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1 Introduction

In micromagnetics, the fundamental evolution law for the magnetization m in a solid
is given by the Landau-Lifshitz-Gilbert equation

@m
@t

D m �
�
˛
@m
@t

� � heff

�
; (1)

which is used to describe the dynamics of a great variety of magnetic microstruc-
tures, in particularly the motion of domain walls and vortices in thin films, see e.g.
[3]. Here heff is the effective field, essentially the L2 gradient of the micromagnetic
energy.

A collective coordinate ansatz m D m.x � a.t//, where m is the profile of the
static problem and a D a.t/ describes its translation at time t , has been proposed by
Thiele in [24] in order to drastically reduce the complexity of (1). Thiele’s approach
has been adapted by Huber [8] to the situation of a vortex system, giving rise to a
system of ODEs typically called Thiele’s equation of motion. More precisely, the
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resulting system for vortices with trajectories t 7! aj .t/ 2 R
2 � f0g (j D 1; : : : d )

takes the form

Fj .a/CGj � Paj CD Paj D 0:

Here Fj D Fj .a1; : : : ; ad / are interaction forces, Gj D 4�qj Oe3 is the gyro-vector
of the j th vortex, which depends only on the topological index qj D ˙1

2
of the

vortex (which is half of the product of winding number and polarity), and D is
an effective damping constant. In previous joint work with Spirn [14, 15] we have
rigorously derived a Thiele equation from (1) in the limit of small vortex size, for
an exchange-dominated model energy. In [13] we have generalized the result to an
extended version of (1), modeling the influence of an in-plane spin-polarized current
v D v.t/. More precisely, we have shown that the corresponding spin-torque terms
give rise to an additive extension of Thiele’s equation

Fj .a/CGj � . Paj � v/CD. Paj � �v/ D 0

where � is a non-negative constant. The aim of the present work is to derive a Thiele
equation from (1) under the influence of a (possibly time-dependent) applied field
h 2 R

3. Unlike the result for an external current, the effect of the magnetic field
is visible only in the interaction force term. The precise result will be given in
Theorem 3.

As our model energy we use

E�.h;m/ D
Z
˝

�
1

2
jrmj2 C m23

�2
� h � m

�
dx; (2)

where ˝ � R
2 is a bounded and simply connected domain, with a Dirichlet

boundary condition m D g. The most physical choice of g is to use a unit tangent
to @˝ . We refer to [14] for a justification of this model.

2 Jacobian, Vorticity and Renormalized Energy

Suppose that we have a map m W ˝ ! S
2 in the Sobolev spaceH 1. It is convenient

to consider the decomposition

m D .m;m3/:

Recall that the Jacobian of m W ˝ ! R
2 is defined as

J.m/ D det rm:
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Note that the Jacobian, considered as a differential 2-form, is exact. More precisely,
J.m/ D 1

2
curl j.m/, where j.m/ D m ^ rm is the current, and we write a ^ b D

a1b2 � a2b1 for a; b 2 R
2. Observe that current and Jacobian are well-defined as

distributions for maps m 2 L1 \ W 1;1.˝IR2/. Moreover, they carry topological
information about the S

1-degree of the map m. More precisely, if B is a ball, m 2
C 1.BIR2/ is such that mj@B 6D 0 and u D m=jmj, then

Z
@B

j.u/ � ds D 2� deg.u; @B/:

For S2-valued maps m, the counterpart of the Jacobian is the vorticity

!.m/ D
�
m;

@m
@x1

� @m
@x2

�
;

which is, considered as a differential 2-form, the pull-back of the standard volume
form on S

2 with respect to m. Thus, if B is a ball, m 2 C 1.BIS2/ is such that mj@B
is an equator map, then

Z
B

!.m/ dx D 4�q;

where q is the S
2-degree of, i.e. the oriented number of covers of S2 by the map m.

Thus q is a half-integer if the winding number of deg.m; @B/ is odd. In contrast to
the Jacobian, however, !.m/ is not exact, i.e., !.m/ is not a null-Lagrangian.

2.1 Compactness

We have good compactness results for the Jacobian and, under assumptions on the
energy excess, also on the maps themselves. The compactness properties of the
vorticity are not as good as those for the Jacobians, and we will not discuss them
here in general.

