieties of general type: in dimension one, a compact Riemann
surface is canonically polarized if and only if its genus g satisfies g � 2 and carries a
unique Kähler–Einstein metric of curvature �1, its hyperbolic metric. By a theorem
of Aubin and Yau, every canonically polarized complex projective manifold carries
a unique Kähler–Einstein metric (up to scaling).

This celebrated work uses the reduction of the Kähler–Einstein equation to
a complex Monge–Ampère equation (a scalar fully nonlinear elliptic equation).
In fact, Kähler’s original article already pointed out that solutions to a complex
Monge–Ampère equation could furnish solutions to Einstein equations (which are
not scalar) and ends with the formulation of the general problem of studying this
equation. He also introduced the locally symmetric metric of the complex ball as a
Kähler–Einstein metric.

1We follow the convention to specify a Kähler metric g on a complex manifold by the associated
closed (1,1)-form !.
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A Kähler–Einstein metric satisfies Ns D 0 if and only if c1.X/ D 0. One then
has to specify the Kähler class of the Kähler–Einstein metric and it is a celebrated
theorem of Yau that, given X a compact Kähler manifold such that c1.X/ D 0,
every Kähler class contains a unique Ricci flat metric [Yau78].

If Ns is positive, the underlying manifold X is Fano and f!g 2 R>0c1.X/.
In dimension one, a Fano manifold is a projective line and its Kähler–Einstein
metrics are the Fubini–Study metrics. The Fano case is well known to be harder,
and an algebro-geometric characterization of Kähler–Einstein Fano manifolds is still
unknown and an intense subject of study. The case of surfaces was settled by Tian
[Tian90] but the three-dimensional case is still open at the time of this writing.2

1.1.3 The Ricci Flow Approach

In Riemannian geometry, Hamilton [Ham82] introduced the Ricci flow

@g

@t
D �2Ric.g/;

and the development of his ideas gave rise to Perelman’s proof of the Poincaré
conjecture in three-dimensional topology. Bando observed that the Kähler condition
is preserved under Hamilton’s Ricci flow, hereby defining the main topic of these
lecture notes: the Kähler–Ricci flow. To achieve this, Bando wrote out a scalar
parabolic equation satisfied by the Kähler potential of the Kähler–Ricci flow. This is
a parabolic version of the complex Monge–Ampère equation solved in [Yau78].

The convergence of the Kähler–Ricci flow to the canonical Kähler–Einstein
metric on a compact Kähler manifold X with c1.X/ < 0 or c1.X/ D 0 was
established by Cao [Cao85], and through the work of many authors the Kähler–Ricci
flow became a major tool in Kähler geometry.

1.1.4 A New Hope?

It turns out that most results on the Kähler–Ricci flow on general type man-
ifolds have been proved assuming that the Minimal Model Program (MMP)
works. Although the canonical singular Kähler–Einstein metric [EGZ09] can be
constructed unconditionnally [BEGZ10], its regularity properties can only be
established using the existence of a minimal model proved in [BCHM10].

2The equivalence between K-polystability and the existence of a Kähler–Einstein metric has
recently been announced by Chen–Donaldson–Sun and Tian, independently.
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In a similar fashion, Song and Tian [ST12] rely on the existence of flips to
establish long time existence of the Kähler–Ricci flow with surgeries on projective
varieties with non-negative Kodaira dimension, and the behaviour of the Iitaka
fibration as predicted by the abundance conjecture to establish convergence to a
canonical current.

An approach to the MMP via Kähler–Einstein geometry had been advocated by
Tsuji in the pre-BCHM era, and Song–Tian’s convergence theorem suggests a way
to construct the Iitaka fibration as the kernel foliation of the limit of the Kähler–Ricci
flow. As far as the MMP for Kähler non-algebraic manifolds is concerned, the
Kähler–Ricci flow is actually one of the few tools that could be used. There is
obviously a long way before these dreams come true.

1.2 Contents

The ambition of these notes is to produce a reference for the foundations of the
Kähler–Ricci flow and a guide to some recent developments. The lack of such a
reference appeared clearly during the workshops that were organized by the editors
of the present volume.

1.2.1 Organisation

The volume is divided into five chapters, as follows.

1.2.2 Chapter 2

The Kähler–Ricci flow being equivalent to a scalar fully nonlinear parabolic partial
differential equation, it is important to have an overview of the general theory of
such equations.

Chapter 2 contains a contribution of C. Imbert and L. Silvestre fulfilling this
need, concentrating on three fundamental problems: Schauder estimates (regularity
theory in Hölder classes), viscosity solutions (existence and uniqueness of weak
solutions), and Harnack inequalities.

1.2.3 Chapter 3

This chapter contains a contribution of Song and Weinkove that surveys the
fundamental estimates in the Kähler–Ricci flow and its long time existence theory.
This lays the basis of the fascinating analytification of the Minimal Model Program
that was conjectured by Tian as a Kähler analogue of Perelman’s approach to
Thurston’s Geometrization Conjecture and established in part in [ST09]. Song and
Weinkove go on discussing their recent contributions in this direction [SW10].
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1.2.4 Chapter 4

In order to connect the Kähler–Ricci flow to the Minimal Model program, it is
necessary to be able to work on varieties with mild singularities (terminal and
Q-factorial, at least), since minimal models of algebraic varieties with non-negative
Kodaira dimension have these kind of singularities in dimension greater than 2.

Chapter 4 contains a contribution of Boucksom and Guedj presenting in detail the
construction of the Kähler–Ricci flow on such mildly singular varieties, following
Song and Tian’s work [ST09]. After passing to a resolution of singularities, the
result boils down to an existence and uniqueness result for certain degenerate
parabolic complex Monge–Ampère equations. An illustration of the regularizing
properties of such equations is proposed along the way, following [SzTo11].

1.2.5 Chapter 5

This chapter contains a contribution of Cao that surveys the Kähler–Ricci flow
on Fano manifolds (long time existence, Li–Yau–Hamilton inequalities, etc.),
culminating with an exposition of Perelman’s estimates.

The latter are of central use in the study of the long time behavior of the (correctly
normalized) Kähler–Ricci flow of Fano manifolds.

1.2.6 Chapter 6

This final chapter, written by Guedj, explains the proof of Perelman’s convergence
theorem: on a Kähler–Einstein Fano manifold without non trivial holomorphic
vector fields, the normalized Kähler–Ricci flow converges in C1 topology to the
unique Kähler–Einstein metric.

As far as weak convergence is concerned, an alternative approach due to
[BBEGZ11] is presented, which can also be used on singular Fano varieties.
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Chapter 2
An Introduction to Fully Nonlinear Parabolic
Equations

Cyril Imbert and Luis Silvestre

Abstract These notes contain a short exposition of selected results about parabolic
equations: Schauder estimates for linear parabolic equations with Hölder coeffi-
cients, some existence, uniqueness and regularity results for viscosity solutions
of fully nonlinear parabolic equations (including degenerate ones), the Harnack
inequality for fully nonlinear uniformly parabolic equations.

2.1 Introduction

The literature about parabolic equations is immense and it is very difficult to have
a complete picture of available results. Very nice books such as [LSU67, Kryl87,
Dong91,Lieb96] are attempt to gather and order the most significant advances in this
wide field. If now one restricts himself to fully nonlinear parabolic equations, the
task is still almost impossible. Indeed, many results proved for parabolic equations
were first proved for elliptic equations and these results are numerous. We recall
that many problems come from geometry; the reader is referred to the survey paper
[Kryl97] where Krylov gives historical and bibliographical landmarks.

In these notes, we will focus on three specific topics concerning parabolic
equations: Schauder estimates for linear parabolic equations (following Safonov
[Saf84] and the textbook by Krylov [Kryl96]), viscosity solutions for fully nonlinear
parabolic equations (see e.g. [CIL92]) and the Harnack inequality for fully nonlinear
uniformly parabolic equations.
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2.1.1 Main Objects and Notation

Geometric Objects

We first consider a connected open bounded set � � R
d . We refer to such a set as a

domain. A domain is C2;˛ if, locally, the boundary of the domain can be represented
as the graph of a function with two derivatives that are ˛-Hölder continuous.

Parabolic equations are considered in cylindrical domain of the form .0; T /��.
The parabolic boundary of .0; T /�� is denoted by @p.0; T /��; we recall that it
is defined as follows

@p.0; T / �� D f0g �� [ .0; T / � @�:

The open ball of Rd centered at x of radius � is denoted by B�.x/. If x D 0, we
simply write B�. The following elementary cylindrical domains play a central role
in the theory: for all � > 0 and x 2 R

d , we define

Q�.t; x/ D .t � �2; t/ � B�.x/:

When we write Q�, we mean Q�.0; 0/. It is also convenient to write

Q�.t; x/ D .t; x/CQ�

and

Q� D �Q1:

A Linear Operator

The general parabolic equation considered in Sect. 2.2 involves the following linear
operator

Lu D
X
i;j

aij.t; x/
@2u

@xi @xj
C
X
i

bi .t; x/
@u

@xi
C c.t; x/u:

The set of d � d real symmetric matrices is denoted by Sd . The identity matrix
is denoted by I . For A;B 2 Sd , A � B means that all the eigenvalues of A�B are
non-negative.

Unknown functions u W .0; T / �� ! R depend on two (set of) variables: t 2 R

and x 2 R
d . It is convenient to use a capital letter X to refer to .t; x/ 2 R

dC1.
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The time derivative of u is either denoted by @u
@t

or @tu or ut . Du denotes the
gradient of the function u with respect to the space variable x. D2u denotes the
Hessian matrix of the function u with respect to x.

The linear operator introduced above can be written as follows

Lu D trace.AD2u/C b � Du C cu

where A D .aij/ij.

Hölder Spaces and Semi-norms

We say that u 2 C0;˛.Q/ for Q � .0; T / � � if u is ˛
2

-Hölder continuous
with respect to time t and ˛-Hölder continuous with respect to space x. The
corresponding semi-norm is denoted by Œu�˛;Q. See Sect. 2.1.4 for details.

2.1.2 Fully Nonlinear Parabolic Equations

We first emphasize the fact that we will not consider systems of parabolic equations;
in other words, we will focus on scalar parabolic equations. This means that the
unknown function u will always be real valued. We also restrict ourselves to second
order parabolic equations.

We consider parabolic equations posed in a domain � � R
d ; hence, unknown

functions u are defined in .0; T / � � with T 2 Œ0;1�. In order to construct
solutions and prove uniqueness for instance, initial and boundary conditions should
be imposed. However, we will very often not specify them.

Fully nonlinear parabolic equations appear in optimal control theory and geom-
etry. Here are several significant examples.

• The Bellman equation

@tu C sup
˛2A

8<
:�

X
i;j

a˛ij.x/
@2u

@xi @xj
C
X
i

b˛i .x/
@u

@xi

9=
;C �u D 0:

• The mean curvature equation

@tu D �u D D2uDu � Du

jDuj2 :
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• The parabolic Monge–Ampère equations proposed by Krylov in [Kryl76]

�@u

@t
det.D2u/ D HdC1

� det.D2u/C
�
@u

@t
CH

�dC1
D 0 (2.1)

� det

�
D2u � @u

@t
I

�
D Hd

where H D H.t; x;Du/ is a nonlinear first order term.
• For the study of the Kähler–Ricci flow, one would like to study:

@u

@t
D ln.det.D2u//: (2.2)

2.1.3 Aim of These Notes

Our goal is to construct solutions and study their regularity. One would like
to construct classical solutions, that is to say solutions such that the derivatives
appearing in the equation exist in the classical sense and satisfy the equation. But
this is not always possible and it is sometimes (very often?) necessary to construct
weak solutions. They are different notions of weak solutions; we will focus in these
notes on so-called viscosity solutions. The advantage is that it is easy to construct
such solutions. One can next try to prove that these solutions are regular.

Before 1988 (date of publication of [Jens88]), it was popular (necessary) to
construct solutions of fully nonlinear elliptic (or parabolic) equations by using the
continuity method. To apply it, it is necessary to get appropriate a priori estimates
(on third derivatives for instance, or on the modulus of continuity of the second
ones).

The situation changed dramatically when Jensen [Jens88] managed to apply the
viscosity solution techniques of Crandall–Lions [CL81] to second order elliptic
and parabolic equations. In particular, he understood how to adapt the so-called
doubling variable techniques to prove uniqueness. Ishii also contributed to this
major breakthrough. The reader is referred to the survey paper [CIL92] for further
details.

Before presenting the viscosity solution techniques and some selected regularity
results for these weak solutions, we will present shortly the classical Schauder
approach to linear parabolic equations.



2 An Introduction to Fully Nonlinear Parabolic Equations 11

2.1.4 Spaces of Hölder Functions

Because we study parabolic equations, Hölder continuity of solutions refers to
uniform continuity with respect to

�.X; Y / D
p

jt � sj C jx � yj

where X D .t; x/ and Y D .s; y/. In other words, solutions are always twice more
regular with respect to the space variable than with respect to the time variable.

Remark 2.1.1 (Important). The reader should keep in mind that, following Krylov
[Kryl96], we choose to write u 2 C0;˛ for functions that are ˛-Hölder continuous
in x and ˛

2
-Hölder continuous in t . This choice is made first to emphasize the link

between regularities with respect to time and space variables, second to simplify
notation.

Let Q � .0; T / �� and ˛ 2 .0; 1�.
• u 2 C0;˛.Q/means that there exists C > 0 s.t. for all .t; x/; .s; y/ 2 Q, we have

ju.t; x/� u.s; y/j � C.jt � sj ˛2 C jx � yj˛/:

In other words, u is ˛
2

-Hölder continuous in t and ˛-Hölder continuous in x.
• u 2 C1;˛.Q/ means that u is ˛C1

2
-Hölder continuous in t and Du is ˛-Hölder

continuous in x.
• u 2 C2;˛.Q/ means that @u

@t
is ˛

2
-Hölder continuous in t and D2u is ˛-Hölder

continuous in x.

We also consider the following norms and semi-norms.

Œu�˛;Q D sup
X;Y 2Q;X¤Y

ju.X/ � u.Y /j
�.X; Y /

juj0;Q D sup
X2Q

ju.X/j

Œu�2C˛;Q D
�
@u

@t

�
˛;Q

C ŒD2u�˛;Q

juj2C˛;Q D juj0;Q C
ˇ̌
ˇ̌@u

@t

ˇ̌
ˇ̌
0;Q

C jDuj0;Q C jD2uj0;Q C Œu�2C˛;Q:

We will use repeatedly the following elementary proposition.

Proposition 2.1.2.

Œuv�˛;Q � juj0;QŒv�˛;Q C jvj0;QŒu�˛;Q
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and for k D 0; 2,

Œu C v�kC˛;Q � Œu�kC˛;Q C Œv�kC˛;Q:

The following proposition implies in particular that in order to control the norm
juj2C˛;Q, it is enough to control juj0;Q and Œu�2C˛;Q.

Proposition 2.1.3 (Interpolation inequalities). For all " > 0, there exists C."/ >
0 s.t. for all u 2 C2;˛ ,

8<
:

j @u
@t

j0;Q � "Œu�2C˛;Q C C."/juj0;Q;
ŒDu�˛;Q � "Œu�2C˛;Q C C."/juj0;Q;
Œu�˛;Q � "Œu�2C˛;Q C C."/juj0;Q:

(2.3)

The following proposition is a precise parabolic statement of the following
elliptic fact: in order to control the Hölder modulus of continuity of the gradient of
u, it is enough to make sure that, around each point, the function u can be perturbed
linearly so that the oscillation of u in a ball of radius r > 0 is of order r1C˛ .

Proposition 2.1.4 (An equivalent semi-norm). There exists C � 1 such that for
all u 2 C2;˛.Q/,

C�1Œu�02C˛;Q � Œu�2C˛;Q � C Œu�02C˛;Q

where

Œu�02C˛;Q D sup
X2Q

sup
�>0

��2�˛ inf
P2P2

ju � P j0;Q�.X/\Q

where

P2 D f˛t C p � x C 1

2
Xx � x C c W ˛; c 2 R; p 2 R

d ; X 2 Sd g:

The reader is referred to [Kryl96] for proofs of the two previous propositions.

2.2 Schauder Estimates for Linear Parabolic Equations

In this first section, we state a fundamental existence and uniqueness result for linear
parabolic equations with Hölder continuous coefficients.

The proof of this theorem is rather long and presenting it completely is out of the
scope of the present lectures notes. Instead, we would like to focus on two particular
aspects: uniqueness and interior estimates.
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The uniqueness of the solution is proved by using a maximum principle
(Sect. 2.2.3), the existence can be obtained through the continuity method. This
method relies on the proof of the “good” a priori estimate (2.4) on anyC2;˛ solution.
This estimate is global in the sense that it deals with what happens at the interior
of .0; T / � � and at its boundary. In Sect. 2.2.5, we focus on what happens in
the interior of the domain. Precisely, we present a complete proof of the interior
Schauder estimate in the general case. It relies on Schauder estimates for parabolic
equations with constant coefficients. The derivation of these estimates are presented
in Sect. 2.2.4 by studying first the heat equation. We present here an argument due
to Safonov circa 1984.

2.2.1 Linear Parabolic Equations

The standing example of linear parabolic equations with constant coefficients is the
heat equation

@u

@t
��u D f

where f is a source term. The general form of a linear parabolic equation with
variable coefficients is the following

@u

@t
�
X
i;j

aij.X/
@2u

@xi@xj
�
X
i

bi .X/
@u

@xi
� c.X/u D 0

where

c � 0

and A.X/ D .aij.X//i;j is a symmetric matrix satisfying one of the following
assumptions

• (Degenerate ellipticity) for all X , A.X/ � 0;
• (Strict ellipticity) there exists � > 0 s.t. for all X , 1 A.X/ � �I ;
• (Uniform ellipticity) there exists ƒ � � > 0 s.t. for all X , �IA.X/ � ƒI .

We recall that I denotes the identity matrix and if A;B 2 Sd , A � B means that all
the eigenvalues of A � B are non-negative.

It is convenient to consider the linear differential operator L defined as follows

Lu D
X
i;j

aij.X/
@2u

@xi@xj
C
X
i

bi .X/
@u

@xi
C c.X/u:
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2.2.2 A Fundamental Existence and Uniqueness Result

In this subsection, we state a fundamental existence and uniqueness result for linear
parabolic equation with Hölder continuous coefficients. Such a result together with
its proof can be found in various forms in several classical monographs such as
[LSU67, Kryl96]. We choose here to present the version given in [Kryl96].

In the following statement, RdC1
C denotes Œ0;C1/ � R

d .

Theorem 2.2.1. If � is a C2;˛ domain and the coefficients A; b; c 2 C˛

..0; T / � �/ and f 2 C˛.RdC1
C /, g 2 C2C˛..0; T / � �/, h 2 C2;˛.Rd /, and

g and h are compatible (see Remark 2.2.3 below), then there exists a unique
solution u 2 C2;˛.Q/ of

8<
:

@u
@t

��u D f in .0; T / ��
u D g on .0;C1/ � @�
u D h on f0g � N�:

In addition,

juj2C˛;.0;T /�� � C.jf j
˛;R

dC1
C

C jgj2C˛;.0;T /�� C jhj2C˛;Rd / (2.4)

where C D C.d; �;K; ˛; �0; diam.�// and K D jAjı;.0;T /�� C jbjı;.0;T /�� C
jcjı;.0;T /�� and �0 is related to the C2;˛ regularity of the boundary of �.

Remark 2.2.2. The inequality (2.4) is called the (global) Schauder a priori estimate.

Remark 2.2.3. The fact that data g and h are compatible has to do with conditions
ensuring that a solution which is regular up to the boundary can be constructed.
Since we will not address these problems, we refer the interested reader to [LSU67,
Kryl96] for a precise definition.

2.2.3 Maximum and Comparison Principles

Maximum principles are powerful tools to study elliptic and parabolic equations.
There are numerous statements which are not equivalent. We choose the follow-
ing one.

Theorem 2.2.4 (Maximum principle). Consider a bounded continuous function
u W .0; T / � � ! R such that @u

@t
exists at each point of .0; T / � � and Du;D2u

exist and are continuous in .0; T / ��.
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If

@u

@t
�Lu � 0 in .0; T / ��

u � 0 on @p.0; T / ��

then u � 0 in .0; T / ��.

Remark 2.2.5. The set @p.0; T / � � is the parabolic boundary of the cylindrical
domain .0; T / ��. Its definition is recalled in the section devoted to notation.

Proof. Fix � > 0 and consider the function v.t; x/ D u.t; x/ � �

T�t . Assume that
v is not non-positive. Then its maximumM on .0; T /�� is positive. It is reached,
and it cannot be attained for t D 0 or x 2 @� since v � u � 0 on @p.0; T / ��. It
can neither be attained for t D T since v ! �1 as t ! T�. We conclude that the
maximum is attained for some t 2 .0; T / and x 2 �. In particular,

0 D @v

@t
.t; x/ D @u

@t
.t; x/ � �

.T � t/2

0 D Dv.t; x/ D Du.t; x/

0 � D2v.t; x/ D D2u.t; x/:

Remark that since A is (uniformly) elliptic, the linear operator satisfies

Lu.t; x/ D trace.AD2u/C b � Du C cu D trace.AD2u/C cu � trace.AD2u/ � 0

since u.t; x/ � v.t; x/ > 0, c � 0, A � 0 and D2u.t; x/ � 0. We now use the fact
that u satisfies @u

@t
� Lu � 0 in .0; T / �� to get the desired contradiction:

�

.T � t/2
D @u

@t
.t; x/ � Lu.t; x/ � 0:

Since � is arbitrary, the proof is complete. ut
We now state two corollaries. The first one will be the starting point of the second
section (Sect. 2.3). In the framework of linear equation, it is a direct consequence of
the previous result.

Corollary 2.2.6 (Comparison principle I). Consider two bounded continuous
functions u and v which are differentiable with respect to time and such that first
and second derivatives with respect to space are continuous. If
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@u

@t
�Lu � f in .0; T / �� (2.5)

@v

@t
�Lv � f in .0; T / ��

and u � v in @pQ, then u � v in .0; T / ��.

Remark 2.2.7. Remark that this corollary implies that as soon as u satisfies (2.5),
it lies below any solution of @u

@t
� Lu D f . This is the reason why it is referred to

as a subsolution of the equation @u
@t

� Lu D f . In the same way, v lies above any
solution and is referred to as a supersolution.

Remark 2.2.8. In view of the previous remark, we can reformulate the result of
the previous corollary as follows: if a subsolution lies below a supersolution at the
parabolic boundary then it lies below in the whole cylindrical domain.

The next result contains a first estimate for solutions of linear parabolic equa-
tions.

Corollary 2.2.9 (A first estimate). Consider a bounded continuous solution u of
@u
@t

� Lu D f in .0; T / ��. Assume moreover that it is differentiable with respect
to time and continuously twice differentiable with respect to space. Then

juj0;.0;T /�� � T jf j0;.0;T /�� C jgjO;@p.0;T /��:

Sketch of proof. Consider v˙ D u ˙ .jgj0;@p.0;T /�� C t jf j0;.0;T /��/ and check that
vC is a supersolution and v� is a subsolution. Then the previous corollary yields the
desired result. ut

2.2.4 Schauder Estimate for the Heat Equation

2.2.4.1 Statement and Corollary

The “interior” Schauder estimate for the heat equation takes the following form.

Theorem 2.2.10. Let ˛ 2 .0; 1/ and consider a C1 function u W RdC1 ! R with
compact support and define f D @u

@t
��u. Then there exists a constant C > 0 only

depending on dimension and ˛ such that

Œu�2C˛;RdC1 � C Œf �˛;RdC1 :

It is then easy to derive a similar “interior” Schauder estimate for linear uniformly
parabolic equation with constant coefficients and no lower order term.
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Corollary 2.2.11. Let ˛ 2 .0; 1/ and assume that A 	 A0 in R
dC1 and b 	 0,

c 	 0. Then there exists a constantC > 0 only depending on dimension and ˛ such
that for any C1 function u with compact support

Œu�2C˛;RdC1 � C Œf �˛;RdC1

where f D @u
@t

� Lu.

Sketch of proof. The proof consists in performing an appropriate change of coor-
dinates. Precisely, we choose P 2 Sd such that A0 D P2 and consider v.t; x/
D u.t; Px/. Then check that �v D trace.A0D2u/ D Lu and use Theorem 2.2.10.

ut

2.2.4.2 Two Useful Facts

Before proving Theorem 2.2.10, we recall two facts about the heat equation. We
recall first that a solution u 2 C1 of

@u

@t
��u D f;

with compact support included in .0;C1/ � R
d , can be represented as

u.t; x/ D
Z t

0

Z
Rd

G.s; y/f .t � s; x � y/ds dy

where

G.t; x/ D 1

.4�t/d=2
e� jxj

2

4t :

We write in short hand

u D G ? f;

keeping in mind that G should be extended by 0 for t < 0 in order to make this
rigorous. This formula can be justified using Fourier analysis for instance.

Fact 1. For any 0 � � � R,

jG ? 1QR.Z0/j0;Q�.Z0/ � CR2

where 1QR.Z0/.Z/ D 1 if Z 2 QR.Z0/ and 0 if not.
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Fact 2. There exists a constant C > 0 such that any solution of @h
@t

D �h inQR.0/

satisfies

ˇ̌
ˇ̌ @n
@tn

D˛h.0/

ˇ̌
ˇ̌ � C

jhj0;QR.0/

R2nCj˛j

where ˛ D .˛1; : : : ; ˛n/, j˛j D P
i ˛i and D˛h D @˛1

@x
˛1
1

: : : @
˛d

@x
˛d
d

h.

This second fact can be proved by using Bernstein’s techniques. See [Kryl96,
Chap. 8, p. 116].

2.2.4.3 Proof of the Schauder Estimate

The following proof is due to Safonov circa 1984. It is presented in [Kryl96]. Krylov
says in [Kryl97] that “[he] believes this proof should be part of a general knowledge
for mathematicians even remotely concerned with the theory of PDEs”.

Recall that the C2;˛ regularity can be established “pointwise”. Indeed, in view of
Proposition 2.1.4, it is enough to be able to find a polynomial P which is linear in
time and quadratic in space such that the oscillation of the difference between u and
P decreases as �2C˛ in a box of size �. The natural candidate for P is the “second
order” Taylor polynomial of the function itself. The idea of Safonov is to perturb
this natural candidate in order to reduce to the case where f 	 0.

Proof of Theorem 2.2.10. Without loss of generality, we can assume that the com-
pact support of u is included in .0;C1/ � R

d .
Take X0 2 R

dC1, � > 0 and K � 1 to be specified later. Let Q denote
Q.KC1/�.X0/ and take 	 2 C1.RdC1/ with compact support and such that 	 	 1

in Q.
We consider the “second order” Taylor polynomial associated with a function w

at a point X D .t; x/

TXw.s; y/ D w.X/Cwt .X/.s� t/CDw.X/ � .y�s/C 1

2
D2w.X/.y�x/ � .y�x/:

We now consider

g D .	TX0u/t ��.	TX0u/:

In view of properties of 	,

g 	 f .X0/ in Q:
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Keeping this piece of information in mind, we can write for X 2 Q,

u � TX0u D u � 	TX0u D G ? .f � g/

D hC r

with

h D G ? ..f � g/1Qc / and r D G ? ..f � f .X0//1Q/

whereQc D R
dC1 nQ. Remark in particular that

ht ��h D 0 in Q:

Now we estimate

ju � TX0u � TX0hj0;Q�.X0/ � jh � TX0hj0;Q�.X0/ C jr j0;Q�.X0/ (2.6)

and we study the two terms of the right hand side.
We use Fact 1 to get first

jr j0;Q�.X0/ � Œf �˛;Q.K C 1/˛�˛jG ? 1Qj0;Q�.X0/

� C.K C 1/2C˛�2C˛Œf �˛;Q: (2.7)

We now write for X 2 Q�.X0/,

h.X/ D h.X0/Cht .
; x/.t � t0/CDh.X0/ � .x�x0/C 1

2
D2h.‚/.x�x0/ � .x�x0/

for some 
 2 .t0; t/ and ‚ D .t0; y0/ 2 Q�.X0/. Hence, we have

h.X/ � TX0h.X/ D .ht .
; x/ � ht .X0//.t � t0/

C 1

2
.D2h.‚/ �D2h.X0//.x � x0/ � .x � x0/

from which we deduce

jh.X/ � TX0h.X/j � �2jht.
; x/ � ht .X0/j C �2jD2h.‚/ �D2h.X0/j: (2.8)
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We now use Fact 2 in order to get

jh� TX0hj0;Q�.X0/ � �2

 
�2
ˇ̌
ˇ̌ @2
@t2

h

ˇ̌
ˇ̌
0;Q�.X0/

C �

ˇ̌
ˇ̌ @
@t
Dh

ˇ̌
ˇ̌
0;Q�.X0/

!

C C�3jD3hj0;Q�.X0/

� C.�4.K�/�4 C �3.K�/�3 C �3.K�/�3/jhj0;Q
� C.K�4 C 2K�3/jhj0;Q
� CK�3jhj0;Q

by choosingK � 1. We next estimate jhj0;Q as follows

jhj0;Q � ju � TX0u � r j0;Q � ju � TX0uj0;Q C jr j0;Q
� C.K C 1/2C˛�2C˛.Œu�2C˛;Q C jŒf �˛;Q/

where we used (2.8) for u instead of h and we used (2.7). Then, we have

jh� TX0hj0;Q�.X0/ � C
.K C 1/2C˛

K3
�2C˛.Œu�2C˛;Q C Œf �˛;Q/: (2.9)

Combining (2.6), (2.7) and (2.9), we finally get

��.2C˛/ju � TX0u � TX0hj0;Q�.X0/ � C.K C 1/2C˛Œf �˛;Q

C C
.K C 1/2C˛

K3
.Œu�2C˛;Q C Œf �˛;Q/:

In view of Proposition 2.1.4, it is enough to choose K � 1 large enough so that

C
.K C 1/2C˛

K3
� 1

2

to conclude the proof of the theorem. ut

2.2.5 Schauder Estimate in the Case of Variable Coefficients

Theorem 2.2.12. Consider a function u 2 C2;˛..0; T / � R
d / for some ˛ 2 .0; 1/.

Then there exists C D C.d; ˛/ such that

Œu�2C˛;.0;T /�Rd � C
�
Œf �˛;.0;T /�Rd C juj0;.0;T /�Rd

�

where f D @u
@t

� Lu.
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Remark 2.2.13 (Notation). In the remaining of this subsection, it is convenient to
write semi-norms as Œ��kC˛ instead of Œ��kC˛;.0;T /�Rd , k D 0; 2. In the same way, j � j0
stands for j � j0;.0;T /�Rd .

Remark 2.2.14. Recall that by Corollary 2.2.9, one has

juj0 � T jut � Luj0 C ju.0; �/j0;Rd :

Before giving a rigorous proof, we would like first to explain the main idea.

Main idea of the proof of Theorem 2.2.12. Assume first that there are no lower
order terms (c 	 0 and b 	 0).

In a neighbourhood of X0 2 R
dC1, the coefficients of the linear operator L are

frozen: the linear operator with constant coefficients is denoted by L0. If X is close
to X0, then L is not very far from L0 and this can be measured precisely thanks to
the Hölder continuity of coefficients.

Use first Corollary 2.2.11:

Œu�2C˛ � C Œut � L0u�˛ � C Œut � Lu�˛ C C ŒLu � L0u�˛:

Now control ŒLu �L0u�˛ thanks to Œu�2C˛ and conclude.
Next, lower order terms are treated by using interpolation inequalities. ut
Let us now make this precise and rigorous.

Proof of Theorem 2.2.12. We first assume that b 	 0 and c 	 0. Let f denote
@u
@t

� Lu.
Let " 2 .0; T=2/ and � � "=2 be a positive real number to be fixed later and

consider X1 and X2 such that

Œut �˛;.";T�"/�Rd � 2�.X1;X2/
�˛jut .X1/� ut .X2/j

where we recall that �.X1;X2/ D pjt1 � t2j C jx1 � x2j if Xi D .ti ; xi /, i D 1; 2.
If �.X1;X2/ � � , then we use interpolation inequalities (2.3) in order to get

Œut �˛;.";T�"/�Rd � 2��˛jut j0

� 1

4
Œu�2C˛ C C.�/juj0:

If �.X1;X2/ < � , we consider 	 2 C1.RdC1/ with compact support such that
	.X/ D 1 if �.X; 0/ � 1 and 	.X/ D 0 if �.X; 0/ � 2. We next define �.t; x/
D 	.��2.t � t1/; �

�1.x � x1//. In particular, �.X/ D 1 if �.X;X1/ � � and
�.X/ D 0 if �.X;X1/ � 2� .
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Now we use Corollary 2.2.11 in order to get

Œut �˛;.";T�"/�Rd � 2�.X1;X2/
�˛jut .X1/� ut .X2/j

� 2Œ.u�/�2C˛
� 2C Œ.u�/t � L.X1/.u�/�˛

� 2C Œ.u�/t � L.u�/�˛ C 2C Œ.L.X1/ �L/.u�/�˛: (2.10)

We estimate successively the two terms of the right hand side of the last line. First,
we write

.u�/t �L.u�/ D �f C u.�t �L�/ � 2ADu �D�

since L.u�/ D uL�C�Lu C2ADu �D�. Using interpolation inequalities (2.3), this
implies

Œ.u�/t �L.u�/�˛ � C.�/.Œf �˛ C Œu�˛ C ŒDu�˛/

� �˛Œu�2C˛ C C.�/.Œf �˛ C juj0/: (2.11)

We next write

.L.X1/� L/.u�/ D traceŒ.A.X1/ �A.X//D2.u�/�

and for X such that �.X1;X/ � 2� , we thus get thanks to interpolation inequali-
ties (2.3)

Œ.L.X1/� L/.u�/�˛ � C�˛ŒD2.u�/�˛ C C jD2.u�/j0
� C�˛Œu�2C˛ C C.�/juj0: (2.12)

Combining (2.10)–(2.12), we finally get in the case where �.X1;X2/ � � ,

Œut �˛;.";T�"/�Rd � C�˛Œu�2C˛ C C.�/.Œf �˛ C juj0/:

We conclude that we have in both cases

Œut �˛;.";T�"/�Rd � .C�˛ C 1=4/Œu�2C˛ C C.�/.Œf �˛ C juj0/:

We can argue in a similar way to get

ŒD2u�˛;.";T�"/�Rd � .C�˛ C 1=4/Œu�2C˛ C C.�/.Œf �˛ C juj0/:
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Adding these two inequalities yield

Œu�2C˛;.";T�"/�Rd � .C�˛ C 1=2/Œu�2C˛ C C.�/.Œf �˛ C juj0/:

Now choose � such that C�˛ � 1=4 and get

Œu�2C˛;.";T�"/�Rd � 3

4
Œu�2C˛ C C.Œf �˛ C juj0/:

Taking the supremum over " 2 .0; T=2/ allows us to conclude in the case where
b 	 0 and c 	 0.

If now b ¤ 0 and c ¤ 0, we apply the previous result and get

Œu�2C˛ � C.Œf C b � Du C cu�˛ C juj0/:

Use now interpolation inequalities once again to conclude. ut

2.3 Viscosity Solutions: A Short Overview

Viscosity solutions were first introduced by Crandall and Lions [CL81]. This notion
of weak solution enabled to characterize the value function of an optimal control
problem as the unique solution of the corresponding first order Hamilton–Jacobi
equation. An example of such an equation is the following one

@u

@t
C 1

2
jDuj2 C V.x/ D 0 (2.13)

for some continuous function V . The viscosity solution theory is also by now a
fundamental tool for the study of nonlinear elliptic and parabolic equations.

2.3.1 Definition and Stability of Viscosity Solutions

2.3.1.1 Degenerate Ellipticity

We recall that linear parabolic equations in non-divergence form have the following
general form

@u

@t
� Lu D f
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with

Lu D trace.AD2u/C b � Du C cu

with A � 0 (in the sense of symmetric matrices).
We now consider very general nonlinear parabolic equation of the form

@u

@t
C F.t; x;Du;D2u/ D 0 (2.14)

where we assume that the nonlinearity F W .0; T /���R
d �Sd ! R is continuous

and satisfies the following condition

A � B ) F.t; x; p;A/ � F.t; x; p; B/: (2.15)

In other words, the nonlinearity F is non-increasing with respect to the matrix
variable. We say that F is degenerate elliptic.

Remark 2.3.1. In the case of parabolic Monge–Ampère equations such as (2.1) or
(2.2), the nonlinearity is well-defined and degenerate elliptic only on a subset of
Sd ; precisely, it is only defined either on the subset SC

d of semi-definite symmetric
matrices or on the subset SCC

d of definite symmetric matrices. Hence, solutions
should be convex or strictly convex.

2.3.1.2 Semi-continuity

Consider an open setQ � R
dC1. We recall that u is lower semi-continuous at .t; x/

if, for all sequences .sn; yn/ ! .t; x/,

u.t; x/ � lim inf
n!1 u.sn; yn/:

In the same way, one can define upper semi-continuous functions. Very often, the
previous inequality is written

u.t; x/ � lim inf
.s;y/!.t;x/

u.s; y/:

If u is bounded from below in a neighbourhood ofQ, one can define the lower semi-
continuous envelope of u in Q as the largest lower semi-continuous function lying
below u. It is denoted by u�. Similarly, the upper semi-continuous envelope u� of a
locally bounded from above function u can be defined.
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2.3.1.3 Definition(s)

In this paragraph, we give the definition of a viscosity solution of the fully nonlinear
parabolic equation (2.14). We give a first definition in terms of test functions. We
then introduce the notion of subdifferentials and superdifferentials with which an
equivalent definition can be given (see Remark 2.3.8 below).

In order to motivate the definition of a viscosity solution, we first derive necessary
conditions for smooth solutions of (2.14).

Consider an open set Q � R
dC1 and a function u W Q ! R which is C1 with

respect to t and C2 with respect to x. Consider also a function � with the same
regularity and assume that u � � in a neighbourhood of .t; x/ 2 Q and u D � at
.t; x/. Then

@�

@t
.t; x/ D @u

@t
.t; x/

D�.t; x/ D Du.t; x/

D2�.t; x/ � D2u.t; x/:

Using the degenerate ellipticity of the nonlinearity F , we conclude that

@�

@t
.t; x/C F.t; x;D�.t; x/;D2�.t; x//

� @u

@t
.t; x/C F.t; x;Du.t; x/;D2u.t; x// D 0:

A similar argument can be used to prove that if u � � in a neighbourhood of .t; x/
with u.t; x/ D �.t; x/ then the reserve inequality holds true. These facts motivate
the following definitions.

Definition 2.3.2 (Test functions). A test function on the set Q is a function � W
Q ! R which is C1 with respect to t and C2 with respect to x.

Given a function u W Q ! R, we say that the test function � touches u from
above (resp. below) at .t; x/ if u � � (resp. u � �) in a neighbourhood of .t; x/ and
u.t; x/ D �.t; x/.

Remark 2.3.3. If u � � reaches a local maximum (resp. minimum) at .t0; x0/, then
� C Œu.t0; x0/� �.t0; x0/� touches u from above (resp. below).

Definition 2.3.4 (Viscosity solutions). Consider a function u W Q ! R for some
open set Q.

• u is a subsolution of (2.14) if u is upper semi-continuous and if, for all .t; x/ 2 Q
and all test functions � touching u from above at .t; x/,

@�

@t
.t; x/C F.t; x;D�.t; x/;D2�.t; x// � 0:
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• u is a supersolution of (2.14) if u is lower semi-continuous and if, for all .t; x/ 2
Q and all test functions � touching u from below at .t; x/,

@�

@t
.t; x/C F.t; x;D�.t; x/;D2�.t; x// � 0:

• u is a solution of (2.14) if it is both a sub- and a supersolution.

Remark 2.3.5. Remark that a viscosity solution of (2.14) is a continuous function.

When proving uniqueness of viscosity solutions, it is convenient to work with
the following objects.

Definition 2.3.6 (Second order sub-/super-differentials). The following set

P˙.u/.t; x/ D f.˛; p;X/ 2 R � R
d � Sd W

.˛; p;X/ D .@t�.t; x/;D�.t; x/;D
2�.t; x//

s.t. � touches u from above (resp. below) at .t; x/g

is the super-(resp. sub-)differential of the function u at the point .t; x/.

Remark 2.3.7. Here is an equivalent definition: .˛; p;X/ 2 PCu.t; x/ if and only if

u.s; y/ � u.t; x/C˛.s�t/Cp �.y�x/C 1

2
X.x�y/�.x�y/Co �js � t j C jy � xj2�

for .s; y/ in a neighbourhood of .t; x/. A similar characterization holds for P�.

Remark 2.3.8. The definition of a viscosity solution can be given using sub- and
super-differentials of u. Indeed, as far as subsolutions are concerned, in view of
Definitions 2.3.4 and 2.3.6, u is a viscosity subsolution of (2.14) in the open set Q
if and only if for all .t; x/ 2 Q and all .˛; p;X/ 2 PCu.t; x/,

˛ C F.t; x; p;X/ � 0:

When proving uniqueness, the following limiting versions of the previous objects
are used.

Definition 2.3.9 (Limiting super-/sub-differentials).

P˙
.u/.t; x/ D f.˛; p;X/ 2 R � R

d � Sd W 9.tn; xn/ ! .t; x/ s.t.

.˛n; pn;Xn/ ! .˛; p;X/; u.tn; xn/ ! u.t; x/;

.˛n; pn;Xn/ 2 P˙u.tn; xn/g
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Remark 2.3.10. Since F is assumed to be continuous, the reader can remark that
u is a viscosity subsolution of (2.14) in Q if and only if for all .t; x/ 2 Q and all

.˛; p;X/ 2 PC
u.t; x/,

˛ C F.t; x; p;X/ � 0:

An analogous remark can be made for supersolutions.

2.3.1.4 First Properties

In this section, we state without proofs some important properties of sub- and
supersolutions. Proofs in the elliptic case can be found in [CIL92] for instance.
These proofs can be readily adapted to the parabolic framework.

Proposition 2.3.11 (Stability properties).

• Let .u˛/˛ be a family of subsolutions of (2.14) in Q such that the upper semi-
continuous envelope u of sup˛ u˛ is finite in Q. Then u is also a subsolution of
(2.14) in Q.

• If .un/n is a sequence of subsolutions of (2.14), then the upper relaxed-limit u of
the sequence defined as follows

Nu.t; x/ D lim sup
.s;y/!.t;x/;n!1

un.s; y/ (2.16)

is everywhere finite in Q, then it is a subsolution of (2.14) in Q.

Remark 2.3.12. An analogous proposition can be stated for supersolutions.

2.3.2 The Perron Process

In this subsection, we would like to give an idea of the general process that allows
one to construct solutions for fully nonlinear parabolic equations.

2.3.2.1 General Idea

The Perron process is well known in harmonic analysis and potential analysis. It has
been adapted to the case of fully nonlinear elliptic equations in non-divergence form
by Ishii [Ish87].

The general idea is the following one: assume that one can construct a subsolu-
tion u� and a supersolution uC to a nonlinear parabolic equation of the form (2.14)
such that u� � uC. Using Proposition 2.3.11, we can construct a maximal
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subsolution u lying between u� and uC. Then a general argument allows one to
prove that the lower semi-continuous envelope of the maximal subsolution u is in
fact a supersolution.

Remark 2.3.13. Before making the previous argument a little bit more precise, we
would like to point out that the function u constructed by this general method is not
a solution in the sense of Definition 2.3.4. It is a so-called discontinuous (viscosity)
solution of (2.14). We decided to stick to continuous viscosity solution in these
lecture notes and to state the result of the Perron process as in Lemma 2.3.15 below.
See also Sect. 2.3.2.3.

Example 2.3.14. In many important cases, u˙ are chosen in the following form:
u0.x/˙Ct where u0 is the smooth initial datum and C is a large constant, precisely:

C � sup
x2Rd

jF.0; x;Du0.x/;D
2u0.x//j:

If non-smooth/unbounded initial data are to be considered, discontinuous stability
arguments can be used next.

2.3.2.2 Maximal Subsolution and Bump Construction

We now give more details about the general process to construct a “solution”.
We consider a cylindrical domain Q D .0; T / �� for some domain� � R

d .

Lemma 2.3.15. Assume that u˙ is a super-(resp. sub-) solution of (2.14) in Q.
Then there exists a function u W Q ! R such that u� � u � uC and u� is a
subsolution of (2.14) and u� is a supersolution of (2.14).

Proof. Consider

S D fv W Q ! R s.t. u� � v � uC and v� subsolution of (2.14)g:

By Proposition 2.3.11, we know that the upper semi-continuous envelope u� of the
function

u D sup
v2S

v

is a subsolution of (2.14).
We next prove that the lower semi-continuous envelope u� of u is a supersolution

of (2.14) in Q. Arguing by contradiction, one can assume that there exists
.˛; p;X/ 2 P�u�.t; x/ such that

˛ C F.t; x; p;X/ DW �
 < 0: (2.17)
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Remark that at .t; x/, we have necessarily

u�.t; x/ < uC.t; x/:

Indeed, if this is not the case, then .˛; p;X/ 2 P�uC.t; x/ and (2.17) cannot be
true since uC is a supersolution of (2.14). Up to modifying the constant 
 , we can
also assume that

u�.t; x/ � uC.t; x/ � �
 < 0: (2.18)

Without loss of generality, we can also assume that .t; x/ D .0; 0/ and u�.t; x/ D 0.
Let us consider the following “paraboloid”

P.s; y/ D s C p � y C 1

2
Xy � y C ı � �

�
1

2
jyj2 C jsj

�

with ı and � to be chosen later. Compute next

@P

@s
.s; y/C F.s; y;DP.s; y/;D2P.s; y//

D  � � sjsj C F.s; y; p CXy � �y;X � �I /

(if s D 0, s
jsj should be replaced with any real number � 2 Œ�1; 1�). Hence, for r

and � small enough, we have

@P

@s
C F.s; y;DQ;D2Q/ � �


2
< 0

for all .s; y/ 2 Vr . Moreover, since .; p;X/ 2 P�u�.t; x/, we have

u�.s; y/ � s C p � y C 1

2
Xy � y C o.jyj2 C jsj/

� P.s; y/ � ı C �

�
1

2
jyj2 C jsj

�
C o.jyj2 C jsj/:

Choose now ı D �r

4
and consider .s; y/ 2 Vr n Vr=2:

u�.s; y/ � P.s; y/ � �r

4
C �r

2
C o.r/ D P.s; y/C �r

4
C o.r/:

Consequently, for r small enough,

u.s; y/ � P.s; y/ � �r

8
> 0 in Vr n Vr=2;

P.s; y/ < uC.s; y/ in Vr

where we used (2.18) to get the second inequality.
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We next consider

U.s; y/ D
�

maxfu.s; y/; P.s; y/g if .s; y/ 2 Vr ;
u.s; y/ if not.

On one hand, we remark that the function U � is still a subsolution of (2.14) and
U � u � u� and U � uC. Consequently, U 2 S and in particular, U � u. On
the other hand, sup

RC�Rd fU � ug � ı; indeed, consider .tn; xn/ ! .0; 0/ such that
u.tn; xn/ ! u�.0; 0/ D 0 and write

lim
n!1U.tn; xn/ � u.tn; xn/ � lim

n!1P.tn; xn/ � u.tn; xn/ D ı > 0:

This contradicts the fact that U � u. The proof of the lemma is now complete. ut

2.3.2.3 Continuous Solutions from Comparison Principle

As mentioned above, the maximal subsolution u� is not necessarily continuous;
hence, its lower semi-continuous envelope u� does not coincide necessarily with it.
In particular, we cannot say that u is a solution in the sense of Definition 2.3.4 (cf.
Remark 2.3.13 above).

We would get a (continuous viscosity) solution if u� D u�. On one hand, u� is
upper semi-continuous by construction and on the other hand u� � u� by definition
of the semi-continuous envelopes. Hence, u is a solution of (2.14) if and only if
u� � u� in Q. Since u� is a subsolution of (2.14) in Q and u� is a supersolution of
(2.14) in Q, it is thus enough that (2.14) satisfies a comparison principle and that
the barriers u˙ satisfy some appropriate inequality on the parabolic boundary. More
precisely, we would like on one hand that

Comparison principle. If u is a subsolution of (2.14) inQ and v is a supersolution
of (2.14) in Q and u � v on the parabolic boundary @pQ, then u � v in Q.

and on the other hand, we would like that u� � u� on @pQ. This boundary condition
would be true if

.uC/� � .u�/� on @pQ:

We emphasize that the lower and upper semi-continuous envelopes appearing in the
previous inequality are performed with respect to time and space.

Example 2.3.16. If for instance Q D .0; T / � R
d , then barriers should satisfy

.uC/�.0; x/ � .u�/�.0; x/ for x 2 R
d :

This condition is fullfilled for such a Q if u˙ D u0 ˙ Ct (see Example 2.3.14).
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In the next subsection, we will present general techniques for proving comparison
principles. The reader should be aware of the fact that, in many practical cases,
general theorems from the viscosity solution theory do not apply to the equation
under study. In those cases, one has to adapt the arguments presented below in order
to take into account the specific difficulties implied by the specific equation. The
reader is referred to [CIL92] for a large review of available tools.

2.3.3 Introduction to Comparison Principles

In this subsection, we present classical techniques to prove comparison principles
in some typical cases.

2.3.3.1 First Order Equations

In this paragraph, we first study first order Hamilton–Jacobi equations of the
following form

@u

@t
CH.x;Du/ D 0: (2.19)

As we will see, a comparison principle holds true if H satisfies the following
structure condition: for all x; y; p 2 R

d ,

jH.x; p/ �H.y; p/j � C jx � yj: (2.20)

In order to avoid technicalities and illustrate main difficulties, we assume that x 7!
H.x; p/ is Zd -periodic; hence, solutions should also be Zd -periodic forZd -periodic
initial data.

Theorem 2.3.17 (Comparison principle II). Consider a continuous Zd -periodic
function u0. If u is a Z

d -periodic subsolution of (2.19) in .0; T /�R
d and v is a Z

d -
periodic supersolution of (2.19) in .0; T /�R

d such that u.0; x/ � u0.x/ � v.0; x/

for all x 2 R
d , then u � v in .0; T / � R

d .

Proof. The beginning of the proof is the same as in the proof of Theorem 2.2.4: we
assume that

M D sup
t2.0;T /;x2Rd

n
u.t; x/ � v.t; x/ � �

T � t
o
> 0:

Here, we cannot use the equation directly, since it is not clear wether u � v satisfies
a nonlinear parabolic equation or not (recall that the equation is nonlinear). Hence,
we should try to duplicate the (time and space) variables.
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Doubling Variable Technique

Consider

M" D sup
t;s2.0;T /;x;y2Rd

�
u.t; x/� v.s; y/ � .t � s/2

2"
� jx � yj2

2"
� �

T � t
	
:

Remark that M" � M > 0. This supremum is reached since u is upper semi-
continuous and v is lower semi-continuous and both functions are Z

d -periodic. Let
.t"; s"; x"; y"/ denote a maximizer. Then we have

.t" � s"/2
2"

C jx" � y"j2
2"

� u.t"; x"/ � v.s"; y"/ � juCj0 C jv�j0

where we recall that jwj0 D sup.t;x/2.0;T /�Rd jw.t; x/j. In particular, up to extracting
subsequences, t" ! t , s" ! t and x" ! x, y" ! y and t" � s" D O.

p
"/ and

x" � y" �O.p"/.
Assume first that t D 0. Then

0 < M � lim sup
"!0

M" � lim sup
"

u.t"; x"/ � lim inf
"

v.s"; y"/

� u.0; x/� v.0; x/ � 0:

This is not possible. Hence t > 0.
Since t > 0, for " small enough, t" > 0 and s" > 0. Now remark that the

function �u

.t; x/ 7! v.s"; y"/C .t � s"/
2

2"
C jx � y"j2

2"
C �

T � t
is a test function such that u � �u reaches a maximum at .t"; x"/. Hence (recall
Remark 2.3.3),

�

.T � t"/2 C t" � s"

"
CH.x"; p"/ � 0

with p" D x"�y"
"

. Similarly, the function �v

.s; y/ 7! u.t"; x"/ � .s � t"/2
2"

� jy � x"j2
2"

� �

T � t"

is a test function such that v � �v reaches a minimum at .s"; y"/; hence

t" � s"
"

CH.y"; p"/ � 0
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with the same p"! Substracting the two viscosity inequalities yields

�

.T � t"/2
� H.y"; p"/�H.x"; p"/:

In view of (2.20), we conclude that

�

T 2
� C jx" � y"j D O.

p
"/:

Letting " ! 0 yields the desired contradiction. ut
Remark 2.3.18. Condition (2.20) is satisfied by (2.13) if the potential V is Lipschitz
continuous. On the contrary, if H.x; p/ D c.x/jpj, then the Hamilton–Jacobi
equation is the so-called eikonal equation and it does not satisfy (2.20) even if c
is globally Lipschitz. Such an Hamiltonian satisfies

jH.x; p/ �H.y; /j � C.1C jpj/jx � yj: (2.21)

For such equations, the penalization should be studied in greater details in order to
prove that

jx" � y"j2
2"

! 0 as " ! 0:

With this piece of information in hand, the reader can check that the same
contradiction can be obtained for Lipschitz c’s. See for instance [Barl94] for details.

Since we will use once again this additional fact about penalization, we state it
now in a lemma.

Lemma 2.3.19. Consider Qu.t; x/ D u.t; x/� �.T � t/�1. Assume that

M" D sup
x;y2Rd

t;s2.0;T /
Qu.t; x/ � v.s; y/ � jx � yj2

2"
� jt � sj2

2"

is reached at .x"; y"; t"; s"/. Assume moreover that .x"; y"; t"; s"/ ! .x; y; t; s/ as
" ! 0. Then

jx" � y"j2
"

! 0 as " ! 0:

Remark 2.3.20. The reader can check that the previous lemma still holds true if
v.s; y/ is replaced with v.t; y/ and if the term "�1jt � sj2 is removed.

Proof. Remark first that " 7! M" is non-decreasing andM" � M WD sup
Rd .Qu � v/.

Hence, as " ! 0, M" converges to some limit l � M . Moreover,
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M2" � Qu.t"; x"/ � v.s"; y"/� jx" � y"j2
4"

� jt" � s"j2
4"

� M" C jx" � y"j2
4"

C jt" � s"j2
4"

:

Hence,

jx" � y"j2
4"

C jt" � s"j2
4"

� M2" �M" ! l � l D 0: ut

2.3.3.2 Second Order Equations with No x Dependance

In this subsection we consider the following equation

@u

@t
CH.x;Du/ ��u D 0 (2.22)

still assuming that x 7! H.x; p/ is Z
d -periodic and satisfies (2.20). The classical

parabolic theory implies that there exists smooth solutions for such an equation.
However, we illustrate viscosity solution techniques on this (too) simple example.

Theorem 2.3.21 (Comparison principle III). Consider a continuous Zd -periodic
function u0. If u is a Z

d -periodic subsolution of (2.22) in .0; T /�R
d and v is a Z

d -
periodic supersolution of (2.19) in .0; T /�R

d such that u.0; x/ � u0.x/ � v.0; x/

for all x 2 R
d , then u � v in .0; T / � R

d .

Remark 2.3.22. A less trivial example would be

@u

@t
CH.x;Du/� trace.A0D2u/ D 0

for some degenerate matrix A0 2 Sd , A0 � 0. We prefer to keep it simple and study
(2.22).

First attempt of proof. We follow the proof of Theorem 2.3.17. If one uses the two
test functions �u and �v to get viscosity inequalities, this yields

1

.T � t"/2
C t" � s"

"
CH.x"; p"/ � trace."�1I /;

t" � s"
"

CH.y"; p"/ � � trace."�1I /:
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Substracting these two inequalities, we get

1

T 2
� O.

p
"/C 2d

"

and it is not possible to get a contradiction by letting " ! 0. ut
In the previous proof, we lost a very important piece of information about second
order derivatives; indeed, assume that u and v are smooth. As far as first order
equations are concerned, using the first order optimality condition

Du.t"; x"/� p" D 0 and �Dv.s"; y"/C p" D 0

is enough. But for second order equations, one has to use second order optimality
condition

�
Du.t"; x"/ 0

0 �Dv.s"; y"/
�

�
�
"�1I �"�1I

�"�1I "�1I

�
:

It turns out that for semi-continuous functions, the previous inequality still holds
true up to an arbitrarily small error in the right hand side.

Uniqueness of viscosity solutions for second order equations where first obtained
by Lions [Lions83] by using probabilistic methods. The analytical breakthrough
was achieved by Jensen [Jens88]. Ishii’s contribution was also essential [Ish89]. In
particular, he introduced the matrix inequalities contained in the following lemma.
See [CIL92] for a detailed historical survey.

We give a first version of Jensen–Ishii’s lemma for the specific test function
.2"/�1jx � yj2.
Lemma 2.3.23 (Jensen–Ishii’s lemma I). Let U and V be two open sets of Rd

and I an open interval of R. Consider also a bounded subsolution u of (2.14) in
I � U and a bounded supersolution v of (2.14) in I � V . Assume that u.t; x/ �
v.t; y/ � jx�yj2

2"
reaches a local maximum at .t0; x0; y0/ 2 I � U � V . Letting p

denote "�1.x0 � y0/, there exists  2 R and X; Y 2 Sd such that

.; p;X/ 2 PC
u.t0; x0/; .; p; Y / 2 P�

v.t0; y0/

� 2

"

�
I 0

0 I

�
�
�
X 0

0 �Y
�

� 3

"

�
I �I

�I I

�
: (2.23)

Remark 2.3.24. As a matter of fact, it is not necessary to assume that u and v are
sub- and supersolution of an equation of the form (2.14). We chose to present first
the result in this way to avoid technicalities. Later on, we will need the standard
version of this lemma, so we will state it. See Lemma 2.3.30 below.
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Remark 2.3.25. Such a result holds true for more general test functions �.t; x; y/
than .2"/�1jx � yj2. However, this special test function is a very important one and
many interesting results can be proven with it. We will give a more general version
of this important result, see Lemma 2.3.30.

Remark 2.3.26. The attentive reader can check that the matrix inequality (2.23)
implies in particular X � Y .

Remark 2.3.27. This lemma can be used as a black box and one does so very often.
But we mentioned above that some times, one has to work more to get a uniqueness
result for some specific equation. In this case, it could be necessary to consider
more general test functions, or even to open the black box and go through the proof
to adapt it in a proper way.

With such a lemma in hand, we can now prove Theorem 2.3.21.

Proof of Theorem 2.3.21. We argue as in the proof of Theorem 2.3.17 but we do
not duplicate the time variable since it is embedded in Lemma 2.3.23. Instead, we
consider

M" D sup
x;y2Rd

t2.0;T /

�
u.t; x/ � v.t; y/ � jx � yj2

2"
� �

T � t
	
;

let .t"; x"; y"/ denote a maximiser and apply Lemma 2.3.23 with Qu.t; x/ D u.t; x/�
�

T�t and v and we get ;X; Y such that

. C �

.T � t/2
; p"; X/ 2 PC

u.t"; x"/; .; p"; Y / 2 P�
v.t"; y"/; X � Y

(see Remark 2.3.26 above). Hence, we write the two viscosity inequalities

�

.T � t/2 C  CH.x"; p"/ � traceX

 CH.y"; p"/ � traceY � traceX

and we substract them in order to get the desired contradiction

�

T 2
� O.

p
"/:

The proof is now complete. ut
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2.3.3.3 Second Order Equations with x Dependance

In this paragraph, we prove a comparison principle for the following degenerate
elliptic equation

@u

@t
CH.x;Du/� trace.�.x/�T .x/D2u/ D 0 (2.24)

under the following assumptions

• x 7! H.x; p/ is Zd -periodic and satisfies (2.21);
• � W Rd ! Md;m.R/ is Lipschitz continuous and Z

d -periodic,m � d .

Here, Md;m.R/ denotes the set of real d � m-matrices. We make precise that �T

denotes the transpose matrix of the d �m-matrix � .
The following theorem is, to some respects, the nonlinear counterpart of the first

comparison principle we proved in Sect. 2.2 (see Corollary 2.2.6). Apart from the
nonlinearity of the equation, another significant difference with Corollary 2.2.6 is
that (2.24) is degenerate elliptic and not uniformly elliptic.

Theorem 2.3.28 (Comparison principle IV). Consider a continuous Zd -periodic
function u0. If u is a Z

d -periodic subsolution of (2.22) in .0; T /�R
d and v is a Z

d -
periodic supersolution of (2.19) in .0; T /�R

d such that u.0; x/ � u0.x/ � v.0; x/

for all x 2 R
d , then u � v in .0; T / � R

d .

Proof. We argue as in the proof of Theorem 2.3.21. The main difference lies after
writing viscosity inequalities thanks to Jensen–Ishii’s lemma. Indeed, one gets

�

T 2
� �H.x"; p"/CH.y"; p"/C trace.�.x"/�T .x"/X/ � trace.�.y"/�T .y"/Y /

� C

�
1C jx" � y"j

"

�
jx" � y"j

C trace.�.x"/�
T .x"/X/ � trace.�.y"/�

T .y"/Y /:

The first term can be handled thanks to Lemma 2.3.19. But one cannot just use
X � Y obtained from the matrix inequality (2.23) to handle the second one. Instead,
consider an orthonormal basis .ei /i of Rm and write

trace.�.x"/�T .x"/X/ � trace.�.y"/�T .y"/Y /

D trace.�T .x"/X�.x"// � trace.�T .y"/Y�.y"//

D
mX
iD1

.X�.x"/ei � �.x"/ei � Y�.y"/ei � �.y"/ei /

� 3

"

mX
iD1

j�.x"/ei � �.y"/ei j2I
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we applied (2.23) to vectors of the form .�.x"/ei ; �.y"/ei / 2 R
d � R

d to get the
last line. We can now use the fact that � is Lipschitz continuous and get

trace.�.x"/�T .x"/X/� .�.y"/�T .y"/Y / � C
jx" � y"j2

"
:

We thus finally get

�

T 2
� C jx" � y"j C C

jx" � y"j2
"

:

We can now get the contradiction � < 0 by using Lemma 2.3.19 and letting " ! 0.
The proof is now complete. ut

2.3.4 Hölder Continuity Through the Ishii–Lions Method

In this subsection, we want to present a technique introduced by Ishii and Lions
in [IL90] in order to prove Hölder continuity of solutions of very general fully
nonlinear elliptic and parabolic equations. On one hand, it is much simpler than
the proof we will present in the next section; on the other hand, it cannot be used to
prove further regularity such as Hölder continuity of the gradient.

The fundamental assumptions is that the equation is uniformly elliptic (see below
for a definition). For pedagogical purposes, we do not want to prove a theorem for
the most general case. Instead, we will look at (2.24) for Sd -valued �’s and special
H ’s

@u

@t
C c.x/jDuj � trace.�.x/�.x/D2u/ D 0 (2.25)

Assumptions (A)

• c is bounded and Lipschitz continuous in Q;
• � W Q ! Sd is bounded and Lipschitz continuous in x and constant in t ;
• There exists � > 0 such that for all X D .t; x/ 2 Q,

A.x/ WD �.x/�.x/ � �I:

Under these assumptions, the equation is uniformly elliptic, i.e. there exist two
positive numbers 0 < � � ƒ, called ellipticity constants, such that

8X D .t; x/ 2 Q; �I � A.x/ � ƒI: (2.26)
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Theorem 2.3.29. Under Assumptions (A) on H and � , any viscosity solution u of
(2.25) in an open set Q � R

dC1 is Hölder continuous in time and space.

When proving Theorem 2.3.29, we will need to use Jensen–Ishii’s lemma for a
test function which is more general than .2"/�1jx � yj2. Such a result can be found
in [CIL92].

Lemma 2.3.30 (Jensen–Ishii’s Lemma II). Let U and V be two open sets of Rd

and I an open interval of R. Consider also a bounded subsolution u of (2.14) in
I � U and a bounded supersolution v of (2.14) in I � V . Assume that u.t; x/
� v.t; y/� �.x � y/ reaches a local maximum at .t0; x0; y0/ 2 I �U � V . Letting
p denote D�.x0 � y0/, for all ˇ > 0 such that ˇZ < I , there exists  2 R and
X; Y 2 Sd such that

.; p;X/ 2 PC
u.t0; x0/; .; p; Y / 2 P�

v.t0; y0/

� 2

ˇ

�
I 0

0 I

�
�
�
X 0

0 �Y
�

�
�
Zˇ �Zˇ

�Zˇ Zˇ

�
(2.27)

where Z D D2�.x0 � y0/ and Zˇ D .I � ˇZ/�1Z.

We can now turn to the proof of Theorem 2.3.29.

Proof of Theorem 2.3.29. We first prove that u is Hölder continuous with respect to
x. Without loss of generality, we can assume that Q is bounded. We would like to
prove that for all X0 D .t0; x0/ 2 Q and .t; x/; .t; y/ 2 Q,

u.t; x/� u.t; y/ � L1jx � yj˛ C L2jx � x0j2 C L2.t � t0/
2

for L1 D L1.X0/ and L2 D L2.X0/ large enough. We thus consider

M D sup
.t;x/;.t;y/2Q

fu.t; x/ � u.t; y/� �.x � y/ � �.t; x/g

with �.z/ D L1jzj˛ and �.t; x/ D L2jx � x0j2 C L2.t � t0/
2 and we argue by

contradiction: we assume that for all ˛ 2 .0; 1/, L1 > 0, L2 > 0, we have M > 0.
Since Q is bounded, M is reached at a point denoted by .Nt ; Nx; Ny/. The fact that

M > 0 implies first that Nx ¤ Ny. It also implies

8̂
<
:̂

j Nx � Nyj �


2juj0;Q
L1

� 1
˛ DW A < d.X0; @Q/;

j NX � X0j <
q

2juj0;Q
L2

DW R2 � d.X0;@Q/

2

(2.28)
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if L1 and L2 are chosen so that

L1 >
2juj0;Q

.d.X0; @Q//˛
; L2 � 8juj0;Q

.d.X0; @Q//2
:

In particular we have Nx; Ny 2 �. We next apply Jensen–Ishii’s Lemma 2.3.30 to
Qu.t; x/ D u.t; x/��.t; x/ and v.s; y/. Then there exists  2 R andX; Y 2 Sd such
that

. C 2L2.Nt � t0/; Np C 2L2. Nx � x0/;X C 2L2I / 2 PC
u.Nt ; Nx/; .; Np; Y / 2 P�

u.Nt ; Ny/

where Np D D�. Nx � Ny/ and Z D D2�. Nx � Ny/ and (2.27) holds true. In particular,
X � Y . We can now write the two viscosity inequalities

2L2.Nt � t0/C  CH. Nx; Np C 2L2. Nx � x0// � trace.A. Nx/.X C 2L2I //

 CH. Ny; Np/ � trace.A. Ny/Y /

and combine them with (2.28) and (2.26) to get

�CL2 � 2L2.Nt � t0/ � c. Ny/j Npj � c. Nx/j Np C 2L2. Nx � x0/j
C CL2 C trace.A. Nx/X/� trace.A. Ny/Y /: (2.29)

We next estimate successively the difference of first order terms and the difference
of second order terms. As far as first order terms are concerned, we use that c is
bounded and Lipschitz continuous and (2.28) to get

c. Ny/j Npj � c. Nx/j Np C 2L2. Nx � x0/j � C j Nx � Nyjj Npj C CL2j Nx � x0j
� C j Nx � Nyjj Npj C CL2: (2.30)

As far as second order terms are concerned, we use (2.26) to get

trace.A. Nx/X/ � trace.A. Ny/Y / � trace.A. Nx/.X � Y //C trace..A. Nx/� A. Ny//Y /
� � trace.X � Y /

C
X
i

.�. Nx/Y�. Nx/ei � ei � �. Ny/Y�. Ny/ei � ei /

� � trace.X � Y /C CkY kj Nx � Nyj:

We should next estimate j Npj, trace.X � Y / and kY k. In order to do so, we compute
D� andD2�. It is convenient to introduce the following notation
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a D Nx � Ny; Oa D a

jaj ; " D jaj:

Np D D�.a/ D L1˛jaj˛�2a (2.31)

Z D D2�.a/ D L1˛.jaj˛�2I C .˛ � 2/jaj˛�4a˝ a/

D ��1.I � .2 � ˛/ Oa ˝ Oa/: (2.32)

with � D .L1˛/
�1"2�˛ . The reader can remark that if one chooses ˇ D �=2, then

Zˇ D .I � ˇZ/�1Z D 2

�

�
I � 22 � ˛

3 � ˛ Oa˝ Oa
�
: (2.33)

Since Y is such that � 1
ˇ
I � �Y � Zˇ, we conclude that

kY k � 2

�
:

We next remark that (2.27) and (2.33) imply that all the eigenvalues of X � Y are
non-positive and that one of them is less than

4Zˇ Oa � Oa D � 8
�

1� ˛

3� ˛
:

Hence

trace.X � Y / � � 8
�

1 � ˛
3 � ˛ :

Finally, second order terms are estimated as follows

trace.A. Nx/X/� trace.A. Ny/Y / � �C
�

C C
"

�
� � C

2�
(2.34)

(choosing L1 large enough so that " � 1=2). Combining now (2.29), (2.30) and
(2.34) and recalling the definition of � and ", we finally get

�CL2 � C"˛ � CL1

"2�˛
� C

L1
� CL2

˛

1 :

Since L2 is fixed, it is now enough to choose L1 large enough to get the desired
contradiction. The proof is now complete. ut
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2.4 Harnack Inequality

In this section, we consider the following special case of (2.14)

@u

@t
C F.x;D2u/ D f (2.35)

for some uniformly elliptic nonlinearity F (see below for a definition) and some
continuous function f . The goal of this section is to present and prove the Harnack
inequality (Theorem 2.4.35). This result states that the supremum of a non-negative
solution of (2.35) can be controlled from above by its infimum times a universal
constant plus the LdC1-norm of the right hand side f . The estimates that will be
obtained do not depend on the regularity of F with respect to x.

We will see that it is easy to derive the Hölder continuity of solutions from the
Harnack inequality, together with an estimate of the Hölder semi-norm.

The Harnack inequality is a consequence of both the L"-estimate (Theo-
rem 2.4.15) and of the local maximum principle (Proposition 2.4.34). Since this
local maximum principle is a consequence of the L"-estimate, the heart of the proof
of the Harnack inequality thus lies in proving that a (small power of) non-negative
supersolution is integrable, see Theorem 2.4.15 below.

The proof of the L" estimate relies on various measure estimates of the solution.
These estimates are obtained through the use of a maximum principle due to Krylov
in the parabolic case.

The proof of the L" estimate also involves many different sets, cylinders and
cubes. The authors are aware of the fact that it is difficult to follow the corresponding
notation. Some pictures are provided and the authors hope they are helpful with this
respect.

Pucci’s Operators

Given ellipticity constants 0 < � � ƒ, we consider

PC.M/ D sup
�I�A�ƒI

f� trace.AM/g;

P�.M/ D inf
�I�A�ƒIf� trace.AM/g:

Some model fully nonlinear parabolic equations are

@u

@t
C PC.D2u/ D f; (2.36)

@u

@t
C P�.D2u/ D f: (2.37)
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Remark that those nonlinear operators only depend on ellipticity constants �;ƒ and
dimension d . They are said universal. Similarly, constants are said universal if they
only depend on �;ƒ and d .

Uniform Ellipticity

Throughout the remaining of this section, we make the following assumptions on
F : for all X; Y 2 Sd and x 2 �,

P�.X � Y / � F.x;X/ � F.x; Y / � PC.X � Y /:

This condition is known as the uniform ellipticity of F . Remark that this condition
implies in particular that F is degenerate elliptic in the sense of Sect. 2.3.1.1 (see
Condition 2.15).

2.4.1 A Maximum Principle

In order to state and prove the maximum principle, it is necessary to define first the
parabolic equivalent of the convex envelope of a function, which we will refer to as
the monotone envelope.

2.4.1.1 Monotone Envelope of a Function

Definition 2.4.1 (Monotone envelope). If � is a convex set of Rd and .a; b/ is
an open interval, then the monotone envelope of a lower semi-continuous function
u W .a; b/�� ! R is the largest function v W .a; b/�� ! R lying below u which
is non-increasing with respect to t and convex with respect to x. It is denoted by
�.u/.

Combining the usual definition of the convex envelope of a function with
the non-increasing envelope of a function of one real variable, we obtain a first
representation formula for �.u/.

Lemma 2.4.2 (Representation formula I).

�.u/.t; x/ D supf� � x C h W � � x C h � u.s; x/ for all s 2 .a; t �; x 2 �g:

The set where �.u/ coincides with u is called the contact set; it is denoted by Cu.
The following lemma comes from convex analysis, see e.g. [HUL].



44 C. Imbert and L. Silvestre

Lemma 2.4.3. Consider a point .t; x/ in the contact set Cu of u. Then � � x C h D
�.u/.t; x/ if and only if � lies in the convex subdifferential @u.t; x/ of u.t; �/ at x
and �h equals the convex conjugate u�.t; x/ of u.t; �/ at x.

Recall that a convex function is locally Lipschitz continuous and in particular a.e.
differentiable, for a.e. contact points, .�; h/ D .Du.t; x/; u.t; x/�x �Du.t; x//. This
is the reason why we next consider for .t; x/ 2 .a; b/ �� the following function

G.u/.t; x/ D .Du.t; x/; u.t; x/ � x � Du.t; x//:

The proof of the following elementary lemma is left to the reader.

Lemma 2.4.4. If u is C1;1 with respect to x and Lipschitz continuous with respect
to t , then the function G W .a; b/ �� ! R

dC1 is Lipschitz continuous in .t; x/ and
for a.e. .t; x/ 2 .a; b/ ��,

detDt;xG.u/ D ut detD2u:

We now give a second representation formula for �.u/ which will help us next
to describe viscosity subdifferentials of the monotone envelope (see Lemma 2.4.6
below).

Lemma 2.4.5 (Representation formula II).

�.u/.t; x/ D inf

� dC1X
iD1

�iu.si ; xi / W
dC1X
iD1

�ixi D x; si 2 Œa; t �;

dC1X
iD1

�i D 1; �i 2 Œ0; 1�
	
: (2.38)

In particular, if

�.u/.t0; x0/ D
dC1X
iD1

�iu.t
0
i ; x

0
i /;

then

• for all i D 1; : : : ; d C 1, �.u/.ti ; xi / D u.ti ; xi /;
• �.u/ is constant with respect to t and linear with respect to x in the convex set

cof.t; x0i /; .t0i ; x0i /; i D 1; : : : d C 1g.

Proof. Let Q�.u/ denote the function defined by the right hand side of (2.38). First,
we observe that Q�.u/ lies below u and is non-increasing with respect to t and convex
with respect to x. Consider now another function v lying below u which is non-
increasing with respect to t and convex with respect to x. We then have

u.t; x/ � Q�.u/.t; x/ � Q�.v/.t; x/ � v.t; x/:
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The proof is now complete. ut
We next introduce the notion of harmonic sum of matrices. For A1;A2 2 Sd such
that A1 C A2 � 0, we consider

.A1�A2/	 � 	 D inf
	1C	2D	

fA1	1 � 	1 C A2	2 � 	2g:

The reader can check that if A1 and A2 are not singular, A1�A2 D .A�1
1 CA�1

2 /
�1.

