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1 Introduction

There has been a considerable growth in the share of containerized trade in theworld’s
total dry cargo during the last 30 years. Therefore, the efficientmanagement of seaport
container terminals has become a crucial issue [2]. In this work, we concentrate on
the integrated planning of seaside operations, which includes the berth allocation
problem (BAP), quay crane assignment problem (CAP) and quay crane scheduling
problem (CSP). Generally, BAP deals with the determination of the optimal berthing
times and positions of vessels in container terminals. The focus of CSP, on the other
hand, is mainly on the problem of determining an optimal handling sequence of
vessels for the available cranes at the terminal. However, as can be realized, the
assignment of the cranes to vessels has a direct effect on the processing times of the
vessels. As a result, crane assignment decisions can be embedded within either BAP
or CSP models.

In this work we formulate two new MILP formulations integrating first BAP and
CAP (BACAP), and then BAP, CAP, and CSP (BACASP). Both of them consider
a continuous berth layout where vessels can berth at arbitrary positions within the
range of the quay and dynamic vessel arrivals where vessels cannot berth before the
expected arrival time. The crane schedule found by solving the BACASP formulation
determines the specific crane allocation to vessels for every time period. TheseMILP
models are the first models solved exactly rather than heuristically in the literature
for relatively large instances.
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2 Model Formulation

The underlying assumptions of ourmodels are given as follows. The planning horizon
is divided into equal-sized time periods. The berth is divided into equal-sized berth
sections. Each berth section is occupied by no more than one vessel in each time
period. Each quay crane can be assigned to at most one vessel per time period. Each
vessel has a minimum and maximum number of quay cranes that can be assigned to
it. The service of a vessel by quay cranes begins upon that vessel’s berthing at the
terminal, and it is not disrupted until the vessel departs. The number of quay cranes
assigned to a vessel does not change during its stay at the berth, which is referred to as
a time-invariant assignment [1]. Furthermore, the set of specific cranes assigned to a
vessel is kept the same. By letting i the index of vessels, g the index of crane groups,
j the index of berth sections, k the index of number of cranes, t the index of time
periods, cg

l the index of the leftmost crane in group g, cg
r the index of the rightmost

crane in group g, andC(g) the index set of cranes in group g, we define the following
parameters: B = the number of berth sections, G = the number of crane groups, N =
the number of available quay cranes, T = the number of time periods in the planning
horizon, V = the number of vessels, di= due time of vessel i , ei = arrival time of
vessel i , ki = lower bound on the number of cranes that can be assigned to vessel i ,

k
i
= upper bound on the number of cranes that can be assigned to vessel i , �i = the

length of vessel i measured in terms of the number of berth sections occupied, pk
i =

processing time of vessel i if k cranes are assigned to it, si = desired berth section
of vessel i , φi1 = cost of one unit deviation from the desired berth section for vessel
i , φi2 = cost of berthing one period later than the arrival time for vessel i , φi3 = cost
of departing one period later than the due time for vessel i .

Let us define a binary variable Xk
i j t , which is equal to one if vessel i starts berthing

at section j in time period t , and k quay cranes are assigned to it, and zero otherwise.
Constraint (1) ensures that each vessel berths at a unique section and time period, and
the number of quay cranes assigned to it lies between the minimum and maximum
allowed quantities.

B−�i +1∑

j=1

k
i

∑

k=ki

T −pk
i +1,∑

t=ei

Xk
i j t = 1 i = 1, . . . , V . (1)

Constraint set (2) guarantees that each berth section is occupied by at most one
vessel in each time period. To put it differently, there should not be any overlap
among the rectangles representing vessels in the two-dimensional time-berth section
space, which are located between max

(
ei , t − pk

i + 1
)
and min

(
T − pk

i + 1, t
)
on

the time dimension, and between max (1, j − �i + 1) and min (B − �i + 1, j) on
the berth section dimension.
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V∑

i=1

min(B−�i +1, j)∑

j ′=max(1, j−�i +1)

k
i

∑

k=ki

min
(
T −pk

i +1,t
)

∑

t ′=max
(
ei ,t−pk

i +1
)

Xk
i j ′t ′ ≤ 1 j = 1, . . . , B; t = 1, . . . , T

(2)

We next discuss how quay crane availability can be handled in the BACAPmodel.
Let us denote the number of available quay cranes by N . Constraint set (3) ensures
that in each time period the number of active quay cranes is less than or equal to the
available number of cranes:

V∑

i=1

B−�i +1∑

j=1

k
i

∑

k=ki

min
(
T −pk

i +1,t
)

∑

t ′=max
(
ei ,t−pk

i +1
)
k Xk

i j t ′ ≤ N t = 1, . . . , T (3)

The objective function (4) of our model minimizes the total cost, whose compo-
nents for each vessel are: (1) the cost of deviation from the desired berth section, (2)
the cost of berthing later than the arrival time, and (3) the cost of departing later than
the due time. Our integer programming formulation for BACAP can be summarized
as follows:

min
V∑

i=1

k
i

∑

k=ki

B−�i +1∑

j=1

T −pk
i +1∑

t=ei

{
φi1| j − si | + φi2 (t − ei ) + φi3

(
t + pk

i − 1 − di

)+}
Xk

i j t

(4)

subject to constraints (1), (2), (3)

Xk
i j t ∈ {0, 1} i = 1, . . . , V ; j = 1, . . . , B − �i + 1; k = ki , . . . , k

i ;
t = ei , . . . , T − pk

i + 1.

Recall that although the availability of quay cranes is considered in constraint set (3)
inBACAP, a schedule is not generated for eachquay crane.Todevelop amathematical
programming formulation for BACASP we extend the formulation for BACAP by
including the constraint sets (1)–(3) and defining new variables and constraints so
that feasible schedules are obtained for quay cranes, which do not incur setup due
to the change in the relative order of cranes. We should remark that if quay cranes
i − 1 and i + 1 are assigned to a vessel in a time period, then quay crane i has to be
assigned to the same vessel as well since quay cranes are located along the berth on
a single railway. Hence, we define a crane group as a set of adjacent quay cranes and
let the binary variable Y g

it denote whether crane group g assigned to vessel i starts
service in time period t . Constraint set (5) relates the X and Y-variables. It ensures
that if k quay cranes are assigned to vessel i , it must be served by a crane group g
that is formed by |C(g)| = k cranes, where C(g) is the index set of cranes in group
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g and | · | denotes the cardinality of a set. Moreover, G is the total number of crane
groups.

B−�i +1∑

j=1

Xk
i j t −

G∑

g=1
|C(g)|=k

Y g
it = 0 i = 1, . . . , V ; k = ki , . . . , k

i ; t = ei , . . . , T − pk
i +1

(5)
It should be emphasized that each crane can be a member of multiple crane groups.
However, each crane can operate as a member of at most one group in each time
period. The next set of constraints (6) guarantees that this condition holds:

V∑

i=1

G∑

g=1
c∈C(g)

min
(
T −pk

i +1,t
)

∑

t=max
(
ei ,t−pk

i +1
)
Y g

it ′ ≤ 1 c = 1, . . . , N ; t = 1, . . . , T (6)

Even though constraints (5) and (6) make sure that each quay crane is assigned to
at most one vessel in any time period, they do not guarantee that quay cranes are
assigned to vessels in the correct sequence. In particular, let the quay cranes be
indexed in such a way that a crane positioned closer to the beginning of the berth
has a lower index. Since all cranes perform their duty along a rail at the berth, they
cannot pass each other or stated differently their order cannot be changed. The next
four constraint sets help to ensure preserving the crane ordering. Here, Zct denotes
the position of crane c in time period t .

Zct ≤ Z(c+1)t c = 1, . . . , N − 1; t = 1, . . . , T (7)

Z Nt ≤ B t = 1, . . . , T (8)

Zcg
l t + B(1 − Y g

it ) ≥
B−�i +1∑

j=1

k
i

∑

k=ki

j Xk
i j t i = 1, . . . , V ; g = 1, . . . , G;

t = ei , . . . , T − pk
i + 1; t ≤ t ≤ t + pk

i − 1
(9)

Zcg
r t ≤

B−�i +1∑

j=1

k
i

∑

k=ki

( j + �i − 1) Xk
i j t + B(1 − Y g

it ) i = 1, . . . , V ; g = 1, . . . , G;

t = ei , . . . , T − pk
i + 1; t ≤ t ≤ t + pk

i − 1 (10)
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Constraint set (7) simply states that the positions of the cranes (in terms of berth
sections) are respected by the index of the cranes. This means that the position of
crane c is always less than or equal to the position of crane c +1 during the planning
horizon. Constraint set (8) makes sure that the last crane (crane N ) is positioned
within the berth. By defining cg

l and cg
r as the index of the crane that is, respectively,

the leftmost and rightmost member of crane group g, constraint set (9) guarantees
that if crane group g is assigned to vessel i and vessel i berths at section j , then
the position of the leftmost member of crane group g is greater than or equal to j .
Similarly, constraint set (10) ensures that if crane group g is assigned to vessel i and
vessel i berths at section j , then the position of the rightmost member of crane group
g is less than or equal to j + �i − 1, which is the last section of the berth occupied
by vessel i .

