
A Decentralized Heuristic for Multiple-Choice
Combinatorial Optimization Problems

Christian Hinrichs, Sebastian Lehnhoff and Michael Sonnenschein

1 Introduction

In 0-1 multiple-choice combinatorial optimization problems, multiple sets or classes
of elements are given, fromwhich each exactly one element has to be chosen to form a
solution. The goal is to find a solution thatminimizes (ormaximizes) a given objective
function. Such problems are typically NP-hard in the weak sense, so that they can be
solved in polynomial timeusing dynamic programming [4].By exploiting the specific
structure of a given problem, even linear time can be achieved. For example, the well-
knownmultiple-choice knapsack problem can easily be solved using the core concept
[6]. But such methods cannot be applied to all problems of this class for two reasons:
First, a core may be difficult to find, as it is the case in some (multiple-choice) subset-
sum problems [7]. Second, and more importantly, the problemmay have to be solved
in a decentralized way, so that global knowledge is not available. This is especially
the case in distributed systems with autonomous actors. For example, such a system
may not support gathering global knowledge due to its openness, or the cost for doing
this may be very high. Also, the collection of global knowledge at certain stages of
an algorithm (i.e. at startup) leads to synchronization points, which are undesirable
in many cases. Finally, such actions may violate privacy considerations. Typical
application fields for these kinds of problems are distributed resource allocation,
wireless sensor networks, media streaming in bandwith-contrained environments,
logistics and decentralized energy management.

C. Hinrichs (B) · M. Sonnenschein
University of Oldenburg, Oldenburg, Germany
e-mail: hinrichs@informatik.uni-oldenburg.de

M. Sonnenschein
e-mail: sonnenschein@informatik.uni-oldenburg.de

S. Lehnhoff
OFFIS, Institute for Information Technology, Oldenburg, Germany
e-mail: lehnhoff@offis.de

S. Helber et al. (eds.), Operations Research Proceedings 2012, 297
Operations Research Proceedings, DOI: 10.1007/978-3-319-00795-3_43,
© Springer International Publishing Switzerland 2014



298 C. Hinrichs et al.

In this contribution, we present a Combinatorial Optimization Heuristic for
Distributed Agents (COHDA). Unlike other population-based heuristics (i.e. par-
ticle swarm optimization), the individuals (“agents”) in COHDA do not describe
candidate solutions. Instead, each agent represents a class of elements of the consid-
ered multiple-choice combinatorial opimization problem, so that solutions comprise
individual decisions from all participating agents. The heuristic solves the given
problem in a completely decentralized manner, relying on individual knowledge and
utilizing cooperative behaviour. The individual knowledge bases are formed through
local perception plus beliefs about (possibly incomplete or outdated) global knowl-
edge. Convergence of the search process is achieved by distributing the beliefs to
other agents. This kind of heuristic corresponds to theCooperative Algorithmic-Level
Parallel Model defined in [9].

2 Problem Definition and Model

Asstated in the introduction,multiple-choice subset-sumproblems (MC-SSP)belong
to the rather difficult types amongcombinatorial optimizationproblems, because their
structure is less exploitable. Hence, in this contribution, we focus on this problem
type.Weare givenm classeswith each class i containingni elements. The j th element
of class i has weight wi j . From each class, exactly one element has to be chosen for a
feasible solution. In MC-SSP, there exists a capacity c which defines an upper bound
that should be approximated, but not exceeded by the sum of the weights of the
chosen elements. We generalize from this formulation by removing the upper bound
constraint. The goal is therefore to approximate c as close as possible from any side,
which yields a problem with increased solution space. We call this generalization
multiple-choice combinatorial optimization problem (MC-COP). Formally, it can be
expressed with an integer programming model:

(MC-COP) min d

⎛
⎝c,

m∑
i=1

ni∑
j=1

(
wi j · xi j

)
⎞
⎠ (1)

subject to
ni∑

j=1

xi j = 1, i = 1 . . . m,

xi j ∈ {0, 1}, i = 1 . . . m, j = 1 . . . n.