We can now state and prove

Lemma 2.4.6. Let .˛; p;X/ 2 P��.u/.t0; x0/ and

�.u/.t0; x0/ D
dC1X
iD1

�iu.t
0
i ; x

0
i /: (2.39)

Then for all " > 0 such that I C "X > 0, there exist .˛i ; Xi / 2 .�1; 0� � Sd ,
i D 1; : : : ; d C 1, such that

8<
:
.˛i ; p;Xi/ 2 P�

u.t0i ; x
0
i /PdC1

iD1 �i˛i D ˛

X" � ��1
1 X1� � � � ���1

dC1XdC1
(2.40)

where X" D X�"�1I D .I C "X/�1X .

Proof. We first define for two arbitrary functions v;w W Rd ! R,

v
x

� w.x/ D inf
y2Rd

v.x � y/C w.y/:

For a given function v W Œ0;C1/ � R
d ! R, we also consider the non-increasing

envelopeMŒv� of v:

MŒv�.t; x/ D inf
s2Œ0;t � v.s; x/:

We now can write

�.u/.t; x/ D x

�
1�i�dC1

M Œui �.t; x/

where

ui .t; x/ D �iu

�
t;
x

�i

�
:
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Consider also t0i 2 Œ0; t0� such that

MŒui �.t0; x
0
i / D ui .t

0
i ; x

0
i / D �iu

�
t0i ;
x0i
�i

�
:

Lemma 2.4.6 is a consequence of the two following ones.

Lemma 2.4.7. Consider .˛; p;X/ 2 P�V.t0; x0/ where

V.t; x/ D x

�
1�i�dC1

vi .t; x/

V .t0; x0/ D
dC1X
iD1

vi .t0; x
0
i /:

Then for all " > 0 such that I C "X > 0, there exist .ˇi ; Yi / 2 R� Sd such that we
have

.ˇi ; p; Yi / 2 P�
vi .t0; x

0
i /

dC1X
iD1

ˇi D ˛

X" � �dC1
iD1 Yi :

Proof. We consider a test function � touching V from below at .t0; x0/ such that

.˛; p;X/ D .@t�;D�;D
2�/.t0; x0/:

We write for .t; xi / in a neighborhood of .t0; x0i /,

�.t;

dC1X
iD1

xi / � �.t0;
dC1X
iD1

x0i / �
dC1X
iD1

vi .t; xi / �
dC1X
iD1

vi .t0; x
0
i /:

Following [ALL97, Imb06], we conclude through Jensen–Ishii’s lemma for d C 1

functions and general test functions (see Lemma 2.5.6 in appendix) that for all " > 0
such that I C d"X > 0, there exist .ˇi ; Yi / 2 R � Sd , i D 1; : : : ; d C 1 such that

.ˇi ; p; Yi / 2 P�
vi .t0; x

0
i /

dC1X
iD1

ˇi D ˛
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and

0
B@
X : : : X
:::
: : :

:::

X : : : X

1
CA
"

�

0
BBBB@

Y1 0 : : : 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 : : : 0 YdC1

1
CCCCA

where, for any matrix A, A" D .I C "A/�1A. A small computation (presented e.g.
in [Imb06, p. 796]) yields that the previous matrix inequality is equivalent to the
following one

Xd"	 � 	 �
dC1X
iD1

Yi	i � 	i

where 	 D PdC1
iD1 	i . Taking the infimum over decompositions of 	, we get the

desired matrix inequality. ut
Lemma 2.4.8. Consider s1 2 Œ0; s0� such that

MŒv�.s0; y0/ D v.s1; y0/:

Then for all .ˇ; q; Y / 2 P�MŒv�.s0; y0/,

.ˇ; q; Y / 2 P�v.s1; y0/ and ˇ � 0:

Proof. We consider the test function � associated with .ˇ; q; Y / and we write for h
and ı small enough

�.s0 C h; y0 C ı/� �.s0; y0/ � MŒv�.s0 C h; y0 C ı/ �MŒv�.s0; y0/

� v.s1 C h; y0 C ı/ � v.s1; y0/:

This implies .ˇ; q; Y / 2 P�v.s1; y0/. Moreover, choosing ı D 0, we get

�.s0 C h; y0/ � �.s0; y0/

and ˇ � 0 follows. ut
The proof is now complete. ut
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2.4.1.2 Statement

The following result is the first key result in the theory of regularity of fully non-
linear parabolic equations. It is the parabolic counterpart of the famous Alexandroff
estimate, also called Alexandroff–Bakelman–Pucci (ABP) estimate, see [CafCab]
for more details about this elliptic estimate. The following one was first proved
for linear equations by Krylov [Kryl76] and then extended by Tso [Tso85]. The
following result appears in [Wang92a].

Theorem 2.4.9 (Maximum principle). Consider a supersolution of (2.36) in
Q� D Q�.0; 0/ such that u � 0 on @p.Q�/. Then

sup
Q�

u� � C�
d

dC1

�Z
uD�.u/

.f C/dC1
� 1

dC1

(2.41)

where C is universal and �.u/ is the monotone envelope of min.0; u/ extended by 0
to Q2�.

Remark 2.4.10. This is a maximum principle since, if f � 0, then u cannot take
negative values.

Proof. We prove the result for � D 1 and the general one is obtained by considering
v.t; x/ D u.�2t; �x/. Moreover, replacing u with min.0; u/ and extending it by 0 in
Q2 nQ1, we can assume that u D 0 on @pQ1 and u 	 0 in Q2 nQ1.

We are going to prove the three following lemmas. Recall that G.u/ is defined
page 44.

Lemma 2.4.11. The function �.u/ is C1;1 with respect to x and Lipschitz con-
tinuous with respect to t in Q1. In particular, G�.u/ WD G.�.u// is Lipschitz
continuous with respect to .t; x/.

The second part of the statement of the previous lemma is a consequence
of Lemma 2.4.4 above. We will prove the previous lemma together with the
following one.

Lemma 2.4.12. The partial derivatives .@t�.u/;D2�.u// satisfy for a.e. .t; x/ 2
Q1 \ Cu,

�@t�.u/C ��.�.u// � f C.x/

where Cu D fu D �.u/g.

The key lemma is the following one.

Lemma 2.4.13. If M denotes supQ1
u�, then

f.�; h/ 2 R
dC1 W j�j � M=2 � �h � M g � G�.u/.Q1 \ Cu/

where Cu D fu D �.u/g.
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Before proving these lemmas, let us derive the conclusion of the theorem.
Using successively Lemma 2.4.13, the area formula for Lipschitz maps (thanks to
Lemma 2.4.11) and Lemma 2.4.4, we get

CMdC1 D jf.�; h/ 2 R
dC1 W j�j � M=2 � �h � M gj

� jG�.u/.Q1 \ Cu/j

�
Z
Q1\Cu

j detG�.u/j

�
Z
Q1\Cu

�@t�.u/ det.D2�.u//:

Now using the geometric–arithmetic mean inequality and Lemma 2.4.12, we get

CMdC1 � ��d
Z
Q1\Cu

�@t�.u/ det.�D2�.u//

� 1

�d .d C 1/dC1

Z
Q1\Cu

.�@t�.u/C ��.�.u//dC1

� C

Z
Q1\Cu

.f C/dC1

where C ’s are universal. ut
We now turn to the proofs of Lemmas 2.4.11–2.4.13.

Proof of Lemmas 2.4.11 and 2.4.12. In order to prove that �.u/ is Lipschitz contin-
uous with respect to t and C1;1 with respect to x, it is enough to prove that there
exists C > 0 such that

8.t; x/ 2 Q2; 8.˛; p;X/ 2 P��.u/.t; x/;
� �˛ � C

X � CI:
(2.42)

Indeed, since �.u/ is non-increasing with respect to t and convex with respect to
x, (2.42) yields that �.u/ is Lipschitz continuous with respect to t and C1;1 with
respect to x. See Lemma 2.5.8 in appendix for more details.

In order to prove (2.42), we first consider .˛; p;X/ 2 P��.u/.t; x/ such that
X � 0. Recall (cf. Lemma 2.4.6 above) that ˛ � 0. We then distinguish two cases.

Assume first that �.u/.t; x/ D u.t; x/. In this case, .˛; p;X/ 2 P�u.t; x/ and
since u is a supersolution of (2.36), we have

˛ � � trace.X/ D ˛ C PC.X/ � f .x/ � �C
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whereC D jf j0IQ1 . Hence, we get (2.42) sinceX � 0 implies thatX � trace.X/I .
We also remark that the same conclusion holds true if .˛; p;X/ 2 P�

�.u/.t; x/
such that X � 0.

Assume now that �.u/.t; x/ < u.t; x/. In this case, there exist �i 2 Œ0; 1�, i
D 1; : : : ; d C 1, and xi 2 Q2, i D 1; : : : ; d C 1, such that (2.39) holds true with
.t0; x0/ and .t0i ; x

0
i / replaced with .t; x/ and .ti ; xi /. If .ti ; xi / 2 Q2 n Q1 for two

different i ’s, then Lemma 2.4.5 implies that M D 0 which is false. Similarly, ti >
�1 for all i . Hence, there is at most one index i such that .ti ; xi / 2 Q2 nQ1 and in
this case .ti ; xi / 2 @pQ2 and ti > �1. In particular, jxi j D 2. We thus distinguish
two subcases.

Assume first that .tdC1; xdC1/ 2 @pQ2 with tdC1 > �1 and .ti ; xi / 2 Q1 for
i D 1; : : : ; d . In particular jxdC1j D 2 and since x 2 Q1, we have �dC1 � 2

3
. This

implies that there exists �i such that �i � .3d/�1. We thus can assume without loss
of generality that �1 � .3d/�1. Then from Lemma 2.4.6, we know that for all " > 0
such that I C "X > 0, there exist .˛i ; Xi / 2 R � Sd , i D 1; : : : ; d C 1 such that
(2.40) holds true. In particular,

X" � 1

�1
X1 � 3dX1:

Since .˛1; p;X1/ 2 P�
u.t1; x1/ and �.u/.t1; x1/ D u.t1; x1/, we know from the

discussion above that X1 � CI. Hence for all " small enough,

X" � 3dCI:

Letting " ! 0 allows us to conclude that X � 3dCI in the first subcase. As far as
˛ is concerned, we remark that ˛dC1 D 0 and �˛i � C for all i D 1; : : : ; d C 1 so
that

�˛ D
dC1X
iD1

�i .�˛i / � C:

Assume now that all the points .ti ; xi /, i D 1; : : : ; d C 1, are inQ1. In this case, we
have for all i that �˛i � C and Xi � CI which implies

�˛ D
dC1X
iD1

�i .�˛i / � C;

X" � �dC1
iD1 �

�1
i CI D CI:

We thus proved (2.42) in all cases where X � 0. Consider now a general
subdifferential .˛; p;X/ 2 P��.u/.t; x/. We know from Lemma 2.5.9 in appendix
that there exists a sequence .˛n; pn;Xn/ such that
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.˛n; pn;Xn/ 2 P��.u/.tn; xn/

.tn; xn; ˛n; pn/ ! .t; x; ˛; p/

X � Xn C on.1/; Xn � 0:

From the previous discussion, we know that

˛ D ˛n C on.1/ � .C C 1/

X � Xn C on.1/ � .C C 1/I

for all n. The proof is now complete. ut
Proof of Lemma 2.4.13. The supersolution u � 0 is lower semi-continuous and the
minimum �M < 0 inQ2 is thus reached at some .t0; x0/ 2 Q1 (since u 	 0 outside
Q1). Now pick .�; h/ such that

j�j � M=2 � �h � M:

We consider P.y/ D � � y C h. We remark that P.y/ < 0 for y 2 Q1, hence
P.y/ < u.0; y/ in Q1. Moreover, since jx0j < 1,

P.x0/ � u.t0; x0/ D � � x0 C hCM > h � j�j CM � 0

hence supy2Q2
.P.y/ � u.t0; y// � 0. We thus choose

t1 D supft � 0 W 8s 2 Œ0; t �; sup
Q2

.P.y/ � u.s; y// < 0g:

We have 0 � t1 � t0 and

0 D sup
Q2

.P.y/ � u.t1; y// D P.y1/� u.t1; y1/:

In particular, � D Du.t1; y1/ and h D u.t1; x1/ � � � x1, that is to say, .�; h/
D G.u/.t1; y1/ with .t1; y1/ 2 Cu. ut

2.4.2 The L"-Estimate

This subsection is devoted to the important “L" estimate” given in Theorem 2.4.15.
This estimate is sometimes referred to as the weak Harnack inequality.

Theorem 2.4.15 claims that the L"-“norm” in a neighbourhood QK1 of .0; 0/ of a
non-negative (super-)solution u of the model equation (2.36) can be controlled by
its infimum over a neighbourhood QK2 of .1; 0/ plus the LdC1-norm of f .
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˜ K1K1

K̃2

Fig. 2.1 The two neighbourhoods QK1 and QK2

Remark 2.4.14. Since " can be smaller than 1, the integral of u" is in fact not the
("-power of) a norm.

We introduce the two neighbourhoods mentioned above (see Fig. 2.1).

QK1 D .0;R2=2/ � .�R;R/d ;
QK2 D .1 �R2; 1/ � .�R;R/d :

Theorem 2.4.15 (L" estimate). There exist universal positive constants R, C and
", such that for all non-negative supersolution u of

@u

@t
C PC.D2u/ � f in .0; 1/ �B 1

R
.0/;

the following holds true

�Z
QK1

u"
� 1

"

� C.inf
QK2

u C kf kLdC1..0;1/�B 1
R
.0///: (2.43)

The proof of this theorem is difficult and lengthy; this is the reason why we
explain the main steps of the proof now.

First, one should observe that it is possible to assume without loss of generality
that inf QK2 u � 1 and kf kLdC1..0;1/�B 1

R
.0// � "0 (for some universal constant "0 to be

determined) and to prove

Z
eK1 u".t; x/dx � C
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where " > 0 andC > 0 are universal. We recall that a constant is said to be universal
if it only depends on ellipticity constants � and ƒ and dimension d . Getting such
an estimate is equivalent to prove that

jfu > tg \ QK1j � C t�"

(see page 69 for more details). To get such a decay estimate, it is enough to prove
that

jfu > Nkg \ QK1j � CN�k"

for some universal constant N > 1. This inequality is proved by induction thanks
to a covering lemma (see Lemma 2.4.27 below). This amounts to cut the set fu >
Nkg \ QK1 in small pieces (the dyadic cubes) and make sure that the pieces where u
is very large (u � t , t 
 1) have small measures.

This will be a consequence of a series of measure estimates obtained from
a basic one. The proof of the basic measure estimate is a consequence of the
maximum principle proved above and the construction of an appropriate barrier we
will present soon. But we should first introduce the parabolic cubes we will use in
the decomposition. We also present the choice of parameters we will make.

2.4.2.1 Parabolic Cubes and Choice of Parameters

We consider the following subsets ofQ1.1; 0/.

K1 D .0;R2/ � .�R;R/d ;
K2 D .R2; 10R2/ � .�3R; 3R/d ;
K3 D .R2; 1/ � .�3R; 3R/d :

The constant R will be chosen as follows

R D min

 
1

3
p
d
; 3 � 2

p
2;

1p
10.mC 1/

!
(2.44)

wherem will be chosen in a universal way in the proof of the L" estimate.

2.4.2.2 A Useful Barrier

The following lemma will be used to derive the basic measure estimate. This
estimate is the cornerstone of the proof of the L" estimate.
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t

x ∈ B1

Q1(1, 0)K1

K2

K3

Fig. 2.2 The sets K1, K2 and K3

Lemma 2.4.16. For all R 2 .0;min..3
p
d/�1; .10/�1=2//, there exists a nonnega-

tive Lipschitz function � W Q1.1; 0/ ! R, C2 with respect to x where it is positive,
such that

@�

@t
C PC.D2�/ � g

for some continuous bounded function g W Q1.1; 0/ ! R and such that

suppg � K1

� � 2 in K3

� D 0 in @pQ1.1; 0/:

Remark 2.4.17. Recall the definitions of K1, K2 and K3 (see Fig. 2.2).

K1 D .0;R2/ � .�R;R/d ;
K2 D .R2; 10R2/ � .�3R; 3R/d ;
K3 D .R2; 1/ � .�3R; 3R/d :

The proof of the lemma above consists in constructing the function � more
or less explicitly. It is an elementary computation. However, it is an important
feature of non divergence type equations that this type of computations can be
made. Consider in contrast the situation of parabolic equations with measurable
coefficients in divergence form. For that type of equations, a result like the one of
Lemma 2.4.16 would be significantly harder to obtain.
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Proof. We will construct a function ' which solves the equation

't C PC.D2'/ � 0 (2.45)

in the whole cylinderQ1.1; 0/, such that ' is positive and unbounded near .0; 0/ but
' D 0 in @pQ1.1; 0/ away from .0; 0/, and moreover ' > 0 in K2. Note that if the
equation were linear, ' could be its heat kernel in the cylinder. Once we have this
function ', we obtain � simply by taking

�.t; x/ D 2
'.t; x/

minK2 '
for .t; x/ 2 nK1;

and making � equal any other smooth function in K1 which is zero on ft D 0g.
We now construct this function '. We will provide two different formulas for

'.t; x/. The first one will hold for t 2 .0; T / for some T 2 .0; 1/. Then the second
formula provides a continuation of the definition of ' on ŒT; 1�.

For some constant p > 0 and a function ˆ W R
d ! R, we will construct the

function ' in .0; T / with the special form

'.t; x/ D t�pˆ
�
xp
t

�
:

Let us start from understanding what conditionsˆ must satisfy in order for ' to
be a subsolution to (2.45).

0 � 't C PC.D2'/ D t�1�p
�

� pˆ

�
xp
t

�

� 1

2

xp
t

� rˆ
�
xp
t

�
C PC.D2ˆ/

�
xp
t

��
:

Therefore, we need to find a functionˆ W Rd ! R and some exponent p such that

� pˆ.x/ � 1

2
x � rˆ.x/C PC.D2ˆ/.x/ � 0: (2.46)

For some large exponent q, we chooseˆ like this

ˆ.x/ D

8̂
<̂
ˆ̂:

something smooth and bounded between 1 and 2 if jxj � 3
p
d;

.6
p
d/q.2q � 1/�1



jxj�q � .6pd/�q

�
if 3

p
d � jxj � 6

p
d;

0 if jxj � 6
p
d:

For 3
p
d < jxj < 6

p
d , we compute explicitly the second and third terms

in (2.46),
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�1
2
x � rˆ.x/ D .6

p
d/q.2q � 1/�1 q

2
jxj�q

PC.D2ˆ/.x/ D .6
p
d/q.2q � 1/�1q.ƒ.d � 1/� �.q C 1//jxj�q�2:

By choosing q large enough so that �.q C 1/ > ƒ.d � 1/C 18d , we get that

�1
2
x � rˆ.x/C PCˆ.x/ � 0:

In order for (2.46) to hold in B
3
p
d

, we just have to choose the exponent p large
enough, since at those points ˆ � 1. Furthermore, since ˆ � 0 everywhere and
ˆ D 0 outside B

6
p
d

, then the inequality (2.46) holds in the full space R
d in the

viscosity sense.
Since ˆ is supported in B

6
p
d

, then ' D 0 on .0; T / � @B1, for T D .36d/�1.
Thus, ' D 0 on the lateral boundary .0; T / � @B1. Moreover,

lim
t!�1 '.t; x/ D 0;

uniformly in B1 n B" for any " > 0.
We have provided a value of ' up to time T 2 .0; 1/. In order to continue

' in ŒT; 1� we can do the following. Observe that by the construction of ˆ, we
have PC.D2'.T; x// � 0 for x 2 B1 n B1=2 and '.x; T / � T �p for x 2 B1=2.
Therefore, let

C D sup
x2B1

PC.D2'.T; x//

'.T; x/
< C1;

then we define '.t; x/ D e�C.t�T /'.T; x/ for all t > T , which is clearly a positive
subsolution of (2.45) in .T; 1� � B1 with ' D 0 on ŒT; 1� � @B1.

The constructed function ' vanishes only on the set f.t; x/ W t < T and jxj �
6
p

dtg. Since the set K3 D .R2; 1/ � .�3R; 3R/d has no intersection with this set,
then

inf
K3
' > 0:

This is all that was needed to conclude the proof. ut

2.4.2.3 The Basic Measure Estimate

As in the elliptic case, the basic measure estimate is obtained by combining
the maximum principle of Theorem 2.4.9 and the barrier function constructed
in Lemma 2.4.16. For the following proposition, we use the notation from
Remark 2.4.17.
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t

x ∈ B1

Q1(1, 0)K1

K2

K3

Fig. 2.3 Basic measure estimate in Q1.1; 0/

Proposition 2.4.18 (Basic measure estimate). There exist universal constants
"0 2 .0; 1/,M > 1 and � 2 .0; 1/ such that for any non-negative supersolution of

@u

@t
C PC.D2u/ � f in Q1.1; 0/;

the following holds true: if

�
infK3 u � 1

kf kLdC1.Q1.1;0//
� "0

then

jfu � M g \K1j � �jK1j:

Remark 2.4.19. Since K2 � K3 (see Fig. 2.3), the result also holds true if infK3 u
is replaced with infK2 u. This will be used in order to state and prove the stacked
measure estimate.

Remark 2.4.20. If u is a non-negative supersolution of

@u

@t
C PC.D2u/ � f in .0; T / �B1;
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x ∈ B1

t

K1

K2

Q1(1, 0)

Fig. 2.4 A supersolution in a smaller cylinder

for some T 2 .R2; 1/ (see Fig. 2.4), we still get

inf.R2;T /�.�3R;3R/d u � 1

kf kLdC1..0;T /�B1/ � "0

)
) jfu � M g \K1j � �jK1j:

The reason is that such a solution could be extended toQ1.1; 0/ (for example giving
any boundary condition on .T; 1/ � @B1 and making f quickly become zero for
t > T ), and then Proposition 2.4.18 can be applied to this extended function. This
remark will be useful when getting the “stacked” measure estimate in the case where
the stack of cubes reaches the final time.

Proof. Consider the function w D u � � where � is the barrier function from
Lemma 2.4.16. Then w satisfies (in the viscosity sense)

@w

@t
C PC.D2w/ � @u

@t
C PC.D2u/� @�

@t
� PC.D2�/ � f � g:

Remark also that

• w � u � 0 on @pQ1.1; 0/;
• infK3 w � infK3 u � 2 � �1 so that supK3 w� � 1;
• f�.w/ D wg � fw � 0g � fu � �g.

We recall that �.w/ denotes the monotone envelope of min.w; 0/ extended by 0 to
Q2.1; 0/. We now apply the maximum principle (Theorem 2.4.9) and we get

1 � sup
K3

w� � sup
Q1

w� � Cmaxkf kLdC1.Q1.1;0//
C Cmax

�Z
fu��g

jgjdC1
� 1

dC1

:
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Remember now that suppg � K1 and get

1 � Cmax"0 C Cmaxjfu � M g \K1j

withM > max.supK1 �; 1/. Choose now "0 so that Cmax"0 � 1=2 and get the result
with � D 1

1C2CmaxjK1j . The proof is now complete. ut
Corollary 2.4.21 (Basic measure estimate scaled). For the same constants "0,M
and � of Proposition 2.4.18 and any x0 2 R

d , t0 2 R and h > 0, consider any
nonnegative supersolution of

@u

@t
C PC.D2u/ � f in .t0; x0/C �Q1.1; 0/:

If

kf kLdC1..t0;x0/C�Q1.0;1//
� "0

h

M�d=.dC1/

then

jfu > hg\f.t0; x0/C�K1gj > .1��/j.t0; x0/C�K1j ) u >
h

M
in .t0; x0/C�K3:

Here, we recall that by �K we mean f.�2t; �x/ W .t; x/ 2 Kg.

Remark 2.4.22. As in Remark 2.4.20, .t0; x0/ C �.0; 1/ � B 1
R
.0/ can be replaced

with .t0; x0/C �.0; T / � B 1
R
.0/ for any T 2 .0; 1/.

Proof. We consider the scaled function

v.t; x/ D Mh�1u.t0 C �2t; x0 C �x/:

This function solves the equation

@v

@t
C PC.D2v/ � Qf in Q1.1; 0/

where Qf .t; x/ D Mh�1�2f .t0 C �2t; x0 C �x/. Note that

k Qf kLdC1.Q1.1;0//
D Mh�1�d=.dC1/kf kLdC1..t0;x0/C�Q1.1;0//

� "0:

We conclude the proof applying Proposition 2.4.18 to v. ut
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2.4.2.4 Stacks of Cubes

Given � 2 .0; 1/, we consider for all k 2 N, k � 1,

K
.k/
2 D .˛kR

2; ˛kC1R2/ � .�3kR; 3kR/d

where ˛k D Pk�1
iD0 9i D 9k�1

8
.

The first stack of cubes that we can consider is the following one

[k�1K.k/
2 :

This stack is obviously not contained in Q1.1; 0/ since time goes to infinity. It can
spill out ofQ1.1; 0/ either on the lateral boundary or at the final time t D 1. We are
going to see that at the final time, the “x-section” is contained in .�3; 3/d .

We consider a scaled version ofK1 included in K1 and we stack the correspond-
ing K.k/

2 ’s. The scaled versions of K1, K2 and K.k/
2 are

�K1 D .0; �2R2/ � B�R.0/;
�K2 D .�2R2; 10�2R2/ � B�R.0/;
�K

.k/
2 D .˛k�

2R2; ˛kC1�2R2/ � .�3k�R; 3k�R/d :

We now consider

L1 D .t0; x0/C �K1 � K1

and

L
.k/
2 D .t0; x0/C �K

.k/
2 :

Lemma 2.4.23 (Stacks of cubes). Choose R � min.3 � 2
p
2;

q
2
5
/ D 3 � 2

p
2.

For all L1 D .t0; x0/C �K1 � K1, we have

QK2 �


[k�1L.k/2

�
\ .0; 1/ � .�3; 3/d D



[k�1L.k/2

�
\ f0 < t < 1g:

In particular, if moreover R � .3
p
d/�1,



[k�1L.k/2

�
� .0; 1/ � B 1

R
.0/:

Moreover, the first k� D k such that L.kC1/
2 \ ft D 1g D ; satisfies

�2R2 � 1

˛k�
:
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(t0 0)

(t0

, x

, x0) + S−

Fig. 2.5 Stacks of cubes

Proof. We first remark that the stack of cubes lies between two “square” paraboloids
(see Fig. 2.5)

.t0; x0/C S� � [k�1L.k/2 � .t0; x0/C SC

where

S˙ D [s�s
˙

fp˙.s/g � .�s; s/d

and p˙.s˙/ D �2R2 and p˙.z/ D a˙z2 C b˙�2R2 are such that

pC.3k�R/ D ˛k�
2R2

p�.3k�R/ D ˛kC1�2R2:

This is equivalent to

aC D 1

8
and a� D 9

8
and bC D b� D �1

8
and s˙ D

r
9

8
�R:

Remark now that

Œ.t0; x0/C SC� \Q1.1; 0/ � Œ0; 1� � .�R � a� 1
2C ; RC a

� 1
2C /d :

We thus choose R such that .RC a
� 1
2C / � 3. This condition is satisfied if

R � 3 � 2p2:
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Remark next that

.t0; x0/C S� � \x2.�R;R/d Œ.R2; x/C S��:

Hence

Œ.t0; x0/C S�� \Q1.1; 0/ � QK2

as soon as

aC.2R/2 � 1 � 2R2:

It is enough to have

5

2
R2 D .4aC C 2/R2 � 1:

Finally, the integer k� satisfies

t0 C ˛k�R2�2 � 1 < t0 C ˛k�C1R2�2: ut

2.4.2.5 The Stacked Measure Estimate

In this paragraph, we apply repeatedly the basic measure estimate obtained above
and get an estimate in the finite stacks of cubes we constructed in the previous
paragraph.

Proposition 2.4.24 (Stacked measure estimate). For the same universal con-
stants "0 2 .0; 1/, M > 1 and � 2 .0; 1/ from Proposition 2.4.18, the following
holds true: consider a non-negative supersolution u of

@u

@t
C PC.D2u/ � f in .0; 1/ � B 1

R
.0/

and a cube L1 D .t0; x0/C �K1 � K1. Assume that for some k � 1 and h > 0

kf kLdC1..0;1/�B 1
R
.0// � "0

h

Mk�d=.dC1/ :

Then

jfu > hg \ L1j > .1 � �/jL1j ) inf
L
.k/
2 \f0<t<1g

u >
h

Mk
:
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K1

K
(1)
2

K
(2)
2

K
(3)
2

K
(4)
2

Fig. 2.6 Stacks of neighbourhoods K.k/
2

Remark 2.4.25. Remember that L.k/2 D .t0; x0/C�K
.k/
2 and see Fig. 2.6. Thanks to

Lemma 2.4.23, we know that L.k/2 \ f0 < t < 1g � .0; 1/� B 1
R
.0/.

Proof. We prove the result by induction on k. Corollary 2.4.21 corresponds to the
case k D 1 if we can verify that

kf kLdC1..t0;x0/C�Q1.1;0//
� "0

h

M�d=.dC1/ :

It is a consequence of the fact that Q1.1; 0/ � .0; 1/ � B 1
R
.0/.

For k > 1, the inductive hypothesis reads

inf
L
.k�1/
2 \f0<t<1g

u >
h

Mk�1 :

If L.k�1/
2 is not contained in .0; 1/�B 1

R
.0/, there is nothing to prove at rank k since

L
.k/
2 \ f0 < t < 1g D ;. We thus assume that L.k�1/

2 � .0; 1/� B 1
R
.0/.

In particular

jfu >
h

Mk�1 g \ L
.k�1/
2 j D jL.k�1/

2 j: (2.47)

Note thatL.k�1/
2 D .t1; 0/C�1K1 andL.k/2 D .t1; 0/C�1K2 with t1 D t0C˛k�1R2�2

and �1 D 3k�1�. In particular (2.47) implies

jfu >
h

Mk�1 g \ f.t1; 0/C �1K1gj > .1 � �/j.t1; 0/C �1K1j:



64 C. Imbert and L. Silvestre

So we apply Corollary 2.4.21 again to obtain

inf
L
.k/
2 \f0<t<1g

u D inf
f.t1;0/C�1K2g\f0<t<1g

u >
h

Mk
:

We can do so since �1 � � and Lemma 2.4.23 implies thatL.k/2 � .0; 1/� .�3; 3/d .
In particular, the corresponding domain in which the supersolution is considered is
contained in .0; 1/ � B 1

R
.0/. We used here Remark 2.4.20 when .t1; 0/ C �1K2 is

not contained in f0 < t < 1g. Thus, we finish the proof by induction. ut
Before turning to the proof of Theorem 2.4.15, we observe that the previous

stacked measure estimate implies in particular the following result.

Corollary 2.4.26 (Straight stacked measure estimate). Assume that R �
1p

10.mC1/ . Under the assumptions of Proposition 2.4.24 with k D m, for any

cube L1 � K1

jfu > hg \ L1j > .1 � �/jL1j ) u >
h

Mm
in L1

.m/ � Q1.1; 0/:

Proof. Apply Proposition 2.4.24 with k D m and remark that L1
.m/ � L

.m/
2 .

The fact that L1
.m/ � Q1.1; 0/ (see Fig. 2.7) comes from the fact that 10.m C 1/

R2 � 1. ut

2.4.2.6 A Stacked Covering Lemma

When proving the fundamental L"-estimate (sometimes called the weak Harnack
inequality) for fully nonlinear elliptic equations, the Calderón–Zygmund decom-
position lemma plays an important role (see [CafCab] for instance). It has to be
adapted to the parabolic framework.

We need first some definitions. A cube Q is a set of the form .t0; x0/C .0; s2/ �
.�s; s/d . A dyadic cube K of Q is obtained by repeating a finite number of times
the following iterative process: Q is divided into 2dC2 cubes by considering all the
translations of .0; s2=4/ � .0; s/d by vectors of the form .l.s2=4/; sk/ with k 2 Z

d

and l 2 Z included in Q. When a cube K1 is split in different cubes including K2,
K1 is called a predecessor of K2.

Given m 2 N, and a dyadic cube K of Q, the set NK.m/ is obtained by “stacking”
m copies of its predecessor NK . More rigorously, if the predecessor NK has the form
.a; b/ � L, then we define NK.m/ D .b; b Cm.b � a// � L. Figure 2.8 corresponds
to the case m D 3.

Lemma 2.4.27 (Stacked covering lemma). Let m 2 N. Consider two subsets A
and B of a cube Q. Assume that jAj � ıjQj for some ı 2 .0; 1/. Assume also the
following: for any dyadic cube K � Q,
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L1 L1

L1
(3)

Fig. 2.7 L1 and the predecessors L1 and L1
.3/

jK \Aj > ıjAj ) NKm � B:

Then jAj � ı mC1
m

jBj.
Remark 2.4.28. This lemma is implicitly used in [Wang92a] (see e.g. Lemma 3.23
of this paper) but details of the proof are not given.

The proof uses a Lebesgue’s differentiation theorem with assumptions that are
not completely classical, even if we believe that such a generalization is well-known.
For the sake of completeness, we state and prove it in appendix (see Theorem 2.5.1
and Corollary 2.5.2).

Proof of Lemma 2.4.27. By iterating the process described to define dyadic cubes,
we know that there exists a countable collection of dyadic cubesKi such that

jKi \ Aj � ıjKi j and j NKi \ Aj � ıj NKi j

where NKi is a predecessor ofKi . We claim that thanks to Lebesgue’s differentiation
theorem (Corollary 2.5.2), there exists a set N of null measure such that

A � .[1
iD1Ki /[N:
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K
K̄

K̄(3)

Fig. 2.8 A dyadic cube K and stacked predecessors NK.m/

Indeed, consider .t; x/ 2 A n [1
iD1Ki . On one hand, since .t; x/ 2 Q, it belongs to

a sequence of closed dyadic cubes of the form Lj D .tj ; xj /C Œ0; r2j � � Œ�rj ; rj �d
with rj ! 0 as j ! C1 such that

jA\ Lj j � ıjLj j

that is to say

�
Z
Lj

1A � ı < 1:

On the other hand, for .t; x/ 2 A n [1
iD1Ki ,

0 < 1 � ı � 1 � �
Z
Lj

1A D �
Z
Lj

j1A � 1A.t; x/j:

We claim that the right hand side of the previous equality goes to 0 as j ! 1 as
soon as .t; x/ … N whereN is a set of null measure. Indeed, Corollary 2.5.2 implies
that for .t; x/ outside of such a set N ,
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�
Z
Lj

j1A � 1A.t; x/j � �
Z

QLj
j1A � 1A.t; x/j ! 0

where QLj D .t; x/C Œ0; 4r2j � � Œ�2rj ; 2rj �d . We conclude that A n [iKi � N .

We can relabel predecessors NKi so that they are pairewise disjoint. We thus have
A � [1

iD1Ki [N with NKm
i � B thanks to the assumption; in particular,

A � [1
iD1Ki [N � [1

iD1 NKi [ NKm
i [N

with [1
iD1 NKm

i � B. Classically, we write

jAj �
X
i�1

jA\ NKi j � ı
X
i�1

j NKi j � ıj [1
iD1 NKi j: (2.48)

In order to conclude the proof of the lemma, it is thus enough to prove that for a
countable collection . NKi/i of disjoint cubes, we have

j [1
iD1 NKi [ NKm

i j � m

mC 1
j [1

iD1 NKm
i j: (2.49)

Indeed, combining (2.48) and (2.49) yields the desired estimate (keeping in mind
that [i

NKm
i � B).

Estimate (2.49) is not obvious since, even if the NKi ’s are pairwise disjoint, the
stacked cubes NKm

i can overlap. In order to justify (2.49), we first write

[1
iD1 NKi [ NKm

i D [1
jD1Jj � Lj

where Lj are disjoint cubes of Rd and Jj are open sets of R of the form

J D [1
kD1.ak; ak C .mC 1/hk/:

Remark that

[1
iD1 NKm

i D [1
jD1 QJj � Lj

where QJj has the general form

QJ D [1
kD1.ak C hk; ak C .mC 1/hk/:

Hence, the proof is complete once Lemma 2.4.29 below is proved. ut
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Lemma 2.4.29. Let .ak/NkD1 and .hk/NkD1 be two (possibly infinite) sequences of
real numbers for N 2 N [ f1g with hk > 0 for k D 1; : : : ; N . Then

ˇ̌[N
kD1.ak; ak C .mC 1/hk/

ˇ̌ � m

mC 1

ˇ̌[N
kD1.ak C hk; ak C .mC 1/hk/

ˇ̌
:

Proof. We first assume that N is finite. We write [N
kD1.ak C hk; ak C .mC 1/hk/

as [L
lD1Il where Il are disjoint open intervals. We can write them as

Il D [Nl
kD1.bkClk; bkC.mC1/lk/ D . inf

kD1;:::;Nl
.bkClk/; sup

kD1;:::;Nl
.bkC.mC1/lk//:

Pick kl such that infkD1;:::;Nl .bk C lk/ D bkl C lkl . In particular,

jIl j D sup
kD1;:::;Nl

.bk C .mC 1/lk//� inf
kD1;:::;Nl

.bk C lk/

� mlkl :

Then

ˇ̌[N
kD1.ak C hk; ak C .mC 1/hk/

ˇ̌ � m
X
l

lkl D m

mC 1

X
l

.mC 1/lkl :

It is now enough to remark that .m C 1/lkl coincide with the length of one of the
intervals f.ak; ak C .m C 1/hk/gk and they are distinct since so are the Il ’s. The
proof is now complete in the case where N is finite.

If now N D 1, we get from the previous case that for any N 2 N,

ˇ̌[N
kD1.ak; ak C .mC 1/hk/

ˇ̌ � m

mC 1

ˇ̌[N
kD1.ak C hk; ak C .mC 1/hk/

ˇ̌

� m

mC 1
j[1

kD1.ak C hk; ak C .mC 1/hk/j :

It is now enough to let N ! 1 to conclude. ut

2.4.2.7 Proof of the L"-Estimate

The proof of the L" estimate consists in obtaining a decay in the measure of the
sets fu > Mkg \ QK1 (see Fig. 2.9). As in the elliptic case, the strategy is to apply
the covering Lemma 2.4.27 iteratively making use of Corollary 2.4.26. The main
difficulty of the proof (which is not present in the elliptic case) comes from the fact
that if K is a cube contained in QK1, then nothing prevents NK.m/ spilling out of K1.
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K1K̃1

K̃2

Fig. 2.9 The two neighbourhoods QK1 and QK2

Proof of Theorem 2.4.15. First, we can assume that

inf
QK2

u � 1 and kf kLdC1..0;1/�B 1
R
.0// � "0

(where "0 comes from Proposition 2.4.24) by considering

vı.t; x/ D u

inf QK2 u C "�1
0 kf kLdC1..0;1/�B 1

R
.0// C ı

:

We thus want to prove that there exits a universal constant C > 0 such that

Z
QK1

u".t; x/ dt dx � C: (2.50)

In order to get (2.43), it is enough to find universal constants m; k0 2 N and B > 1

such that for all k � k0,

jfu > Mkmg \ .0;R2=2C C1B
�k/ � .�R;R/d j � C.1 � �=2/k (2.51)

where C is universal and M and � comes from Proposition 2.4.24. Indeed, first for
t 2 ŒM km;M .kC1/m/, we have

jfu > tg \ .0;R2=2C C1B
�k/ � .�R;R/d j � C.1� �=2/k � C t�"

with " D � ln.1��=2/
m lnM > 0. We deduce that for all t > 0, we have

jfu > tg \ QK1j � Ct�":
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Now we use the formula
Z

QK1
u".t; x/ dt dx D "

Z 1

0

"�1jfu > g \ QK1jd

� "j QK1j
Z 1

0

"�1d C "

Z 1

1

"�1jfu > g \ QK1jd

and we get (2.50) from (2.51).
We prove (2.51) by induction on k. For k D k0, we simply choose

C � .1 � �=2/�k0 j.0;R2=2C C1B
�1/ � .�R;R/d j:

Now we assume that k � k0, that the result holds true for k and we prove it for
k C 1. In order to do so, we want to apply the covering Lemma 2.4.27 with

A D fu > M.kC1/mg \ .0;R2=2C C1B
�k�1/ � .�R;R/d

B D fu > Mkmg \ .0;R2=2C C1B
�k/ � .�R;R/d

Q D K1 D .0;R2/ � .�R;R/d

for some universal constants B and C1 to be chosen later. We can choose k0
(universal) so that B � K1. For instance

2C1B
�k0 � R2:

The induction assumption reads

jBj � C.1 � �=2/k:

Lemma 2.4.30. We have jAj � .1 � �/jQj.
Proof. Since, inf QK2 u � 1, we have in particular infK3 u � 1. The basic measure
estimate (Proposition 2.4.18) then implies that

jAj � jfu > M g \K1gj � .1� �/jK1j D .1 � �/jQj: ut

Lemma 2.4.31. Consider any dyadic cubeK D .t; x/C �K1 of Q. If

jK\fu > M.kC1/mg\.0;R2=2CC1B�k�1/�.�R;R/d gj > .1��/jKj; (2.52)
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then

NKm � fu > Mkmg \ .0;R2=2C C1B
�k/ � .�R;R/d

where NKm is defined at the beginning of Sect. 2.4.2.6.

Proof. We remark that the straight stacked measure estimate, Corollary 2.4.26,
applied with h D M.kC1/m � Mm, implies

NKm � fu > Mkmg:

We thus have to prove that

NKm � Œ0; R2=2C C1B
�k� � .�R;R/d : (2.53)

Because of (2.52), we have

K \ .0;R2=2C C1B
�k�1/ � .�R;R/d ¤ ;:

Hence

NKm � Œ0; R2=2C C1B
�k�1 C height. NK/C height. NKm/� � .�R;R/d

where height.L/ D supft W 9x; .t; x/ 2 Lg � infft W 9x; .t; x/ 2 Lg. Moreover,

height.K/ D R2�2

height. NK/ D 4 height.K/

height. NKm/ D m height. NK/:

Hence, (2.53) holds true if

R2=2C C1B
�k�1 C 4.mC 1/R2�2 � R2=2C C1B

�k

i.e.

R2�2 � C1.B � 1/
4.mC 1/

B�k�1: (2.54)

In order to estimate R2�2 we are going to use the stacked measure estimate given
by Proposition 2.4.24 together with the fact thatK is a cube for which (2.52) holds.

On one hand, Proposition 2.4.24 and (2.52) imply that as long as l � .k C 1/m,
we have

u > M.kC1/m�l in L.l/2 \ f0 < t < 1gI
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in particular,

inf
[.kC1/m
lD1 L

.l/
2 \f0<t<1g

u > 1:

On the other hand, using notation from Lemma 2.4.23,

inf
[k�

C1
lD1 L

.l/
2 \f0<t<1g

u � inf
QK2

u � 1

Hence .k C 1/m < k� C 1. Moreover, Lemma 2.4.23 implies

R2�2 � .1 � t0/.˛k�/�1 � 9

9.kC1/m :

Hence, we choose B D 9m and C1 D 36.mC1/
9m�1 . ut

We can now apply the covering lemma and conclude that

jAj � ı
mC 1

m
jBj:

We choosem large enough (universal) such that

.1 � �/
mC 1

m
� 1 � �=2:

Recalling that we chose � such that 1
�

D 1 C 2CmaxR
dC2 (where Cmax is the

universal constant appearing in the maximum principle), the previous condition is
equivalent to

m � 4CmaxR
dC2:

Since R � 1, it is enough to choosem � 4Cmax.
Thanks to the induction assumption, we thus finally get

jfu > M.kC1/mg \ .0;R2=2C C1B
�k�1/ � .�R;R/d j � C.1 � �=2/kC1:

The proof is now complete. ut

2.4.3 Harnack Inequality

The main result of this subsection is the following theorem.

Theorem 2.4.32 (Harnack inequality). For any non-negative function u such that

@u
@t

C PC.D2u/ � �f
@u
@t

C P�.D2u/ � f

	
(2.55)
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in Q1, we have

sup
QK4

u � C. inf
QR2

u C kf kLdC1.Q1/
/

where QK4 D .�R2 C 3
8
R4;�R2 C 1

2
R4/ �B R2

2
p

2

.0/.

Remark 2.4.33. The case where u solves (2.55) in Q� instead of Q1 follows by
scaling. Indeed, consider v.t; x/ D u.�2t; �x/ and change constants accordingly.

We will derive Theorem 2.4.32 combining Theorem 2.4.15 with the following
proposition (which in turn also follows from Theorem 2.4.15).

Proposition 2.4.34 (Local maximum principle). Consider a function u such that

@u

@t
C P�.D2u/ � f in Q1: (2.56)

Then for all p > 0, we have

sup
Q1=2

u � C

 �Z
Q1

.uC/p
� 1

p

C kf kLdC1.Q1/

!
:

Proof. First we can assume that u � 0 by remarking that uC satisfies (2.56) with f
replaced with jf j.

Let ‰ be defined by

‰.t; x/ D hmax..1 � jxj/�2� ; .1C t/�� /

where � will be chosen later. We choose h minimal such that

‰ � u in Q1:

In other words

h D min
.t;x/2Q1

u.t; x/

max..1 � jxj/�2� ; .1C t/�� /
:

We want to estimate h from above. Indeed, we have

sup
Q1
2

u � Ch

for some constant C depending on � and Q1
2
.
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In order to do estimate h, we consider a point .t0; x0/ realizing the minimum in
the definition of h. We consider

ı2 D min..1 � jx0j/2; .1C t0//:

In particular

u.t0; x0/ D hı�2�

andQı.t0; x0/ � Q1.
We consider next the function v.t; x/ D C � u.t; x/ where

C D sup
Qˇı.t0;x0/

‰

for some parameter ˇ 2 .0; 1/ to be chosen later. Remark first that

hı�2� � C � h..1 � ˇ/ı/�2� :

Remark next that v is a supersolution of

@v

@t
C PC.D2v/C jf j � 0 in Q1

and v � 0 in .t0 � .Rˇı/2; t0/ � Bˇı.x0/ � Qˇı.t0; x0/. From the L" estimate
(Theorem 2.4.15 properly scaled and translated), we conclude that

Z
L

v" � C.ˇı/dC2
 

inf
.t0�ˇı;x0/Cˇı QK2

v C .ˇı/
d

dC1 kf kLdC1.Q1/

!"

where L D .t0 � ˇı; x0/C ˇı QK1. Moreover,

inf
.t0�ˇı;x0/Cˇı QK2

v � v.t0; x0/

D C � u.t0; x0/

� h

�
.1 � ˇ/�2� � 1

�
ı�2� :

Hence, we have

Z
L

v" � C.ˇı/dC2
�
h

�
.1 � ˇ/�2� � 1

�
ı�2� C .ˇı/

d
dC1 kf kdC1

�"
: (2.57)
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We now consider the set

A D
�
.t; x/ 2 L W u.t; x/ <

1

2
u.t0; x0/ D 1

2
hı�2�

	
:

We have

Z
A

v" � jAj
�
hı�2� � 1

2
hı�2�

�"
D jAj

�
hı�2�

2

�"
:

We thus get from (2.57) the following estimate

jAj � C jLj
��
.1 � ˇ/�2� � 1

�"
C .ı2�h�1/".ˇı/

d"
dC1 kf k"dC1

�
:

Finally, we estimate
R
Q1

u" from below as follows

Z
Q1

u" �
Z
LnA

u" � .jLj � jAj/2�".hı�2� /":

Hence, choosing � D dC2
2"

and combining the two previous inequalities, we get

ˇ2CdC1h" D jLj2�".hı�2� /" �
Z
Q1

u"

C ˇ2CdC2h"
�
.1 � ˇ/�2� � 1

�"

C ˇ2CdC d"
dC1 C2kf k"dC1:

We used ı � 1. Choose now ˇ small enough so that

C2

�
.1 � ˇ/�2� � 1

�"
� C1=2

and conclude in the case p D ". The general case follows by interpolation. ut
Theorem 2.4.32 is a direct consequence of the following one.

Theorem 2.4.35. For any non-negative function u satisfying (2.55) in .�1; 0/ �
B 1

R
.0/, we have

sup
QK3

u � C.inf
QR

u C kf kLdC1..�1;0/�B 1
R
.0///

where QK3 D .�1C 3
8
R2;�1CR2=2/� B R

2
p

2

.0/ (see Fig. 2.10).
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QR

K̃3

(−1, 0) × B 1
R
(0)

Fig. 2.10 The set eK3

Proof of Theorem 2.4.35. On the one hand, from Theorem 2.4.15 (the L" estimate)
applied to u.t C 1; x/ we know that

 Z
.�1;�1CR2=2/�B

R=
p

2

u.x/"dx

!1="
� C.inf

QR

u C kf kLdC1.Q1/
/: (2.58)

On the other hand, we apply Proposition 2.4.34 to the scaled function v.t; x/ D
u..t C 1 � R2=2/=.R2=2/;

p
2x=R/ � 0 and p D " to obtain

sup
Q1
2

v � C

 �Z
Q1

v"
� 1

"

C kf kLdC1.Q1/

!
:

Scaling back to the original variables, we get

sup
QK3

u � C

0
@
 Z

.�1;�1CR2=2/�B
R=

p

2

u"
! 1

"

C kf kLdC1.Q1/

1
A : (2.59)

Combining (2.58) with (2.59) we get

sup
QK3

u � C

�
inf
QR

u C kf kLdC1.Q1/

�
;

which finishes the proof. ut
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2.4.4 Hölder Continuity

An important consequence of Harnack inequality (Theorem 2.4.32) is the Hölder
continuity of functions satisfying (2.55).

Theorem 2.4.36. If u satisfies (2.55) in Q� then u is ˛-Hölder continuous in Q�

and

Œu�˛;Q�=2
� C��˛



juj0;Q� C �

d
dC1 kf kLdC1.Q�/

�
:

Proof. We only deal with � D 1. We prove that if u satisfies (2.55) in Q1 then u is
˛-Hölder continuous at the origin, i.e.

ju.t; x/� u.0; 0/j � C
�juj0;Q1 C kf kLdC1.Q1/

�
.jxj C p

t/˛: (2.60)

To get such an estimate, it is enough to prove that the oscillation of the function u in
Q� decays as �˛; more precisely, we consider

M� D sup
Q�

u;

m� D inf
Q�

u;

oscQ� u D M� �m�:

Then (2.60) holds true as soon as

oscQ� u � C
�juj0;Q1 C kf kLdC1.Q1/

�
�˛: (2.61)

Indeed, consider .t; x/ 2 Q� nQ�=2 and estimate ju.t; x/ � u.0; 0/j from above by
oscQ� u and �=2 from above by jxj1 C p

t .
In order to prove (2.61), we consider the two functions u � m� � 0 and

M� � u � 0 inQ�. They both satisfy (2.55) inQ�. From the Harnack inequality, we
thus get

sup
� QK4
.u �m�/ � C. inf

QR2�

.u �m�/C �
d

dC1 kf kdC1/

sup
� QK4
.M� � u/ � C. inf

QR2�

.M� � u/C �
d

dC1 kf kdC1/

where � QK4 � Q� follows from QK4 � .�1; 0/ � B1. We next add these two
inequalities which yields
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oscQ� u � C.oscQ� u � oscQ�� u C �
d

dC1 kf kdC1/

with C > 1 and where � denotes R2. Rearranging terms, we get

oscQ�� u � C � 1

C
oscQ� u C �

d
dC1 kf kdC1

where C is universal. Then an elementary iteration lemma allows us to achieve the
proof of the theorem; see Lemma 2.5.13 in appendix with h.�/ D oscQ� u and
ı D .C � 1/=C and ˇ D d=.d C 1/. ut

Appendix: Technical Lemmas

A.1 Lebesgue’s Differentiation Theorem

The purpose of this appendix is to prove a version of Lebesgue’s differentiation
theorem with parabolic cylinders. Recall that the usual version of the result says
that if f 2 L1.�; dt ˝ dx/ where� is a Borel set of RdC1, then for a.e. .t; x/ 2 �,

lim
j!1

�
Z
Gj

jf � f .t; x/j D 0

as long as the sequence of sets Gj satisfies the regularity condition:

Gj � Bj

jGj j � cjBj j
where Bj is a sequence of balls Brj .t; x/ with rj ! 0.

A sequence of parabolic cylinders Qrj .t; x/ cannot satisfy the regularity
condition because of the different scaling between space and time. Indeed
jQrj .t; x/j D rdC2

j which is an order of magnitude smaller than rdC1
j .

Fortunately, the classical proof of Lebesgue’s differentiation theorem can be
repeated and works for parabolic cylinders as well, as it is shown below.

Theorem 2.5.1 (Lebesgue’s differentiation theorem). Consider an integrable
function f 2 L1.�; dt ˝ dx/ where � is an open set of R

dC1. Then for a.e.
.t; x/ 2 �,

lim
r!0C

�
Z
.t�r2;t /�Br .x/

jf � f .t; x/j D 0

where �R
O
g D 1

jO j
R
O
g for any Borel set O � R

dC1 and integrable function g.
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In the proof, we will in fact use the following corollary.

Corollary 2.5.2 (Generalized Lebesgue’s differentiation theorem). Let Gj be a
family of sets which is regular in the following sense: there exists a constant c > 0

and rj ! 0 such that

Gj � .t � r2j ; t/ �Brj .x/;
jGj j � crdC2

j :

Then, except for a set of measure zero which is independent of the choice of fGj g,
we have

lim
j!C1

�
Z
Gj

jf � f .t; x/j D 0:

Remark 2.5.3. It is interesting to point out that if the parabolic cylinders were
replaced by other families of sets not satisfying the regularity condition, the result
of Lemma 2.5.5 may fail. For example if we take

QMf.t; x/ D sup
.a;b/�Br .y/3.t;x/

�
Z
.a;b/�Br .y/\�

jf j

then Lemma 2.5.5 would fail for QMf .

Proof of Corollary 2.5.2. We obtain Corollary 2.5.2 as an immediate consequence
of Theorem 2.5.1 by noting that since Gj � .t � r2j ; t/ �Brj .x/.

�
Z
Gj

jf � f .t; x/j � r2jBr j
jGj j �

Z
.t�r2;t /�Br .x/

jf � f .t; x/j:

Thus, the result holds at all points where this right hand side goes to zero, which is
a set of full measure by Theorem 2.5.1 and that r

2jBr j
jGj j � c > 0. ut

In order to prove Theorem 2.5.1, we first need a version of Vitali’s covering lemma.

Lemma 2.5.4 (Vitali’s covering lemma). Consider a bounded collection of cubes
.Q˛/˛ of the form Q˛ D .t˛ � r2˛; t˛/ � Br˛ .x˛/ and a set A such that A � [˛Q˛.
Then there is a finite number of cubes Q1; : : : ;QN such that A � [N

jD15Qj where
5Qj D .t˛ � 25r2˛; t˛/ � B5r˛ .x˛/.

Consider next the maximal function Mf associated with a function f 2
L1.�; dt ˝ dx/

Mf .t; x/ D sup
Q3.t;x/

�
Z
Q\�

jf j

where the supremum is taken over cubesQ of the form .s; y/C .�r2; 0/ � Br .
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Lemma 2.5.5 (The maximal inequality). Consider f 2 L1.�; dt ˝ dx/, f
positive, and � > 0, we have

jfMf > �gj � C

�
kf kL1

for some constant C depending only on dimension d .

Proof. For all x 2 fMf > �g, there exists Q 3 x such that

inf
Q
f � �

2
jQj:

Hence, the set fMf > �g can be covered by cubesQ. From Vitali’s covering lemma,
there exists a finite cover of fMf > �g with some 5Q’s:

fMf > �g � [N
jD15Qj

with Qj that are disjoint and such that

Z
Qj\�

f � �

2
jQj \�j:

Hence
Z
�

f �
Z

[j Qj\�
f D

X
j

Z
Qj\�

f

� �

2
j [j Qj \�j D �

2
� 1

5dC2 j [j 5Qj \�j � �

C
jfMf > �gj

with C D 2 � 5dC2. ut
We can now prove Lebesgue’s differentiation theorem (Theorem 2.5.1).

Proof of Theorem 2.5.1. We can assume without loss of generality that the set �
is bounded. We first remark that the result is true if f is continuous. If f is not
continuous, we consider a sequence .fn/n of continuous functions such that

kf � fnkL1 � C

2n
:

Moreover, up to a subsequence, we can also assume that for a.e. .t; x/ 2 �,

fn.t; x/ ! f .t; x/ as n ! 1:
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Thanks to the maximal inequality (Lemma 2.5.5), we have in particular

jfM.f � fn/ > �gj � C

�2n
:

By Borel–Cantelli’s Lemma, we conclude that for all � > 0, there exists n� 2 N

such that for all n � n�,

M.f � fn/ � � a.e. in �:

We conclude that for a.e. .t; x/ 2 � and all k 2 N, there exists a strictly increasing
sequence nk such that for all r > 0 such that Qr.t; x/ � �,

�
Z
Qr.t;x/

jf � fnk j � M.f � fnk / � 1

k
:

Moreover, since fn is continuous and � is bounded, there exists rk > 0 such that
for r 2 .0; rk/, we have

�
Z
Qr .t;x/

jfnk � fnk .t; x/j � 1

k
:

Moreover, for a.e. .t; x/ 2 �,

jfnk .t; x/ � f .t; x/j ! 0 as k ! 1:

These three facts imply that for a.e. .t; x/ 2 �, for all " > 0, there exists r" > 0

such that r 2 .0; r"/,

�
Z
Qr .t;x/

jf � f .t; x/j � ":

This achieves the proof of the lemma. ut

A.2 Jensen–Ishii’s Lemma for N Functions

When proving Theorem 2.4.9 (more precisely, Lemma 2.4.6), we used the following
generalization of Lemmas 2.3.23 and 2.3.30 whose proof can be found in [CIL92].

Lemma 2.5.6 (Jensen–Ishii’s Lemma III). Let Ui , i D 1; : : : ; N be open sets of
R
d and I an open interval of R. Consider also lower semi-continuous functions

ui W I �Ui ! R such that for all v D ui , i D 1; : : : ; N , .t; x/ 2 I �Ui , there exists
r > 0 such that for all M > 0 there exists C > 0,
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.s; y/ 2 Qr.t; x/

.ˇ; q; Y / 2 P�v.s; y/
jv.s; y/j C jqj C jY j � M

9=
; ) �ˇ � C:

Let x D .x1; : : : ; xN / and x0 D .x01 ; : : : ; x
0
N /. Assume that

PN
iD1 ui .t; xi /��.t; x/

reaches a local minimum at .t0; x0/ 2 I � …iUi . If ˛ denotes @t�.t0; x0/ and
pi denotes Dxi �.x0/ and A denotes D2�.t0; x0/, then for any ˇ > 0 such that
I C ˇA > 0, there exist .˛i ; Xi / 2 R � Sd , i D 1; : : : ; N , such that for all
i D 1; : : : ; N ,

.˛i ; pi ; Xi / 2 P�
u.t0; x

0
i /

NX
iD1

˛i D ˛

and

1

ˇ

0
BBBB@

I 0 : : : 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 : : : 0 I

1
CCCCA �

0
BBBB@

X1 0 : : : 0

0
: : :

: : :
:::

:::
: : :

: : : 0

0 : : : 0 XN

1
CCCCA � Aˇ

where Aˇ D .I C ˇA/�1A.

Remark 2.5.7. The condition on the functions ui is satisfied as soon as the ui ’s
are supersolutions of a parabolic equation. This condition ensures that some
compactness holds true when using the doubling variable technique in the time
variable. See [CIL92, Theorem 8.2, p. 50] for more details.

A.3 Technical Lemmas for Monotone Envelopes

When proving the maximum principle (Theorem 2.4.9), we used the two following
technical lemmas.

Lemma 2.5.8. Consider a convex set � of R
d and a lower semi-continuous

function v W Œa; b� � N� ! R which is non-increasing with respect to t 2 .a; b/

and convex with respect to x 2 �. Assume that v is bounded from above and that
for all .˛; p;X/ 2 P�v.t; x/, we have

�˛ � C and X � CI:
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Then v is Lipschitz continuous with respect t 2 .a; b/ and C1;1 with respect to
x 2 �.

Proof of Lemma 2.5.8. We assume without loss of generality that � is bounded. In
this case, v is bounded from above and from below, hence is bounded. Next, we
also get that v is Lipschitz continuous with respect to x in Œa; b� � F for all closed
convex set F � � such that d.F; @�/ > 0.

Step 1.

We first prove that v is Lipschitz continuous with respect to t : for all .t0; x0/ 2
.a; b/ ��,

M D sup
s;t2.a;b/;x;y2�

�
v.t; x/ � v.s; y/ �Ljt � sj � L

4"
jx � yj2 �L"

�L0jx � x0j2 � L0.t � t0/
2

	
� 0

forL large enough only depending onC and the Lipschitz constant of v with respect
to x around .t0; x0/ and forL0 large enough. We argue by contradiction by assuming
that M > 0. Consider .Ns; Nt ; Nx; Ny/ where the maximum M is reached. Remark first
that

L0j Ny � x0j2 C L0.Ns � t0/2 C LjNt � Nsj C L

4"
j Nx � Nyj2 C L" � v.Nt ; Nx/ � v.Ns; Ny/

� 2jvj0;Œa;b�� N�:

In particular, we can chooseL0 andL large enough so that .Ns; Ny/; .Nt ; Nx/ 2 .a; b/��.
Remark next that Nt ¤ Ns. Indeed, if Nt D Ns, then

0 < M � v.Nt ; Nx/� v.Nt ; Ny/ � L

4"
j Nx � Nyj2 � L"

and choosing L larger than the Lipschitz constant of v with respect to x yields
a contradiction. Hence the function v is touched from below at .Ns; Ny/ by the test
function

.s; y/ 7! C0 � L

4"
j Nx � yj2 � LjNt � sj

where C0 is a constant depending on .Nt ; Nx/. In particular,

.L sign.Nt � Ns/; L.4"/�1. Nx � Ny/; L.4"/�1I / 2 P�v.Ns; Ny/:
We thus should haveL � C . ChoosingL > C yields also the desired contradiction.
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Step 2.

In order to prove that for all t 2 .a; b/, u.t; �/ is C1;1 with respect to x, it is enough
to prove that for all .p;X/ 2 D2;�u.t; x/ (see below),X � CI . Indeed, this implies
that u.t; �/C C

2
j � j2 is concave [ALL97]. Since u.t; �/ is convex, this implies that it

is C1;1 [CanSin04].
.p;X/ 2 D2;�u.t; x/means that there exists 2 C2.Rd / such thatp D D .x/

and X D D2 .x/ and

 .y/ �  .x/ � u.t; y/ � u.t; x/

for y 2 Br.x/. We can further assume that the minimum of u.t; �/�  is strict. We
then consider the minimum of u.s; x/� .x/C"�1.s�t/2 in .t�r; tCr/�Br .x/. For
" small enough, this minimum is reached in an interior point .t"; x"/ and .t"; x"/ !
.t; x/ as " ! 0. Then

."�1.s" � t/;D .x"/;D2 .x"// 2 P�u.t"; x"/:

Hence,D2 .x"/ � CI. Letting " ! 0 yields X � CI . This achieves Step 2.
The proof of the lemma is now complete. ut

Lemma 2.5.9. Consider a convex set � of Rd and v W .a; b/ � � ! R which is
non-increasing with respect to t 2 .a; b/ and convex with respect to x 2 �. Then
for all .˛; p;X/ 2 P�v.t; x/, that there exists .˛n; pn;Xn/ such that

.˛n; pn;Xn/ 2 P�v.tn; xn/

.tn; xn; ˛n; pn/ ! .t; x; ˛; p/

X � Xn C on.1/; Xn � 0:

The proof of this lemma relies on Alexandroff theorem in its classical form.
A statement and a proof of this classical theorem can be found for instance in
[EG92]. We will only use the following consequence of this theorem.

Theorem 2.5.10. Consider a convex set� of Rd and a function v W .a; b/�� ! R

which is convex with respect to .t; x/ 2 .a; b/��. Then for almost .t; x/ 2 .a; b/�
�, there exists .˛; p;X/ 2 P� \ PCv.t; x/, that is to say such that,

v.s; y/ D v.t; x/C˛.s�t/Cp �.y�x/C 1

2
X.y�x/ �.y�x/Co.js�t jCjy�xj2 /:

(2.62)

Jensen’s lemma is also needed (stated here in a “parabolic” version for the sake
of clarity).

Lemma 2.5.11 (Jensen). Consider a convex set� of Rd and a function v W .a; b/�
� ! R such that there exists .; C / 2 R

2 such that u.t; x/C  t2 CC jxj2 is convex
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with respect to .t; x/ 2 .a; b/ � �. If u reaches a strict local maximum at .t0; x0/,
then for r > 0 and ı > 0 small enough, the set

K D f.t; x/ 2 .t0 � r; t0 C r/ �Br.x0/ W 9.; p/ 2 .�ı; ı/ �Bı;
.s; y/ 7! u.s; y/� s � p � y reaches a local maximum at .t; x/g

has a positive measure.

See [CIL92] for a proof. We can now turn to the proof of Lemma 2.5.8. The proof
of Lemma 2.5.9 below mimics the proof of [ALL97, Lemma 3] in which there is no
time dependence.

Proof of Lemma 2.5.9. Consider a test function � such that u � � reaches a local
maximum at .t; x/ and

.˛; p;X/ D .@t�;D�;D
2�/.t; x/:

Without loss of generality, we can assume that this maximum is strict; indeed,
replace � with �.s; y/� jy�xj2 � .s� t/2 for instance. Then consider the function

v".t; x/ D inf
y2Rd ;s�0

�
v.s; y/C 1

"
jy � xj2 C 1

"
.s � t/2

	
:

One can check that v" is still convex with respect to x and non-increasing with
respect to t and that

.t; x/ 7! v".t; x/C 1

"
jxj2 C 1

"
t2

is concave with respect to .t; x/. Moreover, v" � v and

lim
"!0

v".t; x/ D v.t; x/:

This implies that there exists .t"; x"/ ! 0 as " ! 0 such that v" � � reaches a local
maximum at .t"; x"/. Remarking that v" � � satisfies the assumptions of Jensen’s
lemma, Lemma 2.5.11 above, we combine it with Theorem 2.5.10 and we conclude
that we can find slopes .n; pn/ ! .0; 0/ and points .tn; xn/ ! .t"; x"/ as n ! 1
where v" � � satisfies (2.62) and v" � � � ns � pny reaches a local maximum at
.tn; xn/. In other words,

.n C @t�.tn; xn/; pn CD�.tn; xn/;D
2v".tn; xn// 2 P�v".tn; xn/

with

D2v".tn; xn/ � 0



86 C. Imbert and L. Silvestre

and

D2�.tn; xn/ � D2v".tn; xn/:

In order to conclude, we use the classical following result from viscosity solution
theory (see [CIL92] for a proof):

Lemma 2.5.12. Consider .sn; yn/ such that

v".tn; xn/ D v.sn; yn/C "�1jyn � xnj2 C "�1.tn � sn/2:

Then

jyn � xnj2 C .tn � sn/2 � "jvCj0;.a;b/��
and

P�u".tn; xn/ � P�u.sn; yn/:

We used in the previous lemma that v is bounded from above since� is bounded.
Putting all the previous pieces of information together yields the desired result. ut

A.4 An Elementary Iteration Lemma

The following lemma is classical, see for instance [GT01, Lemma 8.23].

Lemma 2.5.13. Consider a non-decreasing function h W .0; 1/ ! R
C such that for

all � 2 .0; 1/,

h.��/ � ıh.�/C C0�
ˇ

for some ı; �; ˇ 2 .0; 1/. Then for all � 2 .0; 1/,

h.�/ � C˛�
˛

for all ˛ D 1
2

min. ln ı
ln � ; ˇ/ 2 .0; 1/.

Proof. Consider k 2 N, k � 1, and get by induction that for all �0; �1 2 .0; 1/ with
�1 � �0,

h.�k�1/ � ıkh.�1/C C0�
ˇ
1

k�1X
jD0

� ǰ :
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Then write

h.�k�1/ � ıkh.�0/C C0
�
ˇ
1

1 � �ˇ

� .�k/
Q̌
h.�0/C C0

�
ˇ
1

1 � �ˇ

� .�k/2˛h.�0/C C0
�2˛1
1 � �ˇ

where Q̌ D ln ı
ln � . Now pick � 2 Œ�kC1�1; �k�1/ and choose �1 D p

�0� and get from

the previous inequality the desired result for � 2 .0; �0/. Choose next �0 D 1
2

and
conclude for � 2 .0; 1/. ut
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Chapter 3
An Introduction to the Kähler–Ricci Flow

Jian Song and Ben Weinkove

Abstract These notes give an introduction to the Kähler–Ricci flow. We give an
exposition of a number of well-known results including: maximal existence time
for the flow, convergence on manifolds with negative and zero first Chern class,
and behavior of the flow in the case when the canonical bundle is big and nef.
We also discuss the collapsing of the Kähler–Ricci flow on the product of a torus
and a Riemann surface of genus greater than one. Finally, we discuss the connection
between the flow and the minimal model program with scaling, the behavior of the
flow on general Kähler surfaces and some other recent results and conjectures.

Introduction

The Ricci flow, first introduced by Hamilton [Ham82] three decades ago, is the
equation

@

@t
gij D �2Rij; (3.1)

evolving a Riemannian metric by its Ricci curvature. It now occupies a central
position as one of the key tools of geometry. It was used in [Ham82, Ham86]
to classify three-manifolds with positive Ricci curvature and four-manifolds with
positive curvature operator. Hamilton later introduced the notion of Ricci flow
with surgery [Ham95a] and laid out an ambitious program to prove the Poincaré
and Geometrization conjectures. In a spectacular demonstration of the power of
the Ricci flow, Perelman [Per02, Per03q, Per03b] developed new techniques which
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enabled him to complete Hamilton’s program and settle these celebrated conjectures
(see also [CZ06, KL08, MT07, MT08]). More recently, the Ricci flow was used
to prove the Brendle–Schoen Differentiable Sphere Theorem [BS08] and other
geometric classification results [BW08, NiW10].

In addition to these successes has been the development of the Kähler–Ricci
flow. If the Ricci flow starts from a Kähler metric on a complex manifold, the
evolving metrics will remain Kähler, and the resulting PDE is called the Kähler–
Ricci flow. Cao [Cao85] used this flow, together with parabolic versions of the
estimates of Yau [Yau78b] and Aubin [Aub78], to reprove the existence of Kähler–
Einstein metrics on manifolds with negative and zero first Chern class. Since then,
the study of the Kähler–Ricci flow has developed into a vast field in its own
right. There have been several different avenues of research involving this flow,
including: existence of Kähler–Einstein metrics on manifolds with positive first
Chern class and notions of algebraic stability [Bando87, Cal82, ChW09, Don02,
MSz09, PSS07, PSSW09, PSSW11, PS05, PS06, PS10, Rub09, SeT08, Sz10, Tian97,
TZ07, Tos10a, Yau93, Zhu07] (Perelman, unpublished work on the Kähler–Ricci
flow); the classification of Kähler manifolds with positive curvature in both the
compact and non-compact cases [Bando84,Cao92,CZ09,ChauT06,CST09,CheT06,
Gu09, Mok88, Ni04, PSSW08b]; and extensions of the flow to non-Kähler settings
[Gill11, StT10]. (These lists of references are far from exhaustive.) In these notes
we will not even manage to touch on these areas.

Our main goal is to give an introduction to the Kähler–Ricci flow. In the last
two sections of the notes, we will also discuss some results related to the analytic
minimal model program of the first-named author and Tian [ST07, ST12, ST09,
Tian02, Tian08]. The field has been developing at a fast pace in the last several
years, and we mention briefly now some of the ideas.

Ultimately, the goal is to see whether the Kähler–Ricci flow will give a geometric
classification of algebraic varieties. In the case of real three-manifolds, the work
of Perelman and Hamilton shows that the Ricci flow with surgery, starting at any
Riemannian metric, can be used to break up the manifold into pieces, each of which
has a particular geometric structure. We can ask the same question for the Kähler–
Ricci flow on a projective algebraic variety: starting with any Kähler metric, will
the Kähler–Ricci flow “with surgery” break up the variety into simpler pieces, each
equipped with some canonical geometric structure?

A process of “simplifying” algebraic varieties through surgeries already exists
and is known as the Minimal Model Program. In the case of complex dimension
two, the idea is relatively simple. Start with a variety and find “.�1/-curves”—
these are special holomorphic spheres embedded in the variety—and remove them
using an algebraic procedure known as “blowing down”. It can be shown that
after a finite number of these algebraic surgeries, the final variety either has a
“ruled” structure, or has nef canonical bundle, a condition that can be interpreted
as being “nonpositively curved” in some appropriate sense. This last type of
variety is known as a “minimal model”. In higher dimensions, a similar, though
more complicated, process also exists. It turns out that there are many different
ways to arrive at the minimal model by algebraic procedures such as blow-downs.
However, in [BCHM10] Birkar–Cascini–Hacon–McKernan introduced the notion
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of the Minimal Model Program with scaling (or MMP with scaling), which, ignoring
some technical assumptions, takes a variety with a “polarization” and describes a
particular sequence of algebraic operations which take it to a minimal model or a
ruled surface (or its higher dimensional analogue). This process seems to be closely
related to the Kähler–Ricci flow, with the polarization corresponding to a choice of
initial Kähler metric.

Starting in 2007, Song–Tian [ST07,ST12,ST09] and Tian [Tian08] proposed the
analytic MMP using the Kähler–Ricci flow with a series of conjectures, and showed
[ST09] that, in a weak sense, the flow can be continued through singularities related
to the MMP with scaling. In the case of complex dimension two, it was shown by
the authors [SW10] that the algebraic procedure of “blowing down” a holomorphic
sphere corresponds to a geometric “canonical surgical contraction” for the Kähler–
Ricci flow.

Moreover, the minimal model is endowed with an analytic structure. Eyssidieux–
Guedj–Zeriahi [EGZ11] generalized an estimate of Kolodziej [Kol98] (see also the
work of Zhang [Zha06]) to construct singular Kähler–Einstein metrics on minimal
models of general type. In the case of smooth minimal models, convergence of the
Kähler–Ricci flow to this metric was already known by the work of Tsuji in the
1980s [Tsu88], results which were clarified and extended by Tian–Zhang [Tzha06].
On Iitaka fibrations, the Kähler–Ricci flow was shown by Song–Tian to converge to
a “generalized Kähler–Einstein metric” [ST07, ST12].

