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Preface

The success of quantitative modeling in the rapidly expanding areas of the
natural sciences, such as materials science and biology, produces a variety of new
mathematical models. The predictive power of these models has to be tested, and
methods for their effective treatment have to be developed. This major opportunity
for mathematics led to the foundation of the Collaborative Research Center SFB
611 entitled ‘Singular Phenomena and Scaling in Mathematical Models’ at the
University of Bonn in 2002. One of its major goals was the efficient handling of
new types of models through the close combination of theoretical and numerical
methods.

Funded by the Deutsche Forschungsgesellschaft, we progressively integrated
theoretical analysis, numerical simulation and modeling approaches for the treat-
ment of singular phenomena in three consecutive phases until the end of 2012.
Our particular projects were focused on actual applied problems, and we developed
qualitatively new and mathematically challenging methods for various problems
from the natural sciences.

Our Collaborative Research Center was organized in the following three divi-
sions ranging from stochastic and geometric analysis over nonlinear analysis and
modeling to numerical analysis and scientific computation:

• Part I: Scaling Limits of Diffusion Processes and Singular Spaces
• Part II: Multiple Scales in Mathematical Models of Materials Science and

Biology
• Part III: Numerics for Multiscale Models and Singular Phenomena

All the three divisions addressed, in their specific way, the key aspects of
the SFB 611, namely, multiple scales and model hierarchies, singularities and
degeneracies and scaling laws and self-similarity. These subjects proved to be
timely, challenging and at the forefront of international research. While taking
on these topics, the SFB 611 acted as a bridge between analysis, modeling and
numerical simulation.

v



vi Preface

A total number of 19 principal investigators and more than 45 other scientists
participated in the research of the last funding period of the SFB from 2009 to 2012.
This volume now comprises our final and latest contributions to the exciting field of
‘Singular Phenomena and Scaling in Mathematical Models’.

At this place, we want to thank the Deutsche Forschungsgesellschaft and the
University of Bonn for their ongoing support.

Bonn, Germany Michael Griebel
January 2013
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Ricci Bounds for Euclidean and Spherical Cones

Kathrin Bacher and Karl-Theodor Sturm

Abstract We prove generalized lower Ricci bounds for Euclidean and spherical
cones over complete Riemannian manifolds. These cones are regarded as complete
metric measure spaces. In general, they will be neither manifolds nor Alexandrov
spaces. We show that the Euclidean cone over an n-dimensional Riemannian
manifold whose Ricci curvature is bounded from below by n � 1 satisfies the
curvature-dimension condition CD.0; n C 1/ and that the spherical cone over
the same manifold fulfills the curvature-dimension condition CD.n; n C 1/. More
generally, for eachN > 1 we prove that the condition CD.N �1;N / for a weighted
Riemannian space is equivalent to the condition CD.0;N C 1/ for its N -Euclidean
cone as well as to the condition CD.N;N C 1/ for its N -spherical cone.

1 Introduction

In two similar but independent approaches, the second author [14, 15] and Lott and
Villani [8, 9] presented a concept of generalized lower Ricci curvature bounds for
metric measure spaces .M;d;m/. The full strength of this concept appears if the
condition Ric.M;d;m/ � K is combined with a kind of upper bound N on the
dimension. This leads to the so-called curvature-dimension condition CD.K;N /
which can be formulated in terms of optimal transportation for each pair of numbers
K 2 R and N 2 Œ1;1/.

A complete Riemannian manifold satisfies CD.K;N / if and only if its Ricci
curvature is bounded from below by K and its dimension from above by N .

A broad variety of geometric and functional analytic results can be deduced
from the curvature-dimension condition CD.K;N /. Among them are the

K. Bacher � K.-T. Sturm (�)
Institut für Angewandte Mathematik, Rheinische Friedrich-Wilhelms-Universität Bonn,
Endenicher Allee 60, D-53115 Bonn, Germany
e-mail: sturm@uni-bonn.de

M. Griebel (ed.), Singular Phenomena and Scaling in Mathematical Models,
DOI 10.1007/978-3-319-00786-1 1,
© Springer International Publishing Switzerland 2014
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4 K. Bacher and K.-T. Sturm

Brunn-Minkowski inequality and the theorems by Bishop-Gromov, Bonnet-Myers
and Lichnerowicz. Moreover, the condition CD.K;N / is stable under convergence
with respect to the L2-transportation distance d.

1.1 Statement of the Main Results

Let M be a complete n-dimensional Riemannian manifold (with Riemannian
distance d and Riemannian volume dm D dvol). The Euclidean cone Con.M/ D
Mr� Œ0;1/ over M is defined as the quotient of the product M � Œ0;1/ obtained
by identifying all points in the fiber M� f0g. This point is called the origin O of the
cone. It is equipped with a metric dCon defined by the cosine formula

dCon..x; s/; .y; t// D
p
s2 C t2 � 2st cos.d.x; y/ ^ �/;

and with a measure mn defined as the product dmn.x; s/ WD dm.x/˝ snds.

Theorem 1. The Ricci curvature of M is bounded from below by n � 1 and there
holds diam.M/ � � if and only if the metric measure space .Con.M/;dCon;mn/

satisfies the curvature-dimension condition CD.0; nC 1/.
Note that in dimensions n 6D 1 the diameter bound diam.M/ � � is redundant:

it follows from the Ricci bound.
The heuristic interpretation of the assertion in the theorem is that the Euclidean

cone – regarded as a metric measure space – has non-negative Ricci curvature in a
generalized sense. Note that already in 1982, Cheeger and Taylor [3, 6] observed
that the punctured Euclidean cone Con.M/ n fOg constructed over a compact
n-dimensional Riemannian manifold M with Ric � n � 1 is a .nC 1/-dimensional
Riemannian manifold with Ric � 0. Note, however, that the sectional curvature
might be unbounded from below (and above). Thus in general Con.M/ will not be
an Alexandrov space. Moreover, Con.M/ in general is not a manifold and, of course,
Con.M/nfOg is not complete. In particular, the Ricci curvature in the classical sense
is not defined in its singularity O.

Actually, we will prove a significantly more general result:

Theorem 2. For any real number N > 1, the CD.N � 1;N / condition for a
weighted Riemannian manifold is equivalent to the CD.0;N C 1/ condition for
the associated N -Euclidean cone.

It is an open question whether analogous assertions hold true with an arbitrary
metric measure space .M;d;m/ in the place of the weighted Riemannian manifold
M. A partial result towards this conjecture was derived by Ohta [11] for metric
measure spaces satisfying the so-called measure contraction property MCP.K;N /,
a property being slightly weaker than the curvature-dimension condition CD.K;N /.

Remark 1. If a complete separable metric measure space .M;d;m/ satisfies the
measure contraction property MCP.N�1;N / for someN � 1 and if diam.M/ � �
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(which follows from the previous condition if N 6D 1) then its N -Euclidean cone
.Con.M/;dCon;mN / satisfies the measure contraction property MCP.0;N C 1/.

As a second main result we deduce a generalized lower Ricci bound for the
spherical cone˙.M/ D M sin.r/� Œ0; �� over the compact Riemannian manifold M.
It can be defined as the quotient of the product space M � Œ0; �� obtained by
contracting all points in the fiber M � f0g to the south pole S and all points in
the fiber M � f�g to the north pole N . It is endowed with a metric d˙ defined via

cos .d˙ .p; q// D cos s cos t C sin s sin t cos .d.x; y/ ^ �/
for p D .x; s/; q D .y; t/ 2 ˙.M/ and with a measure d Omn.x; s/ WD dvol.x/ ˝
.sinn sds/.

Theorem 3. (i) The Ricci curvature of M is bounded from below by n � 1 and
diam.M/ � � if and only if the metric measure space .˙.M/;d˙ ; Omn/ satisfies
the curvature-dimension condition CD.n; nC 1/.

(ii) A weighted Riemannian manifold satisfies the curvature-dimension condition
CD.N � 1;N / for a given real number N > 1 if and only if the associated
N -spherical cone satisfies the curvature-dimension condition CD.N;N C 1/.

Note that the analogous results holds true for generalized lower bounds for the
sectional curvature.

Remark 2 (see e.g. [2], Theorem 4.7.1, 10.2.3). Let .M;d/ be a complete length
metric space with diam.M/ � � .

(i) Then .M;d/ has curvature bounded from below by 1 in the sense of Alexandrov
if and only if the Euclidean cone .Con.M/;dCon/ has nonnegative curvature in
the sense of Alexandrov.

(ii) Moreover, .M;d/ has curvature bounded from below by 1 in the sense of
Alexandrov if and only if the spherical cone .Con.M/;dCon/ has curvature
bounded from below by 1 in the sense of Alexandrov.

Note that the diameter bound is redundant if M is not one-dimensional.
Metric cones play an important role in the study of limits of Riemannian

manifolds. Assume for instance that .M;d/ is the Gromov-Hausdorff limit of a
sequence of complete n-dimensional Riemannian manifolds whose Ricci curvature
is uniformly bounded from below. Then in the non-collapsed case, every tangent
cone TxM is a metric cone Con.SxM/ with diam.SxM/ � � [4, 5]. The latter we
would expect from the diameter estimate by Bonnet-Myers if Ric � n � 2 on SxM
which in turn is consistent with the formal assertion ‘Ric � 0 on TxM’.

1.2 Basic Definitions and Notations

Throughout this paper, .M;d/ always will denote a complete separable metric space
.M;d/ and m a locally finite measure on .M;B.M// with full support. That is, for



6 K. Bacher and K.-T. Sturm

all x 2 M and all sufficiently small r > 0 the volume m.Br .x// of balls centered
at x is positive and finite. To avoid pathologies, we assume that M has more than
one point. Such a triple .M;d;m/ will henceforth called metric measure space.

The metric space .M;d/ is called a length space iff d.x; y/ D inf Length.�/ for
all x; y 2 M, where the infimum runs over all curves � in M connecting x and y.
.M;d/ is called a geodesic space if and only if every two points x; y 2 M are
connected by a curve � with d.x; y/ D Length.�/. Distance minimizing curves of
constant speed are called geodesics. The space of all geodesics � W Œ0; 1�! M will
be denoted by � .M/.
.M;d/ is called non-branching if for every tuple .z; x0; x1; x2/ of points in M

for which z is a midpoint of x0 and x1 as well as of x0 and x2, it follows that
x1 D x2. P2.M;d/ denotes the L2-Wasserstein space of probability measures � on
.M;B.M// with finite second moments which means that

R
M d2.x0; x/d�.x/ <1

for some (hence all) x0 2 M. The L2-Wasserstein distance dW.�0; �1/ between two
probability measures �0; �1 2P2.M;d/ is defined as

dW.�0; �1/ D inf

(�Z

M�M
d2.x; y/ dq.x; y/

�1=2
W q coupling of �0 and �1

)

:

Here the infimum ranges over all couplings of �0 and �1, i.e. over all probability
measures on M�M with marginals�0 and�1. Equipped with this metric, P2.M;d/
is a complete separable metric space. The subspace of m-absolutely continuous
measures is denoted by P2.M;d;m/.

Definition 1. (i) A subset � � M � M is called d2-cyclically monotone if and
only if for any k 2 N and for any family .x1; y1/; : : : ; .xk ; yk/ of points in �
the inequality

kX

iD1
d2.xi ; yi / �

kX

iD1
d2.xi ; yiC1/

holds with the convention ykC1 D y1.
(ii) Given probability measures �0; �1 on M, a probability measure q on M�M is

called optimal coupling of them iff q has marginals �0 and �1 and

d2
W.�0; �1/ D

Z

M�M
d2.x; y/ dq.x; y/:

(iii) A probability measure � on� .M/ is called optimal path measure (or dynamical
optimal transference plan) iff the probability measure .e0; e1/�� on M �M is
an optimal coupling of the probability measures .e0/�� and .e1/�� on M.

Here and in the sequel et W � .M/ ! M for t 2 Œ0; 1� denotes the evaluation map
� 7! �t . Moreover, for each measurable map f W M! M0 and each measure � on
M the push forward (or image measure) of � under f will be denoted by f��.



Ricci Bounds for Euclidean and Spherical Cones 7

From [14, Lemma 2.11], [16, Theorem 5.10] we quote:

Lemma 1. (i) For each pair �0; �1 2 P2.M;d/ there exists an optimal
coupling q.

(ii) The support of any optimal coupling q is a d2-cyclically monotone set.
(iii) If M is geodesic then for each pair �0; �1 2P2.M;d/ there exists an optimal

path measure with given initial and terminal distribution: .e0/�� D �0 and
.e1/�� D �1.

(iv) Given any optimal path measure � as above, a geodesic .�t /t2Œ0;1� in
P2.M;d/ connecting �0 and �1 is given by

�t WD .et /��:

(v) If .M;d/ is a non-branching space, then for each pair of geodesics �; � 0 in the
support of an optimal path measure we have:

�1=2 D � 0
1=2 H) � D � 0:

1.3 The Curvature-Dimension Condition

Definition 2. Given K 2 R and N 2 Œ1;1/, the condition CD.K;N / states that
for each pair �0; �1 2P2.M;d;m/ there exist an optimal coupling q of �0 D 	0m
and �1 D 	1m and a geodesic �t D 	t m in P2.M;d;m/ connecting them such
that
Z

M
	
1�1=N 0

t dm � (1)

Z

M�M

h


.1�t/
K;N 0 .d.x0; x1//	

�1=N 0

0 .x0/C 
 .t/K;N 0.d.x0; x1//	
�1=N 0

1 .x1/
i
dq.x0; x1/

for all t 2 .0; 1/ and all N 0 � N .

In the case K > 0, the volume distortion coefficients 
 .t/K;N .�/ for t 2 .0; 1/ are
defined by



.t/
K;N .�/ D t1=N �

2

6
6
4

sin

�q
K
N�1 t�

�

sin

�q
K
N�1�

�

3

7
7
5

1�1=N
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if 0 � � <
q
N�1
K
� and by 
 .t/K;N .�/ D 1 if � �

q
N�1
K
� . In the case K < 0 an

analogous definition applies with sin

�q
K
N�1 : : :

�
replaced by sinh

�q
�K
N�1 : : :

�
.

In the case K D 0 simply



.t/
0;N .�/ D t:

Therefore, the condition CD.0;N / just asserts that for each N 0 � N the Rényi
entropy

SN 0.�t jm/ WD �
Z

M
	
1�1=N 0

t dm

is convex in t 2 Œ0; 1�.
Replacing the volume distortion coefficients 


.t/
K;N .�/ by slightly smaller

coefficients � .t/K;N .�/ in the definition of CD.K;N / leads to the reduced curvature-
dimension condition CD�

.K;N /, a condition introduced and studied in [1, 7].
The definitions of the condition CD.K;N / in [15] and [8] slightly differ. We

follow the notation of [15]. For non-branching spaces, both concepts coincide. In
this case, it suffices to verify (1) for N 0 D N since this already implies (1) for all
N 0 � N . Even more, the condition (1) can be formulated as a pointwise inequality.

Lemma 2 ([8, 15, 16]). A nonbranching metric measure space .M;d;m/ satisfies
the curvature dimension condition CD.K;N / for given numbers K and N if and
only if for each pair �0; �1 2 P2.M;d;m/ there exist an optimal path measure �
with initial and terminal distributions .e0/� D �0, .e1/� D �1 such that for �-a.e.
� 2 � .M/ and all t 2 .0; 1/

	
�1=N
t .�t / � 
 .1�t/

K;N . P�/ � 	�1=N
0 .�0/C 
 .t/K;N . P�/ � 	�1=N

1 .�1/ (2)

where P� WD d.�0; �1/ and 	t denotes the Radon-Nikodym density of .et /�� with
respect to m.

Lemma 3. Assume that a metric measure space .M;d;m/ satisfies the curvature
dimension condition CD.N � 1;N / for some number N > 1.

(i) Then the diameter of M is bounded by � .
(ii) Moreover, for every x 2 M the set Mx WD fx0 2 M W d.x; x0/ D �g of antipodes

of x consists of at most one point.

Assertion (i), the ‘generalized Bonnet-Myers theorem’ was proven in [15].
Assertion (ii) is due to Ohta [10, Theorem 4.5].

Now let us have closer look on the curvature-dimension condition in the
case of weighted Riemannian spaces. Let be given a complete n-dimensional
manifold M equipped with its Riemannian distance d and with a weighted measure
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dm.x/ D e�V.x/dvolM.x/ for some function V W M ! R. Then for each real
numberN > n the N -Ricci tensor is defined as

RicN;Vx .v; v/ WD Ricx.v; v/C
�
HessV � 1

N � nrV ˝rV
�

x

.v; v/:

For N D n we define

RicN;Vx .v; v/ WD
(

Ricx.v; v/C HessVx.v; v/; if rV.v/ D 0
�1 else:

For 1 � N < n we define RicN;Vx .v; v/ WD �1 for all v ¤ 0.

Lemma 4 ([8, 15]). The weighted Riemannian space .M;d;m/ satisfies the condi-
tion CD.K;N / if and only if RicN;V � K on M in the sense that

RicN;Vx .v; v/ � K � kvk2Tx

for all x 2 M and all v 2 TxM.

2 Euclidean Cones over Metric Measure Spaces

Definition 3 (N -Euclidean cone). For a metric measure space .M;d;m/ and any
N 2 Œ1;1/, the N -Euclidean cone .Con.M/;dCon;mN / is a metric measure space
defined as follows:

(i) Con.M/ WD M � Œ0;1/ = M � f0g
(ii) For .x; s/; .x0; t/ 2 M � Œ0;1/

dCon..x; s/; .x
0; t// WD

p
s2 C t2 � 2st cos .d.x; x0/ ^ �/

(iii) dmN .x; s/ WD dm.x/˝ sN ds.

The point O WD M � f0g 2 Con.M/ is called origin of the cone.

The most prominent example in this setting is the unit sphere S
n � R

nC1,
endowed with its intrinsic Riemannian distance and with the Riemannian volume
measure on it. In other words, d.x; y/ is the Euclidean angle between the rays
from the origin 0 2 R

nC1 to the points x and y on the unit sphere of RnC1. Each

 2 R

nC1 n f0g can be uniquely written as 
 D .x; r/ with r 2 .0;1/ and x 2 S
n,

namely, r D j
j and x D �
j�j .

The definition of the metric dCon and the measure mn ensures that the
n-Euclidean cone over Sn is the Euclidean space RnC1 equipped with the Euclidean
metric and the Lebesgue measure expressed in spherical coordinates.
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O
μ0 μ1

Fig. 1 Mass transport through O

Conjecture 1. A metric measure space .M;d;m/ satisfies the curvature-dimension
condition CD.N � 1;N / for some real number N � 1 and diam.M/ � � (which
follows from the previous condition if N 6D 1) if and only if the N -Euclidean cone
.Con.M/;dCon;mN / satisfies the curvature-dimension condition CD.0;N C 1/.

Conjecture 1 is true for every weighted Riemannian space. The proof is based on
two ingredients:

(a) Optimal transports on the cone never transport mass through the origin –
provided the base space M satisfies an appropriate CD condition.

(b) Optimal transports on the punctured cone Con0.M/ satisfy the CD condition
implied by the Ricci bound for the incomplete, weighted Riemannian manifold
Con0.M/. The latter in turn is equivalent to a Ricci bound for the complete
weighted Riemannian manifold M.

Property (a) will be proven as a result of independent interest for general metric
measure spaces (Fig. 1).

Theorem 4. Assume that the metric measure space .M;d;m/ satisfies the
curvature-dimension condition CD.N � 1;N / for some N � 1 and that
diam.M/ � � (which follows from the previous condition if N 6D 1). Let � be
any optimal path measure on the Euclidean cone .Con.M/;dCon/.

(i) For every t 2 .0; 1/ there exists at most one geodesic � 2 suppŒ��with �t D O.
(ii) For every r > 0 there exists at most one x 2 M such that �0 D .x; r/ is the

initial point of some geodesic � 2 suppŒ�� \ �O where

�O WD f� 2 � .Con.M// W �t D O for some t 2 .0; 1/g:

(iii) If .e0/�� � mN then � gives no mass to geodesics through O:

� .�O/ D 0:

Proof. (i) Fix t 2 .0; 1/ and assume that two geodesics �; � 0 2 suppŒ�� have the
origin as common t-intermediate point, i.e. �t D � 0

t D O. Then �0 D .x0; t r/,
�1 D .x1; .1 � t/r/ for some x0; x1 2 M and with r D P� D dCon.�0; �1/.
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Similarly, � 0
0 D .x0

0; t r
0/, � 0

1 D .x0
1; .1� t/r 0/ for some x0

0; x
0
1 2 M and with

r 0 D P� 0. If r > 0 then x0 and x1 are antipodes of each other (i.e. d.x0; x1/ D
�). Similarly, for x0

0 and x0
1. (See e.g. Lemma 6 for a detailed proof in the more

sophisticated case of spherical cones.)
Cyclic monotonicity implies

0 � d2Con.�0; �
0
1/C d2Con.�

0
0; �1/� d2Con.�0; �1/� d2Con.�

0
0; �

0
1/:

On the other hand, a simple application of the triangle inequality yields

d2Con.�0; �
0
1/C d2Con.�

0
0; �1/ � d2Con.�0; �1/� d2Con.�

0
0; �

0
1/

� �t r C .1 � t/r 0�2 C �t r 0 C .1 � t/r�2 � r2 � r 02

D �2t.1 � t/.r � r 0/2:

Hence, r D r 0.
With this at hand, a more precise calculation yields

0 � d2Con.�0; �
0

1/C d2Con.�
0

0; �1/ � d2Con.�0; �1/ � d2Con.�
0

0; �
0

1/

D 2r2
�
t 2 C .1 � t /2 � t .1 � t / cos d.x0; x0

1/ � t .1 � t / cos d.x0

0; x1/
� � 2r2

D �2r2t.1 � t / �2C cos d.x0; x0

1/C cos d.x0

0; x1/
�
:

Thus d.x0; x0
1/ D d.x0

0; x1/ D � . That is, x0 and x0
1 are antipodes (as well as

x0
0 and x1). Since antipodes in M are unique (Lemma 3(ii)) we conclude that
x0 D x0

0 and x1 D x0
1. Thus �0 D � 0

0 and �1 D � 0
1.

In most cases of interest, geodesics are uniquely determined by their initial
and terminal points. In these case, we are done. The general case, requires an
additional argument. An optimal path measure � not only induces an optimal
coupling .e0; e1/�� between its initial and terminal distribution .e0/�� and
.e1/��. More generally, the measure .e� ; e� /�� will be an optimal coupling of
.e� /�� and .e� /�� for each 0 � � � 
 � 1. For each � 2 .0; t/ one can
choose 
 2 .t; 1/ (and vice versa) such that .et /�� is a t-intermediate point
of .e� /�� and .e� /��. Hence, the previous argument will imply that �� D � 0

�

and �� D � 0
� . This finishes the proof.

(ii) Assume �; � 0 2 suppŒ�� \ �O with �0 D .x0; r/ and � 0
0 D .x0

0; r/. The
fact that � passes through the origin implies that �1 D .x1; r1/ with x1 2 M
being an antipode of x0, i.e. d.x0; x1/ D � . Similarly, � 0

1 D .x0
1; r

0
1/

with d.x0
0; x

0
1/ D � . The radii r1; r 0

1 are arbitrary positive numbers. Cyclic
monotonicity implies
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0 � d2Con.�0; �
0
1/C d2Con.�

0
0; �1/ � d2Con.�0; �1/ � d2Con.�

0
0; �

0
1/

D r2 C r 02
1 � 2rr 0

1 cos d.x0; x0
1/C r2 C r21 � 2rr1 cos d.x0

0; x1/

�.r C r1/2 � .r C r 0
1/
2

D �2rr 0
1

�
1C cos d.x0; x0

1/
� � 2rr1

�
1C cos d.x0

0; x1/
�
:

Hence, d.x0; x0
1/ D � . That is, x0 and x0

1 are antipodes (as well as x0
0 and

x0
1, which has been observed before). Uniqueness of antipodes in M implies
x0 D x0

0.
(iii) Let us assume that �.�O/ > 0. Then without restriction we even may assume

that � is supported by �O. (Otherwise, replace � by its restriction onto the set
�O.) Since mN .O/ D 0 we may also assume that �0 6D O and �1 6D O for
�-a.e. � .

The previous part (ii) asserts that for each r > 0 there exists at most one
point x0 D f .r/ 2 M such that .f .r/; r/ is the initial point �0 of some
geodesic � 2 suppŒ�� \ �O. Thus the measure �0 WD .e0/�� is concentrated
on the set Cf WD f.f .r/; r/ 2 Con.M/ W r > 0g.

The curvature-dimension condition for the base space M implies that m has
no atoms. Hence,

mN .Cf / D 0
and therefore �0 6� mN . ut

According to the previous result, we know that – under the given curvature-
dimension assumptions – optimal path measures on an Euclidean cone never will
transport mass through the origin. It therefore suffices to study optimal transports
on the punctured cone

C0 WD Con.M/ n fOg:
To analyze such transports, we restrict ourselves to base spaces M which are
(weighted) Riemannian manifolds. Our results crucially will rely on the fact that
in this case the punctured cone C0 is a incomplete(!) Riemannian manifold and that
the Ricci curvature of it can be calculated explicitly. More precisely, the punctured
n-Euclidean cone is a Riemannian manifold whereas the punctured N -Euclidean
cone is a weighted Riemannian manifold.

Lemma 5. (i) The punctured Euclidean cone C0 is an .n C 1/-dimensional
Riemannian manifold. For .x; r/ 2 C0 with x 2 M and r > 0 the tangent space
T.x;r/C0 can be parametrized as TxM˚R with k.v; t/k2T.x;r/

D r2 kvk2Tx
Ct2.

Moreover, for .v; t/ 2 T.x;r/C0 with v 2 TxM and t 2 R we have the identity

Ric.x;r/..v; t/; .v; t// D Ricx.v; v/ � .n� 1/kvk2Tx
:

In particular, Ric � 0 on C0 if and only if Ric � n � 1 on M.
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(ii) The punctured N -Euclidean cone C0 is a weighted .nC 1/-dimensional Rie-
mannian manifold with measure dmN .x; r/D rN dr dvolM.x/D e�W.r/ dmn

.x; r/ where W.r/ D �.N � n/ log r and dmn.x; r/ D dvolC0
.x; r/ D rn dr

dvolM.x/ denotes the Riemannian volume measure on C0. For each N � n,
the .N C 1/-Ricci tensor satisfies

RicNC1;W
.x;r/

..v; t/; .v; t// D Ricx.v; v/ � .N � 1/kvk2Tx
:

In particular, RicNC1;W � 0 on C0 if and only if Ric � N � 1 on M.
(iii) More generally, let N � 1 and let the n-dimensional Riemannian manifold M

be equipped with the weighted measure dm.x/ D e�V.x/ dvolM.x/ for some
V W M! R and let the punctured cone C0 be equipped with the measure

dmN .x; r/ D rN dr dm.x/ D e�V.x/�W.r/ dvolC0
.x; r/

with (as before)W.r/ D �.N � n/ log r and dvolC0
.x; r/ D rn dr dvolM.x/.

Then

RicNC1;VCW
.x;r/

..v; t/; .v; t// D RicN;Vx .v; v/ � .N � 1/kvk2Tx
: (3)

In particular, RicNC1;VCW � 0 on C0 if and only if RicN;V � N � 1 on M.

Proof. Assertion (i) is a classical result due to Cheeger and Taylor [3, 6]. Assertion
(ii) is the particular case of (iii) with V D 0 and N � n.

(iii): For arbitrary V.x; r/ D V.x/ and W.x; r/ D W.r/ depending only on the
radial coordinate r 2 R or on the basic coordinate x 2M , respectively, we have

rW.x;r/.v; t/ D h0.0/; ŒHessW �.x;r/ ..v; t/; .v; t// D h00.0/

for all .x; r/ 2 C0 and all .v; t/ 2 T.x;r/C0 where h.s/ WD
W
�q

.r C st/2 C s2r2kvk2Tx

	
. Moreover,

ŒrV ˝rW �.x;r/ ..v; t/; .v; t// D rV x.v/ �W 0.r/ � t

for all .x; r/ 2 C0 and all .v; t/ 2 T.x;r/C0 as well as

ŒHessV �.x;r/ ..v; t/; .v; t// D f 00.0/ D ŒHessV �x .v; v/ � 2rV x.v/ �
t

r
:

Here the expressions on the LHS always have to be interpreted as quantities on
the .nC 1/-dimensional manifold C0 whereas the expressions on the RHS are the
original data on the basic n-dimensional manifold M and
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f .s/ D V
�

expx

�
v

kvkTx

� arctan
rskvkTx

r C st
��

:

For the particular choice of W.x; r/ D �.N � n/ log r , explicit calculations yield

�
HessW � 1

N � nrW ˝rW
�

.x;r/

..v; t/; .v; t// D �.N � n/ kvk2Tx
:

Hence, in the case when N > n, together with the identity from (i)

RicNC1;VCW
.x;r/

..v; t/; .v; t//

D Ric.x;r/..v; t/; .v; t//

C
�
Hess .V CW /� 1

N � nr.V CW /˝r.V CW /
�

.x;r/

..v; t/; .v; t//

D Ricx.v; v/ � .n � 1/kvk2Tx
C
�
HessV � 1

N � nrV ˝rV
�

x

.v; v/� .N � n/ kvk2Tx

D RicN;Vx .v; v/ � .N � 1/kvk2Tx
:

The case N D n follows from an analogous computation and our definition of
N -Ricci tensor. In the case N < n, by definition RicN;V as well as RicNC1;VCW
are �1. ut
Theorem 5. Let be given a complete n-dimensional manifold M equipped with its
Riemannian distance d and with a weighted measure dm.x/ D e�V.x/dvolM.x/
for some function V W M ! R. Then for each real number N > 1 the following
statements are equivalent:

(i) The weighted Riemannian space .M;d;m/ satisfies the condition CD.N �
1;N /.

(ii) The N -Euclidean cone .Con(M);dCon;mN / satisfies the condition CD.0;
N C 1/.

Proof. Each of the CD-conditions under consideration will imply that dimM � N .
Hence, without restriction N � n.
.ii/ ) .i/: The condition CD.0;N C 1/ for the N -Euclidean cone .Con.M/;

dCon;mN / implies that this condition holds locally on the punctured cone. For
this (incomplete) weighted Riemannian manifold, however, the local curvature-
dimension condition CDloc.0;N C 1/ is equivalent to nonnegativity of the .N C1/-
Ricci tensor RicNC1;VCW on C0, see Lemma 4. Due to the previous Lemma 5(iii),
this implies RicN;VM � N � 1. For the (complete) weighted Riemannian space
.M;d;m/, the latter in turn is equivalent to CD.N � 1;N /.
.i/) .ii/: Let probability measures �0 and �1 on Con.M/ be given, absolutely

continuous with respect to mN . According to Theorem 4, any optimal path
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measure � with marginal distributions .e0/�� D �0 and .e1/�� D �1 will give
no mass to geodesics through the origin. In other words, �-almost every geodesic
will stay within the punctured cone C0.

According to Lemma 5(iii), assertion (i) implies that the .N C 1/-Ricci tensor
RicNC1;VCW on the weighted Riemannian space C0 is nonnegative. Hence,
classical arguments based on Jacobi field calculus – exactly the same as used to
deduce Lemma 4 – will imply that (2) holds true with K D 0 for �-a.e. geodesic �
which remains within C0. That is, CD.0;N C 1/ holds true on Con.M/. ut
Corollary 1. Given a complete n-dimensional manifold M (equipped with its
Riemannian distance d and its Riemannian volume dm D dvolM) and a real
numberN � 1. Then the following statements are equivalent:

(i) Ric � N �1 on M, dimM � N and diam.M/ � � (the latter follows from the
Ricci and dimension bounds if N 6D 1);

(ii) The space .M;d;m/ satisfies the curvature-dimension condition CD.N�1;N /
and diam.M/ � � (which follows from the CD condition if N 6D 1);

(iii) The N -Euclidean cone .Con.M/;dCon;mN / satisfies CD.0;N C 1/.
Proof. The equivalence .i/ , .ii/ is well-known. Moreover, it is well-known that
for eachN > 1 the condition CD.N �1;N / implies diam.M/ � � . See Lemmas 3
and 4.

In the case N 6D 1, the equivalence .ii/ , .iii/ for Riemannian spaces follows
from the more general assertion of Theorem 5 for weighted Riemannian spaces.
Indeed, the arguments there also apply to the case N D 1. It only remains to prove
that (iii) in the case N D 1 implies diam.M/ � � .

Assume the contrary: i.e. M is a circle or an interval of diam.M/ > � . Then
there exist non-empty intervals I; J � M of length R > 0 such that d.x; y/ > �

for all x 2 I; y 2 J . Thus for all x 2 I; y 2 J and r 2 .0;1/ the origin O
will be the unique midpoint of .x; r/ and .y; r/ in Con.M/. Moreover, for each pair
.x; s/ 2 I � Œ1� �; 1� and .y; t/ 2 J � Œ1� �; 1� in Con.M/ the midpoint will lie in
the domain B� WD ..I [ J / � .0; ��/ [ fOg.

Let �0 and �1 be the ‘uniform distributions’ on I� WD I � Œ1 � �; 1� and let
J� WD J � Œ1 � �; 1�, resp., i.e. d�0 D C� 1I�

dmN , d�1 D C� 1J�
dmN with

suitable C� � 1
R�

. Then respectively their Renyi entropy satisfies

�SNC1.�0jmN / D �SNC1.�1jmN / D C�� 1
N C1 � .R�/ 1

N C1 D c � 1
N C1 :

On the other hand, the midpoint �1=2 of �0 and �1 is supported on B� . Hence,
its Renyi entropy is bounded from below by the Renyi entropy of the uniform
distribution on B�:

SNC1.�1=2jmN / � SNC1.C 0
� 1B�

mN jmN / D �C 0
�

� 1
N C1 D �c 0 �:

Note that C 0
�

�1 D mN .B�/ D 2R � R �
0
rN dr D 2R

NC1�
NC1. Thus, choosing �

sufficiently small we obtain
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SNC1.�1=2jmN /	 1

2
.SNC1.�0jmN /C SNC1.�1jmN //

which contradicts the CD.0;N C 1/ condition. ut
Example 1. Let M D

�
1p
3
S
2
	
�
�
1p
3
S
2
	

.

(i) Then the Euclidean cone over M – more precisely, the metric measure space
.Con.M/;dCon;m4/ – satisfies the curvature-dimension condition CD.0; 5/.

(ii) On the other hand, the Euclidean cone over M – more precisely, the metric
space .Con.M/;dCon/ – is not an Alexandrov space: the sectional curvature on
the punctured cone C0 is unbounded from below (and above) in any punctured
neighborhood of the origin 0.

