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Abstract The study of the p variation of functions of one variable has a long
history. It has been discussed by Wiener in [21]. Here we define the space of
functions of finite p Variation, and the predual space U q , and we use them to study
dispersive equations.

1 Introduction

The study of the p variation of functions of one variable has a long history. It
has been discussed by Wiener in [21]. The generalization of the Riemann-Stieltjes
integral to functions of bounded p variation against the deriative of a function of
bounded q variation 1=p C 1=q > 1 is due to Young [22]. Much later Lyons
developed his theory of rough path [13] and [14], buildung on Young’s ideas, but
going much further.

In parallel Tataru realized that the spaces of bounded p variation, and their
close relatives, the U p spaces, allow a powerful sharping of Bourgain’s technique
of function spaces adapted to the dispersive equation at hand. These ideas were
applied for the first time in the work of the author and Tataru in [11]. Since then
there has been a number of questions in dispersive equations where these function
spaces have been used. For example they play a crucial role in [12], but there
they could probably be replaced by Bourgain’s Fourier restriction spaces X s;b.
On the other hand, for wellposedness for the Kadomtsev-Petviashvili II equation
in a critical function space (see [3]) the X s;b spaces seem to be insufficient. The
theory of the spaces U p and V p and some of their basic properties like duality
and logarithmic interpolation have been worked out in [3], with a focus on what
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was needed there. Until very recently the developments in stochastic differential
equations and dispersive equations were entirely independent. The present treatment
considerably extends the theory of [3].

We will introduce the spaces U p and V p , study their properties and indicate
their role for dispersive equations. After that we turn to wellposedness questions for
several dispersive PDEs, where we select a number of relevant and representative
problems.

In the sequel p 2 Œ1; 1�. Unless explicitly stated otherwise we consider
p 2 .1; 1/.

2 The Bounded p Variation

Definition 1. Let I be an interval, 1 � p < 1 and f W I ! X . We define

!p.v; I / WD sup
ti 2I;t1<t2:::tnC1

�X
kv.tiC1/ � v.ti /kp

X

�1=p 2 Œ0; 1�:

There are obvious properties. The function t ! !p.v; Œa; t// is monotonically
increasing. The same is true if we consider closed or open intervals. Moreover

!p.v; Œa; b// � !p.v; Œa; c// � 2.!p.v; Œa; b�/ C !p.v; Œb; c///:

Finiteness of the p variation implies existence of one sided limits. It is not hard to
see that v ! !p.v; Œa; b// defines a norm, up to constants. If v is continuous and
the p variation is bounded then it is a continuous function of the endpoint. Moreover

!p.v; .a; b// � jb � aj1=pkvk PC 1=p

where PC 1=p denotes the homogeneous Hölder space.

2.1 Step Functions and Ruled Functions

We introduce and study functions from an interval Œa; b/ to R, Rn, a Hilbert space
or a Banach space X , and spaces of such functions which are invariant under
continuous monotone reparametrizations of the interval. For the most part of this
section there are no more than the obvious modifications when considering Banach
space valued functions.

We call a function f a ruled function if at every point (including the endpoints,
which may be ˙1) left and right limits exist. This set is closed with respect to
uniform convergence. We denote the Banach space of ruled functions equipped with
the supremum norm by R.
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A partition � of Œa; b/ is a strictly increasing finite sequence

a < t1 < t2 < � � � < tnC1 < b

where we allow b D 1 and a D �1. A step function is a function f for which
there exists a partition so that f is constant on every interval .a; t1/, .ti ; tiC1/ and
.tn; b/. We do not require that the value at a point coincides with the limit from
either side. Step functions are dense in R. We denote the set of step functions by
S . Let Rrc be the closed subset of R of right continuous functions f with limt!a

f .t/ D 0. Similarly, if X � R we denote by Xrc the intersection with Rrc.
The step functions

ft D �Œt;b/

satisfy

kft � fsksup D 1 (1)

for s ¤ t . We will study Banach spaces Z most of which contain the right
continuous step functions Src, and which embed into R. Moreover we will always
have

1 � kft � fskZ � 2 (2)

and hence none of those spaces is separable.
It will be convenient to extend every function on Œa; b/ by zero to Œa; b�, i.e. we

will always set f .b/ D 0, even if a D �1 or b D 1.