Proposition 1. Assume that .m�/ is a sequence of maps m� 2 H 1.˝IS2/ with
m� D .g; 0/ on @˝ and E�.h;m�/ � C log 1

�
for some fixed h 2 R

3.
Then we can extract a subsequence (not relabeled) such that

J.m�/ ! �

dX
j

ıaj
(3)

in the dual of C 0;10 .˝/.
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Proof. As h is independent of �, it follows that E�.0;m�/ � C log 1
�

. Hence the
2D Ginzburg-Landau energy ofm� satisfies the same bound, and we can now apply
standard compactness results [10]. ut
Proposition 2. Suppose that the sequence .m�/ satisfies the assumptions of
Proposition 1 and suppose that d and a1; : : : ; ad are as in (3). If additionally
the sequence E�.h;m�/ � d� log 1

�
C C then m� is bounded in W 1;p.˝IS2/ for

1 � p < 2 and in H 1
loc.˝nfa1; : : : ; ad g/. In particular, a subsequence converges

strongly in Lq.˝IS2/ for every q < 1 to a map m0 D .m0; 0/ with jm0j D 1.

Proof. From the convergence of the Jacobians for a subsequence �n and lower
bounds near the singularities [9, 19], we obtain for every r > 0

lim sup
n!1

Z
˝r .a/

jrm�n
j2dx � 2�d log

1

r
C C;

which shows the H 1
loc bound. Using an argument of Struwe [23] and appropriate

diagonal subsequences, one can show by Hölder’s inequality and summing a
series that

lim sup
�&0

Z
˝

jrm�jpdx � C.p/

for all p 2 Œ1; 2/. Alternatively, one can obtain the W 1;p boundedness from the
global bounds on rm� in the Lorentz spaceL2;1 given in [21]. Rellich-Kondrachov
embedding finally yields strong convergence. ut

2.2 The Renormalized Energy

We introduce some notation. We fix a boundary condition g 2 C1.@˝IS1/ with
deg.g/ D d > 0. For a 2 ˝d , we set

�a WD min.min
i

dist.ai ; @˝/;
1

2
min
i¤j

jai � aj j/:

For r 2 Œ0; �a/ we define

˝r.a/ D fx 2 ˝ W jx � aj j > r for j D 1; : : : ; d g

and we write ˝d� D fa 2 ˝d W �a > 0g. As in [2], for a 2 ˝d� , there exists a
corresponding canonical harmonic mapM� D M�.�; a/ with vortex locations a and
all local winding numbers equal to 1, i.e.
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M�.xI a/ D
dY
jD1

x � aj
jx � aj je

i ;

where  is a harmonic function chosen such that M�.xI a/ D g on @˝ . Recall that
M�.�; a/ 2 W

1;p
g .˝;S1/ for all p 2 Œ1; 2/. We also verify by virtue of the explicit

representation of M�.�; a/ that the mapping

˝d� 3 a 7! M�.�; a/ 2 Lp.˝IC/ (4)

is continuously differentiable for p 2 Œ1; 2/. For h 2 R
2 sufficiently small, we

consider

W.h; a/ D W0.a/C V.h; a/

where W0 D W0.a/ is the unperturbed renormalized energy as introduced by
Bethuel, Brezis and Hélein [2]. The perturbation V D V.h; a/ is defined as the
following energy minimum

V.h; a/ D min
�2H1

0
.˝/

G .h; aI �/;

where

G .h; aI �/ D
Z
˝

1

2
jr� j2 � h �

�
ei�M�.xI a/

�
dx: (5)

Observe that, for h sufficiently small, G .h; aI �/ is a strictly convex functional on
H 1
0 .˝/, and hence there exists a unique minimizer � D �.h; a/ 2 H 1

0 .˝/. Since G
is a smooth function of h and � D �.h; a/ a critical point, it follows that

@W

@h
D @V

@h
D @G

@h

ˇ̌
ˇ
�D�.h;a/ D �

Z
˝

m�.xI a/ dx; (6)

where

m�.xI a/ D ei�.xIh;a/M�.xI a/:

Note that m�.�; a/ 2 W 1;p
g .˝;S1/ for all p 2 Œ1; 2/ with

J.m�/ D J.M�/ D �

dX
jD1

ıaj
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Fig. 1 Numerical plot of M�.�I 0/ (left), m�.�I 0/ (center) and m�.�I amin/ (right) for amin

minimizing W.h; a/. The applied field is h D .0;�40/. Note that in the situation presented here,
the external field exerts a force on the vortex that is perpendicular to the field. Numerical simulation
by Jutta Steiner (using Matlab) based on Newton iteration for minimization of G .h; aI �/ for fixed
a and h

and that the Euler-Lagrange equation for (5) expressed in terms of m� reads

r � j.m�/ D h ^m�; (7)

i.e., m� D m�.�; a/ is the canonical h-harmonic map corresponding to g and a 2
˝d� . We have the following characterization of the renormalized energy:

Lemma 1. The renormalized energy can be calculated as

W.h; a/ D lim
r!0

�Z
˝r .a/

1

2
jrm�j2 � h �m� dx � �d log

1

r

�
: (8)

Proof. As in [2], we can set ˚ D 2�
Pd
jD1 log jx � aj j. Then ˚ is locally the

conjugate harmonic map of the phase of
Qd
jD1

x�aj

jx�aj j . Using that jm�j D jM�j D 1,

we can now write jrM�j D jr?˚Cr j and jrm�j D jr?˚Cr Cr� j, where
 is the harmonic function and � D �.�Ih; a/ as above. It follows that

jrm�j2 � jrM�j2 D jr� j2 C 2.r?˚ C r / � r�:

Integrating this expression over ˝r.a/ and using that  is harmonic, we obtain for
r ! 0 the claimed result. ut

We deduce from (4) a local Lipschitz condition for m� as a mapping in a, which
will be useful for identifying effective motion laws.

Lemma 2. Suppose p 2 Œ1; 2/, a0 2 ˝d� . Then there exists c > 0 such that

km�.�; a/ �m�.�; Oa/kLp � c ja � Oaj

for all a; Oa 2 ˝d� such that maxfja � a0j; j Oa � a0jg < �.a0/=2.
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Lemma 3. Suppose ˚ 2 C1
0 .˝IR2/ and � 2 .0; �a/ such that ˚ jB�.a`/ D

const. and ˚ jB�.ak/ D 0 for all k 6D `. Then, with m� D m�.�; a/, we have

˚.a`/ � @W
@a`

.h; a/ D
Z
˝

r˚ W
��

1

2
jrm�j2 � h �m�

�
1 � rm� ˝ rm�

�
dx:

Proof. The claim of the lemma is in fact a singular version of Noether’s formula
for the Lagrangian 1

2
jrm�j2 � h �m� with respect to inner variations s 7! m�.x �

s ˚.x//. Based on this observation, the argument in [12] for the case h D 0 carries
over literally. ut

We will need the following notion of energy excess for a map m and a
configuration of points a 2 ˝d� :

Dh
� .mI a/ WD E�.h;m/ �

�
�d log

1

�
C d� CW.h; a/

�
;

where � is defined as lim�&0.I� � � log 1
�
/, and

I� D inf

�Z
B1.0/

e�.m/ dx W m.x/ D .x; 0/ on @B1.0/

	
:

To show that the name “energy excess” is justified, and to relate the micromag-
netic energy to the renormalized energy, we have

Proposition 3. If J.m�/ ! �
Pd
kD1 ıak

then lim inf
�&0

Dh
� .m�I a/ � 0:

Proof. Let �k ! 0 be a sequence such that

A D lim inf
�&0

Dh
� .m�I a/ D lim

k!1
Dh
�k
.m�k

I a/:

We can assume that A < 1 (otherwise there is nothing to prove). By Proposition 2,
we have (for a subsequence) that m�k

! m0 D .m0; 0/ weakly inH 1
loc.˝0.a/IR3/

and strongly in all Lp.˝/, 1 � p < 1. It follows that jm0j D 1, i.e. m0 has values
in S1 � f0g.

Now Dh
�k
.m�k

I a/ D D0
�k
.m�k

I a/ � R
˝

h � .m�k
� m�/ dx: As in the proof of

Theorem 5.3 of [14], for r sufficiently small we have

Dh
�k
.m�k

I a/ �
Z
˝r .a/

.e�k
.m�k

/� 1

2
jrM�j2/ dx

C
dX
`D1

�Z
Br .a`/

e�k
.m�k

/ dx � I�k=r

�
� Cr2

�
Z
˝

h � .m�k
�m�/:
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Using the convergence of m�k
and Lemma 5.1 of [14] we obtain

lim inf
k!1

Dh
�k
.m�k

I a/ �
Z
˝r .a/

�
1

2
jrm0j2 � 1

2
jrm�j2

�
dx

�
Z
˝

h � .m0 �m�/ � Cr2

We decompose m0 D eiˇM�. As in the derivation of (8), it is not difficult to see
that

Z
˝r .a/

�
1

2
jrm0j2 � 1

2
jrM�j2

�
dx !

Z
˝

1

2
jrˇj2 dx

as r ! 0, and now we can use the minimality of � to conclude the proof of the
proposition. ut
Now we show that the phase excess in ˝r.a/ (which measures the distance of m�

from an optimal map) can be bounded by the energy excess, up to errors that are
small as � ! 0 and r ! 0. Unlike the quantitative theory of [11], our proof follows
the idea of Lemma 3.7 in [20] and uses weak convergence.