These are very recent developments in a field which we expect is only just begin-
ning. In these lecture notes we have decided to focus on describing the main tools
and techniques which are now well-established, rather than give expositions of the
most recent advances. In particular, we do not in any serious way address “surgery”
for the Kähler–Ricci flow and we only give a sketchy outline of the Minimal Model
Program and its relation to the Kähler–Ricci flow. On the other hand, we have taken
the opportunity to include two new results in these notes: a detailed description
of collapsing along the Kähler–Ricci flow in the case of a product elliptic surface
(Sect. 3.6) and a description of the Kähler–Ricci flow on Kähler surfaces (Sect. 3.8),
extending our previous work on algebraic surfaces [SW10].

We have aimed these notes at the non-expert and have tried to make them as
self-contained and complete as possible. We do not expect the reader to be either
a geometric analyst or an algebraic geometer. We assume only a basic knowledge
of complex manifolds. We hope that these notes will provide enough background
material for the non-expert reader to go on to begin research in this area.

We give now a brief outline of the contents of these notes. In Sect. 3.1, we give
some preliminaries and background material on Kähler manifolds and curvature,
describe some analytic tools such as the maximum principle, and provide some
definitions and results from algebraic geometry. Readers may wish to skip this
section at first and refer back to it if necessary. In Sect. 3.2, we describe a
number of well-known basic analytic results for the Kähler–Ricci flow. Many of
these results have their origin in the work of Calabi, Yau, Cheng, Aubin and
others [Aub78, Cal58, Cao85, ChengYau75, Yau78b, Yau78]. We include a more
recent argument, due to Phong–Šešum–Sturm [PSS07], for the “Calabi third-order”
estimate in the setting of the Kähler–Ricci flow.
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In Sect. 3.3 we prove one of the basic results for the Kähler–Ricci flow: the flow
admits a smooth solution as long as the class of the metric remains Kähler. The
result in this generality is due to Tian–Zhang [Tzha06], extending earlier results of
Cao and Tsuji [Cao85, Tsu88, Tsu96]. In Sect. 3.4, we give an exposition of Cao’s
work [Cao85]—the first paper on the Kähler–Ricci flow. Namely, we describe the
behavior of the flow on manifolds with negative or zero first Chern class. We include
in this section the crucial C0 estimate of Yau [Yau78b]. We give a different proof of
convergence in this case, following Phong–Sturm [PS06]. In Sect. 3.5, we consider
the Kähler–Ricci flow on manifolds with nef and big canonical bundle. This was first
studied by Tsuji [Tsu88] and demonstrates how one can study the singular behavior
of the Kähler–Ricci flow.

In Sect. 3.6, we address the case of collapsing along the Kähler–Ricci flow with
the example of a product of an elliptic curve and a curve of higher genus. In Sect. 3.7,
we describe some basic results in the case where a singularity for the flow occurs at a
finite time, including the recent result of Zhang [Zha09] on the behavior of the scalar
curvature. We also describe without proof some of the results of [SSW11, SW10].

In Sect. 3.8, we discuss the Kähler–Ricci flow and the Minimal Model Program.
We give a brief sketch of some of the ideas of the MMP and how the Kähler–Ricci
flow relates to it. We also describe some results from [SW10] and extend them to
the case of Kähler surfaces.

The authors would like to mention that these notes arose from lectures given at
the conference Analytic aspects of complex algebraic geometry, held at the Centre
International de Rencontres Mathèmatiques in Luminy, in February 2011. The
authors would like to thank S. Boucksom, P. Eyssidieux, and V. Guedj for organizing
this wonderful conference. Additional thanks go to V. Guedj for his encouragement
to write these notes.

We would also like to express our gratitude to the following people for providing
helpful suggestions and corrections: Huai-Dong Cao, John Lott, Morgan Sherman,
Gang Tian, Valentino Tosatti and Zhenlei Zhang. Finally the authors thank their
former Ph.D. advisor D.H. Phong for his valuable advice, encouragement and
support over the last several years. In addition, his teaching and ideas have had a
strong influence on the style and point of view of these notes.

3.1 Preliminaries

In this section we describe some definitions and results which will be used
throughout the text.

3.1.1 Kähler Manifolds

Let M be a compact complex manifold of complex dimension n. We will often
work in a holomorphic coordinate chart U with coordinates .z1; : : : ; zn/ and write a
tensor in terms of its components in such a coordinate system. We refer the reader
to [GH78, KodMor71] for an introduction to complex manifolds etc.
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A Hermitian metric onM is a smooth tensor g D gij such that .gij / is a positive
definite Hermitian matrix at each point of M . Associated to g is a .1; 1/-form !

given by

! D
p�1
2�

gij dzi ^ d zj ; (3.2)

where here and henceforth we are summing over repeated indices from 1 to n.
If d! D 0 then we say that g is a Kähler metric and that ! is the Kähler
form associated to g. Henceforth, whenever, for example, g.t/; Og; g0; : : : are
Kähler metrics we will use the obvious notation !.t/; O!;!0; : : : for the associated
Kähler forms, and vice versa. Abusing terminology slightly, we will often refer to
a Kähler form ! as a Kähler metric.

The Kähler condition d! D 0 is equivalent to:

@kgij D @igkj ; for all i; j; k; (3.3)

where we are writing @i D @=@zi . The condition (3.3) is independent of choice of
holomorphic coordinate system.

For examples of Kähler manifolds, consider complex projective space P
n D

.CnC1 n f0g/= � where .z0; : : : ; zn/ � .z0
0; : : : ; z

0
n/ if there exists � 2 C

� with
zi D �z0

i for all i . We denote by ŒZ0; : : : ; Zn� 2 P
n the equivalence class of

.Z0; : : : ; Zn/ 2 C
nC1 n f0g. Define the Fubini–Study metric !FS by

!FS D
p�1
2�

@@ log.jZ0j2 C � � � C jZnj2/: (3.4)

Note that although jZ0j2 C � � � C jZnj2 is not a well-defined function on P
n, !FS is a

well-defined .1; 1/-form. We leave it as an exercise for the reader to check that!FS is
Kähler. Moreover, since the restriction of a Kähler metric to a complex submanifold
is Kähler, we can produce a large class of Kähler manifolds by considering complex
submanifolds of Pn. These are known as smooth projective varieties.

Let X D Xi@i and Y D Y i@i be T 1;0 and T 0;1 vector fields respectively, and let
a D aidzi and b D bid zi be .1; 0/ and .0; 1/ forms respectively. By definition this
means that if .Qz1; : : : ; Qzn/ is another holomorphic coordinate system then on their
overlap,

QXj D Xi @Qzj
@zi

; QY j D Y i
@Qzj
@zi

; Qaj D ai
@zi

@Qzj ;
Qbj D bi

@zi

@Qzj : (3.5)

Associated to a Kähler metric g are covariant derivatives rk and rk which act
on the tensors X; Y; a; b in the following way:

rkX
i D @kX

i C �ijkX
j ; rkX

i D @kX
i ; rkY

i D @kY
i ;

rkY
i D @kY

i C �ijkY
j ; (3.6)

rkai D @kai � �
j

ikaj ; rkai D @kai ; rkbi D @kbi ; rkbi D @kbi � �jikbj ;
(3.7)
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where �ijk are the Christoffel symbols given by

�ijk D g`i@j gk`; (3.8)

for .g`i / the inverse of the matrix .gi`/. Observe that �ijk D �ikj from (3.3). The

Christoffel symbols are not the components of a tensor, but rkX
i ;rkX

i ; : : : do
define tensors, as the reader can verify. Also, if g and Og are Kähler metrics with
Christoffel symbols �ijk and O�ijk then the difference �ijk � O�ijk is a tensor.

We extend covariant derivatives to act naturally on any type of tensor. For

example, if W is a tensor with componentsW ij

k then define

rmW
ij

k D @mW
ij

k C�i`mW `j

k ��`kmW ij

` ; rmW
ij

k D @mW
ij

k C�j`mW i`
k : (3.9)

Note also that the Christoffel symbols are chosen so that rkgij D 0.
The metric g defines a pointwise norm j � jg on any tensor. For example, with

X; Y; a; b as above, we define

jX j2g D gijX
iXj ; jY j2g D gij Y

j Y i ; jaj2g D gj iaiaj ; jbj2g D gj ibj bi :

(3.10)

This is extended to any type of tensor. For example, if W is a tensor with

componentsW ij

k then define jW j2g D g`kgij gpqW
iq

k W
jp

` .
Finally, note that a Kähler metric g defines a Riemannian metric gR. In local

coordinates, write zi D xi C p�1yi , so that @zi D 1
2
.@xi � p�1@yi / and @zi D

1
2
.@xi C p�1@yi /. Then

gR.@xi ; @xj / D 2Re.gij / D gR.@yi ; @yj /; gR.@xi ; @yj / D 2Im.gij /: (3.11)

We will typically write g instead of gR.

3.1.2 Normal Coordinates

The following proposition is very useful in computations.

Proposition 3.1.1. Let g be a Kähler metric on M and let S D Sij be a tensor

which is Hermitian (that is Sij D Sji .) Then at each point p on M there exists a
holomorphic coordinate system centered at p such that,

gij .p/ D ıij; Sij .p/ D �iıij ; @kgij .p/ D 0; 8 i; j; k D 1; : : : ; n;

(3.12)

for some �1; : : : ; �n 2 R, where ıij is the Kronecker delta.
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Proof. It is an exercise in linear algebra to check that we can find a coordinate
system .z1; : : : ; zn/ centered at p (so that p 7! 0) satisfying the first two conditions:
g is the identity at p and S is diagonal at p. Indeed this amounts to the fact that a
Hermitian matrix can be diagonalized by a unitary transformation.

For the last condition we make a change of coordinates. Define coordinates
.Qz1; : : : ; Qzn/ in a neighborhood of p by

zi D Qzi � 1

2
�ijk.0/Qzj Qzk; for i D 1; : : : ; n: (3.13)

Writing Qgij , QSij for the components of g, S with respect to .Qz1; : : : ; Qzn/ we see that

Qgij .0/ D gij .0/ and QSij .0/ D Sij .0/ since @zi =@Qzj .0/ D ıij. It remains to check
that the first derivatives of Qgij vanish at 0. Compute at 0,

@

@Qzk Qgij D @

@Qzk
 
@za

@Qzi
@zb

@Qzj gab
!

D @2za

@Qzk@Qzi
@zb

@Qzj gab C @za

@Qzi
@zb

@Qzj
@zm

@Qzk
@

@zm
gab

D ��jik C @

@zk
gij D 0; (3.14)

as required. ut
We call a holomorphic coordinate system centered at p satisfying gij .p/ D ıij

and @kgij .p/ D 0 a normal coordinate system for g centered at p. It implies in
particular that the Christoffel symbols of g vanish at p. Proposition 3.1.1 states that
we can find a normal coordinate system for g at any point p, and that moreover we
can simultaneously diagonalize any other Hermitian tensor (such as another Kähler
metric) at that point.

3.1.3 Curvature

Define the curvature tensor of the Kähler metric g to be the tensor

R m

i k`
D �@`�mik: (3.15)

The reader can verify that this does indeed define a tensor on M . We often lower
the second index using the metric g and define

Rijk` D gmjR
m

i k`
; (3.16)
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an object which we also refer to as the curvature tensor. In addition, we can
lower or raise any index of curvature using the metric g. For example, R qp

ij
WD

gqkg`pRijk`.
Using the formula for the Christoffel symbols and (3.3), calculate

Rijk` D �@i@j gk` C gqp.@igkq/.@j gp`/: (3.17)

The curvature tensor has a number of symmetries:

Proposition 3.1.2. We have

(i) Rijk` D Rji`k .
(ii) Rijk` D Rkj i` D Ri`kj .

(iii) rmRijk` D riRmjk`.

Proof. (i) and (ii) follow immediately from the formula (3.17) together with the
Kähler condition (3.3). For (iii) we compute at a pointp in normal coordinates for g,

rmRijk` D �@m@i@j gk` D �@i@m@j gk` D riRmjk`; (3.18)

as required. ut
Parts (ii) and (iii) of Proposition 3.1.2 are often referred to as the first and second

Bianchi identities, respectively. Define the Ricci curvature of g to be the tensor

Rij WD g`kRijk` D g`kRk`ij D R k
k ij

; (3.19)

and the scalar curvature R D gj iRij to be the trace of the Ricci curvature. For
Kähler manifolds, the Ricci curvature takes on a simple form:

Proposition 3.1.3. We have

Rij D �@i @j log detg: (3.20)

Proof. First, recall the well-known formula for the derivative of the determinant of
a Hermitian matrix. Let A D .Aij / be an invertible Hermitian matrix with inverse

.Aj i /. If the entries of A depend on a variable s then an application of Cramer’s rule
shows that

d

ds
detA D Aj i

�
d

ds
Aij

�
detA: (3.21)

Using this, calculate

Rij D �@j �kki D �@j .gqk@igkq/ D �@j @i log detg; (3.22)

which gives the desired formula. ut
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Associated to the tensor Rij is a .1; 1/ form Ric.!/ given by

Ric.!/ D
p�1
2�

Rijdzi ^ d zj : (3.23)

Proposition 3.1.3 implies that Ric.!/ is closed.
We end this subsection by showing that the curvature tensor arises when

commuting covariant derivatives rk and r`. Indeed, the curvature tensor is often
defined by this property.

Proposition 3.1.4. Let X D Xi@i , Y D Y i@i be T 1;0 and T 0;1 vector fields
respectively, and let a D aidzi and b D bid zi be .1; 0/ and .0; 1/ forms respectively.
Then

Œrk;r`�X
m D R m

i k`
Xi (3.24)

Œrk;r`�Y
m D �Rm

jk`
Y j (3.25)

Œrk;r`�ai D �R m

i k`
am (3.26)

Œrk;r`�bj D Rm
jk`
bm; (3.27)

where we are writing Œrk;r`� D rkr` � r`rk .

Proof. We prove the first and leave the other three as exercises. Compute at a point
p in a normal coordinate system for g,

Œrk;r`�X
m D @k@`X

m � @`.@kX
m C �mkiX

i / D �.@`�mik/Xi D R m

i k`
Xi ;

(3.28)

as required. ut
Note that the commutation formulae of Proposition 3.1.4 can naturally be

extended to tensors of any type. Finally we remark that, when acting on any tensor,
we have Œri ;rj � D 0 D Œri ;rj �, as the reader can verify.

3.1.4 The Maximum Principle

There are various notions of “maximum principle”. In the setting of the Ricci flow,
Hamilton introduced his maximum principle for tensors [CLN06, Ham82, Ham95a]
which has been exploited in quite sophisticated ways to investigate the positivity of
curvature tensors along the flow (see for example [Bando84, BW08, BS08, Ham86,
Mok88, NiW10]). For our purposes however, we need only a simple version of the
maximum principle.
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We begin with an elementary lemma. As above, .M;!/ will be a compact Kähler
manifold.

Proposition 3.1.5. Let f be a smooth real-valued function on M which achieves
its maximum (minimum) at a point x0 in M . Then at x0,

df D 0 and
p�1@@f � 0 .� 0/: (3.29)

Here, if ˛ D p�1aij dzi ^ d zj is a real .1; 1/-form, we write ˛ � 0 .� 0/ to
mean that the Hermitian matrix .aij / is nonpositive (nonnegative). Proposition 3.1.5
is a simple consequence of the fact from calculus that a smooth function has non-
positive Hessian (and hence nonpositive complex Hessian) and zero first derivative
at its maximum.

Next we introduce the Laplace operator� on functions. Define

�f D gj i@i@j f (3.30)

for a function f .
In these lecture notes, we will often make use of the trace notation “tr”. If ˛ Dp�1

2�
aij dzi ^ d zj is a real .1; 1/-form then we write

tr !˛ D gj iaij D n!n�1 ^ ˛
!n

: (3.31)

In this notation, we can write �f D tr !
p�1
2�
@@f .

It follows immediately from this definition that Proposition 3.1.5 still holds if we
replace

p�1@@f � 0 .� 0/ in (3.29) by �f � 0 .� 0/.
For the parabolic maximum principle (which we still call the maximum principle)

we introduce a time parameter t . The following proposition will be used many times
in these lecture notes.

Proposition 3.1.6. Fix T > 0. Let f D f .x; t/ be a smooth function onM�Œ0; T �.
If f achieves its maximum (minimum) at .x0; t0/ 2 M � Œ0; T � then either t0 D 0 or
at .x0; t0/,

@f

@t
� 0 .� 0/ and df D 0 and

p�1@@f � 0 .� 0/: (3.32)

Proof. Exercise for the reader. ut
We remark that, in practice, one is usually given a function f defined on a

half-open time interval Œ0; T / say, rather than a compact interval. To apply this
proposition it may be necessary to fix an arbitrary T0 2 .0; T / and work on
Œ0; T0�. Since we use this procedure many times in the notes, we will often omit
to mention the fact that we are restricting to such a compact interval. Note also that
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Propositions 3.1.5 and 3.1.6 still hold with M replaced by an open set U  M as
long as the maximum (or minimum) of f is achieved in the interior of the set U .

We end this section with a useful application of the maximum principle in the
case where f satisfies a heat-type differential inequality.

Proposition 3.1.7. Fix T with 0 < T � 1. Suppose that f D f .x; t/ is a smooth
function onM � Œ0; T / satisfying the differential inequality

�
@

@t
��

�
f � 0: (3.33)

Then sup.x;t/2M�Œ0;T / f .x; t/ � supx2M f .x; 0/:

Proof. Fix T0 2 .0; T /. For " > 0, define f" D f � "t . Suppose that f" on M �
Œ0; T0� achieves its maximum at .x0; t0/. If t0 > 0 then by Proposition 3.1.6,

0 �
�
@

@t
��

�
f" .x0; t0/ � �"; (3.34)

a contradiction. Hence the maximum of f" is achieved at t0 D 0 and

sup
.x;t/2M�Œ0;T0�

f .x; t/ � sup
.x;t/2M�Œ0;T0�

f".x; t/C"T0 � sup
x2M

f .x; 0/C"T0: (3.35)

Let " ! 0. Since T0 is arbitrary, this proves the result. ut
We remark that a similar result of course holds for the infimum of f if we replace�

@
@t

��
�
f � 0 by

�
@
@t

���f � 0. Finally, note that Proposition 3.1.7 holds, with
the same proof, if the Laplace operator� in (3.33) is defined with respect to a metric
g D g.t/ that depends on t .

3.1.5 Other Analytic Results and Definitions

In this subsection, we list a number of other results and definitions from analysis,
besides the maximum principle, which we will need later. For a good reference, see
[Aub82]. Let .M;!/ be a compact Kähler manifold of complex dimension n. In
these lecture notes, we will be concerned only with smooth functions and tensors so
for the rest of this section assume that all functions and tensors on M are smooth.
The following is known as the Poincaré inequality.

Theorem 3.1.8. There exists a constant CP such that for any real-valued function
f onM with

R
M
f!n D 0, we have

Z
M

f 2!n � CP

Z
M

j@f j2!n; (3.36)

for j@f j2 D gj i@if @j f .
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We remark that the constant CP is (up to scaling by some universal factor) equal
to ��1 where � is the first nonzero eigenvalue of the operator �� associated to g.

Next, we have the Sobolev inequality.

Theorem 3.1.9. Assume n > 1. There exists a uniform constant CS such that for
any real-valued function f onM , we have

�Z
M

jf j2ˇ!n
�1=ˇ

� CS

�Z
M

j@f j2!n C
Z
M

jf j2!n
�
; (3.37)

for ˇ D n=.n � 1/ > 1.

We give now some definitions for later use. Given a function f , define the C0

norm onM to be kf kC0.M/ D supM jf j. We give a similar definition for any subset
U � M . Given a (real) tensor W and a Riemannian metric g, we define jW j2g by
contracting with g, in the obvious way (cf. Sect. 3.1.1). Define kW kC0.M;g/ to be the
C0.M/ norm of jW jg . If no confusion arises, we will often drop the M and g in
denoting norms.

Given a function f onM , we define for p � 1 the Lp.M;!/ norm with respect
to a Kähler metric ! by

kf kLp.M;!/ D
�Z

M

jf jp!n
�1=p

: (3.38)

Note that kf kLp.M;!/ ! kf kC0.M/ as p ! 1.
We use rR to denote the (real) covariant derivative of g. Given a function f ,

write rm
R
f for the tensor with components (in real coordinates) .rR/i1 � � � .rR/imf

and similarly for r acting on tensors.
For a function f and a subset U  M , define

kf kCk.U;g/ D
kX

mD0
krm

R
f kC0.U;g/; (3.39)

and similarly for tensors.
We say that a tensor T has uniform C1.M; g/ bounds if for each k D 0; 1; 2; : : :

there exists a uniform constantCk such that kT kCk.M;g/ � Ck . Given an open subset
U  M we say that T has uniform C1

loc .U; g/ bounds if for any compact subset
K  U there exist constants Ck;K such that kT kCk.K;g/ � Ck;K . We say that a
family of tensors Tt converges in C1

loc .U; g/ to a tensor T1 if for every compact
K  U , and each k D 0; 1; 2; : : :, the tensors Tt converge to T1 in Ck.K; g/.

Given ˇ 2 .0; 1/, define the Hölder norm Cˇ.M; g/ of a function f by

kf kCˇ.M;g/ D kf kC0.M/ C sup
p¤q

jf .p/ � f .q/j
d.p; q/ˇ

; (3.40)
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for d the distance function of g. The Cˇ.M; g/ norm for tensors T is defined
similarly, except that we must use parallel transport with respect to g construct
the difference T .p/ � T .q/. For a positive integer k, define kf kCkCˇ.M;g/ D
kf kCk.M;g/ C krk

R
f kCˇ.M;g/, and similarly for tensors.

Finally, we define what is meant by Gromov–Hausdorff convergence. This is a
notion of convergence for metric spaces. Given two subsets A and B of a metric
space .X; d/, we define the Hausdorff distance between A and B to be

dH.A;B/ D inff" > 0 j A  B" and B  A"g (3.41)

where A" D [a2Afx 2 X j d.a; x/ � "g: We then define the Gromov–Hausdorff
distance between two compact metric spaces X and Y to be

dGH.X; Y / D inf
f;g
dH.f .X/; g.Y //; (3.42)

where the infimum is taken over all isometric embeddings f W X ! Z, g W Y ! Z

into a metric space Z (for all possible Z). We then say that a family Xt of compact
metric spaces converges in the Gromov–Hausdorff sense to a compact metric space
X1 if the Xt converge to X1 with respect to dGH.

3.1.6 Dolbeault Cohomology, Line Bundles and Divisors

In this section we introduce cohomology classes, line bundles, divisors, Hermitian
metrics etc. Good references for this and the next subsection are [GH78,KodMor71].
Let M be a compact complex manifold. We say that a form ˛ is @-closed if @˛ D 0

and @-exact if ˛ D @� for some form �. Define the Dolbeault cohomology group
H
1;1

@
.M;R/ by

H1;1

@
.M;R/ D f@�closedreal.1; 1/� formsg

f@�exactreal.1; 1/� formsg : (3.43)

A Kähler metric ! on M defines a nonzero element Œ!� of H1;1

@
.M;R/. If a

cohomology class ˛ 2 H1;1

@
.M;R/ can be written ˛ D Œ!� for some Kähler metric

! then we say that ˛ is a Kähler class and write ˛ > 0.
A basic result of Kähler geometry is the @@-Lemma.

Theorem 3.1.10. Let .M;!/ be a compact Kähler manifold. Suppose that 0 D
Œ˛� 2 H1;1

@
.M;R/ for a real smooth @-closed .1; 1/-form ˛. Then there exists a real-

valued smooth function ' with ˛ D
p�1
2�
@@', which is uniquely determined up to

the addition of a constant.
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In other words, a real .1; 1/-form ˛ is @-exact if and only if it is @@-exact. It is
an immediate consequence of the @@-Lemma that if ! and !0 are Kähler metrics in

the same Kähler class then !0 D ! C
p�1
2�
@@' for some smooth function ', which

is uniquely determined up to a constant, and sometimes referred to as a (Kähler)
potential.

A line bundle L over M is given by an open cover fU˛g of M together with
collection of transition functions ft˛ˇg which are holomorphic maps t˛ˇ W U˛ \
Uˇ ! C

� satisfying

t˛ˇtˇ˛ D 1; t˛ˇtˇ� D t˛� : (3.44)

We identify two such collections of transition functions ft˛ˇg and ft 0̨ˇg if we can

find holomorphic functions f˛ W U˛ ! C
� with t 0̨ˇ D f˛

fˇ
t˛ˇ . (In addition, we also

need to identify .fU˛g; ft˛ˇg/, .fU 0
�g; ft 0�ıg/ whenever fU 0

�g is a refinement of fU˛g
and the t 0�ı are restrictions of the t˛ˇ . We will not dwell on technical details about
refinements etc. and instead refer the reader to [GH78] or [KodMor71].) Given line
bundlesL;L0 with transition functions ft˛ˇg, ft 0̨ˇg writeLL0 for the new line bundle
with transition functions ft˛ˇt 0̨ˇg. Similarly, for any m 2 Z, we define line bundles

Lm by ftm˛ˇg. We call L�1 the inverse of L. Sometimes we use the additive notation
for line bundles, writing LC L0 for LL0 and mL for Lm.

A holomorphic section s of L is a collection fs˛g of holomorphic maps s˛ W
U˛ ! C satisfying the transformation rule s˛ D t˛ˇsˇ on U˛ \ Uˇ . A Hermitian
metric h on L is a collection fh˛g of smooth positive functions h˛ W U˛ ! R

satisfying the transformation rule h˛ D jtˇ˛j2hˇ on U˛ \ Uˇ. Given a holomorphic
section s and a Hermitian metric h, we can define the pointwise norm squared of
s with respect to h by jsj2h D h˛s˛s˛ on U˛. The reader can check that jsj2h is a
well-defined function on M .

We define the curvature Rh of a Hermitian metric h on L to be the closed
.1; 1/ form on M given by Rh D �

p�1
2�
@@ logh˛ on U˛. Again, we let the

reader check that this is well-defined. Define the first Chern class c1.L/ of L
to be the cohomology class ŒRh� 2 H

1;1

@
.M;R/. Since any two Hermitian metrics

h; h0 on L are related by h0 D he�' for some smooth function ', we see that

Rh0 D Rh C
p�1
2�
@@' and hence c1.L/ is well-defined independent of choice of

Hermitian metric. Note that if h is a Hermitian metric on L then hm is a Hermitian
metric on Lm and c1.Lm/ D mc1.L/.

Every complex manifold M is equipped with a line bundle KM , known as the

canonical bundle, whose transition functions are given by t˛ˇ D det


@ziˇ=@zj˛

�
on

U˛\Uˇ , whereU˛ are coordinate charts forM with coordinates z1˛; : : : ; z
n
˛ . If g is a

Kähler metric (or more generally, a Hermitian metric) on M then h˛ D det.g˛
ij
/�1

on U˛ defines a Hermitian metric on KM . The inverse K�1
M of KM is sometimes

called the anti-canonical bundle. Its first Chern class c1.K�1
M / is called the first

Chern class of M and is often denoted by c1.M/. It follows from Proposition 3.1.3
and the above definitions that c1.M/ D ŒRic.!/� for any Kähler metric ! onM .
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We now discuss divisors onM . First, we say that a subset V ofM is an analytic
hypersurface if V is locally given as the zero set ff D 0g of a locally defined
holomorphic function f . In general, V may not be a submanifold. Denote by V reg

the set of points p 2 V for which V is a submanifold ofM near p. We say that V is
irreducible if V reg is connected. A divisor D on M is a formal finite sum

P
i ai Vi

where ai 2 Z and each Vi is an irreducible analytic hypersurface ofM . We say that
D is effective if the ai are all nonnegative. The support of D is the union of the Vi
for each i with ai ¤ 0.

Given a divisor D we define an associated line bundle as follows. Suppose that
D is given by local defining functions f˛ (vanishing on D to order 1) over an
open cover U˛ . Define transition functions t˛ˇ D f˛=fˇ on U˛ \ Uˇ. These are
holomorphic and nonvanishing in U˛ \ Uˇ, and satisfy (3.44). Write ŒD� for the
associated line bundle, which is well-defined independent of choice of local defining
functions. Note that the map D 7! ŒD� is not injective. Indeed if D ¤ 0 is defined
by a meromorphic function f onM then ŒD� is trivial.

As an example: associated to a hyperplane fZi D 0g in P
n is the line bundle

H , called the hyperplane bundle. Taking the open cover U˛ D fZ˛ ¤ 0g, the
hyperplane is given by Zi=Z˛ D 0 in U˛. Thus we can define H by the transition
functions t˛ˇ D Zˇ=Z˛ . Define a Hermitian metric hFS on H by

.hFS/˛ D jZ˛j2
jZ0j2 C � � � C jZnj2 on U˛: (3.45)

Notice that RhFS D !FS. The canonical bundle of Pn is given byKPn D �.nC 1/H

and c1.Pn/ D .nC 1/Œ!FS� > 0. The line bundleH is sometimes written O.1/.

3.1.7 Notions of Positivity of Line Bundles

Let L be a line bundle over a compact Kähler manifold .M;!/. We say that L is
positive if c1.L/ > 0. This is equivalent to saying that there exists a Hermitian
metric h on L for which Rh is a Kähler form.

The Kodaira Embedding Theorem relates the positivity of L with embeddings of
M into projective space via sections of L. More precisely, write H0.M;L/ for the
vector space of holomorphic sections of L. This is finite dimensional if not empty.
We say that L is very ample if for any ordered basis s D .s0; : : : ; sN / ofH0.M;L/,
the map �s W M ! P

N given by

�s.x/ D Œs0.x/; : : : ; sN .x/�; (3.46)

is well-defined and an embedding. Note that s0.x/; : : : ; sN .x/ are not well-defined
as elements of C, but Œs0.x/; : : : ; sN .x/� is a well-defined element of PN as long
as not all the si .x/ vanish. We say that L is ample if there exists a positive integer
m0 such that Lm is very ample for all m � m0. The Kodaira Embedding Theorem
states:
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Theorem 3.1.11. L is ample if and only if L is positive.

The hard part of this theorem is the “if” direction. For the other direction, assume
that Lm is very ample, with .s0; : : : ; sN / a basis of H0.M;Lm/. Since M is a
submanifold of P

n, we see that ��s !FS is a Kähler form on M and if h is any
Hermitian metric on Lm then by definition of �s ,

��s !FS D �
p�1
2�

@@ loghC
p�1
2�

@@ log.js0j2h C � � � C jsN j2h/ D Rh C
p�1
2�

@@f;

(3.47)

for a globally defined function f . This implies that 1
m
��s !FS 2 c1.L/ and hence

c1.L/ > 0.
We say that a line bundle L is globally generated if for each x 2 M there exists

a holomorphic section s of L such that s.x/ ¤ 0. If L is globally generated then
given an ordered basis s D .s0; : : : ; sN / of holomorphic sections of L, we have a
well-defined holomorphic map �s W M ! P

N given by (3.46) (although it is not
necessarily an embedding). We say that a line bundleL is semi-ample if there exists
a positive integerm0 such that Lm0 is globally generated. Observe that if L is semi-
ample then, by considering again the pull-back of !FS to M by an appropriate map
�s , there exists a Hermitian metric h on L such that Rh is a nonnegative (1,1)-form.
That is, c1.L/ contains a nonnegative representative.

We next discuss the pairing of line bundles with curves in M . By a curve in M
we mean an analytic subvariety of dimension 1. If C is smooth, then we define

L � C D
Z
C

Rh; (3.48)

where h is any Hermitian metric on L. By Stokes’ Theorem, L � C is independent
of choice of h. If C is not smooth then we integrate over C reg, the smooth part of
C (Stokes’ Theorem still holds—see for example [GH78], p. 33). We can also pair
a divisor D with a curve by setting D � C D ŒD� � C , and we may pair a general
element ˛ 2 H1;1.M;R/ with a curve C by setting ˛ � C D R

C � for � 2 ˛.
We say that a line bundle L is nef if L � C � 0 for all curves C in M (“nef” is

an abbreviation of either “numerically eventually free” or “numerically effective”,
depending on whom you ask). It follows immediately from the definitions that:

L ample ) L semi � ample ) L nef: (3.49)

We may also pair a line bundle with itself n times, where n is the complex
dimension ofM . Define

c1.L/
n WD

Z
M

.Rh/
n: (3.50)

Moreover, given any ˛ 2 H1;1.M;R/ we define ˛n D R
M
�n for � 2 ˛.
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Assume now that M is a smooth projective variety. We say that a line bundle L
onM is big if there exist constantsm0 and c > 0 such that dimH0.M;Lm/ � c mn

for all m � m0. It follows from the Riemann–Roch Theorem (see [Ha77, Laz04],
for example) that a nef line bundle is big if and only if c1.L/n > 0. It follows that
an ample line bundle is both nef and big. IfM hasKM big then we say thatM is of
general type. If M hasKM nef then we say that M is a smooth minimal model.

We define the Kodaira dimension of M to be the infimum of � 2 Œ�1;1/ such
that there exists a constantC with dimH0.M;Km

M/ � Cm� for all positivem. In the
special case that allH0.M;Km

M/ are empty, we have � D �1. The largest possible
value of � is n. We write kod.M/ for the Kodaira dimension � of M . Thus if M is
of general type then kod.M/ D n. IfM is Fano, which means that c1.M/ > 0 then
kod.M/ D �1.

If KM is semi-ample then for m sufficiently large, the map �s W M ! P
N given

by sections of Km
M has image a subvariety Y , which is uniquely determined up to

isomorphism. Y is called the canonical model ofM and dimY D kod.M/ [Laz04].
We now quote some results from algebraic geometry:

Theorem 3.1.12. Let M be a projective algebraic manifold.

(i) Let ˛ be a Kähler class and let L be a nef line bundle. Then ˛ C s c1.L/ is
Kähler for all s > 0.

(ii) (Kawamata’s Base Point Free Theorem) If L is nef and aL � KX is nef and
big for some a > 0 then L is semi-ample.

(iii) (Kodaira’s Lemma) Let L be a nef and big line bundle onM . Then there exists
an effective divisor E and ı > 0 such that c1.L/ � "c1.ŒE�/ > 0 for all
" 2 .0; ı�.

Proof. For part (i), see for example Proposition 6.2 in [Dem96] or Corollary 1.4.10
in [Laz04]. For part (ii), see [KMM87,Shok85]. For part (iii), see for example p. 43
of [Dem96]. ut

It will be useful to gather here some results from complex surfaces which we
will make use of later. First we have the Adjunction Formula for surfaces. See for
example [GH78] or [BHPV].

Theorem 3.1.13. Let M be a Kähler surface, with C an irreducible smooth curve
in M . Then if g.C / is the genus of C , we have

1C KM � C C C � C
2

D g.C /: (3.51)

Moreover, if C is an irreducible, possibly singular, curve in M , we have

1C KM � C C C � C
2

� 0; (3.52)

with equality if and only if C is smooth and isomorphic to P
1.
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Note that C � C is well-defined, since M has complex dimension 2 and so C
is both a curve and a divisor. We may write C2 instead of C � C . Generalizing
the intersection pairing, we have the cup product form on H1;1.M;R/ given by
˛ � ˇ D R

M
˛ ^ˇ. Again, we write ˛2 instead of ˛ � ˛. A divisorD inM defines an

element of H1;1.M;R/ by D 7! ŒRh� 2 H1;1.M;R/ for h a Hermitian metric on
the line bundle ŒD�, and this is consistent with our previous definitions.

We have the Hodge Index Theorem for Kähler surfaces (see for example Theorem
IV.2.14 of [BHPV] or p. 470 of [GH78]).

Theorem 3.1.14. The cup product form on H1;1.M;R/ is non-degenerate of type
.1; k�1/, where k is the dimension ofH1;1.M;R/. In particular, if ˛ 2 H1;1.M;R/

satisfies ˛2 > 0 then for any ˇ 2 H1;1.M;R/,

˛ � ˇ D 0 ) ˇ2 < 0 or ˇ D 0: (3.53)

Finally, we state the Nakai–Moishezon criterion for Kähler surfaces, due to
Buchdahl and Lamari [Buch99, Lam99].

Theorem 3.1.15. Let M be a Kähler surface and ˇ be a Kähler class on M . If
˛ 2 H1;1.M;R/ is a class satisfying

˛2 > 0; ˛ � ˇ > 0; ˛ � C > 0

for every irreducible curve C on M , then ˛ is a Kähler class on M .

A generalization of this to Kähler manifolds of any dimension was established
by Demailly–Paun [DemPaun04].

3.2 General Estimates for the Kähler–Ricci Flow

In this section we introduce the Kähler–Ricci flow equation. We derive a number
of fundamental evolution equations and estimates for the flow which will be used
extensively throughout these notes. In addition, we discuss higher order estimates
for the flow.

3.2.1 The Kähler–Ricci Flow

Let .M;!0/ be a compact Kähler manifold of complex dimension n. A solution of
the Kähler–Ricci flow on M starting at !0 is a family of Kähler metrics ! D !.t/

solving

@

@t
! D �Ric.!/; !jtD0 D !0: (3.54)
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Note that this differs from Hamilton’s equation (3.1) by a factor of 2: see
Remark 3.2.11.

For later use it will be convenient to consider a more general equation than (3.54),
namely

@

@t
! D �Ric.!/� �!; !jtD0 D !0; (3.55)

where � is a fixed real number which we take to be either � D 0 or � D 1. As we will
discuss later in Sect. 3.4, the case � D 1 corresponds to a rescaling of (3.54). When
� D 1 we call (3.55) the normalized Kähler–Ricci flow.

We have the following existence and uniqueness result.

Theorem 3.2.1. There exists a unique solution ! D !.t/ to (3.55) on some
maximal time interval Œ0; T / for some T with 0 < T � 1.

Since the case � D 1 is a rescaling of (3.54), it suffices to consider (3.54). We will
provide a proof of this in Sect. 3.3, and show in addition that T can be prescribed in
terms of the cohomology class of Œ!0� and the manifold M . Theorem 3.2.1 also
follows from the well-known results of Hamilton. Indeed we can use the short
time existence result of Hamilton [Ham82] (see also [Det83]) to obtain a maximal
solution to the Ricci flow @

@t
gij D �Rij on Œ0; T / starting at g0 for some T > 0. Since

the Ricci flow preserves the Kähler condition (see e.g. [Ham95a]), g.t/ solves (3.54)
on Œ0; T /. Note that this argument does not explicitly give us the value of T .

A remark about notation. When we write tensorial objects such as curvature
tensors Rijk`, covariant derivatives ri , Laplace operators�, we refer to the objects
corresponding to the evolving metric ! D !.t/, unless otherwise indicated.

3.2.2 Evolution of Scalar Curvature

Let ! D !.t/ be a solution to the Kähler–Ricci flow (3.55) on Œ0; T / for T with
0 < T � 1. We compute the well-known evolution of the scalar curvature.

Theorem 3.2.2. The scalar curvature R of ! D !.t/ evolves by

@

@t
R D �R C jRic.!/j2 C �R; (3.56)

where jRic.!/j2 D g`igjkRijRk`. Hence the scalar curvature has a lower bound

R.t/ � ��n � C0e
��t ; (3.57)

for C0 D � infM R.0/� �n.
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Proof. Taking the trace of the evolution equation (3.55) gives

g`k
@

@t
gk` D �R � �n: (3.58)

Since R D �gj i@i@j log detg we have

@

@t
R D �gj i@i@j

�
g`k

@

@t
gk`

�
�
�
@

@t
gj i
�
@i @j log detg (3.59)

D �RC g`igjkRk`Rij C �R; (3.60)

as required. For (3.57), we use the elementary fact that njRic.!/j2 � R2 to obtain

�
@

@t
��

�
R � 1

n
R.RC �n/ D 1

n
.R C �n/2 � �.RC �n/: (3.61)

Hence
�
@

@t
��

�
.e�t .RC �n// � 0: (3.62)

By the maximum principle (see Proposition 3.1.7 and the remark following it), the
quantity e�t .RC �n/ is bounded below by infM R.0/C �n, its value at time t D 0.

ut
We remark that although we used the Kähler condition to prove Theorem 3.2.2,

in fact it holds in full generality for the Riemannian Ricci flow [Ham82] (see also
[ChowKnopf]).

Theorem 3.2.2 implies a bound on the volume form of the metric.

Corollary 3.2.3. Let ! D !.t/ be a solution of (3.55) on Œ0; T / and C0 as in
Theorem 3.2.2.

(i) If � D 0 then

!n.t/ � eC0t!n.0/: (3.63)

In particular, if T is finite then the volume form !n.t/ is uniformly bounded
from above for t 2 Œ0; T /.

(ii) If � D 1 there exists a uniform constant C such that

!n.t/ � eC0.1�e�t /!n.0/: (3.64)

In particular, the volume form !n.t/ is uniformly bounded from above for
t 2 Œ0; T /.
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Proof. We have

@

@t
log

!n.t/

!n.0/
D gj i

@

@t
gij D �R � �n � C0e

��t : (3.65)

Integrating in time, we obtain (3.63) and (3.64). ut

3.2.3 Evolution of the Trace of the Metric

We now prove an estimate for the trace of the metric along the Kähler–Ricci flow.
This is originally due to Cao [Cao85] and is the parabolic version of an estimate for
the complex Monge–Ampère equation due to Yau and Aubin [Aub78, Yau78]. We
give the estimate in the form of an evolution inequality. We begin by computing the
evolution of tr O!!, the trace of ! with respect to a fixed metric O!, using the notation
of Sect. 3.1.4.

Proposition 3.2.4. Let O! be a fixed Kähler metric on M , and let ! D !.t/ be a
solution to the Kähler–Ricci flow (3.55). Then

�
@

@t
��

�
tr O! ! D �� tr O! ! � g`k OR ji

k`
gij � Ogj igqpg`k Ori gp`

Orj gkq; (3.66)

where OR ji

k`
, Or denote the curvature and covariant derivative with respect to Og.

Proof. Compute using normal coordinates for Og and the formula (3.17),

�tr O!! D g`k@k@`. Ogj igij /
D g`k.@k@` Ogj i /gij C g`k Ogj i@k@`gij
D g`k OR ji

k`
gij � Ogj iRij C Ogj igqpg`k@igp`@j gkq; (3.67)

and

@

@t
tr O!! D � Ogj iRij � � tr O!!; (3.68)

and combining these gives (3.66). ut
We use Proposition 3.2.4 to prove the following estimate, which will be used

frequently in the sequel:

Proposition 3.2.5. Let O! be a fixed Kähler metric on M , and let ! D !.t/ be
a solution to (3.55). Then there exists a constant OC depending only on the lower
bound of the bisectional curvature for Og such that
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�
@

@t
��

�
log tr O! ! � OC tr ! O! � �: (3.69)

Proof. First observe that for a positive function f ,

� logf D �f

f
� j@f j2g

f 2
: (3.70)

It follows immediately from Proposition 3.2.4 that
�
@

@t
��

�
log tr O!!

D 1

tr O!!

 
��tr O!! � g`k OR ji

k`
gij C j@tr O!!j2g

tr O!!
� Ogj igqpg`k Ori gp`

Orj gkq

!
:

(3.71)

We claim that

j@tr O!!j2g
tr O!!

� Ogj igqpg`k Ori gp`
Orj gkq � 0: (3.72)

To prove this we choose normal coordinates for Og for which g is diagonal. Compute
using the Cauchy–Schwarz inequality

j@tr O!!j2g D
X
i

gii @i

0
@X

j

gj j

1
A @i

 X
k

gkk

!

D
X
j;k

X
i

gii .@igj j /.@igkk/

�
X
j;k

 X
i

gii j@igj j j2
!1=2  X

i

gii j@igkk j2
!1=2

D
0
@X

j

 X
i

gii j@igj j j2
!1=21

A
2

D
0
@X

j

p
gjj

 X
i

giigj j j@igj j j2
!1=21

A
2

�
X
`

g``

X
i;j

giigj j j@j gij j2

� .tr O!!/
X
i;j;k

giigj j @kgij @kgj i ; (3.73)
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where in the second-to-last line we used the Kähler condition to give @igj j D
@j gij . The inequality (3.73) gives exactly (3.72)

We can now complete the proof of the proposition. Define a constant OC by

OC D � inf
x2Mf ORiij j .x/ j f@z1 ; : : : ; @zngis orthonormal w:r:t: Og at x; i; j D 1; : : : ; ng;

(3.74)

which is finite since we are taking the infimum of a continuous function over a
compact set.

Then computing at a point using normal coordinates for Og for which the metric
g is diagonal we have

g`k OR ji

k`
gij D

X
k;i

gkk ORkkiigii � � OC
X
k

gkk
X
i

gii D � OC.tr O!!/.tr ! O!/:
(3.75)

Combining (3.71), (3.72) and (3.75) yields (3.69). ut

3.2.4 The Parabolic Schwarz Lemma

In this section we prove the parabolic Schwarz lemma of [ST07]. This is a parabolic
version of Yau’s Schwarz lemma [Yau78b]. We state it here in the form of an
evolution inequality.

Theorem 3.2.6. Let f W M ! N be a holomorphic map between compact complex
manifoldsM and N of complex dimension n and � respectively. Let !0 and !N be
Kähler metrics on M and N respectively and let ! D !.t/ be a solution of (3.55)
on M � Œ0; T /, namely

@

@t
! D �Ric.!/� �!; !jtD0 D !0; (3.76)

for t 2 Œ0; T /, with either � D 0 or � D 1. Then for all points of M � Œ0; T / with
tr !.f �!N / positive we have

�
@

@t
��

�
log tr !.f �!N / � CN tr !.f �!N /C �; (3.77)

where CN is an upper bound for the bisectional curvature of !N .

Observe that a simple maximum principle argument immediately gives the
following consequence which the reader will recognize as similar to the conclusion
of Yau’s Schwarz lemma.
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Corollary 3.2.7. If the bisectional curvature of !N has a negative upper bound
CN < 0 on N then there exists a constant C > 0 depending only on CN , !0, !N
and � such that tr !.f �!N / � C on M � Œ0; T / and hence

! � 1

C
f �!N ; on M � Œ0; T /: (3.78)

In practice, we will find the inequality (3.77) more useful than this corollary,
since the assumption of negative bisectional curvature is rather strong. For the proof
of Theorem 3.2.6, we will follow quite closely the notation and calculations given
in [ST07].

Proof of Theorem 3.2.6. Fix x in M with f .x/ D y 2 N , and choose normal
coordinate systems .zi /iD1;:::;n for g centered at x and .w˛/˛D1;:::;� for gN centered
at y. The map f is given locally as .f 1; : : : ; f �/ for holomorphic functions f ˛ D
f ˛.z1; : : : ; zn/. Write f ˛

i for @
@zi
f ˛ . To simplify notation we write the components

of gN as h˛ˇ instead of .gN /˛ˇ . The components of the tensor f �gN are then

f ˛
i f

ˇ
j h˛ˇ and hence tr !.f �!N / D gj if ˛

i f
ˇ
j h˛ˇ . Writing u D tr !.f �!N / > 0,

we compute at x,

�u D g`k@k@`



gj if ˛

i f
ˇ
j h˛ˇ

�

D Rjif ˛
i f

ˇ
j h˛ˇ C g`kgj i .@kf

˛
i /.@`f

ˇ
j /h˛ˇ � g`kgj iS˛ˇ�ıf

˛
i f

ˇ
j f

�

k f
ı
` ;

(3.79)

for S˛ˇ�ı the curvature tensor of gN on N . Next,

@

@t
u D �g`igjk

�
@

@t
gk`

�
f ˛
i f

ˇ
j h˛ˇ D Rjif ˛

i f
ˇ
j h˛ˇ C �u: (3.80)

Combining (3.79) and (3.80) with (3.70), we obtain

�
@

@t
��

�
log u D 1

u
g`kgj iS˛ˇ�ıf

˛
i f

ˇ
j f

�

k f
ı
`

C 1

u

 j@uj2g
u

� g`kgj i .@kf
˛
i /.@`f

ˇ
j /h˛ˇ

!
C �: (3.81)

If CN is an upper bound for the bisectional curvature of gN we see that

g`kgj iS˛ˇ�ıf
˛
i f

ˇ
j f

�

k f
ı
` � CN u2; (3.82)

and hence (3.77) will follow from the inequality



3 An Introduction to the Kähler–Ricci Flow 113

j@uj2g
u

� g`kgj i .@kf
˛
i /.@`f

ˇ
j /h˛ˇ � 0: (3.83)

The inequality (3.83) is analogous to (3.72) and the proof is almost identical. Indeed,
at the point x,

j@uj2g D
X

i;j;k;˛;ˇ

f ˛
i f

ˇ
j @kf

˛
i @kf

ˇ
j

�
X
i;j;˛;ˇ

jf ˛
i jjf ˇ

j j
 X

k

j@kf ˛
i j2

!1=2  X
`

j@`f ˇ
j j2

!1=2

D
0
@X

i;˛

jf ˛
i j
 X

k

j@kf ˛
i j2

!1=21
A
2

�
0
@X
j;ˇ

jf ˇ
j j2

1
A
0
@X
i;k;˛

j@kf ˛
i j2

1
A D u g`kgj i .@kf

˛
i /.@`f

ˇ
j /h˛ˇ; (3.84)

which gives (3.83). ut

3.2.5 The Third Order Estimate

In this section we prove the so-called “third order” estimate for the Kähler–Ricci
flow assuming that the metric is uniformly bounded. By third order estimate we
mean an estimate on the first derivative of the Kähler metric, which is of order 3
in terms of the potential function. Since the work of Yau [Yau78] on the elliptic
Monge–Ampère equation, such estimates have often been referred to as Calabi
estimates in reference to a well-known calculation of Calabi [Cal58]. There are
now many generalizations of the Calabi estimate [Cher87,ShW11,Tos10b,TWY08,
ZhaZha11]. A parabolic Calabi estimate was applied to the Kähler–Ricci flow in
[Cao85]. Phong–Šešum–Sturm [PSS07] later gave a succinct and explicit formula,
which we will describe here.

Let ! D !.t/ be a solution of the normalized Kähler–Ricci flow (3.55) on Œ0; T /
for 0 < T � 1 and let O! be a fixed Kähler metric on M . We wish to estimate the
quantity S D j Orgj2 where Or is the covariant derivative with respect to Og and the
norm j � j is taken with respect to the evolving metric g. Namely

S D gj ig`kgqp Ori gkq Orj g`p: (3.85)
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Define a tensor ‰k
ij by

‰k
ij WD �kij � O�kij D g`k Ori gj `: (3.86)

We may rewrite S as

S D j‰j2 D gj igqpgk`‰
k
ip‰

`
jq: (3.87)

We have the following key equality of Phong–Šešum–Sturm [PSS07].

Proposition 3.2.8. With the notation above, S evolves by

�
@

@t
��

�
S D �jr‰j2 � jr‰j2 C �j‰j2 � 2Re



gj igqpgk`rb OR k

ibp
‰`
jq

�
;

(3.88)

where rb D gbara and OR k

ibp
WD Ogmk ORibpm.

Proof. Compute

�S D gj igqpgk`



.�‰k

ip/‰
`
jq C‰k

ip.�‰
`
jq/
�

C jr‰j2 C jr‰j2; (3.89)

where we are writing � D gbararb for the “rough” Laplacian and � D gbarbra

for its conjugate. While � and � agree when acting on functions, they differ in
general when acting on tensors. In particular, using the commutation formulae (see
Sect. 3.1.3),

�‰`
jq D �‰`

jq CR b
j ‰

`
bq CR b

q ‰
`
jb � R `

b ‰
b
jq: (3.90)

Combining (3.89) and (3.90),

�S D 2Re


gj igqpgk`.�‰

k
ip/‰

`
jq

�
C jr‰j2 C jr‰j2

CRjigqpgk`‰
k
ip‰

`
jq C gj iRqpgk`‰

k
ip‰

`
jq � gj igqpRk`‰k

ip‰
`
jq (3.91)

We now compute the time derivative of S given by (3.87). We claim that

@

@t
‰k
ip D �‰k

ip � rb OR k

ibp
: (3.92)

Given this, together with

@

@t
gj i D Rji C �gj i ;

@

@t
gk` D �Rk` � �gk`; (3.93)

we obtain
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@

@t
S D 2Re



gj igqpgk`



�‰k

ip � rb OR k

ibp

�
‰`
jq

�
CRjigqpgk`‰

k
ip‰

`
jq

C gj iRqpgk`‰
k
ip‰

`
jq � gj igqpRk`‰

k
ip‰

`
jq C �j‰j2: (3.94)

Then (3.88) follows from (3.91) and (3.94).
To establish (3.92), compute

@

@t
‰k
ip D @

@t
�kip D �riR

k
p : (3.95)

On the other hand,

rb‰
k
ip D @b.�

k
ip � O�kip/ D OR k

ibp
�R k

ibp
; (3.96)

and hence

�‰k
ip D gbararb‰

k
ip D rb OR k

ibp
� riR

k
p : (3.97)

where for the last equality we have used the second Bianchi identity [part (iii) of
Proposition 3.1.2]. Then (3.92) follows from (3.95) and (3.97). ut

Using this evolution equation together with Proposition 3.2.4, we obtain a third
order estimate assuming a metric bound.

Theorem 3.2.9. Let ! D !.t/ solve (3.55) and assume that there exists a constant
C0 > 0 such that

1

C0
!0 � ! � C0!0: (3.98)

Then there exists a constant C depending only on C0 and !0 such that

S WD jrg0gj2 � C: (3.99)

In addition, there exists a constant C 0 depending only on C0 and !0 such that

�
@

@t
��

�
S � �1

2
jRmj2 C C 0; (3.100)

where jRmj2 denotes the norm squared of the curvature tensor Rijk`.

Proof. We apply (3.88). First note that

rb OR k

ibp
D gbr Orr

OR k

ibp
� gbr‰a

ir
OR k

abp
� gbr‰a

pr
OR k

iba
C gbr‰k

ar
OR a

ibp
: (3.101)
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Then with Og D g0, we have, using (3.98),

ˇ̌
ˇ2Re



gj igqpgk`rb OR k

ibp
‰`
jq

�ˇ̌
ˇ � C1.S C p

S/ � 2C1.S C 1/; (3.102)

for some uniform constant C1. Hence for a uniform C2,

�
@

@t
��

�
S � �jr‰j2 � jr‰j2 C C2S C C2: (3.103)

On the other hand, from Proposition 3.2.4 and the assumption (3.98) again,

�
@

@t
��

�
tr O!! � C3 � 1

C3
S; (3.104)

for a uniform C3 > 0. Define Q D S C C3.1C C2/tr O!! and compute

�
@

@t
��

�
Q � �S C C4; (3.105)

for a uniform constant C4. It follows that S is bounded from above at a point at
whichQ achieves a maximum, and (3.99) follows.

For (3.100), observe from (3.96) that

jr‰j2 D j OR k

ibp
� R k

ibp
j2 � 1

2
jRmj2 � C5: (3.106)

Then (3.100) follows from (3.103), (3.106) and (3.99). ut

3.2.6 Curvature and Higher Derivative Bounds

In this section we assume that we have a solution ! D !.t/ of (3.55) on Œ0; T / with
0 < T � 1 which satisfies the estimates

1

C0
!0 � ! � C0!0; (3.107)

for some uniform constant C0. We show that the curvature and all derivatives of the
curvature of ! are uniformly bounded, and that we have uniformC1 estimates of g
with respect to the fixed metric !0. We first compute the evolution of the curvature
tensor.
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Lemma 3.2.10. Along the flow (3.55), the curvature tensor evolves by

@

@t
Rijk` D 1

2
�RRijk` � �Rijk` CRijabR

ba

k`
CRiba`R

b a
jk

�RiakbRa b

j `

� 1

2



R a
i Rajk` CRa

j
Riak` CR a

k Rij a` CRa
`
Rijka

�
(3.108)

where we write �R D �C� and� D gqprprq .

Proof. Using the formula @
@t
�
p

ik D �riR
p

k and the Bianchi identity, compute

@

@t
Rijk`D�

�
@

@t
gpj

�
@`�

p

ik�gpj @`
�
@

@t
�
p

ik

�
D�Ra

j
Riak`��Rijk`Cr`rkRij :

(3.109)

Using the Bianchi identity again and the commutation formulae, we obtain

�Rijk` D gbarar`Rijkb

D gbar`raRijkb C gbaŒra;r`�Rij kb

D r`rkRij �Rb a

`k
Rabij CRb

`
Rkbij � Rb a

`i
Rkbaj CRb a

` j
Rkbia:

(3.110)

And

�Rijk` D gbarbrkRija`

D gbarkrbRija` C gbaŒrb;rk�Rij a`

D r`rkRij C Œrk;r`�Rij C gbaŒrb;rk�Rij a`

D r`rkRij �R a

k`i
Raj CR b

k` j
Rib

CR a b
k i Rbja` � R ab

k j
Riba` CR b

k Rijb` �R ab

k `
Rijab: (3.111)

Combining (3.109), (3.110) and (3.111) gives (3.108) ut
In fact we do not need the precise formula (3.108) in what follows, but merely

the fact that it has the general form

@

@t
Rm D 1

2
�RRm � �Rm C Rm � Rm C Rc � Rm: (3.112)

To clarify notation: ifA andB are tensors, we writeA�B for any linear combination
of products of the tensors A and B formed by contractions on Ai1���ik and Bj1���j`
using the metric g. We are writing Rc for the Ricci tensor.
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Remark 3.2.11. A word about notation. The operator �R is the usual “rough”
Laplace operator associated to the Riemannian metric gR defined in (3.11). Hamil-
ton defined his Ricci flow as @

@t
gij D �2Rij precisely to remove the factor of 1

2

appearing in evolution equations such as (3.112). In real coordinates, the Kähler–
Ricci flow we consider in these notes is @

@t
gij D �Rij.

Lemma 3.2.12. There exists a universal constant C such that
�
@

@t
��

�
jRmj2 � �jrRmj2 � jrRmj2 C C jRmj3 � �jRmj2; (3.113)

and, for all points of M � Œ0; T / where jRmj is not zero,

�
@

@t
��

�
jRmj � C

2
jRmj2 � �

2
jRmj: (3.114)

Proof. The inequality (3.113) follows from (3.112). Next, note that

�
@

@t
��

�
jRmj D 1

2jRmj
�
@

@t
��

�
jRmj2 C 1

4jRmj3 g
j iri jRmj2rj jRmj2;

(3.115)

and

gj iri jRmj2rj jRmj2 � 2jRmj2.jrRmj2 C jrRmj2/: (3.116)

Then (3.114) follows from (3.113) and (3.116). ut
We combine this result with the third order estimate from Sect. 3.2.5 to obtain:

Theorem 3.2.13. Let ! D !.t/ solve (3.55) and assume that there exists a constant
C0 > 0 such that

1

C0
!0 � ! � C0!0: (3.117)

Then there exists a constant C depending only on C0 and !0 such that

jRmj2 � C: (3.118)

In addition, there exists a constant C 0 depending only on C0 and !0 such that

�
@

@t
��

�
jRmj2 � �jrRmj2 � jrRmj2 C C 0; (3.119)

Proof. From Theorem 3.2.9, the quantity S D jrg0gj2 is uniformly bounded from
above. We compute the evolution ofQ D jRmjCAS for a constantA. From (3.100)
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and (3.114), if A is chosen to be sufficiently large, we obtain

�
@

@t
��

�
Q � �jRmj2 C C 0; (3.120)

for a uniform constant C 0. Then the upper bound of jRmj2 follows from the
maximum principle. Finally, (3.119) follows from (3.113). ut

Moreover, once we have bounded curvature, it is a result of Hamilton [Ham82]
that bounds on all derivatives of curvature follow. For convenience we change to a
real coordinate system. Writing rR for the covariant derivative with respect to g as
a Riemannian metric, we have:

Theorem 3.2.14. Let ! D !.t/ solve (3.55) on Œ0; T / with 0 < T � 1 and
assume that there exists a constant C > 0 such that

jRmj2 � C: (3.121)

Then there exist uniform constants Cm for m D 1; 2; : : : such that

jrm
R

Rmj2 � Cm: (3.122)

Proof. We give a sketch of the proof and leave the details as an exercise to the
reader. We use a maximum principle argument due to Shi [Shi89] (see [CLN06] for
a good exposition). In fact we do not need the full force of Shi’s results, which are
local, since we are assuming a global curvature bound.

From Lemma 3.2.10 and an induction argument (see Theorem 13.2 of [Ham82])

�
@

@t
� 1

2
�R

�
rm
R

Rm D
X

pCqDm
rp

R
Rm � rq

R
Rm: (3.123)

It follows that
�
@

@t
� 1

2
�R

�
jrm

R
Rmj2 D �jrmC1

R
Rmj2 C

X
pCqDm

rp
R

Rm � rq
R

Rm � rm
R

Rm:

(3.124)

Moreover, since jRmj2 is bounded we have from Lemma 3.2.12 that

�
@

@t
� 1

2
�R

�
jRmj2 � �jrRRmj2 C C 0; (3.125)

for some uniform constant C 0. For the case m D 1, if we set Q D jrRRmj2 C
AjRmj2 for A > 0 sufficiently large then from (3.123),
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�
@

@t
� 1

2
�R

�
Q � �jrRRmj2 C C 00; (3.126)

and it follows from the maximum principle that jrRRmj2 is uniformly bounded
from above. In addition,

�
@

@t
� 1

2
�R

�
jrRRmj2 � �jr2

R
Rmj2 C C 000; (3.127)

and an induction completes the proof. ut
Next, we show that once we have a uniform bound on a metric evolving by the

Kähler–Ricci flow, together with bounds on derivatives of curvature, then we have
C1 bounds for the metric. Moreover, this result is local:

Theorem 3.2.15. Let ! D !.t/ solve (3.55) on U � Œ0; T / with 0 � T � 1, where
U is an open subset of M . Assume that there exist constants Cm for m D 0; 1; 2 : : :

such that

1

C0
!0 � ! � C0!0; S � C0 and jrm

R
Rmj2 � Cm: (3.128)

Then for any compact subset K � U and for m D 1; 2; : : : ; there exist constants
C 0
m depending only on !0, K , U and Cm such that

k!.t/kCm.K;g0/ � C 0
m: (3.129)

Proof. This is a well-known result. See [ChowKnopf], for example, or the discus-
sion in [PSSW11]. We give just a sketch of the proof following quite closely the
arguments in [ShW11, SW10]. It suffices to prove the result on the ball B say, in a
fixed holomorphic coordinate chart. We will obtain the C1 estimates for !.t/ on a
slightly smaller ball. Fix a time t 2 .0; T �. Consider the equations

�Egi Nj D �
X
k

Rk Nki Nj C
X
k;p;q

gq Np@kgi Nq@ Nkgp Nj DW Qi Nj : (3.130)

where �E D P
k @k@ Nk . For each fixed i; j , we can regard (3.130) as Poisson’s

equation�Egi Nj D Qi Nj .
Fix p > 2n. From our assumptions, each kQi NjkLp.B/ is uniformly bounded.

Applying the standard elliptic estimates (see Theorem 9.11 of [GT01] for example)
to (3.130) we see that the Sobolev norm kgi Nj kLp2 is uniformly bounded on a slightly
smaller ball. From now on, the estimates that we state will always be modulo
shrinking the ball slightly. Morrey’s embedding theorem (Theorem 7.17 of [GT01])
gives that kgi Nj kC1Cˇ is uniformly bounded for some 0 < ˇ < 1.

The key observation we now need is as follows: themth derivative ofQi Nj can be
written in the form A�B where each A or B represents either a covariant derivative
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of Rm or a quantity involving derivatives of g up to order at most mC 1. Hence if
g is uniformly bounded in CmC1Cˇ then each Qi Nj is uniformly bounded in CmCˇ.

Applying this observation with m D 0 we see that each kQi NjkCˇ is uniformly
bounded. The standard Schauder estimates (see Theorem 4.8 of [GT01]) give that
kgi Nj kC2Cˇ is uniformly bounded.

We can now apply a bootstrapping argument. Applying the observation with
m D 1 we see that Qi Nj is uniformly bounded in C1Cˇ, and so on. This completes
the proof. ut

Combining Theorems 3.2.13–3.2.15, we obtain:

Corollary 3.2.16. Let ! D !.t/ solve (3.55) on M � Œ0; T / with 0 � T � 1.
Assume that there exists a constant C0 such that

1

C0
!0 � ! � C0!0: (3.131)

Then form D 1; 2; : : :, there exist uniform constants Cm such that

k!.t/kCm.g0/ � Cm: (3.132)

In fact, there is a local version of Corollary 3.2.16. Although we will not actual
make use of it in these lecture notes, we state here the result:

Theorem 3.2.17. Let ! D !.t/ solve (3.55) on U � Œ0; T / with 0 � T � 1, where
U is an open subset of M . Assume that there exists a constant C0 for such that

1

C0
!0 � ! � C0!0: (3.133)

Then for any compact subset K � U and for m D 1; 2; : : : ; there exist constants
C 0
m depending only on !0, K and U such that

k!.t/kCm.K;g0/ � C 0
m: (3.134)

Proof. This can either be proved using the Schauder estimates of Evans–Krylov
[Eva82, Kryl82] (see also [CLN06, Gill11]) or using local maximum principle
arguments [ShW11]. We omit the proof. ut

3.3 Maximal Existence Time for the Kähler–Ricci Flow

In this section we identify the maximal existence time for a smooth solution of
the Kähler–Ricci flow. To do this, we rewrite the Kähler–Ricci flow as a parabolic
complex Monge–Ampère equation.
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3.3.1 The Parabolic Monge–Ampère Equation

Let ! D !.t/ be a solution of the Kähler–Ricci flow

@

@t
! D �Ric.!/; !jtD0 D !0: (3.135)

As long as the solution exists, the cohomology class Œ!.t/� evolves by

d

dt
Œ!.t/� D �c1.M/; Œ!.0/� D Œ!0�; (3.136)

and solving this ordinary differential equation gives Œ!.t/� D Œ!0� � tc1.M/.
Immediately we see that a necessary condition for the Kähler–Ricci flow to exist
for t 2 Œ0; t 0/ is that Œ!0� � tc1.M/ > 0 for t 2 Œ0; t 0/. This necessary condition is
in fact sufficient. If we define

T D supft > 0 j Œ!0� � tc1.M/ > 0g; (3.137)

then we have:

Theorem 3.3.1. There exists a unique maximal solution g.t/ of the Kähler–Ricci
flow (3.135) for t 2 Œ0; T /.

This theorem was proved by Cao [Cao85] in the special case when c1.M/ is zero
or definite. In this generality, the result is due to Tian–Zhang [Tzha06]. Weaker
versions appeared earlier in the work of Tsuji (see [Tsu88] and Theorem 8 of
[Tsu96]).

We now begin the proof of Theorem 3.3.1. Fix T 0 < T . We will show that there
exists a solution to (3.135) on Œ0; T 0/. First we observe that (3.135) can be rewritten
as a parabolic complex Monge–Ampère equation.

To do this, we need to choose reference metrics O!t in the cohomology classes
Œ!0� � tc1.M/. Since Œ!0� � T 0c1.M/ is a Kähler class, there exists a Kähler form
� in Œ!0� � T 0c1.M/. We choose our family of reference metrics O!t to be the linear
path of metrics between !0 and �. Namely, define

� D 1

T 0 .� � !0/ 2 �c1.M/; (3.138)

and

O!t D !0 C t� D 1

T 0 ..T
0 � t/!0 C t�/ 2 Œ!0� � tc1.M/: (3.139)

Fix a volume form� on M with
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p�1
2�

@@ log� D � D @

@t
O!t 2 �c1.M/; (3.140)

which exists by the discussion in Sect. 3.1.6. Notice that here we are abusing

notation somewhat by writing
p�1
2�
@@ log�. To clarify, we mean that if the volume

form� is written in local coordinates zi as

� D a.z1; : : : ; zn/.
p�1/ndz1 ^ d z1 ^ � � � ^ dzn ^ d zn;

for a locally defined smooth positive function a then we define
p�1
2�
@@ log� Dp�1

2�
@@ log a: Although the function a depends on the choice of holomorphic

coordinates, the .1; 1/-form
p�1
2�
@@ log a does not, as the reader can easily verify.

We now consider the parabolic complex Monge–Ampère equation, for ' D '.t/

a real-valued function on M ,

@

@t
' D log

. O!t C
p�1
2�
@@'/n

�
; O!t C

p�1
2�

@@' > 0; 'jtD0 D 0:

(3.141)

This equation is equivalent to the Kähler–Ricci flow (3.135). Indeed, given a smooth
solution ' of (3.141) on Œ0; T 0/, we can obtain a solution ! D !.t/ of (3.135) on

Œ0; T 0/ as follows. Define !.t/ D O!t C
p�1
2�
@@' and observe that !.0/ D O!0 D

!0 and

@

@t
! D @

@t
O!t C

p�1
2�

@@

�
@

@t
'

�
D �Ric.!/; (3.142)

as required. Conversely, suppose that ! D !.t/ solves (3.135) on Œ0; T 0/. Then
since O!t 2 Œ!.t/�, we can apply the @@-Lemma to find a family of potential functions

Q'.t/ such that !.t/ D O!t C
p�1
2�
@@ Q'.t/ and

R
M

Q'.t/!n0 D 0. By standard elliptic
regularity theory the family Q'.t/ is smooth on M � Œ0; T 0/. Then

p�1
2�

@@ log!n D @

@t
! D

p�1
2�

@@ log�C
p�1
2�

@@

�
@

@t
Q'
�
; (3.143)

and since the only pluriharmonic functions on M are the constants, we see that

@

@t
Q' D log

!n

�
C c.t/;

for some smooth function c W Œ0; T 0/ ! R. Now set '.t/ D Q'.t/�R t
0
c.s/ds� Q'.0/,

noting that since !.0/ D !0 the function Q'.0/ is constant. It follows that ' D '.t/

solves the parabolic complex Monge–Ampère equation (3.141).
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To prove Theorem 3.3.1 then, it suffices to study (3.141). Since the linearization
of the right hand side of (3.141) is the Laplace operator �g.t/, which is elliptic, it
follows that (3.141) is a strictly parabolic (nonlinear) partial differential equation
for '. The standard parabolic theory [Lieb96] gives a unique maximal solution
of (3.141) for some time interval Œ0; Tmax/ with 0 < Tmax � 1. We may assume
without loss of generality that Tmax < T 0. We will then obtain a contradiction by
showing that a solution of (3.141) exists beyond Tmax. This will be done in the next
two subsections.

3.3.2 Estimates for the Potential and the Volume Form

We assume now that we have a solution ' D '.t/ to the parabolic complex Monge–
Ampère equation (3.141) on Œ0; Tmax/, for 0 < Tmax < T 0 < T . Our goal is to
establish uniform estimates for ' on Œ0; Tmax/. In this subsection we will prove a C0

estimate for ' and a lower bound for the volume form.
Note that O!t is a family of smooth Kähler forms on the closed interval Œ0; Tmax�.

Hence by compactness we have uniform bounds on O!t from above and below (away
from zero).

Lemma 3.3.2. There exists a uniform C such that for all t 2 Œ0; Tmax/,

k'.t/kC0.M/ � C: (3.144)

Proof. For the upper bound of ', we will apply the maximum principle to 
 WD
' �At for A > 0 a uniform constant to be determined later. From (3.141) we have

@

@t

 D log

. O!t C
p�1
2�
@@
/n

�
�A: (3.145)

Fix t 0 2 .0; Tmax/. Since M � Œ0; t 0� is compact, 
 attains a maximum at some point
.x0; t0/ 2 M � Œ0; t 0�. We claim that if A is sufficiently large we have t0 D 0.

Otherwise t0 > 0. Then by Proposition 3.1.6, at .x0; t0/,

0 � @

@t

 D log

. O!t0 C
p�1
2�
@@
/n

�
�A � log

O!nt0
�

�A � �1; (3.146)

a contradiction, where we have chosen A � 1 C supM�Œ0;Tmax �
log. O!nt =�/. Hence

we have proved the claim that t0 D 0, giving supM�Œ0;t 0 � 
 � supM 
 jtD0 D 0 and
thus

'.x; t/ � At � ATmax; for .x; t/ 2 M � Œ0; t 0�: (3.147)
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Since t 0 2 .0; Tmax/ was arbitrary, this gives a uniform upper bound for ' on
Œ0; Tmax/.

We apply a similar argument to  D ' C Bt for B a positive constant with
B � 1 � infM�Œ0;Tmax � log. O!nt =�/ and obtain

'.x; t/ � �BTmax; for .x; t/ 2 M � Œ0; t 0�; (3.148)

giving the lower bound. ut
Next we prove a lower bound for the volume form along the flow, or equivalently

a lower bound for P' D @'=@t . This argument is due to Tian–Zhang [Tzha06].

Lemma 3.3.3. There exists a uniform C > 0 such that on M � Œ0; Tmax/,

1

C
� � !n.t/ � C�; (3.149)

or equivalently, k P'kC0 is uniformly bounded.

Proof. The upper bound of !n follows from part (i) of Corollary 3.2.3. Note that
since this is equivalent to an upper bound of P', we have given an alternative proof
of the upper bound part of Lemma 3.3.2.

For the lower bound of !n, differentiate (3.141):

@

@t
P' D � P' C tr !�; (3.150)

where we recall that � D @ O!t=@t is defined by (3.138). Define a quantity Q D
.T 0 � t/ P' C ' C nt and compute using (3.150),

�
@

@t
��

�
Q D .T 0 � t/tr !�C n ��' D tr !. O!t C .T 0 � t/�/ D tr ! O!T 0 > 0;

(3.151)

where we have used the fact that

�' D tr !.! � O!t / D n� tr ! O!t : (3.152)

Then by the maximum principle (Proposition 3.1.7),Q is uniformly bounded from
below on M � Œ0; Tmax/ by its infimum at the initial time. Thus

.T 0 � t/ P' C ' C nt � T 0 inf
M

log
!n0
�
; on M � Œ0; Tmax/; (3.153)

and since ' is uniformly bounded from Lemma 3.3.2 and T 0 � t � T 0 � Tmax > 0,
this gives the desired lower bound of P'. ut
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3.3.3 A Uniform Bound for the Evolving Metric

Again we assume that we have a solution ' D '.t/ to (3.141) on Œ0; Tmax/, for
0 < Tmax < T 0 < T . From Lemma 3.3.2, we have a uniform bound for k'kC0.M/

and we will use this together with Proposition 3.2.5 to obtain an upper bound for
the quantity tr !0! on Œ0; Tmax/. This argument is similar to those in [Aub78,Yau78]
(see also [Cao85] and Lemmas 3.4.3 and 3.4.8 below). We will then complete the
proof of Theorem 3.3.1.