Definition 2. For f 2 R and a partition

� D .t1; t2 : : : tn/; a < t1 < t2 < t3 � � � < tn < b

we define (denoting the limit from the right by f .tC/)

f� .t/ D

8
ˆ̂<
ˆ̂:

f .t/ if t D tj

f .aC/ if a < t < t1
f .ti C/ if ti < t < tiC1

f .tn/ if tn < t

We observe that f� is a step function, and it is right continuous if f is right
continuous.

2.2 The Spaces V p and U p

In this subsection we consider functions on .a; b/ where we allow the cases
a D �1 and b D 1.
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Definition 3. Let X be a Banach space, 1 � p < 1 and v W .a; b/ ! X . We
define

kvkV p..a;b/;X/ D maxfkvksup; !p.v; .a; b//g:

Let V p D V p..a; b// D V p.X/ D V p..a; b/I X/ be the set of all functions for
which this expression is finite. We often suppress the interval and/or the Banach
space in the notation when this seems appropriate.

The interval will usually be of minor importance. We omit it often in the sequel.
The following properties are immediate:

1. V p.I / is closed with respect to this norm and hence V p.I / is a Banach subspace
of R. Moreover V p

rc .I / is a closed subspace.
2. We set V 1 D R.
3. If 1 � p � q � 1 then

kvkV q � kvkV p :

4. Let Xi be Banach spaces, T W X1 � X2 ! X3 a bounded bilinear operator,
v 2 V p.X1/ and w 2 V p.X2/. Then T .v; w/ 2 V p.X3/ and

kT .v; w/kV p.X3/ � 2kT kkvkV p.X1/kwkV p.X2/:

5. We embed V p..a; b// into V p.R/ by extending v by 0.
6. The space V 1 has some additional structure: Every bounded monotone function

is in V 1, and functions in V 1 can be written as the difference of two bounded
monotone functions.

The space of bounded p variation is build on the sequence space lp . We may
also replace it by the weak space lp

w with

k.xj /kl
p
w

D sup
�

�#fjxj j > �g1=p:

Definition 4. Let 1 � p < 1. The weak V p
w space consists of all functions such

that

kvkV
p

w
D maxf sup

t1<���<tn

k.v.tiC1/ � v.ti //1�i�n�1kl
p
w

; kvksupg

is finite.

The spaces of bounded p variation are of considerable importance in probability
and harmonic analysis. We shall see that V p is the dual space of a space U q , 1=p C
1=q D 1, 1 < p < 1, with a duality pairing closely related to the Stieltjes integral,
and its variant, the Young integral [22].
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Definition 5. A p-atom a is a step function in Src,

a.t/ D
nX

iD1

�i�Œti ;tiC1/.t/

where � D .t1 : : : tn/ is a partition, tnC1 D b, with
P j�i jp � 1. A p-atom a is

called a strict p atom if

max k�ikX .#�/1=p � 1:

Let aj be a sequence of atoms and �j a summable sequence. Then

u D
X

�j aj

is a U p function. The right hand side converges in R. We define

kukU p D inff
X

j�j j W u D
X

�j aj g:

The strict space U
p
strict is defined in the same fashion using strict p atoms.

We collect a number of elementary properties.

1. If a is a p-atom then kakU p � 1. In general the norm is less than 1.
2. Functions in U p are continuous from the right. The limit as t ! a vanishes.
3. The expression k:kU p defines a norm on U p , and U p is closed with respect to

this norm. Hence U P � Rrc is a Banach subspace.
4. If p < q then U p � U q and

kukU q � kukU p :

5. If 1 � p < 1 then for all u 2 U p

kukV p � 21=pkukU p :

6. Let Y be a Banach space, and let the linear operator T W Src ! Y satisfy

kTakY � C (3)

for every p atom. Then T has a unique extension to a bounded linear operator
from U p to Y which satisfies

kTf kY � C kf kU p : (4)
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7. Let Xi be Banach spaces, T W X1 � X2 ! X3 a bounded bilinear operator,
v 2 U p.X1/ and w 2 U p.X2/. Then T .v; w/ 2 U p.X3/ and

kT .v; w/kU p.X3/ � 2kT kkvkU p .X1/kwkU p.X2/:

8. We consider U p.Œa; b// in the same way as subspace of U p.R/ as for V p.

The following decomposition is crucial for most of the following. It is related to
Young’s generalization of the Stieltjes integral, and it deals with a crucial point in
the theory. A proof is contained in [11].