We define

Qe�.m/ D 1

2

�ˇ̌rjmjˇ̌2 C jrm3j2 C m23
�2

�

and note the decomposition

e�.m/ D Qe�.m/C 1

2

ˇ̌
ˇ̌j.m/

jmj
ˇ̌
ˇ̌2 :

Proposition 4. Assume D� D Dh
� .m�I a/ � C . Then we have the following

estimates for any � < �a, ` D 1; : : : ; d :

ˇ̌̌
ˇ
Z
B�.a`/

jrm�j2 dx � �j log �j
ˇ̌̌
ˇ � C; (9)

Z
˝�.a/

Qe�.m�/ dx � D� C o�.1/; (10)

Z
˝�.a/

1

2

ˇ̌̌
ˇj.m�/jm�j � j.m�.�I a//

ˇ̌̌
ˇ
2

dx � 1

1 � C jhjD� C o�.1/: (11)

Proof. As in the proof of Proposition 3, we have for a subsequence that m�

converges to m0 D .m0; 0/ weakly in H 1
loc.˝0.a// and strongly in Lp.˝/, with
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m0 D eiˇM�, where ˇ 2 H 1
0 .˝/. The proof of Proposition 3 also gives for any

small r > 0

lim inf
�&0

�Z
S
Br .a`/

e�.m�/ dx � �d log
r

�
C d�

�
� �Cr2: (12)

Furthermore,

lim inf
�&0

Z
˝r .a/

1

2

ˇ̌
ˇ̌j.m�/

jm�j
ˇ̌
ˇ̌2 dx �

Z
˝r .a/

1

2
jrm0j2 dx

and since m� ! m0 in L1.˝/, we obtain

lim inf
�&0

�Z
˝r .a/

1

2

jj.m�/j2
jm�j2 dx �

Z
˝

h � m� dx

�
�
Z
˝r .a/

1

2
jrm0j2 dx �

Z
˝

h�m0 dx:

From (8) we obtain

Z
˝r .a/

1

2
jrm�j2 dx �

Z
˝

h �m� dx � W.h; a/C �d log
1

r
� or.1/

so adding this to (12) we obtain

lim inf
�&0

�
D� �

Z
˝r .a/

Qe�.m�/ dx

�
� �or .1/:

Since the right-hand side of the previous inequality tends to zero as r ! 0, we
obtain by monotonicity of the left-hand side for any � > 0

lim inf
�&0

 
D� �

Z
˝�.a/

Qe�.m�/ dx

!
� 0:

This is (10). From D� � C , we obtain that also (9) must hold.
From the definition of energy excess it follows that

lim sup
�&0

�Z
˝r .a/

1

2
jrm�j2 � 1

2
jrm�j2 dx �

Z
˝

h � .m� �m�/ dx �D�

�
� �or.1/

so a fortiori

lim sup
�&0

 Z
˝r .a/

1

2

jj.m�/j2
jm� j2 � 1

2
jj.m�/j2 dx �

Z
˝

h � .m� �m�/ dx �D�

!
� �or .1/:
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We calculate

1

2

ˇ̌̌
ˇj.m�/jm�j � j.m�/

ˇ̌̌
ˇ
2

D 1

2

jj.m�/j2
jm�j2 � 1

2
jj.m�/j2 � j.m�/ �

�
j.m�/

jm�j � j.m�/
�
:

Using that j.m�/ D r?˚ C r C r� and j.m0/ D r?˚ C r C rˇ, we have
that

lim
�&0

Z
˝r .a/

j.m�/ �
�
j.m�/

jm� j � j.m�/
�

dx D
Z

˝r .a/

�
r?˚ C r C r�

�
� .rˇ � r�/ dx

For r ! 0, this expression converges using the harmonicity of  to

Z
˝

r� � .rˇ � r�/ dx:

We obtain

lim sup
�&0

 Z
˝r .a/

1

2

ˇ̌̌
ˇj.m�/jm�j � j.m�/

ˇ̌̌
ˇ
2

�D�
!