Lemma 3.3.4. There exists a uniform C such that on M � Œ0; Tmax/,

tr !0 ! � C: (3.154)

Proof. We consider the quantity

Q D log tr !0! �A'; (3.155)

for A > 0 a uniform constant to be determined later. For a fixed t 0 2 .0; Tmax/,
assume that Q on M � Œ0; t 0� attains a maximum at a point .x0; t0/. Without loss of
generality, we may suppose that t0 > 0. Then at .x0; t0/, applying Proposition 3.2.5
with O! D !0,

0 �
�
@

@t
��

�
Q � C0tr !!0 �A P' C A�'

D tr !.C0!0 � A O!t0/ �A log
!n

�
C An; (3.156)

forC0 depending only on the lower bound of the bisectional curvature of g0. Choose
A sufficiently large so that A O!t0 � .C0 C 1/!0 is Kähler on M . Then

tr !.C0!0 � A O!t0/ � �tr !!0; (3.157)

and so at .x0; t0/,

tr !!0 C A log
!n

�
� An; (3.158)

and hence

tr !!0 C A log
!n

!n0
� C; (3.159)

for some uniform constant C . At .x0; t0/, choose coordinates so that

.g0/ij D ıij and gij D �iıij; for i; j D 1; : : : ; n; (3.160)
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for positive �1; : : : ; �n: Then (3.159) is precisely

nX
iD1

�
1

�i
C A log�i

�
� C: (3.161)

Since the function x 7! 1
x

C A logx for x > 0 is uniformly bounded from below,
we have (for a different C ),

�
1

�i
C A log�i

�
� C; for i D 1; : : : ; n: (3.162)

Then A log�i � C , giving a uniform upper bound for �i and hence .tr !0!/.x0; t0/.
Since ' is uniformly bounded on M � Œ0; Tmax/ we see that Q.x0; t0/ is uniformly
bounded from above. Hence Q is bounded from above on M � Œ0; t 0� for any
t 0 < Tmax. Using again that ' is uniformly bounded we obtain the required
estimate (3.154). ut

Note that we did not make use of the bound on P' in the above argument. By
doing so we could have simplified the proof slightly. However, it turns out that the
argument of Lemma 3.3.4 will be useful later (see Lemma 3.5.5 and Sect. 3.7 below)
where we do not have a uniform lower bound of P'.

As a consequence of Lemma 3.3.4, we have:

Corollary 3.3.5. There exists a uniform C > 0 such that on M � Œ0; Tmax/,

1

C
!0 � ! � C!0: (3.163)

Proof. The upper bound follows from Lemma 3.3.4. For the lower bound,

tr !!0 � 1

.n � 1/Š .tr !0!/
n�1 !n0

!n
� C; (3.164)

using Lemma 3.3.3. To verify the first inequality of (3.164), choose coordinates as
in (3.160) and observe that

1

�1
C � � � C 1

�n
� 1

.n � 1/Š

.�1 C � � � C �n/
n�1

�1 � � ��n ; (3.165)

for positive �i . ut
We can now finish the proof of Theorem 3.3.1.

Proof of Theorem 3.3.1. Combining Corollary 3.3.5 with Corollary 3.2.16, we
obtain uniform C1 estimates for g.t/ on Œ0; Tmax/. Hence as t ! Tmax, the metrics
g.t/ converge in C1 to a smooth Kähler metric g.Tmax/ and thus we obtain a



128 J. Song and B. Weinkove

smooth solution to the Kähler–Ricci flow on Œ0; Tmax�. But we have already seen
from Theorem 3.2.1 (or by the discussion at the end of Sect. 3.3.1) that we can
always find a smooth solution of the Kähler–Ricci flow on some, possibly short,
time interval with any initial Kähler metric. Applying this to g.Tmax/, we obtain a
solution of the Kähler–Ricci flow g.t/ on Œ0; TmaxC"/ for " > 0. But this contradicts
the definition of Tmax, and completes the proof of Theorem 3.3.1. ut

3.4 Convergence of the Flow

In this section we show that the Kähler–Ricci flow converges, after appropriate
normalization, to a Kähler–Einstein metric in the cases c1.M/ < 0 and c1.M/ D 0.
This was originally proved by Cao [Cao85] and makes use of parabolic versions
of estimates due to Yau and Aubin [Aub78, Yau78] and also Yau’s well-known C0

estimate for the complex Monge–Ampère equation [Yau78].

3.4.1 The Normalized Kähler–Ricci Flow When c1.M/ < 0

We first consider the case of a manifoldM with c1.M/ < 0. We restrict to the case
when Œ!0� D �c1.M/. By Theorem 3.3.1 we have a solution to the Kähler–Ricci
flow (3.135) for t 2 Œ0;1/. The Kähler class Œ!.t/� is given by .1 C t/Œ!0� which
diverges as t ! 1. To avoid this we consider instead the normalized Kähler–Ricci
flow

@

@t
! D �Ric.!/� !; !jtD0 D !0: (3.166)

This is just a rescaling of (3.135) and we have a solution !.t/ to (3.166) for all
time. Indeed if Q!.s/ solves @

@s
Q!.s/ D �Ric. Q!.s// for s 2 Œ0;1/ then !.t/ D

Q!.s/=.s C 1/ with t D log.s C 1/ solves (3.166). Conversely, given a solution
to (3.166) we can rescale to obtain a solution to (3.135).

Since we have chosen Œ!0� D �c1.M/, we immediately see that Œ!.t/� D Œ!0�

for all t . The following result is due to Cao [Cao85].

Theorem 3.4.1. The solution ! D !.t/ to (3.166) converges in C1 to the unique
Kähler–Einstein metric !KE 2 �c1.M/.

We recall that a Kähler–Einstein metric is a Kähler metric !KE with Ric.!KE/ D
�!KE for some constant � 2 R. If !KE 2 �c1.M/ then we necessarily have � D
�1. The existence of a Kähler–Einstein metric onM with c1.M/ < 0 is due to Yau
[Yau78] and Aubin [Aub78] independently.

The uniqueness of !KE 2 �c1.M/ is due to Calabi [Cal57] and follows
from the maximum principle. Indeed, suppose !0

KE; !KE 2 �c1.M/ are both
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Kähler–Einstein. Writing !0
KE D !KE C

p�1
2�
@@', we have Ric.!0

KE/ D �!0
KE D

Ric.!KE/ �
p�1
2�
@@' and hence

log
.!KE C

p�1
2�
@@'/n

!nKE

D ' C C; (3.167)

for some constant C . By considering the maximum and minimum values of ' C C

on M we see that ' C C D 0 and hence !KE D !0
KE.

To prove Theorem 3.4.1, we reduce (3.166) to a parabolic complex Monge–
Ampère equation as in the previous section. Let� be a volume form onM satisfying

p�1
2�

@@ log� D !0 2 �c1.M/;

Z
M

� D
Z
M

!n0 : (3.168)

Then we consider the normalized parabolic complex Monge–Ampère equation,

@

@t
' D log

.!0 C
p�1
2�
@@'/n

�
� '; !0 C

p�1
2�

@@' > 0; 'jtD0 D 0:

(3.169)

Given a solution ' D '.t/ of (3.169), the metrics ! D !0 C
p�1
2�
@@' solve (3.166).

Conversely, as in Sect. 3.3.1, given a solution ! D !.t/ of (3.166) we can obtain
via the @@-Lemma a solution ' D '.t/ of (3.169).

We wish to obtain estimates for ' solving (3.169). First:

Lemma 3.4.2. We have

(i) There exists a uniform constant C such that for t in Œ0;1/,

k P'.t/kC0.M/ � Ce�t : (3.170)

(ii) There exists a continuous real-valued function '1 on M such that for t in
Œ0;1/,

k'.t/ � '1kC0.M/ � Ce�t (3.171)

(iii) k'.t/kC0.M/ is uniformly bounded for t 2 Œ0;1/.
(iv) There exists a uniform constant C 0 such that on M � Œ0;1/, the volume form

of ! D !.t/ satisfies

1

C 0!
n
0 � !n � C 0!n0 : (3.172)

Proof. Compute

@

@t
P' D � P' � P'; (3.173)
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and hence

@

@t
.et P'/ D �.et P'/: (3.174)

Then (i) follows from the maximum principle (Proposition 3.1.7). For (ii), let
s; t � 0 and x be in M . Then

j'.x; s/ � '.x; t/j D
ˇ̌
ˇ̌Z s

t

P'.x; u/du

ˇ̌
ˇ̌ �

Z s

t

j P'.x; u/jdu

�
Z s

t

Ce�udu D C.e�t � e�s/; (3.175)

which shows that '.t/ converges uniformly to some continuous function '1 onM .
Taking the limit in (3.175) as s ! 1 gives (ii). (iii) follows immediately from (ii).
(iv) follows from (3.169) together with (i) and (iii). ut

We use the C0 bound on ' to obtain an upper bound on the evolving metric.

Lemma 3.4.3. There exists a uniform constant C such that on M � Œ0;1/, ! D
!.t/ satisfies

1

C
!0 � ! � C!0: (3.176)

Proof. By part (iv) of Lemma 3.4.2 and the argument of Corollary 3.3.5, it suffices
to obtain a uniform upper bound for tr !0!.

Applying Proposition 3.2.5,

�
@

@t
��

�
log tr !0! � C0tr !!0 � 1; (3.177)

for C0 depending only on g0. We apply the maximum principle to the quantityQ D
log tr !0! � A' as in the proof of Lemma 3.3.4, where A is to be chosen later. We
have

�
@

@t
��

�
Q � C0tr !!0 � 1 �A P' C An � Atr !!0: (3.178)

Assume that Q achieves a maximum at a point .x0; t0/ with t0 > 0. Choosing
A D C0 C 1 and using the fact that P' is uniformly bounded, we see that tr !!0
is uniformly bounded at .x0; t0/. Arguing as in (3.164), we have,

.tr !0!/.x0; t0/ � 1

.n � 1/Š .tr !!0/
n�1 .x0; t0/

!n

!n0
.x0; t0/ � C; (3.179)
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using part (iv) of Lemma 3.4.2. Since ' is uniformly bounded, this shows that Q is
bounded from above at .x0; t0/. Hence tr !0! is uniformly bounded from above. ut

We can now complete the proof of Theorem 3.4.1. By Corollary 3.2.16 we have
uniform C1 estimates on !.t/. Since '.t/ is bounded in C0 it follows that we have
uniformC1 estimates on '.t/. Recall that '.t/ converges uniformly to a continuous
function '1 onM as t ! 1. By the Arzela–Ascoli Theorem and the uniqueness of
limits, it follows immediately that there exist times tk ! 1 such that the sequence
of functions '.tk/ converges in C1 to '1, which is smooth. In fact we have this
convergence without passing to a subsequence. Indeed, suppose not. Then there
exists an integer k, an " > 0 and a sequence of times ti ! 1 such that

k'.ti /� '1kCk.M/ � "; for all i: (3.180)

But since '.ti / is a sequence of functions with uniform CkC1 bounds we apply the
Arzela–Ascoli Theorem to obtain a subsequence '.tij / which converges in Ck to
' 01, say, with

k' 01 � '1kCk.M/ � "; (3.181)

so that ' 01 ¤ '1. But '.tij / converges uniformly to '1, a contradiction. Hence
'.t/ converges to '1 in C1 as t ! 1.

It remains to show that the limit metric !1 D !0 C
p�1
2�
@@'1 is Kähler–

Einstein. Since from Lemma 3.4.2, P'.t/ ! 0 as t ! 1, we can take a limit as
t ! 1 of (3.169) to obtain

log
!n1
�

� '1 D 0; (3.182)

and applying
p�1
2�
@@ to both sides of this equation gives that Ric.!1/ D �!1 as

required. This completes the proof of Theorem 3.4.1.

3.4.2 The Case of c1.M/ D 0: Yau’s Zeroth Order Estimate

In this section we discuss the case of the Kähler–Ricci flow on a Kähler manifold
.M; g0/ with vanishing first Chern class. Unlike the case of c1.M/ < 0 dealt with
above, there will be no restriction on the Kähler class Œ!0�.

By Theorem 3.3.1, there is a solution !.t/ of the Kähler–Ricci flow (3.135) for
t 2 Œ0;1/ and we have Œ!.t/� D Œ!0�. The following result is due to Cao [Cao85]
and makes use of Yau’s celebrated zeroth order estimate, which we will describe in
this subsection.
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Theorem 3.4.4. The solution !.t/ to (3.135) converges in C1 to the unique
Kähler–Einstein metric !KE 2 Œ!0�.

Since c1.M/ D 0, the Kähler–Einstein metric !KE must be Kähler–Ricci flat
(if Ric.!KE/ D �!KE then c1.M/ D Œ�!KE� D 0 implies � D 0). Note that, as
Theorem 3.4.4 implies, there is a unique Kähler–Einstein metric in every Kähler
class on M .

The uniqueness part of the argument is due to Calabi [Cal57]. Suppose !0
KE D

!KE C
p�1
2�
@@' is another Kähler–Einstein metric in the same cohomology class.

Then the equation Ric.!0
KE/ D Ric.!KE/ gives

log
!0n

KE

!nKE

D C; (3.183)

for some constant C . Exponentiating and then integrating gives C D 1 and hence
!0n

KE D !0n
KE. Then compute, using integration by parts,

0 D
Z
M

'.!nKE � !0n
KE/ D �

Z
M

'

p�1
2�

@@' ^ .
n�1X
iD0

!iKE ^ !0n�1�i
KE /

D
Z
M

p�1
2�

@' ^ @' ^ .
n�1X
iD0

!iKE ^ !0n�1�i
KE /

� 1

n

Z
M

j@'j2!KE
!nKE; (3.184)

which implies that ' is constant and hence !KE D !0
KE.

As usual, we reduce (3.135) to a parabolic complex Monge–Ampère equation.
Since c1.M/ D 0 there exists a unique volume form� satisfying

p�1
2�

@@ log� D 0;

Z
M

� D
Z
M

!n0 : (3.185)

Then solving (3.135) is equivalent to solving the parabolic complex Monge–Ampère
equation

@

@t
' D log

.!0 C
p�1
2�
@@'/n

�
; !0 C

p�1
2�

@@' > 0; 'jtD0 D 0:

(3.186)

We first observe:

Lemma 3.4.5. We have

(i) There exists a uniform constant C such that for t 2 Œ0;1/

k P'.t/kC0.M/ � C: (3.187)
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(ii) There exists a uniform constant C 0 such that onM � Œ0;1/ the volume form of
! D !.t/ satisfies

1

C 0!
n
0 � !n � C 0!n0 : (3.188)

Proof. Differentiating (3.186) with respect to t we obtain

@

@t
P' D � P'; (3.189)

and (i) follows immediately from the maximum principle. Part (ii) follows from (i).
ut

We will obtain a bound on the oscillation of '.t/ using Yau’s zeroth order
estimate for the elliptic complex Monge–Ampère equation. Note that Yau’s estimate
holds for any Kähler manifold (not just those with c1.M/ D 0):

Theorem 3.4.6. Let .M;!0/ be a compact Kähler manifold and let ' be a smooth
function onM satisfying

.!0 C
p�1
2�

@@'/n D eF !n0 ; !0 C
p�1
2�

@@' > 0 (3.190)

for some smooth function F . Then there exists a uniform C depending only on
supM F and !0 such that

oscM ' WD sup
M

' � inf
M
' � C: (3.191)

Proof. We will follow quite closely the exposition of Siu [Siu87]. We assume
without loss of generality that

R
M
' !n0 D 0. We also assume n > 1 (the case

n D 1 is easier, and we leave it as an exercise for the reader).
Write ! D !0 C

p�1
2�
@@'. Then

C

Z
M

j'j!n0 �
Z
M

'.!n0 � !n/

D �
Z
M

'

p�1
2�

@@' ^
n�1X
iD0

!i0 ^ !n�1�i

D
Z
M

p�1
2�

@' ^ @' ^
n�1X
iD0

!i0 ^ !n�1�i

� 1

n

Z
M

j@'j2!0!n0 : (3.192)
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By the Poincaré (Theorem 3.1.8) and Cauchy–Schwarz inequalities we have

Z
M

j'j2!n0 � C

Z
M

j@'j2!0!n0 � C 0
Z
M

j'j!n0 � C 00
�Z

M

j'j2!n0
�1=2

; (3.193)

and hence k'kL2.!0/ � C . We now repeat this argument with ' replaced by 'j'j˛
for ˛ � 0. Observe that the map of real numbers x 7! xjxj˛ is differentiable with
derivative .˛ C 1/jxj˛. Then

C

Z
M

j'j˛C1!n0 �
Z
M

'j'j˛.!n0 � !n/

D �
Z
M

'j'j˛
p�1
2�

@@' ^
n�1X
iD0

!i0 ^ !n�1�i

D .˛ C 1/

Z
M

j'j˛p�1@' ^ @' ^
n�1X
iD0

!i0 ^ !n�1�i

D .˛ C 1/�
˛
2

C 1
�2
Z
M

p�1@ �'j'j˛=2�

^ @ �'j'j˛=2� ^
n�1X
iD0

!i0 ^ !n�1�i : (3.194)

It then follows that for some uniform C > 0,

Z
M

ˇ̌
@
�
'j'j˛=2�ˇ̌2

!0
!n0 � C.˛ C 1/

Z
M

j'j˛C1!n0 : (3.195)

Now apply the Sobolev inequality (Theorem 3.1.9) to f D 'j'j˛=2. Then for ˇ D
n=.n � 1/ we have

�Z
M

j'j.˛C2/ˇ!n0
�1=ˇ

� C

�
.˛ C 1/

Z
M

j'j˛C1!n0 C
Z
M

j'j˛C2!n0
�
: (3.196)

By Hölder’s inequality we have for a uniform constant C ,

Z
M

j'j˛C1!n0 � 1C C

Z
M

j'j˛C2!n0 : (3.197)

Now substituting p D ˛ C 2 we have from (3.196),

k'kp
Lpˇ.!0/

� Cpmax


1; k'kpLp.!0/

�
: (3.198)
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Raising to the power 1=p we have for all p � 2,

max.1; k'kLpˇ.!0// � C1=pp1=p max.1; k'kLp.!0//: (3.199)

Fix an integer k > 0. Replace p in (3.199) by pˇk and then pˇk�1 and so on, to
obtain

max.1; k'k
Lpˇ

kC1
.!0/
/ � C

1

pˇk .pˇk/
1

pˇk max.1; k'k
Lpˇ

k
.!0/
/ � � � �

� C
1

pˇk
C 1

pˇk�1 C���C 1
p .pˇk/

1

pˇk .pˇk�1/
1

pˇk�1 � � �
p

1
p max.1; k'kLp.!0// (3.200)

D Ck max.1; k'kLp.!0// (3.201)

for

Ck D C
1
p

�
1

ˇk
C 1

ˇk�1 C���C1
�
p

1
p

�
1

ˇk
C 1

ˇk�1 C���C1
�
ˇ

1
p

�
k

ˇk
C k�1

ˇk�1 C���C 1
ˇ

�
: (3.202)

Since the infinite sums
P

1
ˇi

and
P

i
ˇi

converge for ˇ D n=.n�1/ > 1 we see that
for any fixed p, the constants Ck are uniformly bounded from above, independent
of k.

Setting p D 2 and letting k ! 1 in (3.201) we finally obtain

max.1; k'kC0/ � C max.1; k'kL2.!0// � C 0; (3.203)

and hence (3.191). ut
Now the oscillation bound for ' D '.t/ along the Kähler–Ricci flow (3.186)

follows immediately:

Lemma 3.4.7. There exists a uniform constant C such that for t 2 Œ0;1/,

oscM ' � C: (3.204)

Proof. From Lemma 3.4.5 we have uniform bounds for P'. Rewrite the parabolic
complex Monge–Ampère equation (3.186) as

.!0 C
p�1
2�

@@'.t//n D eF.t/!n0 with F.t/ D log
�

!n0
C P'.t/ (3.205)

and apply Theorem 3.4.6. ut
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3.4.3 Higher Order Estimates and Convergence
When c1.M/ D 0

In this subsection we complete the proof of Theorem 3.4.4. The proof for the higher
order estimates follows along similar lines as in the case for c1.M/ < 0. As above,
let '.t/ solve the parabolic complex Monge–Ampère equation (3.186) on M with

c1.M/ D 0 and write ! D !0 C
p�1
2�
@@'.

Lemma 3.4.8. There exists a uniform constant C such that on M � Œ0;1/, ! D
!.t/ satisfies

1

C
!0 � ! � C!0: (3.206)

Proof. By Lemma 3.4.5 and the argument of Corollary 3.3.5, it suffices to obtain
a uniform upper bound for tr !0!. As in the case of Lemma 3.4.3, define Q D
log tr !0! � A' for A a constant to be determined later. Compute using Proposi-
tion 3.2.5,

�
@

@t
��

�
Q � C0tr !!0 � A P' C An � Atr !!0; (3.207)

for C0 depending only on g0. Choosing A D C0 C 1 we have, since P' is uniformly
bounded,

�
@

@t
��

�
Q � �tr !!0 C C: (3.208)

We claim that for any .x; t/ 2 M � Œ0;1/,

.tr !0!/ .x; t/ � CeA.'.x;t/�infM�Œ0;t � '/: (3.209)

To see this, suppose that Q achieves a maximum on M � Œ0; t � at the point .x0; t0/.
We assume without loss of generality that t0 > 0. Applying the maximum principle
to (3.208) we see that .tr !!0/.x0; t0/ � C and, by the argument of Lemma 3.4.3,
.tr !0!/.x0; t0/ � C 0. Then for any x 2 M ,

.log tr !0!/ .x; t/ �A'.x; t/ D Q.x; t/ � Q.x0; t0/ � logC 0 �A'.x0; t0/:
(3.210)

Exponentiating gives (3.209).
Define

Q' WD ' � 1

V

Z
M

' �; where V WD
Z
M

� D
Z
M

!n: (3.211)
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From Lemma 3.4.7, k Q'kC0.M/ � C . The estimate (3.209) can be rewritten as:

.tr !0!/ .x; t/ � CeA. Q'.x;t/C 1
V

R
M '.t/��infM�Œ0;t � Q'�infŒ0;t �

1
V

R
M ' �/

� CeC
0C A

V .
R
M '.t/��infŒ0;t �

R
M ' �/: (3.212)

Using Jensen’s inequality,

d

dt

�
1

V

Z
M

' �

�
D 1

V

Z
M

P' � D 1

V

Z
M

log

�
!n

�

�
� � log

�
1

V

Z
M

!n
�

D 0;

(3.213)

and hence infŒ0;t �
R
M
' � D R

M
'.t/�. The required upper bound of tr !0! follows

then from (3.212). ut
It follows from Corollary 3.2.16 that we have uniformC1 estimates on g.t/ and

the normalized potential function Q'.t/ D '.t/�V �1 R
M
'.t/�. It remains to prove

the C1 convergence part of Theorem 3.4.4. We follow the method of Phong–Sturm
[PS06] (see also [MSz09, PSSW09]) and use a functional known as the Mabuchi
energy [Mab86]. It is noted in [Cao, DT92] that the monotonicity of the Mabuchi
energy along the Kähler–Ricci flow was established in unpublished work of H.-D.
Cao in 1991.

We fix a metric !0 as above. The Mabuchi energy is a functional Mab!0 on the
space

PSH.M;!0/ D
(
' 2 C1.M/ j !0 C

p�1
2�

@@' > 0

)
(3.214)

with the property that if 't is any smooth path in PSH.M;!0/ then

d

dt
Mab!0.'t / D �

Z
M

P'tR't !n't ; (3.215)

where !'t D !0 C
p�1
2�
@@'t , and R't is the scalar curvature of !'t . Observe that if

'1 is a critical point of Mab!0 then !1 D !0C
p�1
2�
@@'1 has zero scalar curvature

and hence is Ricci flat (for that last statement: since c1.M/ D 0, then Ric.!1/ Dp�1
2�
@@h1 for some function h1 and taking the trace gives �!

1

h1 D 0 which
implies h1 is constant and Ric.!1/ D 0).

Typically, the Mabuchi energy is defined in terms of its derivative using the
formula (3.215) but instead we will use the explicit formula as derived in [Tian].
Define

Mab!0.'/ D
Z
M

log

�
!n'

!n0

�
!n' �

Z
M

h0.!
n
' � !n0 /; (3.216)
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where !' D !0 C
p�1
2�
@@' and h0 is the Ricci potential for !0 given by

Ric.!0/ D
p�1
2�

@@h0;

Z
M

eh0!n0 D
Z
M

!n0 : (3.217)

Observe that Mab!0 depends only on the metric !' and so can be regarded as a
functional on the space of Kähler metrics cohomologous to !0. We now need to
check that Mab!0 defined by (3.216) satisfies (3.215). Let 't be any smooth path in
PSH.M;!0/. Using integration by parts, we compute

d

dt
Mab!0.'t / D

Z
M

� P't !n't C
Z
M

log
!n't

!n0
� P't !n't �

Z
M

h0� P't !n't

D
Z
M

P't.�R't C tr !Ric.!0//!n't �
Z
M

P't�h0 !n't

D �
Z
M

P'tR't !n't : (3.218)

The key fact we need is as follows:

Lemma 3.4.9. Let ' D '.t/ solve the Kähler–Ricci flow (3.186). Then

d

dt
Mab!0.'/ D �

Z
M

j@ P'j2!!n: (3.219)

In particular, the Mabuchi energy is decreasing along the Kähler–Ricci flow.
Moreover, there exists a uniform constant C such that

d

dt

Z
M

j@ P'j2!!n � C

Z
M

j@ P'j2!!n: (3.220)

Proof. Observe that from the Kähler–Ricci flow equation we have
p�1
2�
@@ P' D

�Ric.!/ and taking the trace of this gives� P' D �R. Then

d

dt
Mab!0.'/ D �

Z
M

P'R!n D
Z
M

P'� P' !n D �
Z
M

j@ P'j2!!n; (3.221)

giving (3.219). For (3.220), compute

d

dt

Z
M

j@ P'j2!!n D
Z
M

.
@

@t
gj i /@i P'@j P' !n C 2Re

�Z
M

gj i@i .� P'/@j P' !n
�

C
Z
M

j@ P'j2� P' !n (3.222)
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D
Z
M

Rji@i P'@j P' !n � 2
Z
M

.� P'/2!n �
Z
M

j@ P'j2R!n

� C

Z
M

j@ P'j2!!n; (3.223)

using (3.189), an integration by parts and the fact that, since we have C1 estimates
for !, we have uniform bounds of the Ricci and scalar curvatures of !. ut

It is now straightforward to complete the proof of the convergence of the Kähler–
Ricci flow. Since we have uniform estimates for !.t/ along the flow, we see from
the formula (3.216) that the Mabuchi energy is uniformly bounded. From (3.219)
there is a sequence of times ti 2 Œi; i C 1� for which

 Z
M

ˇ̌
ˇ̌@ log

!n

�

ˇ̌
ˇ̌2
!

!n

!
.ti / D

�Z
M

j@ P'j2! !n
�
.ti / ! 0; as i ! 1: (3.224)

By the differential inequality (3.220),

 Z
M

ˇ̌
ˇ̌@ log

!n

�

ˇ̌
ˇ̌2
!

!n

!
.t/ ! 0; as t ! 1: (3.225)

But since we have C1 estimates for '.t/ we can apply the Arzela–Ascoli Theorem
to obtain a sequence of times tj such that '.tj / converges inC1 to '1, say. Writing

!1 D !0 C
p�1
2�
@@'1 > 0, we have from (3.225),

 Z
M

ˇ̌
ˇ̌@ log

!n1
�

ˇ̌
ˇ̌2
!

1

!n1

!
D 0; (3.226)

and hence

log
!n1
�

D C; (3.227)

for some constant C . Taking
p�1
2�
@@ of (3.227) gives Ric.!1/ D 0. Hence for a

sequence of times tj ! 1 the Kähler–Ricci flow converges to !1, the unique
Kähler–Einstein metric in the cohomology class Œ!0�.

To see that the convergence of the metrics !.t/ is in C1 without passing to
a subsequence, we argue as follows. If not, then by the same argument as in the
proof of Theorem 3.4.1 we can find a sequence of times tk ! 1 such that
!.tk/ converges in C1 to !01 ¤ !1. But by (3.225), !01 is Kähler–Einstein,
contradicting the uniqueness of Kähler–Einstein metrics in Œ!0�. This completes the
proof of Theorem 3.4.4.
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Remark 3.4.10. It was pointed out to the authors by Zhenlei Zhang that one can
equivalently consider the functional

R
M
h!n, where h is the Ricci potential of the

evolving metric.

3.5 The Case When KM Is Big and nef

In the previous section we considered the Kähler–Ricci flow on manifolds with
c1.M/ < 0, which is equivalent to the condition that the canonical line bundle
KM is ample. In this section we consider the case where the line bundle KM is not
necessarily ample, but nef and big. Such a manifold is known as a smooth minimal
model of general type.

3.5.1 Smooth Minimal Models of General Type

As in the case of c1.M/ < 0 we consider the normalized Kähler–Ricci flow

@

@t
! D �Ric.!/ � !; !jtD0 D !0; (3.228)

but we impose no restrictions on the Kähler class of !0. We will prove:

Theorem 3.5.1. Let M be a projective algebraic manifold which is a smooth
minimal model of general type (that is, KM is nef and big). Then

(i) The solution ! D !.t/ of the normalized Kähler–Ricci flow (3.228) starting at
any Kähler metric !0 on M exists for all time.

(ii) There exists a codimension 1 analytic subvariety S of M such that !.t/
converges in C1

loc .M n S/ to a Kähler metric !KE defined on M n S which
satisfies the Kähler–Einstein equation

Ric.!KE/ D �!KE; onM n S: (3.229)

We will see later in Sect. 3.5.3 that !KE is unique under some suitable conditions.
Note that if KM is not ample, then !KE cannot extend to be a smooth Kähler
metric onM , and we call !KE a singular Kähler–Einstein metric. The first proof of
Theorem 3.5.1 appeared in the work of Tsuji [Tsu88]. Later, Tian–Zhang [Tzha06]
extended this result (see Sect. 3.5.4 below) and clarified some parts of Tsuji’s proof.
Our exposition will for the most part follow [Tzha06].

From part (i) of Theorem 3.1.12 we see that under the assumptions of Theo-
rem 3.5.1, the cohomology class Œ!0�� tc1.M/ is Kähler for all t � 0 and hence by
Theorem 3.3.1, the (unnormalized) Kähler–Ricci flow has a smooth solution !.t/
for all time t . Rescaling as in Sect. 3.4.1 we obtain a solution of the normalized
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Kähler–Ricci flow (3.228) for all time. This establishes part (i) of Theorem 3.5.1.
Observe that in fact we only need KM to be nef to obtain a solution to the Kähler–
Ricci flow for all time.

It is straightforward to calculate the Kähler class of the evolving metric along the
flow. Indeed, Œ!.t/� evolves according to the ordinary differential equation

d

dt
Œ!.t/� D �c1.M/� Œ!�; Œ!.0/� D Œ!0�; (3.230)

and this has a solution

Œ!.t/� D �.1 � e�t /c1.M/C e�t Œ!0�: (3.231)

This shows that, in particular, Œ!.t/� ! �c1.M/ as t ! 1.
We now rewrite (3.228) as a parabolic complex Monge–Ampère equation. First,

from the Base Point Free Theorem [part (ii) of Theorem 3.1.12], KM is semi-
ample. Hence there exists a smooth closed nonnegative .1; 1/-form O!1 on M with
Œ O!1� D �c1.M/. Indeed, we may take O!1 D 1

m
ˆ�!FS where ˆ W M ! P

N is
a holomorphic map defined by holomorphic sections of Km

M for m large and !FS is
the Fubini–Study metric (see Sect. 3.1.7).

Define reference metrics in Œ!.t/� by

O!t D e�t!0 C .1 � e�t / O!1; for t 2 Œ0;1/: (3.232)

Let � be the smooth volume form on M satisfying

p�1
2�

@@ log� D O!1 2 �c1.M/;

Z
M

� D
Z
M

!n0 : (3.233)

We then consider the parabolic complex Monge–Ampère equation

@

@t
' D log

. O!t C
p�1
2�
@@'/n

�
� '; O!t C

p�1
2�

@@' > 0; 'jtD0 D 0;

(3.234)

which is equivalent to (3.228). Hence a solution to (3.234) exists for all time.

3.5.2 Estimates

In this section we prove the estimates needed for the second part of Theorem 3.5.1.
Assume that ' D '.t/ solves (3.234). We have:

Lemma 3.5.2. There exists a uniform constants C and t 0 > 0 such that on M ,
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(i) '.t/ � C for t � 0.
(ii) P'.t/ � Cte�t for t � t 0. In particular, P'.t/ � C for t � 0.

(iii) !n.t/ � C� for t � 0.

Proof. Part (i) follows immediately from the maximum principle. Indeed if '
achieves a maximum at a point .x0; t0/ with t0 > 0 then, directly from (3.234),

0 � @

@t
' � log

O!nt
�

� ' at .x0; t0/; (3.235)

and hence ' � log. O!nt =�/ � C .
Part (ii) is a result of [Tzha06]. Compute

�
@

@t
��

�
' D P' � nC tr ! O!t (3.236)

�
@

@t
��

�
P' D �e�t tr !.!0 � O!1/ � P'; (3.237)

using the fact that @
@t

O!t D �e�t .!0 � O!1/. Hence

�
@

@t
��

� �
et P'� D �tr !.!0 � O!1/ (3.238)

�
@

@t
��

�
. P' C ' C nt/ D tr ! O!1: (3.239)

Subtracting (3.239) from (3.238) gives

�
@

@t
��

��
.et � 1/ P' � ' � nt� D �tr !!0 < 0; (3.240)

which implies that the maximum of .et � 1/ P' �' �nt is decreasing in time, giving

.et � 1/ P' � ' � nt � 0: (3.241)

This establishes (ii). Part (iii) follows from Corollary 3.2.3 [or using (i) and (ii) and
the fact that !n=� D e P'C']. ut

We now prove lower bounds for ' and P' away from a subvariety. To do this we
need to use Tsuji’s trick of applying Kodaira’s Lemma [part (iii) of Theorem 3.1.12].

Since KM is big and nef, there exists an effective divisor E on M with KM �
ıŒE� > 0 for some sufficiently small ı > 0. Since O!1 lies in the cohomology class
c1.KM/ it follows that for any Hermitian metric h of ŒE� the cohomology class of
O!1 � ıRh is Kähler. Then by the @@-Lemma we may pick a Hermitian metric h on
ŒE� such that
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O!1 � ıRh � c!0; (3.242)

for some constant c > 0. Moreover, if we pick any " 2 .0; ı� we have

O!1 � "Rh � c"!0; (3.243)

for c" D c"=ı > 0. Indeed, since O!1 is semi-positive,

O!1 � "Rh D "

ı
. O!1 � ıRh/C



1 � "

ı

�
O!1 � "

ı
. O!1 � ıRh/ � c"

ı
!0: (3.244)

Now fix a holomorphic section � of ŒE� which vanishes to order 1 along the
divisor E . It follows that

O!1 C "

p�1
2�

@@ log j� j2h � c"!0; on M nE; (3.245)

since @@ log j� j2h D @@ logh away from E . Note that here (and henceforth) we are
writing E for the support of the divisor E .

We can then prove:

Lemma 3.5.3. With the notation above, for every " 2 .0; ı� there exists a constant
C" > 0 such that on .M nE/ � Œ0;1/,

(i) ' � " log j� j2h � C".
(ii) P' � " log j� j2h � C".

(iii) !n � 1

C"
j� j2"h �.

Proof. It suffices to prove the estimate

' C P' � " log j� j2h � C"; on M n E; (3.246)

where we write C" for a constant that depends only on " and the fixed data.
Indeed this inequality immediately implies (iii). The estimates (i) and (ii) follow
from (3.246) together with the upper bounds of P' and ' given by Lemma 3.5.2.

To establish (3.246), we will bound from below the quantity Q defined by

Q D P' C ' � " log j� j2h D log
!n

j� j2"h �
; on M nE: (3.247)

Observe that for any fixed time t , Q.x; t/ ! 1 as x approaches E . Hence for
each time t , Q attains a minimum (in space) in the interior of the set M n E . Now
from (3.239) we have

�
@

@t
��

�
. P' C '/ D tr ! O!1 � n: (3.248)
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Using this we compute on M n E ,

�
@

@t
��

�
Q D tr ! O!1 � nC "tr !

 p�1
2�

@@ log j� j2h
!

(3.249)

D tr !

 
O!1 C "

p�1
2�

@@ log j� j2h
!

� n (3.250)

� c"tr !!0 � n; (3.251)

where for the last line we used (3.245).
Then if Q achieves a minimum at .x0; t0/ with x0 in M n E and t0 > 0 then at

.x0; t0/ we have

tr !!0 � n

c"
: (3.252)

By the geometric–arithmetic means inequality, at .x0; t0/,

�
!n0
!n

�1=n
� 1

n
tr !!0 � 1

c"
; (3.253)

which gives a uniform lower bound for the volume form !n.x0; t0/. Hence

Q.x0; t0/ D log
!n

j� j2h�
.x0; t0/ � �C"; (3.254)

and since Q is bounded below at time t D 0 we obtain the desired lower bound
forQ. ut

Next we prove estimates for g.t/ away from a divisor. First, we from now on fix

an " in .0; ı� sufficiently small so that !0 C "
p�1
2�
@@ logh is Kähler. We will need

the following lemma.

Lemma 3.5.4. For the " > 0 fixed as above, the metrics O!t;" defined by

O!t;" WD O!t C "

p�1
2�

@@ logh D O!1 C "

p�1
2�

@@ loghC e�t .!0 � O!1/: (3.255)

give a smooth family of Kähler metrics for t 2 Œ0;1/. Moreover there exists a
constant C > 0 such that for all t ,

1

C
!0 � O!t;" � C!0: (3.256)
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Proof. From (3.245) we see that O!1 C "
p�1
2�
@@ logh is Kähler. Hence we may

choose T0 > 0 sufficiently large so that, for C > 0 large enough,

1

C
!0 � O!1 C "

p�1
2�

@@ loghC e�t .!0 � O!1/ � C!0; (3.257)

for all t > T0. It remains to check that O!t;" is Kähler for t 2 Œ0; T0�. But for t 2
Œ0; T0�,

O!t;" D .1 � e�t /
 

O!1 C "

p�1
2�

@@ logh

!
C e�t

 
!0 C "

p�1
2�

@@ logh

!

> e�T0
 
!0 C "

p�1
2�

@@ logh

!
> 0; (3.258)

by definition of ". ut
We can now prove bounds for the evolving metric:

Lemma 3.5.5. There exist uniform constants C and ˛ such that on .M n E/ �
Œ0;1/,

tr !0 ! � C

j� j2˛h
: (3.259)

Hence there exist uniform constants C 0 > 0 and ˛0 such that on .M nE/ � Œ0;1/,

j� j2˛0

h

C 0 !0 � !.t/ � C 0

j� j2˛0

h

!0: (3.260)

Proof. Define a quantityQ on M n E by

Q D log tr !0! �A �' � " log j� j2h
�
; (3.261)

for A a sufficiently large constant to be determined later. For any fixed time t ,
Q.x; t/ ! �1 as x approachesE . Then compute using Proposition 3.2.5,

�
@

@t
��

�
Q � C0tr !!0 � A P' C A�

�
' � " log j� j2h

�
: (3.262)

Now at any point of M nE ,

�
�
' � " log j� j2h

� D tr !

 
! � O!t � "

p�1
2�

@@ log j� j2h
!

D n � tr ! O!t;": (3.263)
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Applying Lemma 3.5.4, we may choose A sufficiently large so that A O!t;" �
.C0 C 1/!0 and hence

�
@

@t
��

�
Q � �tr !!0 � A

�
log

!n

�
� '

�
C An

� �tr !!0 � A log
!n

!n0
C C; (3.264)

where we have used the upper bound on ' from Lemma 3.5.2.
Working in a compact time interval Œ0; t 0� say, suppose that Q achieves a

maximum at .x0; t0/ with x0 in M and t0 > 0. Then at .x0; t0/ we have

tr !!0 C A log
!n

!n0
� C: (3.265)

By the same argument as in the proof of Lemma 3.3.4 we see that .tr !0!/
.x0; t0/ � C .

Then for any .x; t/ 2 .M nE/ � Œ0; t 0� we have

Q.x; t/ D .log tr !0!/.x; t/ � A
�
' � " log j� j2h

�
.x; t/

� Q.x0; t0/

� logC � A
�
' � " log j� j2h

�
.x0; t0/ � C 0; (3.266)

where for the last line we used part (i) of Lemma 3.5.3. Since t 0 is arbitrary, we have
on .M n E/ � Œ0;1/,

log tr !0! � C C A
�
' � " log j� j2h

�
: (3.267)

Since ' is bounded from above we obtain (3.259) after exponentiating.
For (3.260), combine (3.259) with part (iii) of Lemma 3.5.3. ut
We now wish to obtain higher order estimates on compact subsets of M n E:

Lemma 3.5.6. For m D 0; 1; 2; : : :, there exist uniform constants Cm and ˛m such
that on .M n E/ � Œ0;1/,

S � C0

j� j2˛0h

; jrm
R

Rm.g/j � Cm

j� j2˛mh

; (3.268)

where we are using the notation of Sects. 3.2.5 and 3.2.6.

Proof. We prove only the bound on S and leave the bounds on curvature and its
derivatives as an exercise to the reader. We will follow quite closely an argument
given in [SW10]. From Proposition 3.2.8 and (3.260),
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�
@

@t
��

�
S D �jr‰j2 � jr‰j2 C j‰j2 � 2Re



gj igqpgk`rb OR k

ibp
‰`
jq

�

(3.269)

� �jr‰j2 � jr‰j2 C S C C j� j�Kh
p
S; (3.270)

for a uniform constant K . We have

j@S j � p
S.jr‰j C jr‰j/: (3.271)

Moreover,

j@j� j4Kh j � C j� j3Kh and j�j� j4Kh j � C j� j3Kh ; (3.272)

where we are increasingK if necessary. Then

�
@

@t
��

�
.j� j4Kh S/ D j� j4Kh

�
@

@t
��

�
S � 2Re.gj i @i j� j4Kh @j S/� .�j� j4Kh /S

� �j� j4Kh .jr‰j2 C jr‰j2/C C j� j3Kh
p
S.jr‰j C jr‰j/

C C j� j2Kh S C C

� C.1C j� j2Kh S/: (3.273)

But from Proposition 3.2.4 and (3.260)

�
@

@t
��

�
tr !0! D �tr !0! � g`kR.g0/ j i

k`
gij � gj i0 gqpg`kr0

i gp`r0
j
gkq

� C j� j�Kh � 1

C
j� jKh S � 1

2
g
j i
0 g

qpg`kr0
i gp`r0

j
gkq; (3.274)

where r0 denotes the covariant derivative with respect to g0. We may assume that
K is large enough so that j.�j� jKh /tr !0!j � C . Then

�
@

@t
��

�
.j� jKh tr !0!/ � � 1

C
j� j2Kh S C C � 2Re.gj i @i j� jKh @j tr !0!/

� 1

2
j� jKh gj i0 gqpg`kr0

i gp`r0
j
gkq

� � 1

C
j� j2Kh S C C; (3.275)

where for the last line we have used:



148 J. Song and B. Weinkove

j2Re.gj i@i j� jKh @j tr !0!/j � C C 1

C
j@j� jKh j2j@tr !0!j2 (3.276)

� C C 1

2
j� jKh gj i0 gqpg`kr0

i gp`r0
j
gkq; (3.277)

which follows from (3.72), increasingK if necessary.
Now define Q D j� j4Kh S C Aj� jKh tr !0! for a constant A. Combining (3.273)

and (3.275) we see that for A sufficiently large,

�
@

@t
��

�
Q � �j� j2Kh S C C; (3.278)

and thenQ is bounded from above by the maximum principle. The bound on S then
follows. ut

As a consequence:

Lemma 3.5.7. ' D '.t/ and ! D !.t/ are uniformly bounded in C1
loc .M n E/.

Proof. Applying Theorem 3.2.15 gives the C1
loc .M n E/ bounds for !. Since by

Lemmas 3.5.2 and 3.5.3, ' is uniformly bounded (in C0) on compact subsets of
M n E , the C1

loc .M n E/ bounds on ' follow from those on !. ut

3.5.3 Convergence of the Flow and Uniqueness of the Limit

We now complete the proof of Theorem 3.5.1. From part (ii) of Lemma 3.5.2 we
have P' � Cte�t for t � t 0. Hence for t � t 0,

@

@t

�
' C Ce�t .t C 1/

� � 0: (3.279)

On the other hand, from Lemma 3.5.3, the quantity ' C Ce�t .t C 1/ is uniformly
bounded from below on compact subsets ofM nE . Hence '.t/ converges pointwise
on M n E to a function '1. Since we have C1

loc .M n E/ estimates for '.t/ this
implies, by a similar argument to that given in the proof of Theorem 3.4.1, that '
converges to '1 in C1

loc .M n E/. In particular '1 is smooth on M n E . Define

!1 D O!1 C
p�1
2�
@@'1. Then !1 is a smooth Kähler metric on M n E .

Moreover, since '.t/ converges to '1 we must have, for each x 2 M n E ,
P'.x; ti / ! 0 for a sequence of times ti ! 1. But since P'.t/ converges in
C1

loc .M n E/ as t ! 1 we have by uniqueness of limits that P'.t/ converges to
zero in C1

loc .M n E/ as t ! 1. Taking the limit of (3.234) as t ! 1 we obtain

log
!n1
�

� '1 D 0 (3.280)
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onM nE and applying @@ to this equation gives Ric.!1/ D �!1 onM nE . This
completes the proof of Theorem 3.5.1.

We have now proved the existence of a singular Kähler–Einstein metric on M .
We now prove a uniqueness result. Let �, O!1, � and h be as above.

Theorem 3.5.8. There exists a unique smooth Kähler metric !KE on M n E
satisfying

(i) Ric.!KE/ D �!KE onM n E .
(ii) There exists a constant C and for every " > 0 a constant C" > 0 with

1

C"
j� j2"h � � !nKE � C�; on M nE: (3.281)

Note that although it may appear that condition (ii) depends on the choices of�,
� and h, in fact it is easy to see it does not.

Proof of Theorem 3.5.8. The existence part follows immediately from Theo-
rem 3.5.1, Lemmas 3.5.2 and 3.5.3, so it remains to prove uniqueness. Suppose
!KE and Q!KE are two solutions and define functions  and Q on M nE by

 D log
!nKE

�
and Q D log

Q!nKE

�
; (3.282)

with � as in (3.233). Then we have

!KE D �Ric.!KE/ D O!1 C
p�1
2�

@@ ; Q!KE D �Ric. Q!KE/ D O!1 C
p�1
2�

@@ Q :
(3.283)

Hence it suffices to show that  D Q . By symmetry it is enough to show  � Q .
For any " > 0 and ı > 0 sufficiently small, define

H D  � .1 � ı/ Q � ı" log j� j2h: (3.284)

From the condition (3.281), Q is bounded from above and  � "0 log j� j2h �C"0 for
any "0 > 0. Taking "0 D "ı=2 we see that

H � �"ı
2

log j� j2h � C"0 � C; (3.285)

and hence H is bounded from below by a constant depending on " and ı and tends
to infinity on E . Hence H achieves a minimum at a point x0 2 M n E .

On the other hand, we have

log
!nKE

Q!nKE

D  � Q ; (3.286)
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which using (3.283) we can rewrite as

log



O!1 C .1 � ı/

p�1
2�
@@ Q � ı"Rh C

p�1
2�
@@H

�n
Q!nKE

D  � Q : (3.287)

Since ı O!1 � ı"Rh is Kähler for " sufficiently small, we obtain

 � Q � log
.1 � ı/n



Q!KE C

p�1
2�
@@
�
H
1�ı
��n

Q!nKE

: (3.288)

Hence at the point x0 at which H achieves a minimum we have

 � Q � n log.1 � ı/; (3.289)

and so, using the inequality Q � " log j� j2h � C",

H.x0/ � ı Q .x0/Cn log.1�ı/�ı" log j� j2h.x0/ � �ıC"Cn log.1�ı/: (3.290)

For any " > 0 we may choose ı D ı."/ sufficiently small so that ıC" < "=2 and
n log.1� ı/ > �"=2, givingH.x0/ � �" and henceH � �" onM nE . It follows
that on M n E ,

 � .1 � ı/ Q C ı" log j� j2h � ": (3.291)

Letting " ! 0 (so that ı ! 0 too) gives  � Q as required. ut

3.5.4 Further Estimates Using Pluripotential Theory

In this section we will show how results from pluripotential theory can be used to
improve on the estimates given in the proof of Theorem 3.5.1.

The following a priori estimate, extending Yau’s zeroth order estimate, was
proved by Eyssidieux–Guedj–Zeriahi [EGZ11]. A slightly weaker version of this
result, which would also suffice for our purposes, was proved independently by
Zhang [Zha06].

Theorem 3.5.9. LetM be a compact Kähler manifold and ! a closed smooth semi-
positive .1; 1/-form with

R
M
!n > 0. Let f be a smooth nonnegative function. Fix

p > 1. Then if ' is a smooth function with ! C
p�1
2�
@@' � 0 solving the complex

Monge–Ampère equation

.! C
p�1
2�

@@'/n D f!n; (3.292)
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then there exists a constant C depending only onM;! and kf kLp.M;!/ such that

oscM ' � C: (3.293)

The differences between this result and Theorem 3.4.6 are that here ! is only
required to be semi-positive and the estimate on ' depends only on theLp bound of
the right hand side of the equation. We remark that we have not stated the result in
the sharpest possible way. The conditions that ' and f are smooth can be relaxed to

' being bounded with ! C
p�1
2�
@@' � 0 and f being in Lp . We have ignored this

to avoid technicalities such as defining the Monge–Ampère operator in this more
general setting. We omit the proof of this theorem since it goes beyond the scope of
these notes. The theorem is a generalization of a seminal work of Kołodziej [Kol98].
For a further generalization, see [BEGZ10].

We will apply Theorem 3.5.9 to show that the solution ' D '.t/ of the parabolic
complex Monge–Ampère equation (3.234) is uniformly bounded, a result first
established by Tian–Zhang [Tzha06]. Moreover, we can in addition obtain a bound
on P' [Zha09].

Proposition 3.5.10. There exists a uniform C such that under the assumptions of
Theorem 3.5.1, ' solving (3.234) satisfies for t 2 Œ0;1/,

k'kC0 � C and k P'kC0 � C: (3.294)

Hence there exists a uniform constant C 0 > 0 such that for t 2 Œ0;1/,

1

C 0� � !n � C 0�: (3.295)

Proof. First observe that

. O!t C
p�1
2�

@@'/n D f O!nt ; for f D e P'C' �
O!nt

� 0: (3.296)

From the definition of O!t and Lemma 3.5.2 we see that f is uniformly bounded
from above, and hence bounded in Lp for any p. Applying Theorem 3.5.9 we see
that oscM' � C for some uniform constant.

For the bound on ', it only remains to check that there exists a constant C 0 such
that for each time t there exists x 2 M with j'.x/j � C 0. From Lemma 3.5.2 we
have an upper bound for '.x/ for all x 2 M . For the lower bound, observe that

Z
M

e P'C'� D
Z
M

. O!t C
p�1
2�

@@'/n D
Z
M

O!nt � c; (3.297)
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for some uniform constant c > 0. It follows that at each time t there exists
x 2 M with e P'.x/C'.x/ � c=

R
M
�. Since P' is uniformly bounded from above

by Lemma 3.5.2 this gives '.x/ � �C 0 for that x, as required.
For the bound on P' we use an argument due to Zhang [Zha09]. From (3.234) and

Theorem 3.2.2,

@

@t
. P' C '/ D @

@t

�
log

!n

�

�
D �R � n � C0e

�t (3.298)

for a uniform constant C0. We may suppose that k'kC0 � C0 for the same constant
C0 > 0. We claim that P' > �4C0. Suppose not. Then there exists a point .x0; t0/
with P'.x0; t0/ � �4C0. Using (3.298) we have for any t > t0,

. P' C '/.x0; t/ � . P' C '/.x0; t0/ � C0

Z t

t0

e�sds D C0.e
�t0 � e�t /: (3.299)

Hence for t > t0,

P'.x0; t/ � . P' C '/.x0; t0/C C0e
�t0 � '.x0; t/ � �C0; (3.300)

using the fact that P'.x0; t0/ � �4C0. This is a contradiction since '.x0; t/ is
uniformly bounded as t ! 1. ut

An immediate consequence is:

Corollary 3.5.11. The singular Kähler–Einstein metric !KE constructed in Theo-
rem 3.5.1 satisfies

1

C
� � !nKE � C� on M nE; (3.301)

for some C > 0.

As another application of Proposition 3.5.10, we use the estimate on ' together
with the parabolic Schwarz lemma to obtain a lower bound on the metric !.

Lemma 3.5.12. Under the assumptions of Theorem 3.5.1, there exists a uniform
constant C such that

! � 1

C
O!1; on M � Œ0;1/: (3.302)

Proof. Recall that O!1 D 1
m
ˆ�!FS where ˆ W M ! P

N is a holomorphic map and
!FS is the Fubini–Study metric on P

N . We can then directly apply Theorem 3.2.6 to
obtain

�
@

@t
��

�
log tr ! O!1 � C 0tr ! O!1 C 1; (3.303)
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for C 0 an upper bound for the bisectional curvature of !FS. Define Q D log tr !
O!1 � A' for A to be determined later. Compute, using Proposition 3.5.10,

�
@

@t
��

�
Q � C 0tr ! O!1 � A P' C An �Atr ! O!t C 1

� �tr ! O!1 C C; (3.304)

where we have chosen A to be sufficiently large so that A O!t � .C 0 C 1/ O!1. It
follows from the maximum principle thatQ and hence tr ! O!1 is uniformly bounded
from above and this completes the proof of the lemma. ut

Observe that Lemma 3.5.12 together with the volume upper bound from
Lemma 3.5.2 show that the metric !.t/ is uniformly bounded above and below
on compact subsets of M n S , for S the set of points where O!1 is degenerate.
Thus we can obtain an alternative proof of Theorem 3.5.1 which avoids the use of
Lemmas 3.5.3 and 3.5.5.

Finally we mention that Zhang [Zha09] also proved a uniform bound for the
scalar curvature of the evolving metric in this setting.

3.6 Kähler–Ricci Flow on a Product Elliptic Surface

In this section we investigate collapsing along the Kähler–Ricci flow. We study this
behavior in the simple case of a product of two Riemann surfaces.

3.6.1 Elliptic Surfaces and the Kähler–Ricci Flow

LetM now have complex dimension two. An elliptic curveE is a compact Riemann
surface with c1.E/ D 0 (by the Gauss–Bonnet formula this is equivalent to having
genus equal to 1). We say that M is an elliptic surface if there exists a surjective
holomorphic map � W M ! S onto a Riemann surface S such that the fiber ��1.s/
is an elliptic curve for all but finitely many s 2 S . In particular, the product of an
elliptic curve and any Riemann surface is an elliptic surface, which we will call a
product elliptic surface.

In [ST07], the Kähler–Ricci flow was studied on a general minimal elliptic
surface (see Sect. 3.8 for a definition of minimal). In this case there are finitely many
singular fibers of the map � . It was shown that the Kähler–Ricci flow converges in
C1Cˇ for any ˇ 2 .0; 1/ at the level of potentials away from the singular fibers,
and also converges on M in the sense of currents, to a generalized Kähler–Einstein
metric on the base S . A higher dimensional analogue was given in [ST12].
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Here we study the behavior of the Kähler–Ricci flow in the more elementary case
of a product elliptic surface M D E � S , where E is an elliptic curve and S is a
Riemann surface with c1.S/ < 0 (genus greater than 1). Because of the simpler
structure of the manifold, we can obtain stronger estimates than in [ST07].

By the uniformization theorem for Riemann surfaces (or the results of Sect. 3.4),
S andE admit Kähler metrics of constant curvature which are unique up to scaling.
Hence we can define Kähler metrics !S on S and !E on E by

Ric.!S/ D �!S ; Ric.!E/ D 0;

Z
E

!E D 1: (3.305)

Denote by �S and �E the projection maps �S W M ! S and �E W M ! E .
As in the case of the previous section we consider the normalized Kähler–Ricci

flow

@

@t
! D �Ric.!/ � !; !jtD0 D !0; (3.306)

The first Chern class of M is given by c1.M/ D �Œ��!S �, which can be seen
from the equation

Ric.��
S !S C ��

E!E/ D ���
S !S : (3.307)

Since ��!S is a nonnegative (1,1) form on M , it follows from Theorem 3.3.1 that
a solution to (3.306) exists for all time for any initial Kähler metric !0.

As a simple example, first consider the case when the initial metric !0 splits as
a product. Suppose !0 D ��

E!
0
E C ��

S !
0
S , where !0E and !0S are smooth metrics

on E and S respectively. Then the Kähler–Ricci flow splits into the Kähler–Ricci
flows on E and S , with !.t/ D ��

E!E;t C ��
S !S;t where !E;t and !S;t solve the

Kähler–Ricci flow on E and S respectively. Since c1.E/ D 0 and c1.S/ < 0 we
can apply the results of Sect. 3.4 to see that !E;t converges in C1 to 0 (because of
the normalization) as t ! 1 and !S;t converges in C1 to !S . Hence the solution
to the original normalized Kähler–Ricci flow converges in C1 to ��

S !S .
We now turn back to the general case of a non-product metric. For convenience,

here and henceforth we will drop the ��
S and ��

E and write !S and !E for the .1; 1/-
forms pulled back to M . We prove:

Theorem 3.6.1. Let !.t/ be the solution of the normalized Kahler–Ricci
flow (3.306) on M D E � S with initial Kahler metric !0. Then

(i) For any ˇ 2 .0; 1/, !.t/ converges to !S in Cˇ.M; g0/.
(ii) The curvature tensors of !.t/ and their derivatives are uniformly bounded

along the flow.
(iii) For any fixed fiber E D ��1

S .s/, we have

ket!.t/jE � !flatkC0.E/ ! 0 as t ! 1; (3.308)

where !flat is the Kähler–Ricci-flat metric on E with
R
E
!flat D R

E
!0.
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Remark 3.6.2. We conjecture that in (i), the convergence in Cˇ.M/ can be replaced
by C1.M/ convergence. Such a result is contained in the work of Gross–Tosatti–
Zhang [GTZ11] for the case of a family of Ricci-flat metrics. It seems likely that
their methods could be extended to cover this case too. It would also be interesting
to find a proof of C1 convergence using only the maximum principle.

Since the normalized Kähler–Ricci flow exists for all time we can compute, as
in (3.230) and (3.231), the evolution of the Kähler class to be

Œ!.t/� D e�t Œ!0�C .1 � e�t /Œ!S �: (3.309)

Before proving Theorem 3.6.1 we will, as in the sections above, reduce (3.306)
to a parabolic complex Monge–Ampère equation. Define reference metrics
O!t 2 Œ!.t/� by

O!t D e�t !0 C .1 � e�t /!S ; for t 2 Œ0;1/: (3.310)

Define a smooth volume form� on M by

p�1
2�

@@ log� D !S 2 �c1.M/;

Z
M

� D 2

Z
M

!0 ^ !S : (3.311)

In fact, from (3.307) one can see that � is a constant multiple of !S ^ !E . We
consider the parabolic complex Monge–Ampère equation

@

@t
' D log

et . O!t C
p�1
2�
@@'/2

�
� '; O!t C

p�1
2�

@@' > 0; 'jtD0 D 0:

(3.312)

As in earlier sections, a solution ' D '.t/ of (3.312) exists for all time and ! D
O!t C

p�1
2�
@@' solves the normalized Kähler–Ricci flow. Note that we insert the

factor of et in the equation to ensure that ' is uniformly bounded (see Lemma 3.6.3
below) but of course it does not change the evolution of the metric along the flow.

3.6.2 Estimates

In this section we establish uniform estimates for the solution ' D '.t/ of (3.312),
which we know exists for all time.

Lemma 3.6.3. There exists C > 0 such that on M � Œ0;1/,

(i) j'j � C:

(ii) j P'j � C:

(iii)
1

C
O!2t � !2 � C O!2t :
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Proof. For (i), first note that since et O!2t D e�t!20 C 2.1� e�t /!0 ^ !S we have

1

C
� � et O!2t � C�: (3.313)

Hence if ' achieves a maximum at .x0; t0/ with t0 > 0 then at that point,

0 � @

@t
' � log

et O!2t
�

� ' � logC � '; (3.314)

giving ' � logC . The lower bound of ' follows similarly.
For (ii) observe that @

@t
O!t D !S � O!t and hence

�
@

@t
��

�
P' D tr !.!S � O!t /C 1 � P': (3.315)

By definition of O!t there exists a uniform constant C0 > 0 such that C0 O!t � !S .
For the upper bound of P', we apply the maximum principle toQ1 D P'� .C0�1/'.
Compute

�
@

@t
��

�
Q1 D tr !.!S � O!t /C 1 � C0 P' C .C0 � 1/tr !.! � O!t /

� 1 � C0 P' C 2.C0 � 1/; (3.316)

and we see that P' is uniformly bounded from above at a point where Q1 achieves a
maximum. Since ' is bounded by (i) we obtain the required upper bound of P'.

For the lower bound of P', let Q2 D P' C 2' and compute

�
@

@t
��

�
Q2 D tr !.!S � O!t /C 1C P' � 2tr !.! � O!t /

� tr ! O!t C P' � 3: (3.317)

Using (3.312), (3.313) and the arithmetic–geometric means inequality, we have at a
point .x0; t0/ where Q2 achieves a minimum,

e�. P'C'/=2 D
�
�

et!2

�1=2
� C

� O!2t
!2

�1=2
� C

2
tr ! O!t � C 0 � P': (3.318)

Hence P' is uniformly bounded from below at .x0; t0/, giving (ii). Part (iii) follows
from (i) and (ii). ut

Next we estimate ! in terms of O!t . It is convenient to define another family of
reference metrics Q!t whose curvature we can control more precisely. Define Q!0 D
!E C !S and
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Q!t D e�t Q!0 C .1 � e�t /!S D !S C e�t!E: (3.319)

Observe that Q!t and O!t are uniformly equivalent.

Lemma 3.6.4. There exists C > 0 such that on M � Œ0;1/,

1

C
Q!t � ! � C Q!t (3.320)

Proof. From part (iii) of Lemma 3.6.3 it suffices to obtain an upper bound of the
quantity tr Q!t ! from above. Compute using the argument of Proposition 3.2.4,

�
@

@t
��

�
tr Q!t ! � �tr Q!t ! � gj i QR `k

ij
gk`

� Qgj it gqpg`k Qri gp`
Qrj gkq C

�
@

@t
Qgj it
�
gij ; (3.321)

where we are using QR `k
ij

and Qr D rQgt to denote the curvature and covariant

derivative with respect to Qgt . Since @
@t

Q!t D � Q!t C !S � � Q!t , we have

�
@

@t
Qgj it
�
gij � tr Q!t !: (3.322)

Hence, from the argument of Proposition 3.2.5,

�
@

@t
��

�
log tr Q!t ! � � 1

tr Q!t !
gj i QR `k

ij
gk`: (3.323)

Next we claim that

�gj i QR `k
ij

gk` D .tr !!S /
2 !E ^ !

Q!20
� .tr !!S/.tr Q!0!/ � .tr !!S/.tr Q!t !/: (3.324)

To see (3.324), compute in a local holomorphic product coordinate system .z1; z2/
with z1 a normal coordinate for !S jS in the base S direction and z2 a normal
coordinate for !E jE in the fiber E direction. In these coordinates Qgt is diagonal
and . Qgt /11 D .gS /11. Since the curvature of !E vanishes, we have from (3.307)

QR1111 D �.gS /11.gS /11; (3.325)

and QRijk` D 0 if i; j; k and ` are not all equal to 1. Hence the only non-zero

component of the curvature of Q!t appearing in (3.324) is QR 11

11
D �1. This gives
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the first equality of (3.324), and the next two inequalities follow from the definition
of Q!0 and Q!t .

Combining (3.323), (3.324) we have

�
@

@t
��

�
log tr Q!t ! � tr !!S : (3.326)

Now define

Q3 D log tr Q!t ! �A'; (3.327)

for A D C0 C 1 where C0 is the positive constant with C0 O!t � !S and compute

�
@

@t
��

�
Q3 � tr !!S � A P' C Atr !.! � O!t /

� C � tr ! O!t

� C � 1

C 0 tr Q!t !; (3.328)

for someC 0 > 0. For the last line we have used the estimate (iii) of Lemma 3.6.3 and
the fact that Q!t and O!t are uniformly equivalent. Since ' is uniformly bounded from
part (i) of Lemma 3.6.3 we see that Q3 is bounded from above by the maximum
principle, completing the proof of the lemma. ut

Next we prove an estimate on the derivative of ! using an argument similar to
that of Theorem 3.2.9.

Lemma 3.6.5. There exists a uniform constant C such that on M � Œ0;1/,

S WD jrQg0gj2 � C and jrQg0gj2Qg0 � C; (3.329)

where j � j, j � jQg0 denote the norms with respect to the metrics g D g.t/ and Qg0
respectively. Moreover, we have

�
@

@t
��

�
S � �1

2
jRm.g/j2 C C 0 (3.330)

for a uniform constant C 0.

Proof. First we show that

�
@

@t
��

�
tr Q!t ! � C � 1

C 0 jrQg0gj2; (3.331)
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for uniform constants C;C 0. From (3.321), (3.322), (3.324) and part (iii) of
Lemma 3.6.3,

�
@

@t
��

�
tr Q!t ! � C � Qgj it gqpg`k Qri gp`

Qrj gpq � C � 1

C 0S: (3.332)

For the last inequality we are using the fact that rQgt D rQg0 which can be seen by
choosing a coordinate system at a point in which @i Qgt D 0 for all i and any t � 0.
This establishes (3.331).

Using the notation of Proposition 3.2.8, write ‰k
ij D �kij � �. Qg0/kij so that S D

j‰j2. Then

�
@

@t
��

�
S D �jr‰j2 � jr‰j2 C j‰j2 � 2Re



gj igqpgk`rbR. Qg0/ k

ibp
‰`
jq

�
:

We have

rbR. Qg0/ k

ibp
D �gba‰m

iaR. Qg0/ k

mbp
� gba‰m

paR. Qg0/ k

ibm
C gba‰k

maR. Qg0/ m

ibp
:

(3.333)

Indeed, as in the proof of Lemma 3.6.4, this can be seen by choosing a local
holomorphic product coordinate system .z1; z2/ centered at a point x with z1 normal
for !S and z2 normal for !E . Using the argument of (3.324) and the result of
Lemma 3.6.4 we have

jRm. Qg0/j2g WD gj ig`kgqpgabR. Qg0/ a

i`p
R. Qg0/ b

j kq

D .tr !!S/
3 2 !E ^ !

Q!20
� .tr ! Q!t /3tr Q!t ! � C: (3.334)

Combining (3.333) and (3.334),

ˇ̌
ˇ2Re



gj igqpgk`rbR. Qg0/ k

ibp
‰`
jq

�ˇ̌
ˇ � CS: (3.335)

Since jr‰j2 D jRm. Qg0/ � Rm.g/j2g , we compute

�
@

@t
��

�
S � �jr‰j2 � jr‰j2 C CS

� �1
2

jRm.g/j2 C CS C C 0 (3.336)
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Then the upper bound on S follows from (3.332) and (3.336) by applying
the maximum principle to S C Atr Q!t ! for sufficiently large A. The inequality
jrQg0gj2g0 � C follows from the fact that the metric g.t/ is bounded from above
by g0 (Lemma 3.6.4). The inequality (3.330) follows from (3.336). ut

We then easily obtain estimates for curvature and all covariant derivatives of
curvature, establishing part (ii) of Theorem 3.6.1.

Lemma 3.6.6. There exist uniform constants Cm for m D 0; 1; 2; : : : such that on
M � Œ0;1/,

jrm
R

Rm.g/j2 � Cm: (3.337)

Proof. This follows from Lemma 3.6.5 and the arguments of Theorems 3.2.13
and 3.2.14. ut

3.6.3 Fiber Collapsing and Convergence

In this subsection, we complete the proof of Theorem 3.6.1.
First we define a closed .1; 1/ form !flat on M with the properties that Œ!flat� D

Œ!0� and for each s 2 S , !flat restricted to the fiber ��1
S .s/ is a Kähler–Ricci flat

metric. To do this, fix s 2 S and define a function �s on ��1
S .s/ by

!0j��1
S .s/ C

p�1
2�

@@�s > 0; Ric

 
!0j��1

S .s/ C
p�1
2�

@@�s

!
D 0;

Z
��1
S .s/

�s !0 D 0: (3.338)

Since �s satisfies a partial differential equation with parameters depending smoothly
on s 2 S , it follows that �s varies smoothly with s and hence defines a smooth

function on M , which we will call �. Now set !flat WD !0 C
p�1
2�
@@�. This is a

closed .1; 1/ form with the desired properties. Note that for each s in S , !flatj��1
S .s/

is a metric, but !flat may not be positive definite as a .1; 1/ form on M .
We make use of !flat to prove the following estimate on '.

Lemma 3.6.7. There exists C > 0 such that on M � Œ0;1/,

j'j � C.1C t/e�t : (3.339)

Proof. Since !flat is a constant multiple of !E when restricted to each fiber, we see
from the definition of � that

� D 2!S ^ !flat: (3.340)



3 An Introduction to the Kähler–Ricci Flow 161

Let Q D ' � e�t �: Then

@

@t
Q D log

et .e�t !flat C .1 � e�t /!S C
p�1
2�
@@Q/2

2!S ^ !flat
�Q: (3.341)

For a positive constant A, consider the quantityQ1 D etQ �At . At a point .x0; t0/
with t0 > 0 whereQ1 achieves a maximum, we have

0 � @

@t
Q1 � et log

et .e�t!flat C .1 � e�t /!S /2

2!S ^ !flat
� A

� et log.1C Ce�t /� A � C 0 �A; (3.342)

for uniform constants C;C 0. Choosing A > C 0 gives a contradiction. Hence Q1 is
bounded from above. It follows that ' � C.1C t/e�t for a uniform constantC . The
lower bound for ' is similar. ut
Lemma 3.6.8. Fix ˇ 2 .0; 1/. We have

(i) '.t/ ! 0 in C2Cˇ.M/ as t ! 1.
(ii) !.t/ ! !S in Cˇ.M/ as t ! 1.

(iii)
@

@t
' ! 0 in C0.M/ as t ! 1.

Proof. From Lemma 3.6.5 the tensor rQg0g is bounded with respect to the fixed
metric Qg0. Moreover, g � C Qg0 for some uniformC . It follows that�Qg0' is bounded
in C1.M; Qg0/. Since ' is bounded in C0, we can apply the standard Schauder
estimates for Poisson’s equation [GT01], to see that ' is bounded in C2C˛ for any
˛ 2 .0; 1/. Choosing ˛ > ˇ, part (i) follows from this together with Lemma 3.6.7.
Part (ii) follows from part (i) and the fact that O!t converges in C1 to !S as t ! 1.

For part (iii), suppose for a contradiction that there exist " > 0 and a sequence
f.xi ; ti /gi2N � M � Œ0;1/ with ti ! 1 and

j P'j .xi ; ti / > ": (3.343)

From Lemmas 3.6.3 and 3.6.6, the quantity

@

@t
P' D �R.!/� 1 � P' (3.344)

is uniformly bounded in C0.M � Œ0;1//. Hence there exists a uniform constant
ı > 0 such that for each i ,

j P'j .xi ; t/ � "

2
for all t 2 Œti ; ti C ı�: (3.345)
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Hence

"ı

2
�
Z tiCı

ti

j P'j.t; xi /dt D
ˇ̌
ˇ̌
ˇ
Z tiCı

ti

P'.xi ; t/dt

ˇ̌
ˇ̌
ˇ

D j'.xi ; ti C ı/ � '.xi ; ti /j
� sup

x2M
j'.x; ti C ı/ � '.x; ti /j; (3.346)

a contradiction since '.t/ converges uniformly to 0 in C0.M/ as t ! 1. ut
Finally, we prove part (iii) of Theorem 3.6.1.

Lemma 3.6.9. Fix s 2 S and write E D ��1
S .s/ for the fiber over s. Write !flat D

!flatjE . Then on E ,

et!.t/jE ! !flat as t ! 1; (3.347)

where the convergence is uniform on C0.E/. Moreover, the convergence is uniform
in s 2 S .

Proof. We use here an argument similar to one found in [Tos10b]. Applying
Lemma 3.6.5 we have

jrgE .gjE/j2gjE � jrQg0gj2 � C: (3.348)

From Lemma 3.6.4, we see that gjE is uniformly equivalent to e�t gE . It follows
that

jrgE .e
tgjE/j2gE D e�t jrgE .gjE/j2e�t gE

� Ce�t jrgE .gjE/j2gjE � C 0e�t :
(3.349)

Since gflat is a constant multiple of gE we see that

jrgE .e
tgjE � gflat/j2gE � C 0e�t : (3.350)

Moreover, Œet!jE� D Œ!flat�. It is now straightforward to complete the proof of the
lemma. Indeed, any two Kähler metrics on the Riemann surface E are conformally
equivalent and hence we can write et!jE D e�!flat for a smooth function � D
�.x; t/ on E � Œ0;1/. We have

jd.e� � 1/j2gE ! 0 as t ! 1; and
Z
E

.e� � 1/!E D 0: (3.351)

From the second condition, for each time t there exists y.t/ 2 E with �.y.t/; t/ D
0 and hence by the Mean Value Theorem for manifolds,
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je�.x;t/ � 1j D j.e�.x;t/ � 1/� .e�.y.t/;t / � 1/j ! 0 as t ! 1; (3.352)

uniformly in x 2 E . This says precisely that et!.t/jE ! !flat uniformly as t ! 1.
Moreover, none of our constants depend on the choice of s 2 S . This completes the
proof of the lemma. ut

Combining Lemma 3.6.6 with Lemmas 3.6.8 and 3.6.9 completes the proof of
Theorem 3.6.1.

3.7 Finite Time Singularities

In this section, we describe some behaviors of the Kähler–Ricci flow in the case of a
finite time singularity. The complete behavior of the flow is far from understood, and
is the subject of current research. In Sect. 3.7.1, we prove some basic estimates, most
of which hold under fairly weak hypotheses. Next, in Sect. 3.7.2, we describe a result
of [Zha10] on the behavior of the scalar curvature and discuss some speculations.
In Sects. 3.7.3 and 3.7.4 we describe, without proof, some recent results [SSW11,
SW10] and illustrate with an example.

3.7.1 Basic Estimates

We now consider the Kähler–Ricci flow

@

@t
! D �Ric.!/; !jtD0 D !0; (3.353)

in the case when T < 1. The cohomology class Œ!0� � Tc1.M/ is a limit of
Kähler classes but is itself no longer Kähler. The behavior of the Kähler–Ricci flow
as t tends towards the singular time T will depend crucially on properties of this
cohomology class.