Lemma 1. There exists ı > 0 such that for v right continuous with kvkV
p

w
D ı

there are strict p atoms ai with

kaj .t/ksup � 21�j and #�j � 2jp

such that

v D
X

aj :

There are a number of simple interesting and useful consequences.

Lemma 2. Let 1 < p < q < 1. There exists � > 0, depending only on p and q,
such that for all v 2 V p

w;rc and M � 1 there exist u 2 U
p
strict and w 2 U

q
strict with

v D u C w

and

�

M
kukV

p
strict

C eM kwkU
q
strict

� kvkV
p

w
:

Observe that we may replace U
p
strict by U p (since U

p
strict � U p) and V p

w by V p

(since V p � V p
w ). The proof is simple: We apply Lemma 1 and define u as the sum

of the first m aj . We obtain the following embedding

Lemma 3. Let 1 < p < q < 1. Then

V p
rc � V p

w;rc � U
q
strict � U q:

Proof. Apply Lemma 2 with M D 1. ut
The Riemann-Stieltjes integral defines

Z
f dg D

Z
fgt dt
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for f 2 R and g 2 V 1. If f 2 Src then

Z
fgt dt D

X
f .ti /.g.ti / � g.ti�1//: (5)

We take this formula as our starting point for a similar integral for f 2 V p and
g 2 U q , for 1=p C 1=q D 1, q � 1. Results become much cleaner when we use an
equivalent norm in V p ,

kvkV p D sup
a<t1:::tn<b

0
@X

j

jv.tj C1/ � v.tj /jp C jv.tn/jp
1
A

1=p

which we do in the sequel. We also set v.b/ D 0 and, for any partition, tnC1 D b.

Theorem 1. There is a unique continuous bilinear map

B W U q.X/ � V p.X�/ ! R

which satisfies (with t0 D a and u.t0/ D 0, and a somewhat sloppy notation for the
duality map X� � X ! R)

B.u; v/ D
nX

iD1

.u.ti / � u.ti�1//v.ti /

for u 2 Src with associated partition .t1; : : : tn/ and

jB.u; v/j � kukU q.X/kvkV p.X�/: (6)

The map

V p.X�/ 3 v ! .u ! B.u; v// 2 .U q.X//�

is a surjective isometry. Moreover

kvkV p.X�/ D sup
u2U q.X/;kukU q.X/D1

B.u; v/ D sup
a is a q�atom

B.a; v/: (7)

The same statements are true if we replace U p by U
p
strict and V q by V q

w .

See [3] for a proof. The previous results show that U p � V
p

rc , and both spaces
are very close. They are, however, not equal. The following example goes back to
Young [22] with the same intention, but in a slightly different context. Let with a
smooth function �

vN
p D �

NX
j D1

2�j=p sin.2j x/:
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It is not hard to see that supN kvN
p kC 1=p < 1, and hence in v1

p 2 C 1=p � V p
rc .

Let uq D �
P1

j D1 2�j=q cos.2j x/. Now, assuming that uq 2 U q ,

kuqkU p kvN
p kV q �

ˇ̌
ˇ̌
Z

.u1
q /0vN

p dx

ˇ̌
ˇ̌ D N=2

Z
�2dx C O.1/

which is unbounded, hence a contradiction and V p
rc 3 u1

p … U p .

Lemma 4. For all v 2 V p we have (recall Definition 2)

kv�kV p.I / � kvkV p.I / (8)

and for all u 2 U p

ku� kU p.I / � kukU p.I /: (9)

For v 2 V p and " > 0 there is a partition � so that

kv � v�kV p < ": (10)

Given u 2 U p and " > 0 there exists � with

ku � u�kU p < ": (11)

In particular S is dense in V p and Src is dense in U p.