� �or.1/C
Z
˝

h �M�.eiˇ � ei�/C r� � .rˇ � r�/ dx:

The Euler-Lagrange for � in weak form reads as

Z
˝

r� � .rˇ � r�/ dx D
Z
˝

h � .iM�ei�/.ˇ � �/ dx:

We study the expression

h �
�
M�ei�.ei.ˇ��/ � 1� i.ˇ � �//

�

and note that it can be written using an application of Taylor’s theorem to the
function f .t/ D h � .M�ei.�Ct.ˇ��///. In fact, we have

f .1/ D f .0/C f 0.0/C
Z 1

0

f 00.t/.1 � t/ dt;

where f 00.t/ D h �M�ei.�Ct.ˇ��//.ˇ��/2. Taking absolute values and integrating,
it follows that

ˇ̌̌
ˇ
Z
˝

h �
�
M�ei�.ei.ˇ��/ � 1 � i.ˇ � �//

�
dx

ˇ̌̌
ˇ � jhj

Z
˝

.ˇ � �/2 dx:
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By weak convergence,

Z
˝r .a/

1

2
jr.ˇ � �/j2 dx � lim inf

�&0

Z
˝r .a/

1

2

ˇ̌̌
ˇj.m�/jm�j � j.m�/

ˇ̌̌
ˇ
2

dx:

Using Poincaré’s inequality, we obtain that

lim sup
�&0

 
.1 � Ch/

Z
˝r .a/

1

2

ˇ̌̌
ˇj.m�/jm�j � j.m�/

ˇ̌̌
ˇ
2

dx �D�
!

� �or .1/;

and letting r ! 0 on the right as before we obtain (11). ut

2.3 The Thiele Equation

For h 2 W 1;1.0; T IR2/, which is small enough so thatW D W.h.t/; �/ corresponds
to a unique minimizer � D �.h.t/; �/ for all t 2 Œ0; T �, we consider the equation

.4�q`i C ˛0�/ Pa`.t/C @W

@a`
.h.t/; a.t// D 0 .` D 1; : : : ; d /: (13)

Lemma 4. For initial data a.0/ D a0 2 ˝d� the Cauchy problem for (13) has a
unique solution a 2 C 1.Œ0; T �I˝d /, which satisfies the energy identity

W.h.t1/; a.t1// �W.h.t2/; a.t2// D ˛0 �

Z t2

t1

j Pa.s/j2ds C
Z t2

t1

Z
˝

Ph.s/ �m� dx ds

for all 0 � t1 < t2 � T , where m�.xI a/ D ei�.x/M�.xI a/.
Proof. Using (6) and (13) we compute for the (unique) local solution a D a.t/

d

dt
W.h.t/; a.t// D @W

@h
.h.t/; a.t// Ph.t/C

dX
jD1

@W

@aj
.h.t/; a.t// � Paj .t/

D �˛0 � j Pa.t/j2 �
Z
˝

Ph.t/ �m�.xI a.t// dx:

The energy identity follows, and the local solution a D a.t/ extends to Œ0; T �. ut



124 M. Kurzke et al.

3 LLG Equation with External Fields

Let us now consider the Landau-Lifshitz-Gilbert equation

@m
@t

D m �
�
˛�
@m
@t

� heff

�
; (14)

where, for an external field h 2 W 1;1.0; T IR3/, the effective field is given by

heff D 	m � m3

�2
Oe3 C h:

We consider a specific asymptotic behavior for ˛� such that ˛� log 1
�

! ˛0 2 .0;1/

as � ! 0. The effective field corresponds to minus the L2 gradient of

E�.h;m/ D
Z
˝

e�.m/ � h � m dx:

where, as usual,

e�.m/ D 1

2
jrmj2 C m23

2�2

is the energy density of the Ginzburg-Landau type energy E�.m/ D E�.0;m/,
which we have considered in [13–15]. In this section we study the equation for
a fixed � 2 .0; 1/. We impose Dirichlet boundary data given by a smooth map
g D .g; 0/ where g W @˝ ! S

1 with deg.g/ D d and initial data m0 2 H 1
g .˝IS2/

with

E�.m0/ � d� log
1

�
C C0: (15)

3.1 Conservation Laws

Let us assume m is a smooth solution of (1) in a space-time cylinder. The vorticity
!.m/ makes contact to the LLG equation through the identity

@

@t
!.m/ D curl

�
m � @m

@t
;rm

�

leading to

@

@t
!.m/C ˛� curl

�
@m
@t
;rm

�
D curl div .rm ˝ rm/ : (16)
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This conservation law for the vorticity will be crucial when identifying motion laws
for vortices, which are the concentration points of !.m/ in the singular limit � & 0.

Moreover, the energy identity for (14) reads

@

@t

�
e�.m/ � h.t/ � m

�
C ˛�

ˇ̌̌
ˇ@m
@t

ˇ̌̌
ˇ
2

D div

�
@m
@t
;rm

�
C
�

Ph.t/; @m
@t

�
(17)

Finally, we have conservation of spin

@m3

@t
C div j.m/ D ˛� m ^ @m

@t
C h ^m; (18)

which is just the third component of (14), will imply that in the singular limit � & 0,
m will converge to an h.t/-harmonic map.