We first observe that since T < 1 we immediately have from Corollary 3.2.3
the estimate

!n � C�; (3.354)

for a uniform constant C .
As in Sect. 3.3 we reduce (3.135) to a parabolic complex Monge–Ampère

equation. Choose a closed (1,1) form O!T in the cohomology class Œ!0� � Tc1.M/.
Given this we can define a family of reference forms O!t by

O!t D 1

T
..T � t/!0 C t O!T / 2 Œ!0� � tc1.M/: (3.355)
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Observe that O!t is not necessarily a metric, since O!T may have negative eigenvalues.
Write � D 1

T
. O!T � !0/ D @

@t
O!t 2 �c1.M/ and define � to be the volume form

with

p�1
2�

@@ log� D � 2 �c1.M/;

Z
M

� D
Z
M

!n0 : (3.356)

We then consider the parabolic complex Monge–Ampère equation

@

@t
' D log

. O!t C
p�1
2�
@@'/n

�
; O!t C

p�1
2�

@@' > 0; 'jtD0 D 0:

(3.357)

From (3.354) we immediately have:

Lemma 3.7.1. For a uniform constant C we have on M � Œ0; T /,

P' � C: (3.358)

If we assume that O!T � 0 then the next result shows that the potential ' is
bounded [Tzha06] (see also [SW10]). Note that since Œ!0� � Tc1.M/ is on the
boundary of the Kähler cone, one would expect in many cases that this class contains
a nonnegative representative O!T .

Proposition 3.7.2. Assume that O!T is nonnegative. Then for a uniform constant C
we have on M � Œ0; T /,

j'j � C: (3.359)

Proof. The upper bound of ' follows from Lemma 3.7.1. Alternatively, use the
same argument as in the upper bound of ' in Lemma 3.3.2. For the lower bound,
observe that

O!nt D 1

T n
..T � t/!0 C t O!T /n � 1

T n
.T � t/n!n0 � c0.T � t/n�; (3.360)

for some uniform constant c0 > 0. Here we are using the fact that O!T is nonnegative.
Define

 D ' C n.T � t/.log.T � t/ � 1/� .log c0 � 1/t; (3.361)

and compute

@

@t
 D log

. O!t C
p�1
2�
@@'/n

�
� n log.T � t/ � .log c0 � 1/: (3.362)
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At a point where achieves a minimum in space we have
p�1
2�
@@ D

p�1
2�
@@' � 0

and hence from (3.360),

@

@t
 � log.c0.T � t/n/� n log.T � t/ � .log c0 � 1/ D 1: (3.363)

It follows from the minimum principle that  cannot achieve a minimum after time
t D 0, and so  is uniformly bounded from below. Hence ' is bounded from
below. ut

If O!T is the pull-back of a Kähler metric from another manifold via a holomor-
phic map (so in particular O!T � 0), we have by the parabolic Schwarz lemma
(Theorem 3.2.6) a lower bound for !.t/:

Lemma 3.7.3. Suppose there exists a holomorphic map f W M ! N to a compact
Kähler manifold N and let !N be a Kähler metric on N . We assume that

Œ!0� � Tc1.M/ D Œf �!N �: (3.364)

Then onM � Œ0; T /,

! � 1

C
f �!N ; (3.365)

for a uniform constant C .

Proof. The method is similar to that of Lemma 3.5.12. We take O!T D f �!N � 0.
Define u D tr !f �!N . We apply the maximum principle to the quantity

Q D log u � A' � An.T � t/.log.T � t/ � 1/; (3.366)

for A to be determined later, and where we assume without loss of generality that
u > 0. Compute using (3.77)

�
@

@t
��

�
Q � C0u � A P' C An log.T � t/C Atr !.! � O!t /

D tr !.C0f �!N � .A � 1/ O!t / �A log
!n

�.T � t/n � tr ! O!t C An:

(3.367)

Now choose A sufficiently large so that .A � 1/ O!t � C0f
�!N � f �!N for all

t 2 Œ0; T �. By the geometric–arithmetic means inequality, there exists a constant
c > 0 such that

tr ! O!t � .T � t/

T
tr !!0 � c

�
.T � t/n�

!n

�1=n
: (3.368)
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Then, arguing as in the proof of Lemma 3.3.4,

�
@

@t
��

�
Q � �u C A log

.T � t/n�

!n
� c

�
.T � t/n�

!n

�1=n
C An � �u C C;

for a uniform constantC , since the map � 7! A log��c�1=n is uniformly bounded
from above for � > 0. Hence at a maximum point of Q we see that u is bounded
from above by C . Since ' and .T � t/ log.T � t/ are uniformly bounded this
shows thatQ is uniformly bounded from above. Hence u is uniformly bounded from
above. ut

A natural question is: when is the limiting class Œ!0� � Tc1.M/ represented by
the pull-back of a Kähler metric from another manifold via a holomorphic map? It
turns out that this always occurs if the initial data is appropriately “algebraic”.

Proposition 3.7.4. Assume there exists a line bundle L on M such that kŒ!0� D
c1.L/ for some positive integer k. Then there exists a holomorphic map f W M !
P
N to some projective space PN and

Œ!0� � Tc1.M/ D Œf �!�; (3.369)

for some Kähler metric ! on P
N .

Proof. We give a sketch of the proof. Note that by the assumption on L, the
manifold M is a smooth projective variety. From the Rationality Theorem of
Kawamata and Shokurov [KMM87, KolMori98], T is rational. The class Œ!0� �
Tc1.M/ is nef since it is the limit of Kähler classes. From the Base Point Free
Theorem [part (ii) of Theorem 3.1.12], Œ!0��Tc1.M/ is semi-ample, and the result
follows. ut

If we make a further assumption on the map f then we can obtain C1 estimates
for the evolving metric away from a subvariety.

Theorem 3.7.5. Suppose there exists a holomorphic map f W M ! N to a
compact Kähler manifold N which is a biholomorphism outside a subvariety
E � M . Let !N be a Kähler metric on N . We assume that

Œ!0� � Tc1.M/ D Œf �!N �: (3.370)

Then on any compact subset K of M n E there exists a constant cK > 0 such that

! � cK!0; on K � Œ0; T /: (3.371)

Moreover we have uniform C1
loc estimates for !.t/ on M nE .

Proof. The inequality (3.371) is immediate from Lemma 3.7.3 and the fact that
f �!N is a Kähler metric on M n E . From the volume form bound (3.354), we
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immediately obtain uniform upper and lower bounds for ! on compact subsets
of M n E . The higher order estimates follow from the same arguments as in
Lemmas 3.5.6 and 3.5.7. ut

We will see in Sect. 3.7.3 that the situation of Theorem 3.7.5 arises in the case of
blowing down an exceptional divisor.

3.7.2 Behavior of the Scalar Curvature

In this section we give prove the following result of Zhang [Zha10] on the behavior
of the scalar curvature. Given the estimates we have developed so far, we can give
quite a short proof. Recall that we have a lower bound of the scalar curvature from
Theorem 3.2.2.

Theorem 3.7.6. Let ! D !.t/ be a solution of the Kähler–Ricci flow (3.353) on
the maximal time interval Œ0; T /. If T < 1 then

lim sup
t!T

�
sup
M

R.g.t//

�
D 1: (3.372)

In the case of the general Ricci flow with a singularity at time T < 1 it is known
that supM jRic.g.t//j ! 1 as t ! T [Se05].

Proof of Theorem 3.7.6. We will assume that (3.372) does not hold and obtain a
contradiction. Since we know from Theorem 3.2.2 that the scalar curvature has a
uniform lower bound, we may assume that kR.t/kC0.M/ is uniformly bounded for
t 2 Œ0; T /. Let ' solve the parabolic complex Monge–Ampère equation (3.357).
First note that

ˇ̌
ˇ̌ @
@t

log

�
!n

�

�ˇ̌
ˇ̌ D jRj � C: (3.373)

Integrating in time we see that j P'j D j log !n

�
j is uniformly bounded. Integrating in

time again, we obtain a uniform bound for '. Define H D t P' � ' � nt , which is a
bounded quantity. Then using (3.150) we obtain [cf. (3.240)],

�
@

@t
��

�
H D t tr !� � nC tr !.! � O!t / D tr !.t� � O!t / D �tr !!0:

(3.374)

Apply Proposition 3.2.5 to see that

�
@

@t
��

�
tr !0! � C0tr !!0; (3.375)
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for a uniform constant C0 depending only on !0. Define Q D log tr !0! C AH for
A D C0 C 1. Combining (3.374) and (3.375), compute

�
@

@t
��

�
Q � �tr !!0 < 0; (3.376)

and hence by the maximum principleQ is bounded from above by its value at time
t D 0. It follows that tr !0! is uniformly bounded from above. Since we have a
lower bound for P' D log !n

�
, we see that for a uniform constant C ,

1

C
!0 � ! � C!0; on M � Œ0; T /: (3.377)

Applying Corollary 3.2.16, we obtain uniform estimates for !.t/ and all of its
derivatives. Hence !.t/ converges to a smooth Kähler metric !.T / which is
contained in Œ!0� � Tc1.M/. Thus Œ!0� � Tc1.M/ is a Kähler class, contradicting
the definition of T . ut

We remark that Theorem 3.7.6 can be proved just as easily using the parabolic
Schwarz lemma instead of Proposition 3.2.5. Indeed one can replace Q with Q D
log tr !!0 CAH and apply the Schwarz lemma with the holomorphic map f being
the identity map and !N D !0. This was the method in [Zha10]. Also, one can find
in [Zha10] a different way of obtaining a contradiction, one which avoids the higher
order estimates.

We finish this section by mentioning a couple of “folklore conjectures”:

Conjecture 3.7.7. Let ! D !.t/ be a solution of the Kähler–Ricci flow (3.135) on
the maximal time interval Œ0; T /. If T < 1 then

R � C

T � t ; (3.378)

for some uniform constant C .

This conjecture has been established in dimension 1 by Hamilton and Chow
[Chow91, Ham88] and by Perelman in higher dimensions if Œ!0� D c1.M/ >

0 (Perelman, unpublished work on the Kähler–Ricci flow; see also [SeT08]).
Perelman’s result makes use of the functionals he introduced in [Per02]. In [Zha10],
it was shown in a quite general setting, that R � C=.T � t/2.

A stronger version of Conjecture 3.7.7 is:

Conjecture 3.7.8. Let ! D !.t/ be a solution of the Kähler–Ricci flow (3.135) on
the maximal time interval Œ0; T /. If T < 1 then

jRmj � C

T � t
; (3.379)

for some uniform constant C .
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Another way of saying this is that all finite time singularities along the Kähler–
Ricci flow are of Type I. This is related to a conjecture of Hamilton and Tian that
the (appropriately normalized) Kähler–Ricci flow on a manifold with positive first
Chern class converges to a Kähler–Ricci soliton, with a possibly different complex
structure in the limit.

3.7.3 Contracting Exceptional Curves

In this section we briefly describe, without proof, the example of blowing-down
exceptional curves on a Kähler surface in finite time. We begin by defining what is
meant by a blowing-down and blowing-up (see for example [GH78]).

First, we define the blow-up of the origin in C
2. Let z1; z2 be coordinates on C

2,
and let U be a open neighborhood of the origin. Define

QU D f.z; `/ 2 U � P
1 j z 2 `g; (3.380)

where we are considering ` as a line in C
2 through the origin. One can check that

QU is a 2-dimensional complex submanifold of U � P
1. There is a holomorphic map

� W QU ! U given by .z; `/ 7! z which maps QU n ��1.0/ biholomorphically onto
U n f0g. The set ��1.0/ is a one-dimensional submanifold of QU , isomorphic to P

1.
Given a point p in a Kähler surface N we can use local coordinates to construct

the blow up � W M ! N of p, by replacing a neighborhood U of p with the blow
up QU as above. Thus M is a Kähler surface and � a holomorphic map extending
the local map given above. Up to isomorphism, this construction is independent
of choice of coordinates. The curve E D ��1.p/ is called the exceptional curve.
Since �.E/ D p, the map � contracts or blows down the curve E . Moreover, � is
an isomorphism fromM nE to N n fpg. From the above we see that E is a smooth
curve which is isomorphic to P

1. Moreover, the reader can check that it satisfies
E �E D �1.

Conversely, given a curve E on a surface M with these properties we can define
a map blowing down E . More precisely, we define an irreducible curve E in M to
be a .�1/-curve if it is smooth, isomorphic to P

1 and hasE �E D �1. IfM admits a
.�1/-curveE then there exists a holomorphic map � W M ! N to a smooth Kähler
surface N and a point p 2 Y such that � is precisely the blow down of E to p, as
constructed above. Note that if E is a .�1/ curve then by the Adjunction Formula,
KE �E D �1.

The main result of [SW10] says that, under appropriate hypotheses on the initial
Kähler class, the Kähler–Ricci flow will blow down .�1/-curves on M and then
continue on the new manifold. To make this more precise, we need a definition.

Definition 3.7.9. We say that the solution g.t/ of the Kähler–Ricci flow (3.353)
on a compact Kähler surface M performs a canonical surgical contraction if the
following holds. There exist distinct .�1/ curves E1; : : : ; Ek of M , a compact
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Kähler surface N and a blow-down map � W M ! N with �.Ei / D yi 2 N

and �j
MnSk

iD1 Ei
a biholomorphism onto N n fy1; : : : ; ykg such that:

(i) As t ! T �, the metrics g.t/ converge to a smooth Kähler metric gT on M nSk
iD1 Ei smoothly on compact subsets of M nSk

iD1 Ei :
(ii) .M; g.t// converges to a unique compact metric space . ON; dT / in the Gromov–

Hausdorff sense as t ! T �. In particular, . ON; dT / is homeomorphic to the
Kähler surface N .

(iii) There exists a unique maximal smooth solution g.t/ of the Kähler–Ricci flow
on N for t 2 .T; TN /, with T < TN � 1, such that g.t/ converges to
.��1/�gN as t ! TC smoothly on compact subsets of N n fy1; : : : ; ykg.

(iv) .N; g.t// converges to .N; dT / in the Gromov–Hausdorff sense as t ! TC.

The following theorem is proved in [SW10]. It essentially says that whenever
the evolution of the Kähler classes along the Kähler–Ricci flow indicate that a blow
down should occur at the singular time T < 1, then the Kähler–Ricci flow carries
out a canonical surgical contraction at time T .

Theorem 3.7.10. Let g.t/ be a smooth solution of the Kähler–Ricci flow (3.353)
on a Kähler surface M for t in Œ0; T / and assume T < 1. Suppose there exists a
blow-down map � W M ! N contracting disjoint .�1/ curves E1; : : : ; Ek on M
with �.Ei / D yi 2 N , for a smooth compact Kähler surface .N; !N / such that the
limiting Kähler class satisfies

Œ!0� � Tc1.M/ D Œ��!N �: (3.381)

Then the Kähler–Ricci flow g.t/ performs a canonical surgical contraction with
respect to the data E1; : : : ; Ek , N and � .

Note that from Theorem 3.7.5, we have C1
loc estimates for g.t/ onM nSk

iD1 Ei ,
and thus part (i) in the definition of canonical surgical contraction follows
immediately. For the other parts, estimates are needed for g.t/ near the subvariety
E . To continue the flow on the new manifold, some techniques are adapted from
[ST09]. We refer the reader to [SW10] for the details. In fact, the same result is
shown to hold in [SW10] for blowing up points in higher dimensions, and in [SW11]
the results are extended to the case of an exceptional divisor E with normal bundle
O.�k/, which blows down to an orbifold point. See also [LaNT09] for a different
approach to the study of blow-downs.

In Sect. 3.8.3, we will show how Theorem 3.7.10 can be applied quite generally
for the Kähler–Ricci flow on a Kähler surface.

3.7.4 Collapsing in Finite Time

In this section, we briefly describe, again without proof, another example of a finite
time singularity.
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Let M be a projective bundle over a smooth projective variety B . That is, M D
P.E/, where � W E ! B is a holomorphic vector bundle which we can take to have
rank r . Write � also for the map � W M ! B . Of course, the simplest example of
this would be a product B � P

r�1. We consider the Kähler–Ricci flow (3.353) on
M . The flow will always develop a singularity in finite time. This is because

Z
F

.c1.M//r�1 > 0; (3.382)

for any fiber F , whereas if T D 1 then 1
t
Œ!0�� c1.M/ > 0 for all t > 0. The point

is that the fibers F Š P
r�1 must shrink to zero in finite time along the Kähler–Ricci

flow.
In [SSW11], it is shown that:

Theorem 3.7.11. Assume that

Œ!0� � Tc1.M/ D Œ��!B�; (3.383)

for some Kähler metric !B on B . Then there exists a sequence of times ti ! T and
a distance function dB on B , which is uniformly equivalent to the distance function
induced by !B , such that .M;!.ti // converges to .B; dB/ in the Gromov–Hausdorff
sense.

Note that from Lemma 3.7.3 we immediately have !.t/ � 1
C
��!B for some

uniform C > 0. The key estimates proved in [SSW11] are:

(i) !.t/ � C!0.
(ii) diam!.t/F � C.T � t/1=3, for every fiber F .

Thus we see that the metrics are uniformly bounded from above along the flow
and the fibers collapse. Given (i) and (ii) it is fairly straightforward to establish
Theorem 3.7.11. We refer the reader to [SSW11] for the details.

The following conjectures are made in [SSW11]:

Conjecture 3.7.12. With the assumptions above:

(a) There exists unique distance function dB on B such that .M;!.t// converges
in the Gromov–Hausdorff sense to .B; dB/, without taking subsequences.

(b) The estimate (ii) above can be strengthened to diam!.t/F � C.T � t/1=2, for
every fiber F .

(c) Theorem 3.7.11 [and parts (a) and (b) of this conjecture] should hold more
generally for a bundle � W M ! B over a Kähler base B with fibers ��1.b/
being Fano manifolds admitting metrics of nonnegative bisectional curvature.

We end this section by describing an example which illustrates both the case of
contracting an exceptional curve and the case of collapsing the fibers of a projective
bundle. Let M be the blow up of P2 at one point p 2 P

2. Let f W M ! P
2 be

the map blowing down the exceptional curve E to the point p. To see the bundle
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structure on M , note that the blow-up of C
2 at the origin can be identified with

M n f �1.H/ for H a hyperplane in P
2. We have a map � from the blow up of C2,

which is f.z; `/ 2 C
2 �P

1 j z 2 `g, to P
1 given by projection onto the second factor.

This extends to a holomorphic bundle map � W M ! P
1 which has P1 fibers. We

refer the reader to [Cal82, SW09] for more details.
Writing !1 and !2 for the Fubini–Study metrics on P

1 and P
2 respectively, we

see that every Kähler class ˛ on M can be written as a linear combination ˛ D
ˇŒ��!1� C �Œf �!2� for ˇ; � > 0. The boundary of the Kähler cone is spanned by
the two rays R�0Œ��!1� and R

�0Œf �!2�. The first Chern class of M is given by

c1.M/ D Œ��!1�C 2Œf �!2� > 0: (3.384)

Hence if the initial Kähler metric !0 is in the cohomology class ˛0 D ˇ0Œ�
�!1�C

�0Œf
�!2� then the solution !.t/ of the Kähler–Ricci flow (3.353) has cohomology

class

Œ!.t/� D ˇ.t/Œ��!1�C �.t/Œf �!2�; with ˇ.t/ D ˇ0 � t; �.t/ D �0 � 2t:
(3.385)

There are three different behaviors of the Kähler–Ricci flow according to whether
the cohomology class Œ!.t/� hits the boundary of the Kähler cone at a point on
R
>0Œ��!1�, at a point on R

>0Œf �!2� or at zero. Namely:

(i) If �0 > 2ˇ0 then a singularity occurs at time T D ˇ0 and

Œ!0� � Tc1.M/ D �.T /Œf �!2�; with �.T / D �0 � 2ˇ0 > 0: (3.386)

Thus we are in the case of Theorem 3.7.10 and the Kähler–Ricci flow performs
a canonical surgical contraction at time T .

(ii) If �0 < 2ˇ0 then a singularity occurs at time T D �0=2 and

Œ!0� � Tc1.M/ D ˇ.T /Œ��!1�; with ˇ.T / D ˇ0 � �0=2 > 0: (3.387)

Thus we are in the case of Theorem 3.7.11 and the Kähler–Ricci flow will
collapse the P

1 fibers and converge in the Gromov–Hausdroff sense, after
passing to a subsequence, to a metric on the base P1.

(iii) If �0 D 2ˇ0 then the cohomology class changes by a rescaling. It was shown
by Perelman (unpublished work on the Kähler–Ricci flow ) [SeT08] that
.M;!.t// converges in the Gromov–Hausdorff sense to a point.

The behavior of the Kähler–Ricci flow on this manifold M , and higher dimen-
sional analogues, was analyzed in detail by Feldman–Ilmanen–Knopf [FIK03].
They constructed self-similar solutions of the Kähler–Ricci flow through such
singularities (see also [Cao94]) and carried out a careful study of their properties.
Moreover, they posed a number of conjectures, some of which were established in
[SW09].
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Indeed if we make the assumption that the initial metric !0 is invariant under
a maximal compact subgroup of the automorphism group of M , then stronger
results than those given in Theorems 3.7.10 and 3.7.11 were obtained in [SW09].
In particular, in the situation of case (ii), it was shown in [SW09] that .M;!.t//
converges in the Gromov–Hausdorff sense (without taking subsequences) to a
multiple of the Fubini–Study metric on P

1 (see also [Fo11]).
One can see from the above some general principles for what we expect with

the Kähler–Ricci flow. Namely, the behavior of the flow ought to be able to be read
from the behavior of the cohomology classes Œ!.t/� as t tends to the singular time
T . If the limiting class Œ!0� � Tc1.M/ D Œ��!N � for some � W M ! N with
!N Kähler on N , then we expect geometric convergence of .M;!.t// to .N; !N /
in some appropriate sense. This philosophy was discussed by Feldman–Ilmanen–
Knopf [FIK03].

3.8 The Kähler–Ricci Flow and the Analytic MMP

In this section, we begin by discussing, rather informally, some of the basic ideas
behind the minimal model program (MMP) with scaling. Next we discuss the
program of Song–Tian relating this to the Kähler–Ricci flow. Finally, we describe
the case of Kähler surfaces.

3.8.1 Introduction to the Minimal Model Program with Scaling

In this section, we give a brief introduction of Mori’s minimal model program
(MMP) in birational geometry. For more extensive references on this subject, see
[CKL11, Deb01, KMM87, KolMori98], for example. We also refer the reader to
[Siu08] for a different analytic approach to some of these questions.

We begin with a definition. Let X and Y be projective varieties. A rational map
fromX to Y is given by an algebraic map f W X nV ! Y , where V is a subvariety
of X . We identify two such maps if they agree on X �W for some subvariety W .
Thus a rational map is really an equivalence class of pairs .fU ; U / where U is the
complement of a variety in X (i.e. a Zariski open subset of X ) and fU W U ! Y is
a holomorphic map.

We say that a rational map f from X to Y is birational if there exists a rational
map from Y to X such that f ı g is the identity as a rational map. If a birational
map from X to Y exists then we say that X and Y are birationally equivalent (or
birational or in the same birational class).

Although birational varieties agree only on a dense open subset, they share many
properties (see e.g. [GH78, Ha77]). The minimal model program is concerned with
finding a “good” representative of a variety within its birational class. A “good”
variety X is one satisfying either:
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(i) KX is nef; or
(ii) There exists a holomorphic map � W X ! Y to a lower dimensional variety Y

such that the generic fiber Xy D ��1.y/ is a manifold with KXy < 0.

In the first case, we say that X is a minimal model and in the second case we say
that X is a Mori fiber space (or Fano fiber space). Roughly speaking, since KX nef
can be thought of as a “nonpositivity” condition on c1.X/ D ŒRic.!/�, (i) implies
that X is “nonpositively curved” in some weak sense. Condition (ii) says rather that
X has a “large part” which is “positively curved”. The two cases (i) and (ii) are
mutually exclusive.

The basic idea of the MMP is to find a finite sequence of birational maps
f1; : : : ; fk and varieties X1; : : : ; Xk,

X D X0 X1 X2 : : : Xk� � � � � � ��f1 � � � � � � � � � ��f2
� � � � � � � � � ��f2

� � � � � � � � � ��fk
(3.388)

so that Xk is our “good” variety: either of type (i) or type (ii). Recall that KX nef
means that KX � C � 0 for all curves C . Thus we want to find maps fi which
“remove” curvesC withKX �C < 0, in order to make the canonical bundle “closer”
to being nef.

If the complex dimension is 1 or 2, then we can carry this out in the category of
smooth varieties. In the case of complex dimension 1, no birational maps are needed
and case (i) corresponds to c1.X/ < 0 or c1.X/ D 0 while case (ii) corresponds to
X D P

1. Note that in case (i),X admits a metric of negative or zero curvature, while
in case (ii) X has a metric of positive curvature.

In complex dimension two, by the Enriques–Kodaira classification (see
[BHPV]), we can obtain our “good” variety X via a finite sequence of blow downs
(see Sect. 3.8.3).

Unfortunately, in dimensions three and higher, it is not possible to find such
a sequence of birational maps if we wish to stay within the category of smooth
varieties. Thus to carry out the minimal model program, it is necessary to consider
varieties with singularities. This leads to all kind of complications, which go well
beyond the scope of these notes. For the purposes of this discussion, we will restrict
ourselves to smooth varieties except where it is absolutely impossible to avoid
mentioning singularities.

We need some further definitions. Let X be a smooth projective variety. As we
have discussed in Sect. 3.1.7, there is a natural pairing between divisors and curves.
A 1-cycleC onX is a formal finite sumC D P

i aiCi , for ai 2 Z andCi irreducible
curves. We say that 1-cycles C and C 0 are numerically equivalent ifD �C D D �C 0
for all divisors D, and in this case we write C � C 0. We denote by N1.X/Z the
space of 1-cycles modulo numerical equivalence. Write

N1.X/Q D N1.X/Z ˝Z Q and N1.X/R D N1.X/Z ˝Z R: (3.389)

Similarly, we say that divisors D and D0 are numerically equivalent if D � C D
D0 � C for all curves C . Write N1.X/Z for the set of divisors modulo numerical
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equivalence. Define N1.X/Q, N1.X/R similarly. One can check that N1.X/R and
N1.X/R are vector spaces of the same (finite) dimension. In the obvious way, we
can talk about 1-cycles with coefficients in Q or R (and correspondingly, Q- or
R-divisors) and we can talk about numerical equivalence of such objects.

Within the vector space N1.X/R is a cone NE.X/ which we will now describe.
We say that an element of N1.X/R is effective if it is numerically equivalent to
a 1-cycle of the form C D P

i aiCi with ai 2 R
�0 and Ci irreducible curves.

Write NE.X/ for the cone of effective elements of N1.X/R, and write NE.X/ for
its closure in the vector space N1.X/R. The importance of NE.X/ can be seen
immediately from the following theorem, known as Kleiman’s criterion:

Theorem 3.8.1. A divisor D is ample if and only if D � w > 0 for all nonzero
w 2 NE.X/.

We can now begin to describe the MMP with scaling of [BCHM10]. This is an
algorithm for finding a specific sequence of birational maps f1; : : : fk . First, choose
an ample divisorH on X . Then define

T D supft > 0 jH C tKX > 0g: (3.390)

If T D 1, then we have nothing to show sinceKX is already nef and we are in case
(i). Indeed, if C is any curve in X then

KX �C D 1

t
.H C tKX/ �C � 1

t
H �C � �1

t
H �C ! 0 as t ! 1: (3.391)

We can assume then that T < 1. We can apply the Rationality Theorem of
Kawamata and Shokurov [KMM87,KolMori98] to see that T is rational, and hence
H C TKX defines a Q-line bundle.

Next we apply the Base Point Free Theorem [part (ii) of Theorem 3.1.12] to L D
H C TKX to see that for sufficiently large m 2 Z

�0, Lm is globally generated and
H0.X;Lm/ defines a holomorphic map � W X ! P

N such that Lm D ��O.1/. We
write Y for the image of � . This variety Y is uniquely determined form sufficiently
large. The next step is to establish properties of this map � .

Define a subcone NE.�/ of NE.X/ by

NE.�/ D fw 2 NE.X/ j L � w D 0g; (3.392)

which is nonempty by Theorem 3.8.1. We now make the following:

Simplifying assumption: NE.�/ is an extremal ray of NE.X/.

A ray R of NE.X/ is a subcone of the form R D f�w j � 2 Œ0;1/g for some
w 2 NE.X/. We say that a subcone C in NE.X/ is extremal if a; b 2 NE.X/,
aC b 2 C implies that a; b 2 C . In general, NE.�/ is an extremal subcone but not
necessarily a ray. However, it is expected that it will be an extremal ray for generic
choice of initial ample divisor H (see the discussion in [ST09]).
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Remark 3.8.2. In the case that NE.�/ is not an extremal ray, one can still continue
the MMP with scaling by applying Mori’s Cone Theorem [KolMori98] to find such
an extremal ray contained in NE.�/.

The extremal ray R D NE.�/ has the additional property of beingKX -negative.
We say that a ray is KX -negative if KX � w < 0 for all nonzero w in the ray. Clearly
this is true in this case since 0 D L � w D H � w C TKX � w and thereforeKX � w D
�T �1H � w < 0 if w is a nonzero element of R. Thus from the point of view of the
minimal model program,R contains “bad” curves (those with negative intersection
with KX ) which we want to remove.

Moreover, the map � contracts all curves whose class lies in the extremal ray
R D NE.�/. The union of these curves is called the locus of R. In fact, the locus
of R D NE.�/ is exactly the set of points where the map � W X ! Y is not
an isomorphism. Moreover, R is a subvariety of X [Deb01, KolMori98]. There are
three cases:

Case 1. The locus of R is equal to X . In this case � is a fiber contraction and X
is a Mori fiber space.
Case 2. The locus of R is an irreducible divisor D. In this case � is called a
divisorial contraction.
Case 3. The locus of R has codimension at least 2. In this case, � is called a
small contraction.

The process of the MMP with scaling is then as follows: if we are in case 1, we
stop, since X is already of type (ii). In case 2 we have a map � W X ! Y � P

N to a
subvariety Y . LetHY on Y be restriction of O.1/jY . We can then repeat the process
of the minimal model program with scaling with .Y;HY / instead of .X;H/.

The serious difficulties occur in case 3. Here the image Y of � will have very
bad singularities and it will not be possible to continue this process on Y . Instead
we have to work on a new space given by a procedure known as a flip. Let � W X !
Y be a small contraction as in case 3. The flip of � W X ! Y is a variety XC
together with a holomorphic birational map �C W XC ! Y satisfying the following
conditions:

(a) The exceptional locus of �C (that is, the set of points in XC on which �C is
not an isomorphism) has codimension strictly larger than 1.

(b) If C is a curve contracted by �C then KXC � C > 0.

Thus we have a diagram

X XC

Y

�
���

� � � � � � � � � � � � ��.�C/�1ı�

�
�� �C

(3.393)

The composition .�C/�1 ı � is a birational map from X to XC, and is also
sometimes called a flip. In going from X to Y we have contracted curves C with
KX � C < 0. The point of (b) in the definition above is that in going from Y to XC
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we do not wish to “gain” any curves C of negative intersection with the canonical
bundle. The process of the flip replaces curvesC onX withKX �C < 0 with curves
C 0 on XC with KXC � C 0 > 0. This fits into the strategy of trying to make the
canonical bundle “more nef”.

Given a small contraction � W X ! Y , the question of whether there actually
exists a flip �C W XC ! Y is a difficult one. It has been established for the MMP
with scaling [BCHM10,HM10]. Returning now to the MMP with scaling: if we are
in case 3 we replace X by its flip XC and we denote by LC the strict transform
of O.1/jY via �C (see for example [Ha77]). We can now repeat the process with
.XC;HC/ instead of .X;H/.

We have described now the basic process of the MMP with scaling. Start with
.X;H/ and find � W X ! Y contracting the extremal ray R on which H C TKX

is zero. In case 1, we stop. In case 2 we carry out a divisorial contraction and restart
the process. In case 3, we replace X by its flip XC and again restart the process.
A question is now: does this process terminate in finitely many steps? It was proved
in [BCHM10, HM10] that the answer to this is yes, at least in the case of varieties
of general type. If we have not already obtained a Mori fiber space, then the final
variety Xk contains no curves C with KX � C < 0, and we are done.

We conclude this section with an example of a flip (see [Deb01, SY10]). Let
Xm;n D P.OPn ˚ OPn.�1/˚.mC1// be the P

mC1 bundle over Pn. Let Ym;n be the
projective cone over Pm � P

n in P
.mC1/.nC1/ by the Segre embedding

ŒZ0; : : : ; Zm� � ŒW0; : : : ;Wn� ! ŒZ0W0; : : : ; ZiWj ; : : : ; ZmWn� 2 P
.mC1/.nC1/�1:

Note that Ym;n D Yn;m. Then there exists a holomorphic map ˆm;n W Xm;n ! Ym;n
for m � 1 contracting the zero section of Xm;n of codimension m C 1 to the cone
singularity of Ym;n. The following diagram gives a flip from Xm;n to Xn;m for 1 �
m < n,

Xm;n Xn;m

Ym;n

�
���ˆm;n

� � � � � � � � � � � � � � ��Q̂

�
��� ˆn;m

: (3.394)

3.8.2 The Kähler–Ricci Flow and the MMP with Scaling

Let X be a smooth projective variety with an ample divisor H . We now relate the
MMP with scaling to the (unnormalized) Kähler–Ricci flow

@

@t
! D �Ric.!/; !jtD0 D !0; (3.395)
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We assume that the initial metric !0 lies in the cohomology class c1.ŒH�/
associated to the divisor H . As we have seen from Sect. 3.3.1, a smooth solution
!.t/ of the Kähler–Ricci flow exists precisely on the time interval Œ0; T /, with T
defined by (3.390). In general, we expect that as t ! T , the Kähler–Ricci flow
carries out a “surgery”, which is equivalent to the algebraic procedure of contracting
an extremal ray, as discussed above.

The following is a (rather sketchy) conjectural picture for the behavior of the
Kähler–Ricci flow, as proposed by Song and Tian in [ST07, ST09, Tian08].

Step 1. We start with a metric !0 in the class of a divisor H on a variety X . We
then consider the solution !.t/ of the Kähler–Ricci flow (3.395) on X starting at
!0. The flow exists on Œ0; T / with T D supft > 0 j H C tKX > 0g.
Step 2. If T D 1, then KX is nef and the Kähler–Ricci flow exists for all time.
The flow!.t/ should converge, after an appropriate normalization, to a canonical
“generalized Kähler–Einstein metric” on X as t ! 1.
Step 3. If T < 1, the Kähler–Ricci flow deforms X to .Y; gY / with a possibly
singular metric gY as t ! T .

(a) If dimX D dimY and Y differs from X by a subvariety of codimension 1,
then we return to Step 1, replacing .X; g0/ by .Y; gY /.

(b) If dimX D dimY and Y differs from X by a subvariety of codimension
greater than 1, we are in the case of a small contraction. Y will be singular.
By considering an appropriate notion of weak Kähler–Ricci flow on Y ,
starting at gY , the flow should immediately resolve the singularities of Y and
replace Y by its flip XC (see [SY10]). Then we return to Step 1 with XC.

(c) If 0 < dimY < dimX , then we return to Step 1 with .Y; gY ).
(d) If dimY D 0, X should have c1.X/ > 0. Moreover, after appropriate nor-

malization, the solution .X; !.t// of the Kähler–Ricci flow should deform to
.X 0; !0/ where X 0 is possibly a different manifold and !0 is either a Kähler–
Einstein metric or a Kähler–Ricci soliton [i.e. Ric.!0/ D !0 C LV .!0/ for a
holomorphic vector field V ]. See the discussion after Conjecture 3.7.8.

Namely, the Kähler–Ricci flow should construct the sequence of manifolds
X1; : : : ; Xk of the MMP with scaling, with Xk either nef (as in Step 2) or a Mori
fiber space [as in Step 3, part (c) or (d)]. If we have a Mori fiber space, then we can
continue the flow on the lower dimensional manifold Y , which would correspond to
a lower dimensional MMP with scaling. At the very last step, we expect the Kähler–
Ricci flow to converge, after an appropriate normalization, to a canonical metric.

In [ST09], Song–Tian constructed weak solutions for the Kähler–Ricci flow
through the finite time singularities if the flips exist a priori (see Chap. 4 in the
present volume). Such a weak solution is smooth outside the singularities of X and
the exceptional locus of the contractions and flips, and it is a nonnegative closed
.1; 1/-current with locally bounded potentials. Furthermore, the weak solution of
the Kähler–Ricci flow is unique.
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In Step 2, when T D 1, one can say more about the limiting behavior of
the Kähler–Ricci flow. The abundance conjecture in birational geometry predicts
that KX is semi-ample whenever it is nef. Assuming this holds, the pluricanonical
system H0.X;Km

X/ for sufficiently large m induces a holomorphic map � W X !
Xcan. Xcan is called the canonical model of X and it is uniquely determined by the
canonical ring ofX . If we assume thatX is nonsingular andKX is semi-ample, then
normalized solution g.t/=t always converges weakly in the sense of distributions.
Moreover:

• If kod.X/ D dimX , then Xcan is birationally equivalent to X and the limit of
g.t/=t is the unique singular Kähler–Einstein metric on Xcan [Tzha06,Tsu88]. If
X is a singular minimal model, we expect the Kähler–Ricci flow to converge to
the singular Kähler–Einstein metric of Guedj–Eyssidieux–Zeriahi [EGZ11].

• If 0 < kod.X/ < dimX , then X admits a Calabi–Yau fibration over Xcan, and
the limit of g.t/=t is the unique generalized Kähler–Einstein metric (possibly
singular) gcan on Xcan defined by Ric.gcan/ D �gcan C gWP away from a
subvariety of Xcan, where gWP is the Weil–Petersson metric induced from the
Calabi–Yau fibration of X over Xcan [ST07, ST12].

• If kod.X/ D 0, then X itself is a Calabi–Yau manifold and so the limit of g.t/ is
the unique Ricci flat Kähler metric in its initial Kähler class [Cao85, Yau78].

A deeper question to ask is whether such a weak solution is indeed a geometric
solution of the Kähler–Ricci flow in the Gromov–Hausdorff topology. One would
like to show that the Kähler–Ricci flow performs geometric surgeries in Gromov–
Hausdorff topology at each singular time and replaces the previous projective
variety by a “better” model. Such a model is again a projective variety and the
geometric surgeries coincide with the algebraic surgeries such as contractions and
flips. If this picture holds, the Kähler–Ricci flow gives a continuous path from X

to its canonical model Xcan coupled with a canonical metric in the moduli space
of Gromov–Hausdorff. We can further ask: how does the curvature behave near the
(finite) singular time? Is the singularity is always of Type I (see Conjecture 3.7.8)?
Will the flow give a complete or compact shrinking soliton after rescaling (cf.
[Cao94, FIK03])?

3.8.3 The Kähler–Ricci Flow on Kähler Surfaces

In this section, we describe the behavior of the Kähler–Ricci flow on Kähler
surfaces, and how it relates to the MMP. For the purpose of this section, X will
be a Kähler surface.

We begin by discussing the minimal model program for surfaces. It turns out to
be relatively straightforward. We obtain a sequence of smooth manifoldsX1; : : : ; Xk
and holomorphic maps f1; : : : ; fk ,

X D X0 X1 X2 : : : Xk� � � � � � ��f1 � � � � � � � � � ��f2
� � � � � � � � � ��f3

� � � � � � � � � ��fk
(3.396)
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with Xk “minimal” in the sense described below. Moreover, each of the maps fi is
a blow down of a curve to a point.

We say that a Kähler surfaceX is a minimal surface if it contains no .�1/-curve.
By the Adjunction Formula, a surface withKX nef is minimal. On the other hand, a
minimal surface may not have KX nef (an example is P2) and hence this definition
of minimal surface differs from the notion of “minimal model” discussed above.

The minimal model program for surfaces is simply as follows: given a surfaceX ,
contract all the .�1/-curves to arrive at a minimal surface. The Kodaira–Enriques
classification can then be used to deduce that one either obtains a minimal surface
with KX nef, or a minimal Mori fiber space. A minimal Mori fiber space is either
P
2 or a ruled surface, i.e. a P

1 bundle over a Riemann surface (in the literature,
sometimes a broader definition for ruled surface is used). Dropping the minimality
condition, Mori fiber spaces in dimension two are precisely those surfaces birational
to a ruled surface. Note that since P2 is birational to P

1�P
1, every surface birational

to P
2 is birational to a ruled surface.

We wish to see whether the Kähler–Ricci flow on a Kähler surface will carry
out this “minimal model program”. The Kähler–Ricci flow should carry out the
algebraic procedure of contracting .�1/-curves. Recall that in Sect. 3.7.3 we defined
the notion of canonical surgical contraction for the Kähler–Ricci flow.

Starting at any Kähler surface X , we will use Theorem 3.7.10 to show that the
Kähler–Ricci flow will always carry out a finite sequence of canonical surgical
contractions until it either arrives at a minimal surface or the flow collapses the
manifold.

Theorem 3.8.3. Let .X; !0/ be a Kähler surface with a smooth Kähler metric
!0. Then there exists a unique maximal Kähler–Ricci flow !.t/ on X0;X1; : : : ; Xk
with canonical surgical contractions starting at .X; !0/. Moreover, each canonical
surgical contraction corresponds to a blow-down � W Xi ! XiC1 of a finite number
of disjoint .�1/ curves on Xi . In addition we have:

(a) Either Tk < 1 and the flow !.t/ collapses Xk, in the sense that

Vol!.t/ Xk ! 0; as t ! T �
k :

Then Xk is birational to a ruled surface.
(b) Or Tk D 1 and Xk has no .�1/ curves.

Proof. Let T1 be the first singular time. If T1 D 1 thenKX is nef and hence X has
no .�1/-curves, giving case (b).

Assume then that T1 < 1. The limiting class at time T1 is given by ˛ D Œ!0� �
T1c1.X/. Suppose that

˛2 D lim
t!T1

.Œ!0� � tc1.X//
2 D lim

t!T1
Volg.t/X > 0; (3.397)

so that we are not in case (a). Thus the class ˛ is nef and big. On the other hand, ˛
cannot be a Kähler class by Theorem 3.3.1.
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We further notice that ˛ C "Œ!0� is Kähler for all " > 0 by Theorem 3.3.1. Then

˛ � .˛ C "Œ!0�/ D ˛2 C "˛ � Œ!0� > 0 (3.398)

if we choose " > 0 sufficiently small.
We now apply the Nakai–Moishezon criterion for Kähler surfaces (Theo-

rem 3.1.15) to see that there must exist an irreducible curve C on X such that
˛ � C D 0. Let E be the space of all irreducible curves E on X with ˛ � E D 0.
Then E is non-empty and every E in E has E2 < 0 by the Hodge Index Theorem
(Theorem 3.1.14). Moreover, if E 2 E ,

E �KX D 1

T1
E � .˛ � Œ!0�/ D � 1

T1
E � Œ!0� < 0

since Œ!0� is Kähler. It then follows from the Adjunction formula (Theorem 3.1.13)
that E must be a .�1/ curve.

We claim that if E1 and E2 are distinct elements of E then they must be disjoint.
Indeed, since E1, E2 are irreducible and distinct we have E1 � E2 � 0. Moreover,
.E1 C E2/ � ˛ D 0 and applying the Hodge Index Theorem again, we see that
0 > .E1 C E2/

2 D �2 C 2E1 � E2, so that the only possibility is E1 � E2 D 0,
proving the claim. It follows that E consists of finitely many disjoint .�1/ curves
E1; : : : ; Ek .

Let � W X ! Y be the blow-down map contracting E1; : : : ; Ek on X . Then Y
is again a smooth Kähler surface. Since H1;1.X;R/ is generated by H1;1.Y;R/ and
the c1.ŒEi �/ for i D 1; : : : ; k (see for example Theorem I.9.1 in [BHPV]), there
exists ˇ 2 H1;1.X;R/ and ai 2 R such that

˛ D ��ˇ C
kX
iD1

ai c1.ŒEi �/: (3.399)

Since ��ˇ � Ei D 0 for each i D 1; : : : ; k, we have ˛ � Ei D ai D 0 for all i and
hence ˛ D ��ˇ:

We claim that ˇ is a Kähler class on Y . First, for any curve C on Y , we have
ˇ � C D ˛ � ��C > 0. Moreover, ˇ2 D ˛2 > 0:

By the Nakai–Moishezon criterion, it remains to show that ˇ � � > 0 for � some
fixed Kähler class on Y . Now ˇ �� D ˛ ���� D limt!T� Œ!.t/� ���� � 0. Then put
Q� D � C cˇ for c > 0. If c is sufficiently small then Q� is Kähler and since ˇ2 > 0

we have ˇ � Q� > 0, as required.
We now apply Theorem 3.7.10 to see that the Kähler–Ricci flow performs

a canonical surgical contraction. We repeat the above procedure until either the
volume tends to 0 or the flow exists for all time. This proves that either Tk < 1 and
Volg.t/Xk ! 0 as t ! T �

k or Tk D 1 and Xk has no .�1/ curves.
Finally, in the case (a), the theorem follows from Proposition 3.8.4 below. ut
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We make use of Enriques–Kodaira classification for complex surfaces (see
[BHPV]) to prove:

Proposition 3.8.4. Let .X; !0/ be a Kähler surface with a smooth Kähler metric
!0. Let T be the first singular time of the Kähler–Ricci flow (3.395). If T < 1 and
Volg.t/ X ! 0, as t ! T . Then X is birational to a ruled surface. Moreover:

(a) Either there exists C > 0 such that

C�1 � Volg.t/ X

.T � t/2
� C; (3.400)

and X is a Fano surface (in particular, is birational to P
2) and !0 2 Tc1.X/.

(b) Or there exists C > 0 such that

C�1 � Volg.t/ X

T � t
� C: (3.401)

If X is Fano then !0 is not in a multiple of c1.X/.

Proof. We first show that X is birational to a ruled surface. Suppose for a
contradiction that kod.X/ � 0. Then some multiple ofKX has a global holomorphic
section and hence is effective. In particular, .Œ!0�CTKX/�KX � 0, since Œ!0�CTKX

is a limit of Kähler classes. Then

0 D .Œ!0�C TKX/
2 D T .Œ!0�C TKX/ �KX C .Œ!0�C TKX/ � Œ!0�

� .Œ!0�C TKX/ � Œ!0� � 0; (3.402)

which implies that .Œ!0� C TKX/ � Œ!0� D 0. Using the Index Theorem and the
fact that Œ!0�2 > 0 and .Œ!0� C TKX/

2 D 0 we have Œ!0� C TKX D 0. But this
implies that X is Fano, contradicting the assumption kod.X/ � 0. Thus we have
shown that X must have kod.X/ D �1. By the Enriques–Kodaira classification
for complex surfaces which are Kähler (see Chap. VI of [BHPV]),X is birational to
a ruled surface.

Since Volg.t/X D .Œ!0�C tKX/
2 is a quadratic polynomial in t which is positive

for t 2 Œ0; T / and tends to zero as t tends to T , we have

Volg.t/X D Œ!0�
2 C 2tŒ!0� �KX C t2K2

X D C1.T � t/C C2.T � t/2; (3.403)

for constants C1 � 0 and C2. First assume C1 D 0. Then C2 > 0 and we are in case
(a). From (3.403) we obtain

K2
X D C2 > 0; Œ!0�

2 D K2
XT

2; Œ!0� �KX D �K2
XT < 0: (3.404)
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In particular, .Œ!0� C TKX/ � Œ!0� D 0 and hence by the Index Theorem, Œ!0� C
TKX D 0. Thus X is Fano and !0 2 Tc1.X/. Note that by the classification of
surfaces, X is either P2, P1 � P

1 or P2 blown-up at k points for 1 � k � 8.
Finally, if C1 > 0 then we are in case (b). If Œ!0� is a multiple of c1.X/ then the

volume Volg.t/X tends to zero of order .T � t/2, a contradiction. ut
We now discuss the long time behavior of the Kähler–Ricci flow when we are in

case (b) of Theorem 3.8.3. There are three different behaviors of the Kähler–Ricci
flow as t ! 1 depending on whetherX has Kodaira dimension equal to 0, 1 or 2:

• If kod.X/ D 0, then the minimal model of X is a Calabi–Yau surface with
c1.X/ D 0. The flow g.t/ converges smoothly to a Ricci-flat Kähler metric as
t ! 1, as shown in Sect. 3.6.

• If kod.X/ D 1, then 1
t
g.t/ converges in the sense of currents to the pullback of

the unique generalized Kähler–Einstein metric on the canonical model of X as
t ! 1 [ST07]. A simple example of this is given in Sect. 3.6 in the case of a
product elliptic surface.

• If kod.X/ D 2, 1
t
g.t/ converges in the sense of currents (and smoothly outside a

subvariety) to the pullback of the unique smooth orbifold Kähler–Einstein metric
on the canonical model of X as t ! 1 [Kob85,Tzha06,Tsu96]. In the case that
c1.X/ < 0, we showed in Sect. 3.6 that 1

t
g.t/ converges smoothly to a smooth

Kähler–Einstein metric.

In fact, in the case when Tk D 1, the scalar curvature of 1
t
g.t/ is uniformly

bounded as t ! 1 [ST11, Zha09]. Furthermore, if we assume that Xk is a
minimal surface of general type, and it admits only irreducible .�2/-curves, then
.Xk;

1
t
g.t// converges in Gromov–Hausdorff sense to its canonical model with the

unique smooth orbifold Kähler–Einstein metric [SW11].
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[Siu08] Y.-T. Siu, Finite generation of canonical ring by analytic method. Sci. China Ser. A
51(4), 481–502 (2008)
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Chapter 4
Regularizing Properties of the Kähler–Ricci
Flow

Sébastien Boucksom and Vincent Guedj

Abstract These notes present a general existence result for degenerate parabolic
complex Monge–Ampère equations with continuous initial data, slightly general-
izing the work of Song and Tian on this topic. This result is applied to construct
a Kähler–Ricci flow on varieties with log terminal singularities, in connection
with the Minimal Model Program. The same circle of ideas is also used to
prove a regularity result for elliptic complex Monge–Ampère equations, following
Székelyhidi–Tosatti.

Introduction

As we saw in Chap. 3, each initial Kähler form !0 on a compact Kähler manifoldX
uniquely determines a solution .!t /t2Œ0;T0/ to the (unnormalized) Kähler–Ricci flow

@!t

@t
D �Ric.!t /:

Along the flow, the cohomology class Œ!t � D Œ!0� C t ŒKX� must remain in the
Kähler cone, and this is in fact the only obstruction to the existence of the flow. In
other words, the maximal existence time T0 is either infinite, in which case KX is
nef and X is thus a minimal model by definition, or T0 is finite and Œ!0� C T0ŒKX�

lies on the boundary of the Kähler cone.
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In [ST09], J. Song and G. Tian proposed to use the Minimal Model Program
(MMP for short) to continue the flow beyond time T0. At least when Œ!0� is a
rational cohomology class (and hence X is projective), the MMP allows to find a
mildly singular projective varietyX 0 birational to X such that Œ!0�C t ŒKX � induces
a Kähler class on X 0 for t > T0 sufficiently close to T0. It is therefore natural to
try and continue the flow on X 0, but new difficulties arise due to the singularities
ofX 0. After blowing-upX 0 to resolve these singularities, the problem boils down to
showing the existence of a unique solution to a certain degenerate parabolic complex
Monge–Ampère equation, whose initial data is furthermore singular.

The primary purpose of this chapter is to present a detailed account of Song and
Tian’s solution to this problem. Along the way, a regularizing property of parabolic
complex Monge–Ampère equations is exhibited, which can in turn be applied to
prove the regularity of weak solutions to certain elliptic Monge–Ampère equations,
following [SzTo11].

The chapter is organized as follows. In Sect. 4.1 we gather the main analytic
tools to be used in the proof: a Laplacian inequality, the maximum principle, and
Evans–Krylov type estimates for parabolic complex Monge–Ampère equations. In
Sect. 4.2, we first consider the simpler case of non-degenerate parabolic complex
Monge–Ampère equations involving a time-independent Kähler form. We show
that such equations smooth out continuous initial data, and give a proof of the main
result of [SzTo11]. Sections 4.3–4.5 contain the main result of the chapter, dealing
with the general case of degenerate parabolic complex Monge–Ampère equations,
basically following [ST09] (and independently of Sect. 4.2). In the final Sect. 4.6,
we apply the previous results to study the Kähler–Ricci flow on varieties with log
terminal singularities.

Nota Bene. This text is an expanded version of a series of lectures delivered by the
two authors during the second ANR-MACK meeting (8–10 June 2011, Toulouse,
France). As the audience mostly consisted of non specialists, we have tried to make
these lecture notes accessible with only few prerequisites.

4.1 An Analytic Toolbox

4.1.1 A Laplacian Inequality

If 
 and ! are .1; 1/-forms on a complex manifold X with ! > 0, 
 can be
diagonalized with respect to ! at each point ofX , with real eigenvalues �1 � : : : �
�n, and the trace of 
 with respect to ! is defined as tr !.
/ D P

i �i . More
invariantly, we have

tr !.
/ D n

 ^ !n�1

!n
:

The Laplacian of a function ' with respect to ! is given by
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�!' D tr !.dd
c'/:

For later use, we record an elementary eigenvalue estimate:

Lemma 4.1.1. If ! and !0 are two positive .1; 1/-forms on a complex manifold X ,
then

�
!0n

!n

� 1
n

� 1
n

tr !.!0/ �
�
!0n

!n

�
.tr !0.!//n�1 :

Proof. In terms of the eigenvalues 0 < �1 � : : : � �n of !0 with respect to ! (at a
given point of X ), the assertion writes

 Y
i

�i

!1=n
� 1

n

X
i

�i �
 Y

i

�i

! X
i

��1
i

!n�1
:

The left-hand inequality is nothing but the arithmetico-geometric inequality.
By homogeneity, we may assume that

Q
i �i D 1 in proving the right-hand

inequality. We then have

 X
i

��1
i

!n�1
� ��1

1 : : : ��1
n�1 D �n � 1

n

X
i

�i : ut

The next result is a Laplacian inequality, which basically goes back to [Aub78,
Yau78] and is the basic tool for establishing second order a priori estimates for ellip-
tic and parabolic complex Monge–Ampère equations. In its present form, the result
is found in [Siu87, pp. 97–99]; we include a proof for the reader’s convenience.

Proposition 4.1.2. Let !;!0 be two Kähler forms on a complex manifold X . If the
holomorphic bisectional curvature of ! is bounded below by a constant B 2 R

on X , then

�!0 log tr !.!0/ � � tr !Ric.!0/
tr !.!0/

C B tr !0.!/:

Proof. Since this is a pointwise inequality, we can choose normal holomorphic
coordinates .zj / at a given point p 2 X so that ! D i

P
k;l !kld zk ^ d zl and

!0 D i
P

k;l !
0
kld zk ^ d zl satisfy

!kl D ıkl �
X
i;j

Rijklzi zj CO.jzj3/

and

!0
kl D �kıkl CO.jzj/
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near p. Here Rijkl denotes the curvature tensor of !, ıkl stands for the Kronecker
symbol, and �1 � : : : � �n are the eigenvalues of !0 with respect to ! at p.

Observe that the inverse matrix .!kl/ D .!kl/
�1 satisfies

!kl D ıkl C
X
i;j

Rijklzi zj CO.jzj3/: (4.1)

Recall also that the curvature tensor of !0 is given in the local coordinates .zi / by

R0
ijkl D �@i@j!0

kl C
X
p;q

!0
pq@i!

0
kq@j!

0
pl;

hence

R0
ijkl D �@i@j !0

kl C
X
p

��1
p @i!kp@j !

0
pl (4.2)

at p. Set u WD tr !.!0/, and note that

�!0 log u D u�1�!0 u � u�2tr !0.du ^ dcu/:

At the point p we have

�!0 u D
X

ik

��1
i @i @i .!

kk!0
kk/

and

tr !0 .du ^ dcu/ D
X
i;k;l

��1
i @i!

0
kk@i!

0
ll;

with

@i @i .!
kk!0

kk/ D �kRiikk C @i@i!
0
kk

thanks to (4.1). It follows that

�!0 log u D u�1
0
@X

ik

��1
i �kRiikk C

X
i;k

��1
i @i @i!

0
kk

1
A

� u�2
0
@X
i;k;l

��1
i @i!

0
kk@i!

0
ll

1
A (4.3)

holds at p. On the one hand, the assumption on the holomorphic bisectional
curvature of ! reads Riikk � B for all i; k, hence
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X
ik

��1
i �kRiikk � B

 X
i

��1
i

! X
k

�k

!
D Btr !0.!/u: (4.4)

On the other hand, (4.2) yields

X
i;k

��1
i @i @i!

0
kk D �

X
i;k

��1
i R

0
iikk C

X
i;k;p

��1
i �

�1
p j@i!0

kpj2:

Note that
P

i;k �
�1
i R

0
iikk D tr !Ric.!0/, while

X
i;k;p

��1
i �

�1
p j@i!0

kpj2 �
X
i;k

��1
i �

�1
k j@i!0

kkj2 � u�1X
i;k;l

��1
i @i!

0
kk@i!

0
ll

by the Cauchy–Schwarz inequality. Combining this with (4.3) and (4.4) yields the
desired inequality. ut

4.1.2 The Maximum Principle

The following simple maximum principle (or at least its proof) will be systemati-
cally used in what follows to establish a priori estimates.

Proposition 4.1.3. Let U be a complex manifold and 0 < T � C1. Let .!t /t2Œ0;T /
be a smooth path of Kähler metrics on U , and denote by �t D tr !t dd

c the
Laplacian with respect to !t . Assume that

H 2 C0 .U � Œ0; T // \ C1 .U � .0; T //

satisfies either

�
@

@t
��t

�
H � 0;

or

@H

@t
� log

�
.!t C ddcH/n

!nt

�

on U � .0; T /. When U is non compact, assume further that H ! �1 at infinity
on U � Œ0; T 0�, for each T 0 < T . Then we have

sup
U�Œ0;T /

H D sup
U�f0g

H:
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If we replace � with � in the above differential inequalities and assume that
H ! C1 in the non compact case, then the conclusion is that

inf
U�Œ0;T /H D inf

U�f0g
H:

Proof. Upon replacing H with H � "t (resp. H C "t for the reverse inequality)
with " > 0 and then letting " ! 0, we may assume in each case that the differential
inequality is strict. It is enough to show that supU�Œ0;T 0� H D supU�f0g H for each
T 0 < T . The properness assumption guarantees that H achieves its maximum
(resp. minimum) on U � Œ0; T 0�, at some point .x0; t0/ 2 U � Œ0; T 0�, and the strict
differential inequality forces t0 D 0. Indeed, we would otherwise have ddcH � 0

at .x0; t0/, @H@t D 0 if t0 < T 0, and at least @H
@t

� 0 if t0 D T 0, which would at any
rate contradict the strict differential inequality. ut

4.1.3 Evans–Krylov Type Estimates for Parabolic Complex
Monge–Ampère Equations

Since it will play a crucial in what follows, we want to give at least a brief idea
of the proof of the next result, which says in essence that it is enough to control
the time derivative and the Laplacian to get smooth solutions to parabolic complex
Monge–Ampère equations.

Theorem 4.1.4. Let U b C
n be an open subset and T 2 .0;C1/. Suppose that

u; f 2 C1 � NU � Œ0; T �� satisfy

@u

@t
D log det

�
@2u

@zj @Nzk
�

C f; (4.5)

and assume also given a constant C > 0 such that

sup
U�.0;T /

�ˇ̌
ˇ̌@u

@t

ˇ̌
ˇ̌C j�uj

�
� C:

For each compact K b U , each " > 0 and each p 2 N, the Cp norm of u on
K � Œ"; T � can then be bounded in terms of the constantC and of the Cq norm of f
on NU � Œ0; T � for some q � p.

The first ingredient in the proof are the Schauder estimates for linear parabolic
equations. If f is a function on the cylinder Q D U � .0; T /, recall from Chap. 2
that for 0 < ˛ < 1 the parabolic ˛-Hölder norm of f on Q is defined as

kf kC˛P .Q/ WD kf kC0.Q/ C Œf �˛IQ ;
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where Œf �˛IQ denotes the ˛-Hölder seminorm with respect to the parabolic distance

dP
�
.z; t/; .z0; t 0/

� D max
˚jz � z0j; jt � t 0j1=2� :

For each k 2 N, the parabolic Ck;˛-norm is then defined as

kf k
C
k;˛
P .Q/

WD
X

jˇjC2j�k
kDˇ

xD
j
t f kC˛P .Q/:

If .
t /t2.0;T / is a path of differential forms on U , we can similarly consider Œ
t �˛;Q
and k
tkCk;˛P .Q/

, with respect to the flat metric!U onU . In our context, the parabolic

Schauder estimates can then be stated as:

Lemma 4.1.5. Let .!t /t2.0;T / be a smooth path of Kähler metrics onU , and assume
that u; f 2 C1.Q/ satisfy

�
@

@t
��t

�
u D f;

with �t the Laplacian with respect to !t , and setting as above Q D U � .0; T /.
Suppose also given C > 0 and 0 < ˛ < 1 such that onQ we have

C�1!U � !t � C!U and Œ!t �˛;Q � C:

For eachQ0 D U 0 �."; T / with U 0 b U and " 2 .0; T /, we can then find a constant
A > 0 only depending on U 0, " and C such that

kuk
C
2;˛
P .Q0/

� A
�kukC0.Q/ C kf kC˛P .Q/

�
:

This result follows for instance from [Lieb96, Theorem 4.9] (see also Chap. 2 in
the present volume). Note that these estimates are interior only with respect to the
parabolic boundary, i.e. the upper limit of the time interval is the same on both sides
of the estimates.

The second ingredient in the proof of Theorem 4.1.4 is the following version
of the Evans–Krylov estimates for parabolic complex Monge–Ampère equations.
We refer to [Gill11, Theorem 4.9] for the proof, which relies on a Harnack estimate
for linear parabolic equations.

Lemma 4.1.6. Suppose that u; f 2 C1.Q/ satisfy

@u

@t
D log det

�
@2u

@zj @Nzk
�

C f;

and assume also given a constant C > 0 such that
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C�1 �
�

@2u

@zj @Nzk
�

� C and

ˇ̌
ˇ̌@f
@t

ˇ̌
ˇ̌C jddcf j � C:

For each Q0 D U 0 � ."; T / with U 0 b U an open subset and " 2 .0; T /, we can
then find A > 0 and 0 < ˛ < 1 only depending on U 0, " and C such that

Œddcu�˛;Q0 � A:

Proof of Theorem 4.1.4. The proof consists in a standard boot-strapping argument.
Consider the path !t WD ddcut of Kähler forms on U . By assumption, we have
!t � C1!U with C1 > 0 under control. Since

!nt D exp

�
@u

@t
� f

�
!nU

where @u
@t

� f is bounded below by a constant under control thanks to the
assumptions, simple eigenvalue considerations show that !t � c!U with c > 0

under control. We can thus apply the Evans–Krylov estimates of Lemma 4.1.6 and
assume, after perhaps slightly shrinking Q, that Œ!t �˛;Q is under control for some
0 < ˛ < 1.

Now let D be any first order differential operator with constant coefficients.
Differentiating (4.5), we get

�
@

@t
��t

�
Du D Df : (4.6)

Since
ˇ̌
@u
@t

ˇ̌ C j�uj is under control, the elliptic Schauder estimates (for the flat
Laplacian �) show in particular, after perhaps shrinking U (but not the time
interval), that the C0 norm of Du is under control. By the parabolic Schauder
estimates of Lemma 4.1.5, the parabolic C2;˛ norm of Du is thus under control
as well. ApplyingD to (4.6) we find

�
@

@t
��t

�
D2u D D2f C

X
j;k



D!

jk
t

� @2Du

@zj @Nzk ;

where the parabolic C˛ norm of the right-hand side is under control. By the
parabolic Schauder estimates, the parabolic C2;˛ norm of D2u is in turn under
control, and iterating this procedure concludes the proof of Theorem 4.1.4. ut

4.2 Smoothing Properties of the Kähler–Ricci Flow

By analogy with the regularizing properties of the heat equation, it is natural to
expect that the Kähler–Ricci flow can be started from a singular initial data (say a
positive current, rather than a Kähler form), instantaneously smoothing out the latter.
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The goal of this section is to illustrate positively this expectation by explaining
the proof of the following result of Szekelyhidi–Tosatti [SzTo11]:

Theorem 4.2.1. Let .X; !/ be a n-dimensional compact Kähler manifold. Let F W
R �X ! R be a smooth function and assume  0 2 PSH.X; !/ is continuous1 and
satisfies

.! C ddc 0/
n D e�F. 0;x/!n:

Then  0 2 C1.X/ is smooth.

As the reader will realize later on, the proof is a good warm up, as the arguments
are similar to the ones we are going to use when proving Theorem 4.3.3.

Let us recall that such equations contain as a particular case the Kähler–Einstein
equation. Namely when the cohomology class f!g is proportional to the first Chern
class ofX ,2 �f!g D c1.X/ for some � 2 R, then the above equation is equivalent to

Ric.! C ddc 0/ D �.! C ddc 0/;

when taking

F.'; x/ D �' C h.x/

with h 2 C1.X/ such that Ric.!/ D �!Cddch. Szekelyhidi and Tosatti’s result is
thus particularly striking since the solutions to such equations, if any, are in general
not unique.3

The interest in such regularity results stems for example from the recent works
[BBGZ13, EGZ11] which provide new tools to construct weak solutions to such
complex Monge–Ampère equations.

The idea of the proof is both simple and elegant, and goes as follows: assume we
can run a complex Monge–Ampère flow

@'

@t
D log

�
.! C ddc'/n

!n

�
C F.'; x/

with an initial data '0 2 PSH.X; !/\ C0.X/ in such a way that

' 2 C0 .X � Œ0; T �/ \ C1 .X � .0; T �/ :

1The authors state their result assuming that  0 is merely bounded, but they use in an essential way
the continuity of  0, which is nevertheless known in this context by Kołodziej [Kol98].
2This of course assumes that c1.X/ has a definite sign.
3In the Kähler–Einstein Fano case, a celebrated result of Bando and Mabuchi [BM87] asserts that
any two solutions are connected by the flow of a holomorphic vector field.
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Then  0 will be a fixed point of such a flow hence if  t denotes the flow originating
from  0,  0 	  t has to be smooth!

To simplify our task, we will actually give full details only in case

F.s; x/ D �G.s/C h.x/ with s 7! G.s/ being convex

and merely briefly indicate what extra work has to be done to further establish
the most general result. Note that this particular case nevertheless covers the
Kähler–Einstein setting.

In the sequel we consider the above flow starting from a smooth initial potential
'0 and establish various a priori estimates that eventually will allow us to start from a
poorly regular initial data. We fix once and for all a finite time T > 0 (independent
of '0) such that all flows to be considered are well defined on X � Œ0; T �: it is
standard that the maximal interval of time on which such a flow is well defined can
be computed in cohomology, hence depends on the cohomology class of the initial
data rather than on the (regularity properties of the) chosen representative.

4.2.1 A Priori Estimate on 't

We consider in this section onX�Œ0; T � the complex Monge–Ampère flow .CMAF/

@'

@t
D log

�
.! C ddc'/n

!n

�
C F.'; x/

with initial data '0 2 PSH.X; !/\C1.X/. Our aim is to bound k'kL1.X�Œ0;T �/ in
terms of k'0kL1.X/ and T .

4.2.1.1 Heuristic Control

Set M.t/ D supX 't . It suffices to bound M.t/ from above, the bound from below
form.t/ WD infX 't will follow by symmetry.

Assume that we can find t 2 Œ0; T � 7! x.t/ 2 X a differentiable map such that
M.t/ D 't .x.t//. ThenM is differentiable and satisfies

M 0.t/ D @'t

@t
.x.t// � F.'t .x.t//; x.t// � F .M.t//;

where

F .s/ WD sup
x2X

F.s; x/

is a Lipschitz map.
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It follows therefore from the Cauchy–Lipschitz theory of ODE’s that M.t/ is
bounded from above on Œ0; T � in terms of T;M.0/ D supX '0 and F (hence F ).

4.2.1.2 A Precise Bound

We now would like to establish a more precise control under a simplifying
assumption:

Lemma 4.2.2. Assume that '; 2 C1 .X � Œ0; T �/ define !-psh functions 't ;  t
for all t and satisfy

@'

@t
� log

�
.! C ddc'/n

!n

�
C F.'; x/

and

@ 

@t
� log

�
.! C ddc /n

!n

�
C F. ; x/

on X � Œ0; T �, where

F.s; x/ D �s �G.s; x/ with s 7! G.s; �/ non-decreasing.

Then we have

sup
X�Œ0;T �

.' �  / � e�T maxfsup
X

.'0 �  0/; 0g:

Proof. Set u.x; t/ WD e��t .'t �  t /.x/ � "t 2 C0 .X � Œ0; T �/, where " > 0 is
fixed (arbitrary small). Let .x0; t0/ 2 X � Œ0; T � be a point at which u is maximal.

If t0 D 0, then u.x; t/ � .'0 �  0/.x0/ � supX.'0 �  0/ and we obtain the
desired upper bound by letting " > 0 decrease to zero.

Assume now that t0 > 0. Then Pu � 0 at this point, hence

0 � �" � �e��t .'t �  t/C e��t . P't � P t /:

On the other hand ddcxu � 0, hence ddcx't � ddcx t and

P't � P t � F.'t ; x/ � F. t ; x/C log

�
.! C ddc't /n

.! C ddc t /n

�

� F.'t ; x/ � F. t ; x/:

Recall now that F.s; x/ D �s �G.s; x/. Previous inequalities therefore yield

G.'t ; x/ < G. t ; x/ at point .x; t/ D .x0; t0/:
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Since s 7! G.s; �/ is assumed to be non-decreasing, we infer 't0.x0/ �  t0.x0/, so
that for all .x; t/ 2 X � Œ0; T �,

u.x; t/ � u.x0; t0/ � 0:

Letting " decrease to zero yields the second possibility for the upper bound. ut
By reversing the roles of 't ;  t , we obtain the following useful:

Corollary 4.2.3. Assume '; are solutions of .CMAF/ with F as above. Then

k' �  kL1.X�Œ0;T �/ � e�T k'0 �  0kL1.X/:

As a consequence, if '0;j is a sequence of smooth !-psh functions decreasing
to '0 2 PSH.X; !/ \ C0.X/, and 'j are the corresponding solutions to .CMAF/
on X � Œ0; T �, then the sequence 'j converges uniformly on X � Œ0; T � to some
' 2 C0 .X � Œ0; T �/ as j ! C1.

4.2.2 A Priori Estimate on @'

@t

We assume here again that on X � Œ0; T �

@'

@t
D log

�
.! C ddc'/n

!n

�
C F.'; x/

with initial data '0 2 PSH.X; !/\ C1.X/.

Lemma 4.2.4. There exists C > 0 which only depends on k'0kL1.X/ such that for
all t 2 Œ0; T �,

k P'tkL1.X/ � eCT k P'0kL1.X/:

Let us stress that such a bound requires both that the initial potential '0 is
uniformly bounded and that the initial density

f0 D .! C ddc'0/n

!n
D log P'0 � F.'0; x/

is uniformly bounded away from zero and infinity. We shall consider in the sequel
more general situations with no a priori control on the initial density f0.

Proof. Observe that

@ P'
@t

D �t P' C @F

@s
.'; x/ P';
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where�t denotes the Laplace operator associated to !t D ! C ddc't .
Since F is C1, we can find a constant C > 0 which only depends on (F and)

k'kL1.X�Œ0;T �/ such that

�C <
@F

@s
.'; x/ < CC:

ConsiderHC.x; t/ WD e�Ct P't .x/ and let .x0; t0/ be a point at whichHC realizes
its maximum on X � Œ0; T �. If t0 D 0, then P't .x/ � eCT supX '0 for all .x; t/ 2
X � Œ0; T �. If t0 > 0, then

0 �
�
@

@t
��t

�
.HC/ D e�Ct

�
@F

@s
.'t ; x/ � C

�
P'

hence P't0.x0/ � 0, since @F
@s
.'t ; x/�C < 0. Thus P't .x/ � 0 in this case. All in all,

this shows that

P't � eCT max

�
sup
X

P'0; 0
	
:

Considering the minimum of H�.x; t/ WD eCCt P't .x; t/ yields a similar bound
from below and finishes the proof since maxfsupX P'0;� infX P'0g � 0. ut

4.2.3 A Priori Estimate on �'t

Recall that we are considering on X � Œ0; T �

@'t

@t
D log

�
.! C ddc't /n

!n

�
C F.'t ; x/

with initial data '0 2 PSH.X; !/ \ C1.X/. Our aim in this section is to establish
an upper bound on �!'t , which is uniform as long as t > 0 and is allowed to blow
up when t decreases to zero.

4.2.3.1 A Convexity Assumption

To simplify our task, we shall assume that

F.s; x/ D �G.s/C h.x/; with s 7! G.s/ being convex.
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This assumption allows us to bound from above�!F.'; x/ as follows:

Lemma 4.2.5. There exists C > 0 which only depends on k'0kL1.X/ such that

�! .F.'t ; x// � C Œ1C tr !.!t /� ;

where !t D ! C ddc't .

Recall here that for any smooth function h and .1; 1/-form ˇ,

�!h WD n
ddch ^ !n�1

!n
while tr !ˇ WD n

ˇ ^ !n�1

!n
:

Proof. Observe that

ddc .F.'; x// D �G00.'/d' ^ dc' �G0.'/ddc' � �G0.'/ddc'

sinceG is convex. Now ddc' D .!Cdd c'/�! D !'�! D !t �! is a difference
of positive forms and �C � �G0.'/ � CC , therefore

ddc .F.'; x// � C .!t C !/ ;

which yields the desired upper bound. ut
Our simplifying assumption thus yields a bound from above on �! .F.'; x//

which depends on tr !.!'/ (and k'0kL1.X/) but not on kr'tkL1.X�Œ";T �/. A slightly
more involved bound from above is available in full generality, which relies on
Blocki’s gradient estimate [Bło09]. We refer the reader to the proofs of [SzTo11,
Lemmata 2.2 and 2.3] for more details.

4.2.3.2 The Estimate

Proposition 4.2.6. Assume that F.s; x/ D �G.s/C h.x/; with s 7! G.s/ convex.
Then

0 � tr !.!t / � C exp .C=t/

where C > 0 depends on k'0kL1.X/ and k P'0kL1.X/.