The objective function d can be defined arbitrarily, i.e. the 1-norm might be used:

d (u, v) = ‖u − v‖1 (2)



A Decentralized Heuristic for Multiple-Choice Combinatorial Optimization Problems 299

Since we are targeting distributed systems, we mapped this model to a multi-
agent system (MAS). In this MAS, each agent represents an element class. Hence,
each agent ai has to select one of its elements to be included in the solution by
assigning xi j = 1, where j is the index of the selected element. The difficulty of the
problem arises from the lack of global knowledge at agent level, i.e. there is no global
decision maker, and the solution has to be determined in a decentralized fashion. In
order to accomplish that, for each agent ai , a neighborhood setNi of other agents is
defined with whom ai is able to communicate. The communication network may be
expressed with an undirected graph. An important property of the communication
layer are message delays: We assume that sent messages take an arbitrary time until
they are received by the target agent, as it is the case in most real communication
networks like the internet. However, we simplify from reality by limiting this delay
to a known upper bound tmsg,max , and we assume that no messages are lost during
transmission. Finally, we presume a central operator, who is able to broadcast the
target value c to all agents and thus can initiate the heuristic.

3 Heuristic

The task of each agent is to select one of its own controlled elements, so that the
sum of the weights of all selected elements in the population minimizes the objective
function d. To accomplish that, each agent communicates with its neighbors and
shares knowledge that helps in selecting optimal elements. In our approach, an agent
ai needs to exchange only two items with its neighbors: The best combination of
weights Ŵi,best of selected elements that the agent has seen during the process so
far and the currently selected weights Ŵi,current that the agent is aware of. Each of
these communicated weights is labelled, where a label l

(
wi j

) = (i, si ) contains the
unique ID i of the agent the selected weight belongs to, and a counter si that reflects
the “age” of the selection. Note that, however Ŵi,best and Ŵi,current must each satisfy
the constraints of MC-COP (i.e. they must not contain more than one chosen weight
per agent, see (1)), these sets are allowed to be incomplete. At the beginning of
the process, Ŵi,best and Ŵi,current will each contain only the weight wi,ini t of the
initially selected element of the agent ai itself, labelled l

(
wi,ini t

) = (i, 0). However,
as the agent begins to communicate with its neighbors, the sets will be updated with
each information exchange. The agent is allowed to change its element selection
with the help of the knowledge contained in Ŵi,best and Ŵi,current at any time under
one condition: It has to make this selection public to its neighbors, while labelling
it with its age counter increased by one. Hence, the age counter si of an agent ai

increases each time the agent changes its selection, thus making it possible to decide
if received information concerning an agent is newer than an already stored value.
The complete heuristic executed by each agent comprises three steps and can be
described as follows.



300 C. Hinrichs et al.

1. (update) Every time an agent ai receives a message, its local knowledge base
is updated with the information received. This can be either the target value c,
which starts the process and is broadcasted by the central operator, or information
from a neighbor agent ah , containing the sets Ŵh,best and Ŵh,current . In the
first case, the value c is stored locally, and step 3 is executed without further
conditions. Otherwise, the local knowledge base Ŵi,current is updated with the
items in Ŵh,current by adding selected weights from agents not known so far,
and replacing outdated selections according to the age counters in the associated
labels. The local set Ŵi,best is replaced by Ŵh,best if the latter contains more
elements, or if it yields a better value using the objective function. If either Ŵi,best

or Ŵi,current has been changed during this process, step 3 is executed afterwards.
2. (choose) In this step, the agent iterates through its own weights and calculates