Proof. (i) Given x; y 2 1p
3
S
2, let u1; u2 be an orthonormal basis of Tx. 1p

3
S
2/

and v1; v2 be an orthonormal basis of Ty. 1p
3
S
2/. Then an orthonormal basis

of T.x;y/M D Tx.
1p
3
S
2/ ˚ Ty. 1p

3
S
2/ is given by fQu1; Qu2; Qv1; Qv2g with Qui D

.ui ; 0/ and Qvi D .0; vi /. In this basis

Sec.x;y/.Qu1; Qu2/ D 3; Sec.x;y/.Qu1; Qv1/ D 0; Sec.x;y/.Qu1; Qv2/ D 0

and analogously for any other basis vector in the place of Qu1. Hence, in
particular,

Ric.x;y/.
; 
/ D 3

for each 
 2 fQu1; Qu2; Qv1; Qv2g and thus for each 
 2 T.x;y/M.
(ii) Thus according to Theorem 5 the Euclidean cone satisfies the CD.0; 5/

condition.
(iii) Given r > 0 an orthonormal basis of T.x;y;r/C0 D Tx. 1p3S2/˚Ty. 1p3S2/˚R

is given by fOu1; Ou2; Ov1; Ov2; Owg with Oui D 1
r
.ui ; 0; 0/, Ovi D 1

r
.0; vi ; 0/ and Ow D

.0; 0; 1/. In this basis

Sec.x;y;r/.Ou1; Ou2/ D 2

r2
; Sec.x;y;r/.Ou1; Ov1/ D � 1

r2
;

Sec.x;y;r/.Ou1; Ov2/ D � 1
r2
; Sec.x;y;r/.Ou1; Ow/ D 0

(4)

and analogously for Qu2; Qv1 or Qv2 in the place of Qu1. Of course, this in particular
implies Ric.x;y;r/.
; 
/ D 0 for each 
 2 T.x;y;r/C0, see Lemma 5. ut
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3 Spherical Cones over Metric Measure Spaces

There are further objects with famous Euclidean ancestors – among them is the
spherical cone or suspension over a topological space M. We begin with a familiar
example: In order to construct the Euclidean sphere S

nC1 out of its equator Sn we
add two poles S and N and connect them via semicircles, the meridians, through
every point in S

n.
In the general case of abstract spaces M, we consider the product M � Œ0; �� and

contract each of the fibers S WD M � f0g and S WD M � f�g to a point, the south
and the north pole, respectively. The resulting space is denoted by ˙.M/ and is
called the spherical cone over M.

Definition 4 (N -spherical cone). The N -spherical cone .˙.M/;d˙ ; OmN / over a
metric measure space .M;d;m/ is the metric measure space defined as follows:

(i) ˙.M/ WD M � Œ0; ��
.

M � f0g;M � f�g
(ii) For .x; s/; .x0; t/ 2 M � Œ0; ��

cos


d˙ ..x; s/; .x0; t//

� WD cos s cos t C sin s sin t cos


d.x; x0/ ^ ��

(iii) d OmN .x; s/ WD dm.x/˝ .sinN sds/.

For a nice introduction and detailed information about Euclidean and spherical
cones over metric spaces we refer to [2].

Lemma 6. Assume that diam.M/ � � . Let � W Œ0; 1� ! ˙.M/ be a non-constant
geodesic with endpoints �0 D .x0; r0/ and �1 D .x1; r1/ in ˙.M/. If �t D S for
some t 2 .0; 1/, then x0 and x1 are antipodes in M.

Proof. Due to the definition of d˙ , it holds that r0 D d˙ .�0; �t / D td˙ .�0; �1/
as well as r1 D d˙ .�t ; �1/ D .1 � t/d˙ .�0; �1/ and consequently, r1 D 1�t

t
r0.

Inserting this equality into the expression for cos


r0
t

�
we obtain

cos


r0
t

� D cos .d˙.�0; �1// D cos r0 cos


1�t
t
r0
�C sin r0 sin



1�t
t
r0
�

cos .d.x0; x1// :

Since diam.M/ � � by assumption, this leads to

cos.d.x0; x1// D cos


r0
t

�� cos r0 cos


1�t
t
r0
�

sin r0 sin


1�t
t
r0
�

D cos


r0
t

�� 1
2

�
cos



2t�1
t
r0
�C cos



r0
t

��

1
2

�
cos



2t�1
t
r0
� � cos



r0
t

��

D
1
2

�
cos



r0
t

� � cos


2t�1
t
r0
��

1
2

�
cos



2t�1
t
r0
� � cos



r0
t

�� D �1:

That is, d.x0; x1/ D � . ut
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Theorem 6. Assume that the metric measure space .M;d;m/ satisfies the
curvature-dimension condition CD.N � 1;N / for some N � 1 and that
diam.M/ � � (which follows from the previous condition if N 6D 1). Let � be any
optimal path measure on the spherical cone .˙.M/;d˙ / satisfying .e0/�� � mN .
Then � gives no mass to geodesics through the poles:

� .�S / D � .�N / D 0

where �S WD f� 2 � .˙.M// W �t 2 S for some t 2 .0; 1/g and analogously �N

with N in the place of S .

Proof. We follow the argumentation in the proof of assertion (iii) of Theorem 4.
Assume that �.�S / > 0. Then without restriction we even may assume that
�.�S / D 1. According to Lemma 7 below, for each r 2 .0; �/ there exists at
most one point f .r/ 2 M such that .f .r/; r/ 2 ˙.M/ is the initial point �0
of some geodesic � 2 suppŒ��. Hence, �0 WD .e0/�� is concentrated on the set
Cf WD f.f .r/; r/ 2 ˙.M/ W r 2 .0; �/g.

The curvature-dimension condition for .M;d;m/ implies that m has no atoms
and thus

OmN .Cf / D 0

which contradicts the assumption �0 � OmN . Hence, �.�S / D 0. Analogously, we
deduce �.�N / D 0. ut
Lemma 7. Under the assumptions of the previous theorem, for every r 2 .0; �/
there exists at most one x 2M such that �0 D .x; r/ 2 ˙.M/ is the initial point of
some geodesic � 2 suppŒ�� \ �S .

Proof. Assume �; � 0 2 suppŒ�� \ �S with �0 D .x0; r/ and � 0
0 D .x0

0; r/.
According to Lemma 6, the fact that � passes through the south pole implies
that �1 D .x1; r1/ with x1 2 M being an antipode of x0, i.e. d.x0; x1/ D � .
Similarly, � 0

1 D .x0
1; r

0
1/ with d.x0

0; x
0
1/ D � . The radii r1; r 0

1 are arbitrary numbers
in .0; �/.

By the very definition of d˙ , taking into account that the diameter of M is
bounded by � ,

d2˙ .�0; �
0

1/C d2˙ .�
0

0; �1/

D arccos2
�
cos r � cos r 0

1 C sin r � sin r 0

1 � cos d.x0; x0

1/
�

C arccos2
�
cos r � cos r1 C sin r � sin r1 � cos d.x0

0; x1/
�

.�/� arccos2
�
cos r � cos r 0

1 � sin r � sin r 0

1

�C arccos2 Œcos r � cos r1 � sin r � sin r1�

D .r C r 0

1/
2 C .r C r1/2 D d2˙.�

0

0; �
0

1/C d2˙ .�0; �1/
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with equality in .
/ if and only if d.x0; x0
1/ D d.x0

0; x1/ D � , that is, if and only
if x0 and x0

1 are antipodes and x0
0 and x1 are antipodes. Therefore, d2˙ -cyclical

monotonicity implies x0 D x0
0. ut

From now on, let us again focus on weighted Riemannian spaces, that is, M is
a complete, n-dimensional manifold equipped with its Riemannian distance d and
with a measure dm.x/ D e�V.x/dvolM .x/. A crucial fact for our argumentation
is that the punctured cone ˙0 WD ˙.M/ n fS ;N g is given as a warped product
M sin.r/� .0; �/ for which the Ricci curvature can be calculated explicitly.

Lemma 8. (i) The punctured spherical cone ˙0 is an incomplete .nC 1/-dimen-
sional Riemannian manifold whose tangent space T.x;r/˙0 at .x; r/ 2 ˙0 with
x 2 M and 0 < r < � can be parametrized as T.x;r/˙0 D TxM ˚ R and
whose metric tensor is given by k.v; t/k2T.x;r/

D sin2 r � kvk2Tx
C t2 for .v; t/ 2

T.x;r/˙0. Furthermore, we have the equality

Ric.x;r/..v; t/; .v; t// D Ricx.v; v/C .1 � n cos2 r/ � kvk2Tx
C n t2:

In particular, Ric � n on ˙0 if and only if Ric � n � 1 on M.
(ii) Now let us consider the punctured N -spherical cone over the weighted

Riemannian manifold M. That is, given any real N > 1 put W.x; r/ D
�.N � n/ log sin r and V.x; r/ D V.x/. Then

RicNC1;VCW
.x;r/

..v; t/; .v; t//�N k.v; t/k2Tx;r
D RicN;Vx .v; v/�.N�1/kvk2Tx

:

(5)

In particular, RicNC1;VCW � N on ˙0 if and only if RicN;V � N � 1 on M.

Proof. The formula for the Ricci tensor in (i) is well-known, see [12],
Corollary 7.43, or e.g. [13]. Note that

Ric.x;t/..v; t/; .v; t// �Ricx.v; v/ D .1 � n cos2 r/ � kvk2Tx
C n t2

D n k.v; t/k2T.x;r/
� .n � 1/ kvk2Tx

:

The proof of assertion (ii) follows the lines of argumentation in the previous case
of Euclidean cones – with appropriate modifications. For arbitrary V.x; r/ D V.x/
and W.x; r/ D W.r/ as above (depending only on the radial coordinate r 2 R or
on the basic coordinate x 2M , respectively) we have as before

ŒrV ˝rW �.x;r/ ..v; t/; .v; t// D rV x.v/ �W 0.r/ � t

for all .x; r/ 2 ˙0 and all .v; t/ 2 T.x;r/˙0 and

rW.x;r/.v; t/ D h0.0/; ŒHessW �.x;r/ ..v; t/; .v; t// D h00.0/
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where now

h.s/ WD W .arccos Œcos.r C st/ � cos.s � sin r � kvkTx
/�/ :

Moreover,

ŒHessV �.x;r/ ..v; t/; .v; t// D f 00.0/ D ŒHessV �x .v; v/ � 2rV x.v/ � cot.r/ � t

where

f .s/ D V
�

expx

�
v

kvkTx

� arctan
tan.sin.r/ � skvkTx

/

sin.r C st/
��

:

For the particular choice of W.x; r/ D �.N � n/ log sin.r/, some lengthy
calculation yields

�
HessW � 1

N � n
rW ˝ rW

�

.x;r/

..v; t/; .v; t// D .N � n/
�
t 2 � cos2.r/ kvk2Tx

�

D .N � n/
h
k.v; t/k2T.x;r/ � kvk2Tx

i
:

Hence, together with the identity from (i)

RicNC1;VCW
.x;r/ ..v; t/; .v; t//

D Ric.x;r/..v; t/; .v; t//

C
�

Hess .V CW / � 1

N � nr.V CW /˝r.V CW /
�

.x;r/

..v; t/; .v; t//

D Ricx.v; v/C n k.v; t/k2T.x;r/ � .n � 1/kvk2Tx

C
�

HessV � 1

N � nrV ˝rV
�

x

.v; v/C .N � n/
h
k.v; t/k2T.x;r/ � kvk2Tx

i

D RicN;Vx .v; v/ � .N � 1/kvk2Tx CN k.v; t/k2T.x;r/ : ut

Theorem 7. Let be given a complete n-dimensional manifold M equipped with its
Riemannian distance d and with a weighted measure dm.x/ D e�V.x/dvolM.x/
for some function V W M ! R. Then for each real number N � 1 the following
statements are equivalent:

(i) The weighted Riemannian space .M;d;m/ has diam.M/ � � and satisfies the
condition CD.N � 1;N /.

(ii) The N -spherical cone .˙.M/;d˙ ;mN / satisfies the condition CD.N;N C 1/.
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Proof. This is essentially the same argumentation as in the proof of Theorem 5, now
with Lemma 8 instead of Lemma 5. Again we may assume without restriction that
N � n.
.i/ ) .ii/: Let probability measures �0 and �1 on ˙.M/ be given, absolutely

continuous with respect to OmN . According to Theorem 6, any optimal path
measure � with marginal distributions .e0/�� D �0 and .e1/�� D �1 will give
no mass to geodesics through the poles. In other words, �-almost every geodesic
will stay within the punctured cone ˙0.

According to Lemma 8, assertion (i) implies that the .N C 1/-Ricci tensor
RicNC1;VCW on the weighted Riemannian space˙0 is bounded from below by N .
Hence, classical arguments based on Jacobi field calculus – exactly the same as
used to deduce Lemma 4 – will imply that (2) holds true with K D N for �-a.e.
geodesic � which remains within ˙0. That is, CD.N;N C 1/ holds true on ˙.M/.
.ii/ ) .i/: First the curvature-dimension condition CD.N;N C 1/ for the

N -spherical cone .˙.M/;d˙ ; OmN / implies that this condition holds locally on the
punctured cone˙0. For this (incomplete) weighted Riemannian manifold, however,
the local curvature-dimension condition CDloc.N;N C1/ is equivalent to the bound
RicNC1;VCW � N for the .N C 1/-Ricci tensor on ˙0, see Lemma 4. Due to
Lemma 8, this implies RicN;VM � N � 1. For the (complete) weighted Riemannian
space .M;d;m/, the latter in turn is equivalent to CD.N � 1;N /.

Finally, in the caseN D 1 it remains to prove that (ii) implies the diameter bound
diam.M/ � � . This can be achieved by means of a straightforward adaptation of
the argument from the proof of Corollary 1. ut
Corollary 2. The n-spherical cone .˙.M/;d˙ ; �/ over a complete n-dimensional
Riemannian manifold .M;d; vol/ satisfies CD.n; nC 1/ if and only if Ric � n � 1
on M and diam.M/ � � .

Theorem 7 allows to apply the Lichnerowicz theorem [8] in order to obtain a
lower bound on the spectral gap of the Laplacian on the spherical cone:

Corollary 3 (Lichnerowicz estimate, Poincaré inequality). Let .˙.M/;d˙ ; Omn/

be the n-spherical cone of a compact n-dimensional Riemannian manifold
.M;d; vol/ with Ric � n � 1 and diam.M/ � � . Then for every f 2 Lip.˙.M//
fulfilling

R
˙.M/ f d Omn D 0 the following inequality holds true:

Z

˙.M/
f 2d Omn � 1

nC1
Z

˙.M/
jrf j2d Omn:

The Lichnerowicz estimate implies that the Laplacian � on the spherical cone
.˙.M/;d˙ ; Omn/ defined by the identity

Z

˙.M/
f ��g d Omn D �

Z

˙.M/
rf � rg d Omn

admits a spectral gap �1 of size at least nC 1,
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�1 � nC 1:

An analogous statement – with N in the place of n – holds true for the Laplacian
on the N -spherical cone over a weighted n-dimensional Riemannian manifold
satisfying RicN;V � N � 1.

Extension to .�; N/-Cones

Let us finally mention that there is a canonical extension of the concept of cones
which covers both, the Euclidean cones and the spherical cones.

Definition 5. Given a metric measure space .M;d;m/ and numbers � 2R; N 2
.0;1/ we define the .�;N /-cone over .M;d;m/ to be the metric measure space
.M;d;m/ with

(i) M WD M � Œ0;1/ if � � 0 and M WD M � Œ0; �=p�� if � > 0 where all the
points .x; 0/, x 2 M , have to be identified as well as – in the case � > 0 – all
the points .x; �=

p
�/.

(ii) For .x; s/; .y; t/ 2 M

d..x; s/; .y; t// WD C �1
� .C�.s/ � C�.t/C � �S�.s/ �S�.t/ � cos .d.x; y/ ^ �//

(6)

where

C�.r/ D cos.
p
� r/; S�.r/ D 1p

�
sin.
p
� r/ if � > 0 and

C�.r/ D cosh.
p�� r/; S�.r/ D 1p�� sinh.

p�� r/ if � < 0:

In the case � D 0, the metric d will be defined as in Definition 3. Indeed, the
formula (6) leads in the limit � ! 0 to the definition of dCon.

(iii) dm.x; s/ WD dm.x/˝ .S�.s/
N ds/.

The metric space .M;d/ obtained as such a cone over a metric space .M;d/
is discussed in detail in [2]. In the case � D 0 it is simply the Euclidean cone
and in the case � D 1 it is the spherical cone. In the case � D �1, the cone is
also called hyperbolic cone based on .M;d/. Without too much effort, our previous
results extend to the general case of .�;N /-cones over weighted Riemannian spaces
.M;d;m/. Indeed, the case � > 0 is just a rescaling of the case � D 1. Replacing
all sin and cos by sinh and cosh (e.g. in Lemma 8) allows to switch from the case
� > 0 to the case � < 0.
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Theorem 8. Given a complete n-dimensional manifold M equipped with its
Riemannian distance d and with a weighted measure dm.x/ D e�V.x/dvolM.x/
for some function V W M ! R. Then for all � 2 R and N � 1 the following
statements are equivalent:

(i) The weighted Riemannian space .M;d;m/ has diam.M/ � � and satisfies the
condition CD.N � 1;N /.

(ii) The .�;N /-cone .M;d;m/ satisfies the condition CD.� �N;N C 1/.
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A Monotone Approximation to the Wasserstein
Diffusion

Karl-Theodor Sturm

1 Introduction and Statement of the Main Results

The Wasserstein space P.M/ on an Euclidean or Riemannian space M – i.e. the
space of probability measures on M equipped with the L2-Wasserstein distance
dW – offers a rich geometric structure. This allows to develop a far reaching
first order calculus, with striking applications for instance to the reformulation of
conservative PDEs on M as gradient flows of suitable functionals on P.M/, see
e.g. [1, 7, 11]. A second order calculus was developed in [12] in the particular case
of a one-dimensional state space, say M D Œ0; 1�, based on the construction of a
canonical Dirichlet form

EP.u; v/ D
Z

P
hDu.�/;Dv.�/i2

L2.�/
dPˇ .�/ (1)

with domain DP � L2.P;Pˇ /. HereDu denotes the Wasserstein gradient and P
ˇ

a suitable measure (“entropic measure”). Among others, this leads to a canonical
second order differential operator and to a canonical continuous Markov process
.�t /t�0, called Wasserstein diffusion.

The goal of this paper is to derive approximations of these objects – Dirichlet
form, semigroup, continuous Markov process – on the infinite dimensional space
P WD P.Œ0; 1�/ in terms of appropriate objects on finite dimensional spaces. In
particular, we will approximate the Wasserstein diffusion in terms of interacting
systems of Brownian motions.
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For each k 2 N we consider the strongly local, regular Dirichlet form .Ek;Dk/

on L2.Rk; 	ˇ
k
dx/ defined on its core C 1.Rk/ by

Ek.U; V / D k
Z

Rk

rU.x/ � rV.x/ 	ˇ
k
.x/ dx: (2)

The density

	
ˇ

k
.x1; : : : ; xk/ D � .ˇ/eˇˇk

Œk� .ˇ=k/�k

�
Z xk

xk�1

: : :

Z x2

x1

kY

iD1

"Z xi �yi�1
yi �yi�1

0

�
xi � yi�1
yi � yi�1 � zi

�ˇ=k�1
� z�ziˇ=k
i

�.1 � zi /
�.1�zi /ˇ=k � .yi � yi�1/ˇ=k�2

�
�

cos.�ziˇ=k/� 1
�

sin.�ziˇ=k/ � log
zi

1 � zi

�
d zi

�
dy1 : : : dyk�1

(where y0 WD 0; yk WD 1) is continuous, positive and bounded from above by

C � Œx1.1 � xk/�ˇ=.2k/�1 �
kY

iD2
.xi � xi�1/ˇ=k�1

on the simplex ˙k WD f.x1; : : : ; xk/ W 0 < x1 < : : : < xk < 1g � R
k and vanishes

on R
k n˙k .

The strong Markov process .Xkt /t�0 D
�
X
k;1
t ; : : : ; X

k;k
t

	

t�0 associated with

the Dirichlet form .Ek;Dk/ is continuous, reversible and recurrent. At least on those
stochastic intervals for which Xkt .!/ 2 ˙k , it can be characterized as the solution
to an interacting system of stochastic differential equations

dXk;it D k
@ log 	ˇ

k

@xi

�
Xkt

	
dtC
p
2k dWi

t ; i D 1; : : : ; k (3)

for some k-dimensional Brownian motion .Wt /t�0.
In many respects, an alternative representation for (1) is more convenient. The

map � W g 7! g�LebjŒ0;1� establishes an isometry between the set G of right
continuous increasing functions g W Œ0; 1/! Œ0; 1� and P . Here G will be regarded
as a convex subset of the Hilbert space L2.Œ0; 1�;Leb/. The image of the form (1)
under the map ��1 WP ! G is given by the form .E;D/ on L2.G ;Qˇ / with

E.u; v/ D
Z

G

hDu.g/;Dv.g/i dQˇ .g/ (4)
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where Du denotes the Frechet derivative for “smooth” functions u W G ! R and Q
ˇ

is the well-known Dirichlet-Ferguson process with parameter measure ˇ � LebjŒ0;1�.
Theorem 1. (i) For each k 2 N the Dirichlet form .Ek;Dk/ on L2.Rk; 	ˇ

k
dx/

is isomorphic to a restriction .E;Dk/ of the Dirichlet form .E;D/ on the space
L2.L2.Œ0; 1�;Leb/;Qˇ /. The isomorphism is induced by the embedding

� W x 7!
kX

iD1
xi � 1Œ i�1

k
; i

k
/

of Rk into L2.Œ0; 1�;Leb/ (and of ˙k into G ).
(ii) The semigroup T

k
t associated with .E;Dk/ is given explicitly in terms of the

semigroup T kt of the Dirichlet form .Ek;Dk/. If g D �.x/ for some x 2 R
k

then

T
k
t u.g/ D T kt U.x/

with U WD u ı �:
(iii) The strong Markov process .gkt /t�0 on G associated with .E;Dk/ is given by

gkt D
kX

iD1
X
k;i
t � 1Œ i�1

k
; i

k
/

if g0 D �.x0/ and if .Xkt /t�0 denotes the Markov process on R
k associated

with .Ek;Dk/ with initial condition Xk0 D x0.
(iv) A strong Markov process .�kt /t�0 on P (not necessarily normal) is defined by

�kt .!/ D
�
gkt .!/

	

� LebjŒ0;1� D 1

k

kX

iD1
ı
X

k;i
t .!/

that is, as the empirical distribution of the process .Xkt /t�0. It is continuous,

recurrent and reversible with invariant distribution P
ˇ

k
D .�P/�mˇk obtained

as push forward of the measure mˇ
k
.dx/ D 	ˇ

k
.x/dx under the embedding

�P W ˙k !P; x 7! 1

k

kX

iD1
xi :

Theorem 2. (i) The domains D2k are increasing in k 2 N with D D [kD2k .
Therefore,

.E;D2k /! .E;D/ in the sense of Mosco
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and, hence, for the associated semigroups and resolvents

T
2k

t ! Tt ; G
2k

˛ ! G˛ strongly in L2.G ;Qˇ / as k !1: (5)

(ii) For the associated Markov processes on P starting from the respective
invariant distributions we obtain convergence

.�2
k

t /t�0! .�t /t�0 as k !1 (6)

in distribution weakly on C .RC;P/.

A closely related approximation result has been presented by Andres and von
Renesse [2]. Their finite dimensional objects are more explicit; the convergence
issues in their approximation, however, are quite delicate.

2 Dirichlet-Ferguson Process, Entropic Measure
and Wasserstein Diffusion

2.1 The Dirichlet-Ferguson Process

Let G denote the space of all right continuous nondecreasing maps g W Œ0; 1� !
Œ0; 1� with g.1/ D 1. We will regard G as a convex subset of the Hilbert
space L2.Œ0; 1�;Leb/. The scalar product in L2.Œ0; 1�;Leb/ will always be denoted
by h:; :i.
Proposition 1 ([4]). For each real number ˇ > 0 there exists a unique probability
measure Q

ˇ on G , called Dirichlet-Ferguson process, with the property that for
each k 2 N and each family 0 D t0 < t1 < t2 < : : : < tk�1 < tk D 1

Q
ˇ


gt1 2 dx1; : : : ; gtk�1

2 dxk�1
�

D � .ˇ/
Qk
iD1 � .ˇ � .ti � ti�1//

kY

iD1
.xi � xi�1/ˇ �.ti �ti�1/�1dx1 : : : dxk�1

(7)

with the convention x0 D 0 and xk D 1.

The Dirichlet-Ferguson process can be identified with the normalized distribution
of the standard Gamma process .�t /t�0: For each ˇ > 0, the law of the process
.
	t �ˇ

	ˇ
/t2Œ0;1� is the Dirichlet-Ferguson process Qˇ .

Recall that a right continuous, real valued Markov process .�t /t�0 starting in
zero is called standard Gamma process if its increments �t ��s are independent and
distributed for 0 � s < t according to Gt�s.dx/ D 1


 .t�s/1Œ0;1/.x/x
t�s�1e�xdx.

In [12] as well as in [13] a change of variable formula (under composition) has
been derived for the Dirichlet-Ferguson process.
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2.2 The Dirichlet Form on G

Let C1.G / denote the set of all (‘cylinder’) functions u W G ! R which can be
written as u.g/ D U .hg; 1i; : : : ; hg; ni/ with n 2 N, U 2 C 1.Rn;R/ and
 1; : : : ;  n 2 L2.Œ0; 1�;Leb/. For u of this form the gradient

Du.g/ D
nX

iD1
@iU .hg; 1i; : : : ; hg; ni/ �  i .:/

exists in L2.Œ0; 1�;Leb/ and

kDu.g/k2 D
Z 1

0

ˇ
ˇ
ˇ
ˇ̌
nX

iD1
@iU .hg; 1i; : : : ; hg; ni/ �  i .s/

ˇ
ˇ
ˇ
ˇ̌

2

ds:

For u; v 2 C1.G / we define the Dirichlet integral

E.u; v/ D
Z

G

hDu.g/;Dv.g/i dQˇ .g/: (8)

Theorem 3 ([12] Theorems 7.5, 7.8, [3]).

(i) .E;C1.G // is closable. Its closure .E;D/ is a regular, strongly local, recurrent
Dirichlet form on L2.G ;Qˇ /.

(ii) The associated Markov process .gt /t�0 on G is continuous, reversible and
recurrent.

(iii) The Dirichlet form .E;D/ satisfies a logarithmic Sobolev inequality with
constant 1

ˇ
.

2.3 The Dirichlet Form on the Wasserstein Space

Let P D P.Œ0; 1�/ denote the space of probability measures on the unit interval
Œ0; 1�. The map � W G ! P; g 7! g�LebjŒ0;1� establishes a bijection between G
and P . The inverse map ��1 W P ! G ; � 7! g� assigns to each probability
measure � 2P its inverse distribution function defined by

g�.t/ WD inffs 2 Œ0; 1� W �Œ0; s� > tg

with inf; WD 1. TheL2-Wasserstein distance on P is characterized by dW .�; �/ D
kg� � g�kL2 for all �; � 2P .

The entropic measure P
ˇ on P D P.Œ0; 1�/ is defined as the push forward of

the Dirichlet process Qˇ on G under the map �.
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Corollary 1 ([12] Theorem 7.17). The image of the Dirichlet form defined above
under the map � is the regular, strongly local, recurrent Dirichlet form EP on
L2.P;Pˇ /, defined on its core Z1.P/ by

EP.u; v/ D
Z

P
hDu.�/;Dv.�/i2

L2.�/
dPˇ .�/: (9)

The associated Markov process .�t /t�0 on P , called Wasserstein diffusion, is
given by

�
.!/
t D .g.!/t /�LebjŒ0;1�:

Here Z1.P/ denotes the set of all functions u W P ! R which can be written

as u.�/ D U
�R 1
0
�1d�; : : : ;

R 1
0
�nd�

	
with some n 2 N, some U 2 C 1.Rn/ and

some �1; : : : ; �n 2 C 1.Œ0; 1�/. For u as above we define its ‘Wasserstein gradient’
Du.�/ 2 L2.Œ0; 1�; �/ by

Du.�/ D
nX

iD1
@iU.

R
�1d�; : : : ;

R
�nd�/ � � 0

i .:/

with norm

kDu.�/kL2.�/ D
2

4
Z 1

0

ˇ
ˇ
ˇ
ˇ̌
nX

iD1
@iU.

R
�1d�; : : : ;

R
�nd�/ � � 0

i

ˇ
ˇ
ˇ
ˇ̌

2

d�

3

5

1=2

:

Recall that the tangent space at a given point � 2 P can be identified with
L2.Œ0; 1�; �/.

The analogue to (9) on multidimensional spaces has been constructed in [10].

3 The Distribution of Random Means

Letmˇ1 D ��Pˇ denote the distribution of the random variable � W � 7! R 1
0
x d�.x/

which assigns to each probability measure� 2P its mean value (random means of
the random probability measure P

ˇ ). Actually, mˇ1 coincides with the distribution

of the random means of the random probability measure Q
ˇ , that is, mˇ1 D Q��Qˇ

where Q� W g 7! R 1
0
t dg.t/ assigns to each function g 2 G the mean value of the

probability measure dg.
Indeed, integration by parts yields

R 1
0
t dg.t/ D R 1

0
.1 � g.t// dt D R 1

0
.1 � x/

d�.x/ for � D g�Leb. Due to the symmetry of the entropic measure under the
transformation x 7! 1 � x the distribution of

R 1
0
.1 � x/d�.x/ coincides with mˇ1 .
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Fig. 1 Graph of #ˇ.x/ for ˇ D 1
2

(in blue) and 1
8

(in red). The dashed lines represent the graph

of Q#.x/ D Œe � x.1� x/�ˇ

The law of the random means of the Dirichlet-Ferguson process is a well studied
quantity, see e.g. [6]. Let �ˇ be the distribution function of mˇ1 . For simplicity, we
will restrict ourselves in this section to the case ˇ 2 .0; 1/. The following result can
be found e.g. in [9], Propositions 8 and 3.

Lemma 1. �ˇ admits the following representations

�ˇ .x/ D 1

2
C 1

�

Z 1

0

exp

�
�ˇ
2

Z 1

0

log
�
1C t2.x � y/2� dy

�

� sin

�
ˇ

Z 1

0

arctan Œt.x � y/� dy
�

dt

t

and

�ˇ .x/ D eˇ

�

Z x

0

.x � y/ˇ�1 � y�ˇy � .1 � y/�ˇ.1�y/ � sin.�ˇy/ dy:

Proposition 2. The measuremˇ1 is absolutely continuous with density #ˇ D .�ˇ /0
given by (Fig. 1)

#ˇ .x/ D ˇeˇ
Z x

0

.x � y/ˇ�1 � y�ˇy � .1 � y/�ˇ.1�y/

�
�

cos.�ˇy/ � 1

�
sin.�ˇy/ � log

y

1 � y
�
dy:

(10)
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Proof. The proof requires some care since we are interested in the case ˇ < 1. Put

�.y/ D eˇ

ˇ�
� y�ˇy � .1 � y/�ˇ.1�y/ � sin.�ˇy/

in order to obtain

�ˇ .x/ D ˇ
Z x

0

.x � y/ˇ�1 � �.y/ dy D ˇ
Z x

0

yˇ�1 � �.x � y/ dy:

Differentiating the latter yields (since �.x � y/& 0 for y % x)

#ˇ .x/ D ˇ
Z x

0

yˇ�1 � �0.x � y/ dy D ˇ
Z x

0

.x � y/ˇ�1 � �0.y/ dy:

Moreover, calculating �0 gives

�0.y/ D eˇ � y�ˇy � .1 � y/�ˇ.1�y/ �
�

cos.�ˇy/ � 1

�
sin.�ˇy/ � log

y

1 � y
�
:

This proves the claim. ut
Proposition 3. The density # W Œ0; 1�! R has the following properties

(i) # is symmetric, i.e. #.x/ D #.1 � x/;
(ii) # is continuous on Œ0; 1� and C 1 on .0; 1/;

(iii) # > 0 on .0; 1/ and #.0/ D #.1/ D 0;
(iv) #.x/= Q#.x/! 1 as x ! 0 or x ! 1 for Q#.x/ WD Œe � x.1 � x/�ˇ ;
(v) 9 C � c > 0, e.g. c D cos.�ˇ=2/ and C D 4ˇ Œ1C ˇ=e�, s.t. for all x 2 Œ0; 1�

c Q#.x/ � #.x/ � C Q#.x/: (11)

Proof. (i) Is proven in [9], Proposition 6. It also follows immediately from
formula (12).

(ii) The smoothness inside .0; 1/ follows from the representation formula in the
previous Proposition. Continuity at the boundary is a consequence of the
estimates in (iv).

(iii) Is a consequence of (v).
(iv) Using the notations from the proof of the previous Proposition and the fact that

�0.y/! eˇ as y ! 0 we obtain

#.x/

.e � x/ˇ D
ˇ

.e � x/ˇ
Z x

0

.x�y/ˇ�1 ��0.y/ dy ! ˇ

xˇ

Z x

0

.x�y/ˇ�1 dy D 1

as x ! 0. Combined with the symmetry (i) this proves the claim.
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Fig. 2 Graph of ˚.i/

k .t /

(v) A lower estimate of the form

#.x/ � .e � x/ˇ � cos.�ˇ=2/

for x � 1=2 follows from the estimate �0.y/ � eˇ � cos.�ˇ=2/, which is valid
for all y � 1=2. On the other hand, the estimate

�0.y/ � .2e/ˇ �
�

cos.�ˇy/ � 1

�
sin.�ˇy/ � log

y

1 � y
�
� .2e/ˇ �

�
1C ˇ

e

�
;

again valid for y � 1=2, implies

#.x/ � .2ex/ˇ �
�
1C ˇ

e

�

for all x � 1=2. Due to the symmetry of # this proves the claim. ut

Remark 1. For all x 2 .0; 1/
(i) �ˇ .x/! x and #ˇ .x/! 1 as ˇ! 0

(ii) �ˇ .x/! 1
2
� 1f 1

2
g.x/C 1. 1

2
;1�.x/ as ˇ!1.

4 The Measure m
ˇ

k
in the Multivariate Case

From a technical point of view, the main result of this paper is the identification of
the distribution of the random vector

OJk.g/ D
�Z 1

0

˚
.1/

k
dg; : : : ;

Z 1

0

˚
.k/

k
dg

�
(12)

under Qˇ where (Fig. 2)
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˚
.i/

k
.t/ WD

8
<

:

1; for t 2 Œ0; i�1
k
�

i � kt; for t 2 Œ i�1
k
; i
k
�

0; for t 2 Œ i
k
; 1�:

(13)

Note that integration by parts yields

Z 1

0

˚
.i/

k
.t/dg.t/ D k

Z i
k

i�1
k

g.t/dt

for all i D 1; : : : ; k and all g 2 G . Put

m
ˇ

k
WD
� OJk

	

� Q
ˇ :

Theorem 4. For any ˇ > 0 and k 2 N, k � ˇ, the measuremˇ
k

on R
k is absolutely

continuous. The density is strictly positive and continuous on the simplex

˙k WD f.x1; : : : ; xk/ W 0 < x1 < : : : < xk < 1g � R
k

and vanishes on R
k n˙k . For x 2 ˙k it is given by

	
ˇ
k
.x1; : : : ; xk/ (14)

D � .ˇ/

� .ˇ=k/k

Z xk

xk�1

: : :

Z x2

x1

kY

iD1

�
#ˇ=k

�
xi � yi�1
yi � yi�1

�
� .yi � yi�1/ˇ=k�2

�
dy1 : : : dyk�1

(where y0 WD 0; yk WD 1) with #ˇ as defined in (10).

Proof. Let us start with the simple observation that

Z 1

0

˚
.i/

k
dg D g

�
i � 1
k

�
C
�
g

�
i

k

�
� g

�
i � 1
k

��
�
Z 1

0

.1 � t/d Qgi .t/

with

Qgi .t/ WD
g


tCi�1
k

� � g 
 i�1
k

�

g


i
k

� � g 
 i�1
k

� :

Now the crucial fact is that, conditioned on
�
g


1
k

�
; : : : ; g

�
k�1
k

		
, the processes

. Qgi .t//t2Œ0;1� for i D 1; : : : ; k are independent and distributed according to
Q
ˇ=k . (This can be deduced from the explicit representation formula for the finite

dimensional distributions (7), see also [12], Proposition 3.15) (Fig. 3).
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Fig. 3 Picture of the transformation Qg.t/ D g.r C t .s � r//� g.r/

g.s/� g.r/

Moreover, according to Proposition 2 the distribution of
R 1
0
.1 � t/d Qgi .t/ for

Q
ˇ=k-distributed . Qgi .t//t2Œ0;1� is given by dmˇ=k1 .x/ D #ˇ=k.x/ dx.