Proof. When we take the supremum over partitions for v� we may restrict to subsets
of � and the first statement becomes obvious. For U p it suffices to check p atoms a,

ka� kU p � 1:

Density of step functions in U p follows from the atomic definition of the space: Let
u 2 U p and " > 0. By definition there exists a finite sum of atoms (which is a right
continuous step function ustep) such that

ku � ustepkU p < "=2:

Let � be the step function associated to ustep. Then

ku � u�kU p � kustep � u�kU p C ku � ustepkU p

< k.ustep � u/�kU p C "=2 < "

which is the claim for U p . Let QV p be the closure of the step functions in V p .
Suppose there exists v 2 V p with distance 1 to QV p, and kvkV p < 1 C ". Such a
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function exists when QV p is not V p. Let D � U q be the subset such B.u; v/ D 0

whenever u 2 D and v 2 QV p. There exists u 2 D with B.u; v/ D 1, and a partition
� so that ku � u�kU p < ". However

0 D B.u; v� / D B.u� ; v/ D B.u; v/ C B.u� � u; v/ � 1 � ".1 C "/

which is a contradiction. Hence the step functions are dense in V p. We complete
the proof as for U p. ut

2.3 Embeddings

The first part of the next result it due to Hardy and Littlewood [4], and the second
one follows by duality.

Lemma 5. If 1 < p < 1,

c�1
p kvk PB1=p;p

1
� kvk QV p � 21=pkukU p � cpkuk PB1=p;p

1

:

Let QV p � V p be the closed subspace of functions with

f .t/ D 1

2
. lim
h!0

.f .t C h/ C f .t � h///:

Choose a symmetric function � 2 L1 with
R

� D 1 and �h.x/ D h�1�.x=h/. The
following claims can be easily verified for step functions, which suffices since they
are dense.

Lemma 6. Let a D �1, b D 1, � 2 L1 symmetric with
R

�dx D 1. We denote
�h.x/ D h�1�.x=h/. Then

�h � v ! v

in the weak � topology for v 2 QV p.R/. Moreover test functions are weak* dense
in V p.

There is a second duality statement.

Lemma 7. The bilinear map B defines a surjective isometry

QV p.X�/ ! .U q \ C.X//�;
1

p
C 1

q
D 1; 1 < p; q < 1:
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Proof. The kernel of the duality map restricted to U p \ C.X/ consists exactly of
those elements of V p which are nonzero at most at countably many points. Let
v 2 QV p . Then, by the previous lemma,

�h � v ! v

in the weak � topology of V p . Moreover, for atoms

B.a; �h � v/ D B.�h � a; v/

and hence this is true for functions in U p. Now

kvkV p D sup
a q-atom

B.a; v/D sup
a

lim
h!0

B.a; �h � v/ D sup lim
h!0

B.�h � a; v/D sup
a

B.v; a/:

It remains to prove surjectivity. Let L W U p \ C.X/ ! R be linear. By the theorem
of Hahn-Banach there is a extension with the same norm to U p , and by duality there
is v 2 V q with kvkV q D kLk. Changing v at a countable set does not change the
image in .U p \ C.X//�, hence we may choose v 2 QV p. ut

We define

V
q

C D fv 2 V q \ C W lim
t!a

v.t/ D lim
t!b

v.t/ D 0g: (12)

Lemma 8. The map

U p.X�/ ! .V
q

C .X//�;

u ! .v ! B.u; v//

is a surjective isometry.

Proof. By the duality estimates the duality map is defined, and it is an isometry
since the space V

q
C is weak star dense in V q .

Let L W V
q

C ! R. By Hahn-Banach there is an extension QL to V q . We define
(with obvious modifications for Banach space valued maps)

Qu.t/ D � QL.�Œt;1//:

As above we see that .v ! B.Qu; v// coincides with QL on step functions. We define
u as the unique right continuous function obtained by modifying Qu at points of
discontinuity. This does not change B.u; :/ on V

q
C . Moreover, by the definition of

the quadratic form we may assume

Qu.t/ ! 0 as t ! a:
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Now u 2 U Qp for all p � 0. The duality estimate allows to conclude that

kukU p � kLk:

There is an immediate consequence. ut
Lemma 9. Test functions C 1

0 are weak* dense in U p.

3 Dispersive Equations

3.1 Adapted Function Spaces

Here we briefly survey constructions going back to Bourgain, which have become
standard. Details can be found in [11] and [3].