the value of the objective function for each of these weights when combined with
the items in Ŵi,current , thus testing which selection wi,new fits the best into the
currently existing configuration. Note that this local view on the systemdefined by
Ŵi,current will most likely already be outdated due to the asynchronous execution
of the heuristic in each agent. Yet it describes an approximation to the global
system state that helps in finding optimal selections. The best resulting objective
value found in the iteration of weights is then compared to the objective value
of Ŵi,best . If the found objective value of Ŵi,current ∪ {wi,new} is better than the
value of Ŵi,best and the size of Ŵi,current ∪ {wi,new} is at least as large as the
size of Ŵi,best , the weight wi,new is marked as selected and the new best known
configuration is stored as Ŵi,best := Ŵi,current ∪ {wi,new}. Otherwise, the agent
reverts its selection to the one stored in Ŵi,best .
If the selected weight of agent ai has changed during this process, step 3 is
executed afterwards.

3. (ublish) In this step, the agent sends its currently stored sets Ŵi,best and Ŵi,current

to all of its neighbors.

Utilizing these actions, the agentswill update eachother iterativelywith the newest
information they are each aware of,while simultaneously trying to find the best global
combination of weights. This leads to some important properties of COHDA:

Convergence. The conditions in step 3 will first cause the individual sets Ŵi,best

to increase in size until completeness, hence spreading knowledge in the system, even
between agents that are not directly connected. Afterwards, the heuristic will start
to converge, because only better rated configurations survive the selection process
in each iteration. When no agent is able to find a better configuration, all agents will
eventually stick to a common best known configuration.

Cooperation. The agents need to cooperate with each other, i.e., they need to
know the global objective function d, and have to be trustworthy in their exchanged
messages.

Termination. After convergence, no agent will change its selected element any
more. Hence, termination of the heuristic can be determined by observing inactivity
of all participating agents. From the point of view of the global observer, this is the



A Decentralized Heuristic for Multiple-Choice Combinatorial Optimization Problems 301

case when no messages have been sent for a duration tmsg,max by any agent (thus
eliminating the uncertainty introduced by arbitrary message delays).

Completeness. Due to the lack of global knowledge, the algorithm is not com-
plete; it cannot be guaranteed that the optimum is found.

4 Evaluation

We implementedCOHDA in a discrete-event simulation system that simulates a com-
munication network using integer-valued message delay time steps. Each simulation
step represents one simulated time step. The evaluation example corresponds to an
application from the domain of decentralized energy management. In the electric
grid, the supply and demand of energy has to be balanced at every point in time. In
the context of operations research, this problem has been formulated as the electrical
generation unit commitment problem (UC, see [5] for a comprehensive survey). In
our evaluation, we do not only consider generators, but include flexible loads as well,
which is known as demand side management (DSM). We mapped this problem to
MC-COP by replacing the single-valued integer variables in (1) by q-dimensional
vectors and allowed negative values, thus being able to model a time series of elec-
trical load (with k discrete time steps, k = 1 . . . q), which should be approximated
by the sum of the agent’s individual load curves; see [2] for a more detailed formal-
ization. The considered problem instances were generated using fixed parameters
m = 30 (number of element classes), 100 different elements in every class with
q = 96 dimensions each, and strongly correlated weight values wi j , which have
been identified as hard instances for SSP-like problems [3, 6, 7]. Five different tar-
get time series ch were generated as described in [1], thus 1 ≤ h ≤ 5. Each of these
five configurations was simulated 100 times with a set of 100 seeds for the random
number generator, so that within each configuration the same 100 seeds were used
for the 100 simulation runs. The communication network was modelled after the
small world paradigm [8] with a rewiring propability Φ = 2.0 and message delays
uniformly distributed in [1, 10]. The output of the objective functionwas normalized
to [0, 1] using an optimal-to-worst-interval according to [9].

Table 1 COHDA evaluation results: final objective value d, number of messages per agent per
time step msg, number of time steps until termination t for different targets ch

h = 1 h = 2 h = 3 h = 4 h = 5
mean std mean std mean std mean std mean std

d 0.0044 0.0122 0.0024 0.0084 0.0031 0.0142 0.0031 0.0096 0.0027 0.0088
msg 0.5495 0.0201 0.5400 0.0222 0.5354 0.0234 0.5456 0.0279 0.5477 0.0255
t 373.59 171.66 465.41 216.07 526.43 236.98 443.58 226.83 408.16 210.93



302 C. Hinrichs et al.

Summarized in Table 1 are themeans and standard deviations of the final objective
value d, the number of messages sent per agent per time step (msg), and the number
of time steps t until termination for each of the five configurations.