Finally, the distribution of the random vector
�
g


1
k

�
; : : : ; g

�
k�1
k

		
is given

explicitly by the Dirichlet distribution, see formula (7).
Putting these informations together we obtain for each bounded Borel function

U on R
k

Z

G
U

0

@
 Z 1

0
˚
.i/
k
dg

!

iD1;:::;k

1

A dQˇ

D
Z

G
U

0

@
 

g

�
i � 1
k

�
C
�
g

�
i

k

�
� g

�
i � 1
k

��
�
Z 1

0
.1� t/d Qgi .t/

!

iD1;:::;k

1

A dQˇ

D � .ˇ/

� .ˇ=k/k

Z

˙k�1

2

4
Z

G
: : :

Z

G
U

0

@
 

yi�1 C Œyi � yi�1� �
Z 1

0
.1 � t/d Qgi .t/

!

iD1;:::;k

1

A

dQˇ=k. Qg1/ : : : dQˇ=k. Qgk/
i kY

iD1
.yi � yi�1/ˇ=k�1 dy1 : : : dyk�1

D � .ˇ/

� .ˇ=k/k

Z

˙k�1

"Z 1

0
: : :

Z 1

0
U


.yi�1 C Œyi � yi�1� � zi /iD1;:::;k

�

kY

iD1
#ˇ=k.zi / d z1 : : : d zk

3

5
kY

iD1
.yi � yi�1/ˇ=k�1 dy1 : : : dyk�1

D � .ˇ/

� .ˇ=k/k

Z

˙k�1

�Z yk

yk�1

: : :

Z y1

y0

U


.xi /iD1;:::;k

�
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kY

iD1

�
#ˇ=k

�
xi � yi�1
yi � yi�1

�
� .yi � yi�1/ˇ=k�2

�
dx1; : : : dxk

3

5 dy1 : : : dyk�1

D � .ˇ/

� .ˇ=k/k

Z

˙k

�Z xk

xk�1

: : :

Z x2

x1

U


.xi /iD1;:::;k

�

kY

iD1

�
#ˇ=k

�
xi � yi�1
yi � yi�1

�
� .yi � yi�1/ˇ=k�2

�
dy1; : : : dyk�1

3

5 dx1 : : : dxk

D
Z

˙k

U .x1; : : : ; xk/ � 	ˇk .x1; : : : ; xk/ dx1 : : : dxk

with 	ˇ
k

as defined above (and always with y0 WD 0; yk WD 1).

The continuity and strict positivity of 	ˇ
k

on ˙k follows from the explicit
representation formula and from the fact that #ˇ=k is smooth and > 0 on .0; 1/. ut
Remark 2. The densities 	ˇ

k
have the following hierarchical structure:

	
ˇ

k
.x1; x2; : : : ; xk/ D 2k

Z

Rk

	
ˇ

2k
.x1�
1; x1C
1; : : : ; xk�
k ; xkC
k/d
1 : : : d
k:

(15)

This is of course a consequence of the fact that they are obtained via projection from
the same measure Q

ˇ and that

˚
.i/

k
D 1

2

�
˚
.2i�1/
2k

C ˚ .2i/
2k

	

for all k 2 N and all i D 1; : : : ; k. Thus for all U on R
k

Z

Rk
U .x/	

ˇ

k
.x/dx D

Z

R2k
U

�
y1 C y2

2
; : : : ;

y2k�1 C y2k
2

�
	
ˇ

2k
.y/dy

D
Z

Rk
U.x/

�
2k
Z

Rk
	
ˇ
2k
.x1 � 
1; x1 C 
1; : : : ; xk � 
k ; xk C 
k/d
1 : : : d
k

�
dx:

Proposition 4. (i) There exists a constant C D Cˇ;k such that for all x 2 ˙k:

	
ˇ

k
.x1; : : : ; xk/ � C � Œx1.1 � xk/�ˇ=.2k/�1 �

kY

iD2
.xi � xi�1/ˇ=k�1 : (16)

(ii) For all l 2 f1; : : : ; k � 1g there exist continuous functions �1 > 0 on ˙l and
�2 > 0 on ˙k�l such that
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ˇ

k
.x/ � �1.x1; : : : ; xl / � �2.xlC1; : : : ; xk/ � .xlC1 � xl/2ˇ=k�1 (17)

for all x 2 ˙k with jxlC1 � xl j � 1
4

minfjxl � xl�1j; jxlC2 � xlC1jg.
Proof. (i) Using the fact that #ˇ=k � C and the trivial estimate

.aC b/�p � 2�p � a�p=2 � b�p=2.8a; b; p > 0/

we obtain

	
ˇ

k
.x1; : : : ; xk/

� C k � � .ˇ/

� .ˇ=k/k

Z xk

xk�1

: : :

Z x2

x1

kY

iD1
.yi � yi�1/ˇ=k�2 dy1 : : : dyk�1

� C k � � .ˇ/

� .ˇ=k/k
� 2ˇ�2k

Z xk

xk�1

: : :

Z x2

x1

kY

iD1
.yi � xi /ˇ=.2k/�1

� .xi � yi�1/ˇ=.2k/�1 dy1 : : : dyk�1

D C k � � .ˇ/

� .ˇ=k/k

�
� .ˇ=.2k//2

� .ˇ=k/

�k�1
� 2ˇ�2k � Œx1.1 � xk/�ˇ=.2k/�1

�
kY

iD2
.xi � xi�1/ˇ=k�1 :

(ii) We assume k > 2ˇ and 2 � l � k � 2. (The cases l D 1 and l D k � 1
require some modifications.) Fix x 2 ˙k as above and put ı WD jxlC1 � xl j.
In the representation formula (4.3) for 	ˇ

k
, restrict the interval of integration for

dyl�1 from Œxl�1; xl � to Œxl � 2ı; xl � ı� and that for dylC1 from ŒxlC1; xlC2�
to ŒxlC1 C ı; xlC1 C 2ı�. Moreover, use the lower estimate (11) for the

#ˇ=k

�
xi �yi�1

yi �yi�1

	
for i 2 fl; l C 1g to obtain the estimate

	
ˇ
k
.x1; : : : ; xk/

� C �
Z x2

x1

: : :

Z xl�1

xl�2

Z xl �ı

xl �2ı

Z xlC1

xl

Z xlC1C2ı

xlC1Cı

Z xlC3

xlC2

: : :

Z xk

xk�1

Y

i2f1;:::;l�1g[flC2;:::;kg

�
#ˇ=k

�
xi � yi�1
yi � yi�1

�
� .yi � yi�1/ˇ=k�2

�
�

�.xl � yl�1/ˇ=k � .yl � xl /ˇ=k � .xlC1 � yl/ˇ=k � .ylC1 � xlC1/ˇ=k �
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�.yl � yl�1/�ˇ=k�2 � .ylC1 � yl /�ˇ=k�2 dy1 : : : dyk�1:

Here and in the rest of the proof C always denotes a constant > 0 changing
from line to line. Now we use the lower estimates

.xl � yl�1/ˇ=k � ıˇ=k ; .ylC1 � xlC1/ˇ=k � ıˇ=k ;

.yl � yl�1/�ˇ=k�2 � .3ı/�ˇ=k�2 ; .ylC1 � yl /�ˇ=k�2 � .3ı/�ˇ=k�2;

.yl�1 � yl�2/ˇ=k � .xl � yl�2/ˇ=k ; .ylC2 � ylC1/ˇ=k � .ylC2 � xlC1/ˇ=k ;

and

#ˇ=k

�
xl�1 � yl�2
yl�1 � yl�2

�
� #ˇ=k

�
xl�1 � yl�2
xl � yl�2

�
;

#ˇ=k

�
xlC2 � ylC1
ylC2 � ylC1

�
� #ˇ=k

�
ylC2 � xlC2
ylC2 � xlC1

�

valid for all yl�1; yl ; yC1 in the restricted domains of integration. Moreover,
we put

�1.x1; : : : ; xl / WD
Z x2

x1

: : :

Z xl�1

xl�2

l�2Y

iD1

�
#ˇ=k

�
xi � yi�1
yi � yi�1

�
� .yi � yi�1/ˇ=k�2

�
�

�#ˇ=k
�
xl�1 � yl�2
xl � yl�2

�
� .xl � yl�2/ˇ=k dyl�2 : : : dy1

and similarly

�2.xlC1; : : : ; xk/ WD
Z xlC3

xlC2

: : :

Z xk

xk�1

kY

iDlC3

�
#ˇ=k

�
xi � yi�1

yi � yi�1

�
� .yi � yi�1/

ˇ=k�2

�
�

�#ˇ=k
�
ylC2 � xlC2

ylC2 � xlC1

�
� .ylC2 � xlC1/

ˇ=k dyk�1 : : : dylC2:

Then we obtain

	
ˇ
k
.x1; : : : ; xk/

� C � �1.x1; : : : ; xl / � �2.xlC1; : : : ; xk/ �

�ı�4 �
Z xl �ı

xl �2ı

Z xlC1

xl

Z xlC1C2ı

xlC1Cı
.yl � xl /ˇ=k � .xlC1 � yl /ˇ=k dyl�1dyldylC1
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D C � �1.x1; : : : ; xl / � �2.xlC1; : : : ; xk/ � ı2ˇ=k�1:

This proves the claim. ut
Remark. We do not know whether the exponent 2ˇ=k � 1 in the previous lower
estimate can be improved to ˇ=k � 1. In the upper estimate, the exponent ˇ=k � 1
is certainly optimal.

5 Projections, Isomorphisms, Approximations

5.1 Finite Dimensional Projections

For each linear subspace H � L2.Œ0; 1�;Leb/ let C1H .G / denote the set of all
functions u W G ! R which can be written as u.g/ D U .hg; 1i; : : : ; hg; ni/
with n 2 N, U 2 C 1.Rn;R/ and  1; : : : ;  n 2 H . Moreover, let DH denote
the closure of C1H .G / in D D Dom.E/ w.r.t. the norm .E C k:k2

L2.Qˇ/
/1=2. Then

.E;DH / is a – not necessarily densely defined – Dirichlet form on L2.G ;Qˇ /.
More precisely, let VH denote the closure of DH in L2.G ;Qˇ /. Then .E;DH /

is a closed quadratic form in VH . As usual, there exist a strongly continuous
semigroup .THt /t�0 and a resolvent .GH˛ /˛>0, both consisting of Markovian
operators on VH . Let �H W L2.G ;Qˇ / ! VH be the orthogonal projection onto
the closed linear subspace VH . Then a semigroup on L2.G ;Qˇ / – not necessarily
strongly continuous, however – can be constructed by

OTHt WD T
H
t ı O�H : (18)

The projection O�H u of u 2 L2.G ;Qˇ / can be characterized as the conditional
expectation

O�H u.g/ D
Z

G
u. Qg/Qˇ .d Qg jfh Qg; 'i D hg; 'i for all ' 2 H g /

of the random variable u W Qg 7! u. Qg/ on G under the condition

fh Qg; 'i D hg; 'i for all ' 2 H g :

5.2 Monotone Convergence

Let .H.k//k2N be an increasing family of linear subspaces with L2.Œ0; 1�;Leb/ DS
kH.k/ and define DH.k/ as above. Then DH.k/ % with

S
k DH.k/ D D. In

particular,

.E;DH.k//! .E;D/ in the sense of Mosco for k !1:
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Hence, if OTH.k/t and OGH.k/˛ denote the semigroup and resolvent operators on
L2.G ;Qˇ / associated with .E;DH.k// and if Tt and G˛ denote the corresponding
operators associated with .E;D/ then

OTH.k/t ! Tt ; OGH.k/˛ ! G˛ strongly in L2.G ;Qˇ / as k !1;

cf. [8].

5.3 Isomorphisms I

LetH be finite dimensional with basis H D f'.1/; : : : ; '.k/g and consider the map

OJH W L2.Œ0; 1�;Leb/! R
k; g 7!

�
hg; '.1/i; : : : ; hg; '.k/i

	
:

Its restriction to H – denoted by JH – is a vector space isomorphism with

J �1
H W R

k ! H; x 7! Pk
i;jD1 xia�1

ij '
.j / where .a�1

ij / denotes the inverse of

the matrix .aij / defined by aij D h'.i/; '.j /i. This map induces an isomorphism
between C 1.Rk/ and C1H .G /:

U 2 C 1.Rk/
UDuıJ �1

H ! u 2 C1H .G /:

Let mˇH denote the distribution of the random vector

hg; '.1/i; : : : ; hg; '.k/i�,

that is, mˇH WD . OJH /�Qˇ and define a pre-Dirichlet form on L2.Rk ; mˇH / D˚
u ıJ �1

H W u 2 VH

�
by

EH .U; V / WD
kX

i;jD1
aij

Z

Rk

@iU.x/@jV.x/ dmˇH .x/ (19)

for U; V 2 C 1.Rk/. This form is closable – since the closable form .E;C1H .G //
is isomorphic to it – with closure being a strongly local Dirichlet form on
L2.Rk ; m

ˇ
H / with domain

DH D
˚
u ıJ �1

H W u 2 DH

�

and with

EH .U; V / D E.U ı OJH ; V ı OJH /

for U; V 2 DH , cf. [5].
Let .TH

t /t>0 denote the semigroup associated with .EH ;DH /. Then for all
u 2 VH � L2.G ;Qˇ /
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T
H
t u D 
TH

t U
� � OJH

	
(20)

with U 2 L2.Rk; mˇH / such that u D U ı OJH .

5.4 Standard Approximations

For each k 2 N let us from now on fix the linear subspace H.k/ � L2.Œ0; 1�;Leb/
spanned by the orthogonal system H .k/ D f'.1/

k
; : : : ; '

.k/

k
g with

'
.i/

k
.t/ WD k � 1

. i�1
k

i
k
�
.t/:

To simplify notation, writemˇ
k

, Jk , Ek , T kt etc. instead ofmˇH .k/
, JH .k/, EH .k/,

T
H .k/
t , respectively.

Note that in this case

OJk.g/ D
 

k

Z 1
k

0

g.t/dt; : : : ; k
Z 1

k�1
k

g.t/dt

!

D
�Z 1

0

˚
.1/

k
dg; : : : ;

Z 1

0

˚
.k/

k
dg

�

with ˚
.i/

k
as introduced in (13). Hence, the measure m

ˇ

k
WD . OJk/�Qˇ on

R
k coincides with the measure investigated in detail in the previous chapter. In

particular,

dmˇ
k
.x/ D 	ˇ

k
.x/ dx

with 	ˇ
k

given by formula (14). Recall that 	ˇ
k

is continuous and > 0 on the open
simplex˙k � R

k and that it vanishes on R
k n˙k .

The Dirichlet form .Ek;Dk/ on L2.Rk ; 	
ˇ

k
/ is given explicitly on its core

C 1.Rk/ by

Ek.U; V / D k
Z

Rk

rU.x/ � rV.x/ dmˇ
k
.x/ (21)

with rU denoting the gradient of U on R
k . If we regard it as a Dirichlet form on

L2.˙k ; 	
ˇ

k
/ then it is regular, strongly local and recurrent. (Indeed, fuj˙k

W u 2
C 1.Rk/g is dense in C .˙k/ as well as in Dk . Strong locality and recurrence is
inherited from .E;D/.)

The semigroup .T kt /t�0 associated with .Ek;Dk/ can be represented as
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T kt u.x/ D Ex

h
u
�
Xkt

	i
(22)

(for all Borel functions u 2 L2.˙k ; 	ˇk / and a.e. x 2 ˙k) in terms of a strong
Markov process

.Xkt /t�0 D
�
X
k;1
t ; : : : ; X

k;k
t

	

t�0

with state space ˙k , defined on some probability space .˝;F ;Px/x2˙k
and

canonically associated with .Ek;Dk/. This process is continuous, recurrent and
reversible w.r.t.mˇ

k
. At least on those stochastic intervals for which Xkt .!/ 2 ˙k it

can be characterized as the solution to an interacting system of stochastic differential
equations

dXk;it D k
@ log 	ˇ

k

@xi

�
Xkt

	
dtC
p
2k dWi

t ; i D 1; : : : ; k (23)

for some k-dimensional Brownian motion .Wt /t�0.

5.5 Isomorphisms II

Let Gk WD G \H.k/ denote the subset of those g 2 G which are constant on each
of the intervals Œ i�1

k
; i
k
/ for i D 1; : : : ; k. Then

J �1
k W ˙k ! Gk; x 7!

kX

iD1
xi � 1Œ i�1

k
; i

k
/

is a bijection. It maps the strong Markov process .Xkt /t�0 on ˙k onto a strong
Markov process .gkt /t�0 on Gk with

gkt .!/ WDJ �1
k

�
Xkt .!/

	
D

kX

iD1
X
k;i
t .!/ � 1Œ i�1

k
; i

k
/: (24)

Now recall that the Hilbert space Vk WD C1
k
.G /

L2.G ;Qˇ/
coincides with

n
U ıJk W U 2 L2.Rk; mˇk /

o
:

Hence, (20) together with (22) and (24) imply
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T
k
t u.g/ D Eg

h
u
�
gkt

	i
D EJk.g/

"

u

 
kX

iD1
X
k;i
t � 1Œ i�1

k
; i

k
/

!#

(25)

for all Borel functions u 2 Vk and a.e. g 2 G . Finally, according to (18)

OTkt u.g/ D EJk .g/

"

uk

 
kX

iD1
X
k;i
t � 1Œ i�1

k
; i

k
/

!#

(26)

for all Borel functions u 2 L2.G ;Qˇ / and a.e. g 2 G with uk D O�ku being the
projection of u onto Vk (or, in other words, the conditional expectation of u).

This process canonically extends to a – not necessarily normal – strong Markov
process .gkt /t�0 on G , projecting the initial data by means of the map

�k WDJ �1
k ı OJk W G ! Gk; g 7! 1

k

kX

iD1
hg; '.i/

k
i'.i/
k
:

5.6 Isomorphisms III

Let Pk denote the subset of � 2P which can be represented as � D 1
k

Pk
iD1 ıxi

for suitable x1; : : : ; xk 2 Œ0; 1�. The maps � W Gk 7! Pk and Ik WD Jk ı ��1 W
Pk ! ˙k establish canonical isomorphisms. The inverse of the latter

I �1
k W x 7! 1

k

kX

iD1
ıxi

defines the canonical embedding of˙k into P . On the other hand, the map

OIk WD OJk ı ��1 WP ! ˙k

can be characterized as follows: Each � 2 P can be represented uniquely as the
sum � D 1

k

Pk
iD1 �i with probability measures �i supported on Œyi�1; yi � for

suitable 0 � y1 � : : : � yk � 1. (Indeed, yi D infft � 0 W �.Œ0; t �/ > i
k
g

for each i D 1; : : : ; k.) Then

OIk.�/ D .x1; : : : ; xk/

with xi D x�i D
R 1
0
t d�i .t/ being the mean value of the probability measure �i .

In particular, the projection �k D I �1
k
ı OIk WP !Pk is defined by
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� 7! 1

k

kX

iD1
ıx�

i
:

Let .�kt /t�0 be the image of the strong Markov process .gkt /t�0 under the
bijection � W g 7! g�LebjŒ0;1�. Then

�kt .!/ D
1

k

kX

iD1
ı
X

k;i
t .!/

:

In other words, the strong Markov process .�kt /t�0 on Pk is the empirical
distribution of the strong Markov process .Xkt /t�0 on ˙k .

Finally, a probabilistic representation – similar to that for
� OTkt

	

t�0 – also holds

true for the semigroup
� OTkP;t

	

t�0 associated with the Dirichlet form .EP ;DP/ on

L2.P;Pˇ /:

OTkP;tu.�/ D Ex�

"

uk

 
1

k

kX

iD1
ı
X

k;i
t

!#

(27)

for all Borel functions u 2 L2.P;Pˇ / and a.e. � 2P and with x� WD Ik.�/.

6 Convergence

6.1 Convergence of Finite Dimensional Distributions

Note that H.2k/ � H.2n/ for k; n 2 N, k � n, and thus D2
k � D

2n

, V2
k � V

2n

.
According to Sect. 5.1

T
2k

t u! Ttu in L2.G ;Qˇ / as k !1 (28)

for all u 2 V
1 WD S

n2N V
2n

. The latter is a dense subset in L2.G ;Qˇ /. The
previous in particular implies

hu;T2k

t viL2.G ;Qˇ/ ! hu;TtviL2.G ;Qˇ/ as k !1 (29)

for all u; v 2 V
1 and thus

E
Q

ˇ

k

h
u.g2

k

0 / � v.g2
k

t /
i
! EQ Œu.g0/ � v.gt /� as k !1 (30)

for all u; v 2 C .G /.



A Monotone Approximation to the Wasserstein Diffusion 45

The Markov property of the processes .gt /t�0 and .g2
k

t /t�0 together with their

invariance w.r.t. the measures Q
ˇ and Q

ˇ

2k allows to iterate this argumentation
which then yields

E
Q

ˇ

2k

h
u1.g

2k

t1
/ � u2.g2k

t2
/ � : : : � uN .g2k

tN
/
i

D
Z

G
u1 � T2k

t1�t0
�

u2 � T 2k

t2�t1
�

u3 � : : : � T 2k

tN �tN �1
uN
	
: : :
	
dQ

ˇ

2k

#

D
Z

G
u1 � Tt1�t0



u2 � Tt2�t1



u3 � : : : � TtN �tN �1

uN
�
: : :
�
dQˇ

D E
Qˇ

�
u1.gt1/ � u2.gt2/ � : : : � uN .gtN /

�

as k !1 for all N 2 N, all 0 � t1 < : : : < tN and all u1; : : : ; uN 2 C .G /. Since
functions U 2 C .GN / can be approximated uniformly by linear combinations of
functions of the form U.g1; g2; : : : ; gn/ DQN

nD1 un.gn/ it follows that

E
Q

ˇ

2k

h
U.g2

k

t1
; g2

k

t2
; : : : ; g2

k

tN
/
i
! E

Qˇ

�
U.gt1 ; gt2 ; : : : ; gtN /

�

as k ! 1 for all N 2 N, all 0 � t1 < : : : < tN and all U 2 C .GN /. That is, we
have proven the convergence

.g2
k

t /t�0 ! .gt /t�0 as k !1 (31)

in the sense of weak convergence of the finite dimensional distributions of the pro-
cesses, started with their respective invariant distributions. By means of the various
isomorphisms presented before, this can be equivalently restated as convergence

.�2
k

t /t�0 ! .�t /t�0 as k !1; (32)

again in the sense of weak convergence of the finite dimensional distributions of the
processes, started with their respective invariant distributions. Here .�t /t�0 denotes
the Wasserstein diffusion on P – associated with the Dirichlet form (1) – with the
entropic measure Pˇ as invariant distribution and

�2
k

t .!/ D
1

2k

2kX

iD1

ı
X

2k;i
t .!/

with
�
X
2k ;i
t

	

t�0 being the continuous Markov process on the simplex ˙2k –

associated with the Dirichlet form (21) – with invariant distribution 	ˇ
2k .x/dx.
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6.2 Convergence of Processes

Convergence of the processes

.g2
k

t /t�0 ! .gt /t�0 as k !1
will follow from the convergence (31) of the respective finite dimensional distri-
butions provided we prove tightness of the family .g2

k

t /t�0; k 2 N in C .RC;G /.
The latter is equivalent to tightness of

�
h ; g2k

t i
	

t�0 ; k 2 N in C .RC;R/ for all

 2 L2.Œ0; 1�;Leb/. It suffices to verify this for a dense subset of  , e.g. for all
 2S1

lD1H .2l/ � L2.Œ0; 1�;Leb/.
Fix  2 H .2l/ for some l 2 N with k k D 1. For each k 2 N; k � l the

continuous function u.g/ WD h ; gi lies in V2k with energy E.u/ D k k2 D 1 and
square field operator

�hui.g/ D 1 (33)

for a.e. g 2 G .
Given T > 0, the process

�
u.g2

k

t /
	

t2Œ0;T �

admits a Lyons-Zheng decomposition

u.g2
k

t / � u.g2
k

0 / D
1

2
M
.2k/
t � 1

2

h
M
.2k/
T �M .2k/

T�t
i
ı rT

into a forward martingale and a backward martingale. According to (33) the
quadratic variation of the forward martingale – as well as that of the backward
martingale – is given by

hM .2k/it D t;
uniformly in g 2 G and in k 2 N; k � l . Hence, using hitting probabilities of
1-dimensional Brownian motions we deduce for anyR > 0 and uniformly in k 2 N,
k � l;

P
Q

ˇ

2k

"

sup
t2Œ0;T �

�
u.g2

k

t / � u.g2
k

0 /
	
> R

#

� P
Q

ˇ

2k

"

sup
t2Œ0;T �

M
.2k/
t > R

#

C P
Q

ˇ

2k

"

sup
t2Œ0;T �

�
M
.2k/
T �M .2k/

T�t
	
ı rT > R

#

� 2
r
2

�
exp

�
� .R=2/

2

2T

�
:



A Monotone Approximation to the Wasserstein Diffusion 47

Since we already know that the 1-dimensional distributions g2
k

0 converge, this
proves tightness of the family of processes

�
u.g2

k

t /
	

t2Œ0;T � D
�
h ; g2k

t i
	

t2Œ0;T �

for k 2 N. Since this holds for all  2 S1
lD1H .2l/ it implies tightness of the

family .g2
k

t /t�0; k 2 N, and thus convergence of the processes

.g2
k

t /t�0 ! .gt /t�0 as k !1:

Applying the usual isomorphism, this may be restated as convergence of the
processes

.�2
k

t /t�0 ! .�t /t�0 as k !1

in C .RCP/.

6.3 Final Remarks

Given k 2N a mapping QJk WG !˙k – very similar to our mapping OJk from (12) –

is obtained by replacing the functions ˚ .i/
k

from (13) by Q̊ .i/
k
.x/ WD 1Œ0; 2i�1

2k
�.x/

which leads to

QJk.g/ D
�Z 1

0

Q̊ .i/
k

dg

�

iD1;:::;k
D
�
g

�
2i � 1
2k

��

iD1;:::;k
:

In this case, the identification of the push forward measure Qmˇ
k
WD . QJk/�Qˇ on˙k

is much easier. Indeed, it is absolutely continuous with density

Q	k.x/ D C � Œx1.1 � xk/�ˇ=.2k/�1 �
kY

iD2
.xi � xi�1/ˇ=k�1 :

The strong Markov process on ˙k associated with the Dirichlet form QEk.U / D
k
R
˙k
jrU j2 Q	ˇ

k
dx onL2.˙k; Q	ˇk dx/ admits a very explicit characterization: at least

on those stochastic intervals on which the process is in the interior of the simplex, it
is a weak solution to the coupled system of stochastic differential equations
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dXk;it D
"

ˇi�1 � k
X
k;i
t �Xk;i�1t

� ˇi � k
X
k;iC1
t � Xk;it

#

dtC
p
2k dWi

t ; i D 1; : : : ; k
(34)

for some k-dimensional Brownian motion .Wt /t�0 and withXk;0t WD 0;Xk;kC1
t WD 1.

Here ˇ0 D ˇk D ˇ=2 and ˇi D ˇ for i D 1; : : : ; k � 1. This is essentially the
approximation used by Andres and von Renesse [2].

The fundamental disadvantage, however, is that the functions g 7! R 1
0
Q̊ .i/
k

dg
are no longer in the domain of the Dirichlet form E. More generally, for any
non-constant U 2 C 1.Rk/ the function u.g/ WD U. QJk.g// is neither continuous
on G nor does it belong to D.
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Adapted Function Spaces for Dispersive
Equations

Herbert Koch

Abstract The study of the p variation of functions of one variable has a long
history. It has been discussed by Wiener in [21]. Here we define the space of
functions of finite p Variation, and the predual space U q , and we use them to study
dispersive equations.

1 Introduction

The study of the p variation of functions of one variable has a long history. It
has been discussed by Wiener in [21]. The generalization of the Riemann-Stieltjes
integral to functions of bounded p variation against the deriative of a function of
bounded q variation 1=p C 1=q > 1 is due to Young [22]. Much later Lyons
developed his theory of rough path [13] and [14], buildung on Young’s ideas, but
going much further.

In parallel Tataru realized that the spaces of bounded p variation, and their
close relatives, the U p spaces, allow a powerful sharping of Bourgain’s technique
of function spaces adapted to the dispersive equation at hand. These ideas were
applied for the first time in the work of the author and Tataru in [11]. Since then
there has been a number of questions in dispersive equations where these function
spaces have been used. For example they play a crucial role in [12], but there
they could probably be replaced by Bourgain’s Fourier restriction spaces X s;b.
On the other hand, for wellposedness for the Kadomtsev-Petviashvili II equation
in a critical function space (see [3]) the X s;b spaces seem to be insufficient. The
theory of the spaces U p and V p and some of their basic properties like duality
and logarithmic interpolation have been worked out in [3], with a focus on what
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was needed there. Until very recently the developments in stochastic differential
equations and dispersive equations were entirely independent. The present treatment
considerably extends the theory of [3].

We will introduce the spaces U p and V p , study their properties and indicate
their role for dispersive equations. After that we turn to wellposedness questions for
several dispersive PDEs, where we select a number of relevant and representative
problems.

In the sequel p 2 Œ1;1�. Unless explicitly stated otherwise we consider
p 2 .1;1/.

2 The Bounded p Variation

Definition 1. Let I be an interval, 1 � p <1 and f W I ! X . We define

!p.v; I / WD sup
ti 2I;t1<t2:::tnC1

�X
kv.tiC1/� v.ti /kpX

	1=p 2 Œ0;1�:

There are obvious properties. The function t ! !p.v; Œa; t// is monotonically
increasing. The same is true if we consider closed or open intervals. Moreover

!p.v; Œa; b// � !p.v; Œa; c// � 2.!p.v; Œa; b�/C !p.v; Œb; c///:

Finiteness of the p variation implies existence of one sided limits. It is not hard to
see that v ! !p.v; Œa; b// defines a norm, up to constants. If v is continuous and
the p variation is bounded then it is a continuous function of the endpoint. Moreover

!p.v; .a; b// � jb � aj1=pkvk PC1=p

where PC 1=p denotes the homogeneous Hölder space.

2.1 Step Functions and Ruled Functions

We introduce and study functions from an interval Œa; b/ to R, Rn, a Hilbert space
or a Banach space X , and spaces of such functions which are invariant under
continuous monotone reparametrizations of the interval. For the most part of this
section there are no more than the obvious modifications when considering Banach
space valued functions.

We call a function f a ruled function if at every point (including the endpoints,
which may be ˙1) left and right limits exist. This set is closed with respect to
uniform convergence. We denote the Banach space of ruled functions equipped with
the supremum norm by R.
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A partition 
 of Œa; b/ is a strictly increasing finite sequence

a < t1 < t2 < � � � < tnC1 < b

where we allow b D 1 and a D �1. A step function is a function f for which
there exists a partition so that f is constant on every interval .a; t1/, .ti ; tiC1/ and
.tn; b/. We do not require that the value at a point coincides with the limit from
either side. Step functions are dense in R. We denote the set of step functions by
S . Let Rrc be the closed subset of R of right continuous functions f with limt!a

f .t/ D 0. Similarly, if X � R we denote by Xrc the intersection with Rrc.
The step functions

ft D �Œt;b/
satisfy

kft � fsksup D 1 (1)

for s ¤ t . We will study Banach spaces Z most of which contain the right
continuous step functions Src, and which embed into R. Moreover we will always
have

1 � kft � fskZ � 2 (2)

and hence none of those spaces is separable.
It will be convenient to extend every function on Œa; b/ by zero to Œa; b�, i.e. we

will always set f .b/ D 0, even if a D �1 or b D 1.

Definition 2. For f 2 R and a partition


 D .t1; t2 : : : tn/; a < t1 < t2 < t3 � � � < tn < b
we define (denoting the limit from the right by f .tC/)

f� .t/ D

8
ˆ̂
<

ˆ̂
:

f .t/ if t D tj
f .aC/ if a < t < t1
f .tiC/ if ti < t < tiC1
f .tn/ if tn < t

We observe that f� is a step function, and it is right continuous if f is right
continuous.

2.2 The Spaces V p and U p

In this subsection we consider functions on .a; b/ where we allow the cases
a D �1 and b D 1.
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Definition 3. Let X be a Banach space, 1 � p < 1 and v W .a; b/ ! X . We
define

kvkV p..a;b/;X/ D maxfkvksup; !p.v; .a; b//g:

Let V p D V p..a; b// D V p.X/ D V p..a; b/IX/ be the set of all functions for
which this expression is finite. We often suppress the interval and/or the Banach
space in the notation when this seems appropriate.

The interval will usually be of minor importance. We omit it often in the sequel.
The following properties are immediate:

1. V p.I / is closed with respect to this norm and hence V p.I / is a Banach subspace
of R. Moreover V prc .I / is a closed subspace.

2. We set V1 D R.
3. If 1 � p � q � 1 then

kvkV q � kvkV p :

4. Let Xi be Banach spaces, T W X1 � X2 ! X3 a bounded bilinear operator,
v 2 V p.X1/ and w 2 V p.X2/. Then T .v;w/ 2 V p.X3/ and

kT .v;w/kV p.X3/ � 2kT kkvkV p.X1/kwkV p.X2/:

5. We embed V p..a; b// into V p.R/ by extending v by 0.
6. The space V 1 has some additional structure: Every bounded monotone function

is in V 1, and functions in V 1 can be written as the difference of two bounded
monotone functions.

The space of bounded p variation is build on the sequence space lp . We may
also replace it by the weak space lpw with

k.xj /klpw D sup
�

�#fjxj j > �g1=p:

Definition 4. Let 1 � p < 1. The weak V pw space consists of all functions such
that

kvkV p
w
D maxf sup

t1<���<tn
k.v.tiC1/ � v.ti //1�i�n�1klpw ; kvksupg

is finite.

The spaces of bounded p variation are of considerable importance in probability
and harmonic analysis. We shall see that V p is the dual space of a space U q , 1=pC
1=q D 1, 1 < p <1, with a duality pairing closely related to the Stieltjes integral,
and its variant, the Young integral [22].
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Definition 5. A p-atom a is a step function in Src,

a.t/ D
nX

iD1
�i�Œti ;tiC1/.t/

where 
 D .t1 : : : tn/ is a partition, tnC1 D b, with
P j�i jp � 1. A p-atom a is

called a strict p atom if

max k�ikX .#
/1=p � 1:

Let aj be a sequence of atoms and �j a summable sequence. Then

u D
X

�jaj

is a U p function. The right hand side converges in R. We define

kukUp D inff
X
j�j j W u D

X
�jaj g:

The strict space U pstrict is defined in the same fashion using strict p atoms.

We collect a number of elementary properties.

1. If a is a p-atom then kakUp � 1. In general the norm is less than 1.
2. Functions in U p are continuous from the right. The limit as t ! a vanishes.
3. The expression k:kUp defines a norm on U p , and U p is closed with respect to

this norm. Hence U P � Rrc is a Banach subspace.
4. If p < q then U p � U q and

kukUq � kukUp :

5. If 1 � p <1 then for all u 2 U p

kukV p � 21=pkukUp :

6. Let Y be a Banach space, and let the linear operator T W Src ! Y satisfy

kTakY � C (3)

for every p atom. Then T has a unique extension to a bounded linear operator
from U p to Y which satisfies

kTf kY � Ckf kUp : (4)
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7. Let Xi be Banach spaces, T W X1 � X2 ! X3 a bounded bilinear operator,
v 2 U p.X1/ and w 2 U p.X2/. Then T .v;w/ 2 U p.X3/ and

kT .v;w/kUp.X3/ � 2kT kkvkUp .X1/kwkUp.X2/:

8. We consider U p.Œa; b// in the same way as subspace of U p.R/ as for V p.

The following decomposition is crucial for most of the following. It is related to
Young’s generalization of the Stieltjes integral, and it deals with a crucial point in
the theory. A proof is contained in [11].