The following situation will be of particular interest. Let t ! S.t/ be a
continuous unitary group on a Hilbert space H . We define U

p
S and V

p
S by

kukU
p
S

D kS.�t/u.t/kU p.H/:

Now atoms are piecewise solutions. By Stone’s theorem unitary groups are in one-
one correspondence with selfadjoint operators, in the sense that

i@t u D AU

with a self adjoint operator defines a unitary group S.t/ and vice versa. At least
formally

i@t .S.�t/u.t// D S.�t/.i@t u � Au/

and hence the duality assertion is

kukU
q
S

D sup
kvk

V
p
S

�1

B.S.�t/u.t/; S.�t/v.t//:

Now suppose that – again formally –

i@t u � Au D f

then, by Duhamels formula, we obtain the solution

u.t/ D
Z t

�1
S.t � s/f .s/ds:
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Thus,

kukU
q
S

D sup
kvk

V
p
S

�1

jB.S.�t/u.t/; S.�t/v.t//j (13)

D sup
kvk

V
p
S

�1

ˇ̌
ˇ̌
Z

R

h@tS.�t/u.t/; S.�t/v.t/idt

ˇ̌
ˇ̌ (14)

D sup
kvk

V
p
S

�1

j�ihS.�t/.i@t u � Au/; S.�t/vidtj (15)

D sup
kvk

V
p
S

�1

Z

R

hf; vidt (16)

with a similar statement for V
p

S . This observation will be crucial for nonlinear
dispersive equations. It is not hard to justify using our knowledge about weak* dense
subspaces.

We want to use this construction for dispersive equations. There A is often
defined by a Fourier multiplier, most often even by a partial differential operator
with constant coefficients.

In order to be specific we consider the Airy equation – the situation would be
similar for many other dispersive equations –

vt C vxxx D 0 in Œ0; 1/

v.0/ D u0 on R:

Let v.t/ D 0 for t < 0 and the solution otherwise. Then

kvkV 1
Airy

D ku0kL2.Rd /:

There are three types of basic estimates: The Strichartz estimate

kvkL
p
t L

q
x

� kjDj�1=pu0kL2 (17)

whenever

2

p
C 1

q
D 1

2
; 2 � p; q: (18)

Here jDjs is defined by the Fourier multiplier j�js . The Strichartz estimate quantifies
the effect of dispersion.
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The Strichartz estimate immediately transfers to estimates with respect to U
p
Airy:

kvkL
p
t L

q
x

� ckjDj�1=pukU
p
Airy

: (19)

It suffices to verify this if SAiry.�t/v is an atom with partition .t1; t2 : : : tn/. Then,
with tnC1 D 1, by the Strichartz estimate we can estimate the mixed norm

kvkL
p
t ..tj ;tj C1/ILq

x .R// � ckjDj�1=pv.tj /kL2.R/:

We raise this to the pth power, and add over j . Then

kvkLp Lq � c
�X

kjDj�1=pv.tj /kp

L2

�1=p � c

since SAiry.�t/u is a p atom.
Consider now v.t/ D R t

�1 SAiry.t � s/f .s/ds. By duality (13), and with p and q

satisfying (18)

kvk
V

p0

SAiry

D sup
kuk

U
p
Airy

�1

ˇ̌
B.SAiry.�t/u; SAiry.�t/v/

ˇ̌

D sup
kuk

U
p
Airy

�1

ˇ̌
ˇ̌
Z

u Nf dx dt

ˇ̌
ˇ̌

� sup
kuk

U
p
Airy

�1

kukLpLq kf kLp0
Lq0

� ckf kLp0
Lq0 :

This implies the dual estimate of (17). If p > 2 we may combine the estimates with
an embedding to obtain the full Strichartz estimate.