3.2 Weak Solutions and Bubbling

The LLG equation (14), for � > 0 fixed, is a lower order perturbation of the
conformally invariant LLG equation mt D m � .˛mt �	m/ which is traditionally
studied in mathematical analysis. In dimension two, this equation is critical with
respect to the natural energy estimate, and the formation of singularities in finite
time must be expected, [1]. On the other hand, a well-known construction of what is
called energy decreasing weak solutions, which has been introduced by Struwe [22]
for the harmonic map heat flow, see also [4] and [6, 7] for LLG, can be carried out.
In this framework, the possible blow-up scenario is precisely characterized through
the formation of bubbles at the energy concentration points.

This is in fact the new fundamental difficulty compared with the corresponding
problem for the complex Ginzburg-Landau theory, where at the finite � level,
evolution equations admit smooth solutions for all times, [12]. Since vortex
trajectories are retraced in terms of concentration sets of the energy density e�.m/
and the vorticity !.m/, precise information about their behavior near the singular
points is a crucial ingredient to our analysis. This information can be obtained from
the well-developed bubbling analysis for harmonic maps and flows, established e.g.
in [5,16–18,25]. Applied to (14) we obtain the following result (cf. [14, Sect. 4] for
more information):

Theorem 1. For initial data m0 2 C1.˝IS2/ there exists a weak solution m of
(14) which satisfies the energy inequality

˛�

Z t0

0

Z
˝

ˇ̌
ˇ̌@m
@t

ˇ̌
ˇ̌2 dx dt CE�.h.t0/;m0/ � E�.h.0/;m0/�

Z t0

0

Z
˝

Ph � m dx dt
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for all 0 � t0 � T and is smooth away from a finite number of points .xi ; ti / in
space time. Moreover, there exists, for every i , an integer qi such that for every
sufficiently small r > 0

Z
Br .xi /�fti g

e�.m/ dx C 4�jqi j � lim inf
t%t i

Z
Br .xi /�fti g

e�.m/ dx

and
Z
Br .xi /�fti g

!.m/ dx C 4�qi D lim
t%t i

Z
Br .xi /�fti g

!.m/ dx:

Finally, the (energy decreasing) solution m is unique in its class.

Form the energy inequality we deduce that for E�.m0/ � d� log.1=�/C C0,

˛�

Z t0

0

Z
˝

ˇ̌̌
ˇ@m
@t

ˇ̌̌
ˇ
2

dx dt C E�.m.t0// � d� log.1=�/C C1; (19)

where 0 � C1 � C0 can be bounded above by a multiple of
Z T

0

j Ph.t/jdt C jh.0/j.

4 Convergence and Vortex Trajectories

Now we consider a sequence of initial data m0
� 2 H 1

g .˝IS2/ such that

˛�e�.m0
� / ! ˛0�ıa0 ; !0.m0

� / ! 4�

dX
`D1

q`ıa0
`

and lim
�&0

D�.m0
� I a0/ D 0

for a certain a0 2 ˝d� and q1; : : : ; qd D ˙1
2

and the corresponding weak solution
m� from Theorem 1. As in [14, Theorem 4.1] (see [13] for more details) and in view
of Proposition 2 we obtain the following convergence result.

Theorem 2. There exist a time T0 2 .0; T �, a sequence �k & 0, and a curve

a 2 H 1.0; T0I˝d / with a.0/ D a0 and inf
t2.0;T0/

�.a.t// > 0

such that for every t 2 Œ0; T0� and 1 � p < 2

m�k
.�; t/ * m�.�; a.t// weakly in W 1;p.˝IR2/;

˛�k
e�k
.m�k

. � ; t// �
* ˛0�ıa.t/ weakly* in .C 00 .˝//

�;

J.m�k
. � ; t// ! �ıa.t/; !.m�k

. � ; t// ! 4�

dX
`D1

q`ıa`.t/ in .C
0;1
0 .˝//�:
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Moreover, for all t1; t2 2 Œ0; T0� with t1 � t2 and 
 2 C 1.˝/

˛0�

dX
`D1


.a`.t//
ˇ̌̌t2
tDt1

D lim
k!1

�
˛�k

Z t2

t1

Z
˝

r
 �
�
@m�k

@t
;rm�k

�
dx dt

�

and

˛0�

Z t2

t1

j Paj2 dt � lim inf
k!1

 
˛�k

Z t2

t1

Z
˝

ˇ̌̌
ˇ@m�k

@t

ˇ̌̌
ˇ
2

dx dt

!
:

From the energy inequality in Theorem 1, the convergence of m�k
in Theorem 2

and conservation of spin identity (18) we deduce in particular that

j.m�k
.t; � // * j.m�.t; � // weakly in Lp.˝IR2/ (20)

for every t 2 Œ0; T0/, where

div j.m�.t; � / D h.t/ ^m� and curl j.m�.t; � // D 2�ıa.t/:

5 Motion Law

Theorem 3. There exist positive numbers h0 and �0 with the following property:
For every � 2 .0; �0/ and every smooth h W Œ0; T � ! R

3 with

Z T

0

j Ph.t/jdt C jh.0/j < h0;

there exists a smooth solution m� 2 C1.˝ � Œ0; T �IS2/ of the Landau-Lifshitz-
Gilbert equation (14) with m�. � ; 0/ D m0

� and m�. � ; t/j@˝ D g for every t � 0.
Moreover, for every t 2 Œ0; T �,

˛�e�.m�. � ; t// ! �˛0

dX
`D1

ıa`.t/ and !.m�. � ; t// ! 4�

dX
`D1

q`ıa`.t/

as � & 0, in the sense of distributions, where a 2 C1.Œ0; T �I˝d / is the solution
of Thiele’s equation

G` � Pa` CD Pa` C @W.h; a/

@a`
D 0 .` D 1; : : : ; d / (21)

with a.0/ D a0 and where G` D 4�q` Oe3 andD D � ˛0 with ˛0 D lim
�&0

˛� log
1

�
:
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The rest of this section is devoted to the proof of the Theorem. Let Oa 2
C1.Œ0;1/I˝d / be the unique solution of the initial value problem for (21) with
initial values Oa.0/ D a0 2 ˝d . We choose T0 > 0 and a sequence �k & 0

that satisfy the conclusions of Theorem 2, and let a be the corresponding curve in
˝d . We recall that solutions remain smooth in .0; T0/ for small � as shown in [14,
Theorem 3], so we can concentrate on the verification of the motion law.

We fix a radius r 2 .0; �.a0/=2� and adapt the terminal time T0 such that the
trajectories of a` and Oa` do not exit Br=2.a0` / before time T0 for all ` D 1; : : : ; d .
As in [14] we choose �; 2 C1

0 .˝/ such that for every `, both � and  are affine
with r D r?� in Br.a0` /. We define

�k.t/ D
Z
˝�ftg



˛�k e�k .m�k /C � !0.m�k /

�
dx � �

dX
`D1

.˛0 . Oa`.t//C 4q`�. Oa`.t/// ;

converging, for every t 2 Œ0; T /, to

�.t/ D �

dX
`D1

�
˛0

�
 .a`.t// �  . Oa`.t//

�
C 4q`

�
�.a`.t// � �. Oa`.t//

��
:

In order to apply Proposition 4 we fix h0 sufficiently small.

Lemma 5. There exists a constant C such that for all t1; t2 2 Œ0; T0� with t1 � t2
and every k 2 N,

�k.t2/ � �k.t1/ � C

Z t2

t1

�
Dh.t/
�k

.m�k
I Oa.t//C ja.t/ � Oa.t/j

�
dt C o�k

.1/:

Proof. From (13) we obtain

�

dX
`D1

d

dt
.˛0 . Oa`.t//C 4q`�. Oa`.t/// D �@W.h; Oa/

@a`
� r . Oa`.t//

while from Lemma 3 with Om� WD m�. � I Oa/ and ˚ D r?�

�
dX
`D1

r . Oa`.t// � @W.h; Oa/
@a`

D
Z
˝�ftg

r?r� W .r Om� ˝ r Om�/ dx:

Using conservation of vorticity (16), we find after integration by parts in space and
integration in timeZ
˝

� !.m�k
.t2//� � !.m�k

.t1// dx D ˛�k

Z t2

t1

Z
˝

r?� �
�
@m�k

@t
;rm�k

�
dx dt

C
Z t2

t1

Z
˝

r?r� W 
rm�k
˝ rm�k

�
dx dt:
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For the terms on the left we use convergence of the vorticity provided by Theorem 2.
Concerning the first term on the right we deduce from the energy estimate in
Theorem 1

�
˛�k

Z t2

t1

Z
˝


r?� � r � �
�
rm�k

;
@m�k

@t

�
dx dt

�2

� c

Z t2

t1

Z
˝

jr?� � r j2 ˛�k
e�k
.m�k

/ dx dt ! 0

while by convergence of the kinetic term in Theorem 2

˛�k

Z t2

t1

Z
˝

r �
�
rm�k

;
@m�k

@t

�
dx dt ! ��˛0

dX
`D1

�
 .a`.t2//�  .a`.t1//

�

as �k & 0. Therefore, it suffices to estimate the integrals

Z t2

t1

Z
˝

r?r� W .rm�k
˝ rm�k

� r Om� ˝ r Om�/ dx dt;

which, by virtue of the usual decomposition argument and Proposition 4 (see [14,
Sect. 6]), reduces to the estimation of