Lemma 1. There exists ı > 0 such that for v right continuous with kvkV p
w
D ı

there are strict p atoms ai with

kaj .t/ksup � 21�j and #
j � 2jp

such that

v D
X

aj :

There are a number of simple interesting and useful consequences.

Lemma 2. Let 1 < p < q < 1. There exists � > 0, depending only on p and q,
such that for all v 2 V pw;rc andM � 1 there exist u 2 U pstrict and w 2 U qstrict with

v D uC w

and

�

M
kukV p

strict
C eMkwkUq

strict
� kvkV p

w
:

Observe that we may replace U pstrict by U p (since U pstrict � U p) and V pw by V p

(since V p � V pw ). The proof is simple: We apply Lemma 1 and define u as the sum
of the first m aj . We obtain the following embedding

Lemma 3. Let 1 < p < q <1. Then

V prc � V pw;rc � U qstrict � U q:

Proof. Apply Lemma 2 with M D 1. ut
The Riemann-Stieltjes integral defines

Z
f dg D

Z
fgtdt
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for f 2 R and g 2 V 1. If f 2 Src then

Z
fgtdt D

X
f .ti /.g.ti /� g.ti�1//: (5)

We take this formula as our starting point for a similar integral for f 2 V p and
g 2 U q , for 1=pC 1=q D 1, q � 1. Results become much cleaner when we use an
equivalent norm in V p ,

kvkV p D sup
a<t1:::tn<b

0

@
X

j

jv.tjC1/� v.tj /jp C jv.tn/jp
1

A

1=p

which we do in the sequel. We also set v.b/ D 0 and, for any partition, tnC1 D b.

Theorem 1. There is a unique continuous bilinear map

B W U q.X/ � V p.X�/! R

which satisfies (with t0 D a and u.t0/ D 0, and a somewhat sloppy notation for the
duality map X� �X ! R)

B.u; v/ D
nX

iD1
.u.ti /� u.ti�1//v.ti /

for u 2 Src with associated partition .t1; : : : tn/ and

jB.u; v/j � kukUq.X/kvkV p.X�/: (6)

The map

V p.X�/ 3 v ! .u! B.u; v// 2 .U q.X//�

is a surjective isometry. Moreover

kvkV p.X�/ D sup
u2Uq.X/;kukU q.X/D1

B.u; v/ D sup
a is a q�atom

B.a; v/: (7)

The same statements are true if we replace U p by U pstrict and V q by V qw .

See [3] for a proof. The previous results show that U p � V
p
rc , and both spaces

are very close. They are, however, not equal. The following example goes back to
Young [22] with the same intention, but in a slightly different context. Let with a
smooth function �

vNp D �
NX

jD1
2�j=p sin.2jx/:



56 H. Koch

It is not hard to see that supN kvNp kC1=p < 1, and hence in v1
p 2 C 1=p � V prc .

Let uq D �P1
jD1 2�j=q cos.2jx/. Now, assuming that uq 2 U q ,

kuqkUpkvNp kV q �
ˇ
ˇ
ˇ
ˇ

Z
.u1
q /

0vNp dx

ˇ
ˇ
ˇ
ˇ D N=2

Z
�2dxCO.1/

which is unbounded, hence a contradiction and V prc 3 u1
p … U p .

Lemma 4. For all v 2 V p we have (recall Definition 2)

kv�kV p.I / � kvkV p.I / (8)

and for all u 2 U p

ku�kUp.I / � kukUp.I /: (9)

For v 2 V p and " > 0 there is a partition 
 so that

kv � v�kV p < ": (10)

Given u 2 U p and " > 0 there exists 
 with

ku � u�kUp < ": (11)

In particular S is dense in V p and Src is dense in U p.

Proof. When we take the supremum over partitions for v� we may restrict to subsets
of 
 and the first statement becomes obvious. For U p it suffices to check p atoms a,

ka�kUp � 1:

Density of step functions in U p follows from the atomic definition of the space: Let
u 2 U p and " > 0. By definition there exists a finite sum of atoms (which is a right
continuous step function ustep) such that

ku � ustepkUp < "=2:

Let 
 be the step function associated to ustep. Then

ku � u�kUp � kustep � u�kUp C ku � ustepkUp

< k.ustep � u/�kUp C "=2 < "

which is the claim for U p . Let QV p be the closure of the step functions in V p .
Suppose there exists v 2 V p with distance 1 to QV p, and kvkV p < 1 C ". Such a
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function exists when QV p is not V p. Let D � U q be the subset such B.u; v/ D 0

whenever u 2 D and v 2 QV p. There exists u 2 D with B.u; v/ D 1, and a partition

 so that ku � u�kUp < ". However

0 D B.u; v� / D B.u� ; v/ D B.u; v/C B.u� � u; v/ � 1 � ".1C "/

which is a contradiction. Hence the step functions are dense in V p. We complete
the proof as for U p. ut

2.3 Embeddings

The first part of the next result it due to Hardy and Littlewood [4], and the second
one follows by duality.

Lemma 5. If 1 < p <1,

c�1
p kvk PB1=p;p

1

� kvk QV p � 21=pkukUp � cpkuk PB1=p;p
1

:

Let QV p � V p be the closed subspace of functions with

f .t/ D 1

2
. lim
h!0

.f .t C h/C f .t � h///:

Choose a symmetric function � 2 L1 with
R
� D 1 and �h.x/ D h�1�.x=h/. The

following claims can be easily verified for step functions, which suffices since they
are dense.

Lemma 6. Let a D �1, b D 1, � 2 L1 symmetric with
R
�dx D 1. We denote

�h.x/ D h�1�.x=h/. Then

�h 
 v! v

in the weak � topology for v 2 QV p.R/. Moreover test functions are weak* dense
in V p.

There is a second duality statement.

Lemma 7. The bilinear map B defines a surjective isometry

QV p.X�/! .U q \ C.X//�; 1
p
C 1

q
D 1; 1 < p; q <1:
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Proof. The kernel of the duality map restricted to U p \ C.X/ consists exactly of
those elements of V p which are nonzero at most at countably many points. Let
v 2 QV p . Then, by the previous lemma,

�h 
 v! v

in the weak 
 topology of V p . Moreover, for atoms

B.a; �h 
 v/ D B.�h 
 a; v/

and hence this is true for functions in U p. Now

kvkV p D sup
a q-atom

B.a; v/D sup
a

lim
h!0

B.a; �h 
 v/ D sup lim
h!0

B.�h 
 a; v/D sup
a
B.v; a/:

It remains to prove surjectivity. Let L W U p \C.X/! R be linear. By the theorem
of Hahn-Banach there is a extension with the same norm to U p , and by duality there
is v 2 V q with kvkV q D kLk. Changing v at a countable set does not change the
image in .U p \ C.X//�, hence we may choose v 2 QV p. ut

We define

V
q
C D fv 2 V q \ C W lim

t!a
v.t/ D lim

t!b
v.t/ D 0g: (12)

Lemma 8. The map

U p.X�/! .V
q
C .X//

�;

u! .v! B.u; v//

is a surjective isometry.

Proof. By the duality estimates the duality map is defined, and it is an isometry
since the space V qC is weak star dense in V q .

Let L W V qC ! R. By Hahn-Banach there is an extension QL to V q . We define
(with obvious modifications for Banach space valued maps)

Qu.t/ D � QL.�Œt;1//:

As above we see that .v ! B.Qu; v// coincides with QL on step functions. We define
u as the unique right continuous function obtained by modifying Qu at points of
discontinuity. This does not change B.u; :/ on V qC . Moreover, by the definition of
the quadratic form we may assume

Qu.t/! 0 as t ! a:
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Now u 2 U Qp for all p � 0. The duality estimate allows to conclude that

kukUp � kLk:

There is an immediate consequence. ut
Lemma 9. Test functions C1

0 are weak* dense in U p.

3 Dispersive Equations

3.1 Adapted Function Spaces

Here we briefly survey constructions going back to Bourgain, which have become
standard. Details can be found in [11] and [3].

The following situation will be of particular interest. Let t ! S.t/ be a
continuous unitary group on a Hilbert space H . We define U pS and V pS by

kukUp
S
D kS.�t/u.t/kUp.H/:

Now atoms are piecewise solutions. By Stone’s theorem unitary groups are in one-
one correspondence with selfadjoint operators, in the sense that

i@tu D AU

with a self adjoint operator defines a unitary group S.t/ and vice versa. At least
formally

i@t .S.�t/u.t// D S.�t/.i@tu � Au/

and hence the duality assertion is

kukUq
S
D sup

kvk
V

p
S

�1
B.S.�t/u.t/; S.�t/v.t//:

Now suppose that – again formally –

i@tu � Au D f
then, by Duhamels formula, we obtain the solution

u.t/ D
Z t

�1
S.t � s/f .s/ds:
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Thus,

kukUq
S
D sup

kvk
V

p
S

�1
jB.S.�t/u.t/; S.�t/v.t//j (13)

D sup
kvk

V
p
S

�1

ˇ
ˇ̌
ˇ

Z

R

h@tS.�t/u.t/; S.�t/v.t/idt

ˇ
ˇ̌
ˇ (14)

D sup
kvk

V
p
S

�1
j�ihS.�t/.i@tu � Au/; S.�t/vidtj (15)

D sup
kvk

V
p
S

�1

Z

R

hf; vidt (16)

with a similar statement for V pS . This observation will be crucial for nonlinear
dispersive equations. It is not hard to justify using our knowledge about weak* dense
subspaces.

We want to use this construction for dispersive equations. There A is often
defined by a Fourier multiplier, most often even by a partial differential operator
with constant coefficients.

In order to be specific we consider the Airy equation – the situation would be
similar for many other dispersive equations –

vt C vxxx D 0 in Œ0;1/

v.0/ D u0 on R:

Let v.t/ D 0 for t < 0 and the solution otherwise. Then

kvkV 1
Airy
D ku0kL2.Rd /:

There are three types of basic estimates: The Strichartz estimate

kvkLp
t L

q
x
� kjDj�1=pu0kL2 (17)

whenever

2

p
C 1

q
D 1

2
; 2 � p; q: (18)

Here jDjs is defined by the Fourier multiplier j
js . The Strichartz estimate quantifies
the effect of dispersion.
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The Strichartz estimate immediately transfers to estimates with respect to U pAiry:

kvkLp
t L

q
x
� ckjDj�1=pukUp

Airy
: (19)

It suffices to verify this if SAiry.�t/v is an atom with partition .t1; t2 : : : tn/. Then,
with tnC1 D 1, by the Strichartz estimate we can estimate the mixed norm

kvkLp
t ..tj ;tj C1/ILq

x .R//
� ckjDj�1=pv.tj /kL2.R/:

We raise this to the pth power, and add over j . Then

kvkLpLq � c
�X

kjDj�1=pv.tj /kpL2

	1=p � c

since SAiry.�t/u is a p atom.
Consider now v.t/ D R t�1 SAiry.t � s/f .s/ds. By duality (13), and with p and q

satisfying (18)

kvk
V

p0

SAiry

D sup
kuk

U
p
Airy

�1

ˇ
ˇB.SAiry.�t/u; SAiry.�t/v/

ˇ
ˇ

D sup
kuk

U
p
Airy

�1

ˇ̌
ˇ
ˇ

Z
u Nf dx dt

ˇ̌
ˇ
ˇ

� sup
kuk

U
p
Airy

�1
kukLpLqkf kLp0

Lq0

� ckf kLp0
Lq0 :

This implies the dual estimate of (17). If p > 2 we may combine the estimates with
an embedding to obtain the full Strichartz estimate.

Waves with different velocity interact at most in a time interval which is the
inverse of the differences of the velocities. Bilinear estimates quantify this fact.
For the Airy equation the group velocity is �3
2. We define the Fourier projection
u� by

Ou� D �1�j�j=��2.
/Ou

where Ou denotes the Fourier transform with respect to x. For solutions to the Airy
equation we obtain the estimate

ku�u�kL2.R2/ � c��1ku�.0/kL2.R/ku�.0/kL2.R/ (20)
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provided � � �=4. Again this implies for functions in U 2

ku�v�kL2 � c��1ku�kU 2
Airy
ku�kU 2

Airy
: (21)

The imbedding estimate (5) immediately implies the high modulation estimate

ku
kL2.R2/ � c��1=2kukV 2
Airy

(22)

where u
 is defined by the space-time Fourier multiplier �j���3j>
.
; 
/.
This set of tools is complemented by the interpolation estimate (2).

3.2 The Generalized KdV Equation

For integers p � 1 we consider the initial value problems

ut C uxxx C .upu/x D 0 (23)

u.0/ D u0 (24)

– the case p D 1 is the Korteweg-de-Vries equation, and p D 2 the modified
Korteweg-de-Vries equation, and

ut C uxxx C .jujpu/x D 0 (25)

u.0/ D u0 (26)

for positive real p.
Both equations have soliton solutions. They are invariant with respect to scaling:

�2=pu.�x; �3t/ is a solution if u satisfies the equation. The mass
R

u2dx and energyR
1
2

u2x � 1
pC2upC2 are conserved. The energy however is not bounded from below.

The space PH 1
2

� 2
p (with norm kv0k PH s D kj
js Ov0kL2 ) is invariant with respect to

this scaling and it is not hard to see that the generalized KdV equation is globally
wellposed in H 1 if p < 4. For p � 4 one expects blow-up. This has been proven in
series of seminal papers by Martel, Merle and Martel, Merle and Raphael for p D 4,
see [15–17] and the references therein.

The most prominent equation here is the KdV equation

ut C uxxx C .u2/x D 0:

The tools described here allow an alternative argument to prove local wellposed-
ness in H�3=4.R/. The order of derivatives cannot be improved by contraction
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arguments. There are however apriori estimates in H�1 by different techniques,
[1]. For the modified KdV equation

ut C uxxx C .u3/x D 0
one obtains local wellposedness in H 1=4, which again is optimal in terms of the
number of derivatives.

For the quartic KdV equation

ut C uxxx C .u4/x D 0
one obtains global existence by a contraction argument in the space

kukX D sup
�

��1=6ku�kU 2
Airy

for initial data in a Besov space PB�1=6
2;1 .R/. Statement and proof are contained in

[10], where it was one step to prove stability of the soliton in PB�1=6;21 , and scattering.
This is probably the first stability result of solitons for gKdV which is not based on
Weinstein’s convexity argument in the energy space.

Wellposedness in a slightly smaller spaces has been proven by Grünrock [2] and
Tao [20] based on a modification of the Fourier restriction spaces of Bourgain at the
critical level.

The quintic KdV equation

ut C uxxx C u5x D 0
is of particular interest since it is L2 critical. Since the work by Kenig, Ponce and
Vega it is known to be locally wellposed in L2. The local existence result has been
extended to all equations

ut C uxxx C jujpux D 0
with p � 4 in [19] in critical function spaces using the techniques above. The case
of polynomial (analytic) nonlinearities had been dealt with by Molinet and Ribaud
[18] using different techniques.

3.3 The Kadomtsev-Petviashvili II Equation

The Kadomtsev-Petviashvili-II (KP-II) equation

@x.@tuC @3xuC u@xu/C @2yu D 0 in .0;1/ � R
2 (27)

u.0; x; y/ D u0.x; y/ .x; y/ 2 R
2 (28)
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has been introduced by Kadomtsev and Petviashvili [9] to describe weakly trans-
verse water waves in the long wave regime with small surface tension. It generalizes
the Korteweg – de Vries equation, which is spatially one dimensional and thus
neglects transversal effects. The KP-II equation has a remarkably rich structure.

Here we describe a setup leading to global wellposedness and scattering for small
data. The Hilbert space will be denoted by PH�1=2;0 which is defined by through the
norm

ku0k PH�1=2 D kj
j�1=2 Ou0kL2

where 
 is the Fourier multiplier with respect to x. The Fourier multiplier j
j�1=2
defines an isomorphism from L2 to PH�1=2.

For � > 0 we define the Fourier projection to the 1 � j
j=� < 2 by

Ou� D ���j�j�2� Ou

where F denotes the Fourier transform and 
 the Fourier variable of x. Usually we
choose � 2 2Z, the set of integer powers of 2. We define X by

kukX D
 
X

�22Z

.��1=6ku�kV 2
KP
/2

!1=2
:

The following theorem has been proven in [3] with a proof relying on the space
U 2 and V 2.

Theorem 2. There exists ı > 0 such that for all u0 with ku0k PH�1=2 there exists a
unique solution

u 2 X � C.Œ0; T �I PH� 1
2
;0.R2//

of the KP-II equation (27) on .0;1/. Moreover, the flow map

Bı;R.0/ 3 u0 7! u 2 X

is analytic.

A duality argument reduces the proof to an estimate of a trilinear integral.
The functions there are expanded according to the Fourier projection, and the key
estimate is a bound for

ˇ
ˇ̌
ˇ

Z
u�1

v�2
w�3

dx dy dt

ˇ
ˇ̌
ˇ

Due to symmetry we may assume that �1 � �2 � �3. Since there is only a
contribution to the integral if there a point in the support of the Fourier transforms
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adding up to zero we can only get a contribution if �2 � �3, and only �1 may be
smaller. Since


1 � 
31 C �21=
1 C 
2 � 
32 C �22=
2
�Œ.
1 C 
2/� .
1 C 
2/3 C .�1 C �2/2=.
1 C 
2/�

D �3
1
2.
1 C 
2/� .
1�2 � 
2�1/
2


1
2.
1 C 
2/
there is only a contribution if at least for one j 2 f1; 2; 3g

j
j � 
3j C �2j =
j j � j
1
2.
1 C 
2/j;
j D 1; 2; 3 and 
3 D �
1� 
2, 
3 D �
1� 
2, �3 D ��1��2 in the support of the
Fourier transforms. We set � D �1�2�3=10 and expand u�1

D u

�1
C ulow

�1
, where

u
 is defined by the space-time Fourier multiplier

�j���3C�2=�j�
;

and similarly we decompose the other factors. We expand the trilinear integral.
There is only a nontrivial contribution if at least one of the terms u


�1
, v

�2

or w

�3

occurs. We apply Cauchy-Schwartz and estimate the corresponding term in L2.
For the other product we apply an L4 space-time Strichartz estimate, or a bilinear
estimate.

We obtain

ˇ
ˇ
ˇ
ˇ

Z
u�1v�2w��3dx dy dt

ˇ
ˇ
ˇ
ˇ � c.�1�2�3/

�1=2.�min=�max/
1
4 ku�1kV 2KP

kv�2kV 2KP
kw�3kV 2KP

and
ˇ
ˇ̌
ˇ
ˇ
ˇ

X

�1��2

Z
u�1

v�2
w
�3

dx dy dt

ˇ
ˇ̌
ˇ
ˇ
ˇ
� c��1

maxkukXkv�2
kV 2kw�2

kV 2

which suffices to conclude the proof.

3.4 The Energy Critical Nonlinear Schrrödinger Equation
on Compact Manifolds

We consider the quintic nonlinear Schrödinger equation on the three dimensional
torus T3, either focusing or defocusing

i@tuC�u D ˙juj4u: (29)
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On R
3 the space PH 1 is critical. We consider solutions on a unit time interval with

small initial data in H 1. We define the function space X by

kukX D





.1C k21 C k22 C k33/1=2ke�it�2.k2

1
Ck2

2
Ck3

3
/ OukV 2.0;1/







l2k .Z

3/
:

The following depends on a mix of previous arguments, and estimates for Gaussian
sums.

Theorem 3 ([6]). There exists ı > 0 such that given u0 2 H 1 with ku0kH1 < ı

there exists a unique solution u 2 X . This solution can be extended to a global
solution in time. The map from initial data to solution is real analytic. If u0 2 H 1

there is a local in time solution.

This result has been extended to global wellposedness on T 3 for large data in
H 1 by Ionescu and Pausader [8].

A similar mix of adapted function spaces, eigenfunction estimates and bounds
on Gaussian sums has been applied by the same authors to energy critical partial
periodic domains in R

4 [7], and by Herr to the quintic Schrödinger equation on the
three dimensional sphere [5].
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A Note on Metastable Behaviour
in the Zero-Range Process

Anton Bovier and Rebecca Neukirch

Abstract The zero-range process in the high density phase is known to show
condensation behaviour, i.e., a macroscopic fraction of particles is localised on
a single site under the canonical equilibrium measure. Recently, Beltrán and
Landim (Probab Theory Relat Fields 152(3–4):781–807, 2012) analysed some
aspects of the metastable behaviour of this process in one dimension for finite
systems in the limit of infinite density. In this note we show that the potential
theoretic approach to metastability initiated in Bovier et al. (Commun Math Phys
228(2):219–255, 2002) applies easily to this model and yields more detailed results.

1 Introduction

In a recent paper [2], Beltrán and Landim studied the metastable behaviour of the
zero-range process [13] in one dimension on a finite box, S D f1; : : : ; Lg, in the
limit where the number of particles tends to infinity. In this short note, we improve
their results using the methods of the so-called potential theoretic approach to
metastability, put forward in [8] also in the case that S is infinite. In particular,
we show that the model, considered in the limit, fits perfectly into the (simplest
instance) of that approach, that the definition of metastability given there applies,
and that the abstract results of that paper provide the usual sharp estimates on
mean metastable exit times and their exponential distribution. In addition, we show
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that some of the results can be extended to the case when L D L.N/ " 1 but
L.N/=N # 0.

1.1 The Model and Basic Properties

The zero-range process �.t/ is a continuous time Markov process on the state space

EN;S D
�
� 2 N

S W
LX

xD1
�x D N

�
; (1)

where �x 2 N represents the number of particles at site x 2 S . At any time a
particle at site x jumps to a site y with a rate of g.�x.t//r.x; y/, where r.�; �/ is an
irreducible transition probability of a reversible random walk X.t/ on S . Here, g is
chosen as

g.0/ D 0; g.1/ D 1 and g.n/ D a.n/

a.n � 1/ ; n � 2; (2)

with a.0/ D 1 and a.n/ D n˛ , for ˛ > 1. Formally, the process can be defined
through its generator,LN , that acts on functions, F 2 C.EN;S ;R/, via

LN .F /.�/ D
LX

xD1

X

y2S
g.�x/r.x; y/

�
F.�x;y/� F.�/�: (3)

Here �x;y is the configuration obtained from � by moving a particle on x to the
position y.

The zero-range process is irreducible and reversible with respect to its unique
invariant probability measure (see [1, 9, 11]) given by

�N .�/ D N ˛

ZN;S

Y

x2S

m�.x/�x

a.�x/
� N ˛

ZN;S

m
��

a.�/
; � 2 EN;S (4)

where m�.x/ D m.x/
M�

with M� D maxfm.x/ j x 2 Sg. Furthermore, m denotes
here the invariant measure of the random walk X.t/. Note that m�.x/ D 1, for all
x 2 S� � fx 2 S j m.x/ D M�g. ZN;S is the normalizing partition function,

ZN;S D N ˛
X

�2EN;S

m
��

a.�/
: (5)

A first observation is the following lemma [2, 11].
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Lemma 1. If L <1 is independent of N , then

lim
N"1

ZN;S D ZS D jS�j
� .˛/

Y

z2S
�z D jS�j� .˛/jS� j�1 Y

y…S�

�y ; (6)

where

�x �
X

j�0

m�.x/j

a.j /
and � .˛/ �

X

j�0

1

a.j /
: (7)

The interesting feature of this model is that it exhibits a condensation phenomenon
[10–12], namely the zero-range process shows condensation in the sense that
asymptotically, the invariant measure concentrates on disjoint sets of configurations,
E xN , described as follows: Fix a sequence f`N W N � 1g, where 1 � `N � N

such that

lim
N"1

`N D1 and lim
N"1

`N

N
D 0: (8)

We say that a configuration has a condensate at site x 2 S� if it belongs to the set

E xN � f� 2 EN W �x � N � `N g : (9)

A result of Großkinsky et al. ([11], Theorem 2) implies the following:

Theorem 1. Assume that L.N/=N # 0. Then one can choose `N such that

lim
N"1

�N

0

@
[

x2S�

E xN

1

A D 1: (10)

Note in particular that in the case when L is independent of N , the configurations
�x where �xx D N have positive measure, and indeed they are the configuration with
maximal measure.

The question addressed in [2] and here is how to describe the motion of the
systems between different condensate configurations.

2 Metastability

In this section we recall some basic facts about the potential theoretic approach to
metastability [5,6,8] and show in the next section how to apply this in the zero-range
process.
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2.1 Definitions and Results

Consider a reversible Markov process X.t/ with discrete state space E , generator
L, and reversible measure �. For A;B � E we define the equilibrium potential
hA;B as the solution of the Dirichlet problem

� .Lh/.�/ D 0; � 2 .A [ B/c (11)

h.�/ D 1; � 2 A
h.�/ D 0; � 2 B:

The equilibrium measure eA;B on A is given by

eA;B.�/ � �.LhA;B /.�/; � 2 A: (12)

The capacity of the pair .A;B/ is then defined as

cap.A;B/ �
X

�2A
�.�/eA;B.�/: (13)

These objects have probabilistic content. Namely,

hA;B.�/ D P� .
A < 
B/ ; � 2 .A[ B/c (14)

and

eA;B.�/ D P� .
B < 
A/ ; � 2 A: (15)

Here 
A denotes the stopping times 
A D inf ft > 0 W X.t/ 2 Ag.
The importance of capacities for the analysis of metastability is due to the

representation of mean hitting times (see e.g. [5])

E�A;B
Œ
B � D

X

�2EnB

�.
/

cap.A;B/
hA;B.
/; (16)

for �A;B , the so-called last exit measure on A, namely for � 2 A,

�A;B.�/ � �.�/eA;B.�/

cap.A;B/
: (17)

In the case when A D f�g is a single point, this simplifies to

E� Œ
B � D
X

�2EnB

�.
/

cap.�; B/
h�;B.
/: (18)

This latter formula is useful in the case when L is independent of N .
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Dirichlet’s principle gives a variational characterisation of capacities. For two
disjoint subsets A;B � EN;S , define the set of functions

H .A;B/ D fF W E " RC j F.�/ D 1; 8� 2 A; F.�/ D 0; 8� 2 Bg : (19)

Then

cap.A;B/ D inf
F2H .A;B/

˚.F /; (20)

where ˚.F / � .F;LF /� is the Dirichlet form of the process.
In [8], metastability with respect to a set of points was characterized as follows:

Definition 1. A Markov process X.t/ is metastable with respect to a set M , if

sup�2M cap.�;M n�/=�.�/
inf�2Mc cap.
;M /=�.
/

� 	� 1: (21)

Definition 2. For all � 2M , the valley A.�/ of the attractor � is given by

A.�/ D f
 2 E W P�.
� D 
M / D sup
�2M

P�.
� D 
M /g: (22)

From [8] we know:

Theorem 2. Consider a Markov process X.t/ which is metastable with respect to
M . For every � 2M we have that

(i)

E�Œ
Mn� � D �.A.�//

cap.�;M n�/ .1C o.1//; (23)

(ii) For t > 0

P�

�

Mn� > tE� Œ
Mn� �

� D e�t.1Co.1//.1C o.1//: (24)

3 Results for the Zero-Range Process

Finite L. First, we state the results for the zero-range process whenL <1 is fixed
and N " 1.

Proposition 1. The zero-range process f�.t/ W t � 0g is metastable with
respect to M D S

x2S�

�x and 	 D O.r 0�1L.L2 C N/N�˛�1/, where r 0 �
infu2S r.u; u˙ 1/.
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To analyse the metastable behavior of the zero-range process we only need to
compute capacities between configurations (cf. Definition 1).

For 0 � s � 1
2

define

I˛.s/ �
Z 1�s

s

u˛.1 � u/˛du; (25)

and for S 0� 
 S�, S 0� ¤ ; set

�S
0

� �
[

x2S 0

�

�x : (26)

Theorem 3. Assume L <1 independent of N . Let S1� ¨ S� and S2� 
 S�nS1� be
two nonempty sets. We have that

capN .�
S1

� ; �S
2
� / D N�˛�1

2M�jS�j� .˛/I˛.0/.1C o.1//

� inf
W 2W .S1

�
;S2

�
/

X

x;y2S�

capS .x; y/ŒWy �Wx�2; (27)

where W .S1� ; S2�/ D fW 2 Œ0; 1�S� jWz D 1;8z 2 S1� andWz D 0;8z 2 S2�g.
Remark 1. Note that the second line in (27) is the conductance between S1� and S2�
of a resistor network on S� with conductances capS .x; y/ between nodes in S�.

These results allow to use Theorem 2 to obtain the following corollary for the
metastable exit times:

Corollary 1. For a zero-range process f�.t/ W t � 0g with metastable set M we
have for every �x 2M

(i) The metastable mean exit time is given by

E�x

�

Mn�x

� D N ˛C1M�I˛.0/� .˛/P
y2S�nfxg capS .x; y/

.1C o.1//; (28)

(ii) For t > 0 the metastable exit time is exponentially distributed

P�x

�

Mn�x > tE�x Œ
Mn�x �

� D e�t.1Co.1//.1C o.1//: (29)

Remark 2. Combining the remark above with this corollary, one sees that in the
limit of large N , on the time-scale N 1C˛, the zero range process observed on
the set f�x; x 2 S�g behaves like a continuous time random walk with transition
ratesM�I˛.0/� .˛/capS .x; y/=

P
z2S�nfxg capS .x; z/. This is a different version of

a similar statement in [2].
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Diverging L. In the case where L D L.N/ " 1 in such a way that L.N/=N # 0
we get weaker results. Note that in this case, the transitions rates r.x; y/ will in
general depend on L, and hence on N . Also, the sets S� will typically depend on
L. We suppress these dependences to simplify the notation. We define for S 0� 
 S�,
S 0� ¤ ;

EN .S
0�/ D

[

x2S 0

�

E xN and EN D EN .S�/: (30)

In the general case, we can only show that the lower bound of capacity between
sets EN .S1�/ and EN .S2�/ coincides with the upper bound up to a constant. But for
disjoint partitions of S� we get the following theorem:

Theorem 4. Assume that jS�j � 2 and L.N/ " 1 such that L.N/=N # 0. Let
S1� ¨ S� and S2� D S�nS1� be two nonempty sets. Then

capN .EN .S
1�/;EN .S2�// D

N�˛�1

M�jS�j� .˛/I˛.0/
X

x2S1
�
;y2S2

�

capS .x; y/.1C o.1//:

(31)

In view of the representation of mean hitting times (16), we get:

Corollary 2. Let L.N/ " 1 such that L.N/=N # 0. The metastable exit time for
the zero-range process from a set E xN , where x 2 S�, is given by

E�E x
N

;EN nE x
N

h

EN nE x

N

i
D N ˛C1M�� .˛/I˛.0/P

y2S�nfxg capS .x; y/
.1C o.1//: (32)

Remark 3. One would like to show that the assertion of the corollary also holds for
the process starting in a single configuration �x , and that the law of the exit time is
exponential. Such a result has been obtained in a different model [3] using coupling
techniques, but this seems difficult in the present case.

4 Proofs of the Results

4.1 Capacity

We start with the proof of Theorem 3. For the proof we calculate lower and upper
bounds for capacities which coincide in the limit N " 1 and L fixed.
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4.1.1 Lower Bound

We begin by proving an a priori bound on the equilibrium potential that shows that
it is almost constant on the sets E xN ; x 2 S�.

Lemma 2. Let S i� � S� be disjoint for i 2 f1; 2g and let W denote the equilibrium

potential for the capacitor �S
1
� ; �S

2
� . Then there is a constantK˛, such that for any

z 2 S�, and 
; 
 0 2 E z
N ,

jW.
/�W.
 0/j � K˛L.L
2 CN/

N 1C˛r 0 ; (33)

where r 0 � infu2S r.u; u˙ 1/.
Proof. Clearly

W.
/ D P� Œ

�S1

�

< 

�S2

�

�

D P� Œ
�0 < 

�S1

�

; 

�S1

�

< 

�S2

�

�C P� Œ

�S1

�

< 

�S2

�

; 
�0 > 

�S1

�

�

D P� Œ
�0 < 

�S1

�

�P�0 Œ

�S1

�

< 

�S2

�

�C P� Œ

�S1

�

< 

�0[�S2

�

�

D .1� P� Œ

�S1

�

< 
�0 �/W.
 0/C P� Œ

�S1

�

< 

�0[�S2

�

�: (34)

Using the renewal equation (Lemma 4.1 in [4]), this yields

 

1 �
P� Œ


�S1
�

< 
� �

P� Œ
�0 < 
� �

!

W.
 0/ � W.
/ � W.
 0/C
P� Œ


�S1
�

< 
� �

P� Œ
�0 < 
� �
: (35)

In Sect. 4, Proposition 4 below, we show that

P� Œ

�S1

�

< 
� �

P� Œ
�0 < 
� �
� K˛r 0�1L.L2 CN/N�1�˛ ; (36)

which implies the assertion of the lemma. ut
Remark 4. This result is most useful if L is fixed andN tends to infinity, but it also
allows to push these results to cases of slowly growing L D L.N/.

We first prove a lower bound for given values of N and L.
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Fig. 1 Restriction of the transition rates

Proposition 2. Assume that jS�j � 2. Let S1� ¨ S� and S2� 
 S�nS1� be two
nonempty sets. Set ı � r 0�1L.L2 CN/N�1�˛ and assume that ı � 1. Then

capN .EN .S
1�/;EN .S2�// � inf

W 2W .S1
�
;S2

�
/

X

x;y2S�

capS .x; y/ŒWy �Wx�2

� N�˛�1

2M�I˛.0/ZN;S

`NX

kD0

X

�2Ek;S0

m
��

a.
/
.1 �O.ı// ; (37)

where S0 is the set S without two sites of S�.

Proof. As usual (see e.g. [4]), a lower bound is obtained using the monotonicity of
the Dirichlet form of the zero-range process

˚N .F / D 1

2

X

z;w2S

X

�2EN

�N .�/r.z;w/g.�z/
�
F.�z;w/ � F.�/�2; (38)

for a fixed function F 2HN .EN .S1�/;EN .S2�//. The strategy is to set rates to zero
until one obtains one-dimensional disjoint paths. Then the sum over the Dirichlet
forms of the one-dimensional paths yields a lower bound for the Dirichlet form in
(38) and hence for the capacity (see Fig. 1).

For each 
 2 Ek;S , k 2 f0; : : : ; `N g, we get exactly one one-dimensional path.
For each pair x; y 2 S� it consists of the path-segments f
; px;yg, where first the
remainingN�k particles are on site x and than jump one by one until they reach site
y. This means that only one particle is jumping at any time (see Fig. 2). Let f
; px;yg
be the configuration f
; px;ygz D 
z, for all z 2 Snfx; yg, f
; px;ygx D 
x C p and
f
; px;ygy D 
y CN � k � p � 1 for each p 2 f0; : : : ; N � k � 1g.

The path-segments are disjoint for the following reason. Let f
; px;yg,
f
 0; px;yg 2 EN�1;S be two different path-segments. Assume that at some time
t these paths-segments coincide in one configuration due to the jump of the one
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Fig. 2 Jump of the one particle in a path-segment

Fig. 3 Disjoint paths

particle. Since f
; px;yg and f
 0; px;yg are different, the sites differ in which the one
particle is at time t . Thus, in the next step, particles from different sites jump such
that the resulting configurations are different and hence the paths-segments do not
merge (see Fig. 3).

With the strategy described above we obtain one-dimensional paths which consist
of a Dirichlet form of a zero-range process on two sites multiplied with a term which
we can estimate by the capacity of the underlying random walk.