Proof. We set u.x; t/ WD tr !.!t / and

˛.x; t/ WD t log u.x; t/ �A't .x/;

where A > 0 will be specified later. The desired inequality will follow if we can
uniformly bound ˛ from above. Our plan is to show that
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�
@

@t
��t

�
.˛/ � C1 C .Bt C C2 � A/tr !t .!/

for uniform constants C1; C2 > 0 which only depend on k'0kL1.X/, k P'0kL1.X/.
Observe that

�
@

@t
��t

�
.˛/ D log u C t

u

@u

@t
�A P't � t�t log u C A�t't :

The last term yieldsA�t't D An�Atr !t .!/. The for to last one is estimated thanks
to Proposition 4.1.2,

�t�t log u � Bt tr !t .!/C t
tr !.Ric.!t //

tr !.!t /
:

It follows from Lemma 4.2.5 that

t

u

@u

@t
D t

u
�t

�
log

!nt
!n

�
C t

u
�!F.'t ; x/

D t

u
f�tr !.Ric!t /C tr !.Ric!/g C t

u
�!F.'t ; x/

� �t tr !.Ric!t /

tr !.!t /
C C

.1C u/

u
:

We infer

�t�t log u C t

u

@u

@t
� Bt tr !t .!/C C1;

using that u is uniformly bounded below as follows from Proposition 4.1.2 again.
To handle the remaining (first and third) terms, we simply note that P't is

uniformly bounded below, while

log u � log

C tr !t .!/

n�1� � C2 C C3tr !t .!/

by Proposition 4.1.2 and the elementary inequality logx < x. Altogether this yields

�
@

@t
��t

�
.˛/ � C4 C .Bt C C3 � A/ tr !t .!/ � C4;

if we choose A > 0 so large that Bt C C3 � A < 0. The desired inequality now
follows from the maximum principle. ut
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4.2.4 Proof of Theorem 4.2.1

4.2.4.1 Higher Order Estimates

By Theorem 4.1.4, it follows from our previous estimates that higher order a priori
estimates hold as well:

Proposition 4.2.7. For each fixed " > 0 and k 2 N, there exists Ck."/ > 0 which
only further depends on k'0kL1.X/ and k P'0kL1.X/ such that

k'tkCk.X�Œ";T �/ � Ck."/:

4.2.4.2 A Stability Estimate

Let 0 � f; g 2 L2.!n/ be densities such that

Z
X

f!n D
Z
X

g!n D
Z
X

!n:

It follows from the celebrated work of Kolodziej [Kol98] that there exists unique
continuous !-psh functions '; such that

.! C ddc'/n D f!n; .! C ddc /n D g!n and
Z
X

.' �  /!n D 0:

We shall need the following stability estimates:

Theorem 4.2.8. There exists C > 0 which only depends on kf kL2 ; kgkL2 such that

k' �  kL1.X/ � Ckf � gk�
L2.X/

;

for some uniform exponent � > 0.

Such stability estimates go back to the work of Kolodziej [Kol03] and Blocki
[Blo03]. Much finer stability results are available by now (see [DZ10, GZ12]). We
sketch a proof of this version for the convenience of the reader.

Proof. The proof decomposes in two main steps. We first claim that

k' �  kL2.X/ � Ckf � gk 1
2n�1

L2.X/
; (4.7)

for some appropriate C > 0. Indeed we are going to show that

Z
X

d.' �  / ^ dc.' �  / ^ !n�1 � C1I.';  /
2�.n�1/

; (4.8)
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where

I.';  / WD
Z
X

.' �  / f.! C ddc /n � .! C ddc'/ng � 0

is non-negative, as the reader can check that an alternative writing is

I.';  / D
n�1X
jD0

Z
X

d.' �  / ^ dc.' �  / ^ !j' ^ !n�1�j
 :

In our case the Cauchy–Schwarz inequality yields

I.';  / D
Z
X

.' �  /.g � f /!n � k' �  kL2kf � gkL2 ;

therefore (4.7) is a consequence of (4.8) and Poincaré’s inequality.
To prove (4.8), we write ! D !' � ddc' and integrate by parts to obtain,

Z
d.' �  / ^ dc.' �  / ^ !n�1

D
Z
d.' �  / ^ dc.' �  / ^ !' ^ !n�2

�
Z
d.' �  / ^ dc.' �  / ^ ddc' ^ !n�2

D
Z
d.' �  / ^ dc.' �  / ^ !'1 ^ !n�2

C
Z
d.' �  / ^ dc' ^ .!' � ! / ^ !n�2

We take care of the last term by using Cauchy–Schwarz inequality, which yields

Z
d.' �  / ^ dc' ^ !' ^ !n�2 � A

�Z
d.' �  / ^ dc.' �  / ^ !' ^ !n�2

�1=2
;

where

A2 D
Z
d' ^ dc' ^ !' ^ !n�2

is uniformly bounded from above, since ' is uniformly bounded in terms of
kf kL2.X/ by the work of Kolodziej [Kol98]. Similarly

�
Z
d.' �  / ^ dc' ^ ! ^ !n�2 � B

�Z
d.' �  / ^ dc.' �  / ^ ! ^ !n�2

�1=2
;
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where

B2 D
Z
d' ^ dc' ^ ! ^ !n�2

is uniformly bounded from above. Note that both terms can be further bounded from
above by the same quantity by bounding from above !' (resp. ! ) by !' C ! .

Going on this way by induction, replacing at each step ! by !' C ! , we end
up with a control from above of

R
d.' � /^ dc.' � /^!n�1 by a quantity that

is bounded from above by CI.';  /2
�.n�1/

(there are .n � 1/-induction steps), for
some uniform constant C > 0. This finishes the proof of the first step.

The second step consists in showing that

k' �  kL1.X/ � C2k' �  k�
L2.X/

for some constants C2; � > 0. We are not going to dwell on this second step here, as
it would take us too far. It relies on the comparison techniques between the volume
and the Monge–Ampère capacity, as used in [Kol98]. ut

4.2.4.3 Conclusion

We are now in position to conclude the proof of Theorem 4.2.1 [at least in case
F.s; x/ D �G.s/ C h.x/, with G convex]. Let  0 2 PSH.X; !/ be a continuous
solution to

.! C ddc 0/
n D e�F. 0;x/!n:

Fix uj 2 C1.X/ arbitrary smooth functions which uniformly converge to  0
and let  j 2 PSH.X; !/\ C1.X/ be the unique smooth solutions of

.! C ddc j /
n D cj e

�F.uj ;x/!n;

normalized by
R
X. j �  0/!

n D 0. Here cj 2 R are normalizing constants wich
converge to 1 as j ! C1, such that

cj

Z
X

e�F.uj ;x/!n D
Z
X

!n;

and the existence (and uniqueness) of the j ’s is provided by Yau’s celebrated result
[Yau78]. It follows from the stability estimate (Theorem 4.2.8) that

k j �  0kL1.X/ �! 0 as j ! C1;
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hence

k j � ujkL1.X/ �! 0 as j ! C1:

Consider the complex Monge–Ampère flows

@'t;j

@t
D log

�
.! C ddc't;j /n

!n

�
C F.'t;j ; x/ � log cj ;

with initial data '0;j WD  j . It follows from Lemma 4.2.2 that

k't;j � 't;kkL1.X�Œ0;T �/ � e�T k j �  kkL1.X/ C ˇ̌
log cj � log ck

ˇ̌
;

thus .'t;j /j is a Cauchy sequence in the Banach space C0 .X � Œ0; T �/. We set

't WD lim
j!C1't;j 2 C0 .X � Œ0; T �/ :

Note that 't 2 PSH.X; !/ for each t 2 Œ0; T � fixed and '0 D  0 D lim'0;j
by continuity. Proposition 4.2.7 shows moreover that .'t;j /j is a Cauchy sequence
in the Fréchet space C1 .X � .0; T �/, hence .x; t/ 7! 't.x/ 2 C1 .X � .0; T �/.
Observe that

k P'0;j kL1.X/ D kF. j ; x/ � F.uj ; x/kL1.X/ � Ck j � ujkL1.X/ ! 0:

Lemma 4.2.4 therefore yields for all t > 0,

k P'tkL1.X/ D lim
j!C1 k P't;j kL1.X/ � C lim

j!C1 k P'0;j kL1.X/ D 0:

This shows that t 7! 't is constant on .0; T �, hence constant on Œ0; T � by
continuity. Therefore  0 	 't is smooth, as claimed.

4.3 Degenerate Parabolic Complex Monge–Ampère
Equations

Until further notice, .X; !X/ denotes a compact Kähler manifold of dimension n
endowed with a reference Kähler form.

4.3.1 The Ample Locus

Recall that the pseudoeffective cone in H1;1.X;R/ is the closed convex cone of
classes of closed positive .1; 1/-currents in X . A .1; 1/-class ˛ in the interior of the
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pseudoeffective cone is said to be big. Equivalently, ˛ is big iff it can be represented
by a Kähler current, i.e. a closed .1; 1/-current T which is strictly positive in the
sense that T � c!X for some c > 0. In the special case where the .1; 1/-form 
 is
semipositive, it follows from [DemPaun04] that its class is big iff

R
X

n > 0, i.e. iff


 is a Kähler form on at least an open subset of X .
The following result is a consequence of Demailly’s regularization theorem

[Dem92] (cf. [DemPaun04, Theorem 3.4]).

Lemma 4.3.1. Let 
 be a closed real .1; 1/-form onX , and assume that its class in
H1;1.X;R/ is big. Then there exists a 
-psh function  
 � 0 such that:

(i)  
 is of class C1 on a Zariski open set � � X ,
(ii)  
 ! �1 near @�,

(iii) !� WD .
 C ddc 
/ j� is the restriction to � of a Kähler form on a
compactification QX of � dominatingX .

More precisely, condition (iii) means that there exists a compact Kähler manifold
. QX;! QX/ and a modification � W QX ! X such that � is an isomorphism over� and
��!� D ! QX on ��1.�/.

By the Noetherian property of closed analytic subsets, it is easy to see that the set
of all Zariski open subsets � so obtained admits a largest element, called the ample
locus of 
 and denoted by Amp .
/ (see [Bou04, Theorem 3.17]). Note that Amp .
/
only depends on the cohomology class of 
 .

For later use, we also note:

Lemma 4.3.2. Let 
 be a closed real .1; 1/-form with big cohomology class, and
let U � Amp .
/ be an arbitrary Zariski open subset. We can then find a 
-psh
function U such that U is smooth on U and U ! �1 near @U .

Proof. Let  
 be a function as in Lemma 4.3.1, with � D Amp .
/. Since A WD
X n U is a closed analytic subset, it is easy to construct an !X -psh function �
with logarithmic poles along A (see for instance [DemPaun04]). We then set U WD
 
 C c� with c > 0 small enough to have 
 C ddc 
 � ı!X for some ı > 0. ut

4.3.2 The Main Result

In the next sections, we will provide a detailed proof of the following result, which
is a mild generalization of the technical heart of [ST09]. The assumptions on the
measure � will become more transparent in the context of the Kähler–Ricci flow on
varieties with log-terminal singularities, cf. Sect. 4.6.

Theorem 4.3.3. Let X be a compact Kähler manifold, T 2 .0;C1/, and let
.
t /t2Œ0;T � be a smooth path of closed semipositive .1; 1/-forms such that 
t � 


for a fixed semipositive .1; 1/-form 
 with big cohomology class. Let also � be
positive measure on X of the form
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� D e 
C� �

!nX

where

•  ˙ are quasi-psh functions on X (i.e. there exists C > 0 such that  ˙ are both
C!X -psh);

• e� � 2 Lp for some p > 1;
•  ˙ are smooth on a given Zariski open subset U � Amp .
/.

For each continuous 
0-psh function '0 2 C0.X/ \ PSH.X; 
0/, there exists a
unique bounded continuous function ' 2 C0

b .U � Œ0; T // with 'jU�f0g D '0 and
such that on U � .0; T / ' is smooth and satisfies

@'

@t
D log

�
.
t C ddc'/n

�

�
: (4.9)

Furthermore, ' is in fact smooth up to time T , i.e. ' 2 C1 .U � .0; T �/.
Remark 4.3.4. Since 'jX�ftg is bounded and 
t -psh on a Zariski open set of X ,
it uniquely extends to a bounded 
t -psh function on X by standard properties of
psh functions. We get in this way a natural quasi-psh extension of ' to a bounded
function onX � Œ0; T �, but note that no continuity property is claimed onX � Œ0; T �
(see however Theorem 4.3.5 below).

As we shall see, uniqueness in Theorem 4.3.3 holds in a strong sense: we have

sup
U�Œ0;T �

j' � ' 0j D sup
U�f0g

j' � ' 0j

for any two

'; ' 0 2 C0
b .U � Œ0; T //\ C1 .U � .0; T //

satisfying (4.9) and such that the restriction to U � f0g of either ' or ' 0 extends
continuously to X � f0g.

In the geometric applications to the (unnormalized) Kähler–Ricci flow, the path
.
t / will be affine as a function of t . In that case, we have a global control on the
time derivative:

Theorem 4.3.5. With the notation of Theorem 4.3.3, assume further that .
t /t2Œ0;T �
is an affine path. For each " > 0, @'

@t
is then bounded above on U � Œ"; T �, and

bounded below on U � Œ"; T � "�. In particular, the quasi-psh extension of ' to
X � Œ0; T � is continuous on X � .0; T /, and on X � fT g as well.
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4.4 A Priori Estimates for Parabolic Complex
Monge–Ampère Equations

4.4.1 Setup

Recall that .X; !X/ is a compact Kähler manifold endowed with a reference Kähler
form. In this section, .
t /t2Œ0;T � denotes a smooth path of Kähler forms on X , and
we assume given a semipositive .1; 1/-form 
 with big cohomology class such that


t � 
 for t 2 Œ0; T �:
Let also � be a smooth positive volume form on X , and suppose that ' 2
C1 .X � Œ0; T �/ satisfies

@'

@t
D log

�
.
t C ddc'/n

�

�
: (4.10)

Our goal is to provide a priori estimates on ' that only depend on 
 , the sup norm
of '0 WD 'jX�f0g, and the Lp-norm and certain Hessian bounds for the density f of
�. More precisely, we will prove the following result:

Theorem 4.4.1. With the above notation, suppose that � is written as

� D e 
C� �

!nX

with  ˙ 2 C1.X/, and assume given C > 0 and p > 1 such that

(i) �C � supX  
˙ � C and ddc ˙ � �C!X .

(ii) ke� �kLp � C .
(iii) k'0kC0 � C .

The C0 norm of ' onX � Œ0; T � is then bounded in terms of 
 , C , T , p and a bound
on the volume

R
X

nt for t 2 Œ0; T �.

Further, ' is bounded in C1 topology on Amp .
/ � .0; T �, uniformly in terms
of 
 , C , T , p and C1 bounds for .
t / onX � Œ0; T � and for  ˙ on Amp .
/. More
explicitly, for each compact set K b Amp .
/, each " > 0 and each k 2 N, the
Ck-norm of ' on K � Œ"; T � is bounded in terms of 
 , C , T , p and C1 bounds for
.
t / on X � Œ0; T � and for  ˙ in any given neighborhood of K .

During the proof, we shall use the following notation. We introduce the smooth
path of Kähler forms

!t WD 
t C ddc't ;

and denote by �t D tr !t dd
c the corresponding time-dependent Laplacian operator

on functions. We trivially have
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�
@

@t
��t

�
' D P' C tr 
t .
t /� n; (4.11)

where P' is a short-hand for @'

@t
. Writing P
t for the time-derivative of 
t , it is also

immediate to see that
�
@

@t
��t

�
P' D tr 
t . P
t / (4.12)

To simplify the notation, we set � WD Amp .
/, and choose a 
-psh function  
 as
in Lemma 4.3.1, so that  
 ! �1 near @� and

!� WD .
 C ddc 
 /j�
is the restriction to � of a Kähler form on a compactification of � dominating X .
Since 
t � 
 for all t , (4.11) shows that

�
@

@t
��t

�
.' �  
/ � P' C tr 
t .!�/� n (4.13)

on � � Œ0; T �.
As a matter of terminology, we shall say that a quantity is under control if it can

be bounded by a constant only depending on the desired quantities within the proof
of a given lemma.

4.4.2 A Global C 0-Estimate

Lemma 4.4.2. Suppose that ' 2 C1 .X � Œ0; T �/ satisfies (4.10). Assume given
C > 0, p > 1 such that

(i)
R
X

nt � C for t 2 Œ0; T �;

(ii)
R
X
� � C�1 and kf kLp � C for the density f WD �=!nX .

Then there exists a constant A > 0 only depending on 
 , p, T and C such that

sup
X�Œ0;T �

j'j � sup
X�f0g

j'j C A:

Proof. Step 0: an auxiliary construction. We introduce an auxiliary function,
which will also be used in the proof of Lemma 4.4.4 below. For " 2 .0; 1=2�

introduce the Kähler form

�" WD .1 � "/
 C "2!X ;
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and set

c" WD log

�R
�n"R
�

�
:

Since 
t is a continuous family of Kähler forms, we can fix " > 0 small enough
such that 
t � "!X for all t 2 Œ0; T �. Since

R
X

n is positive, c" is under control,

even though " itself is not! Observe also that 
t � .1 � "/
 C "
t , and hence


t � �" for t 2 Œ0; T �: (4.14)

By [Yau78] there exists a unique smooth �"-psh function �" such that
supX �" D 0 and

.�" C ddc�"/
n D ec"�: (4.15)

Since the Lp-norm of the density of ec"� is under control and since

1
2

 � �" � 
 C !X � C1!X

with C1 > 0 only depending on 
 , the uniform version of Kolodziej’s
L1-estimates [EGZ09] shows that the C0 norm of �" is under control.
Step 1: lower bound. Consider �" and �" as in Step 0, and set

H WD ' � �" � c"t:

By (4.15) and (4.14) we get

@H

@t
D log

.
t C ddc�" C ddcH/n

.�" C ddc�"/n
� log

.
t C ddc�" C ddcH/n

.
t C ddc�"/n

on X � Œ0; T �, and hence infX�Œ0;T � H D infX�f0gH by Proposition 4.1.3. Since
c" and the C0 norm of �" are both under control, we get the desired lower bound
for '.
Step 2: upper bound. By non-negativity of the relative entropy of the probability
measure �=

R
� with respect to

.
t C ddc'/nR

nt

D e P'�R

nt

(or, in other words, by concavity of the logarithm and Jensen’s inequality), we
have

Z �
log

�R

ntR
�

�
� P'

�
� � 0:
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It follows that

d

dt

�Z
't�

�
�
�Z

�

�
log

�Z

nt

�
�
�Z

�

�
log

�Z
�

�

� kf kLp
�Z

!nX

�1�1=p
logC C e�1 DW A1

is under control, and hence

sup
t2Œ0;T �

R
't�R
�

�
R
'0�R
�

C A1T � sup
X

'0 CA1T

with A1 > 0 under control. We claim that there exists B > 0 under control such
that

sup
X

 �
R
 �R
�

C B

for all 
-psh functions  . Applying this with  D 't will yield the desired
control on its upper bound. By Skoda’s integrability theorem in its uniform
version [Zer01], there exist ı > 0 and B > 0 only depending on 
 such that

Z
e�ı !nX � B

for all 
-psh functions  normalized by supX  D 0. By Hölder’s inequality, it
follows that

R
e�ı0 � � B 0 with ı0; B 0 under control, and the claim follows by

Jensen’s inequality. ut
Remark 4.4.3. The proof given above is directly inspired from that of [ST09,
Lemma 3.8]. Let us stress, as a pedagogical note to the non expert reader, that the
C0-estimate thus follows from

• The elementary maximum principle (Proposition 4.1.3);
• Kolodziej’s L1 estimate for solutions of Monge–Ampère equations [Kol98,

EGZ09];
• Skoda’s exponential integrability theorem for psh functions (which is in fact also

an ingredient in the previous item).

4.4.3 Bounding the Time-Derivative and the Laplacian
on the Ample Locus

Lemma 4.4.4. Suppose that ' 2 C1 .X � Œ0; T �/ satisfies (4.10). Assume that the
volume form � is written as
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� D e 
C� �

!nX

with  ˙ 2 C1.X/, and let C > 0 be a constant such that

(i) �C!X � P
t � C!X for t 2 Œ0; T �;
(ii) supX  

˙ � C ;
(iii) ddc ˙ � �C!X .

For each compact set K � �, we can then find A > 0 only depending on K , 
 , T
and C such that

sup
K�Œ0;T �

t .j P'j C log j�'j/ � A

 
1C sup

X�Œ0;T �
j'j � inf

K
 �

!
;

where � denotes the Laplacian with respect to the reference metric !X .

Proof. Since !� extends to a Kähler form on a compactification of � dominating
X , there exists a constant c > 0 under control such that !� � c!X , and hence


t C ddc 
 � c!X (4.16)

on � � Œ0; T � since 
t � 
 .

Step 1: upper bound for P'. We want to apply the maximum principle to

HC WD t P' C A. 
 � '/;

with a constant A > 0 to be specified in a moment. Thanks to (4.12) and (4.13),
we get

�
@

@t
��t

�
HC � �.A � 1/ P' C tr !t



t P
t � A!�

�
C An:

By (i) and (4.16) we have

t P
t � A!� � TC!X � Ac!X:

Choosing

A WD c�1TC C 1;

we obtain
�
@

@t
��t

�
HC � �A1 P' C A2 (4.17)
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with A1;A2 > 0 under control. We are now in a position to apply the maximum
principle. Since  
 ! �1 near @�, HC achieves its maximum on � � Œ0; T �
at some point .x0; t0/. If t0 D 0 then

sup
��Œ0;T �

HC � �A inf
X
';

since  
 � 0. If t0 > 0 then
�
@
@t

��t

�
HC � 0 at .x0; t0/, and (4.17) yields an

upper bound for P' at .x0; t0/. It follows that

sup
��Œ0;T �

HC � C1 � A inf
X
':

with C1 > 0 under control. Since  
 is bounded below on the given compact set
K � �, we get in particular the desired upper bound on t P'.
Step 2: lower bound for P'. We now want to apply the maximum principle to

H� WD t.� P' C 2 �/C A. 
 � '/;

which satisfies by (4.12) and (4.13)

�
@

@t
��t

�
H� � �.AC1/ P'C2 �Ctr !t



�t P
t � 2tddc � �A!�

�
CAn:

(4.18)

On the one hand, note that

� P' D log

�
!nX
!nt

�
C  C �  �;

and hence

� P' � . P' � 2 �/C 2 log

�
!nX
!nt

�
C 2C

since supX  
C � C . Using  
 � 0, we also have t. P' � 2 �/ � �.H� CA'/,

and we get

�.AC1/ P'C2 � � �t�1.AC1/.H�CA'/C2.AC1/ log

�
!nX
!nt

�
C.2AC4/C

on X � .0; T �, using this time supX  
� � C . On the other hand, (i), (iii) and

(4.16) show that

�t P
t � 2tddc � � A!� � .3TC � Ac/!X ;

which is bounded above by �!X if we choose
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A WD c�1 .3TC C 1/ :

Plugging these estimates into (4.18), we obtain

�
@

@t
��t

�
H� � �t�1.AC1/.H�CA'/C2.AC1/ log

�
!nX
!nt

�
�tr !t .!X/CC2

on � � .0; T �, with C2 > 0 under control. By the arithmetico-geometric
inequality and the fact that 2.A C 1/ logy � ny1=n is bounded above for y 2
.0;C1Œ, we have

2.AC 1/ log

�
!nX
!nt

�
� tr !t .!X/ � 2.AC 1/ log

�
!nX
!nt

�
� n

�
!nX
!nt

�1=n
� C3

and hence
�
@

@t
��t

�
H� � �t�1.AC 1/.H� CA'/C C4 (4.19)

with C3; C4 > 0 under control. We can now apply the maximum principle to
obtain as before

sup
��Œ0;T �

H� � C5 � A inf
X
':

this yields the desired lower bound on P'.
Step 3: Laplacian bound. We are going to apply the maximum principle to

H WD t.log tr !�.!t /C  �/CA. 
 � '/;

with A > 0 to be specified below. Since !� extends to a Kähler metric on some
compactification of �, its holomorphic bisectional curvature is bounded below
by �C1 with C1 > 0 under control, and Proposition 4.1.2 yields

��t log tr !�.!t / � tr !�Ric.!t /

tr !�.!t /
C C1tr !t .!�/: (4.20)

On the one hand, we have Ric.!t / D Ric.�/ � ddc P' since !nt D e P'�. On the
other hand,

@

@t
log tr !�.!t / D tr !�. P
t C ddc P't /

tr !�.!t /
;

and hence
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�
@

@t
��t

�
log tr !�.!t / �

tr !�



Ric.�/C P
t
�

tr !�.!t /
C C1tr !t .!�/:

Now P
t � C!X by assumption, and

Ric.�/ D �ddc C C ddc � C Ric.!X/ � C2!� C ddc �

for some C2 > 0 under control, using ddc C � �Cc�1!� and

Ric.!X / � C 0!X � C 0c�1!X :

It follows that
�
@

@t
��t

�
log tr !�.!t / � C3 C�!� 

�

tr !�.!t /
C C1tr !t .!�/

with C3 > 0 under control. In order to absorb the term involving  � in the
left-hand side, we note that Cc�1!� C ddc � � 0, and hence

Cc�1!� C ddc � � tr !t .Cc�1!� C ddc �/!t ;

which yields after taking the trace with respect to !�

0 � nCc�1 C�!� 
�

tr !�.!t /
� Cc�1tr !t .!�/C�t 

�:

Using the trivial inequality tr !�.!t /tr !t .!�/ � n we arrive at

�
@

@t
��t

�
.log tr !�.!t /C  �/ � C4tr !t .!�/ (4.21)

with C4 > 0 under control. By (4.21) and (4.11) we thus get

�
@

@t
��t

�
H � log tr !�.!t /C  � �A P' C .C4T �A/tr !t .!�/:

Lemma 4.1.1 shows that

log tr !�.!t /C  � � P' C .n � 1/ log tr !t .!�/C C5; (4.22)

since supX  
C � C and !X � C1!�. If we choose A WD C4T C 2, we finally

obtain
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�
@

@t
��t

�
H � �tr !t .!�/� C6 P' C C7; (4.23)

since .n � 1/ logy � 2y � �y CO.1/ for y 2 .0;C1/.

We are now in a position to apply the maximum principle. Since  
 ! �1 near
@�, there exists .x0; t0/ 2 � � Œ0; T � such that H.x0; t0/ D sup��Œ0;T � H . If t0 D 0

then

sup
��Œ0;T �

H � A sup
X

j'0j;

using  
 � 0. If t0 > 0 then
�
@
@t

��t

�
H � 0 at .x0; t0/, and (4.23) yields

tr !t .!�/C C6 P' � C7;

and in particular P' < C7=C6, at .x0; t0/. Plugging this into (4.22), it follows that

log tr !�.!t /C  � � P' C .n � 1/ log.�C6 P' C C7/C C5

at .x0; t0/. Since yC.n�1/ log.�C6yCC7/ is bounded above for y 2��1; C7=C6Œ,
we get log tr !�.!t /C  � � C8 at .x0; t0/, and hence

sup
��Œ0;T �

H D H.x0; t0/ � A sup
X�Œ0;T �

j'j C TC8:

Finally, there exists a constant CK > 0 such that on the given compact set K � �

we have  
 � �CK and !� � CK!, and the result follows. ut
Remark 4.4.5. The arguments used to bound the time-derivative are a combination
of the proofs of Lemmas 3.2 and 3.9 in [ST09]. The proof of the Laplacian bound
is similar in essence to that of [ST09, Lemma 3.3].

4.4.4 Bounding the Time Derivative in the Affine Case

Lemma 4.4.6. Under the assumptions of Lemma 4.4.2, suppose that .
t / is an
affine path, so that P
t is independent of t . Then we have

sup
X�Œ0;T �

.t P'/ � 2 sup
X�Œ0;T �

j'j C nT;

and for each T 0 < T there exists A > 0 only depending on 
 , C , p and T 0 such
that
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inf
X�Œ0;T 0�

.t P'/ � �A
 
1C sup

X�Œ0;T �
j'j
!
:

Proof. The upper bound follows directly from the maximum principle applied to

HC WD t P' � ' � nt;

which satisfies
�
@

@t
��t

�
HC D tr !t .t P
t � 
t / D tr !t .�
0/ � 0

on X � Œ0; T �. To get the lower bound, take �" as in Step 0 of the proof of
Lemma 4.4.2, and set

H� WD �t P' � A' C �":

where A > 0 will be specified in a moment. We then have

�
@

@t
��t

�
H� D �.AC 1/ P' C tr !t .�t P
t �A
t � ddc�"/C An:

Since 
t is affine, we have

A
t C t P
t D A

�

0 C t P
t C t

A
P
t
�

D A
.AC1/t=A;

and hence

A
t C t P
t � �"

for t 2 Œ0; T 0� by (4.14), if we fix A 
 1 such that .A C 1/T 0=A < T . With this
choice of A we get on X � Œ0; T 0�

�
@

@t
��t

�
H� � .AC 1/ log

�
�

!nt

�
� tr !t .�" C ddc�"/CAn

� .AC 1/ log

�
�

!nt

�
� nec"=n

�
�

!nt

�1=n
� A1

with A1 > 0 under control, using the arithmetico-geometric inequality, (4.15) and
the fact that .A C 1/ logy � nec"=ny1=n is bounded above for y 2 .0;C1/. The
lower bound for t P' follows from the maximum principle, since supX j�"j is under
control. ut
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Remark 4.4.7. This result corresponds to [ST09, Lemma 3.21].

4.4.5 Proof of Theorem 4.4.1

We are now in a position to prove Theorem 4.4.1. Since supX  
C is assumed to

be bounded below, the mean value inequality for C!X -psh functions shows thatR
 C!nX is also bounded below. By Jensen’s inequality and the upper bound on

 �, it follows that condition (i) in Lemma 4.4.2 is satisfied. Using the upper bound
on  C and the Lp bound for e� �

, we also check condition (ii) of Lemma 4.4.2,
which therefore shows that the sup-norm of ' on X � Œ0; T � is bounded in terms
of C .

By Lemma 4.4.4, on any given neighborhood of K � Œ"; T � j P'j and j�'j are
bounded in terms of the C , the C1 norm of .
t / on X � Œ0; T � and the C0 norm of
 � on the neighborhood in question. We conclude by applying the Evans–Krylov
type estimates of Theorem 4.1.4 locally on the ample locus of 
 .

4.5 Proof of the Main Theorem

Our goal in this section is to prove Theorems 4.3.3 and 4.3.5.

4.5.1 The Non-degenerate Case

As a first step towards the proof of Theorem 4.3.3, we first consider the non-
degenerate case, which amounts to the following result:

Theorem 4.5.1. Let X be a compact Kähler manifold and 0 < T < C1. Let
.
t /t2Œ0;T � be a smooth family of Kähler forms on X and let � be a smooth positive
volume form. If '0 2 C1.X/ is strictly 
0-psh, i.e. 
0 C ddc'0 > 0, then there
exists a unique ' 2 C1 .X � Œ0; T �/ such that 'jX�f0g D '0 and

@'

@t
D log

�
.
t C ddc'/n

�

�

on X � Œ0; T �.
At least in the case of the Kähler–Ricci flow, this result goes back to [Cao85,
Tsu88, Tzha06], see Theorem 3.3.1 in Chap. 3 of the present volume. But since the
above statement follows directly from the a priori estimates we have proved so far
(Theorem 4.4.1), we may as well provide a proof for completeness.
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Proof. Uniqueness follows from the maximum principle (Proposition 4.1.3). By the
general theory of non-linear parabolic equations, the solution ' is defined on a
maximal half-open interval Œ0; T 0/ with T 0 � T . Since .
t /t2Œ0;T � is a smooth path
of Kähler metrics, we have 
t � c!X for all t 2 Œ0; T � if c > 0 is small enough, and
we may thus apply Theorem 4.4.1 with 
 D c!X and K D X D Amp .
/ to get
that all Ck norms of ' are bounded onX� Œ"; T 0/ for any fixed " > 0. It follows that
' extends to a C1 function on X � Œ0; T 0�. Since P' is in particular bounded below,
the smooth function 'jX�fT 0g is strictly 
T 0-psh. By the local existence result, we
conclude that T 0 D T , since ' could otherwise be extended beyond the maximal
existence time T 0. ut

4.5.2 A Stability Estimate

If '; ' 0 2 C1 .X � Œ0; T �/ are two solutions as in Theorem 4.5.1 corresponding
to two initial data '0; ' 0

0 2 C1.X/, the maximum principle of Proposition 4.1.3
immediately implies that

k' � ' 0kC0.X�Œ0;T �/ � k'0 � ' 0
0kC0.X/:

In order to treat the general case of Theorem 4.3.3, we need to generalize this
estimate when the path of Kähler metrics .
t / is allowed to vary as well.

Proposition 4.5.2. Let .
t /t2Œ0;T � and .
 0
t /t2Œ0;T � be two smooth paths of Kähler

metrics on X , and suppose that '; ' 0 2 C1 .X � Œ0; T �/ satisfy

@'

@t
D log

�
.
t C ddc'/n

�

�

and

@' 0

@t
D log

�
.
 0
t C ddc'/n

�

�
;

with the same volume form � in both cases. As in Theorem 4.4.1, write � as

� D e 
C� �

!nX

with  ˙ 2 C1.X/, and assume given C > 0 and p > 1 such that

(i) 
t � C!X and 
 0
t � C!X for t 2 Œ0; T �;

(ii) �C � supX  
˙ � C ;

(iii) ddc ˙ � �C!X ;
(iv) ke� �kLp � C .
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Finally, let 
 be a semipositive .1; 1/-form with big cohomology class such that

(v) 
t � 
 and 
 0
t � 
 for t 2 Œ0; T �.

For each compact subset K b Amp .
/, we can then find a constant A > 0 only
depending on K , 
 , C , p and T such that

k' � ' 0kC0.K�Œ0;T �/ � k'0 � ' 0
0kC0.X/

C A

�
1C k'0kC0.X/ C k' 0

0kC0.X/ � inf
K
 �

�

k
t � 
 0
t kC0.X�Œ0;T �/:

Proof. Set N WD k'0 � ' 0
0kC0.X/ and M D k
t � 
 0

tkC0.X�Œ0;T �/. We may assume
that M > 0, and we set for � 2 Œ0;M �


�t WD �
1 � �

M

�

t C �

M

 0
t :

For each � fixed, .
�t /t2Œ0;T � is a smooth path of Kähler forms, and Theorem 4.5.1
yields a unique solution '� 2 C1 .X � Œ0; T �/ to the parabolic complex Monge–
Ampère equation

8̂
<̂
ˆ̂:

@'�

@t
D log

"�

�t C ddc'�

�n
�

#

'�jX�f0g D �
1 � �

M

�
'0 C �

M
' 0
0

(4.24)

By the local existence theory, '� depends smoothly on the parameter�. If we denote
by ��

t the Laplacian with respect to the Kähler form

!�t WD 
�t C ddc'�t ;

then we have

�
@

@t
���

t

��
@'�

@�

�
D tr !�t

�
@
�t
@�

�
;

and hence

�
@

@t
���

t

��
@'�

@�

�
D M�1tr !�t

�

 0
t � 
t

� � tr !�t .!X /; (4.25)

by definition of M .
Using the notation of Sect. 4.4.1, we are going to apply the maximum principle

to the functionH 2 C1 .� � Œ0; T �/ defined by
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H WD e�At
�
@'�

@�

�
C A � CA2. 
 � '�/;

where A > 0 will be specified below. Using (4.13), (4.25) and ddc � � �C!X ,
we compute

�
@

@t
���

t

�
H � �Ae�At

�
@'�

@�

�
C tr !�t

�
e�At!X C AC!X

�

CA2 log

"
��
!�t
�n
#

� A2tr !�t .!�/C A2n

D �AH C A2 � C A3. 
 � '�/C .1C AC/tr !�t .!X/

CA2 C � A2 � CA2 log

�
!nX

.!�t /
n

�
�A2tr !�t .!�/C A2n:

Since !� � c!X for some c > 0 under control, the arithmetico-geometric
inequality allows us, just as before, to choose A 
 1 under control such that

.1C AC/tr !�t .!X/C A2 log

�
!nX

.!�t /
n

�
� A2tr !�t .!�/ � A1

withA1 > 0 under control. By Lemma 4.4.2, there existsA2 > 0 under control such
that

sup
X�Œ0;T �

j'�j � k'0kC0.X/ C k' 0
0kC0.X/ C A2: (4.26)

Using  C � C and  
 � 0, we finally get

�
@

@t
���

t

�
H � �AH CA3

�k'0kC0.X/ C k' 0
0kC0.X/

�C A3

with A3 > 0 under control. Now

H j��f0g � M�1N C A � C A2
�k'0kC0.X/ C k' 0

0kC0.X/
�
;

and the maximum principle thus yields

sup
��Œ0;T �

H � M�1N C A4
�
1C k'0kC0.X/ C k' 0

0kC0.X/
�
:

Since  
 is bounded below on the given compact set K , we get using again (4.26)
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sup
K�Œ0;T �

@'�

@�
� M�1N C A5

�
1C k'0kC0.X/ C k' 0

0kC0.X/ � inf
K
 �

�
:

Integrating with respect to � 2 Œ0;M � and exchanging the roles of ' and ' 0 yields
the desired result. ut
Remark 4.5.3. The proof of Proposition 4.5.2 is directly adapted from that of
[ST09, Lemma 3.14].

4.5.3 The General Case

We now consider as in Theorem 4.3.3 a smooth path .
t /t2Œ0;T � of closed semiposi-
tive .1; 1/-forms such that 
t � 
 for a fixed closed semipositive .1; 1/-form 
 with
big cohomology class. Let � be a positive measure on X of the form

� D e 
C� �

!nX

where

•  ˙ are quasi-psh functions on X (i.e. there exists C > 0 such that  ˙ are both
C!X -psh);

• e� � 2 Lp for some p > 1;
•  ˙ are smooth on a given Zariski open subset U � Amp .
/.

Given '0 2 C0.X/ \ PSH.X; 
0/, our goal is to prove the existence and
uniqueness of

' 2 C0
b .U � Œ0; T �/ \ C1 .U � .0; T �/

such that 'jU�f0g D '0 and

@'

@t
D log

�
.
t C ddc'/n

�

�
(4.27)

on U � .0; T /.

4.5.3.1 Existence

We regularize the data. By Demailly [Dem92], there exist two sequences  k̇ 2
C1.X/ such that

•  k̇ decreases pointwise to  ˙ on X , and the convergence is in C1 topology
on U ;
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• ddc k̇ � �C!X for a fixed constant C > 0.

Note that
ˇ̌
supX  k̇

ˇ̌
is bounded independently of k, while we have for all k

ke� �

k kLp � ke� �kLp :

By Richberg’s theorem, we similarly get a decreasing sequence 'j0 2 C1.X/ such

that ıj WD supX

ˇ̌
ˇ'j0 � '0

ˇ̌
ˇ ! 0 and 
0 C ddc'j0 > �"j! with "j ! 0. We then

set

• 

j
t WD 
t C "j!X ;

• �k;l D e 
C

k � �

l !nX .

Since .
jt /t2Œ0;T � is a smooth path of Kähler forms, �k;l is a smooth positive volume
form and 'j0 is smooth and strictly 
j0 -psh, Theorem 4.5.1 shows that there exists a
unique function 'j;k;l 2 C1 .X � Œ0; T �/ such that

8̂
ˆ̂̂<
ˆ̂̂̂
:

@'j;k;l

@t
D log

2
64




j
t C ddc'j;k;l

�n
�k;l

3
75

'j;k;l jX�f0g D '
j
0 :

(4.28)

By Theorem 4.4.1, 'j;k;l is uniformly bounded on X � Œ0; T �, and bounded in C1
topology on U � .0; T �.

Furthermore, the maximum principle (Proposition 4.1.3) shows that for each j
fixed the sequence 'j;k;l is increasing (resp. decreasing) with respect to k (resp. l).
As a consequence,

'j;k D lim
l!1'j;k;l ; 'j D lim

k!1'j;k

define bounded functions onX � Œ0; T � that are uniformly bounded in C1 topology
on U � .0; T �. Note also that 'j jX�f0g D '

j
0 by construction. The stability estimate

of Proposition 4.5.2 shows that for each compact K � U there exists AK > 0 such
that

sup
K�Œ0;T �

ˇ̌
'i;k;l � 'j;k;l

ˇ̌ � AK
�
ıi C ıj C "i C "j

�
(4.29)

for all i; j; k; l , and hence

sup
K�Œ0;T �

ˇ̌
'i � 'j

ˇ̌ � AK
�
ıi C ıj C "i C "j

�

for all i; j . As a consequence, .'i / is a Cauchy sequence in the Fréchet space
C0 .U � Œ0; T �/, and hence converges uniformly on compact sets of U � Œ0; T � to a
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bounded function ' 2 C0 .U � Œ0; T �/, the convergence being in C1 topology on
U � .0; T �. Passing to the limit in (4.28) shows that ' satisfies (4.27) on U � .0; T /,
and ' coincides with '0 D limj '

j
0 on U � f0g.

4.5.3.2 Uniqueness

Let ' be the function just constructed, and suppose that

' 0 2 C0
b .U � Œ0; T �/ \ C1 .U � .0; T //

satisfies (4.27). We are going to show that

sup
U�Œ0;T �

j' � ' 0j D sup
U�f0g

j' � ' 0j;

which will in particular imply the desired uniqueness statement.
By Lemma 4.3.2, we can choose a 
-psh function U � 0 that is smooth onU and

tends to �1 near @U . Fix 0 < c � 1 with c 
 � !X , so that !X C c ddcU � 0.
For a given index j define Hj 2 C0 .U � Œ0; T // \ C1 .U � .0; T // by

Hj WD 'j � ' 0 � c"j U ;

using the same notation as in the proof of the existence of '. On U � .0; T / we have

@Hj

@t
D log

�
.
t C "j!X C ddc'j /n

.
t C ddc' 0/n

�

D log

"�

t C ddc' 0 C ddcHj C "j .!X C c ddcU /

�n
.
t C ddc' 0/n

#

� log

"�

t C ddc' 0 C ddcHj

�n
.
t C ddc' 0/n

#
;

and hence

inf
U�Œ0;T / H

j D inf
U�f0g

Hj

by Proposition 4.1.3. Since 'j0 ! '0 uniformly on U � f0g and U � 0, we get in
the limit as j ! 1

inf
U�Œ0;T /.' � ' 0/ � inf

U�f0g
.' � ' 0/:
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In order to prove the similar inequality with the roles of ' and ' 0 exchanged, we
need to introduce yet another parameter in the construction of ', in order to allow
more flexibility. For each ı 2 Œ0; 1/, .1� ı/'j is smooth and strictly .1� ı/
j0 -psh,
and Theorem 4.5.1 thus yields a unique function 'ı;j;k;l 2 C1 .X � Œ0; T �/ such
that

8̂
ˆ̂̂<
ˆ̂̂̂
:

@'ı;j;k;l

@t
D log

2
64


.1 � ı/


j
t C ddc'ı;j;k;l

�n
�k;l

3
75

'ı;j;k;l jX�f0g D .1 � ı/'j :

(4.30)

If we further require that ı 2 Œ0; 1=2�, then .1 � ı/

j
t � 1

2

 for all j and t , and we

thus see just as before that 'ı;j;k;l is monotonic with respect to k and l , uniformly
bounded on X � Œ0; T � and bounded in C1 topology on U � .0; T �, and that for
each compactK b U we have an estimate

sup
K�Œ0;T /

ˇ̌
'ı;i;k;l � 'ı;j;k;l

ˇ̌ � AK."i C "j C ıi C ıj /:

We may thus consider

'ı D lim
j!1 lim

k!1 lim
l!1'ı;j;k;l ;

which belongs to C0 .U � Œ0; T �/ \ C1 .U � .0; T // and satisfies

@'ı

@t
D log

�
..1 � ı/
t C ddc'ı/n

�

�
:

Since k'j;k;l0 �'ı;j;k;l0 kC0.X/ and k
jt �.1�ı/
jt kC0.X�Œ0;T �/ are bothO.ı/ uniformly
with respect to j; k; l , Proposition 4.5.2 shows that

sup
K�Œ0;T �

ˇ̌
'ı;j;k;l � 'j;k;l

ˇ̌ � CKı

for each compact K b U , with CK > 0 independent of ı; j; k; l , and hence in the
limit

sup
K�Œ0;T �

ˇ̌
'ı � ' ˇ̌ � CKı (4.31)

for all ı 2 Œ0; 1=2�. Now define for each ı 2 Œ0; 1=2� a function Hı 2
C0 .U � Œ0; T �/ \ C1 .U � .0; T �/ by

Hı WD ' 0 � 'ı � ıU :
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We have

@Hı

@t
D log

"�
.1 � ı/
t C ddc'ı C ı.
t C ddcU /C ddcHı

�n
�
.1 � ı/
t C ddc'ı

�n
#

� log

"�
.1 � ı/
t C ddc'ı C ddcHı

�n
�
.1 � ı/
t C ddc'ı

�n
#
;

and hence

inf
U�Œ0;T �H

ı D inf
U�f0g

Hı:

Since U � 0, we get

' 0 � 'ı � ıU C inf
U�f0g

.' 0 � .1 � ı/'/

on U � Œ0; T �, and hence

inf
U�Œ0;T �.'

0 � '/ � inf
U�f0g

.' 0 � '/

in the limit as ı ! 0, using (4.31) and the fact that ' is bounded.

4.5.4 The Affine Case: Proof of Theorem 4.3.5

We use the notation of the existence proof above. If .
t / is an affine path, then so
is 
jt D 
t C "j!X . We may thus apply Lemma 4.4.6 to conclude that for each

" > 0, @'j;k;l

@t
is uniformly bounded above on X � Œ"; T �, and uniformly bounded

below on X � Œ"; T � "�. Since ' is a limit of 'j;k;l in C1-topology on U � .0; T �,
we conclude as desired that @'

@t
is bounded above on U � Œ"; T � and bounded below

on U � Œ"; T � "�.
Denote also by ' the quasi-psh extension to X � Œ0; T � and let " > 0. Since the

time derivative is bounded above on X � Œ"; T �, there exists C" > 0 such that

.
t C ddc'/n � C"�

on X � ftg for each t 2 Œ"; T �. By the results of [EGZ11] (which rely on viscosity
techniques), if follows that ' is continuous on X � ftg for each t 2 Œ"; T �. Since the
time derivative is bounded onU�Œ"; T �"�, ' is also uniformly Lipschitz continuous
in the time variable on X � Œ"; T � "�, and it follows as desired that ' is continuous
on X � .0; T /.
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Remark 4.5.4. It is of course reasonable to expect that ' is in fact continuous on
the whole of X � Œ0; T �.

4.6 The Kähler–Ricci Flow on a Log Terminal Variety

4.6.1 Forms and Currents with Local Potentials

Let X be a complex analytic space with normal singularities, and denote by n its
dimension. Since closed .1; 1/-forms and currents on X are not necessarily locally
ddc-exact in general, we need to rely on a specific terminology (compare [EGZ09,
Sect. 5.2]). We refer for instance to [Dem85] for the basic facts on smooth functions,
distributions and psh functions on a complex analytic space. The main point for us is
that any psh function on Xreg uniquely extends to a psh function onX by normality,
see [GR56]. For lack of a proper reference, we include:

Lemma 4.6.1. Any pluriharmonic distribution on X is locally the real part of a
holomorphic function, i.e. the kernel of the ddc operator on the sheaf D0

X of germs
of distributions coincides with the sheaf <OX of real parts of holomorphic germs.

Proof. If u 2 D0
X satisfies ddcu D 0, then ˙u is psh on Xreg, and hence extends

to a psh function on X by Grauert and Remmert [GR56]. In particular, ˙u is usc
and bounded above, which means that u is the germ of a continuous (finite valued)
function.

From there on, the proof is basically the same as [FS90, Proposition 1.1]. Let � W
X 0 ! X be a proper bimeromorphic morphism with X 0 smooth. Since ˙.u ı �/ is
psh on the complex manifold X 0, we have u 2 �� .<OX 0/. We will thus be done if
we prove that

�� .<OX 0/ D <OX:

Since X is normal, Zariski’s main theorem implies that ��OX 0 D OX , and hence �
has connected fibers. The claim is thus that the coboundary morphism

�� .<OX 0/ ! R1��.iR/ (4.32)

associated to the short exact sequence

0 ! iR ! OX 0 ! <OX 0 ! 0

is zero. For each x 2 X , the composition of (4.32) with the restriction morphism

R1�� .iR/x ! H1
�
��1.x/; iR

�
(4.33)
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is zero, because it factors through

H0
�
��1.x/;<O��1.x/

� D R

by the maximum principle, ��1.x/ being compact and connected. But (4.33) is
in fact an isomorphism, just because � is a proper map between locally compact
spaces (cf. for instance [Dem09, Theorem 9.10, p. 223]), and it follows as desired
that (4.32) is zero. ut
Definition 4.6.2. A .1; 1/-form (resp. .1; 1/-current) with local potentials on X is
defined to be a section of the quotient sheaf C1

X =<OX (resp. D0
X=<OX ). We also

introduce the Bott–Chern cohomology space

H1;1
BC .X/ WD H1.X;<OX/:

Thanks to Lemma 4.6.1, a .1; 1/-form with local potentials can be more concretely
described as a closed .1; 1/-form 
 on X that is locally of the form 
 D ddcu for
a smooth function u. We say that 
 is a Kähler form if u is strictly psh. Similarly, a
closed .1; 1/-current T with local potentials is locally of the form ddc' where ' is
a distribution. Since X is normal, and hence locally irreducible, ddc' is a positive
current iff ' is a psh function.

The sheaves C1
X and D0

X being soft, hence acyclic, the cohomology long exact
sequence shows that H1;1

BC .X/ is isomorphic to the quotient of the space of .1; 1/-
forms (resp. currents) with local potentials by ddcC1.X/ (resp. ddcD0.X/). In
particular, any .1; 1/-current T with local potentials can be (globally) written as

T D 
 C ddc'

where 
 is a .1; 1/-form with local potentials and ' is a distribution.
Note also thatH1;1

BC .X/ is finite dimensional whenX is compact, as follows from
the cohomology long exact sequence associated to

0 ! iR ! OX ! <OX ! 0

and the finite dimensionality of H1.X;OX/ andH2.X;R/.

Proposition 4.6.3. Let ˛ 2 H
1;1
BC .X/ be a .1; 1/-class on a normal complex space

X , and let T be a closed positive .1; 1/-current on Xreg representing the restriction
˛jXreg to the regular part of X . Then:

(i) T uniquely extends as a positive .1; 1/-current with local potentials on X , and
the ddc-class of the extension coincides with ˛;

(ii) if X is compact Kähler and if T has locally bounded potentials on an open
subset U of Xreg, then the positive measure T n, defined on U in the sense of
Bedford–Taylor, has finite total mass on U .



4 Regularizing Properties of the Kähler–Ricci Flow 231

Proof. Let 
 be a .1; 1/-form with local potentials representing ˛. On Xreg we then
have T D 
 jXreg Cddc', where ' is a 
-psh function onXreg. IfU is a small enough
neighborhood of a given point of X , then 
 D ddcu for some smooth function u on
U , and u C ' is a psh function on Ureg. By the Riemann-type extension property for
psh functions [GR56], u C' uniquely extends to a psh function on U , and (i) easily
follows.

Point (ii) follows from [BEGZ10, Proposition 1.16] (which is in turn an
easy consequence of Demailly’s regularization theorem [Dem92]). More precisely,
choose a resolution of singularities � W X 0 ! X , where X 0 can be taken to be a
compact Kähler manifold and� is an isomorphism aboveXreg. Denoting by h��T ni
the top-degree non-pluripolar product of ��T on X 0 (in the sense of [BEGZ10]),
we then have Z

U

T n D
Z
��1.U /

��T n �
Z
X 0

h��T ni < C1: ut

We will also use the following simple fact.

Lemma 4.6.4. Let � W X 0 ! X be a bimeromorphic morphism between normal
compact complex spaces, let A � X and A0 � X 0 be closed analytic subsets of
codimension at least 2, and let u be a psh function on .X 0 n A0/ \ ��1.X n A/.
Then u is constant.

Proof. Since A0 has codimension at least 2, u extends to a psh function on
��1.X n A/ by Grauert and Remmert [GR56]. By Zariski’s main theorem, � has
connected fibers, and u therefore descends to a psh function v on X n A, which
extends to a psh function on X since A has codimension at least 2. It follows that v
is constant. ut

4.6.2 Log Terminal Singularities

Recall that a complex space X is Q-Gorenstein if it has normal singularities and
if its canonical bundle KX exists as a Q-line bundle, which means that there exists
r 2 N and a line bundle L on X such that LjXreg D rKXreg .

Let X be a Q-Gorenstein space, and choose a log resolution of X , i.e. a
projective bimeromorphic morphism � W X 0 ! X which is an isomorphism over
Xreg and whose exceptional divisorE D P

i Ei has simple normal crossings. There
is a unique collection of rational numbers ai , called the discrepancies of X (with
respect to the chosen log resolution) such that

KX 0 �Q �
�KX C

X
i

aiEi ;

where �Q denotes Q-linear equivalence. By definition, X has log terminal singu-
larities iff ai > �1 for all i . This definition is independent of the choice of a log
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resolution; this will be a consequence of the following analytic interpretation of log
terminal singularities as a finite volume condition. As an example, quotient singular-
ities are log terminal, and conversely every two-dimensional log terminal singularity
is a quotient singularity (see for instance [KolMori98] for more information on log
terminal singularities).

After replacing X with a small open subset, we may choose a local generator �
of the line bundle rKX for some r 2 N

�. Restricting to Xreg, we define a smooth
positive volume form by setting

�� WD


i rn

2

� ^ N�
�1=r

: (4.34)

Such measures are called adapted measures in [EGZ09]. The key fact is then the
following analytic interpretation of the discrepancies:

Lemma 4.6.5. Let zi be a local equation ofEi , defined on a neighborhoodU � X 0
of a given point of E . Then we have

�
����

�
UnE D

Y
i

jzi j2ai dV

for some smooth volume form dV on U .

This result is a straightforward consequence of the change of variable formula.
As a consequence, a Q-Gorenstein variety X has log terminal singularities iff every
(locally defined) adapted measure�� has locally finite mass near each singular point
of X . The construction of adapted measures can be globalized as follows: let � be a
smooth metric on the Q-line bundle KX . Then

�� WD
 
i rn

2
� ^ N�

j� jr�

!1=r
(4.35)

becomes independent of the choice of a local generator � of rKX , and hence defines
a smooth positive volume form on Xreg, which has locally finite mass near points of
Xsing iff X is log terminal.

Remark 4.6.6. In [ST09], an adapted measure of the form �� for a smooth metric �
on KX is called a smooth volume form. We prefer to avoid this terminology, which
has the drawback that !n is in general not smooth in this sense even when ! is
a smooth positive .1; 1/-form on X . This is in fact already the case for quotient
singularities.

The following result illustrates why log terminal singularities are natural in the
context of Kähler–Einstein geometry.
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Proposition 4.6.7. Let X be a Q-Gorenstein compact Kähler space, and let ! be
a Kähler form on Xreg with non-negative Ricci curvature. Assume also that Œ!� 2
H1;1

BC .Xreg/ extends to X . Then X necessarily has log terminal singularities.

Recall that Œ!� extends to X iff ! extends as a positive .1; 1/-current with local
potentials, by Proposition 4.6.3.

Proof. The volume form !n, defined on Xreg, induces a Hermitian metric on KXreg .
If � is a local generator of the line bundle rKX near a given singular point of X ,
we can consider its pointwise norm j� j on Xreg, and it is easy to check from the
definitions that

�� D j� j2=r!n:

Since � is local generator, ddc log j� j is equal to minus the curvature form of the
metric on rKXreg , i.e.

ddc log j� j D rRic.!/:

The assumption therefore implies that log j� j is a local psh function on Xreg, and
hence extends to a local psh function on X by Grauert and Remmert [GR56]. In
particular, log j� j is locally bounded above onX , and we thus get near each singular
point of X �� � C!n for some constant C > 0. Since Œ!� extends to X , !n has
finite total mass on Xreg by Proposition 4.6.3, and it follows as desired that �� has
locally finite mass on X . ut

4.6.3 The Kähler–Ricci Flow on a Log Terminal Variety

Given an initial projective variety X0 with log terminal singularities and KX0

pseudoeffective, each step of the Minimal Model Program produces a birational
morphism f W X ! Y with X; Y projective and normal, X log terminal and
KX f -ample. The following result, due to Song and Tian [ST09], shows that it
is then possible to run the (unnormalized) Kähler–Ricci flow onX , starting from an
initial positive current with continuous local potentials coming from Y (the actual
assumption on the initial current in [ST09] being in fact slightly more demanding).

Theorem 4.6.8. Let f W X ! Y be a bimeromorphic morphism between two
normal compact Kähler spaces such that X is log terminal andKX is f -ample. Let
also ˛ 2 H1;1

BC .Y / be a Kähler class on Y , so that f �˛ C t ŒKX� is a Kähler class
in H1;1

BC .X/ for 0 < t � 1, and set

T0 WD sup ft 2 .0;C1/ j f �˛ C t ŒKX� is Kähler on Xg :
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Given a positive .1; 1/-current!0 with continuous local potentials onX and Œ!0� D
f �˛, there is a unique way to include !0 in a family .!t /t2Œ0;T0/ of positive .1; 1/-
currents with continuous local potentials on X such that

(i) Œ!t � D f �˛ C t ŒKX� for all t 2 Œ0; T0/;
(ii) setting � WD Xreg n Exc.f /, the local potentials of !t are continuous on � �

Œ0; T0/, and locally bounded on X � Œ0; T � for each T < T0;
(iii) .!t /t2.0;T0/ restricts to a smooth path of Kähler forms on � satisfying

@!t

@t
D �Ric.!t /:

Moreover, the measures!nt are uniformly comparable to any given adapted measure
as long as t stays in a compact subset of .0; T /.

This result of course applies in particular when f is the identity map and ˛ is any
Kähler class on X . This special case of Theorem 4.6.8 yields the following result
for the normalized Kähler–Ricci flow:

Corollary 4.6.9. Let X be a projective complex variety with log terminal singu-
larities such that ˙KX ample. Then each positive .1; 1/-current with continuous
local potentials !0 such that Œ!0� D Œ˙KX� extends in a unique way to a family
.!t /t2Œ0;C1/ of positive .1; 1/-currents with continuous local potentials such that

(i) Œ!t � D Œ˙KX� for all t 2 Œ0;C1/;
(ii) the local potentials of !t are continuous on Xreg � Œ0;C1/, and bounded on

X � Œ0; T � for each T 2 .0;C1/;
(ii) .!t /t2.0;C1/ restricts to a smooth path of Kähler forms on Xreg satisfying

@!t

@t
D �Ric.!t /� !t :

Moreover, the volume forms !nt are uniformly comparable to any given adapted
measure as long as t stays in a compact subset of .0; T /.

Indeed, as is well-known, setting

!0
s WD .1˙ s/!˙ log.1˙s/

defines a bijection between the solutions of

@!t

@t
D �Ric.!t /� !t

on Xreg � .0;C1/ and those of

@!0
s

@s
D �Ric.!0

s/
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on Xreg � .0; T0/, with Œ!0
s � D Œ˙KX�C sŒKX� and T0 D C1 when CKX is ample

(resp. T0 D 1 when �KX is ample).

Proof of Theorem 4.6.8. Since ˛ can be represented by a Kähler form on Y , we
may choose a closed semipositive .1; 1/-form 
0 with local potentials on X such
that Œ
0� D f �˛. We thus have !0 D 
0 C ddc'0 with '0 a continuous 
0-psh
function on X . Given T 2 .0; T0/, we can choose a Kähler form 
T representing
f �˛ C T ŒKX�, by definition of T0. For t 2 Œ0; T � set


t WD 
0 C t�

with � WD T �1.
T � 
0/, which defines an affine path of semipositive .1; 1/-forms
with local potentials. For t 2 Œ0; T �, the path of currents we are looking is of the
form !t D 
t C ddc't with

' 2 C0
b .� � Œ0; T �/ \ C1 .� � .0; T �/

and 'j��f0g D '0. Since � D T �1.
T � 
0/ is a representative of ŒKX�, we can
find a smooth metric � on the Q-line bundle KX having � as its curvature form.
If we denote by � WD �� the corresponding adapted measure, it follows from the
definitions that for any Kähler form ! on an open subset U of Xreg we have

� ddc log

�
!n

�

�
D �C Ric.!/ (4.36)

On � � .0; T �, the equation @!t
@t

D �Ric.!t / is thus equivalent to

ddc
�
@'

@t

�
D ddc log

�
.
t C ddc'/n

�

�
:

By Lemma 4.6.4, this amounts to

@'

@t
D log

�
.
t C ddc'/n

�

�
C c.t/

for some smooth function c W Œ0; T � ! R, since

� D f �1.Y n Ysing/\ .X n Xsing/

and X , Y each have a singular locus of codimension at least 2 by normality. After
choosing a primitive of c.t/, we can absorb it in the left-hand side, and we end up
with showing the existence and uniqueness of

' 2 C0
b .� � Œ0; T �/ \ C1 .� � .0; T �/
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such that 'j��f0g D '0 and

@'

@t
D log

�
.
t C ddc'/n

�

�

on � � .0; T �. Since 
T is a Kähler form, we have


T � 
 WD c 
0

for 0 < c � 1, and hence 
t � 
 for all t 2 Œ0; T �. Now let � W X 0 ! X be a
log resolution, which is thus in particular an isomorphism above Xreg, and pick a
Kähler form !X 0 onX 0. Since X has log terminal singularities, by Lemma 4.6.5 the
measure �0 WD ��� is of the form

�0 WD e 
C� �

!nX 0

where  ˙ are quasi-psh functions on X 0 with logarithmic poles along the excep-
tional divisor E , smooth on X 0 n E D ��1.Xreg/, and such that e� � 2 Lp for
some p > 1. We also have 
 0

t WD ��
t � 
 0 WD ��
 . Finally, since Œ
 0� is the
pull-back by f ı � of a Kähler class on Y , we have

Amp .
 0/ D X 0 n Exc.f ı �/ D ��1.�/ ' �:

Using Theorems 4.3.3 and 4.3.5, it is now easy to conclude the proof of Theo-
rem 4.6.8. ut
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Chapter 5
The Kähler–Ricci Flow on Fano Manifolds

Huai-Dong Cao

Abstract In these lecture notes, we aim at giving an introduction to the
Kähler–Ricci flow (KRF) on Fano manifolds. It covers mostly the developments of
the KRF in its first 20 years (1984–2003), especially an essentially self-contained
exposition of Perelman’s uniform estimates on the scalar curvature, the diameter,
and the Ricci potential function for the normalized Kähler–Ricci flow (NKRF),
including the monotonicity of Perelman’s �-entropy and �-noncollapsing theorems
for the Ricci flow on compact manifolds. The lecture notes is based on a mini-
course on KRF delivered at University of Toulouse III in February 2010, a talk on
Perelman’s uniform estimates for NKRF at Columbia University’s Geometry and
Analysis Seminar in Fall 2005, and several conference talks, including “Einstein
Manifolds and Beyond” at CIRM (Marseille—Luminy, fall 2007), “Program on
Extremal Kähler Metrics and Kähler–Ricci Flow” at the De Giorgi Center (Pisa,
spring 2008), and “Analytic Aspects of Algebraic and Complex Geometry” at CIRM
(Marseille— Luminy, spring 2011).

Introduction

In these lecture notes, we aim at giving an introduction to the Kähler–Ricci flow
(KRF) on Fano manifolds, i.e., compact Kähler manifolds with positive first Chern
class. It will cover some of the developments of the KRF in its first 20 years (1984–
2003), especially an essentially self-contained exposition of Perelman’s uniform
estimates on the scalar curvature, the diameter, and the Ricci potential function
(in C1-norm) for the normalized Kähler–Ricci flow (NKRF), including the mono-
tonicity of Perelman’s �-entropy and �-noncollapsing theorems for the Ricci flow
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on compact manifolds. Except in the last section where we shall briefly discuss the
formation of singularities of the KRF in Fano case, much of the recent progress since
Perelman’s uniform estimates are not touched here, especially those by Phong–
Sturm [PS06] and Phong–Song–Sturm–Weinkove [PSSW09, PSSW08b, PSSW11]
(see also [Pal08, CZ09, Sz10, Tos10a, MSz09, Zha11] etc.) tying the convergence of
the NKRF to a notion of GIT stability for the diffeomorphism group, in the spirit of
the conjecture of Yau [Yau93] (see also [Tian97,Don02]). We hope to discuss these
developments, as well as many works related to Kähler Ricci solitons, on another
occasion. We also refer the readers to the lecture notes by J. Song and B. Weinkove
in Chap. 3 of the present volume for some of the other significant developments
in KRF.

In spring 1982, Yau invited Richard Hamilton to give a talk at the Institute for
Advanced Study (IAS) on his newly completed seminal work “Three-manifolds
with positive Ricci curvature” [Ham82]. Shortly after, Yau asked me, Ben Chow and
Ngaiming Mok to present Hamilton’s work on the Ricci flow in details at Yau’s IAS
geometry seminar. At the time, Ben Chow and I were first year graduate students,
and Mok was an instructor at Princeton University. There was another fellow first
year graduate student, S. Bando, working with Yau. It was clear to us that Yau was
very excited about Hamilton’s work and saw its great potential. He encouraged us
to study and pursue Hamilton’s Ricci flow.

Besides attending courses at Princeton and Yau’s lecture series in geometric
analysis at IAS, I spent most of 1982 preparing for Princeton’s General Exami-
nation, a 3-hour oral exam covering two basic subjects (Real and Complex Analysis
and Algebra) plus two additional advanced topics. But I also continued to study
Hamilton’s paper. After I passed the General Exam in January 1983, I went to
see Yau and asked for his suggestion for a thesis problem. Yau immediately gave
me the problem to study the Ricci flow on Kähler manifolds, especially the long
time existence and convergence on Fano manifolds. At the time I hardly knew any
complex geometry (but I did not dare to tell Yau so). In the following months, I spent
a lot of time reading and trying to understand Yau’s seminal paper on the Calabi
conjecture [Yau78], and also Calabi’s paper on extremal Kähler metrics [Cal82]
suggested by Yau. In the mean time, it happened that Yau invited Calabi to visit IAS
in spring 1983 and I benefited a great deal from Calabi’s lecture series on “Vanishing
theorems in Kähler geometry” at IAS that spring.

By spring 1984 I had managed to prove the long time existence of the canonical
Kähler–Ricci flow by adopting Yau’s celebrated a priori estimates for the Calabi
conjecture to the parabolic case, as well as the convergence to Kähler–Einstein
metrics when the first Chern class c1 is either negative or zero. The convergence
proof when c1 D 0 used a version of the Li-Yau type estimate for positive solutions
to the heat equation with evolving metrics and an argument of J. Moser. But little
progress was made toward long time behavior when c1 > 0. Without being fully
aware of the significance and the difficulties of the problem in the Fano case, I felt
kind of uneasy that I did not meet my adviser’s high expectation. But to my relief,
Yau seemed quite pleased and encouraged me to write up the work. That resulted
in my 1985 paper [Cao85]. In fall of 1984, several of Yau’s Princeton graduate
students, including me and B. Chow, followed him to San Diego where both Richard
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Hamilton and Rick Schoen also arrived. By then Bando had used the short time
property of the flow to classify three-dimensional compact Kähler manifolds of
nonnegative bisectional curvature [Bando84] and graduated from Princeton. Shortly
after our arrival in San Diego, following Hamilton’s work in [Ham86], Ben Chow
and I also used the short time property of the flow to classify compact Kähler
manifolds with nonnegative curvature operator in all dimensions [CaoChow86].
In 1988, Mok’s work [Mok88] was published in which he was able to show (in 1986)
nonnegative bisectional curvature is preserved in all dimensions. By combining
the short time property of the flow and the existence of special rational curves by
Mori [Mori79], Mok proved the generalized Frankel conjecture in its full generality
(see also a recent new proof by H. Gu [Gu09]). Around the same time, Tsuji [Tsu88]
extended my work on the KRF for the negative Chern class case to compact complex
manifolds of general type (see also the related later work of Tian–Zhang [Tzha06]).
This is a brief history of the KRF in its early years.

Late 1980s and 1990s saw great advances in the Ricci flow by Hamilton [Ham88,
Ham93a, Ham93b, Ham95b, Ham95a, Ham97, Ham99] which laid the foundation
for his program to use the Ricci flow to attack the Poincaré and geometrization
conjectures. In particular, the works of Hamilton [Ham88] and Ben Chow [Chow91]
imply that every metric on a compact Riemann surface can be deformed to a metric
of constant curvature under the Ricci flow. During the same period, there were
several developments in the KRF, including the constructions of U.n/-invariant
Kähler–Ricci soliton examples by Koiso [Koiso90] and the author [Cao94]1; the Li–
Yau–Hamilton inequalities and the Harnack inequality for the KRF [Cao92,Cao97];
the important work of W.-X. Shi [Shi90, Shi97], another former student of Yau,
using the noncompact KRF to approach Yau’s conjecture that a complete noncom-
pact Kähler manifold with positive bisectional curvature is biholomorphic to the
complex Euclidean space C

n (see [ChauT08] for a recent survey on the subject),
etc. In addition, in 1991 at Columbia University, I observed that Mabuchi’s K-energy
[Mab86] and the functional defined in Ding–Tian [DT92] are monotone decreasing
under the KRF (Cao, 1991, unpublished work on the Kähler–Ricci flow). The fact
that the K-energy is monotone under the KRF turned out to be quite useful, and was
applied in the work of Chen–Tian [CheT02] 10 years later.

In November 2002 and spring 2003, Perelman [Per02, Per03q, Per03b] made
astounding breakthroughs in the Ricci flow. In April 2003, in a private lecture
at MIT, Perelman presented in detail his uniform scalar curvature and diameter
estimates for the NKRF based on the monotonicity of his W-functional and
�-entropy, and the powerful ideas in his �-noncollapsing results. We remark that
prior to Perelman’s lecture at MIT, such uniform estimates had appeared only in the
special case when NKRF has positive bisectional curvature, in the work of Chen
and Tian [CheT02] for the Kähler surface case (see also [CheT06] for the higher
dimensional case) assuming in addition the existence of K–E metrics; and also in
the work of B.-L Chen, X.-P. Zhu and the author [CCZ03] in all dimensions and
without assuming the existence of K–E metrics.

1My work was carried out at Columbia University in early 1990s.
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From Hamilton and Perelman’s works to the recent proof of the 1/4-pinching
differentiable sphere theorem by Brendle–Schoen [BS09], we have seen spectac-
ular applications of the Ricci flow and its sheer power of flowing to canonical
metrics/structures without a priori knowing their existence. Let us hope to see
similar phenomena happen to the KRF.

5.1 Preliminaries

In this section, we fix our notations and recall some basic facts and formulas in
Kähler Geometry.

5.1.1 Kähler Metrics and Kähler Forms

Let .Xn; g/ be a compact Kähler manifold of complex dimension n with the Kähler
metric g. In local holomorphic coordinates .z1; � � � ; zn/, denote its Kähler form by

! D
p�1
2

X
i;j

gi Nj dzi ^ d Nzj : (5.1)

By definition, g is Kähler means that its Kähler form ! is a closed real (1,1) form,
or equivalently,

@kgi Nj D @igk Nj and @ Nkgi Nj D @ Nj gi Nk (5.2)

for all i; j; k D 1; � � �n. Here @k D @=@zk and @ Nk D @=@Nzk .
The cohomology class [!] represented by ! in H2.X;R/ is called the Kähler

class of the metric gi Nj . By the Hodge theory, two Kähler metrics gi Nj and Qgi Nj belong
to the same Kähler class if and only if gi Nj D Qgi Nj C @i@ Nj ', or equivalently,

! D Q! C
p�1
2�

@@' (5.3)

for some real valued smooth function ' on X .
The volume of .X; g/ is given by

Vol.X; g/ D
Z
X

!Œn�; (5.4)

where we have followed the convention of Calabi [Cal82] to denote !Œn� D !n=nŠ

so that the volume form is given by

dV D det.gi Nj / ^n
iD1 .

p�1
2

dzi ^ d Nzi / D !Œn�: (5.5)
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Clearly, by Stokes’ theorem, if g and Qg are in the same Kähler class then we have

Vol.X; g/ D Vol.X; Qg/:

5.1.2 Curvatures and the First Chern Class

The Christoffel symbols of the metric gi Nj are given by

�kij D gk
Ǹ
@igj Ǹ and �

NkNi Nj D g`
Nk@Ni g` Nj ; (5.6)

where .gi Nj / D ..gi Nj /�1/T . It is a basic fact in Kähler geometry that, for each point
x0 2 Xn, there exists a system of holomorphic normal coordinates .z1; � � � ; zn/ at
x0 such that

gi Nj .x0/ D ıi Nj and @kgi Nj .x0/ D 0; 8i; j; k D 1; � � �n: (5.7)

The curvature tensor of the metric gi Nj is defined as R j

i k Ǹ D �@ Ǹ�jik, or by
lowering j to the second index,

Ri Njk Ǹ D gp NjR
p

i k Ǹ D �@k@ Ǹgi Nj C gp Nq@kgi Nq@ Ǹgp Nj : (5.8)

From (5.2) and (5.8), we immediately see that Ri Njk Ǹ is symmetric in i and k, in Nj
and Ǹ, and in the pairs fi Nj g and fk Ǹg.

We say that .Xn; g/ has positive (holomorphic) bisectional curvature, or positive
holomorphic sectional curvature, if

Ri Nj k Ǹviv Njwkw
Ǹ
> 0; or Ri Njk Ǹvi v Nj vkv Ǹ

> 0

respectively, for all nonzero vectors v and w in the holomorphic tangent bundle TxX
of X at x for all x 2 X .

The Ricci tensor of the metric gi Nj is obtained by taking the trace of Ri Nj k Ǹ:

Ri Nj D gk
Ǹ
Ri Njk Ǹ D �@i@ Nj log det.g/: (5.9)

From (5.9), it is clear that the Ricci form

Ric D
p�1
2

X
i;j

Ri Njdzi ^ d Nzj (5.10)

is real and closed. It is well known that the first Chern class c1.X/ 2 H2.X;Z/ of
X is represented by the Ricci form:

ŒRic� D �c1.X/: (5.11)



244 H.-D. Cao

Finally, the scalar curvature of the metric gi Nj is

R D gi
NjRi Nj : (5.12)

Hence, the total scalar curvature
Z
X

RdV D
Z
X

Ric ^ !Œn�1�; (5.13)

depends only on the Kähler class of ! and the first Chern class c1.X/.