Waves with different velocity interact at most in a time interval which is the
inverse of the differences of the velocities. Bilinear estimates quantify this fact.
For the Airy equation the group velocity is �3�2. We define the Fourier projection
u� by

Ou� D �1�j�j=��2.�/Ou

where Ou denotes the Fourier transform with respect to x. For solutions to the Airy
equation we obtain the estimate

ku�u�kL2.R2/ � c	�1ku�.0/kL2.R/ku�.0/kL2.R/ (20)
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provided � � 	=4. Again this implies for functions in U 2

ku�v�kL2 � c	�1ku�kU 2
Airy

ku�kU 2
Airy

: (21)

The imbedding estimate (5) immediately implies the high modulation estimate

ku�kL2.R2/ � c
�1=2kukV 2
Airy

(22)

where u� is defined by the space-time Fourier multiplier �j���3j>�.�; �/.
This set of tools is complemented by the interpolation estimate (2).

3.2 The Generalized KdV Equation

For integers p � 1 we consider the initial value problems

ut C uxxx C .upu/x D 0 (23)

u.0/ D u0 (24)

– the case p D 1 is the Korteweg-de-Vries equation, and p D 2 the modified
Korteweg-de-Vries equation, and

ut C uxxx C .jujpu/x D 0 (25)

u.0/ D u0 (26)

for positive real p.
Both equations have soliton solutions. They are invariant with respect to scaling:

�2=pu.�x; �3t/ is a solution if u satisfies the equation. The mass
R

u2dx and energyR
1
2

u2
x � 1

pC2
upC2 are conserved. The energy however is not bounded from below.

The space PH
1
2

� 2
p (with norm kv0k PH s D kj�js Ov0kL2 ) is invariant with respect to

this scaling and it is not hard to see that the generalized KdV equation is globally
wellposed in H 1 if p < 4. For p � 4 one expects blow-up. This has been proven in
series of seminal papers by Martel, Merle and Martel, Merle and Raphael for p D 4,
see [15–17] and the references therein.

The most prominent equation here is the KdV equation

ut C uxxx C .u2/x D 0:

The tools described here allow an alternative argument to prove local wellposed-
ness in H �3=4.R/. The order of derivatives cannot be improved by contraction
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arguments. There are however apriori estimates in H �1 by different techniques,
[1]. For the modified KdV equation

ut C uxxx C .u3/x D 0

one obtains local wellposedness in H 1=4, which again is optimal in terms of the
number of derivatives.

For the quartic KdV equation

ut C uxxx C .u4/x D 0

one obtains global existence by a contraction argument in the space

kukX D sup
�

��1=6ku�kU 2
Airy

for initial data in a Besov space PB�1=6
2;1 .R/. Statement and proof are contained in

[10], where it was one step to prove stability of the soliton in PB�1=6;21 , and scattering.
This is probably the first stability result of solitons for gKdV which is not based on
Weinstein’s convexity argument in the energy space.

Wellposedness in a slightly smaller spaces has been proven by Grünrock [2] and
Tao [20] based on a modification of the Fourier restriction spaces of Bourgain at the
critical level.

The quintic KdV equation

ut C uxxx C u5
x D 0

is of particular interest since it is L2 critical. Since the work by Kenig, Ponce and
Vega it is known to be locally wellposed in L2. The local existence result has been
extended to all equations

ut C uxxx C jujpux D 0

with p � 4 in [19] in critical function spaces using the techniques above. The case
of polynomial (analytic) nonlinearities had been dealt with by Molinet and Ribaud
[18] using different techniques.

3.3 The Kadomtsev-Petviashvili II Equation

The Kadomtsev-Petviashvili-II (KP-II) equation

@x.@t u C @3
xu C u@xu/ C @2

yu D 0 in .0; 1/ � R
2 (27)

u.0; x; y/ D u0.x; y/ .x; y/ 2 R
2 (28)
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has been introduced by Kadomtsev and Petviashvili [9] to describe weakly trans-
verse water waves in the long wave regime with small surface tension. It generalizes
the Korteweg – de Vries equation, which is spatially one dimensional and thus
neglects transversal effects. The KP-II equation has a remarkably rich structure.

Here we describe a setup leading to global wellposedness and scattering for small
data. The Hilbert space will be denoted by PH �1=2;0 which is defined by through the
norm

ku0k PH �1=2 D kj�j�1=2 Ou0kL2

where � is the Fourier multiplier with respect to x. The Fourier multiplier j�j�1=2

defines an isomorphism from L2 to PH �1=2.
For � > 0 we define the Fourier projection to the 1 � j�j=� < 2 by

Ou� D ���j�j�2� Ou

where F denotes the Fourier transform and � the Fourier variable of x. Usually we
choose � 2 2Z, the set of integer powers of 2. We define X by

kukX D
 X

�22Z

.��1=6ku�kV 2
KP

/2

!1=2

:

The following theorem has been proven in [3] with a proof relying on the space
U 2 and V 2.