Let dz 2 E1;S be the configuration with exactly one particle on the site z 2 S
(the one jumping particle). Thus, we estimate (38) from below by

˚ red
N .h�/ D 1

4

`NX

kD0

X


2Ek;S

X

x;y2S�

N�k�1X

pD0

X

z;w2S

�N .f
; px;yg C dz/g.f
; px;ygz C 1/r.z;w/

� Œh�.f
; px;yg C dw/� h�.f
; px;yg C dz/�
2; (39)

where h� is a function in HN .EN .S1�/;EN .S2�//. Inserting the definition of �N and
g, (39) equals

N˛

4ZN;SM�

`NX

kD0

X

�2Ek;S

X

x;y2S�

m
��

a.
nfx; yg/
N�k�1X

pD0

1

a.
x C p/a.
y CN � k � p � 1/

�
X

z;w2S
m.z/r.z;w/Œh�.f
; px;yg C dw/ � h�.f
; px;yg C dz/�

2; (40)
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where 
nfx; yg is the configuration without the sites x; y. Now we fix x; y 2 S�
and a configuration 
 2 Ek;S and let the function fx;y W S " R be given by

fx;y.v/ D h�.f
; px;yg C dv/ � h�.f
; px;yg C dy/

h�.f
; px;yg C dx/� h�.f
; px;yg C dy/
:

Obviously, fx;y is a function in B.x; y/ D ff W S " RCjf .x/ D 1; f .y/ D 0g.
Inserting fx;y in (40), the sum over z;w 2 S equals

2DS .fx;y/
�
h�.f
; px;yg C dx/� h�.f
; px;yg C dy/

�2
: (41)

Since fx;y 2 B.x; y/ andDS .fx;y/ � capS .x; y/ we get for (40) the lower bound

N˛

2ZN;SM�

`NX

kD0

X


2Ek;S

X

x;y2S�

capS .x; y/
m


�

a.
nfx; yg/

�
N�k�1X

pD0

1

a.
x C p/a.
y CN � k � p � 1/
Œh�.f
; px;yg C dx/� h�.f
; px;yg C dy/�

2

� N˛

2ZN;SM�

`NX

kD0

X


2Ek;S

inf
W.
/2W .S1� ;S

2
�/

X

x;y2S�

capS .x; y/
m


�

a.
nfx; yg/

� inf
hW.
/2HN .EN .S

1
�
/;EN .S

2
�
//

hW.
/.�/DWx.
/;8�2E x
N

etaW.
/.�/DWy.
/;8�2E
y
N

N�k�1X

pD0

ŒhW.
/.f
; px;yg C dx/� hW.
/.f
; px;yg C dy/�
2

a.
x C p/a.
y CN � k � p � 1/

D N˛

2ZN;SM�

`NX

kD0

X


2Ek;S

inf
W.
/2W .S1�;S

2
�/

X

x;y2S�

capS .x; y/
m


�

a.
nfx; yg/ ŒWx.
/�Wy.
/�
2

� inf
h
2HN .EN .S

1
�[x/;EN .S

2
�[y//

N�k�1X

pD0

Œh
.
x C p C 1/� h
.
x C p/�2

a.
x C p/a.
y CN � k � p � 1/
: (42)

Due to the boundary conditions of the function h� the last sum of (42) reduces to

inf
h�2HN .EN .S

1
�

[x/;EN .S
2
�

[y//

N�`N ��x�1X

pD`N �kC�y

Œh�.
x C p C 1/� h�.
x C p/�2
a.
x C p/a.
y CN � k � p � 1/ :

(43)

This is just a Dirichlet form of a zero-range process on the two sites x and y and it
is minimized by the function (see [4])

H.x/ D
Px
qD`N �kC�xC�yC1 a.q � 1/a.N � k C 
x C 
y � q/

PN�`N ��x

qD`N �kC�xC�yC1 a.q � 1/a.N � k C 
x C 
y � q/
: (44)
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Thus for p 2 Œ`N � k C 
y ; N � `N � 
x � 1� we obtain

H.
x C p C 1/�H.
x C p/ � a.�xCp/a.�yCN�k�p�1/
PN �`N ��x�1

pD`N �kC�y
a.�x Cp/a.�yCN�k�p�1/ : (45)

Inserting (45) in (43) yields the lower bound

D 1
PN�`N ��x�1
pD`N �kC�y

a.
x C p/a.
y CN � k � p � 1/
: (46)

Since this lower bound depends on the configuration 
 only through the number of
particles k, we get for fixed k that this is bounded from below by



N 2˛C1I˛.0/

��1
.

Combining (42) with Lemma 2 yields the lower bound

N�˛�1

2ZN;SM�I˛.0/

`NX

kD0

X


2Ek;S

inf
W2W .S1�;S

2
�/

X

x;y2S�

m


�

a.
nfx; yg/ capS .x; y/ŒWx �Wy C O.ı/�2

D N�˛�1

2ZN;SM�I˛.0/
inf

W2W .S1� ;S
2
�/

X

x;y2S�

capS .x; y/ŒWx �Wy�
2

`NX

kD0

X


2Ek;S0

m


�

a.
/
.1� O.ı// ;

(47)

which proves the proposition. ut
Note that in case that S2� D S�nS1� , Lemma 2 is not needed in the proof and thus

the error term disappears. This implies the lower bound for Theorem 4.
If ı # 0, and hence in particular when L is independent of N , it is easy to see

that due to the fact Lemma 2 implies that the equilibrium potential W in the sets
E xN , x 2 S1� and x 2 S2� are close to 1 and 0, respectively. Then it is straightforward

to see that the same bound as in (37) holds for capN
�
�S

1
� ; �S

2
�

	
, provided ı # 0.

This provides the lower bound for Theorem 3.

4.1.2 Upper Bound

To prove an upper bound we follow the methods in [8]. Großkinsky et al. [12] have
shown that above a critical particle density 	c the condensation phenomenon occurs.

Proposition 3. Let � > 0, C� an �-dependent constant and jS�j � 2. Let S1� ¨ S�
and S2� 
 S�nS1� be two nonempty sets. We have

capN .�
S1

� ; �S
2
� / � capN .EN .S

1
�
/;EN .S

2
�
// � inf

W2W .S1�;S
2
�/

X

x;y2S�

capS .x; y/ŒWy �Wx�
2

� N�˛�1

2ZN;SM�I˛.3�/

`NX

mD0

X


2Em;S0

m


�

a.
/

�
1C O

�
`N

�N

��

C LC�N
�˛�1

.`N � L	c/˛
: (48)
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Proof. The first inequality in (48) is obvious. We start by choosing a test function
out of the set HN .E xN ;E

y
N /, with x; y 2 S�. As in [2] we choose a test function

depending on the function which solves the variational problem for the capacity of
the underlying random walk and on the harmonic function of a zero-range process
on two sites:

Gx;y.�/ D
L�1X

kD1
Œfxy.zk/ � fxy.zkC1/�H

 
�x

N
Cmin

(
1

N

kX

nD2
�zn
; �

)!

; (49)

where x D z1; z2; : : : ; zL D y is an enumeration of S such that fxy.zi / � fxy.zj /,
for all i < j with i; j 2 f1; ::; Lg and fxy is the harmonic function in B.x; y/.
The function H W f0; : : : ; N�m

N
g " RC is the harmonic function of the zero-range

process on two sites

H.z/ D
PbzN c
qDb3�N cC1 a.q � 1/a.N �m � q/

PN�b3�N c�1
qDb3�N c a.q/a.N �m � q � 1/

; (50)

with boundary value conditions

H.z/ D 0; 8z 2 f0; ::; b3�N cg;
H.z/ D 1; 8z 2 fN � b3�N c; : : : ; N g: (51)

Observe that Gx;y belongs to the set HN .E xN ;E
y
N /.

For x; y 2 S� we estimate the Dirichlet form on the set of configurations

F
x;y
N D f� 2 EN W �x C �y � N � `N g W

˚N .G
x;y jF x;y

N / D 1

2

X

1�i;j�L

X

�2F
x;y
N

�N .�/g.�zi /r.zi ; zj /ŒG
x;y .�zi ;zj /�Gx;y.�/�2

D N˛

2ZN;S

X

1�i;j�L

X

�2F
x;y
N

m
�
�

a.�/

a.�zi /

a.�zi �1/
r.zi ; zj /ŒG

x;y .�zi ;zj /�Gx;y.�/�2

� N˛

2ZN;SM�

X

1�i;j�L

m.zi /r.zi ; zj /

X


2EN�1;S

xC
y�N�`N�1

m


�

a.
/
ŒGx;y .
 C dzj /�Gx;y.
 C dzi /�

2: (52)

By the definition of Gx;y we obtain
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˚N .G
x;y jF x;y

N / � N˛

2ZN;SM�

X

1�i;j�L

m.zi /r.zi ; zj /
X


2EN�1;S

xC
y�N�`N�1

m


�

a.
/

"
L�1X

kD1



fxy.zk/� fxy.zkC1/

�

�
 

H

 

x

N
C

kX

nD2


zn

N
C �fk�ig

N

!

�H

 

x

N
C

kX

nD2


zn

N
C �fk�jg

N

!!#2

: (53)

Fix two sites zi ¤ zj 2 S with i < j . Since m�.x/ D m�.y/ D 1 and setting

mk �
Pk
nD2 
zn

, we get for the sum over the configurations 
 in (53) the upper
bound

`NX

mD0

X

�2Em;Snfx;yg

m
�
�

a.�/

N�b3�Nc�1X

pDb2�Nc

1

a.p/a.N �m� p � 1/

�
"
j�1X

kDi



fxy.zk/� fxy.zkC1/

� �
H

�
p Cmk C 1

N

�
�H

�
p Cmk

N

��#2

: (54)

The sum over p only runs from b2�N c to N � b3�N c � 1 due to the boundary
conditions (51). Inserting the explicit form (50) yields

`NX

mD0

X

�2Em;Snfx;yg

m
�
�

a.�/

N�b3�Nc�1X

pDb2�Nc

1

a.p/a.N �m� p � 1/

�
"
j�1X

kDi



fxy.zk/� fxy.zkC1/

� a.p Cmk/a.N �m�mk � p � 1/
PN�b3�Nc�1

qDb3�Nc
a.q/a.N �m� q � 1/

#2

: (55)

Since mk � `N and p � b2�N c, we can estimate

a.p Cmk/ D a.p/
�
1C mk

p

	˛ � a.p/
�
1C `Nb2�N c

	˛ � a.p/
�
1C O

�
`N

�N

		
;

and a.N �m �mk � p � 1/ � a.N �m � p � 1/. Inserting these estimates into
(55) yields the upper bound

`NX

mD0

X

�2Em;Snfx;yg

m
�
�

a.�/

N�b3�Nc�1X

pDb2�Nc

1

a.p/a.N �m� p � 1/

�
"
j�1X

kDi



fxy.zk/� fxy.zkC1/

� a.p/a.N �m� p � 1/
PN�b3�Nc�1

qDb3�Nc
a.q/a.N �m� q � 1/

�
1C O

�
`N
�N

		#2
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� Œfxy.zi /� fxy.zj /�
2

`NX

mD0

X

�2Em;Snfx;yg

m
�
�

a.�/

PN�b3�Nc�1

pDb2�Nc
a.p/a.N �m� p � 1/

�PN�b3�Nc�1

qDb3�Nc
a.q/a.N �m� q � 1/

	2

�
�
1C O

�
`N
�N

		
: (56)

For j < i we get the same bound. Now note that

PN�b3�N c�1
pDb2�N c a.p/a.N �m � p � 1/

�PN�b3�N c�1
qDb3�N c a.q/a.N �m � q � 1/

	2 D
1CR

PN�b3�N c�1
pDb3�N c a.p/a.N �m� p � 1/

(57)

with

R D
Pb3�N c�1
pDb2�N c a.p/a.N �m � p � 1/

PN�b3�N c�1
pDb3�N c a.p/a.N �m � p � 1/

: (58)

It is easy to see that

R D O
� b�N c
N�b�N c

	
: (59)

Thus we obtain for (53) the upper bound

N ˛

2ZN;SM�

X

1�i;j�L
m.zi /r.zi ; zj /Œfxy.zi /� fxy.zj /�2 (60)

�
`NX

mD0

X

�2Em;Snfx;yg

m
��

a.�/

1
PN�b3�N c�1
pDb3�N c a.p/a.N �m � p � 1/

�
1C O

�
`N

�N

		
:

The sum over i; j in (60) is just the capacity of the underlying random walk between
the two sites x and y. Since

N�b3�N c�1X

pDb3�N c
a.p/a.N �m� p � 1/ � N 2˛C1I˛ .3�/

�
1 �O

�
`N

N

		
; (61)

we get for (60)

˚N .G
x;y jF x;yN / � N�˛�1 capS .x; y/

ZN;SM�I˛.3�/

`NX

mD0

X

�2Em;S0

m
��

a.�/

�
1CO

�
`N

�N

		
:

(62)
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Now we can calculate an upper bound for the desired capacity:

capN .EN .S
1�/;EN .S2�// D inf

G2HN .EN .S
1
�
/;EN .S

2
�
//

˚N .G/

� inf
W 2W .S1

�
;S2

�
/

˚N .G
S
W /; (63)

where the test functionGSW 2HN .EN .S1�/;EN .S2�// is an appropriate combination
of an interpolation and convex combinations of the functions Gx;y , x; y 2 S�, also
defined on the set of configurationsEN;SnSx;y2S�

F
x;y
N (the detailed construction

of GSW can be found in [7]). For (63) (cf. [7]) we get the upper bound

D inf
W 2W .S1

�
;S2

�
/

1

2

X

x;y2S�

˚N .G
x;y jF x;yN /ŒWy �Wx�2 C LC�N

�˛�1

.`N � L	c/˛ ; (64)

where the last term comes from the calculation of the Dirichlet form on the set of
configurationsEN;SnSx;y2S�

F
x;y
N (cf. [7]). Inserting (62) yields the desired upper

bound

capN .EN .S
1� /;EN .S2�// � inf

W 2W .S1
�
;S2

�
/

X

x;y2S�

capS .x; y/ŒWy �Wx �2 (65)

� N�˛�1
2ZN;SM�I˛.3�/

`NX

mD0

X

�2Em;S0

m
��

a.
/

�
1C O

�
`N

�N

��

C LC�N
�˛�1

.`N � L	c/˛
: ut

4.2 Proofs of Theorems 3 and 4

Proof (of Theorem 3). By the remark after the proof of Proposition 2, and using
Lemma 1, we get in the case of fixed L the lower bound

capN
�
�S

1
� ; �S

2
�

	
� N�˛�1.1Co.1//

2ZSM�I˛.0/
inf

W2W .S1
�
;S2

�
/

X

x;y2S�

capS .x; y/ŒWx �Wy�
2

`NX

kD0

X


2Ek;S0

m


�

a.
/
:

(66)

With the definitions (7) and (6), the sum over k in (66) converges for N " 1 to

X

k�0

X

�2Ek;S0

m
��

a.�/
D
Y

z2S0

X

j�0

m�.z/j

a.j /
D
Y

z2S0

�z D ZS

jS�j� .˛/ : (67)

This gives the lower bound for (27). For the upper bound we insert the bound
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`NX

mD0

X

�2Em;S0

m
��

a.
/
� ZS

jS�j� .˛/ (68)

into (65) and use Lemma 1. We obtain the upper bound for (27). This concludes the
proof of Theorem 3. ut
Proof (Theorem 4). Assume L.N/ " 1, such that L.N/=N " 0. In the case where
S1� and S2� are a partition of S� the lower bound takes the form

capN .EN .S
1�/;EN .S2�// �

N�˛�1

M�I˛.0/
X

x2S1
�
;y2S2

�

capS .x; y/
1

ZN;S

`NX

kD0

X

�2Ek;S0

m
��

a.
/
:

(69)

We can estimate the last expression of (69) by the measure of the set E xN , for x 2 S�
and get

capN .EN .S
1�/;EN .S2�// �

N�˛�1.1C o.1//
M�jS�jI˛.0/� .˛/

X

x2S1
�
;y2S2

�

capS .x; y/: (70)

In the case of a partition we get from (65) with the estimation (68) the upper bound

capN .EN .S
1
�
/;EN .S

2
�
// � N�˛�1ZS

M�jS�jI˛.0/� .˛/ZN;S
X

x2S1
�
;y2S2

�

capS.x; y/ .1C o.1// :

(71)

Since ZS

ZN;S
D 1C o.1/ we obtain

capN .EN .S
1�/;EN .S2�// �

N�˛�1.1C o.1//
M�jS�jI˛.0/� .˛/

X

x2S1
�
;y2S2

�

capS .x; y/: (72)

Combining (70) and (72) yields Theorem 4. ut

4.3 Metastability of the Zero-Range Process

We now prove Proposition 1 for L <1.

Proposition 4.

sup�2M capN .�;M n�/=�N .�/
inf�2Mc capN .
;M /=�N .
/

� O.r 0�1L.L2 CN/N�˛�1/: (73)

Proof. We already have shown an upper bound for the numerator. The following
Lemma bounds the denominator from below.
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z y x xyz

1.
2.

Fig. 4 Way of the particles in the chosen path

Lemma 3. Let r 0 D minu2S r.u; u˙ 1// > 0, 
 2M c and K.˛/ an ˛-dependent
constant. We have that

capN .
;M /

�N .
/
� r 0L�1

.L2 CN/jS�jK.˛/ : (74)

First we proof Lemma 3 for a zero-range process with only three attractors, i.e.,
jS�j D 3, and afterwards we show that it holds also for any jS�j based on an
algorithm.

Proof (The Case jS�j D 3). Let S� D fx; y; zg and r.x; y/ � r.x; z/ � r.y; z/.
For estimating the capacity from below we only consider one path from 
 to M .
We choose the path where firstly all particles of a valley jump on its attractor. The
resulting configuration, where only the three attractors are occupied, is called �.
Then we let all particles of the lower occupied attractor in the big valleyA.x/[A.y/
jump on the higher occupied attractor. Thus we get the configuration �xy with only
two occupied sites. Finally all particles from the lower occupied site of �xy jump to
the higher occupied site (see Fig. 4). Since

capN .
;M / � 1

cap�1
N .
; �/C cap�1

N .�; �
xy/C cap�1

N .�xy ;M /
; (75)

we have to calculate a lower bound for each capacity on the right hand side of (75).
For any w 2 S� let .w/n be a distance to w increasing enumeration ofA.w/nfwg and

iw � 
w CPi�1

jD1 
wj
, the number of particles on site w before the particles of site

wi jump on the attractor w. Let be jwj D maxfdist.w;wi /jw 2 S�;wi 2 .w/ng. For
each transition of the particles from site wi to site w, via nearest neighbor jumps,
we estimate the explicit formula for the capacity of the one dimensional chain (see
Chap. 8.1 in [4]). Thus we get for the capacity between 
 and � the lower bound

cap�1
N .
; �/ �

X

w2S�

j.w/njX

iD1

�wi
�1X

kD0

jwj.N � 1/˛
�N .f
wi

� k; 
iw C kg/r 0N ˛
; (76)
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where f
wi
� k; 
iw C kg is the configuration:

f
wi
� k; 
iw C kgv D

8
ˆ̂
ˆ̂<

ˆ̂
ˆ̂:


v; for all v 2 SnA.w/ and v 2 fwn W n > ig
0; for all v 2 fwn W n < ig

wi
� k; for v D wi


iw C k; for v D w:

Note that the �N -measure of the configuration increases after each transition of a
particle, because there are more particles on condensate-sites. Equation (76) equals

X

w2S�

j.w/njX

iD1

�wi
�1X

kD0

ZN;S jwj
N˛

a.f
wi
� k; 
 iw C kgnfwi ;wg/

m
f�wi

�k;�i
wCkgnfwi g

�

a.
wi
� k/a.
 iw C k/.N � 1/˛
m�.wi /�wi

�kN˛

D
X

w2S�

j.w/njX

iD1

ZN;S jwj
N˛

a.f
wi
� k; 
 iw C kgnfwi ;wg/a.
 iw/a.
wi

/

m
f�wi

�k;�i
wCkgnfwi g

� m�.wi /�wi r 0

�
�wi

�1X

kD0

�
1 � k

�wi

	˛ �
1C k

�i
w

	˛ �
1 � 1

N

	˛
m�.wi /k : (77)

The sum over k in (77) is bounded by L times an ˛-dependent constant K 0.˛/.
Observe that in the case where 
1w is zero, a.
1w/ D 1 and we can use the same
estimation. We obtain

cap�1
N .
; �/ �

X

w2S�

j.w/njX

iD1

jwjLK 0.˛/
�N .f
wi

; 
iwg/r 0 �
X

w2S�

j.w/njX

iD1

L2K 0.˛/
�N .f
wi

; 
iwg/r 0 : (78)

If �x D N or �y D N we can stop here, because we already have a configuration
in M . Otherwise we continue the estimation of the capacities. Without loss of
generality let �x � �y . A similar estimation of the formula of the one-dimensional
chain yields

cap�1
N .�; �xy/ �

�x�1X

kD0

dist.x; y/.N � 1/˛
�N .f�x � k; �y C kg/r 0N ˛

D ZN;S dist.x; y/

N ˛

a.�nfx; yg/
r 0m��

�x�1X

kD0

a.�x � k/a.�y C k/.N � 1/˛
N ˛

D dist.x; y/

�N .�/r 0
�x�1X

kD0

�
1 � k

�x

�˛ �
1C k

�y

�˛ �
1 � 1

N

�˛
; (79)
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where f�x�k; �yCkg 2 EN;S is the configuration where all sites are empty except
for site x with �x � k particles, site y with �y C k particles and the site z with �z

particles on it. Observe that �x

�y
� 1. For all k 2 f1; : : : ; �x � 1g we have that

�
1 � 1

N

�˛
� 1;

�
1 � k

�x

�˛
� 1 and

�
1C k

�y

�˛
� 2˛: (80)

Since �x , �y < N , we can estimate the sum in (79) by 2˛N from above and get

cap�1
N .�; �xy/ � 2˛N dist.x; y/

�N .�/r 0 � 2˛NL

�N .�/r 0 : (81)

If �xyy D N we can stop here. Otherwise we continue the estimation of the
capacities. Without loss of generality let �xyz � �xyy . A similar estimation yields

cap�1
N .�

xy ;M / � 2˛N dist.y; z/

�N .�xy/r 0 �
2˛NL

�N .�xy/r 0 : (82)

Combining (78), (81) and (82) we get for the capacity capN .
;M /=�N .
/ the
lower bound

"
L2K 0.˛/

r 0
X

w2S�

j.w/njX

iD1

�N .
/

�N .f
wi
; 
iwg/

C2
˛NL

r 0

�
�N .
/

�N .�/
C �N .
/

�N .�xy/

�#�1
: (83)

Since there are more particles on the sites of S� in the configurations f
wi
; 
iwg; �

and �xy than in the configuration 
, we have that �N .�/

�N .f�wi
;�i

wg/ ;
�N .�/
�N .�/

; �N .�/
�N .�

xy/
� 1.

Thus, we can continue

capN .
;M /

�N .
/
�
�
L3K 0.˛/jS�j

r 0 C 2˛.jS�j � 1/NL
r 0

��1

� r 0L�1

.L2 CN/jS�jK.˛/ : (84)

ut
Proof (The Case jS�j > 3). The following algorithm generalizes the case to
jS�j > 3. Fix a configuration 
 …M . First we let all particles in a valley jump on its
attractor. From the resulting configuration we construct a labeled tree. Each attractor
corresponds to a leaf of the tree which is labeled with its occupation number. The
local maxima of the potential of the random walk on S are the vertices of the tree
where the biggest one is the root of the tree. The root is connected with the vertices
of the next two biggest local maxima and so on (see Fig. 5).
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Fig. 5 Construction of the tree

x x

Fig. 6 Algorithm for jS�j D 3

The algorithm works as follows: For each pair of leaves we calculate the length of
the shortest path between them and choose the pair of leaves with the shortest path.
If there are multiple shortest paths of the same length, we choose the one with the
lowest labeled leaf. Next we increase the label of the higher labeled leaf in the pair
by the value of the label of the lower labeled leaf and delete this one. We continue
this procedure until we obtain a tree with only one leaf. This algorithm describes
one path from the configuration 
 … M to a configuration in M , because the final
tree corresponds to such a configuration in M . Thus for the general case we have
to calculate at most jS�j � 1 transitions between condensate-sites, i.e., we have to
estimate at most jS�j � 1 capacities. Hence (84) also holds in the general case.
Figure 6 illustrates the algorithm for the case jS�j D 3. ut
We now conclude the proof of the proposition. Using Theorem 3 and Lemma 1
yields

sup
w2S�

capN .�
w;M n�w/

�N .�w/
D sup

w2S�

N�˛�1ZN;S .1Co.1//
M�jS�jI˛.0/� .˛/

X

v2S�nfwg
capS .w; v/ (85)

D sup
w2S�

N�˛�1ZS
jS�jM�I˛.0/� .˛/

X

v2S�nfwg
capS .w; v/.1Co.1//;

where �N .�w/ D 1
ZN;S

is the configuration with all N particles at the site w. For
the denominator we use Lemma 3 and get the desired result
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sup�2M capN .�;M n�/=�N .�/
inf
2Mc capN .
;M /=�N .
/

� N�˛�1ZSL.L
2
CN/K.˛/.1Co.1//

M�I˛.0/� .˛/r 0
sup

w2S�

X

v2S�nfwg

capS .w; v/

D O.r 0�1L.L2 CN/N�˛�1/: (86)

ut
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Convergence of the Two-Point Function
of the Stationary TASEP

Jinho Baik, Patrik Lino Ferrari, and Sandrine Péché

Abstract We consider the two-point function of the totally asymmetric simple
exclusion process with stationary initial conditions. The two-point function can be
expressed as the discrete Laplacian of the variance of the associated height function.
The limit of the distribution function of the appropriately scaled height function
was obtained previously by Ferrari and Spohn. In this paper we show that the
convergence can be improved to the convergence of moments. This implies the
convergence of the two-point function in a weak sense along the near-characteristic
direction as time tends to infinity, thereby confirming the conjecture in the paper of
Ferrari and Spohn.

1 Introduction and Result

The totally asymmetric simple exclusion process (TASEP) is arguably the simplest
non-reversible interacting stochastic particle system, and it is also one of the most
studied. Particles live on Z and they satisfy the exclusion constraint: each site can be
occupied by at most one particle. Therefore a particle configuration can be denoted
by � 2 f0; 1gZ, where �j D 0 means that site j is empty while �j D 1 means that
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the site is occupied. The dynamics of the TASEP is then defined as follows: every
particle tries to jump to its right neighbor with rate one. The jumps occurs only if
the exclusion constraint is satisfied.

It is known [12] that the only translation-invariant stationary measures of the
TASEP are Bernoulli product measures with parameter 	 2 Œ0; 1�, namely,

P.�j D 1/ D 	 for all j 2 Z. (1)

Here 	 is the average density of particles. The cases 	 D 0 and 	 D 1 are trivial and
in the following we fix 	 2 .0; 1/. This system is referred as stationary TASEP.

The two-point function is defined as

S.j; t/ WD E


�j .t/�0.0/

�� 	2: (2)

Note that this equals the covariance of �j .t/ and �0.0/. Hence the two-point
function carries the information on how site j at time t is correlated with site 0
at time 0. It is known that

X

j2Z
S.j; t/ D 	.1� 	/ DW � (3)

and also S.j; t/ � 0. This implies that 1
�
S.j; t/ can be thought of as a probability

mass function in j 2 Z. Indeed this equals the probability that a second class
particle, which was at site 0 at time 0, is at site j at time t [9]. It is also known that
the expectation of j with respect to the probability mass function 1

�
S.j; t/ satisfies

X

j2Z
j
S.j; t/

�
D .1 � 2	/t; (4)

and the variance scales as [16, 18]

X

j2Z
j 2
S.j; t/

�
� ..1 � 2	/t/2 D O.t4=3/: (5)

as t !1. Therefore, for large time t , one expects the scaling form for S as1

S.j; t/ ' �

4
g00

sc

�
j � .1 � 2	/t
2�1=3t2=3

�
1

2�1=3t2=3
(6)

for some non-random function gsc. The precise expression of gsc was first conjec-
tured in [15] based on the work [6]:

1The multiplicative factor �

4
was incorrectly written as �

2
in [14]. This is a typographical error.
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gsc.w/ D
Z

R

s2dFw.s/ (7)

where Fw.s/ is the distribution function defined in (17) below.
In order to understand the presence of the second derivative in (6) and the second

moment formula (7), we recall that TASEP can also be seen as a stochastic growth
interface model, whose discrete gradient of the height equals 1�2�. The dynamical
rule is that when a particle jumps to the right, a valley Ÿ� changes to a mountain
�Ÿ. More precisely, let Nt .j / denote the number of particles which have jumped
from site j to j C 1 during the time interval Œ0; t �, and define the height function

ht .j / D

8
ˆ̂
<

ˆ̂:

2Nt.0/CPj
iD1.1 � 2�i .t// for j � 1;

2Nt.0/ for j D 0;
2Nt.0/�P0

iDjC1.1 � 2�i .t// for j � �1:
(8)

Then initially h0.0/ D 0 and h0.j / � h0.j � 1/ D 1 � 2�j .0/, and at the instance
a particle jumps from site j to j C 1, the height function at position j increases by
two. Note that ht .j / � h0.j / D 2Nt.j /. It was shown in [14] that the two-point
function can be expressed as

S.j; t/ D 1
8



�Var.ht .�//

�
.j / (9)

with� being the discrete Laplacian, .�f /.j / D f .j�1/�2f .j /Cf .jC1/. Since
it is known that Fw.s/ has mean, see 0 [6], this explains the presence of the second
derivative in the conjectured formula (6) and the second moment formula (7).

Define the probability distribution functions of the location-rescaled height
function,

Fw.s; t/ WD P

�
ht .Œ.1 � 2	/t C 2w�1=3t2=3�/

� .1 � 2�/t C 2w.1� 2	/�1=3t2=3 � 2s�2=3t1=3
	
: (10)

The function Fw in (7) (which is defined in (17) below) was conjectured in [15] to
be the limit

lim
t!1Fw.s; t/ D Fw.s/: (11)

The convergence (11) for each s was later proved in [10]. This strongly indicates the
validity of (6). A missing part in concluding (6) is the convergence of the moments
of Fw.s; t/ which is a stronger statement than (11). Our main result is that the
moments indeed converge.
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Theorem 1. For all ` 2 N,

lim
t!1

Z

R

s`dFw.s; t/ D
Z

R

s`dFw.s/ (12)

uniformly for w in a compact subset of R.

As a consequence we obtain the convergence of the two-point function is a weak
sense.

Corollary 2. We have, with � WD 	.1 � 	/,

lim
t!1 2�1=3t2=3S

�
Œ.1 � 2	/t C 2w�1=3t2=3�; t

	
D �

4
g00

sc.w/ (13)

if integrated over smooth functions in w with compact support.

The proof of this corollary is given in Sect. 5. An improvement of the analysis in
this paper can yield the convergence in the point-wise sense in (13). However, we
do not consider this direction in this paper.

For completeness, let us state a formula of the limiting distribution function
Fw.s/ explicitly. Let Pu be the orthogonal projector on the interval Œu;C1/. Set

KAi;s.x; y/ WD
Z

RC

Ai.x C s C �/Ai.y C s C �/d�;

FGUE.s/ WD det.�� P0KAi;sP0/:

(14)

FGUE is the GUE Tracy-Widom distribution function [17]. We also define the
function

g.s;w/ WD e�
w3
3

�Z

R2
�

ew.xCy/Ai.x C y C s/dx dy C
Z

R
2
C

O�w;s .x/	s.x; y/ O̊w;s.y/dx dy

�
;

(15)

where

O̊w;s.x/ WD
Z

R�

ewzCwsKAi;s.z; x/dz; O�w;s.x/ WD
Z

R�

ewzAi.xC zC s/dz; (16)

and 	s.x; y/ WD .� � P0KAi;sP0/
�1.x; y/. Now

Fw.s/ WD @

@s



FGUE.s C w2/g.s C w2;w/

�
: (17)

There is an alternative formula expressed in terms the Lax pair equations of the
Painlevé II equation obtained in [6]. But we will only use the formula (17) in this
paper. One can also consider the joint distributions for different values of w and a
formula can be found in [5].
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2 Setting and Strategy of the Proof

The height function ht .j / associated to a TASEP with any initial condition can be
related to the last passage time of a directed last passage percolation (DLPP) model.
Over the last decade or so, the so-called solvable, or determinantal DLPP models
[8, 11, 13] were studied extensively. These are the models for which the probability
distribution of the last passage time can be expressed explicitly in terms of Fredholm
determinants. The DLPP model corresponding to the stationary TASEP is not one
of solvable models but can be related to one after suitable analytic continuation of
the parameters. This yields the following formula of Fw.s; t/.

Fix w 2 R. Let us set2 (recall that � D 	.1 � 	/)

2m D .1�2�/tC2w.1�2	/�1=3t2=3; 2d D .1�2	/tC2w�1=3t2=3; (18)

and define the functions3

L.x; y/ D �e
a.x�y/

2�i

I


1��

e�z.x�y/ .zC 	/m�d

.1 � 	 � z/mCd dz for x > y;

R.x; y/ D ea.x�y/

2�i

I


��

ez.y�x/ .1 � 	 � z/mCd

.	C z/m�d dz for x < y;

(19)

with

a WD 1

2
� 	: (20)

We define the kernel

Km;d .x; y/ D
Z

R�

L.x; z/R.z; y/dz (21)

and the distribution function

F.u/ WD det.� � PuKm;dPu/: (22)

2To be precise, we need to take the integer parts of the formulas since m and d need to be integers.
Since the error between the formula above and the integer parts is O.1/, this does not result in
any significant changes in the estimates and hence for convenience we define m and d as in (18)
without restricting them to be integers in this paper. However, we remark that if we restrict m and
d to be integers, one occasionally needs to be careful in the precise formulation of the estimates
and the exposition becomes more involved. We do not discuss these subtleties in this paper.
3For any set of points S , the notation

H
�S
f .z/ dz denotes the integral over a simple closed contour

which encloses the points S but excludes any other poles of the function f . The contour is oriented
counter-clockwise.
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Finally, we set

G0.u/ D g1.u/C g2.u/C g3.u/; (23)

where

g1.u/ D uC 2ad �m
1=4� a2 ;

g2.u/ D h a; PuKm;d �ai;
g3.u/ D hK�

m;d .� � Pu/ a; Pu.� � PuKm;dPu/
�1Pu.��Km;d / �ai;

(24)

with  a.x/ D e�ax . Then it was shown in [10] that4

Fw.s; t/ D 1

.t=�/1=3
d

ds
.F.u.s; t//G0.u.s; t/// (25)

where

u D u.s; t/ WD t C s��1=3t1=3: (26)

Set

OG0.s; t/ WD G0.u.s; t//; OF .s; t/ WD F.u.s; t//: (27)

The main technical part of this paper is on the following estimates5:

Proposition 1 (Uniform upper tail estimates). There exist positive constants s0,
t0, c and C such that

ˇ̌
ˇs � OF .s; t/ OG0.s; t/=.t=�/1=3

ˇ̌
ˇ � Ce�cjsj; s � s0; t � t0: (28)

The bound holds uniformly for w in a compact subset of R.

4The formula (25) is the formula (4.10) of [10] when b D �a if we take into account (26) . See
(5.21) of [10] for the formula of the function G0.u/ D Ga;�a.u/.
5The exponents of the bounds are not optimal. The bound in (28) and (29) can be improved to
Ce�cjsj3=2 and Ce�cjsj3 , respectively. The improved bound for (28) can be achieved if we keep
track of a slightly better estimate in the analysis presented in this paper. On the other hand, in
order to improve the bound (29), we need a different approach such as Riemann-Hilbert analysis
as in [3, 4].
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Proposition 2 (Uniform lower tail estimates). There exist s0, t0, c and C such
that

jFw.s; t/j � Ce�cjsj3=2

; s � �s0; t � t0: (29)

The bound holds uniformly for w in a compact subset of R.

Theorem 1 now follows.