5.1.3 Covariant Derivatives

Given any smooth function f , we denote by

ri f D @if; rNi f D @Ni f:

For any (1,0)-form vi , its covariant derivatives are defined as

rj vi D @j vi � �kijvk and r Nj vi D @ Nj vi : (5.14)

Similarly, for covariant two-tensors, we have

rkvi Nj D @kvi Nj � �pikvp Nj ; r Nkvi Nj D @ Nkvi Nj � �
Np
Nj Nkvi Np;

rkvij D @kvij � �pikvpj � �pjkvip; and r Nk vij D @ Nkvij:

Now, in the Kähler case, the second Bianchi identity in Riemannian geometry
translates into the relations

rpRi Njk Ǹ D rkRi Njp Ǹ and r NpRi Njk Ǹ D r ǸRi Njk Np: (5.15)

Covariant differentiations of the same type can be commuted freely, e.g.,

rkrj vi D rjrkvi ; r Nkr Nj vi D r Njr Nkvi ; (5.16)

etc. But we shall need the following formulas when commuting covariant derivatives
of different types:

rkr Nj vi � r Njrkvi D �Ri Nj k Ǹv`; (5.17)

rkr Ǹvi Nj � r Ǹrkvi Nj D �Ri Npk Ǹvp Nj CRp Nj k Ǹvi Np; (5.18)

etc.
We define

jrf j2 D gi
Nj @if @ Nj f; (5.19)

jRicj2 D gi
Ǹ
gk

NjRi NjRk Ǹ; (5.20)
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and

jRmj2 D gi Nqgp Nj gkNsgr Ǹ
Ri Nj k ǸRp Nqr Ns: (5.21)

The norm square jS j2 of any other type of covariant tensor S is defined similarly.
Finally, the Laplace operator on a tensor S is, in normal coordinates, defined as

�S D 1

2

X
k

.rkr Nk C r Nkrk/S: (5.22)

5.1.4 Kähler–Einstein Metrics and Kähler–Ricci Solitons

It is well known that a Kähler metric gi Nj is Kähler–Einstein if

Ri Nj D �gi Nj

for some real number � 2 R. Kähler–Ricci solitons are extensions of K–E metrics:
a Kähler metric gi Nj is called a gradient Kähler–Ricci (K–R) soliton if there exists a
real-valued smooth function f on X such that

Ri Nj D �gi Nj � @i@ Nj f and rirj f D 0: (5.23)

It is called shrinking if � > 0, steady if � D 0, and expanding if � < 0. The
function f is called a potential function.

Note that the second equation in (5.23) is equivalent to saying the gradient vector
field

rf D .gi
Nj @ Nj f /

@

@zi

is holomorphic. By scaling, we can normalize � D 1; 0;�1 in (5.23). The concept
of Ricci soliton was introduced by Hamilton [Ham88] in mid 1980s. It has since
played a significant role in Hamilton’s Ricci flow as Ricci solitons often arise as
singularity models (see, e.g., [Cao10] for a survey). Note that when f is a constant
function, K–R solitons are simply K–E metrics.

Clearly, if Xn admits a K–E metric or K–R soliton g then the first Chern class is
necessarily definite, as

�c1.X/ D �Œ!g�:

When c1.X/ D 0 it follows from Yau’s solution to the Calabi conjecture that in
each Kähler class there exists a unique Calabi–Yau metric (i.e., Ricci-flat Kähler
metric) g in that class. Moreover, when c1.X/ < 0, Aubin [Aub78] and Yau
[Yau78] proved independently that there exists a unique Kähler–Einstein metric in
the class ��c1.X/.
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However, in the Fano case (i.e., c1.X/ > 0), it is well known that there exist
obstructions to the existence of a K–E metric g in the class of ! 2 �c1.X/

with Ri Nj D gi Nj . One of the obstructions is the Futaki invariant defined as
follows: take any Kähler metric g with ! 2 �c1.X/. Then its Kähler class [!]
agrees with its Ricci class [Ric]. Hence, by the Hodge theory, there exists a real-
valued smooth function f , called the Ricci potential of the metric g, such that

Ri Nj D gi Nj � @i@ Nj f: (5.24)

In [Fut83], Futaki proved that the functional F W �.X/ ! C defined by

F.V / D
Z
X

rVf !Œn� D
Z
X

.V � rf /!Œn� (5.25)

on the space �.X/ of holomorphic vector fields depends only on the class �c1.X/,
but not the metric g. In particular, if a Fano manifold Xn admits a positive K–E
metric, then the Futaki invariant F defined above must be zero.

On the other hand, it turns out that compact stead and expanding K–R solitons
are necessarily K–E (cf.). If g is a shrinking K–R soliton satisfying

Ri Nj D gi Nj � @i@ Nj f and rirj f D 0 (5.26)

with non-constant function f then, taking V D rf , we have

F.rf / D
Z
X

jrf j2!Œn� ¤ 0: (5.27)

The existence of compact (shrinking) K–R solitons were shown independently by
Koiso [Koiso90] and the author [Cao94], and later by X. Wang and X. Zhu [WZ04].
The noncompact example was first found by Feldman–Ilmanen–Knopf [FIK03],
see also A. Dancer-Wang [DW11] and Futaki–Wang [FutW11] for further examples.

We remark that Bando and Mabuchi [BM87] proved that positive K–E metrics
are unique in the sense that any two positive K–E metrics on Xn only differ by an
automorphism of Xn. Moreover, Tian and Zhu [TZ02] extended the definition of
the Futaki invariant by introducing a corresponding obstruction to the existence of
(shrinking) K–R solitons on Fano manifolds. They also proved the Bando–Mabuchi
type uniqueness result for K–R solitons [TZ00].

5.2 The (Normalized) Kähler–Ricci Flow

In this section we introduce the Kähler–Ricci flow (KRF) and the normalized
Kähler–Ricci flow (NKRF) on Fano manifolds, i.e., compact Kähler manifolds with
positive first Chern class. We state the basic long time existence of solutions to the
NKRF proved by the author in [Cao85], derive the evolution equations of various
curvature tensors, and present Mok’s result on preserving the non-negativity of the
holomorphic bisectional curvature under the KRF.
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5.2.1 Kähler–Ricci Flow and Normalized Kähler–Ricci Flow

On any given Kähler manifold .Xn; Qgi Nj /, the Kähler–Ricci flow deforms the initial
metric Qg by the equation

@

@t
gi Nj .t/ D �Ri Nj .t/; g.0/ D Qg; (5.28)

or equivalently, in terms of the Kähler forms, by

@

@t
!.t/ D �Ric.!.t//; !.0/ D !0: (5.29)

Note that, by (5.29), the Kähler class Œ!.t/� of the evolving metric gi Nj .t/ satisfies
the ODE

d

dt
Œ!.t/� D ��c1.X/;

from which it follows that

Œ!.t/� D Œ!0� � t�c1.X/: (5.30)

Proposition 5.2.1. Given any initial Kähler metric Qg on a compact Kähler
manifold Xn, KRF (5.28) admits a unique solution g.t/ for a short time.

Proof. We consider the nonlinear, strictly parabolic, scalar equation of
Monge–Amperé type

@

@t
' D log

det. Qgi Nj � t QRi Nj C @i @ Nj '/
det. Qgi Nj /

; '.0/ D 0

as in [Bando84]. Then, this parabolic equation admits a unique solution ' for a short
time, and it is easy to verify that

gi Nj .t/ DW Qgi Nj � t QRi Nj C @i@ Nj '

gives rise to a short time solution to KRF (5.28) for small t > 0. This proves the
existence. For the uniqueness, suppose hi Nj is another solution to KRF (5.28). Then,
by (5.30), we have

hi Nj D Qgi Nj � t QRi Nj C @i @ Nj 

for some real-valued function  . But then we must have

@i@ Nj .
@

@t
 / D �Ri Nj C QRi Nj :
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Hence, by (5.9) and by adjusting with an additive function in t only, we have

@

@t
 D log

det. Qgi Nj � t QRi Nj C @i @ Nj /
det. Qgi Nj /

:

Note that hi Nj .0/ D Qgij forces  .0/ to be a constant function. Therefore ' and  
differ by a function in t only which in turn implies that g D h.

Alternatively, by the work of Hamilton [Ham82] (see also De Turck [Det83]),
there exists a unique solution g.t/ to (5.28), regarded as the Ricci flow for
Riemannian metric, for a short time with Qg as the initial metric. Moreover, Hamilton
[Ham95a] observed that the holonomy group does not change under the Ricci flow
for a short time. Thus, the solution g.t/ we obtained remains Kähler for t > 0. ut
Lemma 5.2.2. Under the Kähler–Ricci flow (5.28), the volume of .X; gi Nj .t//
changes by

d

dt
Vol.X; g.t// D �

Z
X

R.t/ !Œn�.t/:

Proof. Under KRF (5.28), we have

@

@t
!Œn� D .

@

@t
log det.gi Nj //!Œn�

and

@

@t
log det.gi Nj / D gi

Nj @
@t
gi Nj D �gi NjRi Nj D �R:

Therefore, the volume element dV D !Œn� changes by

@

@t
!Œn� D �R!Œn�: (5.31)

ut
From now on, we consider a Fano manifold .Xn; Qgi Nj / such that

Œ!0� D Œ Q!� D �c1.X/; (5.32)

and we deform the initial metric Qg by the KRF (5.28).
To keep the volume unchanged, we consider the normalized Kähler–Ricci flow

@

@t
gi Nj D �Ri Nj C gi Nj ; g.0/ D Qg (5.33)
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or equivalently

@

@t
! D �Ric.!/C !; !.0/ D !0: (5.34)

From the proof of Lemma 5.2.2, it is easy to see that the following holds (in fact,
under NKRF (5.33) the solution g.t/ has the same Kähler class):

Lemma 5.2.3. Under the normalized Kähler–Ricci flow (5.33), we have

@

@t
.dV/ D .n � R/dV:

By (5.30) and (5.32), it follows that

Œ!.t/� D �.1 � t/c1.X/;

showing that Œ!.t/� shrinks homothetically and would become degenerate at t D 1.
This suggests that if Œ0; T / is the maximal existence time interval of solution Og.t/ to
KRF (5.28), then T cannot exceed 1. We shall see that the NKRF (5.33) has solution
g.t/ exists for all time 0 � t < 1, which in turn implies that T D 1 for KRF (5.28).

By direct calculations, one can easily verify the following relations between the
solutions to KRF (5.28) and NKRF (5.33).

Lemma 5.2.4. Let Ogi Nj .s/; 0 � s < 1; and gi Nj .t/; 0 � t < 1; be solutions to the
KRF (5.28) and the NKRF (5.33) respectively. Then, Ogi Nj .s/ and gi Nj .t/ are related by

Ogi Nj .s/ D .1� s/gi Nj .t.s//; t D � log.1� s/

and

gi Nj .t/ D et Ogi Nj .s.t//; s D 1 � e�t :

Corollary 5.2.5. Let Ogi Nj .s/ and gi Nj .t/ be as in Lemma 5.2.4. Then, their scalar
curvatures and the norm square of their curvature tensors are related respectively by

.1 � s/ OR.s/ D R.t.s//;

and

.1 � s/jbRmj Og.s/ D jRmjg.t.s//:
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5.2.2 The Long Time Existence of the NKRF

First of all, it is well known that the NKRF (5.33) is equivalent to a parabolic scalar
equation of complex Monge–Ampère type on the Kähler potential. For any given
initial metric g0 D Qg satisfying (5.32), consider

gi Nj .t/ D Qgi Nj C @i@ Nj '; (5.35)

where ' D '.t/ is a time-dependent, real-valued, smooth unknown function on X .
Then,

@

@t
gi Nj D @i@ Nj 't

and

�Ri Nj C gi Nj D �Ri Nj C Qgi Nj C @i@ Nj ' D �Ri Nj C QRi Nj C @i@ Nj . Qf C '/

D @i@ Nj log
!n

Q!n C @i@ Nj . Qf C '/:

Here Qf is the Ricci potential of Qgi Nj as defined in (5.24). Thus, the NKRF (5.33)
reduces to

@i@ Nj 't D @i@ Nj log
!n

Q!n C @i@ Nj . Qf C '/;

or equivalently,

@

@t
' D log

det. Qgi Nj C @i@ Nj '/
det. Qgi Nj /

C Qf C ' C b.t/ (5.36)

for some function b.t/ of t only.
Note that (5.36) is strictly parabolic, so standard PDE theory implies its short

time existence (cf. [Baker10]). Clearly, we have

Lemma 5.2.6. If ' solves the parabolic scalar equation (5.36), then gi Nj .t/,
as defined in (5.35), is a solution to the NKRF (5.33).

Now we can state the following long time existence result shown by the author
[Cao85], based on the parabolic version of Yau’s a priori estimates in [Yau78].
We refer the readers to [Cao85], or the lecture notes by Song and Weinkove [SW]
in this volume, for a proof.

Theorem 5.2.7 ([Cao85]). The solution '.t/ to (5.36) exists for all time
0 � t < 1. Consequently, the solution gi Nj .t/ to the normalized Kähler–Ricci
flow (5.33) exists for all time 0 � t < 1.
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5.2.3 Preserving Positivity of the Bisectional Curvature

To derive the curvature evolution equations for both KRF and NKRF, we consider

@

@t
gi Nj D �Ri Nj C �gi Nj : (5.37)

Lemma 5.2.8. Under (5.37), we have

@

@t
Ri Nj D �Ri Nj CRi Njk ǸR` Nk �Ri NkRk Nj ; (5.38)

and

@

@t
R D �RC jRicj2 � �R: (5.39)

Proof. First of all, from (5.9), we get

@

@t
Ri Nj D �rir Nj .gk

Ǹ @
@t
gk Ǹ/ D rir NjR: (5.40)

On the other hand, by using the commuting formulas (5.16)–(5.18) for covariant
differentiations, we have

rkr NkRi Nj D rkr NjRi Nk D r NjrkRi Nk � Rk Nj i ǸR` Nk CRk Nj ` NkRi Ǹ

D r NjriR � Ri Njk ǸR` Nk CRi ǸRl Nj ;

and

rkr NkRi Nj D r NkrkRi Nj :

Hence,

�Ri Nj D 1

2

�rkr Nk C r Nkrk

�
Ri Nj D rir NjR � Ri Njk ǸR` Nk CRi ǸRl Nj : (5.41)

Therefore, (5.38) follows from (5.40) and (5.41)
Next, using the evolution equation of Ri Nj , we have

@

@t
R D @

@t
.gi

NjRi Nj / D gi
Nj .�Ri Nj CRi Njk ǸR` Nk �Ri NkRk Nj /CRi Nj .Rj Ni � �gj Ni /

D �RC jRicj2 � �R: ut
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Lemma 5.2.9. Under (5.37), we have

@

@t
Ri Njk Ǹ D�Ri Njk Ǹ CRi Njp NqRq Npk Ǹ CRi Ǹp NqRq Npk Nj � Ri Npk NqRp Nj q Ǹ C �Ri Njk Ǹ

� 1

2
.Ri NpRp Nj k Ǹ CRp NjRi Npk Ǹ CRk NpRi Njp Ǹ CRp ǸRi Njk Np/:

Proof. From (5.8) and by using normal coordinates, we have

@

@t
Ri Njk Ǹ D @k@ ǸRi Nj C �Ri Njk Ǹ D @k.r ǸRi Nj C �

Np
Nj ǸRi Np/C �Ri Njk Ǹ

D rkr ǸRi Nj � Ri NpRp Nj k Ǹ C �Ri Njk Ǹ:

On the other hand, by (5.15) and covariant differentiation commuting formulas
(5.16)–(5.18), we obtain

r NprpRi Nj k Ǹ D rkrNlRi Nj �Ri Njp NqRq Npk Ǹ CRi Npk NqRp Nj q Ǹ � Ri Ǹp NqRq Npk Nj CRi Njp ǸRk Np;

and

rpr NpRi Njk Ǹ D r NprpRi Njk Ǹ � Ri NqRq Njk Ǹ CRq NjRi Nqk Ǹ �Rk NqRi Njq Ǹ CRq ǸRi Njk Nq:

Hence,

�Ri Njk Ǹ D 1

2

�rpr Np C r Nprp

�
Ri Njk Ǹ

D rkrNlRi Nj � Ri Njp NqRq Npk Ǹ CRi Npk NqRp Nj q Ǹ �Ri Ǹp NqRq Npk Nj

C 1

2
.�Ri NpRp Nj k Ǹ CRp Nj Ri Npk Ǹ CRk NpRi Njp Ǹ CRp ǸRi Nj k Np/;

and Lemma 5.2.9 follows. ut
Remark 5.2.1. Clearly, the Ricci evolution equation (5.38) is also a consequence of
Lemma 5.2.9, but the proof in Lemma 5.2.8 is more direct and easier.

The Ricci flow in general seems to prefer positive curvatures: positive Ricci
curvature is preserved in three-dimension [Ham82]; positive scalar curvature,
positive curvature operator [Ham86] and positive isotropic curvature [BS09, Ng07]
are preserved in all dimensions. Here we present a proof of Mok’s theorem that
positive bisectional curvature is preserved under KRF.

Theorem 5.2.10 ([Mok88]). Let .Xn; Qg/ be a compact Kähler manifold of non-
negative holomorphic bisectional curvature, and let gi Nj .t/ be a solution to the
KRF (5.28) or NKRF (5.33) on Xn � Œ0; T /. Then, for t > 0, gi Nj .t/ also has
nonnegative holomorphic bisectional curvature. Furthermore, if the holomorphic
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bisectional curvature is positive at one point at t D 0, then gi Nj .t/ has positive
holomorphic bisectional curvature at all points for t > 0.

Proof. Let us denote by

Fi Nj k Ǹ DW Ri Njp NqRq Npk Ǹ � Ri Npk NqRp Nj q Ǹ CRi Ǹp NqRq Npk Nj C �Ri Njk Ǹ

� 1

2
.Ri NpRp Nj k Ǹ CRp NjRi Npk Ǹ CRk NpRi Njp Ǹ CRp ǸRi Njk Np/

so that by Lemma 5.2.9

@

@t
Ri Njk Ǹ D �Ri Njk Ǹ C Fi Njk Ǹ:

By a version of Hamilton’s strong tensor maximum principle (cf. [Bando84]),
it suffices to show that the following “null-vector condition” holds: for any (1,0)
vectors V D .vi / and W D .wi /, we have

Fi Njk Ǹvi v Njwkw
Ǹ � 0 whenever Ri Njk Ǹvi v Njwkw

Ǹ D 0; (NVC)

or simply,

FV NV W NW DWF.V; NV ;W; NW / � 0 whenever RV NV W NW DWRm.V; NV ;W; NW / D 0:

Claim 2.1. If RV NVW NW D 0, then for any .1; 0/ vector Z, we have

RV NZW NW D RV NVW NZ D 0:

For real parameter s 2 R, consider

G.s/ D Rm.V C sZ; NV C s NZ;W; NW /:

Since the bisectional curvature is nonnegative and RV NVW NW D 0, it follows that
G0.0/ D 0 which implies that

Re .RV NZW NW / D 0:

Suppose RV NZW NW ¤ 0, and let RV NZW NW D jRV NZW NW je
p�1
 . Then, replacing Z by

e�p�1
Z in the above, we get

0 D Re .e�p�1
RV NZW NW / D jRV NZW NW j;
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a contradiction. Thus, we must have

RV NZW NW D 0:

Similarly, we have RV NV W NZ D 0.
By Claim 2.1, we see that if RV NV W NW D 0 then

FV NVW NW D RV NV Y NZRZ NY W NW � jRV NYW NZ j2 C jRV NW Y NZj2:

Therefore, (NVC) follows immediately from the following

Claim 2.2. Suppose RV NVW NW D 0. Then, for any .1; 0/ vectors Y and Z,

RV NV Y NZRZ NY W NW � jRV NYW NZ j2:

First of all, consider

H.s/ D Rm.V C sY; NV C s NY ;W C sZ; NW C s NZ/
D s2

�
RV NV Z NZ CRY NYW NW CRV NYW NZ CRY NV Z NW CRV NYZ NW CRY NV W NZ

�
CO.s3/:

Here we have used Claim 2.1.
SinceH.s/ � 0 andH.0/ D 0, we haveH 00.0/ � 0:Hence, by taking Y D 	kek

and Z D �`e` with respect to any basis fe1; � � � eng, we obtain a real semi-positive
definite bilinear formQ.Y;Z/:

0 � Q.Y;Z/ DWRV NV Z NZ CRY NYW NW CRV NYW NZ CRY NV Z NW CRV NYZ NW CRY NV W NZ

DRV NV ek Ne
N`
�k�

Ǹ CRek Ne
N`

NW NW 	k	
Ǹ CRV NekW Ne`	

Nk� Ǹ CRek NV e` NW 	k�`

CRV Neke` NW 	
Nk�` CRek NV W Ne`	

k�
Ǹ ut

Next, we need a useful linear algebra fact (cf. Lemma 4.1 in [Cao92]):

Lemma 5.2.11. Let A and C be two m � m real symmetric semi-positive definite
matrices, and let B be a real m �m matrix such that the 2m � 2m real symmetric
matrix

G1 D
�
A B

BT C

�

is semi-positive definite. Then, we have

Tr.AC/ � jBj2:



5 The Kähler–Ricci Flow on Fano Manifolds 255

Proof. Consider the associated matrix

G2 D
�

C �B
�BT A

�
:

It is clear that G2 is also symmetric and semi-positive definite. Hence, we get

Tr.G1G2/ � 0:

However,

G1G2 D
�

AC � BBT BA � AB
BT C � CBT CA � BTB

�
:

Therefore,

Tr.AC/ � jBj2 D 1

2
Tr.G1G2/ � 0: ut

As a special case, by taking

G1 D

0
BB@

ReA �ImA Re.B CD/T �Im.B CD/T

ImA ReA Im.B �D/T Re.B �D/T

Re.B CD/ Im.B �D/ ReC �ImC
�Im.B CD/ Re.B �D/ ImC ReC

1
CCA ;

we immediately obtain the following (see [Cao92, Lemma 4.2])

Corollary 5.2.12. Let A;B;C;D be complex matrices with A and C being
Hermitian. Suppose that the (real) quadratic form

X
Ak Nl �

k�l C Ck Nl	
k	l C 2Re.Bk Nl �

k	l /C 2Re.Dkl�
k	l /; �; 	 2 C

n;

is semi-positive definite. Then we have

Tr.AC/ � jBj2 C jDj2;
i.e.

X
Ak NlCl Nk �

X
jBk Nl j2 C jDklj2:

Now, by applying Corollary 5.2.12 to the above semi-positive definite real
bi-linear form Q, one gets

RV NV Y NZRZ NYW NW � jRV NYW NZ j2 C jRV NW Y NZ j2:
We have thus proved (NVC), which concludes the proof of Theorem 5.2.10.
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Remark 5.2.13. S. Bando [Bando84] first proved Theorem 5.2.10 for n D 3, and
W.-X. Shi [Shi97] extended Theorem 5.2.10 to the complete noncompact case with
bounded curvature tensor.

Furthermore, by slightly modifying the above proof of Theorem 5.2.10,
R. Hamilton and the author (Cao and Hamilton, 1992, unpublished work) observed
in 1992 at IAS that nonnegative holomorphic orthogonal bisectional curvature,
Rm.V; NV ;W; NW / � 0 whenever V ? W , is also preserved under KRF. For the
reader’s convenience, we provide the proof below.

Theorem 5.2.14 (Cao-Hamilton). Let gi Nj .t/ be a solution to the KRF (5.28) on a
complete Kähler manifold with bounded curvature. If gi Nj .0/ has nonnegative holo-
morphic orthogonal bisectional curvature, then it remains so for gi Nj .t/ for t > 0.

Proof. First of all, by using a certain special evolving orthonormal frame fe˛g under
KRF (5.28) similarly as in [Ham86] (see also [Shi97, Sect. 5]), one obtains the
simplified evolution equation

@

@t
R˛ Ň� Nı D �R˛ Ň� Nı CR˛ Ň�N�R� N�� Nı CR˛ Nı�N�R� N�� Ň � R˛ N�� N�R� Ň� Nı; (5.42)

where R˛ Ň� Nı is the Riemannian curvature tensor components with respect to the
evolving frame fe˛g.

Again, by Hamilton’s tensor maximal principle, it suffices to check the corre-
sponding null-vector condition:

G˛ N̨ˇ Ň � 0; wheneverR˛ N̨ˇ Ň D 0 for any e˛ ? eˇ; (NVC0)

where

G˛ Ň� Nı D R˛ Ň�N�R� N�� Nı CR˛ Nı�N�R� N�� Ň � R˛ N�� N�R� Ň� Nı:

Now, without loss of generality, we assume R1N12N2 D 0 for a pair of unit
.1; 0/-vectors e1 ? e2. Then we need to show G1N12N2 � 0.

Claim 2.3. If ei ? e1, then R1N12Ni D 0, similarly, if ei ? e2, then R2N21Ni D 0:

The first statement in Claim 2.3 follows from the simple fact that if ei ? e1, then
Rm.e1; e1; e2 C sei ; e2 C sei / � 0 for arbitrary complex number s. The proof of
second statement is similar.

Claim 2.4. R1N21N1 D R1N22N2.

Note that .e1 C se2/ ? .e2 � Nse1/ for any complex number s, hence

Rm.e1 C se2; e1 C se2; e2 � Nse1; e2 � se1/ � 0:

Again its first order derivative vanishes at point s D 0, and Claim 2.4 follows.
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Claim 2.5. G1N12N2 D R1N1i NjRj Ni2N2 � jR1Ni2 Nj j2 C jR1N2�N� j2, where 3 � i; j � n and
1 � �; � � n.

From the definition of G1N12N2, the assumption that R1N12N2 D 0 and the above two
claims, we have:

G1N12N2 D R1N2�N�R� N�2N1 CR1N1�N�R� N�2N2 �R1 N�2N�R�N2� N1
D R1N2�N�R� N�2N1

CR1N1i NjRj Ni2N2 CR1N11N2R2N12N2 CR1N12N1R1N22N2
�R1Ni2 NjRi N2j N1 �R1N12N1R1N21N1 � R1N22N2R2N22N1

D R1N1i NjRj Ni2N2 � jR1Ni2 Nj j2 C jR1N2�N� j2:

Now for arbitrary .1; 0/-vectors X; Y ? e1; e2 and real number s, we have the
following:

.e˛ C sX/ ? �
eˇ C sY � s2e˛ < NX; Y >

�
:

Thus using Claim 2.3, we have

0 � Rm.e1 C sX; e1 C s NX; e2 C sY � s2e1 < NX; Y >; e2 C s NY � s2e1 < X; NY >/
D s2

�
R2N2X NX CR1N1Y NY C 2ReRX N1Y N2 C 2Re.RX NY 2N1 � R1N12N1 < X; NY >/�

CO.s3/

Hence, for all s, X and Y ,

�
R2N2X NX CR1N1Y NY C 2ReRX N1Y N2 C 2Re.RX NY 2N1 � R1N12N1 < X; NY >/� � 0

By using Corollary 5.2.12 again, we obtain

R1N1i NjRj Ni2N2 � jRi N1j N2j2 C jRi Nj2N1 �R1N12N1gi Nj j2:

This together with Claim 2.5 implies that G1N12N2 � 0. The proof of Theorem 5.2.14
is completed. ut
Remark 5.2.2. Wilking [Wil10] has provided a nice uniform Lie Algebra approach
treating all known nonnegativity curvature conditions preserved under the Ricci
flow and KRF so far, including nonnegative bisectional curvature and nonnegative
orthogonal bisectional curvature.
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5.3 The Li–Yau–Hamilton Inequalities for KRF

In [LiYau86], Li–Yau developed a fundamental gradient estimate, now called
Li–Yau estimate (aka differential Harnack inequality), for positive solutions to the
heat equation on a complete Riemannian manifold with nonnegative Ricci curvature.
They used it to derive the Harnack inequality for such solutions by a path integration.
Shortly after, based on a suggestion of Yau, Hamilton [Ham88] derived a similar
estimate for the scalar curvature of solutions to the Ricci flow on Riemann surfaces
with positive curvature. Hamilton subsequently obtained a matrix version of the
Li–Yau estimate [Ham93a] for solutions to the Ricci flow with positive curvature
operator in all dimensions. This matrix version of the Li–Yau estimate is now called
Li–Yau–Hamilton estimate, and it played a central role in the analysis of formation
of singularities and the application of the Ricci flow to three-manifold topology.
Around the same time, the author derived the (matrix) Li–Yau–Hamilton estimate
for the KRF with nonnegative bisectional curvature and obtained the Harnack
inequality for the evolving scalar curvature by a similar path integration argument.
We remark that our Li–Yau–Hamilton estimate for the KRF in the non compact
case played a crucial role in the works of Chen–Tang–Zhu [CTZ04], Ni [Ni05] and
Chau–Tam [ChauT06]. The presentation here essentially follows the original papers
of Hamilton [Ham88, Ham93a, Ham93b] and Cao [Cao92, Cao97].

We shall start by recalling the well-known Li–Yau inequality for positive
solutions to the heat equation on complete Riemannian manifolds with nonnegative
Ricci curvature, and the important observation that Li–Yau inequality becomes
equality on the standard heat kernel on the Euclidean space. Then, following
Hamilton, we show how one could derive the matrix Li–Yau–Hamilton quadratic
for the KRF from the equation of expanding Kahler–Ricci solitons. Finally we state
and sketch the matrix Li–Yau–Hamilton inequality for the KRF with nonnegative
bisectional curvature.

5.3.1 The Li–Yau Estimate for the Two-Dimensional
Ricci Flow

Let us begin by describing the Li–Yau estimate [LiYau86] for positive solutions
to the heat equation on a complete Riemannian manifold with nonnegative Ricci
curvature.

Theorem 5.3.1 ([LiYau86]). Let .M; gij/ be an n-dimensional complete
Riemannian manifold with nonnegative Ricci curvature. Let u.x; t/ be any positive
solution to the heat equation

@u

@t
D �u on M � Œ0;1/:
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Then, for all t > 0, we have

@u

@t
� jruj2

u
C n

2t
u � 0 on M � .0;1/: (5.44)

We remark that, as observed by Hamilton (cf. [Ham93a]), one can in fact prove
that for any vector field V i on M ,

@u

@t
C 2ru � V C ujV j2 C n

2t
u � 0: (5.45)

If we take the optimal vector field V D �ru=u, then we recover the
inequality (5.44).

Now we consider the Ricci flow on a Riemann surface. Since in (real) dimension
two the Ricci curvature is given by

Rij D 1

2
Rgij;

the Ricci flow becomes

@gij

@t
D �Rgij: (5.46)

Now let gij.t/ be a complete solution of the Ricci flow (5.46) on a Riemann
surface M and 0 � t < T . Then the scalar curvature R evolves by the semilinear
equation

@R

@t
D 4RCR2

on M � Œ0; T /. Suppose the scalar curvature of the initial metric is bounded,
nonnegative everywhere and positive somewhere. Then it follows from the max-
imum principle that the scalar curvature R.x; t/ of the evolving metric remains
nonnegative. Moreover, from the standard strong maximum principle (which works
in each local coordinate neighborhood), the scalar curvature is positive everywhere
for t > 0. In [Ham88], Hamilton obtained the following Li–Yau estimate for the
scalar curvatureR.x; t/.

Theorem 5.3.2 ([Ham88]). Let gij.t/ be a complete solution to the Ricci flow
on a surface M . Assume the scalar curvature of the initial metric is bounded,
nonnegative everywhere and positive somewhere. Then the scalar curvatureR.x; t/
satisfies the Li–Yau estimate

@R

@t
� jrRj2

R
C R

t
� 0: (5.47)
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Proof. By the above discussion, we know R.x; t/ > 0 for t > 0. If we set

L D logR.x; t/ for t > 0;

then

@

@t
L D 1

R
.4RCR2/

D 4LC jrLj2 CR

and (5.47) is equivalent to

@L

@t
� jrLj2 C 1

t
D 4LCRC 1

t
� 0:

Following Li–Yau [LiYau86] in the linear heat equation case, we consider the
quantity

Q D @L

@t
� jrLj2 D 4LCR:

Then by a direct computation,

@Q

@t
D @

@t
.4LCR/

D 4
�
@L

@t

�
CR4LC @R

@t

D 4QC 2rL � rQ C 2jr2Lj2 C 2R.4L/CR2

� 4QC 2rL � rQCQ2:

So we get

@

@t

�
Q C 1

t

�
� 4

�
Q C 1

t

�
C 2rL � r

�
QC 1

t

�
C
�
Q � 1

t

��
Q C 1

t

�
:

Hence by the maximum principle argument, we obtain

Q C 1

t
� 0:

This proves the theorem. ut
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5.3.2 Li–Yau Estimate and Expanding Solitons

To prove inequality (5.47) for the scalar curvature of solutions to the Ricci flow
in higher dimensions is not so simple. It turns out that one does not get inequality
(5.47) directly, but rather indirectly as the trace of certain matrix estimate when
either curvature operator (in the Riemannian case) or bisectional curvature (in the
Kähler case) is nonnegative. The key ingredient in formulating this matrix version
is an important observation by Hamilton that the Li–Yau inequality, as well as its
matrix version, becomes equality on the expanding solitons which he first discov-
ered for the case of the heat equation on R

n. This led him and the author to formulate
and prove the matrix differential Harnack inequality, now called Li–Yau–Hamilton
estimates, for the Ricci flow in higher dimensions [Ham93a, Ham93b] and the
Kähler–Ricci flow [Cao92, Cao97] respectively.

To illustrate, let us examine the heat equation case first. Consider the heat kernel

u.x; t/ D .4�t/�n=2e�jxj2=4t ; (5.48)

which can be considered as an expanding soliton solution for the standard heat
equation on R

n.
Differentiating the function u once, we get

rj u D �u
xj

2t
or rj u C uVj D 0; (5.49)

where

Vj D xj

2t
D �rj u

u
:

Differentiating (5.49) again, we have

rirj u C riuVj C u

2t
ıij D 0: (5.50)

To make the expression in (5.50) symmetric in i; j , we multiply Vi to (5.49) and
add to (5.50) and obtain

rirju C riuVj C rjuVi C uViVj C u

2t
ıij D 0: (5.51)

Taking the trace in (5.51) and using the equation @u=@t D �u, we arrive at

@u

@t
C 2ru � V C ujV j2 C n

2t
u D 0;
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which shows that the Li–Yau inequality (5.44) becomes an equality on our
expanding soliton solution u! Moreover, we even have the matrix identity (5.51).

Based on the above observation and in a similar process, Hamilton [Ham93a]
found a matrix quantity, which vanishes on expanding gradient Ricci solitons
and is nonnegative for any solution to the Ricci flow with nonnegative curvature
operator. At the same time, the author [Cao92] (see also [Cao97]) proved the
Li–Yau–Hamilton estimate for the Kähler–Ricci flow with nonnegative bisectional
curvature, see below.

To formulate the Li–Yau–Hamilton quadric, let us consider a homothetically
expanding gradient Kähler–Ricci soliton g satisfying

Ri Nj C 1

t
gi Nj D ri V Nj ; ri Vj D 0 (5.52)

with Vi D ri f for some real-valued smooth function f onX . Differentiating (5.52)
and commuting give the first order relations

rkRi Nj D rkr Nj Vi � r NjrkVi D �Rk Nj i NpVp;

or

rkRi Nj CRi Njk NpVp D 0; (5.53)

and

rkRi Nj V Nk CRi Njk NpVpV Nk D 0: (5.54)

Differentiating (5.53) again and using the first equation in (5.52), we get

rNlrkRi Nj C r NpRi Njk NlVp CRi Njk NpRp Nl C 1

t
Ri Njk Nl D 0: (5.55)

Taking the trace in (5.55), we get

�Ri Nj C r NkRi Nj Vk CRi Njk NlRl Nk C 1

t
Ri Nj D 0: (5.56)

Symmetrizing by adding (5.54) to (5.56), we arrive at

�Ri Nj C rkRi Nj V Nk C r NkRi Nj Vk CRi Njk NlRl Nk CRi Njk NlVlV Nk C 1

t
Ri Nj D 0;

or, by (5.38), equivalently

@

@t
Ri Nj C rkRi Nj V Nk C r NkRi Nj Vk CRi NkRk Nj CRi Njk NlVlV Nk C 1

t
Ri Nj D 0: (5.57)
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5.3.3 Li–Yau–Hamilton Estimates and Harnack’s Inequalities

We now state the Li–Yau–Hamilton estimates and the Harnack inequalities for KRF
and NKRF with nonnegative holomorphic bisectional curvature.

Theorem 5.3.3 ([Cao92, Cao97]). Let gi Nj .t/ be a complete solution to the
Kähler–Ricci flow on Xn with bounded curvature and nonnegative bisectional
curvature and 0 � t < T . For any point x 2 X and any vector V in the holomorphic
tangent space T 1;0x X , let

Zi Nj D @

@t
Ri Nj CRi NkRk Nj C rkRi Nj V k C r NkRi Nj V

Nk CRi Njk ǸV kV
Ǹ C 1

t
Ri Nj :

Then we have

Zi NjW iW
Nj � 0

for all x 2 X , V;W 2 T 1;0x X , and t > 0.

The proof of Theorem 5.3.3 is based on Hamilton’s strong tensor maximum
principle and involves a large amount of calculations. We refer the interested reader
to the original papers [Cao92, Cao97] for details.

Corollary 5.3.4 ([Cao92, Cao97]). Under the assumptions of Theorem 5.3.3,
the scalar curvature R satisfies the estimate

@R

@t
C riRV

i C rNiRV
Ni CRi Nj V iV

Nj C R

t
� 0 (5.58)

for all x 2 X and t > 0. In particular,

@R

@t
� jrRj2

R
C R

t
� 0: (5.59)

Proof. The first inequality (5.58) follows by taking the trace of Zi Nj in
Theorem 5.3.3. By taking V D �r logR in (5.58) and observing Ri Nj � Rgi Nj
(because Ri Nj � 0), we obtain the second inequality (5.59). ut

As a consequence of Corollary 5.3.4, we obtain the following Harnack inequality
for the scalar curvatureR by taking the Li–Yau type path integral as in [LiYau86].

Corollary 5.3.5 ([Cao92, Cao97]). Let gi Nj .t/ be a complete solution to the
Kähler–Ricci flow on Xn with bounded and nonnegative bisectional curvature.
Then for any points x1; x2 2 X , and 0 < t1 < t2, we have

R.x1; t1/ � t2

t1
edt1 .x1;x2/

2=4.t2�t1/R.x2; t2/:

Here dt1.x1; x2/ denotes the distance between x1 and x2 with respect to gi Nj .t1/.
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Proof. Take the geodesic path �./,  2 Œt1; t2�, from x1 to x2 at time t1 with
constant velocity dt1.x1; x2/=.t2 � t1/: Consider the space-time path �./ D
.�./; /,  2 Œt1; t2�. We compute

log
R.x2; t2/

R.x1; t1/
D
Z t2

t1

d

d
logR.�./; /d

D
Z t2

t1

1

R

�
@R

@
C rR � d�

d

�
d

�
Z t2

t1

 
@ logR

@
� jr logRj2g./ � 1

4

ˇ̌
ˇ̌d�
d

ˇ̌
ˇ̌2
g./

!
d:

Then, by the Li–Yau estimate (5.59) for R in Corollary 5.3.4 and the fact that the
metric is shrinking (since the Ricci curvature is nonnegative), we have

log
R.x2; t2/

R.x1; t1/
�
Z t2

t1

 
�1


� 1

4

ˇ̌
ˇ̌d�
d

ˇ̌
ˇ̌2
g.t1/

!
d

D log
t1

t2
� dt1.x1; x2/

2

4.t2 � t1/
:

Now the desired Harnack inequality follows by exponentiating. ut
Finally, we can convert Corollaries 5.3.4 and 5.3.5 to the NKRF case and yield

the following Li–Yau type estimate and Harnack’s inequality.

Theorem 5.3.6 ([Cao92]). Let gi Nj .t/ be a solution to NKRF on Xn � Œ0;1/ with
nonnegative bisectional curvature. Then, the scalar curvature R satisfies

(a) the Li–Yau type estimate: for any t > 0 and x 2 X ,

@R

@t
� jrRj2

R
C R

1 � e�t � 0I (5.60)

(b) the Harnack inequality: for any 0 < t1 < t2 and any x; y 2 X ,

R.x; t1/ � et2 � 1
et1 � 1 expfet2�t1 d

2
t1
.x; y/

4.t2 � t1/gR.y; t2/; (5.61)

Proof. Part (a): Let Ogi Nj .s/ be the associated solution to KRF on X � Œ0; 1/.
By Lemma 5.2.4, Corollaries 5.2.5 and 5.3.4, we have

R D .1 � s/ OR; 1 � e�t D s;
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and

@ OR
@s

�
jr ORj2Og

OR C
OR
s

� 0:

It is then easy to check that they are translated into (5.60).
Part (b): By the Li–Yau path integration argument as in the proof of

Corollary 5.3.5 but use (5.60) instead, we get

log
R.y; t2/

R.x; t1/
�
Z t2

t1

 
� 1

1 � e� � 1

4

ˇ̌
ˇ̌d�
d

ˇ̌
ˇ̌2
g./

!
d

D log
et1 � 1
et2 � 1 � 1

4
�.x; t1Iy; t2/:

where

�.x; t1Iy; t2/ D inf
�

Z t2

t1

j� 0./j2g./d: (5.62)

But, the NKRF equation and the assumption of Ricg � 0 imply that, for t1 < t2,

g.t2/ � et2�t1g.t1/:

Hence,

�.x; t1Iy; t2/ � et2�t1
d 2t1.x; y/

.t2 � t1/
:

Therefore,

log
R.y; t2/

R.x; t1/
� log

et1 � 1
et2 � 1 � et2�t1

d 2t1.x; y/

4.t2 � t1/ : ut

5.4 Perelman’s Entropy and Noncollapsing Theorems

In this section, we review Perelman’s W-functional and the associated �-entropy.
We show that the�-entropy is monotone under the Ricci flow and use this important
fact to prove a strong �-noncollapsing theorem for the Ricci flow on compact
Riemannian manifolds. These results and the ideas in the proof play a crucial role
in the next two sections when we discuss the uniform estimates on the diameter and
the scalar curvature of the NKFR.
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5.4.1 Perelman’s W-Functional and �-Entropy
for the Ricci Flow

Let M be a compact n-dimensional manifold. Consider the following functional,
due to Perelman [Per02],

W.gij; f; / D
Z
M

Œ.R C jrf j2/C f � n�.4�/�
n
2 e�f dV (5.63)

under the constraint

.4�/� n
2

Z
M

e�f dV D 1: (5.64)

Here gij is any given Riemannian metric, f is any smooth function on M , and  is
a positive scale parameter. Clearly the functional W is invariant under simultaneous
scaling of  and gij (or equivalently the parabolic scaling), and invariant under
diffeomorphism. Namely, for any positive number a > 0 and any diffeomorphism
' 2 Diff.Mn/,

W.'�gij; '
�f; / D W.gij; f; / and W.agij; f; a/ D W.gij; f; /: (5.65)

In [Per02] Perelman derived the following first variation formula (see also
[CZ06])

Lemma 5.4.1 ([Per02]). If vij D ıgij; h D ıf; and � D ı , then

ıW.vij; h; �/

D
Z
M

�vij

�
Rij C rirj f � 1

2
gij

�
.4�/�

n
2 e�f dV

C
Z
M


v
2

� h � n

2
�
�
Œ.R C 2�f � jrf j2/C f � n � 1�.4�/� n

2 e�f dV

C
Z
M

�


RC jrf j2 � n

2

�
.4�/�

n
2 e�f dV:

Here v D gijvij.

By Lemma 5.4.1 and direct computations (cf. [Per02, CZ06]), one obtains

Lemma 5.4.2 ([Per02]). If gij.t/; f .t/ and .t/ evolve according to the system
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

@gij

@t
D �2Rij;

@f

@t
D ��f C jrf j2 �RC n

2
;

@

@t
D �1;
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then

d

dt
W.gij.t/; f .t/; .t// D

Z
M

2

ˇ̌
ˇ̌Rij C rirj f � 1

2
gij

ˇ̌
ˇ̌2 .4�/� n

2 e�f dV;

and
R
M
.4�/� n

2 e�f dV is constant. In particular W.gij.t/; f .t/; .t// is nonde-
creasing in time and the monotonicity is strict unless we are on a shrinking gradient
soliton.

Now we define

�.gij; / D inf

�
W.gij; f; / j f 2 C1.M/;

1

.4�/n=2

Z
M

e�f dV D 1

	
:

(5.66)

Note that if we set u D e�f=2, then the functional W can be expressed as

W D W.gij; u; / D .4�/�
n
2

Z
M

Œ.Ru2 C 4jruj2/� u2 log u2 � nu2�dV

(5.67)

and the constraint (5.64) becomes

.4�/� n
2

Z
M

u2dV D 1: (5.68)

Thus �.gij; / corresponds to the best constant of a logarithmic Sobolev inequality.
Since the non-quadratic term is subcritical (in view of Sobolev exponent), it is rather
straightforward to show that

inf

�
.4�/�

n
2

Z
M

Œ.4jruj2C Ru2/ � u2 log u2� nu2�dV W .4�/� n
2

Z
M

u2 dV D1
	

is achieved by some nonnegative function u 2 H1.M/ which satisfies the
Euler–Lagrange equation

.�4�u C Ru/� 2u log u � nu D �.gij; /u:

One can further show that u is positive (see [Rot81]). Then the standard regularity
theory of elliptic PDEs shows that u is smooth. We refer the reader to Rothaus
[Rot81] for more details. It follows that �.gij; / is achieved by a minimizer f
satisfying the nonlinear equation

.2�f � jrf j2 CR/C f � n D �.gij; /: (5.69)
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It turns out that the�-entropy has the following important monotonicity property
under the Ricci flow:

Proposition 5.4.3 ([Per02]). Let gij.t/ be a solution to the Ricci flow

@gij

@t
D �2Rij

onMn � Œ0; T / with 0 < T < 1, then �.gij.t/; T0 � t/ is nondecreasing along the
Ricci flow for any T0 � T ; moveover, the monotonicity is strict unless we are on a
shrinking gradient soliton.

Proof. Fix any time t0, let f0 be a minimizer of �.gij.t0/; T0 � t0/: Note that the
backward heat equation

@f

@t
D ��f C jrf j2 � RC n

2

is equivalent to the linear equation

@

@t
..4�/� n

2 e�f / D ��..4�/� n
2 e�f /CR..4�/� n

2 e�f /:

Thus we can solve the backward heat equation of f with f jtDt0 D f0 to obtain
f .t/ for t 2 Œ0; t0�, satisfying constraint (5.64). Then, for t � t0, it follows from
Lemma 5.4.2 that

�.gij.t/; T0 � t/ � W.gij.t/; f .t/; T0 � t/

� W.gij.t0/; f .t0/; T0 � t0/

D �.gij.t0/; T0 � t0/;

and the second inequality is strict unless we are on a shrinking gradient soliton. ut

5.4.2 Strong �-Noncollapsing of the Ricci Flow

We now apply the monotonicity of the �-entropy in Proposition 5.4.3 to prove
a strong version of Perelman’s no local collapsing theorem, which is extremely
important because it gives a local injectivity radius estimate in terms of the local
curvature bound.

Definition 5.4.4. Let gij.t/; 0 � t < T; be a solution to the Ricci flow on an
n-dimensional manifold M , and let �, r be two positive constants. We say that the
solution gij.t/ is �-noncollapsed at .x0; t0/ 2 M � Œ0; T / on the scale r if we have

Vt0 .x0; r/ � �rn;
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whenever

jRmj.x; t0/ � r�2

for all x 2 Bt0.x0; r/. Here Vt0 .x0; r/ denotes the volume with respect to gij.t0/ of
the geodesic ball Bt0.x0; r/ centered at x0 2 M and of radius r with respect to the
metric gij.t0/.

Remark 5.4.1. In [Per02], Perelman also defined �-noncollapsing by requiring the
curvature bound jRmj.x; t/ � r�2 on the (backward) parabolic cylinderBt0.x0; r/�
Œt0 � r2; t0�.

The following result was proved in [CZ06] (cf. Theorem 3.3.3 in [CZ06])).

Theorem 5.4.5 (Strong no local collapsing theorem). Let M be a compact
Riemannian manifold, and let gij.t/ be a solution to the Ricci flow on Mn � Œ0; T /
with 0 < T < C1. Then there exists a positive constant �, depending only the
initial metric g0 and T , such that gij.t/ is �-noncollapsed at very point .x0; t0/ 2
M � Œ0; T / on all scales less than

p
T . In fact, for any .x0; t0/ 2 M � Œ0; T / and

0 < r � p
T we have

Vt0 .x0; r/ � �rn;

whenever

R.�; t0/ � r�2 on Bt0.x0; r/:

Proof. Recall that

�.gij; / D inf

�
W.gij; u; /

ˇ̌
ˇ
Z
M

.4�/�
n
2 u2dV D 1

	
:

where,

W.gij; u; / D .4�/�
n
2

Z
M

Œ.Ru2 C 4jruj2/� u2 log u2 � nu2�dV:

Set

�0 D inf
0��2T �.gij.0/; / > �1: (5.70)

By the monotonicity of �.gij.t/;  � t/ in Proposition 5.4.3, we have

�0 � �.gij.0/; t0 C r2/ � �.gij.t0/; r
2/ (5.71)

for t0 < T and r2 � T .
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Take a smooth cut-off function 	.s/, 0 � 	 � 1, such that

	.s/ D
8<
:
1; jsj � 1=2;

0; jsj � 1

and j	 0j � 2 everywhere. Define a test function u.x/ on M by

u.x/ D eL=2	

�
dt0.x0; x/

r

�
;

where the constant L is chosen so that

.4�r2/�
n
2

Z
M

u2dV t0 D 1

Note that

jruj2 D eLr�2j	 0.
dt0.x0; x/

r
/j2 and u2 log u2 D Lu2 C eL	2 log 	2:

Also, by the definition of u.x/, we have

.4�r2/�
n
2 eLVt0 .x0; r=2/ � 1; (5.72)

and

.4�/�
n
2 r�neLVt0 .x0; r/ � 1: (5.73)

Now it follows from (5.71) and the upper bound assumption on R that

�0 � W.gij.t0/; u; r
2/

D .4�r2/�
n
2

Z
M

Œr2.Ru2 C 4jruj2/ � u2 log u2 � nu2�

� 1 � L � nC .4�r2/�
n
2 eL

Z
M

.4j	 0j2 � 	2 log 	2/

� 1 � L � nC .4�r2/�
n
2 eL.16C e�1/Vt0 .x0; r/:

Here, in the last inequality, we have used the elementary fact that �s log s � e�1
for 0 � s � 1. Combining the above with (5.72), we arrive at

�0 � 1 �L � nC .16C e�1/
Vt0 .x0; r/

Vt0 .x0; r=2/
: (5.74)
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Notice that if we have the volume doubling property

Vt0 .x0; r/ � CVt0 .x0; r=2/

for some universal constant C > 0, then (5.73) and (5.74) together would imply

Vt0 .x0; r/ � expf�0 C n� 1 � .16C e�1/C grn; (5.75)

thus proving the theorem. We now describe how to bypass such a volume doubling
property by a clever argument2 pointed out by B.-L. Chen back in 2003.

Notice that the above argument is also valid if we replace r by any positive
number 0 < a � r . Thus, at least we have shown the following

Assertion: Set

� D min

�
expŒ�0 C n � 1 � .16C e�1/3n�;

1

2
˛n

	
;

where ˛n is the volume of the unit ball in R
n. Then, for any 0 < a � r , we have

Vt0 .x0; a/ � �an; (�/a
whenever the volume doubling property,

Vt0 .x0; a/ � 3nVt0 .x0; a=2/;

holds.
Now we finish the proof by contradiction. Suppose (�/a fails for a D r . Then we

must have

Vt0 .x0;
r

2
/ < 3�nVt0.x0; r/

< 3�n�rn

< �

 r
2

�n
:

This says that .�/r=2 would also fail. By induction, we deduce that

Vt0 .x0;
r

2k
/ < �


 r
2k

�n
for all k � 1:

2Perelman also used a similar argument in proving his uniform diameter estimate for the NKRF,
see the proof of Claim 6.1 in Sect. 5.6.
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But this contradicts the fact that

lim
k!1

Vt0 .x0;
r
2k
/�

r

2k

�n D ˛n: ut

5.4.3 The �-Entropy and the Strong Noncollapsing Estimate
for KRF and NKRF

To convert the �-noncollapsing theorem for the Ricci flow to the KRF and NKRF,
first note that for any local holomorphic coordinates .z1; � � � ; zn/ with zi D xi Cp�1yi , .x1; � � � ; xn; y1; � � � ; yn/ form a preferred smooth local coordinates with

@

@zi
D 1

2
.
@

@xi
� p�1 @

@yi
/ and

@

@Nzi D 1

2
.
@

@xi
C p�1 @

@yi
/:

Thus, in terms of the corresponding Riemannian metric ds2, we have

ds2.
@

@xi
;
@

@xj
/ D ds2.

@

@yi
;
@

@yj
/ D 2<.gi Nj /

while

ds2.
@

@xi
;
@

@yj
/ D 2=.gi Nj /:

In particular, for any .z1; � � � ; zn/ with gi Nj D ıi Nj (e.g., under normal coordinates),
then

ds2.
@

@xi
;
@

@xj
/ D ds2.

@

@yi
;
@

@yj
/ D 2ıij and ds2.

@

@xi
;
@

@yj
/ D 0:

(Thus, we can symbolically express the Riemannian metric gR D ds2 D 2gi Nj :)
On the other hand, if Ri Nj D �ıi Nj under the normal holomorphic coordinates

.z1; � � � ; zn/ then, for the Riemannian Ricci tensor Ricds2 , we have

Ricds2 .
@

@xi
;
@

@xj
/ D Ricds2 .

@

@yi
;
@

@yj
/ D 2�ıij and Ricds2 .

@

@xi
;
@

@yj
/ D 0:

That is,

Ricds2 D �ds2;

so we have the same Einstein constant �.
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Note that we also have the following relations:

• The scalar curvature:Rds2 D 2R

• The Laplace operator:�ds2 D 2�

• The norm square of the gradient of a function: jrf j2
ds2

D 2jrf j2, etc.

In particular, we have

Rds2 C jrf j2
ds2

D 2.RC jrf j2/:
Therefore, with � D 2 , the Riemannian W-functional on .Xn; gi Nj / is given by

W D 1

.2��/n

Z
X

Œ�.R C jrf j2/C f � 2n�e�f dV; (5.76)

or, with u D e�f=2, by

W.gi Nj ; u; �/ D 1

.2��/n

Z
X

Œ�.Ru2 C 4jruj2/� u2 log u2 � 2nu2�dV (5.77)

with respect to the Kähler metric gi Nj .
The �-entropy is then given by

� D �.gi Nj ; �/ D inf

�
W.gi Nj ; u; �/ W .2��/�n

Z
X

u2dV D 1

	
:

For any solution Ogi Nj .s/ to the KRF on the maximal time interval Œ0; 1/, by taking
� D 1 � s, it follows that �. Ogi Nj .s/; 1 � s/ is monotone increasing in s. By the
scaling invariance property of � in (5.65) and the relation between KRF and NKRF
as described in Lemma 5.2.4, we get

�. Ogi Nj .s/; 1 � s/ D �.gi Nj .t/; 1/: (5.78)

Thus, by the monotonicity of �. Ogi Nj .s/; 1 � s/ and ds=dt D e�t > 0, we have

Lemma 5.4.6. Let gi Nj .t/ be a solution to the NKRF on Xn � Œ0;1/. Then,

�.gi Nj .t/; 1/ D inf

�
1

.2�/n

Z
X

�
RC jrf j2 C f � 2n

�

e�f dV W 1

.2�/n

Z
X

e�f dV D 1

	

D inf

�
1

.2�/nZ
X

.Ru2 C 4jruj2 � u2 log u2 � 2nu2/ W 1

.2�/n

Z
X

u2 D 1

	

is monotone increasing in t .
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Finally, we have the corresponding strong no local collapsing theorem for the
NKRF:

Theorem 5.4.7 (Strong no local collapsing theorem for NKRF). Let Xn be a
Fano manifold, and let gi Nj .t/ be a solution to the NKRF (5.33) on Xn � Œ0;1/.
Then there exists a positive constant � > 0, depending only the initial metric g0,
such that gi Nj .t/ is strongly �-noncollapsed at very point .x0; t0/ 2 M � Œ0;1/ on
all scales less than et0=2 in the following sense: for any .x0; t0/ 2 X � Œ0;1/ and
0 < r � et0=2 we have

Vt0.x0; r/ � �r2n; (5.79)

whenever

R.�; t0/ � r�2 on Bt0.x0; r/: (5.80)

Proof. This is an immediate consequence of Theorem 5.4.5 applied to the KRF
on Xn � Œ0; 1/, and the relation between the KRF and the NKRF as described by
Lemma 5.2.4. ut

5.5 Uniform Curvature and Diameter Estimates for NKRF
with Nonnegative Bisectional Curvature

Our goal in this section is to prove the uniform diameter and (scalar) curvature
estimates by B.L Chen, X.-P. Zhu and the author [CCZ03] for the NKRF with
nonnegative holomorphic bisectional curvature. The main ingredients of the proof
are the Harnack estimate in Theorem 5.3.6 and the strong non-collapsing estimate
in Theorem 5.4.7 for the NKRF.

Theorem 5.5.1. Let .Xn; Qgi Nj / be a compact Kähler manifold with nonnegative
bisectional curvature and let gi Nj .t/ be the solution to the NKRF with gi Nj .0/ D Qgi Nj .
Then, there exist positive constants C1 > 0 and C2 > 0 such that

(i) jRmj.x; t/ � C1 for all .x; t/ 2 X � Œ0;1/;
(ii) diam.Xn; gi Nj .t// � C2 for all t � 0.

Proof. By Theorem 5.2.10, we know that gi Nj .t/ has nonnegative bisectional
curvature for all t � 0. Thus, it suffices to show the uniform upper bound for the
scalar curvature

R.x; t/ � C1
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on X � Œ0;1/: We divide the proof into several steps:
Step 1: A local uniform bound on R

First of all, we know that the volume Vt .Xn/ D Vol.X; gi Nj .t// and the total
scalar curvature

R
Xn
R.x; t/dV t are constant along the NKRF. Hence the average

scalar curvature is also constant. In fact,

1

Vt .Xn/

Z
Xn
R.x; t/dV t D n; for all t � 0:

Now, 8 t > 1, set t1 D t , t2 D t C 1 and pick a point yt 2 X such that

R.yt ; t C 1/ D n:

Then, 8 x 2 X , by the Harnack inequality in Theorem 5.3.6, and noting that 8t � 1,

etC1 � 1

et � 1
� e C 1;

we have

R.x; t/ � n.e C 1/ exp

e
4
d2t .x; yt /

�
: (5.81)

In particular, when dt.yt ; x/ < 1, we obtain a uniform upper bound

R.�; t/ � n.e C 1/ exp.e2=4/ (5.82)

on the unit geodesic ball Bt.yt ; 1/ at time t , for all t � 1.
Step 2: The uniform diameter bound

Now we have the uniform upper bound (5.82) for the scalar curvature on
Bt.yt ; 1/. By applying the strong no local collapsing Theorem 5.4.7, there exists
a positive constant � > 0, depending only on the initial metric g0, such that we have
the following uniform lower bound

Vt .yt ; 1/ � � > 0

for the volume of the unit geodesic ball Bt.yt ; 1/ for all t � 1.
Suppose diam.X; gi Nj .t// is not uniformly bounded from above in t . Then, there

exist a sequence of positive numbers fDkg ! 1 and a time sequence ftkg ! 1
such that

diam .X; gi Nj .tk// > Dk:

However, since gi Nj .tk/ has nonnegative Ricci curvature, it follows from an argument
of Yau (cf. p. 24 in [ScYau94]) that there exists a universal constant C D C.n/ > 0

such that

Vtk .ytk ;Dk/ � CVtk .ytk ; 1/Dk � �CDk ! 1:
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But this contradicts the fact that

Vtk .ytk ;Dk/ � Vtk .X
n/ D V0; k D 1; 2; � � � :

Thus, we have proved the uniform diameter bound: there exists a positive constant
D > 0 such that for all t > 0,

diam .X; gi Nj .t// � D: (5.83)

Step 3: The global uniform bound on R
Once we have the uniform diameter upper bound (5.83), the Harnack inequality

(5.81) immediately implies the uniform scalar curvature upper bound,

R.x; t/ � n.e C 1/eeD
2=4;

on Xn � Œ0;1/. ut
Remark 5.5.1. As mentioned in the introduction, assuming in addition the existence
of K–E metrics, Chen and Tian studied the NKRF with nonnegative bisectional
curvature on Del Pezzo surfaces [CheT02] and Fano manifolds in higher dimensions
[CheT06].

5.6 Perelman’s Uniform Estimates

In the previous section, we saw that when a solution gi Nj .t/ to the NKRF has
nonnegative bisectional curvature, then the uniform diameter and curvature bounds
follow from a nice interplay between the Harnack inequality for the scalar curvature
R and the strong no local collapsing theorem. In this section, we shall see
Perelman’s amazing uniform estimates on the diameter and the scalar curvature for
the NKRF on general Fano manifolds (Theorem 5.6.1). In absence of the Harnack
inequality, Perelman’s proof is much more subtle, yet the monotonicity of the
�-entropy and the ideas used in the proof of the strong non-collapsing estimate
played a crucial role.

The material presented in this section follows closely what Perelman gave in a
private lecture3 at MIT in April, 2003. As such, it naturally overlaps considerably
with the earlier notes [SeT08] on Perelman’s work. The author also presented
Perelman’s uniform estimates at the Geometry and Analysis seminar at Columbia
University in fall 2005.

3Perelman’s private lecture was attended by a very small audience, including this author and the
authors of [SeT08].
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Theorem 5.6.1. LetXn be a Fano manifold and gi Nj .t/, 0 � t < 1, be the solution
to the NKRF

@

@t
gi Nj D �Ri Nj C gi Nj ; g.0/ D Qg (5.84)

with the initial metric g0 D Qg satisfying Œ!0� D �c1.X/. Let f D f .t/ be the Ricci
potential of gi Nj .t/ satisfying

� Ri Nj .t/C gi Nj .t/ D @i @ Nj f (5.85)

and the normalization
Z
Xn
e�f dV D .2�/n: (5.86)

Then there exists a constant C > 0 such that

(i) jRj � C on Xn � Œ0;1/;
(ii) diam.Xn; gi Nj .t// � C ;

(iii) jjf jjC1 � C on Xn � Œ0;1/.

The proof will occupy the whole section. First of all, by Lemma 5.2.8, we know
that under (5.84) the scalar curvatureR evolves according to the equation

@

@t
R D �RC jRicj2 �R:

Lemma 5.6.2. There exists a constant C1 > 0 such that the scalar curvature R of
the NKRF (5.84) satisfies the estimate

R.x; t/ � �C1:

for all t � 0 and all x 2 Xn.

Proof. Let Rmin.0/ be the minimum of R.x; 0/ on Xn. If Rmin.0/ � 0, then by the
maximum principle, we have R.x; t/ � 0 for all t > 0 and all x 2 Xn.

Now suppose Rmin.0/ < 0. Set F.x; t/ D R.x; t/�Rmin.0/. Then, F.x; 0/ � 0

and F satisfies

@

@t
F D �F C jRicj2 � F � Rmin.0/ > �F C jRicj2 � F:

Hence it follows again from the maximum principle that F � 0 onXn� Œ0;1/, i.e.,

R.x; t/ � Rmin.0/

for all t > 0 and all x 2 Xn. ut
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Next, we consider the Ricci potential f satisfying (5.85) and the normalization
(5.86). Note that it follows from (5.85) that

n� R D �f: (5.87)

Also, let ' D '.t/ be the Kähler potential,

gi Nj .t/ D Qgi Nj C @i@ Nj ';

so that ' is a solution to the parabolic scalar equation

't D log
det. Qgi Nj C @i@ Nj '/

det. Qgi Nj /
C Qf C ' C b.t/;

where b.t/ is a function of t only.
Since @i@ Nj 't D �Ri Nj C gi Nj , by adding a function of t only to ' if necessary,

we can assume

f D 't : (5.88)

Thus, f satisfies the parabolic equation

ft D �f C f � a.t/ (5.89)

for some function a(t) of t only.
By differentiating the constraint (5.86), we get

Z
Xn
e�f .�ft C n � R/dV D 0:

Hence, by combining with (5.87) and (5.89), it follows that

a.t/ D .2�/�n
Z
Xn

fe�f dV: (5.90)

Lemma 5.6.3. There exists a constant C2 > 0 such that, for all t � 0,

�C2 �
Z
Xn

fe�f dV � C2:

Proof. The second inequality is easy to see. Now we prove the first inequality.
By Lemma 5.4.6 and (5.87), we have
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A DW�.gi Nj .0/; 1/ � �.gi Nj .t/; 1/

� .2�/�n
Z
X

.RC jrf j2 C f � 2n/e�f dV

D .2�/�n
Z
X

.��f C jrf j2 C f � n/e�f dV

D .2�/�n
Z
X

.f � n/e�f dV:

Therefore,

.2�/�n
Z
Xn
fe�f dV � AC n: ut

Lemma 5.6.4. There exists a constant C3 > 0 such that

f � �C3
for all t � 0 and all x 2 Xn.

Proof. We argue by contradiction. Suppose the Ricci potential f is very negative at
some time t0 > 0 and some point x0 2 Xn so that

f .x0; t0/ � �1:

Then, there exists some open neighborhoodU � Xn of x0 such that

f .x; t0/ � �1; 8x 2 U: (5.91)

On the other hand, by (5.87), (5.89), Lemma 5.6.2, (5.90), and Lemma 5.6.3,
we have

ft D n� RC f � a.t/ � f C C (5.92)

for some uniform constant C > 0.
Let us assume f .�; t/ and '.�; t/ achieve their maximum at xt and x�

t respectively.
From the constraint (5.86), it is clear that for each t > 0, we have a uniform lower
estimate

f .xt ; t/ D max
X
f .�; t/ � �C

for some C > 0 independent of t . Moreover, it follows form (5.88) and (5.92) that

.f � '/t � C;
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so

f .�; t/ � '.�; t/ � max
X
.f � '/.�; t0/C Ct:

Therefore,

'.x�
t ; t/ � '.xt ; t/ � f .xt ; t/ � max

X
.f � '/.�; t0/ � C t � �C t; 8t 
 t0:

(5.93)

On the other, by (5.92), we have

f .x; t/ � et�t0 .C C f .x; t0// (5.94)

for t � t0 and x 2 Xn. In particular, by (5.91), we have

f .x; t/ � �Ce�t0 et ; 8t > t0;8x 2 U: (5.95)

Then (5.88) and (5.95) together imply that

'.x; t/ � '.x; t0/� Ce�t0et C C � �C 0et ; 8t 
 t0;8x 2 U: (5.96)

Next, we claim (5.96) implies

'.x�
t ; t/ � �Cet C C 0 (5.97)

for some C 0 > 0 independent of t 
 t0. To see this, note that, with respect to the
initial metric g0, we have

'.x�
t ; t/ D 1

V0.Xn/

Z
X

'.�; t/dV0 � 1

V0.Xn/

Z
X

�0'.�; t/G0.x�
t ; �/dV0; (5.98)

where V0.Xn/ D Vol.Xn; g0/ and G0.x�
t ; �/ denotes a positive Green’s function

with pole at x�
t .

Since n C�0' D Qgi Nj gi Nj .t/ > 0; the second term on the RHS of (5.98) can be
estimated by

� 1

V0.Xn/

Z
X

�0'.�; t/G0.xt ; �/dV0 � n

V0.Xn/

Z
X

G0.xt ; �/dV0 DW C 00: (5.99)

On the other hand, by using (5.95), it follows that

1

V0.Xn/

Z
X

'.�; t/dV0 � V0.X n U /
V0.X/

'.x�
t ; t/ � V0.U /

V0.X/
Cet : (5.100)
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Therefore, by (5.98)–(5.100), we have

˛'.x�
t ; t/ � C 00 � ˛Cet

for ˛ D V0.U /=V0.X/ > 0. This proves (5.97), a contradiction to (5.93). ut
Lemma 5.6.5. There exists constant C4 > 0 such that, for all t � 0,

(a) jrf j2 � C4.f C 2C3/;
(b) R � C4.f C 2C3/.

Proof. This is essentially a parabolic version of Yau’s gradient estimate in [Yau75]
(see also [ScYau94]).

First of all, from jrf j2 D gi
Nj @if @ Nj f , the NKRF, and (5.89), we obtain

@

@t
jrf j2 D .Ri Nj � gi Nj /@if @ Nj f C gi

Nj .@ift @ Nj f C @if @ Nj ft /

D gi
Nj Œ@i .�f /@ Nj f C @if @ Nj .�f /�C Ric.rf;rf /C jrf j2:

On the other hand, the Bochner formula gives us

�jrf j2 D jr Nrf j2Cjrrf j2Cgi
Nj Œ@i .�f /@ Nj f C@if @ Nj .�f /�C Ric.rf;rf /:

Hence, we have

@

@t
jrf j2 D �jrf j2 � jr Nrf j2 � jrrf j2 C jrf j2: (5.101)

Also, by (5.85), we have

jRicj2 C n � 2R D jr Nrf j2: (5.102)

Thus, from the evolution equation on R, we have

@

@t
R � �RC jr Nrf j2 CR

Therefore, for any ˛ � 0, we obtain

@

@t
.jrf j2C˛R/ � �.jrf j2C˛R/�.1�˛/.jr Nrf j2Cjrrf j2/C.jrf j2C˛R/:

(5.103)

Next, take B D 2C3 so we have f C B > 1, and set

u D jrf j2 C ˛R

f C B
: (5.104)
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Then, we have

ut D .jrf j2 C ˛R/t

f C B
� u

.f C B/
ft

and

ru D 1

f C B
r.jrf j2 C ˛R/� jrf j2 C ˛R

.f C B/2
rf: (5.105)

On the other hand, since jrf j2 C ˛R D u.f CB/, we have

�.jrf j2 C ˛R/ D .f C B/�u C u�f C ru � : Nrf C Nru � :rf

or

�u D �.jrf j2 C ˛R/

f C B
� u�f

f C B
� ru � Nrf C Nru � rf

f C B
:

Therefore,

ut � �u � .1 � ˛/.jr
Nrf j2 C jrrf j2/
f C B

C ru � Nrf C Nru � rf
f C B

C B C a.t/

f C B
u:

(5.106)

Notice, by (5.105), we have

ru � Nrf D 1

f C B
r.jrf j2 C ˛R/ � Nrf � .jrf j2 C ˛R/jrf j2

.f C B/2
: (5.107)

Now the trick (see, e.g., p. 19 in [ScYau94]) is to use (5.107) and express

ru � Nrf
f C B

D .1 � 2�/ru � Nrf
f C B

C 2�

f C B 
r.jrf j2 C ˛R/ � Nrf

f C B
� jrf j2.jrf j2 C ˛R/

.f C B/2

!
: (5.108)

We are ready to conclude the proof of Lemma 5.6.5.
Part (a) Take ˛ D 0 so that u D jrf j2=.f CB/. By plugging (5.108) into (5.106),
we get
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ut � �u � .1 � 4�/
jr Nrf j2 C jrrf j2

f CB
C .1 � 2�/

ru � Nrf C Nru � rf
f CB

� �

f C B

 
j2r Nrf � rf Nrf

f C B
j2 C j2rrf � rf rf

f C B
j2
!

C 1

.f CB/

��2�u2 C .B C a/u
�
:

For any T > 0, suppose u attains its maximum at .x0; t0/ on Xn � Œ0; T �, then

ut .x0; t0/ � 0; ru.x0; t0/ D 0; and �u.x0; t0/ � 0: (5.109)

Thus, by choosing � D 1=8, we arrive at

u.x0; t0/ � 4.B C a/:

Therefore, since T > 0 is arbitrary, we have shown that

jrf j2
f C B

� 8C3 C 4C2 (5.110)

on Xn � Œ0;1/.
Part (b) Choose ˛ D 1=2 so that

u D jrf j2 CR=2

f C B
:

Then, from (5.106) and (5.102), we obtain

ut � �u � 1

2

jRicj2 � 2R

f C B
C ru � Nrf C Nru � rf

f C B
C B C a

f C B
u:

Again, for any T > 0, suppose u attains its maximum at .x0; t0/ on Xn � Œ0; T �.
Then (5.109) holds, and hence

0 � � 1

2n

�
R

f C B

�2
.x0; t0/C R

f CB
.x0; t0/

�
1C B C a

2.f C B/

�
C .8C3 C 4C2/.B C a/:
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Here we have used the fact that jRicj2 � R2=n, 2f C B � 0, f C B � 1,
and (5.110). It then follows easily that R

fCB .x0; t0/ is bounded from above

uniformly. Therefore, by Part (a), R
fCB .x; t/ is bounded uniformly on Xn � Œ0; T �

for arbitrary T > 0. ut
Clearly, Lemma 5.6.5 (a) implies that

p
f C 2C3 is Lipschitz. From now on

we assume the Ricci potential f .�; t/ attains its minimum at a point Ox 2 Xn, i.e.,
f . Ox; t/ D minX f .�; t/. Then, by (5.86), we know

f . Ox; t/ � C

for some C > 0 independent of t .

Corollary 5.6.6. There exists a constant C > 0 such that 8t > 0 and 8x 2 X ,

(i) f .x; t/ � C Œ1C d2t . Ox; x/�;
(ii) jrf j2.x; t/ � C Œ1C d2t . Ox; x/�;

(iii) R.x; t/ � C Œ1C d2t . Ox; x/�:
Proof. Set h D f C 2C2 > 0. Then, from Lemma 5.6.5 (i), we see that

p
h is a

Lipschitz function satisfying

jr
p
hj2 � C4:

Hence, 8x 2 Xn,

j
p
h.x; t/ �

p
h. Ox; t/j � Cdt . Ox; x/;

or

p
h.x; t/ �

p
h. Ox; t/C Cdt . Ox; x/:

Thus, we obtain a uniform upper bound

f .x; t/ � h.x; t/ � C.d2t . Ox; y/C 1/

for some constant C > 0 independent of t . Now (ii) and (iii) follow immediately
from (i) and Lemma 5.6.5. ut

By Lemma 5.6.2 and Corollary 5.6.6, it remains to prove the following uniform
diameter bound.