Theorem 2. There exists ı > 0 such that for all u0 with ku0k PH �1=2 there exists a
unique solution

u 2 X � C.Œ0; T �I PH � 1
2

;0.R2//

of the KP-II equation (27) on .0; 1/. Moreover, the flow map

Bı;R.0/ 3 u0 7! u 2 X

is analytic.

A duality argument reduces the proof to an estimate of a trilinear integral.
The functions there are expanded according to the Fourier projection, and the key
estimate is a bound for

ˇ̌
ˇ̌
Z

u�1
v�2

w�3
dx dy dt

ˇ̌
ˇ̌

Due to symmetry we may assume that �1 � �2 � �3. Since there is only a
contribution to the integral if there a point in the support of the Fourier transforms
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adding up to zero we can only get a contribution if �2 	 �3, and only �1 may be
smaller. Since

�1 � �3
1 C �2

1=�1 C �2 � �3
2 C �2

2=�2

�Œ.�1 C �2/ � .�1 C �2/3 C .�1 C �2/2=.�1 C �2/�

D �3�1�2.�1 C �2/ � .�1�2 � �2�1/2

�1�2.�1 C �2/

there is only a contribution if at least for one j 2 f1; 2; 3g
j�j � �3

j C �2
j =�j j � j�1�2.�1 C �2/j;

j D 1; 2; 3 and �3 D ��1 � �2, �3 D ��1 � �2, �3 D ��1 � �2 in the support of the
Fourier transforms. We set 
 D �1�2�3=10 and expand u�1

D u�
�1

C ulow
�1

, where

u� is defined by the space-time Fourier multiplier

�j���3C�2=�j��;

and similarly we decompose the other factors. We expand the trilinear integral.
There is only a nontrivial contribution if at least one of the terms u�

�1
, v�

�2
or w�

�3

occurs. We apply Cauchy-Schwartz and estimate the corresponding term in L2.
For the other product we apply an L4 space-time Strichartz estimate, or a bilinear
estimate.

We obtain

ˇ̌
ˇ̌
Z

u�1 v�2 w

�3

dx dy dt

ˇ̌
ˇ̌ � c.�1�2�3/�1=2.�min=�max/

1
4 ku�1 kV 2

KP
kv�2 kV 2

KP
kw�3 kV 2

KP

and
ˇ̌
ˇ̌
ˇ̌
X

�1��2

Z
u�1

v�2
w�

�3
dx dy dt

ˇ̌
ˇ̌
ˇ̌ � c��1

maxkukXkv�2
kV 2 kw�2

kV 2

which suffices to conclude the proof.

3.4 The Energy Critical Nonlinear Schrrödinger Equation
on Compact Manifolds

We consider the quintic nonlinear Schrödinger equation on the three dimensional
torus T3, either focusing or defocusing

i@t u C �u D ˙juj4u: (29)



66 H. Koch

On R
3 the space PH 1 is critical. We consider solutions on a unit time interval with

small initial data in H 1. We define the function space X by

kukX D
���.1 C k2

1 C k2
2 C k3

3/1=2ke�it�2.k2
1

Ck2
2

Ck3
3

/ OukV 2.0;1/

���
l2
k .Z3/

:

The following depends on a mix of previous arguments, and estimates for Gaussian
sums.

Theorem 3 ([6]). There exists ı > 0 such that given u0 2 H 1 with ku0kH 1 < ı

there exists a unique solution u 2 X . This solution can be extended to a global
solution in time. The map from initial data to solution is real analytic. If u0 2 H 1

there is a local in time solution.

This result has been extended to global wellposedness on T 3 for large data in
H 1 by Ionescu and Pausader [8].

A similar mix of adapted function spaces, eigenfunction estimates and bounds
on Gaussian sums has been applied by the same authors to energy critical partial
periodic domains in R

4 [7], and by Herr to the quintic Schrödinger equation on the
three dimensional sphere [5].
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