Proof of Theorem 1. We only consider ` � 2. The case ` D 1 follows easily. We
first write the integral on the left-hand-side of (12) as the sum of the integral over
RC and the integral over R�. For the integral over RC, integrating by parts twice
and using the fact that Fw.�; t/ is a cumulative distribution function,

Z

RC

s`dFw.s; t/ D� `.` � 1/
Z

RC

s`�2
�
s � OF .s; t/

OG0.s; t/
.t=�/1=3

	
ds (30)

for ` � 2. It was in [10] that in addition to (11) we also have the limit

OF .s; t/
OG0.s; t/
.t=�/1=3

! FGUE.s C w2/g.s C w2;w/ (31)

for each s as t ! 1. Thus, due to Proposition 1, the Lebesgue dominated
convergence theorem can be applied and we find that (30) converges to

�`.` � 1/
Z

RC

s`�2
�
s � FGUE.s C w2/g.s C w2;w/

	
ds: (32)

On the other hand, integrating by parts once gives

Z

R�

s`dFw.s; t/ D� `
Z

R�

s`�1Fw.s; t/ds: (33)

Thus, again, the Lebesgue dominated convergence theorem can be applied due to
Proposition 2 and from (11) we find that (33) converges to

�`
Z

R�

s`�1Fw.s/ds: (34)

Integrating (32) and (34) by parts backwards and using the fact that Fw is a
cumulative distribution function, we find that the sum of these two integrals is the
right-hand-side of (12). ut

The estimate (28) for the upper tail is obtained by analyzing the formulas (22)
and (23) asymptotically using the saddle-point analysis. This asymptotic analysis is
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very close to that of many previous papers, for example [2, 10, 11]. We use some of
the results directly or improve upon them. See Sect. 3.

For the estimate (29) on the lower tail, we note the following. Consider the
TASEP with step-initial condition i.e. �j .0/ D 1 for j � 0 and �j .0/ D 0

for j � 1. Then the associated height function hstep
t .j / satisfies hstep

0 .j / D jj j.
This means that initially h0 is bounded from above by h

step
0 . Since the initial

condition of the stationary TASEP is independent of the dynamics, we find that
ht is stochastically bounded above6 by hstep

t . Hence7

P.ht .j / � u/ � P.h
step
t .j / � u/: (35)

But P.hstep
t .j / � u/ is known to be precisely F.u/ of (22) [11]. Therefore we have

Fw.s; t/ � OF .s; t/ D det.1 � PuKm;dPu/: (36)

Thus, the estimate (29) follows if we show that OF .s; t/ is bounded from above by
Ce�cjsj3=2

for negative large enough s. This in turn follows if we show the same
bound for the Fredholm determinant (22). For this purpose we follow the idea of
Widom [19] which seems not as well-known as it should be. See Sect. 4.

3 Proof of Proposition 1: Upper Tail

The proposition follows from (40), (38) and (52), see below.

3.1 Asymptotics for OF

The function F.u/ D det.1 � PuKm;dPu/ is the distribution function of the last
passage time of the directed last passage model with i.i.d. exponential random
variables. It is well-known [11] that this also equals the distribution function of
the largest eigenvalue of the Laguerre unitary ensemble (LUE) which is defined
as Mm;d D 1

m�dXX
� where X is a .m � d/ � .m C d/ random matrix with

i.i.d. standard complex Gaussian entries. This equality can also be seen explicitly
in Appendix C of [10] where Km;d was shown to be same as the correlation kernel
of the LUE up to a conjugation by a multiplication. The asymptotics of LUE and

6This can also be seen easily from the corresponding directed last passage percolation (DLPP)
models. The DLPP model for the stationary TASEP is the DLPP model for the TASEP with the
step initial condition plus an extra row and an extra column with non-zero weights.
7We would like to thank Ivan Corwin and Eric Cator for communicating this observation. This
observation simplified the proof of the lower tail estimate which we originally obtained by
estimating Fw.s; t / directly.
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OF .s; t/ D F.u.s; t// were considered in several papers, especially in [2,10,11]. We
have:

Lemma 1. Fix s0 2 R. Then

lim
t!1

OF .s; t/ D FGUE.s C w2/ (37)

uniformly for s 2 Œs0;1/ and w in a compact subset of R. Furthermore, for given
s0 2 R and t0 > 0, there exist positive constants C and c such that

j1 � OF .s; t/j � Ce�cs (38)

for s � s0 and t � t0.

The bound (38) can be found in, for example, Sect. 3.1 of [2].8

3.2 Evaluation of g1

A direct computation using (18), (20), and (26) shows that9

g1.u/ D uC 2ad �m
1=4� a2 D s.t=�/

1=3: (39)

This implies that

s �
OF .s; t/ OG0.s; t/
.t=�/1=3

D � OF .s; t/g2.u/C g3.u/
.t=�/1=3

C s.1 � OF .s; t//: (40)

The term 1 � OF .s; t/ can be estimated using (38) and OF .s; t/ is bounded by 1 since
it is a distribution function. We now show that g2.u/=.t=�/1=3 and g3.u/=.t=�/1=3

are uniformly (in t) bounded by exponentially decaying functions in s.
In the rest of this section, we only consider the case when w > 0. If w < 0,

we need to start with a different decomposition of G0.u/ ((5.22) instead of (5.21)
of [10]). After this change, the analysis is completely analogous. For the case when

8The exponent of the upper bound is not optimal: the optimal exponent is e�cjsj3=2 . But we do not
consider such an issue in this paper.
9The formula becomes s.t=�/1=3 C O.1/ where O.1/ is independent of s if we take the integer
parts in the definition of m and d in (18). This is an example of the subtleties mentioned in the
Footnote 2. This results in the additional termO.t�1=3/ in (40). Since this is not a function in s, we
cannot obtain the bound (C1). However, this issue can be fixed by shifting s to s�O.1/=.t=�/1=3 .
In other words, the centering and scaling u D t C s.t=�/1=3 needs to be changed slightly to reflect
the difference of the formula of (18) and their integer counter-parts.
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w D 0, we can proceed as in the case when w > 0 but with a yet slight modification:
see (6.31)–(6.34) of [10]. We skip the detail when w < 0 and w D 0, and assume
from now on that w > 0.

3.3 Estimations on g2 and g3

Recall the definition (24) of g2.u/. It is a direct calculation to show that (see (3.15)
of [10])

Z 1

x

R.x; y/ �a.y/dy D Z.	/ �a.x/; Z.	/ WD .1 � 	/mCd

	m�d ; (41)

for x 2 R, for a 2 .�1=2; 1=2/. Using this, g2.u/ D h a; PuL.� � P0/ �ai.
Inserting the formula  a and L.x; y/, we obtain

g2.u/ D
Z

R
2
C

Ht .x C y/dx dy; (42)

where

Ht .x/ WD �Z.	/
2�i

I


1��

e�z.uCx/ .zC 	/m�d

.1 � 	 � z/mCd dz: (43)

Thus (see (6.19) of [10])

.t=�/�1=3g2.u/ D
Z

R
2
C

Ht .x C y/dx dy; Ht .y/ WD .t=�/1=3Ht .y.t=�/
1=3/:

(44)

Similarly, recall the definition (24) of g3.u/. Using (41), an argument similar to
that for (42) implies that

.��Km;d / �a.x/ D eax
�
1 �

Z

RC

Ht .�uC x C y/dy

�
: (45)

We also note that, similar to (41), we have (see (3.15) of [10])

Z 1

x

 a.y/L.y; x/dy D 1

Z.	/
 a.x/ (46)

for x 2 R, for a 2 .�1=2; 1=2/. Using this, we find that
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K�
m;d .1 � Pu/ a.x/ D e�ax

� Z

RC

QHt .�uC x C y/dy

�
Z

R
2
C

QHt .�uC x C y/Ht .zC y/dz dy

�
(47)

where

QHt .x/ WD 1

2�iZ.	/

I


��

ez.uCx/ .1 � 	 � z/mCd

.zC 	/m�d dz: (48)

This implies that we can express (see (6.26)–(6.28) in [10])

.t=�/�1=3g3.u/ D h˚t ; At�ti (49)

where

˚t .
/ D ew�
h Z

RC

QHt .y C 
/dy �
Z

R
2
C

Ht .x C y/ QHt .y C 
/dx dy
i
;

�t .
/ D e�w�
h
1 �

Z

RC

Ht .y C 
/dy
i
;

(50)

with Ht .y/ D .t=�/1=3 QH .y.t=�/1=3/ and QHt .y/ D .t=�/1=3 QHt .y.t=�/
1=3/.

Here the operator At is defined by At D P0.� � Kt /�1P0 where the kernel of
Kt is

Kt .
1; 
2/ D ew.�2��1/

Z

RC

Ht .x C 
1/ QHt .x C 
2/dx; 
1; 
2 � 0; (51)

andKt .
1; 
2/ D 0 otherwise.
We obtain the following estimates for g2 and g3.

Lemma 2. There are positive constants c and C such that

ˇ
ˇ̌
.t=�/�1=3g2.u/

ˇ
ˇ̌ � Ce�cs;

ˇ
ˇ̌
.t=�/�1=3g3.u/

ˇ
ˇ̌ � Ce�cs (52)

for all s � 0 and t � 0.

Proof of Lemma 2. Note from the formula (43) that Ht .x/ DHt .xI u/ is a function
of x C u . Hence Ht .y/ D Ht .yI s/ is a function of y C s. Thus, Ht .yI s/ D
Ht .y C sI 0/. The same holds for QHt .y/ D QHt .yI s/.

Basic bounds for the functionsHt .y/ and QHt .y/ were obtained in (6.15) of [10]:
for any ˇ > 0 there exist positive constants Cˇ and C 0

ˇ
such that
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jHt .yI s/j � Cˇ e�ˇy and j QHt .yI s/j � C 0
ˇe

�ˇy (53)

uniformly for t � 0, y � 0, and s � 0. In particular, the bound holds for Ht .yI 0/
and QHt .yI 0/ when s D 0, for t � 0 and y � 0. Thus usingHt .yI s/ D Ht .yCsI 0/
and inserting yCs in place of y in (53), we find that for any ˇ > 0 there are positive
constants Cˇ and C 0

ˇ
such that

jHt .yI s/j � Cˇe�ˇ.sCy/ and j QHt .yI s/j � C 0
ˇe

�ˇ.sCy/ (54)

uniformly in t � 0, y � 0 and s � 0.
The bound for .t=�/�1=3g2.u/ follows from (44) and (54).
We now estimate j.t=�/�1=3g3.u/j. Choosing ˇ > jwj, (54) implies that

j˚t .
/j � Ce�ˇse�.ˇ�w/�

for a positive constant C . Thus,

jj˚t jjL2.RC/
� C 0e�ˇs ; (55)

for a constant C 0 uniformly in t � 0 and s � 0. On the other hand, (54) implies that
j�t .
/ew� j is bounded by a constant. Since we assume w > 0 (see Sect. 3.2), we find
that jj�t jj2L2.RC/

is uniformly bounded in t � 0 and s � 0. Finally, the inequality

jjAt jj � jj.��KAi;w2Cs/�1jj C jj.��KAi;w2Cs/�1 � .��Kt /�1jj (56)

whereKAi;w2Cs is the Airy kernel restricted on .w2C s;1/, and the fact (see (6.36)
of [10]) that jj.� � KAi/

�1 � .� � Kt /�1jj ! 0 as t ! 1 imply that jjAt jj is
uniformly bounded in t � 0 and s � 0. Therefore, the bound for .t=�/�1=3g3.u/
follows from jh˚t ; At�tij � jj˚t jj jjAt jj jj�t jj. ut

4 Proof of Proposition 2: Lower Tail

Recall from Sect. 3.1 that Km;d is a similarity transform of the correlation kernel
of the LUE Mm;d . Since the correlation kernel of the LUE is a positive projection,
all the eigenvalues, which we denote by �j ; j D 0; 1; 2; � � � ; of PuKmdPu are real
and �j 2 Œ0; 1�. It was shown in Appendix B.3 of [10] that �j 2 Œ0; 1/ if u > 0.
From this we find that det.1 � PuKm;dPu/ D Q

j�0.1 � �j / �
Q
j�0 e��j D

e�Tr .PuKm;dPu/. Therefore,

OF .s; t/ � exp.�Tr .PuKm;dPu//: (57)

This trick is due to Widom [19].
The trace has the following lower bound:
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Proposition 3. There exist positive constants t0, s0, c such that

Tr .PuKm;dPu/ � cjsj3=2 (58)

for all s � �s0 and t � t0.

The same estimate was obtained in the context of random permutations and an
oriented digital boiling model by Widom [19]. We follow the paper [19] to prove
the Proposition, and as such we only sketch the main ideas and do not provide all
the details of the proof. Once this proposition is proven, then Proposition 2 follows
from (36) and (57).

Proof of Proposition 3. Since the operatorKt is trace class with continuous kernel,
we have

Tr .Kt / D
Z

RC

Kt .x; x/dx D �1
.2�i/2

I


1

I


0

ewu

ezu

.1 � w/mCd

.1 � z/mCd
zm�d

wm�d
dw dz

.w � z/2

D �1
.2�i/2

I


1

I


0

eMFu.w/

eMFu.z/

dw dz

.w � z/2

(59)

where

Fu.z/ WD u0z � ln zC � ln.1 � z/; u0 WD u

M
: (60)

Here M WD m � d and � WD mCd
m�d D .1��

�
/2 CO.t�1=3/. Note that u0 D 1

�2 C
O.t�1=3/ if s is in a bounded set, and u0 � 1

�2 for all s � 0. We analyze (59)
asymptotically using the saddle-point analysis. Note the presence of the singularity
1

.w�z/2
in the integrand.

We first consider the case where

.1 �p�/2 C � � u0 < .1Cp�/2 � s0t�2=3; (61)

for some � > 0 (small, but fixed) and s0 	 1 also fixed. The critical points are Fu

are

zċ .u
0/ D u0 C 1 � �

2u0 ˙ 1

2u0
q
.u0 � .1Cp�/2/.u0 � .1 �p�/2/: (62)

The two critical points are non-real and jzċ .u0/j D 1p
u0
� 	 < 1. Consider the

following two contours:

w D jzC
c jei� ; 0 � � < 2�; (63)
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Fig. 1 The bold path � is the deformation of �1 that locally follows the steepest descent path

and

z D 1C jzC
c � 1jei� ; 0 � � < 2�; (64)

respectively. Then

Re

�
d

d�
Fu.w/

�
D �Im.w/

�
u0 � �

jw� 1j2
�
D �Im.w/

�
�

jzC
c � 1j2

� �

jw� 1j2
�
;

Re

�
d

d�
Fu.z/

�
D �Im.z/

�
u0 � �

jzj2
�
D �Im.z/

�
�

jzC
c j2
� �

jzj2
�
: (65)

Thus, along these contours, Re .Fu/ achieves its relative maximum (resp. minimum)
at zċ . Hence these paths are of steep-ascent and steep-descent for Fu. We chose
to work with these explicit contours instead of the contours of steepest-ascent and
steepest-descent for convenience. Due to this reason, we need to modify the contours
locally near the critical points if u0 is close to .1Cp�/2. Namely, in this case, the
contours above become almost tangential and are almost parallel to the direction
along which Re.Fu/ is constant. Then we cannot apply the saddle-point method. In
this case, we simply modify the contours locally near the critical points so that they
pass through the critical points along the steepest descent direction as pictured in
Fig. 1 for the z-contour. A similar modification is needed for the w-contour. This
small modification does not yield any significant changes in the estimation. For the
convenience of presentation, we work with the above explicit contours and skip the
details on how the formulas changes after the modifications. The same procedure
was also explained in Sect. 6.2 of [7] for the similar estimations.
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Fig. 2 The subdivision of the integration from (a) the ones in (59) to (b) the ones in (66)

We now deform the original contours in (59) to the new contours of steepest-
ascent and steepest-descent, which we call by the same names, �0 and �1. We first
deform the original contours to those in (a) of Fig. 2 where �0 is the contour of
steepest-ascent and the part of �1 except for the segment from z�

c to zC
c is the part

of the contour of steepest-descent. These contours can be divided as in (b) of Fig. 2
and we have

(59) D �1
.2� i/2

P:V:

I

�0

I

�1

eMFu.w/

eMFu.z/

dz dw

.w � z/2
C 1

.2� i/2

Z

C

I

� 00

1

eMFu.w/

eMFu.z/

dz dw

.w � z/2
:

(66)

Here the first integral needs to be interpreted as the Principal Value due to the
divergent terms in the integrand. The second integral is from the contributions of the
pole in the deformation of the contours. The contours in the second double integral
are defined as follows. The w-contour, C , is a segment from z�

c to zC
c to the left of 1

and to the right of 0. The z-contour, � 00
1 , encircles the whole segment C but not 1,

see Fig. 2.
Setting Q.z/ WD exp.MFu.z//, the Cauchy’s integral formula implies that the

second integral of (66) equals

�1
2�i

Z

C

Q0.w/
Q.w/

dw D �M


Fu.zC

c /� Fu.z�
c /
�

2�i
: (67)

Noting that Fu.zC
c / D Fu.z�

c /, we have

1

.2�i/2

Z

C

I


 00

1

eMFu.w/�MFu.z/

.w � z/2
dz dw D �M Im.Fu.zC

c //

�
: (68)

Observe that when u0 D .1 C p�/2, the two critical points coincide and we have
zc WD zċ D 1

1Cp
	

. In addition, FM.1Cp
	/2.zc/ 2 R. Thus
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�Im.Fu.z
C
c // D Im.FM.1Cp

	/2.zc//� Im.Fu.z
C
c //

D
Z M.1Cp

	/2

u
Im

d

dv
Fv.z

C
c .v//dv:

(69)

Using the definition (60) of Fu and the fact that zC
c .�/ is a critical value, we find that

d
dv
Fv.zC

c .v// D 1
M

zC
c .v/. From the formula (62) of zC

c ,

Im.zC
c .v

0M// D
p
�0 � .1 �p�/2

2�0 ..1Cp�/2 � �0/1=2

� �

2
..1Cp�/2 � �0/1=2

(70)

since �0 satisfies the condition (61). Therefore, (69) implies that

(68) �M ��

3
..1Cp�/2 � u0/3=2: (71)

Recall that
p
� D .1 � 	/=	CO.t�1=3/, that M D 	2t.1 C O.t�1=3//, and that

u0 D u=M with u D t C s.t=�/1=3. Then, we can choose a s0 > 0 large enough
(but fixed independently of t) such that for all s � �s0 it holds .1Cp�/2 � u0 �
�c1st�2=3 for some c1 > 0. Therefore for u0 satisfying (61), there is a positive
constant c such that

1

.2�i/2

Z

C

I


 00

1

eMFu.w/�MFu.z/

.w � z/2
dz dw � c.�s/3=2 (72)

uniformly in t .
We now show that the contribution of the Principal Value integral in (66) is much

smaller than (72). Indeed we will show that this is O.1/. This proves (58) by taking
the constant c smaller than one in (72).

A direct computation shows that

F 00
u .z

C
c / D .1 � �/

.zC
c � 1

1Cp
	
/.zC

c � 1
1�p

	
/

.zC
c /2.z

C
c � 1/2

: (73)

This implies

jF 00
u .z

C
c /j � ..1C

p
�/2 � u0/1=2 � s1=2t�1=3 (74)

as u0!.1Cp�/2� st�2=3, while for .1�p�/2C � � u0 < .1Cp�/2� � we have
jF 00

u .z
C
c /j D O.1/. Thus, for the general u0 satisfying (61), c1t�1=3 � jF 00

u .z
C
c /j � c2

for some positive constants c1 and c2. Hence O.t1=3/ �
q
MF 00

u .z
C
c / � O.t1=2/.
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Let us choose the parts V0.zċ / and V1.zċ / of the paths �0 and �1, respectively,
whose size are B.MF 00

u .z
C
c //

�1=2. Then both parts become smaller as t ! 1.
Because the paths �0 and �1 are chosen to be steep-descent, the contribution
coming from �0 � �1 n fV0.zC

c /[ V0.z�
c /g � fV1.zC

c /[ V1.z�
c /g is at most of order

O.1/ if B is chosen large enough (but fixed). Let us first consider the contributions
from the intersecting contours V0.zC

c / � V1.zC
c / and V0.z�

c / � V1.z�
c /. Due to the

symmetry, it is enough to consider the contribution of V0.zC
c / � V1.zC

c /, given by

I.zC
c / WD

�1
.2�i/2

P:V:

Z

V0.z
C

c /

Z

V1.z
C

c /

eMFu.w/�MFu.z/
1

.w � z/2
dz dw: (75)

Now we have to see if this integral is bounded by a constant. Since z converges to zC
c ,

we use the Taylor’s series of Fu in z � zC
c . Since zC

c is a critical point, the function
Fu.z/ in the exponent may be approximated as Fu.zC

c /C 1
2
F 00

u .zc/.z� zC
c /
2. It can

be checked that the contributions from the higher order terms are negligible. Chang-
ing the variables as z D zC

c C z0.MF 00
u .z

C
c //

�1=2, w D zC
c Cw0.MF 00

u .z
C
c //

�1=2, we
obtain

I.zC
c / �

�1
.2�i/2

P:V:

Z

iR

Z

R

e
1
2 .w

02�z02
/

.w0 � z0/2
dz0 dw0 (76)

which is finite.
Let us now show that the contribution of the non-intersecting contours

V0.zċ / � V1.z�
c /

are also bounded from above by some constant. To that aim, B being fixed, we
assume that s0 is chosen large enough so that s0 	 B . This time the singularity
term 1=jw � zj2 is bounded from above and one can easily deduce that for all
u0 2 ..1 �p�/2 C �; .1Cp�/2 � s0t�2=3/,

ˇ̌
ˇ
�1

.2�i/2
P:V:

Z

V0.z
˙

c /

Z

V1.z
�

c /

eMFu.w/�MFu.z/
1

.w � z/2
dz dw

ˇ̌
ˇ � O.1/:

Combining the whole, we have shown that the contributions from the first integral
in (66) is O.1/ and (58) is proved for u0 2 Œ.1 �p�/2 C �; .1Cp�/2 � s0t�2=3/.

We now consider the case where

u0 2 .0; .1 �p�/2 C �/: (77)

In (61), we could have chosen � > 0 small enough so that

.1 �p�/2 C � < 1

2



.1Cp�/2 C .1 �p�/2�: (78)
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Consider the Laguerre Unitary Ensemble 1
m�dXX

� whereX is a .m�d/� .mCd/
random matrix with i.i.d. complex standard Gaussian entries. Denote by �1 � �2 �
� � � � �m�d its ordered eigenvalues. By the definition of the correlation kernel Kt ,
we have

Tr .Kt / D E

�m�dX

iD1
�I .�i /

�
; (79)

where I D .u0;C1/. This can be bounded below as

E

�m�dX

iD1
�I .�i /

�
� E

�m�dX

iD1
�I�

.�i /

�
; (80)

where I� D ..1 �p�/2 C �;C1/: Now, we call on the results of [1], giving con-
vergence rates for the spectral distribution of random sample covariance matrices.
Let Fm�d denote the empirical probability distribution function associated to the
spectral measure:

Fm�d .x/ D 1

m � d
m�dX

iD1
��i �x : (81)

Let also F be the cumulative distribution function of the Marchenko-Pastur distri-
bution % defined by the density

d%

dx
D
p
.ucC � x/.x � uc�/

2�x
�Œuc

�
;uc

C
�.x/; (82)

where � D mCd
m�d and uċ D .1˙p�/2. It is well known that Fm�d .x/! F.x/ a.s.

for all x. In [1] it is proven that

max
x>0
jE.Fm�d .x// � F.x/j � .m � d/�1=2: (83)

Then (79) and (80) imply that

Tr .Kt / � .m � d/.1 � F..1 �p�/2 C �// � .m � d/1=2: (84)

With the condition (78) on �, F..1�p�/2 C �/ < 1 uniformly and since m� d D
	2t C O.t2=3/ ! 1, we find that there exists a positive constant C D C.�/ such
that

Tr .Kt / � C.m � d/ (85)
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uniformly in t and for u0 satisfying (77). Now as u D t � s.t=�/1=3 and u � 0,
we have .�s/3=2 D .t � u/3=2.�=t/1=2 � �1=2t . Thus since m � d D 	2t C
O.t2=3/, (85) implies that there exists a positive constant c such that

Tr .Kt / � c.�s/3=2 (86)

uniformly in t and for u0 satisfying (77). Thus (58) is proved for u0 satisfying (77).
This completes the proof of Proposition 3. ut

5 Proof of Corollary 2

Let us consider the rescaled height function

Ht .w/ WD ht .j.w// � Œ.1 � 2�/t C 2w.1 � 2	/�1=3t2=3�
�2�2=3t1=3 ; (87)

with j.w/ D .1�2	/tC2w�1=3t2=3. By (10), Fw.s; t/ D P.Ht .w/ � s/. We have:

Gt .w/ WD Var.Ht .w// D
Z

R

s2dFw.s; t/ �
�Z

R

sdFw.s; t/

�2
; (88)

and, in the original variables,

Var.ht .j.w/// D .2�2=3t1=3/2Gt .w/: (89)

Using the notation ı WD .2�1=3t2=3/�1, by (9)

Z

R

2�1=3t2=3S.j.w/; t/f .w/dw D �

4

Z

R

Gt.wC ı/ � 2Gt .w/C Gt.w � ı/
ı2

f .w/dw

D �

4

Z

R

Gt.w/
f .wC ı/ � 2f .w/C f .w � ı/

ı2
dw:

(90)

By Theorem 1 and the fact that
R
R
s dFw.s/ D 0 (see [6]), we have that Gt .w/

converges to gsc.w/ uniformly for w in a compact set of R. Therefore, for smooth
test functions f with compact support, as t !1 this expression converges to

�

4

Z

R

gsc.w/f
00.w/dw D �

4

Z

R

g00
sc.w/f .w/dw: (91)

ut
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Vortex Motion for the Landau-Lifshitz-Gilbert
Equation with Applied Magnetic Field

Matthias Kurzke, Christof Melcher, and Roger Moser

1 Introduction

In micromagnetics, the fundamental evolution law for the magnetization m in a solid
is given by the Landau-Lifshitz-Gilbert equation

@m
@t
D m �

�
˛
@m
@t
� � heff

�
; (1)

which is used to describe the dynamics of a great variety of magnetic microstruc-
tures, in particularly the motion of domain walls and vortices in thin films, see e.g.
[3]. Here heff is the effective field, essentially the L2 gradient of the micromagnetic
energy.

A collective coordinate ansatz m D m.x � a.t//, where m is the profile of the
static problem and a D a.t/ describes its translation at time t , has been proposed by
Thiele in [24] in order to drastically reduce the complexity of (1). Thiele’s approach
has been adapted by Huber [8] to the situation of a vortex system, giving rise to a
system of ODEs typically called Thiele’s equation of motion. More precisely, the
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resulting system for vortices with trajectories t 7! aj .t/ 2 R
2 � f0g (j D 1; : : : d )

takes the form

Fj .a/CGj � Paj CD Paj D 0:

Here Fj D Fj .a1; : : : ; ad / are interaction forces, Gj D 4�qj Oe3 is the gyro-vector
of the j th vortex, which depends only on the topological index qj D ˙12 of the
vortex (which is half of the product of winding number and polarity), and D is
an effective damping constant. In previous joint work with Spirn [14, 15] we have
rigorously derived a Thiele equation from (1) in the limit of small vortex size, for
an exchange-dominated model energy. In [13] we have generalized the result to an
extended version of (1), modeling the influence of an in-plane spin-polarized current
v D v.t/. More precisely, we have shown that the corresponding spin-torque terms
give rise to an additive extension of Thiele’s equation

Fj .a/CGj � . Paj � v/CD. Paj � �v/ D 0

where � is a non-negative constant. The aim of the present work is to derive a Thiele
equation from (1) under the influence of a (possibly time-dependent) applied field
h 2 R

3. Unlike the result for an external current, the effect of the magnetic field
is visible only in the interaction force term. The precise result will be given in
Theorem 3.

As our model energy we use

E�.h;m/ D
Z

˝

�
1

2
jrmj2 C m23

�2
� h �m

�
dx; (2)

where ˝ � R
2 is a bounded and simply connected domain, with a Dirichlet

boundary condition m D g. The most physical choice of g is to use a unit tangent
to @˝ . We refer to [14] for a justification of this model.

2 Jacobian, Vorticity and Renormalized Energy

Suppose that we have a map m W ˝ ! S
2 in the Sobolev spaceH 1. It is convenient

to consider the decomposition

m D .m;m3/:

Recall that the Jacobian of m W ˝ ! R
2 is defined as

J.m/ D detrm:
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Note that the Jacobian, considered as a differential 2-form, is exact. More precisely,
J.m/ D 1

2
curl j.m/, where j.m/ D m ^ rm is the current, and we write a ^ b D

a1b2 � a2b1 for a; b 2 R
2. Observe that current and Jacobian are well-defined as

distributions for maps m 2 L1 \ W 1;1.˝IR2/. Moreover, they carry topological
information about the S

1-degree of the map m. More precisely, if B is a ball, m 2
C 1.BIR2/ is such that mj@B 6D 0 and u D m=jmj, then

Z

@B

j.u/ � ds D 2� deg.u; @B/:

For S2-valued maps m, the counterpart of the Jacobian is the vorticity

!.m/ D
�
m;

@m
@x1
� @m
@x2

�
;

which is, considered as a differential 2-form, the pull-back of the standard volume
form on S

2 with respect to m. Thus, if B is a ball, m 2 C 1.BIS2/ is such that mj@B
is an equator map, then

Z

B

!.m/ dx D 4�q;

where q is the S
2-degree of, i.e. the oriented number of covers of S2 by the map m.

Thus q is a half-integer if the winding number of deg.m; @B/ is odd. In contrast to
the Jacobian, however, !.m/ is not exact, i.e., !.m/ is not a null-Lagrangian.

2.1 Compactness

We have good compactness results for the Jacobian and, under assumptions on the
energy excess, also on the maps themselves. The compactness properties of the
vorticity are not as good as those for the Jacobians, and we will not discuss them
here in general.

Proposition 1. Assume that .m�/ is a sequence of maps m� 2 H 1.˝IS2/ with
m� D .g; 0/ on @˝ and E�.h;m�/ � C log 1

�
for some fixed h 2 R

3.
Then we can extract a subsequence (not relabeled) such that

J.m�/! �

dX

j

ıaj
(3)

in the dual of C 0;10 .˝/.
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Proof. As h is independent of �, it follows that E�.0;m�/ � C log 1
�

. Hence the
2D Ginzburg-Landau energy ofm� satisfies the same bound, and we can now apply
standard compactness results [10]. ut
Proposition 2. Suppose that the sequence .m�/ satisfies the assumptions of
Proposition 1 and suppose that d and a1; : : : ; ad are as in (3). If additionally
the sequence E�.h;m�/ � d� log 1

�
C C then m� is bounded in W 1;p.˝IS2/ for

1 � p < 2 and in H 1
loc.˝nfa1; : : : ; ad g/. In particular, a subsequence converges

strongly in Lq.˝IS2/ for every q <1 to a map m0 D .m0; 0/ with jm0j D 1.

Proof. From the convergence of the Jacobians for a subsequence �n and lower
bounds near the singularities [9, 19], we obtain for every r > 0

lim sup
n!1

Z

˝r .a/

jrm�n
j2dx � 2�d log

1

r
C C;

which shows the H 1
loc bound. Using an argument of Struwe [23] and appropriate

diagonal subsequences, one can show by Hölder’s inequality and summing a
series that

lim sup
�&0

Z

˝

jrm�jpdx � C.p/

for all p 2 Œ1; 2/. Alternatively, one can obtain the W 1;p boundedness from the
global bounds onrm� in the Lorentz spaceL2;1 given in [21]. Rellich-Kondrachov
embedding finally yields strong convergence. ut

2.2 The Renormalized Energy

We introduce some notation. We fix a boundary condition g 2 C1.@˝IS1/ with
deg.g/ D d > 0. For a 2 ˝d , we set

	a WD min.min
i

dist.ai ; @˝/;
1

2
min
i¤j
jai � aj j/:

For r 2 Œ0; 	a/ we define

˝r.a/ D fx 2 ˝ W jx � aj j > r for j D 1; : : : ; d g

and we write ˝d� D fa 2 ˝d W 	a > 0g. As in [2], for a 2 ˝d� , there exists a
corresponding canonical harmonic mapM� DM�.�; a/ with vortex locations a and
all local winding numbers equal to 1, i.e.
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M�.xI a/ D
dY

jD1

x � aj
jx � aj je

i ;

where  is a harmonic function chosen such that M�.xI a/ D g on @˝ . Recall that
M�.�; a/ 2 W 1;p

g .˝;S1/ for all p 2 Œ1; 2/. We also verify by virtue of the explicit
representation of M�.�; a/ that the mapping

˝d� 3 a 7!M�.�; a/ 2 Lp.˝IC/ (4)

is continuously differentiable for p 2 Œ1; 2/. For h 2 R
2 sufficiently small, we

consider

W.h; a/ D W0.a/C V.h; a/

where W0 D W0.a/ is the unperturbed renormalized energy as introduced by
Bethuel, Brezis and Hélein [2]. The perturbation V D V.h; a/ is defined as the
following energy minimum

V.h; a/ D min
�2H1

0
.˝/

G .h; aI �/;

where

G .h; aI �/ D
Z

˝

1

2
jr� j2 � h �

�
ei�M�.xI a/

	
dx: (5)

Observe that, for h sufficiently small, G .h; aI �/ is a strictly convex functional on
H 1
0 .˝/, and hence there exists a unique minimizer � D �.h; a/ 2 H 1

0 .˝/. Since G
is a smooth function of h and � D �.h; a/ a critical point, it follows that

@W

@h
D @V

@h
D @G

@h

ˇ
ˇ
ˇ
�D�.h;a/ D �

Z

˝

m�.xI a/ dx; (6)

where

m�.xI a/ D ei�.xIh;a/M�.xI a/:

Note that m�.�; a/ 2 W 1;p
g .˝;S1/ for all p 2 Œ1; 2/ with

J.m�/ D J.M�/ D �
dX

jD1
ıaj
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Fig. 1 Numerical plot of M�.�I 0/ (left), m�.�I 0/ (center) and m�.�I amin/ (right) for amin

minimizing W.h; a/. The applied field is h D .0;�40/. Note that in the situation presented here,
the external field exerts a force on the vortex that is perpendicular to the field. Numerical simulation
by Jutta Steiner (using Matlab) based on Newton iteration for minimization of G .h; aI �/ for fixed
a and h

and that the Euler-Lagrange equation for (5) expressed in terms of m� reads

r � j.m�/ D h ^m�; (7)

i.e., m� D m�.�; a/ is the canonical h-harmonic map corresponding to g and a 2
˝d� . We have the following characterization of the renormalized energy:

Lemma 1. The renormalized energy can be calculated as

W.h; a/ D lim
r!0

�Z

˝r .a/

1

2
jrm�j2 � h �m� dx � �d log

1

r

�
: (8)

Proof. As in [2], we can set ˚ D 2�
Pd
jD1 log jx � aj j. Then ˚ is locally the

conjugate harmonic map of the phase of
Qd
jD1

x�aj

jx�aj j . Using that jm�j D jM�j D 1,

we can now write jrM�j D jr?˚Cr j and jrm�j D jr?˚Cr Cr� j, where
 is the harmonic function and � D �.�Ih; a/ as above. It follows that

jrm�j2 � jrM�j2 D jr� j2 C 2.r?˚ Cr / � r�:

Integrating this expression over ˝r.a/ and using that  is harmonic, we obtain for
r ! 0 the claimed result. ut

We deduce from (4) a local Lipschitz condition for m� as a mapping in a, which
will be useful for identifying effective motion laws.