3 Solution

As can be observed, BACASP formulation is significantly larger than our BACAP
formulation with which we can solve instances up to 60 vessels. Hence, it should
be expected that only small BACASP instances can be solved exactly using CPLEX
12.2. This fact has motivated us to make use of the formulation for BACAP in
solving larger sized BACASP instances to optimality. By carefully analyzing the
optimal solutions of BACAP and BACASP in small sized instances, we have figured
out that an optimal solution of BACASP can be generated from an optimal solution of
BACAP provided that the condition given in Proposition 1 is satisfied. This condition
is based on the notion of complete sequence of vessels (with respect to their occupied
berthing positions), which is defined as follows.

Definition 1 A vessel sequence v1, v2, . . . , vn is complete if (1) v1 is the closest
vessel to the beginning of the berth, (2) vn is the closest vessel to the end of the berth,
(3) vi and vi+1 are two consecutive vessels with vi closer to the beginning of the
berth, and (4) two consecutive vessels in this sequence must be at the berth during
at least one time period.

A complete sequence is said to be proper when the sum of the number of cranes
assigned to vessels in this sequence is less than or equal to N . Otherwise, it is called
an improper complete sequence.

Proposition 1 An optimal solution of BACASP can be obtained from an optimal
solution of BACAP by a post-processing algorithm if and only if every complete
sequence of vessels is proper.

The proof of this proposition can be found in [3]. If there is at least one improper
complete sequence of vessels in an optimal solution of BACAP, thenwe cannot apply
the post-processing algorithm given as Algorithm 1 to obtain an optimal solution of
BACASP from an optimal solution of BACAP.
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Algorithm 1 Post-processing algorithm
Initialization: Let VN A ← {1, 2, . . . , V }
WHILE VN A �= ∅

Select vessel v ∈ VN A that berths in the leftmost berth section
Find the vessels in VA that are in the berth with v in at least one time period. Among the cranes
assigned to these vessels, find the crane cmax that is in the rightmost berth section
IF VA = ∅ or � any vessel in VA that is at the berth with v in at least one time period

cmax ← 0

ENDIF
Assign cranes indexed from cmax + 1 to cmax + θv to vessel v, where θv is the number of cranes
assigned to vessel v

VN A ← vN A \ v

ENDWHILE

In Algorithm 1, VA (VN A) denotes the set of vessels to which cranes (no cranes) are
assigned yet. Clearly, VN A ∪ VA = {1, 2, . . . , V }. Notice that the way the vessels
are picked up from VN A and added to the set VA implies that the order of the vessels
forms one or more complete sequences in the set VA. It is also ensured that these
complete sequences are proper.

If there exists a complete sequencewhere the sumof the number of cranes assigned
to vessels is larger than N , then it is possible to add the cut given in (11) corresponding
to an improper complete sequence into the formulation of BACAP, where IS refers
to an improper complete sequence and |IS| is the total number of vessels involved
in that complete sequence. Note that this cut is used to eliminate feasible solutions
that involve IS.

∑

i∈I S

Xk(i)
i j (i)t (i) ≤ |IS| − 1 (11)

The left-hand side of (11) consists of the sum of the Xk
i j t variables which are set

to one for the vessels involved in I S. In other words, there is only one Xk
i j t = 1

for each vessel i ∈ I S. The j, k, and t indices for which Xk
i j t = 1 related to vessel

i are denoted as j (i), k(i), and t (i) in (11). Upon the addition of this cut, BACAP
is solved again. The addition of these cuts is repeated until the optimal solution of
BACAP does not contain any improper complete sequences. At that instant, Algo-
rithm 1 can be called to generate an optimal solution of BACASP from the existing
optimal solution of BACAP.
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