Z t2

t1

Z
˝

r?r� W ..j.m�k
/� j. Om�//˝ j. Om�// dx dt

and

Z t2

t1

Z
˝

r?r� W .j. Om�/˝ .j.m�k
/� j. Om�/// dx dt:

Taking into account that both integrands are products of the form

 � .j.m�k
/� j. Om�//

for smooth vector fields  2 C1.˝� Œ0; T0�IR2/ independent of k, we obtain from
(20) with m� D m�.�; a.t// and Om� D m�.�; Oa.t//
Z t2

t1

Z
˝

 � .j.m�k
/� j. Om�// dx dt D

Z t2

t1

Z
˝

 � .j.m�/� j. Om�// dx dt C o�k
.1/:

Next we adopt the Hodge decomposition argument used in [14, Lemma 7]. Writing
� D ru C r?v, where u; v 2 C1.˝ � Œ0; T0�/ with u D 0 on @˝ � Œ0; T0� we
infer, also taking into account Lemma 2,
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Z t2

t1

Z
˝

 � .j.m�/ � j. Om�// dx dt D
Z t2

t1

Z
˝

h ^ .m� � Om�/ u dx dt C 2�

dX
`D1

Z t2

t1

.v.a`/� v. Oa`// dt

� c

Z t2

t1

ja.t/ � Oa.t/j dt: ut

Proof (Theorem 3). The proof follows by the usual Gronwall argument. For t 2
Œ0; T0�, we consider the functions

�k.t/ D Dh.t/
�k

.m�k
.t/I Oa.t// and �.t/ D j Oa`.t/ � a`.t/j:

First we show �k ! � in L1.0; T0/ for a function � 2 BV.0; T0/ with

P� � c

j POa � Paj C �

�
: (22)

In fact, we obtain from Lemma 4

W.h.t1/; Oa.t1//�W.h.t2/; Oa.t2// D �˛0

Z t2

t1

j POaj2 dt �
Z t2

t1

Z
˝

Ph.t/ �m�.�; Oa.t// dx dt

and from (19)

E�k
.h.t2/;m�k

.t2//� E�k
.h.t1/;m�k

.t1// D

�
Z t2

t1

Z
˝

 
˛�k

ˇ̌̌
ˇ@m�k

@t

ˇ̌̌
ˇ
2

� Ph.t/ � m�k

!
dx dt;

respectively, for 0 � t1 � t2 � T0, while

ˇ̌̌
ˇ
Z t2

t1

Z
˝

� Ph.t/ �m�k
� Ph.t/ �m�.�; Oa.t//

�
dx dt

ˇ̌̌
ˇ � c

Z t2

t1

�.t/ dt C o�k
.1/:

In view of Theorem 2 we can select a subsequence such that �k.t/ ! �.t/ almost
everywhere for a bounded function � W Œ0; T0� ! R with

�.t2/� �.t1/ �
Z t2

t1

�˛0

�
j POaj2 � j Paj2

�
C c �.t/ dt � c

Z t2

t1

j POa � Paj C �.t/ dt

for almost all t1 � t2, which implies (22). Now Lemma 5 implies, by virtue of (22),
for 0 � t1 � t2 � T0,
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�.t2/ � �.t1/ � c

Z t2

t1

.�.t/C �.t// dt:

With an appropriate choice of � and  we obtain the desired inequality

j POa.t/� Pa.t/j � c

Z t

0

j POa.�/� Pa.�/j d�:

As Oa.0/ D a.0/, Gronwall’s lemma implies Oa D a in Œ0; T0�. Moreover,

lim sup
k!1

Dh.T0/
�k

.m�k
.T0/I a.T0// � 0;

which enables us to iterate the argument for new initial times T0, and we eventually
obtain the motion law for all times before T0. Note that by uniqueness of energy
decreasing solutions, solutions m� extend, for small �, smoothly to Œ0; T �. Finally,
thanks to the unique solvability of the limiting ODE, the convergence result for
energy density and vorticity can be seen to hold without taking subsequences, as
any subsequence of � & 0 will have a further subsequence converging to the same
limit. ut
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3. Capella, A., Melcher, C., Otto, F.: Wave-type dynamics in ferromagnetic thin films and the
motion of Néel walls. Nonlinearity 20(11), 2519–2537 (2007)

4. Chang, K.-C.: Heat flow and boundary value problem for harmonic maps. Ann. Inst.
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