Lemma 2. Suppose p 2 Œ1; 2/, a0 2 ˝d� . Then there exists c > 0 such that

km�.�; a/ �m�.�; Oa/kLp � c ja � Oaj

for all a; Oa 2 ˝d� such that maxfja � a0j; j Oa � a0jg < 	.a0/=2.
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Lemma 3. Suppose ˚ 2 C1
0 .˝IR2/ and 	 2 .0; 	a/ such that ˚ jB�.a`/ D

const. and ˚ jB�.ak/ D 0 for all k 6D `. Then, with m� D m�.�; a/, we have

˚.a`/ � @W
@a`

.h; a/ D
Z

˝

r˚ W
��

1

2
jrm�j2 � h �m�

�
1 � rm� ˝rm�

�
dx:

Proof. The claim of the lemma is in fact a singular version of Noether’s formula
for the Lagrangian 1

2
jrm�j2 � h �m� with respect to inner variations s 7! m�.x �

s ˚.x//. Based on this observation, the argument in [12] for the case h D 0 carries
over literally. ut

We will need the following notion of energy excess for a map m and a
configuration of points a 2 ˝d� :

Dh
� .mI a/ WD E�.h;m/ �

�
�d log

1

�
C d� CW.h; a/

�
;

where � is defined as lim�&0.I� � � log 1
�
/, and

I� D inf

�Z

B1.0/

e�.m/ dx W m.x/ D .x; 0/ on @B1.0/

�
:

To show that the name “energy excess” is justified, and to relate the micromag-
netic energy to the renormalized energy, we have

Proposition 3. If J.m�/! �
Pd
kD1 ıak

then lim inf
�&0

Dh
� .m�I a/ � 0:

Proof. Let �k ! 0 be a sequence such that

A D lim inf
�&0

Dh
� .m�I a/ D lim

k!1
Dh
�k
.m�k
I a/:

We can assume that A <1 (otherwise there is nothing to prove). By Proposition 2,
we have (for a subsequence) that m�k

! m0 D .m0; 0/ weakly inH 1
loc.˝0.a/IR3/

and strongly in all Lp.˝/, 1 � p <1. It follows that jm0j D 1, i.e. m0 has values
in S1 � f0g.

Now Dh
�k
.m�k
I a/ D D0

�k
.m�k
I a/ � R

˝
h � .m�k

� m�/ dx: As in the proof of
Theorem 5.3 of [14], for r sufficiently small we have

Dh
�k
.m�k
I a/ �

Z

˝r .a/

.e�k
.m�k

/� 1
2
jrM�j2/ dx

C
dX

`D1

�Z

Br .a`/

e�k
.m�k

/ dx � I�k=r

�
� Cr2

�
Z

˝

h � .m�k
�m�/:
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Using the convergence of m�k
and Lemma 5.1 of [14] we obtain

lim inf
k!1

Dh
�k
.m�k
I a/ �

Z

˝r .a/

�
1

2
jrm0j2 � 1

2
jrm�j2

�
dx

�
Z

˝

h � .m0 �m�/ � Cr2

We decompose m0 D eiˇM�. As in the derivation of (8), it is not difficult to see
that

Z

˝r .a/

�
1

2
jrm0j2 � 1

2
jrM�j2

�
dx!

Z

˝

1

2
jrˇj2 dx

as r ! 0, and now we can use the minimality of � to conclude the proof of the
proposition. ut
Now we show that the phase excess in ˝r.a/ (which measures the distance of m�

from an optimal map) can be bounded by the energy excess, up to errors that are
small as �! 0 and r ! 0. Unlike the quantitative theory of [11], our proof follows
the idea of Lemma 3.7 in [20] and uses weak convergence.

We define

Qe�.m/ D 1

2

�ˇ
ˇrjmjˇˇ2 C jrm3j2 C m23

�2

�

and note the decomposition

e�.m/ D Qe�.m/C 1

2

ˇ
ˇ
ˇ
ˇ
j.m/

jmj
ˇ
ˇ
ˇ
ˇ

2

:

Proposition 4. Assume D� D Dh
� .m�I a/ � C . Then we have the following

estimates for any 	 < 	a, ` D 1; : : : ; d :

ˇ
ˇ̌
ˇ

Z

B�.a`/

jrm�j2 dx � �j log �j
ˇ
ˇ̌
ˇ � C; (9)

Z

˝�.a/

Qe�.m�/ dx � D� C o�.1/; (10)

Z

˝�.a/

1

2

ˇ
ˇ̌
ˇ
j.m�/

jm�j � j.m�.�I a//
ˇ
ˇ̌
ˇ

2

dx � 1

1 � C jhjD� C o�.1/: (11)

Proof. As in the proof of Proposition 3, we have for a subsequence that m�

converges to m0 D .m0; 0/ weakly in H 1
loc.˝0.a// and strongly in Lp.˝/, with
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m0 D eiˇM�, where ˇ 2 H 1
0 .˝/. The proof of Proposition 3 also gives for any

small r > 0

lim inf
�&0

�Z

S
Br .a`/

e�.m�/ dx � �d log
r

�
C d�

�
� �Cr2: (12)

Furthermore,

lim inf
�&0

Z

˝r .a/

1

2

ˇ
ˇ
ˇ
ˇ
j.m�/

jm�j
ˇ
ˇ
ˇ
ˇ

2

dx �
Z

˝r .a/

1

2
jrm0j2 dx

and since m� ! m0 in L1.˝/, we obtain

lim inf
�&0

�Z

˝r .a/

1

2

jj.m�/j2
jm�j2 dx�

Z

˝

h �m� dx

�
�
Z

˝r .a/

1

2
jrm0j2 dx �

Z

˝

h�m0 dx:

From (8) we obtain

Z

˝r .a/

1

2
jrm�j2 dx �

Z

˝

h �m� dx � W.h; a/C �d log
1

r
� or.1/

so adding this to (12) we obtain

lim inf
�&0

�
D� �

Z

˝r .a/

Qe�.m�/ dx

�
� �or .1/:

Since the right-hand side of the previous inequality tends to zero as r ! 0, we
obtain by monotonicity of the left-hand side for any 	 > 0

lim inf
�&0

 

D� �
Z

˝�.a/

Qe�.m�/ dx

!

� 0:

This is (10). From D� � C , we obtain that also (9) must hold.
From the definition of energy excess it follows that

lim sup
�&0

�Z

˝r .a/

1

2
jrm�j2 � 1

2
jrm�j2 dx �

Z

˝

h � .m� �m�/ dx �D�
�
� �or.1/

so a fortiori

lim sup
�&0

 Z

˝r .a/

1

2

jj.m�/j2
jm� j2 � 1

2
jj.m�/j2 dx �

Z

˝
h � .m� �m�/ dx �D�

!

� �or .1/:
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We calculate

1

2

ˇ̌
ˇ
ˇ
j.m�/

jm�j � j.m�/
ˇ̌
ˇ
ˇ

2

D 1

2

jj.m�/j2
jm�j2 � 1

2
jj.m�/j2 � j.m�/ �

�
j.m�/

jm�j � j.m�/
�
:

Using that j.m�/ D r?˚ Cr Cr� and j.m0/ D r?˚ Cr Crˇ, we have
that

lim
�&0

Z

˝r .a/

j.m�/ �
�
j.m�/

jm� j � j.m�/
�

dx D
Z

˝r .a/

�
r?˚ Cr Cr�

	
� .rˇ � r�/ dx

For r ! 0, this expression converges using the harmonicity of  to

Z

˝

r� � .rˇ � r�/ dx:

We obtain

lim sup
�&0

 Z

˝r .a/

1

2

ˇ
ˇ̌
ˇ
j.m�/

jm�j � j.m�/
ˇ
ˇ̌
ˇ

2

�D�
!

� �or.1/C
Z

˝

h �M�.eiˇ � ei�/Cr� � .rˇ � r�/ dx:

The Euler-Lagrange for � in weak form reads as

Z

˝

r� � .rˇ � r�/ dx D
Z

˝

h � .iM�ei�/.ˇ � �/ dx:

We study the expression

h �
�
M�ei�.ei.ˇ��/ � 1� i.ˇ � �//

	

and note that it can be written using an application of Taylor’s theorem to the
function f .t/ D h � .M�ei.�Ct.ˇ��///. In fact, we have

f .1/ D f .0/C f 0.0/C
Z 1

0

f 00.t/.1 � t/ dt;

where f 00.t/ D h �M�ei.�Ct.ˇ��//.ˇ��/2. Taking absolute values and integrating,
it follows that

ˇ
ˇ̌
ˇ

Z

˝

h �
�
M�ei�.ei.ˇ��/ � 1 � i.ˇ � �//

	
dx

ˇ
ˇ̌
ˇ � jhj

Z

˝

.ˇ � �/2 dx:
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By weak convergence,

Z

˝r .a/

1

2
jr.ˇ � �/j2 dx � lim inf

�&0

Z

˝r .a/

1

2

ˇ
ˇ̌
ˇ
j.m�/

jm�j � j.m�/
ˇ
ˇ̌
ˇ

2

dx:

Using Poincaré’s inequality, we obtain that

lim sup
�&0

 

.1 � Ch/
Z

˝r .a/

1

2

ˇ̌
ˇ
ˇ
j.m�/

jm�j � j.m�/
ˇ̌
ˇ
ˇ

2

dx �D�
!

� �or .1/;

and letting r ! 0 on the right as before we obtain (11). ut

2.3 The Thiele Equation

For h 2 W 1;1.0; T IR2/, which is small enough so thatW D W.h.t/; �/ corresponds
to a unique minimizer � D �.h.t/; �/ for all t 2 Œ0; T �, we consider the equation

.4�q`i C ˛0�/ Pa`.t/C @W

@a`
.h.t/; a.t// D 0 .` D 1; : : : ; d /: (13)

Lemma 4. For initial data a.0/ D a0 2 ˝d� the Cauchy problem for (13) has a
unique solution a 2 C 1.Œ0; T �I˝d /, which satisfies the energy identity

W.h.t1/; a.t1// �W.h.t2/; a.t2// D ˛0 �
Z t2

t1

j Pa.s/j2dsC
Z t2

t1

Z

˝

Ph.s/ �m� dx ds

for all 0 � t1 < t2 � T , where m�.xI a/ D ei�.x/M�.xI a/.
Proof. Using (6) and (13) we compute for the (unique) local solution a D a.t/

d

dt
W.h.t/; a.t// D @W

@h
.h.t/; a.t// Ph.t/C

dX

jD1

@W

@aj
.h.t/; a.t// � Paj .t/

D �˛0 � j Pa.t/j2 �
Z

˝

Ph.t/ �m�.xI a.t// dx:

The energy identity follows, and the local solution a D a.t/ extends to Œ0; T �. ut
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3 LLG Equation with External Fields

Let us now consider the Landau-Lifshitz-Gilbert equation

@m
@t
D m �

�
˛�
@m
@t
� heff

�
; (14)

where, for an external field h 2 W 1;1.0; T IR3/, the effective field is given by

heff D �m � m3
�2

Oe3 C h:

We consider a specific asymptotic behavior for ˛� such that ˛� log 1
�
! ˛0 2 .0;1/

as �! 0. The effective field corresponds to minus the L2 gradient of

E�.h;m/ D
Z

˝

e�.m/ � h �m dx:

where, as usual,

e�.m/ D 1

2
jrmj2 C m23

2�2

is the energy density of the Ginzburg-Landau type energy E�.m/ D E�.0;m/,
which we have considered in [13–15]. In this section we study the equation for
a fixed � 2 .0; 1/. We impose Dirichlet boundary data given by a smooth map
g D .g; 0/ where g W @˝ ! S

1 with deg.g/ D d and initial data m0 2 H 1
g .˝IS2/

with

E�.m0/ � d� log
1

�
C C0: (15)

3.1 Conservation Laws

Let us assume m is a smooth solution of (1) in a space-time cylinder. The vorticity
!.m/ makes contact to the LLG equation through the identity

@

@t
!.m/ D curl

�
m � @m

@t
;rm

�

leading to

@

@t
!.m/C ˛� curl

�
@m
@t
;rm

�
D curl div .rm˝rm/ : (16)
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This conservation law for the vorticity will be crucial when identifying motion laws
for vortices, which are the concentration points of !.m/ in the singular limit � & 0.

Moreover, the energy identity for (14) reads

@

@t

�
e�.m/ � h.t/ �m

	
C ˛�

ˇ
ˇ̌
ˇ
@m
@t

ˇ
ˇ̌
ˇ

2

D div

�
@m
@t
;rm

�
C
�
Ph.t/; @m

@t

�
(17)

Finally, we have conservation of spin

@m3

@t
C div j.m/ D ˛� m ^ @m

@t
C h ^m; (18)

which is just the third component of (14), will imply that in the singular limit � & 0,
m will converge to an h.t/-harmonic map.

3.2 Weak Solutions and Bubbling

The LLG equation (14), for � > 0 fixed, is a lower order perturbation of the
conformally invariant LLG equation mt D m� .˛mt ��m/ which is traditionally
studied in mathematical analysis. In dimension two, this equation is critical with
respect to the natural energy estimate, and the formation of singularities in finite
time must be expected, [1]. On the other hand, a well-known construction of what is
called energy decreasing weak solutions, which has been introduced by Struwe [22]
for the harmonic map heat flow, see also [4] and [6, 7] for LLG, can be carried out.
In this framework, the possible blow-up scenario is precisely characterized through
the formation of bubbles at the energy concentration points.

This is in fact the new fundamental difficulty compared with the corresponding
problem for the complex Ginzburg-Landau theory, where at the finite � level,
evolution equations admit smooth solutions for all times, [12]. Since vortex
trajectories are retraced in terms of concentration sets of the energy density e�.m/
and the vorticity !.m/, precise information about their behavior near the singular
points is a crucial ingredient to our analysis. This information can be obtained from
the well-developed bubbling analysis for harmonic maps and flows, established e.g.
in [5,16–18,25]. Applied to (14) we obtain the following result (cf. [14, Sect. 4] for
more information):

Theorem 1. For initial data m0 2 C1.˝IS2/ there exists a weak solution m of
(14) which satisfies the energy inequality

˛�

Z t0

0

Z

˝

ˇ
ˇ
ˇ
ˇ
@m
@t

ˇ
ˇ
ˇ
ˇ

2

dx dtCE�.h.t0/;m0/ � E�.h.0/;m0/�
Z t0

0

Z

˝

Ph �m dx dt
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for all 0 � t0 � T and is smooth away from a finite number of points .xi ; ti / in
space time. Moreover, there exists, for every i , an integer qi such that for every
sufficiently small r > 0

Z

Br .xi /�fti g
e�.m/ dxC 4�jqi j � lim inf

t%t i

Z

Br .xi /�fti g
e�.m/ dx

and
Z

Br .xi /�fti g
!.m/ dxC 4�qi D lim

t%t i

Z

Br .xi /�fti g
!.m/ dx:

Finally, the (energy decreasing) solution m is unique in its class.

Form the energy inequality we deduce that for E�.m0/ � d� log.1=�/C C0,

˛�

Z t0

0

Z

˝

ˇ̌
ˇ
ˇ
@m
@t

ˇ̌
ˇ
ˇ

2

dx dtC E�.m.t0// � d� log.1=�/C C1; (19)

where 0 � C1 � C0 can be bounded above by a multiple of
Z T

0

j Ph.t/jdtC jh.0/j.

4 Convergence and Vortex Trajectories

Now we consider a sequence of initial data m0
� 2 H 1

g .˝IS2/ such that

˛�e�.m0
� /! ˛0�ıa0 ; !0.m0

� /! 4�

dX

`D1
q`ıa0

`
and lim

�&0
D�.m0

� I a0/ D 0

for a certain a0 2 ˝d� and q1; : : : ; qd D ˙12 and the corresponding weak solution
m� from Theorem 1. As in [14, Theorem 4.1] (see [13] for more details) and in view
of Proposition 2 we obtain the following convergence result.

Theorem 2. There exist a time T0 2 .0; T �, a sequence �k & 0, and a curve

a 2 H 1.0; T0I˝d / with a.0/ D a0 and inf
t2.0;T0/

	.a.t// > 0

such that for every t 2 Œ0; T0� and 1 � p < 2
m�k

.�; t/ * m�.�; a.t// weakly in W 1;p.˝IR2/;
˛�k

e�k
.m�k

. � ; t// �
* ˛0�ıa.t/ weakly* in .C 00 .˝//

�;

J.m�k
. � ; t//! �ıa.t/; !.m�k

. � ; t//! 4�

dX

`D1
q`ıa`.t/ in .C

0;1
0 .˝//�:
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Moreover, for all t1; t2 2 Œ0; T0� with t1 � t2 and � 2 C 1.˝/

˛0�

dX

`D1
�.a`.t//

ˇ̌
ˇ
t2

tDt1
D lim

k!1

�
˛�k

Z t2

t1

Z

˝

r� �
�
@m�k

@t
;rm�k

�
dx dt

�

and

˛0�

Z t2

t1

j Paj2 dt � lim inf
k!1

 

˛�k

Z t2

t1

Z

˝

ˇ
ˇ̌
ˇ
@m�k

@t

ˇ
ˇ̌
ˇ

2

dx dt

!

:

From the energy inequality in Theorem 1, the convergence of m�k
in Theorem 2

and conservation of spin identity (18) we deduce in particular that

j.m�k
.t; � // * j.m�.t; � // weakly in Lp.˝IR2/ (20)

for every t 2 Œ0; T0/, where

div j.m�.t; � / D h.t/ ^m� and curl j.m�.t; � // D 2�ıa.t/:

5 Motion Law

Theorem 3. There exist positive numbers h0 and �0 with the following property:
For every � 2 .0; �0/ and every smooth h W Œ0; T �! R

3 with

Z T

0

j Ph.t/jdtC jh.0/j < h0;

there exists a smooth solution m� 2 C1.˝ � Œ0; T �IS2/ of the Landau-Lifshitz-
Gilbert equation (14) with m�. � ; 0/ D m0

� and m�. � ; t/j@˝ D g for every t � 0.
Moreover, for every t 2 Œ0; T �,

˛�e�.m�. � ; t//! �˛0

dX

`D1
ıa`.t/ and !.m�. � ; t//! 4�

dX

`D1
q`ıa`.t/

as � & 0, in the sense of distributions, where a 2 C1.Œ0; T �I˝d / is the solution
of Thiele’s equation

G` � Pa` CD Pa` C @W.h; a/

@a`
D 0 .` D 1; : : : ; d / (21)

with a.0/ D a0 and where G` D 4�q` Oe3 andD D � ˛0 with ˛0 D lim
�&0

˛� log
1

�
:
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The rest of this section is devoted to the proof of the Theorem. Let Oa 2
C1.Œ0;1/I˝d / be the unique solution of the initial value problem for (21) with
initial values Oa.0/ D a0 2 ˝d . We choose T0 > 0 and a sequence �k & 0

that satisfy the conclusions of Theorem 2, and let a be the corresponding curve in
˝d . We recall that solutions remain smooth in .0; T0/ for small � as shown in [14,
Theorem 3], so we can concentrate on the verification of the motion law.

We fix a radius r 2 .0; 	.a0/=2� and adapt the terminal time T0 such that the
trajectories of a` and Oa` do not exit Br=2.a0` / before time T0 for all ` D 1; : : : ; d .
As in [14] we choose �; 2 C1

0 .˝/ such that for every `, both � and  are affine
with r D r?� in Br.a0` /. We define


k.t/ D
Z

˝�ftg



˛�k e�k .m�k /C � !0.m�k /

�
dx � �

dX

`D1

.˛0 . Oa`.t//C 4q`�. Oa`.t/// ;

converging, for every t 2 Œ0; T /, to


.t/ D �
dX

`D1

�
˛0

�
 .a`.t// �  . Oa`.t//

	
C 4q`

�
�.a`.t// � �. Oa`.t//

		
:

In order to apply Proposition 4 we fix h0 sufficiently small.

Lemma 5. There exists a constant C such that for all t1; t2 2 Œ0; T0� with t1 � t2
and every k 2 N,


k.t2/ � 
k.t1/ � C
Z t2

t1

�
Dh.t/
�k

.m�k
I Oa.t//C ja.t/ � Oa.t/j

	
dtC o�k

.1/:

Proof. From (13) we obtain

�

dX

`D1

d

dt
.˛0 . Oa`.t//C 4q`�. Oa`.t/// D �@W.h; Oa/

@a`
� r . Oa`.t//

while from Lemma 3 with Om� WD m�. � I Oa/ and ˚ D r?�

�
dX

`D1
r . Oa`.t// � @W.h; Oa/

@a`
D
Z

˝�ftg
r?r� W .r Om� ˝r Om�/ dx:

Using conservation of vorticity (16), we find after integration by parts in space and
integration in time
Z

˝

� !.m�k
.t2//� � !.m�k

.t1// dx D ˛�k

Z t2

t1

Z

˝

r?� �
�
@m�k

@t
;rm�k

�
dx dt

C
Z t2

t1

Z

˝

r?r� W 
rm�k
˝rm�k

�
dx dt:
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For the terms on the left we use convergence of the vorticity provided by Theorem 2.
Concerning the first term on the right we deduce from the energy estimate in
Theorem 1

�
˛�k

Z t2

t1

Z

˝


r?� � r � �
�
rm�k

;
@m�k

@t

�
dx dt

�2

� c
Z t2

t1

Z

˝

jr?� � r j2 ˛�k
e�k
.m�k

/ dx dt! 0

while by convergence of the kinetic term in Theorem 2

˛�k

Z t2

t1

Z

˝

r �
�
rm�k

;
@m�k

@t

�
dx dt! ��˛0

dX

`D1

�
 .a`.t2//�  .a`.t1//

	

as �k & 0. Therefore, it suffices to estimate the integrals

Z t2

t1

Z

˝

r?r� W .rm�k
˝rm�k

� r Om� ˝r Om�/ dx dt;

which, by virtue of the usual decomposition argument and Proposition 4 (see [14,
Sect. 6]), reduces to the estimation of

Z t2

t1

Z

˝

r?r� W ..j.m�k
/� j. Om�//˝ j. Om�// dx dt

and

Z t2

t1

Z

˝

r?r� W .j. Om�/˝ .j.m�k
/� j. Om�/// dx dt:

Taking into account that both integrands are products of the form

� � .j.m�k
/� j. Om�//

for smooth vector fields � 2 C1.˝� Œ0; T0�IR2/ independent of k, we obtain from
(20) with m� D m�.�; a.t// and Om� D m�.�; Oa.t//
Z t2

t1

Z

˝

� � .j.m�k
/� j. Om�// dx dt D

Z t2

t1

Z

˝

� � .j.m�/� j. Om�// dx dtC o�k
.1/:

Next we adopt the Hodge decomposition argument used in [14, Lemma 7]. Writing
�� D ruC r?v, where u; v 2 C1.˝ � Œ0; T0�/ with u D 0 on @˝ � Œ0; T0� we
infer, also taking into account Lemma 2,
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Z t2

t1

Z

˝

� � .j.m�/ � j. Om�// dx dt D
Z t2

t1

Z

˝

h ^ .m� � Om�/ u dx dtC 2�
dX

`D1

Z t2

t1

.v.a`/� v. Oa`// dt

� c
Z t2

t1

ja.t/ � Oa.t/j dt: ut

Proof (Theorem 3). The proof follows by the usual Gronwall argument. For t 2
Œ0; T0�, we consider the functions

�k.t/ D Dh.t/
�k

.m�k
.t/I Oa.t// and �.t/ D j Oa`.t/ � a`.t/j:

First we show �k ! � in L1.0; T0/ for a function � 2 BV.0; T0/ with

P� � c
j POa � Paj C ��: (22)

In fact, we obtain from Lemma 4

W.h.t1/; Oa.t1//�W.h.t2/; Oa.t2// D �˛0
Z t2

t1

j POaj2 dt �
Z t2

t1

Z

˝

Ph.t/ �m�.�; Oa.t// dx dt

and from (19)

E�k
.h.t2/;m�k

.t2//� E�k
.h.t1/;m�k

.t1// D

�
Z t2

t1

Z

˝

 

˛�k

ˇ̌
ˇ
ˇ
@m�k

@t

ˇ̌
ˇ
ˇ

2

� Ph.t/ �m�k

!

dx dt;

respectively, for 0 � t1 � t2 � T0, while

ˇ
ˇ̌
ˇ

Z t2

t1

Z

˝

� Ph.t/ �m�k
� Ph.t/ �m�.�; Oa.t//

	
dx dt

ˇ
ˇ̌
ˇ � c

Z t2

t1

�.t/ dtC o�k
.1/:

In view of Theorem 2 we can select a subsequence such that �k.t/ ! �.t/ almost
everywhere for a bounded function � W Œ0; T0�! R with

�.t2/� �.t1/ �
Z t2

t1

�˛0

�
j POaj2 � j Paj2

	
C c �.t/ dt � c

Z t2

t1

j POa � Paj C �.t/ dt

for almost all t1 � t2, which implies (22). Now Lemma 5 implies, by virtue of (22),
for 0 � t1 � t2 � T0,
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.t2/ � 
.t1/ � c
Z t2

t1

.�.t/C �.t// dt:

With an appropriate choice of � and  we obtain the desired inequality

j POa.t/� Pa.t/j � c
Z t

0

j POa.
/� Pa.
/j d
:

As Oa.0/ D a.0/, Gronwall’s lemma implies Oa D a in Œ0; T0�. Moreover,

lim sup
k!1

Dh.T0/
�k

.m�k
.T0/I a.T0// � 0;

which enables us to iterate the argument for new initial times T0, and we eventually
obtain the motion law for all times before T0. Note that by uniqueness of energy
decreasing solutions, solutions m� extend, for small �, smoothly to Œ0; T �. Finally,
thanks to the unique solvability of the limiting ODE, the convergence result for
energy density and vorticity can be seen to hold without taking subsequences, as
any subsequence of � & 0 will have a further subsequence converging to the same
limit. ut
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On Prandtl-Reuss Mixtures

Jens Frehse and Josef Málek

Abstract We study mathematical properties of the model that has been proposed
to explain the phenomenon of hardening due to cyclic loading. The model considers
two elastic plastic materials, soft and hard, that co-exist while the soft material can
be transformed into the hard material. Regarding elastic responses we remain in a
simplified framework of linearized elasticity. Incorporating tools such as variational
inequalities, penalty approximations and Sobolev spaces, we prove the existence
of weak solution to the corresponding boundary-value problem and investigate its
uniqueness and regularity.

1 Introduction

In the article [10], Kratochvı́l, Rajagopal, Srinivasa and the second author of the
present contribution developed a thermodynamically consistent model within the
framework of finite elastic plasticity that is capable of ‘explaining’ the phenomenon
of hardening of the material due to cyclic loadings. They consider the mixture of
two elastic plastic materials, soft and hard, that coexist. The material that can be
thought to be originally almost consisting of soft region builds the hard regions by a
process of ‘recruitment’ of the soft material and its conversion into a hard material.
The study in [10] carries on some ideas from Kratochvı́l [9]. The authors then also
consider a simplified model that is obtained by assuming that the gradient of the
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displacement is small. This results in a model that can be viewed as the mixture of
two (soft and hard) Prandtl-Reuss models of the linearized elastic perfect plasticity
where the conversion of soft regions to hard regions is modeled through the variation
of the volume fraction ˛ of the soft material within the mixture. Note that .1 � ˛/
is the volume fraction of the hard material. The present paper intends to elaborate
a rigorous mathematical treatment for this simplified model using the framework
of variational inequalities, penalty approximations and Sobolev spaces. We call
the materials that are based on the coexistence of the two (or more) Prandtl-Reuss
elastic plastic materials ‘Prandtl-Reuss mixtures’.

Although a mathematical treatment is very similar to the one of the classical
Prandtl-Reuss-problems, several complications arise. A first study of this model has
been performed in the thesis of Khasina, see [8].

The paper is organized in the following way. Section 2 starts with a basic
mathematical setting, and contains the formulation of the mixture problem via a
variational inequality for the convex combination of the soft and hard material, with
the side condition that the convex combination ˛�sC .1�˛/�h satisfies the balance
of linear momentum, and �s and �h satisfy the relevant yield conditions. The main
theorem states that, under appropriate conditions on the data, in particular, under a
safe load condition for the mixture, the considered problem for the Prandtl-Reuss
mixture has unique solution �s ; �h in the spaces L1.L2/ and H 1;2.L2/.

Furthermore, from the formulation via a variational inequality one concludes, see
Sect. 3, the existence of partial velocity gradients (or more precisely their symmetric
parts) 1

2
.rPus CrPuTs / and 1

2
.rPuh CrPuTh / so that

1

2
.rPusCrPuTs /DAs

@

@t
.˛�s/C Peps; 1

2
.rPuhCrPuTh /DAh

@

@t
.˛�h/C Peph; (1)

where Peps and Peph are the rates of plastic strains for the soft and hard material, As
and Ah are the inverse fourth order elastic tensors, so that As�s and Ah�h corre-
spond to the elastic strains for the soft and hard materials. Then we conclude that

1

2
.rPus CrPusT / D 1

2
.rPuh CrPuhT / DW 1

2
.rPuCrPuT /: (2)

Here and below, for any quantity w

Pw D @w

@t
; (3)

we shall use both notation in what follows. We confine ourselves to the von Mises
yield conditions

j�sD j � �s , j�hDj � �h; (4)

where �s and �h may depend on t and x and BD D B � .trB=3/ I for any
B 2 R

n�n. The plastic strains are nontrivial only if j�sD j D �s and j�hDj D �h,
and then they are proportional to the outer normal ‘vectors’ associated with the
surfaces j�sDj D �s and j�hDj D �h, it means that
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Peps D �s �sDj�sD j , Peph D �h �hDj�hDj with �s and�h > 0: (5)

These conditions can be rewritten in the compact Kuhn-Tucker forms

�s; �h � 0; �s.j�sD j � �s/ D 0; �h.j�hDj � �h/ D 0: (6)

Unfortunately, in the rigorous mathematical treatment, similar as for the analysis
of the classical Prandtl-Reuss model, the quantities 1

2
.rPusCrPuTs /, 12 .rPuhCrPuTh /

are only elements of C �, i.e. they are not functions. This holds also for Peps and
Peph, so the above Kuhn-Tucker rule has to be interpreted correctly, see Sect. 8.
Fortunately, due to Temam’s imbedding theorem, the quantity Pu is an element of
L1.L n

n�1 /, i.e. it is a ‘function’.
The proof of the main theorem starts in Sect. 3 by introducing a penalty approx-

imation where the yield conditions (4) are penalized. The penalty approximation,
in turn, is discretized by a Rothe approximation, and in Sect. 4 up to 6 we
establish uniform estimates for Rothe approximations and take the limit in the
Rothe approximation in order to obtain the solvability of the penalty approximation.
In Sect. 7 we establish uniformL1.L2/-estimates for the stress velocities P�s�, P�h�,
where �! 0 is the penalty parameter.

Finally, in Sect. 8 we pass to the limit with respect to the penalty parameter and
complete the proof of the main theorem. As mentioned above we also discuss how
the Kuhn-Tucker forms have to be formulated rigorously. In Sect. 9, we consider a
generalized model (derived in [10]) in which ˛, �s and �h may depend on history of
the rate of the plastic strain of the soft material. We discuss how to treat this in the
framework of the present paper. In a continuation of this study we intend to focus
on the regularity properties of the solution.

We refer to [3] for a detailed survey of the results concerning the mathematical
analysis of relevant results concerning initial and boundary value problems for
classical Prandtl-Reuss model of the linearized elastic perfect plasticity.

2 Mathematical Formulation of the Problem

2.1 Basic Setting

Let ˝ be a bounded domain of Rn occupied by a body which is supposed to be a
mixture of a soft and a hard linearized elastic-perfect-plastic materials in the sense
defined below.

We imagine the following deformation process with (slow) cyclic loading in
which the mixture with a large portion of soft material is gradually deformed and
transforms into a mixture with a large portion of hard material.

If t 2 Œ0; T � is the loading parameter, the interior stresses of the soft or hard
material are denoted by �s.t; x/ and �h.t; x/, respectively. Let M n

sym be a set of
symmetric n � n matrices. We require the �’s to be symmetric, i.e.
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�s , �h W Œ0; T � �˝ !M n
sym: (7)

Let ˛ W Œ0; T � � ˝ ! Œ0; 1� describe the fraction of the soft material in the
mixture such that the stress of the mixture � is given by

�.t; x/ D ˛.t; x/�s.t; x/C .1 � ˛.t; x//�h.t; x/. (8)

Assumption 1. (a) ˛ is Lipschitz continuous and decreasing.
(b) 0 < ˛0 < ˛.t; x/ < 1 � ˛0 < 1 with a constant ˛0 (for all t 2 Œ0; T � and
x 2 ˝).

Remark 1. In general, ˛ depends on the history of �s , but readability is better if we
start the theory with the above assumption, see also Sect. 9.

Remark 2. We are not able to treat the case ˛0 D 0, i.e. an analysis starting with a
‘pure’ soft material is not possible, up to now. This corresponds also to the results
of numerical experiments performed and presented in [8].

The notion ‘hard’ or ‘soft’ material is given by the yield condition. We confine
the presentation to the von Mises-yield condition:

Condition 1. Let �s, �h :Œ0; T � � ˝ ! R be Lipschitz continuous functions such
that 0 < �0 < �s � �, 0 < �0 < �h � � with some �0, � 2 R. We say that �s , �h
satisfy the von Mises-yield condition if j�sD j � �s , j�hDj � �h. If �s < �h then �s
is said to be the ‘soft’ material and �h the hard material.

This means that the modulus of the deviator �sD D �s � .tr �s=n/I and �hD D
�h � .tr �h=n/I may not exceed the yield boundary.

Remark 3. The theory presented here works quite similar for other yield functions
of the type F.�D/ � �; the function F has to be Lipschitz continuous, convex and
coercive. We believe that the readability improves if we confine ourselves to the
above case given in Condition 1.

Remark 4. For n D 2, in applications, �D might be defined in a different way,
namely �D D � � .tr �=3/ I , see [2].

2.2 Balance of Linear Momentum

The mixture is supposed to satisfy the balance of linear momentum, it means that
we have

� div.˛.t; x/�s.t; x/C .1 � ˛.t; x//�h.t; x// D f .t; x/; (9)

where f W Œ0; 1� �˝ ! R
n is a given volume force (density).

The mixture underlies a mixed boundary condition

�.x/Œ˛.t; x/�s.t; x/C .1 � ˛.t; x//�h.t; x/� D p0.t; x/ on .0; T / � @˝ n � ,

u D 0 on .0; T / � � . (10)
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Here � is a portion of the boundary of ˝ , possibly empty,1 p0.t; x/ W Œ0; T ��
.@˝ n � /! R

n is a boundary force and �.x/ is the outer unit vector at x 2 @˝ ,
normal to @˝ . We extend the definition of p0 to the whole boundary by setting
p0 D 0 on .0; T / � � .

The precise version of the weak formulation to (9) and (10) reads as:

.˛.t; �/�s.t; �/C .1 � ˛.t; �//�h.t; �/;r�/ D
Z

@˝
p0.t; :/� doC .f .t; :/; �/;

t 2 Œ0; T �; 8� 2 H1

 .˝;R

n/: (11)

The brackets (.,.) denote the usual L2.˝/ scalar product, for scalar, vector or
tensor valued functions as well. H 1


 denotes the subspace of the Sobolev space
H 1;2 whose elements vanish on � in the sense of traces.

The weak form of the balance equation (11) is well defined if we assume

f 2 L1..0; T /IL2.˝IRn// DW L1.L2/,

p0 2 L1..0; T /IL2.@˝IRn//.
(12)

Furthermore, @˝ and � are .n � 1/-dimensional Lipschitz-manifolds. As follows
from above, we use the shortened notation for the Sobolev and Bochener spaces.