5 Conclusion

The evaluation results show that COHDA is able to find near-optimal solutionswithin
a range of 0.0031± 0.0106 (mean over all configurations) of the theoretical optimal
value dopt = 0 for the given multiple-choice combinatorial optimization problem.
While the run-times vary rather large (443.434± 212.493 simulated time steps), the
exchanged messages remain very constant at 0.5436 ± 0.0238 messages per agent
per time step on average over all simulation runs. We will publish a more thorough
evaluation in a subsequent paper. There, the approach will be compared to related
work, and a multi-objective variant of COHDA will be presented.

Future work will mainly focus on adaptivity. In this context, we will extend MC-
COPwith a dynamic objective function, and we will incorporate the ability to handle
non-constant agent populations as well as adaptive communication networks into
COHDA.An interesting research topic resulting from these extensions is the stability
of the heuristic against destructive/harmful agents.

References

1. Han, B., Leblet, J., Simon, G.: Hard multidimensional multiple choice knapsack problems, an
empirical study. Computers & Operations Research 37(1), 172–181 (2010). doi:10.1016/j.cor.
2009.04.006

2. Hinrichs, C., Vogel, U., Sonnenschein, M.: Approaching Decentralized Demand Side Manage-
ment via Self-Organizing Agents. In: Yolum, Tumer, Stone, Sonenberg (eds.) ATESWorkshop,
Proc. of 10th Int. Conf. onAutonomousAgents andMultiagent Systems (AAMAS2011). Taipei,
Taiwan (2011).

3. Lust, T., Teghem, J.: Themultiobjectivemultidimensional knapsack problem: a survey and a new
approach. International Transactions in Operational Research 19(4), 495–520 (2012). doi:10.
1111/j.1475-3995.2011.00840.x

4. Martello, S., Toth, P.: Knapsack problems, 1 edn. John Wiley & Sons (1990).
5. Padhy, N.: Unit Commitment-A Bibliographical Survey. IEEE Transactions on Power Systems

19(2), 1196–1205 (2004). doi:10.1109/TPWRS.2003.821611
6. Pisinger, D.: A minimal algorithm for the multiple-choice knapsack problem. European Journal

of Operational Research 83(2), 394–410 (1995).doi:10.1016/0377-2217(95)00015-I
7. Pisinger, D.: Linear Time Algorithms for Knapsack Problems with Bounded Weights. Journal

of Algorithms 33(1), 1–14 (1999). doi:10.1006/jagm.1999.1034
8. Strogatz, S.H.: Exploring complex networks. Nature 410(6825), 268–276 (2001). doi:10.1038/

35065725
9. Talbi, E.G.: Metaheuristics. John Wiley & Sons, Inc., Hoboken, NJ, USA (2009).

10.1002/9780470496916.

http://dx.doi.org/10.1016/j.cor.2009.04.006
http://dx.doi.org/10.1016/j.cor.2009.04.006
http://dx.doi.org/10.1111/j.1475-3995.2011.00840.x
http://dx.doi.org/10.1111/j.1475-3995.2011.00840.x
http://dx.doi.org/10.1109/TPWRS.2003.821611
http://dx.doi.org/10.1016/0377-2217(95)00015-I
http://dx.doi.org/10.1006/jagm.1999.1034
http://dx.doi.org/10.1038/35065725
http://dx.doi.org/10.1038/35065725

	43 A Decentralized Heuristic for Multiple-Choice Combinatorial Optimization Problems
	1 Introduction
	2 Problem Definition and Model
	3 Heuristic
	4 Evaluation
	5 Conclusion
	References