Lemma 5.6.7. There exists a constant C5 > 0 such that

diamt .X/DWdiam.Xn; gi Nj .t// � C5

for all t � 0:
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Proof. For each t > 0, denote by At.k1; k2/ the annulus region defined by

At.k1; k2/ D fz 2 X W 2k1 � dt .x; Ox/ � 2k2g; (5.111)

and by

Vt .k1; k2/ D Vol.At .k1; k2// (5.112)

with respect to gi Nj .t/.
Note that each annulus At.k; k C 1/ contains at least 22k balls Br of radius

r D 2�k . Also, for each point x 2 At.k; k C 1/, Corollary 5.6.6 (iii) implies
that the scalar curvature is bounded above by R � C22k on Bt.x; r/ for some
uniform constant C > 0. Thus each of these balls Br has Vol.Br/ � �.2�k/2n by
Theorem 5.4.7, so we have

Vt .k; k C 1/ � �22k�12�kn: (5.113)

Claim 6.1. For each small � > 0, there exists a large constantD D D.�/ > 0 such
that if diamt .X/ > D, then one can find large positive constants k2 > k1 > 0 with
the following properties:

Vt .k1; k2/ � � (5.114)

and

Vt .k1; k2/ � 210nVt .k1 C 2; k2 � 2/: (5.115)

Proof. (a) follows from the fact that Vt.Xn/ D V0.X
n/ and the assumption

diamt .X/ 
 1.
Now suppose (a) holds but not (b), i.e.,

Vt .k1; k2/ > 2
10nVt .k1 C 2; k2 � 2/:

Then we consider whether or not

Vt.k1 C 2; k2 � 2/ � 210nVt .k1 C 4; k2 � 4/:

If yes, then we are done. Otherwise we repeat the process.
After j steps, we either have

Vt.k1 C 2.j � 1/; k2 � 2.j � 1// � 210njVt .k1 C 2j; k2 � 2j /; (5.116)

or

Vt .k1; k2/ > 2
10njVt.k1 C 2j; k2 � 2j /: (5.117)
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Without loss of generality, we may assume k1 C 2j � k2 � 2j by choosing a large
number K > 0 and pick k1 � K=2; k2 � 3K=2. Then, when j � K=4 and
using (5.113), this implies that

� � Vt .k1; k2/ � 210nK=4Vt .K;K C 1/ � �22K.n=4�1/:

So after some finitely many steps j � K.�/=4, (5.116) must hold. Therefore,
we have found k1 and k2 � 3k1 satisfying both (5.114) and (5.115). ut
Claim 6.2. There exist constants r1 > 0 and r2 > 0, with r1 2 Œ2k1 ; 2k1C1� and
r2 2 Œ2k2 ; 2k2C1�, such that

Z
At .r1;r2/

RdV t � CV t .k1; k2/: (5.118)

Proof. First of all, since

d

dr
Vol.B.r// D Vol.S.r/;

we have

V.k1; k1 C 1/ D
Z 2k1C1

2k1

Vol.S.r//dr:

Here Sr denotes the geodesic sphere of radius r centered at Ox with respect to gi Nj .t/.
Hence, we can choose r1 2 Œ2k1 ; 2k1C1� such that

Vol.Sr1/ � Vt.k1; k2/

2k1
;

for otherwise

V.k1; k1 C 1/ >
Vt .k1; k2/

2k1
2k1 D Vt .k1; k2/;

a contradiction because k2 > k1 C 1. Similarly, there exists r2 2 Œ2k2�1; 2k2� such
that

Vol.Sr2/ � Vt .k1; k2/

2k2
:
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Next, by integration by parts and Corollary 5.6.6(ii),

j
Z
At .r1;r2/

�f j �
Z
Sr1

jrf j C
Z
Sr2

jrf j

� Vt .k1; k2/

2k1
C2k1C1 C Vt .k1; k2/

2k2
C2k2C1

� CV t .k1; k2/:

Therefore, since RC�f D n, it follows that
Z
At .r1;r2/

RdV t � CV t .k1; k2/;

proving Claim 6.2. ut
Now we argue by contradiction to finish the proof: suppose diamt .X

n/ is
unbounded for 0 � t < 1. Then, for any sequence �i ! 0, there exists a time
sequence ftig ! 1 and k.i/2 > k

.i/
1 > 0 for which Claim 6.1 holds. Pick smooth

cut-off functions 0 � 	i .s/ � 1 defined on R such that

	i .s/ D

8̂
<
:̂
1; 2k

.i/
1 C2 � s � 2k

.i/
2 �2;

0; outside Œr.i/1 ; r
.i/
2 �;

and j	 0j � 1 everywhere. Here r.i/1 2 Œ2k
.i/
1 ; 2k

.i/
1 C1� and r.i/2 2 Œ2k

.i/
2 �1; 2k

.i/
2 � are

chosen as in Claim 6.2. Define

ui D eLi 	i .dti .x; Oxi //;

where f . Oxi ; ti / D minX f .�; ti / and the constant Li is chosen so that

.2�/n D
Z
X

u2i dV ti D e2Li
Z
A.r

.i/
1 ;r

.i/
2 /

	2i dV ti : (5.119)

Note that by Claim 6.1, Vti .k
.i/
1 ; k

.i/
2 / � �i ! 0. Hence (5.119) implies Li ! 1.

Now, by Lemma 5.4.6 and similar to the proof of Theorem 5.4.5, we have

�.g.0/; 1/ � �.g.ti /; 1/

� .2�/�n
Z
X

.Ru2i C 4jrui j2 � u2i log u2i � 2nu2i /dV ti

D .2�/�ne2Li
Z
Ati .r

.i/
1 ;r

.i/
2 /

.R	2i C 4j	 0
i j2 � 	2i log 	2i � 2Li	

2
i � 2n	2i /dV ti
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D �2.Li C n/C .2�/�ne2Li
Z
Ati .r

.i/
1 ;r

.i/
2 /

.R	2i C 4j	 0
i j2 � 	2i log 	2i /dV ti :

Now, by Claim 6.2 and Claim 6.1, we have

e2Li
Z
Ati .r

.i/
1 ;r

.i/
2 /

R	2i dV ti � Ce2Li Vti .k
.i/
1 ; k

.i/
2 /

� Ce2Li 210nVti .k
.i/
1 C 2; k

.i/
2 � 2/

� C210n
Z
Ati .r

.i/
1 ;r

.i/
2 /

u2i dV ti � C210n.2�/n:

On the other hand, using j	 0
i j � 1 and �s log s � e�1 for 0 � s � 1, we also have

e2Li
Z
Ati .r

.i/
1 ;r

.i/
2 /

.4j	 0
i j2 � 2	2i log 	i /dV ti � Ce2Li V .k.i/1 ; k

.i/
2 /

� C210n.2�/n:

Therefore,

�.g.0/; 1/ � �2.Li C n/C C

for some uniform constant C > 0. But this is a contradiction to fLi g ! 1. ut

5.7 Remarks on the Formation of Singularities in KRF

Consider a solution gij.t/ to the Ricci flow

@gij.t/

@t
D �2Rij.t/

on M � Œ0; T /, T � C1, where either M is compact or at each time t the metric
gij.t/ is complete and has bounded curvature. We say that gij.t/ is a maximal
solution of the Ricci flow if either T D C1 or T < C1 and the norm of its
curvature tensor jRmj is unbounded as t ! T . In the latter case, we say gij.t/ is
a singular solution to the Ricci flow with singular time T . We emphasize that by
singular solution gij.t/ we mean the curvature of gij.t/ is not uniformly bounded on
Mn� Œ0; T /, whileMn is a smooth manifold and gij.t/ is a smooth complete metric
for each t < T .
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As in the minimal surface theory and harmonic map theory, one usually tries to
understand the structure of a singularity by rescaling the solution (or blow up) to
obtain a sequence of solutions and study its limit. For the Ricci flow, the theory
was first developed by Hamilton in [Ham95a] and further improved by Perelman
[Per02, Per03q].

Now we apply Hamilton’s theory to investigate singularity formations of
KRF (5.28) on compact Fano manifolds. Consider a (maximal) solution Ogi Nj .s/
to KRF (5.28) onXn � Œ0; 1/ and the corresponding solution gi Nj .t/ to NKRF (5.33)
on Xn � Œ0;1/, and let us denote by

OKmax.s/ D max
X

jbRm.�; s/jQg.s/ and Kmax.t/ D max
X

jRm.�; t/jg.t/:

According to Hamilton [Ham95a], one can classify maximal solutions to
KRF (5.28) on any compact Fano manifold Xn into Type I and Type II:

Type I: lim sups!1.1 � s/ OKmax.s/ < C1I
Type II: lim sups!1.1 � s/ OKmax.s/ D C1:

On the other hand, by Corollary 5.2.5, OKmax.s/ andKmax.t/ are related by

.1 � s/ OKmax.s/ D Kmax.t.s//:

Thus, we immediately get

Lemma 5.7.1. Let Ogi Nj .s/ be a solution to KRF (5.28) on Xn � Œ0; 1/ and gi Nj .t/ be
the corresponding solution to NKRF (5.33) on Xn � Œ0;1/. Then,

(a) Ogi Nj .s/ is a Type I solution if and only if gi Nj .t/ is a nonsingular solution, i.e.,
Kmax.t/ � C for some constant C > 0 for all t 2 Œ0;1/;

(b) Ogi Nj .s/ is a Type II solution if and only if gi Nj .t/ is a singular solution.

For each type of (maximal) solutions Ogi Nj .s/ to KRF (5.28) or the corresponding
solutions gi Nj .t/ for NKRF (5.33), following Hamilton [Ham95a] (see also Chap. 4
of [CZ06]) we define a corresponding type of limiting singularity models.

Definition 5.7.2. A solution g1
i Nj .t/ to KRF on a complex manifold Xn1 with

complex structure J1, where either Xn1 is compact or at each time t the Kähler
metric g1

i Nj .t/ is complete and has bounded curvature, is called a Type I or Type II
singularity model if it is not flat and of one of the following two types:

Type I: g1
i Nj .t/ exists for t 2 .�1; �/ for some � with 0 < � < C1 and

jRm1j.x; t/ � �=.� � t/

everywhere on Xn1 � .�1; �/ with equality somewhere at t D 0;
Type II: g1

i Nj .t/ exists for t 2 .�1;C1/ and

jRm1j.x; t/ � 1

everywhere on Xn1 � .�1; �/ with equality somewhere at t D 0.
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With the help of the strong �-noncollapsing theorem, we can apply Hamilton’s
Type I and Type II blow up arguments to get the following result, a Kähler analog
of Theorem 16.2 in [Ham95a]:

Theorem 5.7.3. For any (maximal) solution Ogi Nj .s/, 0 � s < 1, to KRF (5.28) on
compact Fano manifold Xn (or the corresponding solution gi Nj .t/ to NKRF (5.33)
on Xn � Œ0;1/), which is of either Type I or Type II, there exists a sequence of
dilations of the solution which converges in C1

loc topology to a singularity model
.Xn1; J1; g1.t// of the corresponding Type. Moreover, the Type I singularity model
.Xn1; J1; g1.t// is compact with Xn1 D Xn as a smooth manifold, while the Type
II singularity model .Xn1; J1; g1.t// is complete noncompact.

Proof. Type I case: Let

� DW lim sup
t!1

.1 � s/ OKmax.s/ < C1:

First we note that � > 0. Indeed by the evolution equation of curvature,

d

ds
OKmax.s/ � Const � OK2

max.s/:

This implies that

OKmax.s/ � .1 � s/ � Const > 0;

because

lim sup
t!1

OKmax.s/ D C1:

Thus� must be positive.
Next we choose a sequence of points xk and times sk such that sk ! 1 and

lim
k!1.1 � sk/jbRmj.xk; sk/ D �:

Denote by

Qk D jbRmj.xk; sk/:

Now translate the time so that sk becomes 0 in the new time, and dilate in space-time
by the factorQk (time like distance squared) to get the rescaled solution

Og.k/
i Nj .Ot / D Qk Ogi Nj .sk CQ�1

k
Ot /
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to the KRF

@

@Ot Ogk
i Nj D �2 OR.k/

i Nj ;

where OR.k/
i Nj is the Ricci tensor of Og.k/

i Nj , on the time interval Œ�Qksk;Qk.1�sk//, with

Qksk D sk jbRmj.xk; sk/ ! 1 and Qk.1 � sk/ D .1 � sk/jbRmj.xk; sk/ ! �:

For any � > 0 we can find a time  < 1 such that for s 2 Œ; 1/,

jbRmj � .�C �/=.1 � s/

by the assumption. Then for Ot 2 ŒQk. � sk/;Qk.1 � sk//, the curvature of Og.k/
i Nj .Ot /

is bounded by

jbRm.k/j D Q�1
k jbRm. Og/j

� �C �

Qk.1 � s/ D �C �

Qk.1� sk/CQk.sk � s/
! .�C �/=.� � Ot/; as k ! C1:

With the above curvature bound and the injectivity radius estimates coming from
�-noncollapsing, one can apply Hamilton’s compactness theorem (cf. [Ham95a] or
Theorem 4.1.5 in [CZ06]) to get a subsequence of Og.k/

i Nj .Ot/ which converges in the

C1
loc topology to a limit metric g.1/

i Nj .t/ in the Cheeger sense on .Xn; J1/ for some

complex structure J1 such that g.1/

i Nj .t/ is a solution to the KRF with t 2 .�1; �/

and its curvature satisfies the bound

jRm.1/j � �=.� � t/

everywhere on Xn1 � .�1; �/ with the equality somewhere at t D 0.
Type II: Take a sequence Sk ! 1 and pick space-time points .xk; sk/ such that,

as k ! C1,

Qk.Sk � sk/ D max
x2X;s�Sk

.Sk � s/jbRmj.x; s/ ! C1;

where again we denote by Qk D jbRmj.xk; sk/. Now translate the time and dilate
the solution as before to get

Og.k/
i Nj .Ot/ D Qk Ogi Nj .sk CQ�1

k
Ot /;
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which is a solution to the KRF and satisfies the curvature bound

jbRm.k/j D Q�1
k jbRm. Og/j � .Sk � sk/

.Sk � s/

D Qk.Sk � sk/

Qk.Sk � sk/ � Ot for Ot 2 Œ�Qksk;Qk.Sk � sk//:

Then as before, by applying Hamilton’s compactness theorem, there exists a
subsequence of Og.k/

i Nj .Ot/ which converges in the C1
loc topology to a limit metric

g
.1/

i Nj .t/ in the Cheeger sense on a limiting complex manifold .Xn1; J1/ such that

g
.1/

i Nj .t/ is a complete solution to the KRF with t 2 .�1;C1/, and its curvature
satisfies

jRm.1/j � 1

everywhere on Xn1 � .�1;C1/ and the equality holds somewhere at t D 0. ut
Remark 5.7.1. The injectivity radius bound needed in Hamilton’s compactness
theorem is satisfied due to the ”Little Loop Lemma” (cf. Theorem 4.2.4 in [CZ06]),
which is a consequence of Perelman’s �-noncollapsing theorem.

Thanks to Perelman’s monotonicity of �-entropy and the uniform scalar
curvature bound in Theorem 5.6.1, we can say more about the singularity models in
Theorem 5.7.3.

First of all, the following result on Type I singularity models of KRF (5.28) is
well-known.

Theorem 5.7.4. Let Qgi Nj .s/ be a Type I solution to KRF (5.28) on Xn � Œ0; 1/ and
gi Nj .t/ be the corresponding nonsingular solution to NKRF (5.33) on Xn � Œ0;1/.

Then there exists a sequence ftkg ! 1 such that g.k/
i Nj .t/ DWgi Nj .tC tk/ converges in

the Cheeger sense to a gradient shrinking Kähler–Ricci soliton g1.t/ on .Xn; J1/,
where J1 is a certain complex structure on Xn, possibly different from J .

Proof. This is a consequence of Theorem 5.7.3, and the fact that every compact
Type I singularity model is necessarily a shrinking gradient Ricci soliton (see [Se05,
SeT08] or p. 662 of [PSSW08b]; also Corollary 1.2 in [CCZ03]). ut

Next, for Type II solutions to the KRF we have the following two results, which
were known to Hamilton and the author (Cao and Hamilton, 2004, unpublished
work on the formation of singularities in KRF) back in 2004,4 and were also
observed independently by Ruan–Zhang–Zhang [RZZ09].

4Theorems 5.7.5 and 5.7.6 were observed by Hamilton and the author during the IPAM conference
“Workshop on Geometric Flows: Theory and Computation” in February, 2004.
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Theorem 5.7.5. Let gi Nj .t/ be a singular solution to NKRF (5.33) on Xn � Œ0;1/.

Then there exists a sequence ftkg ! 1 and rescaled solution metrics g.k/.t/ to
KRF such that .Xn; J; g.k/.t// converges in the Cheeger sense to some noncompact
limit .Xn1; J1; g1.t//, �1 < t < 1, with the following properties:

(i) g1.t/ is Calabi–Yau (i.e, Ricci flat Kähler);
(ii) jRmjg

1
.t/.x; t/ � 1 everywhere and with equality somewhere at t D 0;

(iii) .Xn1; g1.t// has maximal volume growth: for any x0 2 Xn1 there exists a
positive constant c > 0 such that

Vol.B.x0; r// � cr2n; for all r > 0:

Proof. This is an immediate consequence of Theorems 5.7.3 and 5.6.1 (i). Indeed,
Theorem 5.7.3 implies the existence of a noncompact Type II singularity model
.Xn1; J1; g1.t// satisfying property (ii). Property (iii) follows from the fact that the
�-noncollapsing property for KRF or NKRF in Theorem 5.4.7 is dilation invariant,
hence (5.79) and (5.80) holds for each rescaled solution on larger and larger scales
for the same � > 0, hence the maximal volume growth in the limit of dilations.
Finally, for property (i), note that the scalar curvature R of gi Nj .t/ is uniformly
bounded on X � Œ0;1/ by Theorem 5.6.1 and the rescaling factors go to infinite,
so we have R1 D 0 everywhere in the limit of dilations. On the other hand, since
g1
i Nj .t/ is a solution to KRF, R1 satisfies the evolution equation

@

@t
R1 D �R1 C jRic1j2:

Thus, we have jRic1j2 D 0 everywhere hence g1 is Ricci-flat. ut
Theorem 5.7.6. Let X2 be a Del Pezzo surface (i.e., a Fano surface) and let gi Nj .t/
be a singular solution to NKRF (5.33) on X2 � Œ0;1/. Then the Type II limit space
.X21; J1; g1/ in Theorem 5.7.5 is a non-compact Calabi–Yau space satisfies the
following properties:

(a) jRmjg
1

� 1 everywhere on X21 and with equality somewhere;
(b) .X21; g1/ has maximal volume growth: for any x0 2 X21 there exists a positive

constant c > 0 such that

Vol.B.x0; r// � cr4; for all r > 0I

(c)
R
X2

1

jRm.g1/j2dV1 < 1.

Proof. Clearly, we only need to verify property (c). But this follows from the facts
the integral

Z
X2

jRmj2.x; t/dV t
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is dilation invariant in complex dimension n D 2 (real dimension 4); that it differs
from

R
X
R2dV t up to a constant depending only on the Kähler class of g.0/ and the

Chern classes c1.X/ and c2.X/ (cf. Proposition 1.1 in [Cal82]); and that, before the
dilations,

R
X
R2dV t is uniformly bounded for all t 2 Œ0;1/ by Theorem 5.6.1 (i).

ut
Remark 5.7.2. The work of Bando–Kasue–Nakajima [BKN89] implies that
Calabi–Yau surfaces satisfying conditions (b) and (c) are asymptotically locally
Euclidean (ALE) of order 4.

Remark 5.7.3. Kronheimer [Kron89] has classified ALE Hyper–Kähler surfaces
(i.e., simply connected ALE Calabi–Yau surfaces).
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Chapter 6
Convergence of the Kähler–Ricci Flow
on a Kähler–Einstein Fano Manifold

Vincent Guedj

Abstract The goal of these notes is to sketch the proof of the following result,
due to Perelman and Tian–Zhu: on a Kähler–Einstein Fano manifold with discrete
automorphism group, the normalized Kähler–Ricci flow converges smoothly to
the unique Kähler–Einstein metric. We also explain an alternative approach due
to Berman–Boucksom–Eyssidieux–Guedj–Zeriahi, which only yields weak conver-
gence but also applies to Fano varieties with log terminal singularities.

Introduction

Let X be a Fano manifold, i.e. a compact (connected) complex projective algebraic
manifold whose first Chern class c1.X/ is positive, i.e. can be represented by a
Kähler form. It has been an open question for decades to understand when such a
manifold admits a Kähler–Einstein metric, i.e. if we can find a Kähler form !KE 2
c1.X/ such that

Ric.!KE/ D !KE:

By comparison with the cases when c1.X/ < 0 (or c1.X/ D 0) treated in Chap. 3,
there is neither existence nor uniqueness in general of Kähler–Einstein metrics in
the Fano case.

After the spectacular progress in Ricci flow techniques, it has become a natural
question to wonder whether the Ricci flow could help in understanding this problem.
The goal of this series of lectures is to sketch the proof of an important result in this
direction, which is due to Perelman:
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Theorem 6.0.7 (Perelman, seminar talk at MIT, 2003). Let X be a Fano man-
ifold which admits a unique Kähler–Einstein metric !KE. Fix !0 2 c1.X/ an
arbitrary Kähler form. Then the normalized Kähler–Ricci flow

@

@t
!t D �Ric.!t /C !t

converges, as t ! C1, in the C1-sense to !KE.

In other words, the normalized Kähler–Ricci flow detects the (unique)
Kähler–Einstein metric if it exists.

This result has been generalized by Tian and Zhu [TZ07] to the case of
Kähler–Ricci soliton. Other generalizations by Phong and his collaborators can
be found in [PS10]. We follow here a slightly different path, using pluripotential
techniques to establish a uniform C0-a priori estimate along the flow.

All proofs rely on deep estimates due to Perelman. These are explained in
Chap. 5, to which we refer the reader.

Nota Bene. These notes are written after the lectures the author delivered at the
third ANR-MACK meeting (24–27 October 2011, Marrakech, Morocco). There is
no claim of originality. As the audience consisted of non specialists, we have tried
to make these lecture notes accessible with only few prerequisites.

6.1 Background

6.1.1 The Kähler–Einstein Equation on Fano Manifolds

Let X be an n-dimensional Fano manifold and fix ! 2 c1.X/ an arbitrary Kähler
form. If we write locally

! D
X

!˛ˇ
i

�
dz˛ ^ d zˇ;

then the Ricci form of ! is

Ric.!/ WD �
X @2 log

�
det!pq

�
@z˛@zˇ

i

�
dz˛ ^ d zˇ:

Observe that Ric.!/ is a closed .1; 1/-form on X such that for any other Kähler
form !0 on X , the following holds globally:

Ric.!0/ D Ric.!/� ddc

log!0n=!n

�
:

Here d D @C @ and dc D .@ � @/=2i� are both real operators.
In particular Ric.!0/ and Ric.!/ represents the same cohomology class, which

turns out to be c1.X/.
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The Associated Complex Monge–Ampère Equation

Since we have picked ! 2 c1.X/, it follows from the ddc-lemma that

Ric.!/ D ! � ddch

for some smooth function h 2 C1.X;R/ which is uniquely determined, up to an
additive constant. We normalize h by asking for

Z
X

e�h!n D V WD
Z
X

!n D c1.X/
n:

We look for !KE D !C ddc'KE a Kähler form such that Ric.!KE/ D !KE. Since
Ric.!KE/ D Ric.!/ � ddc log.!nKE=!

n/, an easy computation shows that

ddcflog.!nKE=!
n/C 'KE C hg D 0:

Since pluriharmonic functions are constant on X (by the maximum principle), we
infer

.! C ddc'KE/
n D e�'KEe�hCC!n (MA)

for some normalizing constant C 2 R. Solving Ric.!KE/ D !KE is thus equivalent
to solving the above complex Monge–Ampère equation (MA).

Known Results

When n D 1, X is the Riemann sphere CP1 and (a suitable multiple of) the Fubini–
Study Kähler form is a Kähler–Einstein metric.

When n D 2 it is not always possible to solve (MA). In this case X is a DelPezzo
surface, biholomorphic either to CP

1 �CP
1 or CP2 which both admit the (product)

Fubini–Study metric as a Kähler–Einstein metric, or else to Xr , the blow up of CP2

at r points in general position, 1 � r � 8. Various authors (notably Yau, Siu,
Tian, Nadel) have studied the Kähler–Einstein problem on DelPezzo surfaces in the
eighties. The final and difficult step was done by Tian who proved the following:

Theorem 6.1.1 ([Tian90]). The DelPezzo surface Xr admits a Kähler–Einstein
metric if and only if r ¤ 1; 2.

The interested reader will find an up-to-date proof of this result in [Tos12].
The situation becomes much more difficult and largely open in higher dimension.

There is a finite but long list (105 families) of deformation classes of Fano three-
folds. It is unknown, for most of them, whether they admit or not a Kähler–Einstein
metric. Among them, the Mukai–Umemura manifold is particularly interesting: this
manifold admits a Kähler–Einstein metric as was shown by Donaldson [Don08],
and there are arbitrary small deformations of it which do (resp. do not) admit a
Kähler–Einstein metric as shown by Donaldson (resp. Tian).
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There are even more families in dimension n � 4. Those which are toric admit
a Kähler–Einstein metric if and only if the Futaki invariant vanishes (see [WZ04]),
the non-toric case is essentially open and has motivated an important conjecture of
Yau–Tian–Donaldson (see [PS10]).

Uniqueness Issue

Bando and Mabuchi have shown in [BM87] that any two Kähler–Einstein metrics on
a Fano manifold can be connected by the holomorphic flow of a holomorphic vector
field. This result has been generalized recently by Berndtsson [Bern11]. We shall
make in the sequel the simplifying assumption that X does not admit non-zero
holomorphic vector field, so that it admits a unique Kähler–Einstein metric, if any.

6.1.2 The Analytic Criterion of Tian

Given ' W X ! R [ f�1g an upper semi-continuous function, we say that ' is
!-plurisubharmonic (!-psh for short) and write ' 2 PSH.X; !/ if ' is locally given
as the sum of a smooth and a plurisubharmonic function, and ! C ddc' � 0 in the
weak sense of currents. Set

E.'/ WD 1

nC 1

nX
jD0

V �1
Z
X

'.! C ddc'/j ^ !n�j :

We let the reader check, by using Stokes formula, that

d

dt
E.' C tv/jtD0 D

Z
X

vMA.'/; where MA.'/ WD V �1.! C ddc'/n:

The functional E is thus a primitive of the complex Monge–Ampère operator, in
particular ' 7! E.'/ is non-decreasing since E 0 D MA � 0.

Definition 6.1.2. The Ding functional1 is defined as

Ding.'/ WD �E.'/� log

�Z
X

e�'�h!n
�
:

The reader will check that ' is a critical point of the Ding functional if and only if

MA.'/ D e�'�h!nR
X e

�'�h!n

1This functional seems to have been first explicitly considered by W.Y. Ding in [Ding88, p. 465],
hence the chosen terminology.
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so that ! C ddc' is Kähler–Einstein. Observe that Ding.' C c/ D Ding.'/, for all
c 2 R, thus Ding is actually a functional acting on the metrics !' WD ! C ddc'.
It is natural to try and extremize the Ding functional. This motivates the following:

Definition 6.1.3. We say that the Ding functional is proper if Ding.'j / ! C1
whenever 'j 2 PSH.X; !/\C1.X/ is such thatE.'j / ! �1 and

R
X
'j!

n D 0.

The importance of this notion was made clear in a series of works by Ding and
Tian in the 1990s, culminating with the following deep result of [Tian97]:

Theorem 6.1.4 ([Tian97]). Let X be a Fano manifold with no holomorphic vector
field. There exists a Kähler–Einstein metric if and only if the Ding functional is
proper.

6.1.3 The Kähler–Ricci Flow Approach

The Ricci flow is the parabolic evolution equation

@

@t
!t D �Ric.!t / with initial data !0: (KRF)

When !0 is a Kähler form, so is !t , t > 0 hence it is called the Kähler–Ricci flow.

Long Time Existence

The short time existence is guaranteed by standard parabolic theory (see Chap. 2
of the present volume). In the Kähler context, this translates into a parabolic scalar
equation as we explain below.

It is more convenient to analyze the long time existence by considering the
normalized Kähler–Ricci flow, namely

@

@t
!t D �Ric.!t /C !t : (NKRF)

One passes from (KRF) to (NKRF) by changing !.t/ in et!.1 � e�t /. At the level
of cohomology classes,

d f!t g
dt

D �c1.X/C f!t g 2 H1;1.X;R/

therefore f!t g 	 c1.X/ is constant if we start from !0 2 c1.X/. This justifies the
name (normalized KRF) since in this case

vol!t .X/ D vol!0.X/ D c1.X/
n

is constant. Note that the volume blows up exponentially fast if f!0g > c1.X/.
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Theorem 6.1.5 ([Cao85]). Let X be a Fano manifold and pick a Kähler form !0 2
c1.X/. Then the normalized Kähler–Ricci flow exists for all times t > 0.

We will outline a proof of this result, although it is already essentially contained
in Chap. 3.

The main issue is then whether .!t / converges as t ! C1. Hopefully, we
should have @

@t
!t ! 0 and !t ! !KE such that Ric.!KE/ D !KE. We can now

formulate Perelman’s result as follows:

Theorem 6.1.6 (Perelman 03). Let X be a Fano manifold and pick an arbitrary
Kähler form !0 2 c1.X/. If the Ding functional is proper, then the normalized
Kähler–Ricci flow .!t / converges, as t ! C1, towards the unique Kähler–Einstein
metric !KE.

Remark 6.1.7. It turns out that the properness assumption ensures that there can
be no holomorphic vector field, hence the Kähler–Einstein metric (which exists by
Tian’s result) is unique (by Bando–Mabuchi’s result).

The situation is much more delicate in the presence of holomorphic vector fields.
For n D 1, the problem is already non-trivial and was settled by Hamilton in
[Ham88] and Chow in [Chow91]. For n � 2 we refer the reader to [CSz12] for
up-to-date references.

Reduction to a Scalar Parabolic Equation

Let ! D !0 2 c1.X/ denote the initial data. Since !t is cohomologous to !, we can
find 't 2 PSH.X; !/ a smooth function such that !t D ! C ddc't . The function 't
is defined up to a time dependent additive constant. Then

d f!t g
dt

D ddc P't D �Ric.!t /C ! C ddc't ;

where P't WD @
@t
't . Let h 2 C1.X;R/ be the unique function such that

Ric.!/ D ! � ddch; normalized so that
Z
X

e�h!n D V:

We also consider ht 2 C1.X;R/ the unique function such that

Ric.!t / D !t � ddcht ; normalized so that
Z
X

e�ht !nt D V:

It follows that Ric.!t / D ! � ddch� ddc log
�
!nt =!

n
�
, hence

ddc
�

log

�
!nt
!n

�
C hC 't � P't

�
D 0;
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therefore

.! C ddc't /
n D e P't�'t�hCˇ.t/!n;

for some normalizing constant ˇ.t/.
Observe also that ddc P't D �Ric.!t /C!t D ddcht hence P't .x/ D ht .x/C˛.t/

for some time dependent constant ˛.t/. Our plan is to show the convergence of the
metrics !t D !Cddc't by studying the properties of the potentials 't , so we should
be very careful in the way we normalize the latter.

6.1.4 Plan of the Proof

Step 1: Choice of Normalization

We will first explain two possible choices of normalizing constants. Chen and Tian
have proposed in [CheT02] a normalization which has been most commonly used
up to now. We will emphasize an alternative normalization, which is most likely the
one used by Perelman.2

Step 2: Uniform C 0-Estimate

Once 't has been suitably normalized, we will use the properness assumption to
show that there exists C0 > 0 such that

j't.x/j � C0; for all .x; t/ 2 X � R
C:

This C0-uniform estimate along the flow is the one that fails when there is no
Kähler–Einstein metric. It is considered by experts as the core of the proof. We will
indicate an alternative argument using pluripotential techniques to deduce it from
Perelman’s estimate.

Step 3: Uniform Estimate for P't

We will explain how to bound j P't j uniformly in finite time, i.e. onX � Œ0; T �. To get
a uniform bound for j P't j onX�R

C, one needs to invoke Perelman’s deep estimates:
the latter will not be explained here, but are sketched in Chap. 5.

2In his seminar talk, Perelman apparently focused on his key estimates and did not say much about
the remaining details.
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Step 4: Uniform C 2-Estimate

We will then show that j�!'t j � C2 independent of .x; t/ 2 X � R
C, by a

clever use of the maximum principle for the Heat operator @
@t

� �!t . This is a
parabolic analogue of Yau’s celebrated Laplacian estimate. The constantC2 depends
on uniform bounds for 't and P't , hence on Steps 2, 3.

Step 5: Higher Order Estimate

At this stage one can either establish a parabolic analogue of Calabi’s C3-
estimates (global reasoning, see [PSS07]), or a complex version of the parabolic
Evans–Krylov theory (local arguments) to show that there exists ˛ > 0 andC2;˛ > 0
such that

k'tkC2;˛.X�RC/ � C2;˛;

where the Sobolev norm has to be taken with respect to the parabolic distance

d ..x; y/; .t; s// WD maxfD.x; y/;
p

jt � sjg:

We won’t say a word about these estimates in these notes. The reader will find a neat
treatment of the C3-estimates in Chap. 3, and an idea of the Evans–Krylov approach
in the real setting in Chap. 2 (see [Gill11, ShW11] for the complex case).

With these estimates in hands, one can try and estimate the derivatives of the
curvature as in Chap. 3, or simply invoke the parabolic Schauder theory to conclude
(using a bootstrapping argument) that there exists Ck > 0 such that

k'tkCk.X�RC/ � Ck:

Step 6: Convergence of the Flow

At this point, we know that .'t / is relatively compact in C1 and it remains to show
that it converges.

For the first normalization, an easy argument shows that P't ! 0. A differential
Harnack inequality (à la Li–Yau) allows then to show that the flow converges
exponentially fast towards a Kähler–Einstein potential, which is thus the unique
cluster point by Bando–Mabuchi’s result.

For Perelman’s normalization, one can conclude by using the variational char-
acterization of the Kähler–Einstein metric: it is the unique minimizer of the Ding
functional.



6 Convergence of the Kähler–Ricci Flow on a Kähler–Einstein Fano Manifold 307

6.2 Normalization of Potentials

Recall that !t is a solution of the normalized Kähler–Ricci flow (NKRF),

@

@t
!t D �Ric.!t /C !t (NKRF)

with initial data ! D !0 2 c1.X/. We let 't 2 PSH.X; !/ \ C1.X/ denote
a potential for !t , !t D ! C ddc't which is uniquely determined up to a time
dependent additive constant. It satisfies the complex parabolic Monge–Ampère flow

P't WD @

@t
't D log

�
!nt
!n

�
C 't C h � ˇ.t/

for some normalizing constant ˇ.t/ 2 R.

6.2.1 First Normalization

Observe that ddc'0 D !0 � ! D 0, hence '0.x/ 	 c0 is a constant. The choice of
c0 will turn out to be crucial.

It is somehow natural to adjust the normalization of 't so that ˇ.t/ 	 0. This
amounts to replace 't by 't C B.t/, where B solves the ODE B 0 � B D �ˇ. Now

P't WD @

@t
't D log

�
!nt
!n

�
C 't C h

with '0.x/ 	 c0
0 D c0 C B.0/. Since we can choose B.0/ arbitrarily without

affecting this complex Monge–Ampère flow (in other words the transformation
't 7! 't CB.0/et leaves the flow invariant), we can still choose the value of c0

0 2 R.
This choice is now clearly crucial, since two different choices lead to a difference in
potentials which blows up exponentially in time.

The Mabuchi Functional

Recall that the scalar curvature of a Kähler form! is the trace of the Ricci curvature,

Scal.!/ WD n
Ric.!/ ^ !n�1

!n
:

Its mean value is denoted by
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Scal.!/ WD V �1
Z
X

Scal.!/!n D n
c1.X/ � f!gn�1

f!gn :

The Mabuchi energy is defined by its derivative: if !t D ! C ddc t is any path of
Kähler forms within the cohomology class f!g, then

d

dt
Mab. t / WD V �1

Z
X

P t
h
Scal.!t / � Scal.!t /

i
!nt :

As we work here with ! 2 c1.X/, we obtain Scal.!t / D n. Since

Ric.!t / D !t � ddcht ;

we observe that

Scal.!t / � Scal.!t / D �!t ht WD n
ddcht ^ !n�1

t

!nt
:

Recall now that ddc P't D ddcht . Therefore along the normalized Kähler–Ricci flow,

d

dt
Mab.'t / D V �1

Z
X

P't�!t . P't/!nt D �nV �1
Z
X

d P't ^ dc P't ^ !n�1
t � 0:

We have thus proved the following important property:

Lemma 6.2.1. The Mabuchi energy is non-increasing along the normalized
Kähler–Ricci flow. More precisely,

d

dt
Mab.'t / D �nV �1

Z
X

d P't ^ dc P't ^ !n�1
t � 0:

We explain hereafter (see Proposition 6.2.5) that the Mabuchi functional is
bounded below if and only if the Ding functional introduced above is so. The
previous computation therefore yields

Z C1

0

krt P'tk2L2.X/dt < C1:

One chooses c0 so as to guarantee that

a.t/ WD V �1
Z
X

P't!nt
t!C1�! 0:

This convergence will be necessary to show the convergence of the flow (see the
discussion before Lemma 1 in [PSS07]).
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Lemma 6.2.2. The function a.t/ converges to zero as t ! C1 iff we choose

'0.x/ 	 c0 WD
Z C1

0

krt P'tk2L2.X/e�tdt � V �1
Z
X

h0 !
n:

Proof. Observe that

a0.t/ D V �1
Z
X

R't!nt C nV �1
Z
X

P'tddc P't ^ !n�1
t D a.t/C d

dt
Mab.'t /:

Indeed

R't D d

dt

�
log

�
!nt
!n

�
C 't C h0

�
D P't C�!t P't

hence
R
X

R't!nt D R
X

P't!nt . We can integrate this ODE and obtain

a.t/ D
�
a0 C

Z t

0

k0.s/e�sds

�
et ;

where k.s/ WD Mab.'s/. Since k is non-increasing and bounded below, the function
k0.s/e�s is integrable on R

C and a.t/ ! 0 as t ! C1 if and only if

a.0/ D �
Z C1

0

k0.s/e�sds:

Now a.0/ D V �1 R
X

P'0!n D c0 C V �1 R
X
h0!

n. The result follows. ut

Conclusion

The first normalization amounts to considering the parabolic flow of potentials

P't WD @

@t
't D log

�
!nt
!n

�
C 't C h0

with constant initial potential

'0.x/ 	 c0 WD
Z C1

0

krt P'tk2L2.X/e�tdt � V �1
Z
X

h0 !
n:

This choice of initial potential being possible only when the Mabuchi functional is
bounded below, which is the case under our assumptions.
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6.2.2 Perelman’s Normalization?

There is another choice of normalization which is perhaps more natural from a
variational point of view. Namely we choose

ˇ.t/ D log

�
V �1

Z
X

e�'t�h0!n
�

so that

P't D log

�
MA.'t /

�t

�
;

where MA.'t / D .! C ddc't /n=V and

�t WD e�'t�h0!nR
X
e�'t�h0!n

are both probability measures. This is the normalization used in [BBEGZ11].
Observe that changing further 't.x/ in 't .x/CB.t/ leaves both MA.'t / and �t

unchanged, but modifies P't .x/ into P't .x/CB 0.t/. Thus we can only afford replacing
't by 't � c0 so that '0 D 0.

The Ricci Deviation

Recall that we have set Ric.!t / D !t � ddcht , with

V �1
Z
X

e�ht !nt D 1:

We have observed that P't .x/ and ht .x/ only differ by a constant (in space). Now

V �1
Z
X

e� P't !nt D
Z
X

e� P'tMA.'t / D �t.X/ D 1;

so that P't 	 ht with this choice of normalization. As we recall below, Perelman
has succeeded in getting uniform estimates on the Ricci deviations ht , these
estimates therefore apply immediately to the function P't with our present choice
of normalization.

Monotonicity of the Functionals Along the Flow

We have observed previously that the Mabuchi functional is non-decreasing along
the normalized Kähler–Ricci flow. Since this functional acts on metrics (rather than
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on potentials), this property is independent of the chosen normalization. The same
holds true for the Ding functional:

Lemma 6.2.3. The Ding functional is non-increasing along the normalized
Kähler–Ricci flow. More precisely,

� d
dt

Ding.'t / D HMA.'t /.�t /CH�t .MA.'t // � 0:

Here H�.�/ denotes the relative entropy of the probability measure � with
respect to the probability measure �. It is defined by

H�.�/ D
Z
X

log

�
�

�

�
d� 2 Œ0;C1�

if � is absolutely continuous with respect to �, and H�.�/ D C1 otherwise.
It follows from the concavity of the logarithm that

H�.�/ D �
Z
X

log

�
�

�
d� � � log .�.X// D 0;

with strict inequality unless � D �.

Proof. Recall that Ding.'/ D �E.'/� log
R
X
e�'�h0 !n

�
, whereE is a primitive

of the complex Monge–Ampère operator. We thus obtain along (NKRF)

d

dt
E.'t / D

Z
X

P'tMA.'t / D
Z
X

log

�
MA.'t /

�t

�
MA.'t / D H�t .MA.'t //;

while

d

dt
log

�Z
X

e�'t�h0 !n
�

D �
Z
X

P'td�t D HMA.'t /.�t /:

This proves the lemma. ut
Recall that in the first normalization, the initial constant c0 has been chosen so

that

a.t/ WD V �1
Z
X

P't!nt D
Z
X

P'tMA.'t /

converges to zero as t ! C1. We relate this quantity to the above functionals:

Lemma 6.2.4. Along the normalized Kähler–Ricci flow, one has

Ding.'t /C V �1
Z
X

P't!nt D Mab.'t /C V �1
Z
X

h0 !
n:
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Observe that the right hand side only depends on !t , while the left hand side
depends on the choice of normalization for 't . It is understood here that this identity
holds under the Perelman normalization.

Proof. Recall that

P't D log.!nt =!
n/C 't C h0 C ˇ.t/; with ˇ.t/ D log

�
V �1

Z
X

e�'t�h0!n
�
:

We let a.t/ D R
X

P'tMA.'t / denote the left hand side and get as before

a0.t/ D a.t/C ˇ0.t/C d

dt
Mab.'t / D d

dt
Œ�Ding.'t /C Mab.'t /� ;

noting that a.t/ D d
dtE.'t /.

The conclusion follows since a.0/ D V �1 R
X h0 !

n while Ding.'0/ D
Mab.'0/ D 0. ut

Mabuchi vs Ding

We now show that the Mabuchi and the Ding functionals are bounded below
simultaneously. This seems to have been noticed only recently (see [Li08,CLW09]).

Proposition 6.2.5. Let X be a Fano manifold. The Mabuchi functional is bounded
below along (NKRF) if and only if the Ding functional is so. If such is the case, then

inf
t>0

Ding.'t / D inf
t>0

Mab C V �1
Z
X

h0 !
n:

Proof. We have noticed in previous lemma, using Perelman’ normalization, that

Ding.'t /C V �1
Z
X

P't!nt D Mab.'t /C V �1
Z
X

h0 !
n:

It follows from Perelman’s estimates that P't is uniformly bounded along the flow.
Thus Mab.'t / is bounded if and only if Ding.'t / is so. We assume such is the
case.

The error term a.t/ D V �1 R
X

P't!nt is non-negative, with

0 � a.t/ D d

dt
E.'t/:

Since Ding.'t / D �E.'t /�ˇ.t/ is bounded from above and t 7! ˇ.t/ is increasing,
E.'t/is bounded above as well. Thus

R C1
a.t/dt < C1, hence there exists

tj ! C1 such that a.tj / ! 0. We infer
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inf
t>0

Ding.'t / D inf
t>0

Mab.'t /C V �1
Z
X

h0 !
n: ut

Conclusion

The Perelman normalization amounts to consider the parabolic flow of potentials

P't WD log

�
!nt
!n

�
C 't C h0 C log

�
V �1

Z
X

e�'t�h0!n
�
;

with initial potential '0 	 0. Our plan is to show that if the Ding functional is proper
and H0.X; TX/ D 0, then Q't WD 't � V �1 R

X
't!

n converges, in the C1-sense,
towards the unique function 'KE such that

MA.'KE/ D e�'KE�h!nR
X
e�'KE�h!n

and
R
X
'KE!

n D 0. This will imply that !t smoothly converges towards the unique
Kähler–Einstein metric !KE D ! C ddc'KE.

6.2.3 Perelman’s Estimates

We first explain how a uniform control on j't.x/j in finite time easily yields a
uniform control in finite time on j P't.x/j:
Proposition 6.2.6. Assume 't 2 PSH.X; !/\ C1.X/ satisfies

P't D log

�
.! C ddc't /n

!n

�
C 't C h0 C ˇ.t/;

with '0 D 0, ˇ.t/ D log

V �1 R

X
e�'t�h0!n

�
. Then 8.x; t/ 2 X � Œ0; T �,

e2T inf
X
h0 � P't.x/ � oscX.'t /C .nC 1/T C sup

X

h0:

Proof. Consider

H.x; t/ WD P't.x/ � 't.x/ � .nC 1/t � ˇ.t/;

and let .x0; t0/ 2 X � Œ0; T � be a point at which H realizes its maximum.
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Set �t WD �!t . Observe that R't D P't C�t P't C ˇ0.t/ and estimate

�
@

@t
��t

�
H D �t't � .nC 1/ � �1;

where the latter inequality comes from the identity

�t't D n � n! ^ !n�1
t

!nt
� n:

We infer that t0 D 0, hence for all .x; t/ 2 X � Œ0; T �,

H.x; t/ � H.x0; 0/ D h0.x0/ � sup
X

h0;

thus

P't .x/ � Œsup
X

't C ˇ.t/�C .nC 1/T C sup
X

h0:

The desired upper-bound follows by observing that ˇ.t/ � � infX 't .
We use a similar reasoning to obtain the lower-bound, using the minimum

principle for the Heat operator @
@t

� �t , instead of the maximum principle. Indeed
observe that

�
@

@t
��t

�
. P't/ D P't C ˇ0.t/ � P't ;

hence
�
@

@t
��t

�
.e�2t P't / � �e�2t P't :

Let .x; 0; t0/ 2 X � Œ0; T � be a point where e�2t P't.x/ realizes its minimum. If
t0 > 0, then

0 �
�
@

@t
��t

�
.e�2t P't /j.x0;t0/ � �e�2t0 P't0.x0/

hence P't .x/ � 0 for all .x; t/. If t0 D 0, then

e�2t P't .x/ � P'0.x0/ D inf
X
h0 C ˇ.0/ D inf

X
h0:

The desired lower-bound follows, as infX h0 � 0 since
R
X
e�h0!n D V . ut
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We let the reader check that similar bounds can be obtained for the first
normalization. These bounds are sufficient to prove Cao’s result [Cao85] (the
normalized Kähler–Ricci flow exists in infinite time), however they blow up as
t ! C1 hence are too weak to study the convergence of the NKRF.

By using the monotonicity of his W-functional, together with a non-collapsing
argument, Perelman was able to prove the following deep estimate:

Theorem 6.2.7. There exists C1 > 0 such that for all .x; t/ 2 X � R
C,

j P't.x/j � C1:

We refer the reader to [SeT08] for a detailed proof. An outline is also provided
in the appendix of [TZ07], and more information can be found in Chap. 5.

6.3 C 0-Estimate

The main purpose of this section is to explain how to derive a uniform estimate on
j't.x/j. We first show that this is an elementary task in finite time, and then use
the properness assumption and pluripotential tools to derive a uniform estimate on
X � R

C. The latter estimate can not hold on Fano manifolds which do not admit a
Kähler–Einstein metric.

6.3.1 Control in Finite Time

Proposition 6.3.1. Assume 't 2 PSH.X; !/\ C1.X/ satisfies

P't D log

�
.! C ddc't /n

!n

�
C 't C h0 C ˇ.t/;

with '0 D 0, ˇ.t/ D log

V �1 R

X
e�'t�h0!n

�
. Then 8.x; t/ 2 X � Œ0; T �,

e2T inf
X
h0 � 't.x/ � e4T oscX.h0/:

Proof. Let .x0; t0/ 2 X� Œ0; T � be a point at which the function .x; t/ 7! F.x; t/ D
e�2t't .x/ realizes its maximum. If t0 D 0, we obtain

e�2t 't .x/ � '0.x0/ D 0; hence 't .x/ � 0:

If t0 > 0, then at .x0; t0/ we have ddcF D e�2t0ddc't0.x0/ � 0 hence

P't0.x0/ � 't0.x0/C sup
X

h0 C ˇ.t0/;
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while

0 � @

@t
F D e�2t0 Œ P't0.x0/� 2't0.x0/� � e�2t0

�
sup
X

h0 C ˇ.t0/� 't0.x0/

�
:

The upper-bound follows by recalling that ˇ is non-decreasing and

ˇ.T / � � inf
X
'T � e2T .� inf

X
h0/;

assuming the lower-bound holds true.
The latter is proved along the same lines: looking at the point where F realizes

its minimum, we end up with a lower-bound

't .x/ � e2T inf
X
h0 C ˇ.0/ D e2T inf

X
h0;

since ˇ vanishes at the origin. ut

6.3.2 Uniform Bound in Infinite Time

Theorem 6.3.2. Let X be a Fano manifold such that the Ding functional is proper.
Let !t WD !Cddc t be the solution of the normalized Kähler–Ricci flow with initial
data ! 2 c1.X/, where  t 2 PSH.X; !/ is normalized so that

R
X
 t !

n D 0. There
exists C0 > 0 such that

8.x; t/ 2 X � R
C; j t.x/j � C0:

Proof. Observe that  t D 't � R
X
't !

n, where 't satisfies

P't D log

�
MA.'t /

�t

�
;

with

MA.'t / D V �1.! C ddc't /
n and �t D e�'t�h0!nR

X
e�'t�h0!n

:

We have observed that the Ding functional is translation invariant and non-
increasing along the NKRF. Since it is proper, we infer that E. t / is uniformly
bounded below. But the mean value property shows that supX  t � R

X
 t !

n C
C! D C! (see [GZ05, Proposition 1.7]), and it follows that  t belong to

E1C .X; !/ WD fu 2 PSH.X; !/ j u � C and E.u/ � �C g;
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for some fixed C > 0. This is a compact set (for the L1-topology) of functions
which have zero Lelong numbers at all points (see below). It follows therefore from
Skoda’s uniform integrability theorem [Zer01] that there exists A > 0 such that

sup
t�0

Z
X

e�2 t�2h0!n � A:

Note that
R
X
e� t�h0!n � Ve� supX  t � ı0 > 0 and recall that P't .x/ � C1 by

Perelman’s fundamental estimate to conclude that

MA. t / D e P't e� t�h0!nR
X
e� t�h0!n

D ft!
n;

where the densities 0 � ft are uniformly in L2.X/, kftkL2.!n/ � A0. It follows
therefore from Theorem 6.3.8 that  t is uniformly bounded. ut
Remark 6.3.3. The reader will find a rather different approach in [TZ07, PSS07,
PS10], using the first normalization, Moser iterative process and a uniform Sobolev
inequality along the flow. It takes some efforts to check that the two normalizations
are uniformly comparable along the flow, give it a try!

6.3.3 Pluripotential Tools

We explain here some of the pluripotential tools that have been used in the above
proof.

6.3.3.1 Finite Energy Classes

Recall thatX is an n-dimensional Fano manifold,! is a fixed Kähler form in c1.X/,
and V D c1.X/

n D R
X
!n. The energy E. / of a smooth !-plurisubharmonic

function,

E. / WD 1

nC 1

nX
jD0

V �1
Z
X

 .! C ddc /j ^ !n�j ;

is non-decreasing in  . It can thus be extended to any ' 2 PSH.X; !/ by setting

E.'/ WD inf
 �' E. /;

where the infimum runs over all smooth !-psh functions  that lie above '.
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Definition 6.3.4. We set

E1.X; !/ WD f' 2 PSH.X; !/ j E.'/ > �1g:

and

E1C .X; !/ WD f' 2 E1.X; !/ j E.'/ � �C and ' � C g:

The following properties are established in [GZ07, BEGZ10]:

• The complex Monge–Ampère operator MA.�/ is well defined on the class
E1.X; !/, since the Monge–Ampère measure of a function ' 2 E1.X; !/ is
very well approximated (in the Borel sense) by the Monge–Ampère measures
MA.'j / of its canonical approximants 'j WD maxf';�j g;

• The maximum and comparison principles hold, namely if '; 2 E1.X; !/,

1f'> gMA.maxf'; g/ D 1f'> gMA.'/

and
Z

f'< g
MA. / �

Z
f'< g

MA.'/:

• The functions with finite energy have zero Lelong number at all points, as follows
by observing that the class E1.X; !/ is stable under the max-operation, while
� log dist.�; x/ is !-plurisubharmonic for each fixed point x 2 X and a suitable
cut-off function �, while it does not belong to E1.X; !/;

• The sets E1C .X; !/ are compact subsets of L1.X/: this easily follows from the
upper semi-continuity property of the energy, together with the fact that the set

f' 2 PSH.X; !/ j �C 0 � sup
X

' � C g

is compact in L1.X/.

Recall now the following uniform version of Skoda’s integrability theorem [Zer01]:

Theorem 6.3.5. Let B � PSH.X; !/ be a compact family of !-psh functions, set

�.B/ WD supf�.'; x/ j x 2 X and ' 2 Bg:

For every A < 2=�.B/, there exists CA > 0 such that

8' 2 B;
Z
X

e�A' !n � CA:
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It follows from this result that functions from E1C .X; !/ satisfy such a uniform
integrability property with A > 0 as large as we like.

6.3.3.2 Capacities and Volume

For a Borel set K � X , we consider

M!.K/ WD sup
X

V �
K;! 2 Œ0;C1�; (6.1)

where

VK;! WD supf' 2 PSH.X; !/ j ' � 0 on Kg:

One checks that M!.K/ D C1 if and only if K is pluripolar. We also set

Cap.K/ WD sup

�Z
K

MA.u/ j 0 � u � 1

	
:

This is the Monge–Ampère capacity. It vanishes on pluripolar sets.

Lemma 6.3.6. For every non-pluripolar compact subset K of X , we have

1 � Cap.K/�1=n � maxf1;M!.K/g:

Proof. The left-hand inequality is trivial. In order to prove the right-hand inequality
we consider two cases. If M!.K/ � 1, then V �

K;! is a candidate in the definition of
Cap.K/. One checks that MA.V �

K;!/ is supported onK , thus

Cap.K/ �
Z
K

MA.V �
K;!/ D

Z
X

MA.V �
K;!/ D 1

and the desired inequality holds in that case.
On the other hand if M WD M!.K/ � 1 we have 0 � M�1V �

K;! � 1 and it
follows by definition of the capacity again that

Cap.K/ �
Z
K

MA.M�1V �
K;!/:

Since MA.M�1V �
K;!/ � M�nMA.V �

K;!/ we deduce that

Z
K

MA.M�1V �
K;!/ � M�n

Z
X

MA.V �
K;!/ D M�n

and the result follows. ut
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Proposition 6.3.7. Let � D fdV be a positive measure with Lp density with respect
to Lebesgue measure, with p > 1. Then there exists C > 0 such that

�.B/ � C � Cap.B/2

for all Borelian B � X , where C WD .p�1/�2nAkf kL1C".dV/; and A D A.!; dV/.

Proof. It is enough to consider the case where B D K is compact. We can also
assume that K is non-pluripolar since �.K/ D 0 otherwise and the inequality is
then trivial. Set

�.X/ WD sup
T;x

�.T; x/ (6.2)

the supremum ranging over all positive currents T 2 c1.X/ and all x 2 X ,
and �.T; x/ denoting the Lelong number of T at x. Since all Lelong numbers
of �.X/�1T are < 2 for each positive current T 2 c1.X/, Skoda’s uniform
integrability theorem yields C! > 0 only depending on dV and ! such that

Z
X

exp.��.X/�1 /dV � C!

for all !-psh functions normalized by supX  D 0. Applying this to  D V �
K;! �

M!.K/ [which has the right normalization by (6.1)] we get

Z
X

exp.��.X/�1V �
K;!/dV � C! exp.��.X/�1M!.K//:

On the other hand V �
K;! � 0 on K a.e. with respect to Lebesgue measure, hence

vol.K/ � C! exp.��.X/�1M!.K//: (6.3)

Now Hölder’s inequality yields

�.K/ � kf kLp.dV/ vol.K/1=q; (6.4)

where q denotes the conjugate exponent. We may also assume that M!.K/ � 1.
Otherwise Lemma 6.3.6 implies Cap.K/ D 1, and the result is thus clear in that
case. By Lemma 6.3.6, (6.3) and (6.4) together we thus get

�.K/ � C1=q
! kf kLp.dV/ exp

�
� 1

q�.X/
Cap.K/�1=n

�

and the result follows since exp.�t�1=n/ D O.t2/ when t ! 0C. ut
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6.3.3.3 Kolodziej’s Uniform A Priori Estimate

We are now ready to prove the following celebrated result of Kolodziej [Kol98]:

Theorem 6.3.8. Let � D MA.'/ D f dV be a probability Monge–Ampère
measure with density f 2 Lp , p > 1. Then

oscX ' � C

where C only depends on !; dV; jjf jjLp .

Proof. We can assume ' is normalized so that supX ' D 0. Consider

g.t/ WD .Capf' < �tg/1=n :

Our goal is to show that g.M/ D 0 for some M under control. Indeed we will then
have ' � �M on X n P for some Borel subset P such that Cap.P / D 0. It then
follows from Proposition 6.3.7 (applied to the Lebesgue measure itself) that P has
Lebesgue measure zero hence ' � �M will hold everywhere.

Since MA.'/ D � it follows from Proposition 6.3.7 and Lemma 6.3.9 that

g.t C ı/ � C1=n

ı
g.t/2 for all t > 0 and 0 < ı < 1:

We can thus apply Lemma 6.3.10 below which yields g.M/ D 0 for M WD t0 C
5C 1=n. Here t0 > 0 has to be chosen so that

g.t0/ <
1

5C 1=n
:

Now Lemma 6.3.9 (with ı D 1) implies that

g.t/n � �f' < �t C 1g � 1

t � 1

Z
X

j'jfdV � 1

t � 1
kf kLp.dV/k'kLq.dV/

by Hölder’s inequality. Since ' belongs to the compact set of !-psh functions
normalized by supX ' D 0, its Lq.dV/-norm is bounded by a constant C2 only
depending on !, dV and p. It is thus enough to take

t0 > 1C 5n�1C2Ckf kLp.dV/: ut

Lemma 6.3.9. Fix ' 2 E1.X; !/. Then for all t > 0 and 0 < ı < 1 we have

Capf' < �t � ıg � ı�n
Z

f'<�tg
MA.'/:
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Proof. Let  be a !-psh function such that 0 �  � 1. We then have

f' < �t � ıg � f' < ı � t � ıg � f' < �tg:

Since ınMA. / � MA.ı / and ' 2 E1.X; !/ it follows from the comparison
principle that

ın
Z

f'<�t�ıg
MA. / �

Z
f'<ı �t�ıg

MA.ı /

�
Z

f'<ı �t�ıg
MA.'/ �

Z
f'<�tg

MA.'/

and the proof is complete. ut
Lemma 6.3.10. Let g W RC ! Œ0; 1� be a decreasing function such that g.C1/D 0

and

g.t C ı/ � C1=n

ı
g.t/2 for all t > 0 and 0 < ı < 1:

Then g.t/ D 0 for all t � t0 C 5C 1=n, where

t0 D inffs > 0 j g.s/ � e�1C�1=ng:

Proof. Set f .t/ D � logg.t/ so that f W RC ! R
C is increasing with

f .t C ı/ � 2f .t/ � log
�
ı=C 1=n

�
:

By induction we define an increasing sequence tj such that

tjC1 D tj C ıj ; with ıj D eC 1=n exp.�f .tj // D eC 1=ng.tj /:

Observe that 0 < ı0 is smaller than 1 if we choose t0 as indicated. Since .tj / is
increasing and g is decreasing, this ensures that ıj is smaller than 1 for all j 2 N.
We can thus use the growth estimate and obtain

f .tjC1/ D f .tj C ıj / � f .tj /C 1:

Since f � 0, we infer f .tj / � j for all j . Now

t1 WD t0 C
X
j�0
.tjC1 � tj / � t0 C C1=ne

X
j�0

exp.�j / � t0 C 5C 1=n:

The proof is thus complete since f .t/ � f .t1/ D C1 for all t � t1. ut
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6.4 Higher Order Estimates

6.4.1 Preliminaries

We shall need two auxiliary results.

Lemma 6.4.1. Let ˛; ˇ be positive .1; 1/-forms. Then

n

�
˛n

ˇn

� 1
n

� tr ˇ.˛/ � n

�
˛n

ˇn

�
� .tr ˛.ˇ//n�1 :

The proof is elementary (see Lemma 4.1.1) Applying these inequalities to ˛ D
!t WD ! C ddc't and ˇ D !, we obtain:

Corollary 6.4.2. There exists C > 0 which only depends on k P't jjL1 such that

1

C
� tr !.!t / � C Œtr !t .!/�

n�1:

The second result we need is the following estimate which goes back to the work
of Aubin [Aub78] and Yau [Yau78]; in this form it is due to Siu [Siu87].

Lemma 6.4.3. Let !;!0 be arbitrary Kähler forms. Let �B 2 R be a lower bound
on the holomorphic bisectional curvature of .X; !/. Then

�!0 log tr !.!0/ � � tr !.Ric.!0//
tr !.!0/

� B tr !0.!/:

We refer the reader to Proposition 4.1.2 for a proof.

6.4.2 C 2-Estimate

Theorem 6.4.4. Let X be a Fano manifold such that F is proper. Let !t be the
solution of the normalized Kähler–Ricci flow with initial data ! 2 c1.X/. There
exists C2 > 0 such that for all .x; t/ 2 X � R

C,

0 � tr !.!t / � C2:

Proof. Set ˛.x; t/ WD log tr !.!t / � .B C 1/'t , were �B denotes a lower
bound on the holomorphic bisectional curvature of .X; !/ (as in Lemma 6.4.3).
Fix T > 0 and let .x0; t0/ 2 X � Œ0; T � be a point at which ˛ realizes its
maximum.
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Either t0 D 0, in which case ˛.x; t/ � ˛.x0; 0/ D logn yields

tr !.!t /.x/ � n exp.ŒB C 1�'t .x// � C 0
2 D n exp.ŒB C 1�C0/;

since 't is uniformly bounded from above.
Or t0 > 0. In this case it follows from Lemma 6.4.5 that at point .x0; t0/,

0 �
�
@

@t
��t

�
˛ � �tr !t0 .!/.x0/C �

so that

tr !.!t /.x/ � C 00
2 D � exp.2ŒB C 1�C0/:

The conclusion follows since both C 0
2 and C 00

2 are independent of T . ut
Lemma 6.4.5. Set ˛.x; t/ WD log tr !.!t /�.BC1/'t . There exists � > 0 such that

8.x; t/ 2 X � R
C;

�
@

@t
��t

�
˛ � �tr !t .!/C �:

Here �B denotes a lower bound on the holomorphic bisectional curvature of
.X; !/ (as in Lemma 6.4.3).

Proof. It follows from Perelman’s estimate that

@

@t
˛ D �! P't

tr !.!t /
� .B C 1/ P't � �! P't

tr !.!t /
C C:

Now P't D log.!nt =!
n/C 't C h0 C ˇ.t/ thus

�! P't D �! log

�
!nt
!n

�
C tr !.!t / � nC�!h0

� �! log

�
!nt
!n

�
C tr !.!t /C C 0:

Since ddc log


!nt
!n

�
D Ric.!/� Ric.!t /, we infer

�! P't � �tr !.Ric.!t //C tr !.!t /C C 00;

hence

@

@t
˛ � � tr !.Ric.!t //

tr !.!t /
C C 00

tr !.!t /
C C C 1:
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We now estimate �!t ˛ D �t˛ from below. It follows from Lemma 6.4.3 that

�t˛ D �t log tr !.!t /� .B C 1/Œn � tr !t .!/�

� � tr !.Ric.!t //

tr !.!t /
C tr !t .!/ � n.B C 1/:

Therefore
�
@

@t
��t

�
.˛/ � �tr !t .!/C C 00

tr !.!t /
C C 000:

The conclusion follows since tr !.!t / is uniformly bounded from below away from
zero, as we have observed in the preliminaries. ut
Remark 6.4.6. The reader can go through the above proof and realize that one can
obtain similarly a uniform upper bound for tr !.!t / on any finite interval of time,
without assuming the properness of the functional F .

6.4.3 Complex Parabolic Evans–Krylov Theory and Schauder
Estimates

At this stage, it follows from local arguments that one can obtain higher order
uniform a priori estimates. We won’t dwell on these techniques here and rather
refer the reader to Chap. 2 for the real theory. The latter can not be directly applied
in the complex setting, but the technique can be adapted as was done for instance in
[Gill11].

6.5 Convergence of the Flow

6.5.1 Asymptotic of the Time-Derivatives

Proposition 6.5.1. The time-derivatives P t converge to zero in C1.X/.

Proof. Note that
R
X
 t !

n D 0 hence
R
X

P t !n D 0 in the Perelman normalization,
while for the first normalization, 't has been so normalized that

Z
X

P't !nt
t!C1�! 0:

It therefore suffices to check that
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Z
X

d P't ^ dc P't ^ !n�1
t �! 0;

since !t and ! are uniformly equivalent, by Theorem 6.4.4.
To check the latter convergence, we follow some arguments by Phong and Sturm

[PS06]. Set

Y.t/ WD
Z
X

jrt P't j2!nt D n

Z
X

d P't ^ dc P't ^ !n�1
t :

Recall that the Mabuchi functional is bounded below and non-increasing along the
flow, with

� d
dt

Mab.'t / D Y.t/ � 0; thus
Z C1

0

Y.t/dt < C1:

We cannot of course immediately deduce that Y.t/ ! 0 as t ! C1, however
Phong–Sturm succeed, by using a Bochner–Kodaira type formula and a uniform
control of the curvatures along the flow, in showing that Y 0 � CY for some uniform
positive constant C > 0.

The reader will easily check that this further estimate allows to conclude. We
refer to Chap. 3 for the controls on the curvatures along the flow, and to [PS06] for
the remaining details. We propose in Lemma 6.5.2 a slightly weaker, but economical
control that is also sufficient, as the reader will check. ut
Lemma 6.5.2. Set

Z.t/ WD n

Z
X

d P't ^ dc P't ^ !n�1:

Then Z0.t/ � 2Z.t/C C for some uniform constant C > 0.

Proof. Observe that

Z0.t/ D �2n
Z
X

R'tddc P't ^ !n�1 with P't D log

�
!nt
!n

�
C 't C h0:

We use here the first normalization, this clearly does not affect the value of Z.t/.
Since R't D �t P't C P't , we infer

Z0.t/ D 2Z.t/ � 2
Z
X

�t P't�! P't!n � 2Z.t/C C;

since the latter quantities are uniformly bounded along the flow. ut
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6.5.2 Conclusion

We are now in position to conclude.

First Normalization

It follows from previous sections that the family .'t / is relatively compact in
C1.X � Œ0;C1�/. Let '1 D limj!C1 'tj be a cluster point of .'t /t>0. It follows
from Proposition 6.5.1 that P'tj ! 0 hence

.! C ddc'1/n D e�'
1e�h0!n; (�)

hence ! C ddc'1 is a Kähler–Einstein metric. Since we have assumed that X has
no holomorphic vector field, it follows from Bando–Mabuchi’s uniqueness result
[BM87] that '1 coincides with the Kähler–Einstein potential 'KE, which is the
unique solution of .�/. There is thus a unique cluster point for .'t / as t ! C1,
hence the whole family converges in the C1-sense towards 'KE.

It turns out that the above convergence holds at an exponential speed. We refer
the interested reader to [PSSW08a, PS10] for a proof of this fact.

Perelman Normalization

A similar argument could be used for the potentials  t D 't � V �1 R
X 't!

n if we
could show the convergence of

R
X 't!

n as t ! C1. To get around this difficulty,
we can proceed as follows: let K denote the set of cluster values of .!t /t>0. Observe
that K is invariant under the normalized Kähler–Ricci flow and the Ding functional
is constant on K.

It follows now from Lemma 6.2.3 that the Ding functional is strictly increasing
along the NKRF, unless we start from a fixed point !0. Thus K consists in fixed
points for the NKRF. There is only one such fixed point, the unique Kähler–Einstein
metric. Therefore !t converges to !KE and  t converges to the unique Kähler–
Einstein potential  KE such that !KE D ! C ddc KE and

R
X  KE !

n D 0.

6.6 An Alternative Approach

We finally briefly mention an alternative approach to the weak convergence of the
normalized Kähler–Ricci flow, as recently proposed in [BBEGZ11].

The convergence of !t towards!KE is only proved in the weak sense of (positive)
currents, but without using Perelman’s deep estimates: this allows us in [BBEGZ11]
to extend Perelman’s convergence result to singular settings (weak Fano varieties
and pairs), where these estimates are not available.
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6.6.1 The Variational Characterization of K–E Currents

The alternative approach we propose in [BBEGZ11] relies on the variational
characterization of Kähler–Einstein currents established in [BBGZ13].

Let X be a Fano manifold and fix ! 2 c1.X/ a Kähler form. A positive current
T D ! C ddc 2 c1.X/ is said to have finite energy if E. / > �1. We then
introduce the J -functional

J.T / WD V �1
Z
X

 !n � E. /:

We let E1.c1.X// denote the set of currents with finite energy in c1.X/ and

E1C .c1.X// WD fT 2 E1.c1.X// j J.T / � C g

the compact convex set of those positive closed currents in c1.X/ whose energy is
uniformly bounded from below by C .

A combination of [BM87, Tian97] and [BBGZ13, Theorems D,E] yields the
following criterion:

Theorem 6.6.1. Let X be a Fano manifold with H0.X; TX/ D 0. Let T 2 c1.X/

be a closed positive current of finite energy. The following are equivalent:

1. T minimizes the Ding functional.
2. T is a Kähler–Einstein current;
3. T is the unique Kähler–Einstein metric;

We say here that a current T D ! C ddc' 2 E1.c1.X// is Kähler–Einstein if it
satisfies T n D e�'�h0!n, where as previously Ric.!/ D ! � ddch0.

It was realized by Ding–Tian [DT92] that the Kähler–Einstein metric is the
unique Kähler metric maximizing Ding. This result being extended to the class of
finite energy currents allows to use the soft compacity criteria available in these
Sobolev-like spaces:

Corollary 6.6.2. LetX be a Fano manifold whose Ding functional is proper. If!t 2
c1.X/ is a family of Kähler forms such that

Ding.!t / ! inf
E1.X;!/

Ding;

then

!t �! !KE

in the weak sense of (positive) currents.
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6.6.2 Maximizing Subsequences

We let the potential 't 2 PSH.X; !/ \ C1.X/ evolve according to the complex
Monge–Ampère flow,

P't D log

�
MA.'t /

�t

�
D log

�
!nt
!n

�
C 't C h0 C ˇ.t/;

where

ˇ.t/ D log

�Z
X

e�'t�h0 !n
�
;

with initial condition '0 D 0. We set  t WD 't � R
X 't !

n.
Recall that the Ding functional is non-increasing along this flow. It follows more

precisely from Lemma 6.2.3 and Pinsker’s inequality (see [Villani, Remark 22.12])
that for all 0 < s < t ,

Ding.'t /� Ding.'s/ � �
Z t

s

kMA.'r/ � �rk2 dr; (P)

where k� � �k denotes the total variation of the signed measure � � �.
Since the Ding functional is assumed to be proper, it follows from the monotoni-

city property that the  t ’s have uniformly bounded energy, hence form a relatively
compact family. Let  1 be any cluster point. If we could show that

Ding.'t / & inf
E1.X;!/

Ding;

it would follow from the lower semicontinuity of Ding that Ding. 1/ D inf Ding,
hence  1 is the only minimizer of Ding, the Kähler–Einstein potential normalized
by
R
X
 1 !n D 0. Thus the whole family . t /t>0 actually converges towards  1

(see Corollary 6.6.2). Note that this convergence is easy when . t / is known to
be relatively compact in C1. The delicate point here is that we only have weak
compactness.

It thus remains to check that Ding.'t / & infE1.X;!/ Ding. By (P), we can find
rj ! C1 such that

MA.'rj /� �rj �! 0;

since Ding is bounded from above. By compactness we can further assume that
 rj !  1 in L1.X/, almost everywhere, and in energy (see below), so that

MA. 1/ D �. 1/:
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Thus !C ddc 1 is a Kähler–Einstein current. It follows again from the variational
characterization that it minimizes Ding, hence the infimum along the flow coincides
with the absolute infimum, and we are done.

6.6.3 Convergence in Energy

As explained above, the last step to be justified is that Ding.'t / decreases towards
the absolute minimum of Ding when !t evolves along the normalized Kähler–Ricci
flow, without assuming high order a priori estimates.

We already know that the normalized potentials !C ddc t D !t ,
R
X
 t !

n D 0,
have uniformly bounded energies hence form a relatively compact family. Using (P)
we have selected a special subsequence  tj !  1 (convergence in L1 and almost
everywhere) such that

MA. tj / �! �. 1/ D e� 
1�R

X
e� 

1 d�
; where � D e�h0!n=V

We would be done if we could justify that MA. tj / ! MA. 1/.
The delicate problem is that the complex Monge–Ampère operator is not contin-

uous for the L1-topology. A slightly stronger notion of convergence (convergence
in energy) is necessary. We refer the reader to [BBEGZ11] for its precise definition;
suffice it to say here that it is equivalent to checking that

Z
X

ˇ̌
 tj �  1

ˇ̌
MA. tj / �! 0:

Set

ft WD e P't e�'tR
X
e�'t d�

so that MA. t / D ft �:

If the densities ft were uniformly in Lp for some p > 1, we could conclude by
using Hölder inequality, since

Z
X

ˇ̌
 tj �  1

ˇ̌
MA. tj / � kftj kLp.�/ � k tj �  1kLq.�/:

We cannot prove such a strong uniform bound in general, however our next lemma
provides us with a weaker bound that turns out to be sufficient:

Lemma 6.6.3. Set � WD e�h0!n=V . Then

Mab. t / D H�.MA. t //C
Z
X

 tMA. t /� E. t / � V �1
Z
X

h0 !
n:
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Therefore there exists C > 0 such that for all t > 0,

0 �
Z
X

ft logft d� � C:

Proof. Recall that  t D 't � R
X
't!

n=V . It follows from Lemma 6.2.4 that

Mab.'t / D Ding.'t /C
Z
X

P'tMA.'t /�
Z
X

h0!
n=V

D �E.'t/ � ˇ.t/C
Z
X

P'tMA.'t /�
Z
X

h0!
n=V;

where ˇ.t/ D log
R
X
e�'t d�

�
, while

H�.MA. t // D
Z
X

log

�
MA.'t /

�

�
MA.'t /

D
Z
X

P'tMA.'t /�
Z
X

'tMA.'t / � ˇ.t/:

The equality follows.
Recall now that the Mabuchi functional Mab is bounded along the flow, as well

as the energy E. t /. Since the latter are uniformly comparable to
R
X
 tMA. t /,

we infer that the entropiesH�.MA. t // are uniformly bounded, i.e.

0 � H�.MA. t // D
Z
X

ft logft d� � C: ut

We can thus use the Hölder–Young inequality to deduce that

Z
X

ˇ̌
 tj �  1

ˇ̌
ftj d� � C 0 �� tj �  1

��
L�.�/

;

where � W t 2 R
C 7! et � t � 1 2 R

C denotes the convex weight conjugate to the
weight t 2 R

C 7! .t C 1/ log.t C 1/� t 2 R
C naturally associated to the entropy,

and k�kL�.�/ denotes the Luxembourg norm on L�.�/,

kgkL�.�/ WD inf

�
˛ > 0 j

Z
X

�
�
˛�1jgj�d� � 1

	
:

It remains to check that
�� tj �  1

��
L�.�/

! 0. By definition, this amounts to
verifying that for all ˛ > 0,
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Z
X

�
�
˛�1j tj �  1j�d� �! 0:

Since �.t/ � tet and the functions . tj / have uniformly bounded energies, the latter
convergence follows from Hölder’s inequality and Skoda’s uniform integrability
theorem.
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