2.3 Elasticity

Let


 D .
s; 
h/ , O
 D . O
s ; O
h/ W Œ0; T � �˝ !M n
sym �M n

sym, (13)

and

Q

� O
s
O
h

s

h

�
D
Z

˝

ŒAs O
s W 
s C Ah O
h W 
h� dx: (14)

Here As and Ah are inverse elasticity tensors, say of the same structure as in
the Lame-Navier linearized elasticity (with possibly different material coefficients).
They model the elastic interaction within the soft and hard material. (It is possible
to treat additional interaction terms Ash O
h W 
s .)
Assumption 2. For simplicity we assume that As, Ah do not depend on x 2 ˝ ,
t 2 Œ0; T �, we assume that As and Ah are positively definite.

1Here for simplicity (in order to avoid the compatibility condition on the data), we assume that
� ¤ ;.
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Note that the matrix Q represents the total elastic energy of the mixture
corresponding to the stresses 
s and 
h of a hard and soft materials at the loading
‘time’ t 2 Œ0; T �. It is possible to carry out the theory presented here also for
nonlinear convex potential with quadratic growth, but we restrict ourselves to the
simplified case described above in order not to be overburdened.

2.4 The Variational Inequality for Elastic-Perfect-Plastic
Mixtures

With these preparations, we are able to rigorously formulate the loading process of
an elastic-perfect-plastic mixture by a variational inequality. The approach is similar
to the standard ‘Prandtl-Reuss model’, see [5,7,11,12]. For the formulation, we need
the following convex set K of pairs .
s; 
h/ of functions 
s, 
h: Œ0; T � �˝ !M n

sym
such that the following holds:

Integrability:


s, 
h 2 L1.L2/; P
s , P
h 2 L1.L2/I (15)

Initial condition:


s.0/ D �s0; 
h.0/ D �h0I (16)

Balance of linear momentum:

.˛
s C .1 � ˛/
h;r�/ D .f; �/C
Z

@˝

p0�do; 8� 2 H1

 .˝;R

3/; t 2 .0; T /I (17)

Yield conditions:

j
sDj � �s , j
hDj � �h: (18)

Then the variational inequality, i.e. the problem for the Prandtl-Reuss mixture, reads
as follows: Find a pair .�s ; �h/ 2 K such that

Z T

0

Q

�
@
@t
.˛�s/ ˛.�s � 
s/

@
@t
..1 � ˛/�h/ .1 � ˛/.�h � 
h/

�
dt � 0 for all .
s ; 
h/ 2 K. (19)

Remark 5. The function ˛ is Lipschitz in x and t . In the model investigated in
[10], ˛ depends also on �s . Then we have a quasi variational inequality. For the
mathematical treatment of this more complicated case we first have to analyze ˛’s
that are �-independent in order to apply a fixed point theorem for more general case.
This is why we restrict ourselves to the simpler case in this study.
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For the proof of the main theorem, performed via several levels of approximation
and estimates, the following condition seems to be crucial.

Condition 2 (Safe load condition for mixtures). There exists a pair ( Q�s ; Q�h/ 2 K

and a number s0 > 0 such that

j Q�sD j � �s � s0; j Q�hDj � �h � s0: (20)

In addition we will deal with differentiability assumptions with respect to the
loading parameter t.

Assumption 3. We assume the following differentiability properties of the data:

P̨ ; PQ�s ; PQ�h; P�s; P�h 2 L1.L1/ (21)

and, for refined regularity estimates,

R̨ ; RQ�s ; RQ�h; R�s ; R�h 2 L1.L1/: (22)

Now we may state our main result.

Theorem 1 (Main theorem). Let ˛ satisfy Assumption 1, let f and p0 satisfy
(12) and let �s, �h satisfy Condition 1. Assume the safe load Condition 2 with the
regularity (21). Furthermore let As and Ah be positively definite. Then there exists
a unique solution of the variational inequality (19).

Proof. (i) The uniqueness in the case ˛ D ˛.x; t/ is a simple consequence of
Assumption 2. Indeed, if �s ; �h and O�s ; O�h are solutions to (19), choose 
s D O�s ,

h D O�h in the equation for �s ; �h, and use a similar argument with �s ; �h and
O�s ; O�h interchanged. Then one concludes that for ws D �s � O�s , wh D �h � O�h
1

2

Z T

0

Z

˝

As
@

@t
.˛ws/ W .˛ws/C Ah @

@t
..1 � ˛/wh/ W ..1 � ˛/wh/ dx dt � 0,

(23)

which implies that ws D wh D 0.
(ii) The existence result is established in the following Sects. 3–6 and 8. In

Sect. 3 the approximation of the variational inequality by a penalty method
is presented. The variational inequality is approximated by an equation with
the balance of linear momentum free functions as test functions and a penalty
term where the yield condition is penalized. This is a familiar approach in
the framework of classical models, like those of Hencky or Prandtl-Reuss, or
hardening models. In Sect. 4 the penalty approximation is discretized via a
Rothe method. There we also derive uniform discrete L1.L2/-estimates for
the approximate stresses for the soft and hard material, as well as discrete
uniform L1.L1/-estimates for the approximate strain velocities. In Sect. 5 we
prove uniform discrete L2.L2/-estimates for first difference quotients of the
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Rothe Approximation. This allows us, in Sect. 6, to pass to the limit in the
Rothe Approximation and we obtain, via weak compactness and monotonicity
arguments, a solution �s�, �h� of the penalty equation.

Finally, in Sect. 8 we pass to the limit � ! C0 and obtain a solution of
the variational inequality. Again, the proof runs via weak convergence and
monotonicity, since the L2.L2/-estimates for the stress velocities in Sects. 4–
6 turned out to be uniform also with respect to �. The estimates of the
stresses and their velocities depend on the L1.L1/ norms of P̨ , P�s ; P�h; PQ�s ; PQ�h.
For L1.L2/-estimates for P�s ; P�h (rather than L2.L2/-estimates) we need to
assume that R̨ ; R�s ; R�h; RQ�s ; RQ�h 2 L1.L1/. But this additional derivative in
the assumption would be very restrictive to the considered class of nonlinear
models, like the one in [10], where ˛, �s, �h depend on the history of the stress
of the soft material, see the discussion in Sect. 9. For this reason, we arranged
the existence theory in the L2.L2/ setting for P�s , P�h: ut

Remark 6. The uniqueness needs not hold if ˛ is �-dependent.

In the classical theory of the Prandtl-Reuss model the inclusion P� 2 L1.L2/
follows in a natural way. A similar theorem is also possible in the present setting.

Theorem 2. Under the assumptions of the main theorem and (22), the solution
couple �s ; �h for the Prandtl-Reuss mixture satisfies

P�s ; P�h 2 L1.L1..0; T / �˝IM n
sym// (24)

with corresponding L1.L1/ bounds depending additionally on the L1.L1/
norms of R̨ ; R�s ; R�h; RQ�s ; RQ�h.

The proof is done in Sect. 7, where a corresponding bound for the solution of the
penalty approximation is established.

The variational inequality (19) is a complete dual formulation of the mechanical
problem, i. e. the strains and strain velocities do not appear a priori. However, due to
uniqueness and the construction of a solution via the penalty method we conclude
the following theorem.

Theorem 3. Under the assumptions of the main theorem, there exist a Riesz
measure Pu 2 C �..0; T / � ˝IRn/ such that 1

2
.rPu C rPuT / is also a Riesz

measure and
Z T

0

�
As

@

@t
.˛�s/� 1

2
.rPuCrPuT /; �s � 
s

�
dt � 0

Z T

0

�
As

@

@t
..1 � ˛/�h/� 1

2
.rPuCrPuT /; �h � 
h

�
dt � 0 (25)

for all 
s , 
h 2 C..0; T / � N̋ IM n
sym/ such that j
sDj � �s, j
hDj � �s. If the

assumptions of Theorem 2 are satisfied, the

Pu 2 L1.L n
n�1 /: (26)
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In Sect. 3, from the penalty equation, we derive partial approximate strains and
interpret the penalty terms as approximate plastic strain velocities. It turns out that
the rates of partial plastic strain for hard and soft materials are equal. In Sects. 4–
7, the corresponding L1.L1/ and L1.L1/-estimates for the strain velocities are
proved. This works analogously as in the classical Prandtl-Reuss case via the
safe load condition. For the L1.L n

n�1 / inclusion the tools from Sect. 7 are needed.
There is a lot of further analogy between the problem for the Prandtl-Reuss

mixture model considered here and the classical Prandtl-Reuss model. For example,
if nD 2 one can prove an L1.L2Cı/ estimate for the strains, based on the reverse
Hölder-inequality and Gehring’s lemma. Furthermore the H 1

loc
-differentiability of

the stresses can be done similarly as in the classical Prandtl-Reuss case, see [1, 4].
However, in our case, we need extra differentiability properties and corresponding
estimates for the volume fraction ˛ and the yield quantities. This decreases the
possibilities to establish the same result if ˛ depends nonlinearly on Peps .

In the next sections we establish the existence theory needed to complete the
proof of Theorem 1.

3 The Penalty Equation

Analogously to the classical Prandtl-Reuss problem we approximate the variational
inequality by penalizing the yield conditions. The approximation we use reads:

Find a pair .�s ; �h/ D .�s�; �s�/ such that the properties (15)–(18) are satisfied
and the following penalty equation holds a.e. with respect to t 2 Œ0; T �

Q

�
@
@t
.˛�s/ ˛
s

@
@t
..1 � ˛/�h/ .1 � ˛/
h

�

C .��1Œj�sD j � �s�C �sD

j�sDj ; ˛
s/C .�
�1Œj�hD j � �h�C �hD

j�hDj ; .1 � ˛/
h/ D 0
(27)

for all 
s ; 
h W ˝ ! M n
sym; 
s ; 
h 2 L2 satisfying the balance of linear momentum

with force zero

.˛
s C .1 � ˛/
h;r�/ D 0; 8� 2 H 1

 .˝;R

n/: (28)

� is here the penalty-parameter, � > 0.
The penalty equation (27) has a solution:

Theorem 4. Under the assumptions of Theorem 1, Eq. (27) has a unique solution
�s�; �h� 2 L1.L2/ such that P�s�; P�h� 2 L2.L2/, with corresponding uniform
bounds as �! C0.

As � ! C0 the solutions �s�; �h� converge strongly in L2.L2/ to the
solution �s ; �h of the variational inequality (19). Furthermore we have the uniform
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L1.L1/-bound for the penalty part

��1
Z T

0

Z

˝

Œj�s�D j � �s �C.j�s�Dj C 1/C Œj�h�Dj � �h�C.�h�D C 1/ dx dt

� K. P̨ ; P�s ; P�h/ (29)

and the bound

ess sup
t

��1
Z

˝

Œj�s�Dj � �s �2C C Œj�h�Dj � �h�2C dx � K. P̨ ; P�s ; P�h/ (30)

uniformly as �! C0.

The proof of Theorem 4 is established in Sects. 4–6.

3.1 Reconstruction of Partial Strains

In Eq. (27), we choose


s D ˛�1
0; 
h D 0;
or vice versa


s D 0; 
h D .1 � ˛/�1
0;

where .
0;r�/ D 0 for all � 2 H 1

 . These pairs .
s ; 
h/ of test functions are

admissible since they satisfy (28). Thus we obtain two equations

�
As

@

@t



˛�s�

�
; 
0

�
C
�
��1Œj�s�D j � �s�C �s�D

j�s�Dj ; 
0
�
D 0 (31)

�
Ah

@

@t



.1 � ˛/�h�

�
; 
0

�
C
�
��1Œj�h�Dj � �h�C �h�D

j�h�Dj ; 
0
�
D 0 (32)

a.e. in Œ0; T �, for all 
0 2 L2.˝;M n
sym/ fulfilling (11). Conversely, from (31), (32)

we reach (27).
Now, we use the symmetric Helmholtz decomposition in L2 to conclude that

there exists vs�; vh� 2 L2.0; T IH 1

 .˝;R

n// such that vs� D Pus�, vh� D Puh� and

As
@

@t



˛�s�

�C ��1Œj�s�D j � �s�C �s�D

j�s�Dj D
1

2
.rPus� CrPus�T /; (33)



On Prandtl-Reuss Mixtures 143

Ah
@

@t



.1 � ˛/�h�

�C��1Œj�h�Dj � �h�C �h�D

j�h�Dj D
1

2
.rPuh�CrPuh�T /: (34)

Interestingly, there is a relation between Pus� and Puh� which follows from the
penalty equation, namely


Pus�; div.˛
s/
�C 
Puh�; div..1 � ˛/
h/

� D 0; (35)

that is valid for all 
s, 
h 2 L2.˝IM n
sym/ such that ˛
s C .1 � ˛/
h satisfies the

balance of linear momentum with zero force.

Theorem 5. Let Pus� and Puh� be the partial strain velocities arising in (33) and
(34). Then we have

1

2
.rPus� CrPus�T / D 1

2
.rPuh� CrPuh�T /: (36)

Proof. From (28) and (35) we conclude that

�
1

2
.rPus� CrPus�T /; ˛
s

�
�
�
1

2
.rPuh� CrPuh�T /; ˛
s

�
D 0 (37)

for all 
s, 
h such that .˛
h C .1 � ˛/
s ;r�/ D 0, � 2 H 1

 . For arbitrary 
0s 2 L2

we define


0h D �
˛

1 � ˛ 

0
s : (38)

Then obviously .
0s ; 

0
h
/ satisfies the balance of linear momentum with zero force

and we conclude that

1

2
.rPus� CrPus�T / D 1

2
.rPuh� CrPuh�T / in L2: (39)

Remark 7. Clearly, (36) extends to the limit � ! C0 in the space C �.Œ0; T � �
˝IRn/ of Riesz measures.

From the mathematical point of view, we believe that (33) and (34) are the ‘best’
equations to understand the analysis of Prandtl-Reuss mixtures. The functions vs�
and vh� can be interpreted as the approximate total strain velocities for the soft and
the hard material. We have written vs� D Pus�, vh� D Puh�, assuming some initial
condition for us�, uh�. The penalty terms correspond to the (approximate) velocities
of plastic deformation and the terms As @@t



˛�s�

�
, Ah

@
@t



˛�h�

�
model the elastic

deformation of the hard and soft material. Note that (33) and (34) are equivalent to
(27).

From the estimates of the penalty term, proved in the following sections, we state
the following theorem.
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Theorem 6. Under the assumptions of Theorem 4 we have the uniform estimate

sup
�

n
jjr Pus�CrPus�T jjL1.L1/Cjjr Puh� CrPuh�T jjL1.L1/

o
� K. P̨ ; P�s ; P�h/: (40)

Due to Temam’s imbedding theorem we derive

Corollary 1.

sup
�

n
jjPus�jj

L1.L
n

n�1 /
C jjPuh�jj

L1.L
n

n�1 /

o
� K. P̨ ; P�s ; P�h/ as �! C0: (41)

From the L1.L1/-estimates for the strain velocities and the penalty terms we
have, for a subsequence

1

2
.rPus� CrPus�T / * 1

2
.rPus CrPusT / weakly in C �.Œ0; T � � N̋ IRn/; (42)

1

2
.rPuh� CrPuh�T / * 1

2
.rPuh CrPuhT / weakly in C �.Œ0; T � � N̋ IRn/; (43)

i.e. the limiting strains are only Riesz-measures. If more regularity is assumed in the
safe load condition (see further theorems) we have that Pus ; Puh 2 L1.L n

n�1 /, i.e. the
velocities and the displacements, are at least functions.

For the penalty terms we have

��1Œj�s�D j � �s�C �s�D

j�s�Dj * Peps ; ��1Œj�h�Dj � �h�C �h�D

j�h�Dj * Peph (44)

both weakly in C �.Œ0; T � � N̋ /, as �! C0.
If we would know that �s� ! �s , �h� ! �h in C (D space of continuous

functions), we could prove the representation

Peps D �s �sDj�sDj ; Peph D �h �hDj�hDj ; (45)

where �s, �h is the weak C �-limit of ��1Œj�s�D j � �s�C, ��1Œj�h�Dj � �h�C. The
support of �s and �h is on the set j�sDj � �s and j�hDj � �h, respectively. In the
case of two dimensions there is a substitute of the argument, taking into account that
�s ; �h 2 C is not known, see the discussion in Sect. 9. With the above convergences
in C � the solution of the variational inequality satisfies the equations

1

2
.rPus CrPusT / D As @

@t
.˛�/C Peps; (46)

1

2
.rPuh CrPuhT / D Ah @

@t
..1� ˛/�/C Peph: (47)
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With a more restrictive assumption we gain L1.L2/-bounds for P�s�, P�h� and
L1.L1/-bounds for the partial strains. This is proved in Sect. 7.

Theorem 7. Under the assumption of Theorem 4 and the additional requirement
that the safe loads and the data ˛, �s , �h satisfy

RQ�s ; RQ�h; R̨ ; R�s; R�h 2 L1.L1/ (48)

there holds the uniform bound

sup
�

n


 P�s�





L1.L2/

C 

 P�h�




L1.L2/

o
� K. R̨ ; R�s ; R�h/ (49)

and





rPus� CrPus�T







L1.L1/

C





rPuh� CrPuh�T







L1.L1/

� K. R̨ ; R�s ; R�h/: (50)

Remark 8. In the above estimates we indicate how the bounds depend on the
derivative of ˛, �s, �h. This is relevant, later, for the treatment of the quasivariational
inequality, where ˛, �s , �h depend on �s (and also �h/. A dependence of P̨ , P�s , P�h
does not give problems modelling ˛, �s, �h, but a dependence of R̨ , R�s , R�h leads to
restrictions.

It is useful to observe that the solutions of the penalty problems satisfy the
variational inequalities

�
As

@

@t



˛�s�

�
; �s� � !s

�
�
�
1

2
.rPus� CrPus�T /; �s� � !s

�
(51)

�
Ah

@

@t



.1 � ˛/�h�

�
; �h� � !h

�
�
�
1

2
.rPuh� CrPuh�T /; �h� � !h

�
(52)

a.e. with respect to t , for all !s ; !h 2 L2.˝;M n
sym/ such that j!sDj � �s;

j!hDj � �h.
This follows from the

�
Œj�sD j � �s�C �sD

j�sD j W .�sD � !sD/
�
D

0

@Œj�sD j � �s �C �sD

j�sD j � Œj!sD j � �s�C„ ƒ‚ …
D0

!sD

j!sD j ; �sD � !sD
1

A � 0 (53)

and, correspondingly, for the hard material.
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4 The Rothe Approximation

4.1 Definition and Solvability of the Rothe Approximation

We discretize the loading interval [0,T] by a discrete set Iı D fkıjk D 0; : : : ; N g
with mesh size ı D T=N and approximate @

@t
w.t; :/ by the backward difference

quotient

D�ıw.t; :/ D ı�1.w.t; :/ � w.t � ı; ://: (54)

Then the Rothe approximation of the penalty approximation (27) reads:

Find a pair .�s ; �h/ D .�s�ı ; �h�ı / W Iı �˝ !M n
sym �M n

sym such that .�s ; �h/
satisfies (11) for t 2 Iı and that

Q

�
D�ı .˛�s/ ˛
s

D�ı ..1 � ˛/�h/ .1 � ˛/
h
�

(55)

C .��1Œj�sD j � �s �C �sD

j�sD j ; ˛
s/C .�
�1Œj�hDj � �h�C �hD

j�hD j ; .1 � ˛/
h/ D 0

for all .
s; 
h/ W ˝ !M n
sym �M n

sym, 
s ; 
h 2 L2 such that (28) is satisfied.

Lemma 1. Let As , Ah be positively definite and let the set of all .�s ; �h/ satisfying
the balance of linear momentum not be empty. Let the Assumption 1 on ˛ be
satisfied. Then (55) has a unique solution .�s ; �h/.

Proof. We assume that .�s ; �h/.t/ has been constructed for t D 0; ı; : : : ; .k � 1/ı
and we want to construct .�s ; �h/.t�/, t� D kı. This is done by minimizing the
functional

J .��
s ; �

�
h
/ D 1

2ı
.˛2.t�/As��

s ; �
�
s /C

1

2ı
..1 � ˛.t�//2Ah��

h
; ��
h
/ (56)

�1
ı
.˛.t� � ı/As�s.t� � ı/; ˛.t�/��

s / �
1

ı
..1� ˛.t� � ı//Ah�h.t� � ı/; ��

h /

C 1

2�

Z

˝
˛.t�/Œj��

sD j � �s.t�/�2Cdx C
1

2�

Z

˝
.1 � ˛.t�//Œj��

hD j � �h.t�/�2Cdx

on the set of pairs .��
s ; �

�
h
/ W ˝ ! M n

sym �M n
sym; �

�
s ; �

�
h
2 L2 which satisfies the

balance of linear momentum

.˛.t�/��
s C .1 � ˛.t�//��

h ;r�/ D .f .t�/; �/C
Z

@˝

p0.t
�/�, � 2 H 1;2


 : (57)
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Since the functional J is strictly convex, coercive, and continuous in the strong
topology of L2, a unique minimizer .��

s ; �
�
h
/ exists and we define �s.t�/ D ��

s and
�h.t

�/ D ��
h

.
It is easy to see that the Lagrange-Euler equation to the above minimization

problem is just the Rothe approximation (55). The uniqueness follows with a
monotonicity argument. ut

4.2 First Estimates for the Rothe Approximation

In this section, we derive discrete versions of L1.L2/-estimates for the solutions
.�s ; �h/ of the Rothe equation and also discrete versions of L1.L1/-estimates
for the penalty term. These estimates are uniform as ı ! C0. Since it is
convenient to have the uniformity of these estimates also with respect to � ! C0,
we assume a compatibility condition for the yield conditions and the balance of
linear momentum.

Condition 3 (Weak safe load condition). There exists . Q�s ; Q�h/ 2 K (cf. Sect. 2.4)
such that Q�s ; Q�h; PQ�s ; PQ�h 2 L1.L2/.

Theorem 8. Let .�s ; �h/ D .�s�ı ; �h�ı / be a solution of the Rothe problem, and
let Assumptions 1 and 2 and Condition 3 hold. Then

max
tD0;:::;Nı

Z

˝

j�s j2 C j�hj2 dx

Cı
X

tDı;:::;Nı

Z

˝

Œj�sD j��s �Cjj�sDj�j Q�sD jjC Œj�hD j��h�Cjj�hDj�j Q�hDjj dx

� K CK
Z t

0

Z

˝

j @
@t
.˛ Q�s/j2 C j @

@˛
..1 � ˛/ Q�h/j2 dx dt; (58)

where the constant K does not depend on ı ! C0 and �! C0.

Proof. We use the pair .�s � Q�s ; �h � Q�h/ as a test function in (55) and obtain

ı
X

tDı;:::;Nı
Q

�
D�ı .˛�s/ ˛.�s � Q�s/

D�ı ..1 � ˛/�h/ .1 � ˛/.�h � Q�h/
�

C ��1ı
X

tDı;:::;Nı

Z

˝

Œj�sD j � �s�C �s

j�s j W .�s � Q�s/ (59)

C Œj�hD j � �h�C �h

j�hj W .�h � Q�h/ dx D 0:
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We abbreviate

Et D Q
�

˛�s ˛�s

.1 � ˛/�h .1 � ˛/�h
� ˇˇ̌
ˇ
t

(60)

and we use Hölder’s inequality

Q

�
D�ı .˛�s/ ˛.�s � Q�s/

D�ı ..1 � ˛/�h/ .1 � ˛/.�h � Q�h/
� ˇˇ
ˇ
ˇ
t

� 1

2ı
.Et �Et�ı/ �Q

�
D�ı .˛�s/ ˛ Q�s

D�ı ..1 � ˛/�h/ .1 � ˛/ Q�h
� ˇˇ
ˇ
ˇ
t

: (61)

Using the arguments similar to (53) both for the soft and hard material we observe
that the third term in (59), which comes from the penalty, is nonnegative and that

penalty terms in (59) � ��1ı
X

tDı;:::;Nı

Z

˝

Œj�sDj � �s�C.j�sDj � j Q�sDj/C

C Œj�hDj � �h�C.j�hDj � j Q�hDj/ dx � 0. (62)

Note that j�sD j � j Q�sD j � 0 on Œj�sD j � �s�C, similar for .j�hDj � j Q�hD j/, and it
also holds that

�sD

j�sDj W .�s � Q�s/ � j�sD j � j Q�s j: (63)

From (59), (61), and (62) we obtain

T1 C T2 C T3 WD

ı
X

tDı;:::;Nı

(
1

2ı
.Et � Et�ı/�Q

 
D�ı .˛�s/ ˛ Q�s

D�ı ..1 � ˛/�h/ .1 � ˛/ Q�h

!

C 1
�

Z

˝

˛Œj�sD j � �s �C.j�sDj � j O�sD j/

C.1 � ˛/Œj�hD j � �h�C.j�hD j � j O�hD j/ dx

�
� 0: (64)

Finally, we obtain via partial summation and Hölder’s inequality
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ı
X

tDı;:::;Nı
Q

�
D�ı .˛�s/ ˛ Q�s

D�ı..1 � ˛/�h/ .1 � ˛/ Q�h
�

D �ı
X

tDı;:::;Nı
Q

�
˛�s Dı .˛ Q�s/

.1 � ˛/�h Dı ..1 � ˛/ Q�h/
�

C
Z

˝

Q

�
˛�s ˛ Q�s

.1 � ˛/�h .1 � ˛/ Q�h
�

dx

ˇ
ˇ
ˇ
ˇ

tDNı

tD0

� Kı
X

tDı;:::;Nı

Z

˝

j�s j2 C j�hj2 dx (65)

CK
Z t

0

Z

˝

j @
@t
.˛ Q�s/j2 C j @

@t
..1 � ˛/ Q�h/j2 dx dt

C �0
Z

˝

j�sj2 C j�hj2 dx

ˇ
ˇ̌
ˇ
tDNı

CK�0

Z

˝

j Q�sj2 C j Q�hj2 dx

ˇ
ˇ̌
ˇ
tDNı

CK C
Z

˝

j�osj2 C j�ohj2 dx:

Recall that �os ; �oh are the initial values of �s ; �h. We use this inequality in (64) for
estimating from below. Observe also that

X

tDı;:::;Nı
Et � Et�ı D ENı � E0: (66)

Since T3 � 0 the statement of Theorem 8 then follows by using a discrete version
of Gronwall’s inequality. ut
Corollary 2. Under the additional assumption of the safe load Condition 2 for
Q�s , Q�h we have, for the solutions of the Rothe approximation, the discrete L1.L1/
estimate

��1ı
X

tDı;:::;Nı

Z

˝

Œj�sD j � �s �C C Œj�hD j � �h�C dx

C ��1ı
X

tDı;:::;Nı

Z

˝

Œj�sD j � �s �Cj�sDj C Œj�hD j � �h�Cj�hDj dx

� K CK
Z t

0

Z

˝

j @
@t
.˛ Q�s/j C j @

@˛
..1 � ˛/ Q�h/j2 dx dt (67)
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holds uniformly as ı !C0, �! C0.

Proof. If we have the safe load condition, the penalty part in (64) can be estimated
from below by

Pı�1 D ��1ı
X

tDı;:::;Nı

Z

˝

˛Œj�sD j � �s�Cs0 C .1 � ˛/Œj�hD j � �h�Cs0 dx; (68)

where s0 > 0 comes from the safe load condition. Thus, this term contributes to the
estimates and we obtain

jPı�1j � K uniformly. (69)

Once knowing this,by inspection of (64), we observe that also

Pı�2 D ��1ı
X

tDı;:::;Nı

Z

˝

˛Œj�sD j � �s �Cj�sDj C .1 � ˛/Œj�hD j � �h�Cj�hDj dx
(70)

remains bounded as �! 0 and ı ! C0. ut

5 Estimates for the Rothe Approximation

We finally present a discrete analogue of an H 1;2.L2/-estimate for the solutions of
the Rothe-equation.

Theorem 9. Assume the safe load condition with an admissible pair . Q�s ; Q�h/ 2 K

such that PQ�s ; PQ�h 2 L1.L1/. Let P̨ ; P�s; P�h 2 L1.L1/, and As ; Ah be positively
definite and symmetric. Then there is a constant C. P̨ ; P�s ; P�h; PQ�s ; PQ�h/ such that for
the solution .�s ; �h/ D .�s�ı ; �h�ı/

ı
X

tDı;:::;Nı

Z

˝

jD�ı�s j2 C jD�ı�hj2 dx

C ��1 sup
tD0;:::;Nı

Z

˝

Œj�sD j � �s �2C C Œj�hDj � �h�2C dx � C. P̨ ; P�s; P�h; PQ�s ; PQ�h/
(71)

uniformly as ı ! 0, �! 0.

Proof. We use the shift operator S�ı defined by

S�ı.t/ D w.t � ı/: (72)
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It is easy to see that the following pair .
�
s ; 


�
h
/ satisfies the balance of linear

momentum with zero force


�
s D �s � Q�s � ˛�1S�ı .˛.�s � Q�s// ; (73)


�
h D �h � Q�h � .1 � ˛/�1S�ı ..1 � ˛/.�h � Q�h// : (74)

Hence we use this pair as test function in the Rothe approximation and we obtain,
multiplying with ı�1,

Z

˝

AsD
�ı .˛�s/ W D�ı .˛.�s � Q�s//

C AhD
�ı ..1� ˛/.�h � Q�h// W D�ı ..1� ˛/.�h � Q�h// dx C penalty part D 0: (75)

The penalty part consists of a contribution of the soft material, namely

Ps D
Z

˝

��1Œj�sD j � �s �C �sD

j�sD jD
�ı .˛.�s � Q�s// dx; (76)

and an analogous term Ph. We rewrite and estimate Ps in view of the discrete
Leibniz rule. Thus,

Ps D ��1
Z

˝

Œj�sD j � �s �C �sD

j�sD j .S
�ı˛D�ı�sD CD�ı˛�sD/ dx

� ��1
Z

˝

Œj�sD j � �s �C �sD

j�sDjD
�ı .˛ Q�sD/ dx D P1s C P2s C P3s : (77)

Since

�sD

j�sDjD
�ı�sD � D�ı j�sD j; (78)

we estimate and rewrite

P1s � ��1
Z

˝

Œj�sD j � �s �CS�ı˛D�ı j�sD j dx

D ��1
Z

˝

Œj�sD j � �s �CS�ı˛D�ı .j�sD j � �s/ dx

C ��1
Z

˝

Œj�sD j � �s�CS�ı˛D�ı�s dx D P11s C P12s .

(79)



152 J. Frehse and J. Málek

Since

Œj�sD j � �s �CD�ı .j�sD j � �s/ � 1

2
D�ı 
Œj�sD j � �s �2C

�
; (80)

we obtain

P11s � 1

2
��1˛0

Z

˝

D�ı 
Œj�sD j � �s �2C
�

dx. (81)

Furthermore, due to the Lipschitz continuity of �s and the L1.L1/ property stated
in Corollary 2, we have

ı
X

tDı;:::;Nı
P12s����1ı

X

tDı;:::;Nı

Z

˝

Œj�sD j��s �CjD�ı�sjdx��C1s. P�s/. (82)

With a similar argument, we obtain

ı
X

tDı;:::;Nı
P2s � ���1ı

X

tDı;:::;Nı

Z

˝

Œj�sD j � �s�CjD�ı˛jj�sD j dx � �C2s. P̨ /

(83)

and analogously

P3s � �C3s.˛/, (84)

where we used the Lipschitz continuity of ˛ and the assumption that PQ�s 2 L1.
From (81) we obtain

ı
X

tDı;:::;Nı
P11s � ��1

Z

˝

Œj�sD j � �s �2C˛ dxjT0

���1ı
X

tDı;:::;Nı

Z

˝

Œj�sD j � �s �2CjDı˛j dx (85)

D P111s C P112s :

Again

P112s � �C112. P̨ /. (86)

The constants C1s; : : : ; C112 depend on the L1.L1/ estimate for the penalty term,
so, they depend on P̨ ; P�s ; P�h. The penalty parts for the hard material are treated in a
similar manner.

We now sum (75) from t D ı up to t D Nı D T and obtain, using the estimates
for the penalty parts,
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1

2

NıX

tDı

Z

˝

AsD
�ı .˛�s/ W D�ı .˛�s/C AhD�ı ..1 � ˛/�h/ W D�ı ..1 � ˛/�h/ dx

� K. P̨ ; P�s ; P�h/C 1

2
ı

X

tDı;:::;Nı

Z

˝

AsD
�ı .˛ Q�s/ W D�ı .˛ Q�s/ (87)

C AhD�ı ..1 � ˛/�h/ W D�ı ..1 � ˛/ Q�h/ dx:

The theorem then follows, taking into account that 0 < ˛0 < ˛ < 1 � ˛0. ut

6 Convergence of the Rothe Method

In this section, we extend the solutions �s�ı ; �h�ı of the Rothe problem to the step
functions Jı�s�ı and Jı�h�ı and show that they strongly converge in L2.L2/ to a
solution �s�; �h� of the penalty approximation as ı ! 0. Throughout this section,
except in the formulation of the theorem, we drop the index �. For any function w
defined on Iı D fkıjk D 0; : : : ; N g we define the extension as a step function by

J�w.kı C �/ D w.kı/; 0 � � � ı: (88)

If w is not defined in Œ0; ı�, we define Jıw D 0 on Œ0; ı�. In our setting, this acts on
the argument of the loading parameter t.

Theorem 10. Let � > 0 be fixed, ˛, �s , �h be Lipschitz, 0 < ˛0 < ˛ < 1�˛0 < 1,
�s; �h � �0 > 0. Let Ah, As be symmetric and positive definite. Assume the safe
load condition with an admissible pair . Q�s ; Q�h/ 2 K such that PQ�s ; PQ�h 2 L1.L1/.
Then the solutions �sı�; �hı� converge to a pair .�s�; �h�/ which is a solution of
the penalty problem in the sense

Jı�s�ı ! �s�, Jı�h�ı ! �h� .ı ! C0/ (89)

strongly in L2.L2/, and

JıD
�ı 
�s�ı

�! P�s�, JıD
�ı 
�h�ı

�! P�h� .ı !C0/ (90)

weakly in L2.L2/.

Proof. By the uniform estimates for �sı ; �hı from Theorem 8 we have uniform
L2.L2/-estimates for the functions Jı�sı , Jı�hı , JıD�ı�sı , JıD�ı�hı and, by
weak compactness inL2.L2/, any sequence (ıi !C0) has a subsequence such that
(89) holds with weak limits �s ; �h (ıi ! 0). Furthermore the functions JıD�ı�sı ,
JıD

�ı�hı have weak limits which turn out to have the form P�s ; P�h, i.e. they are the
derivatives of �s ; �h. This is classical and easy to prove. As a consequence, �s.t; :/
and �h.t; :/ are defined for t 2 Œ0; T � as L2.˝/ functions. By weak convergence,
one sees immediately that �s ; �h satisfy the balance of linear momentum. Due to
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the representation

�s0 D �ı
X

tDı;:::;Nı
D�ı�sı C �s.T; :/ (91)

and by averaging with respect to T , we see via weak convergence that �s.0; :/ D
�s0, �h.0; :/ D �h0, i.e. the weak limit satisfies the initial condition. The main task is
to establish strong convergence in order to pass to the limit in the nonlinear penalty
term. For this purpose, we define the restriction operator, which assigns to functions
w 2 L2.L2/ with Pw 2 L2.L2/ a functionRıw on Iı D fı; : : : ; Nıg defined by

Rıw.kı/ D w.kı/: (92)

One has

JıRıw! w; JıD
�ıRıw! Pw strongly in L2.L2/ (93)

as ı ! C0, provided that Pw 2 L2.L2/. We now turn to the Rothe equation and
use the pair .�sı � Rı�s ; �hı � Rı�h/ as test function. Note that this test function
satisfies the balance of linear momentum with zero force for t 2 Iı . Rewriting the
resulting equation and employing the extension operator Jı we conclude

Z T

0

.AsJıD
�ı .˛�sı/ ; Jı .˛.�sı � Rı�s/// (94)

C .AhJıD�ı ..1 � ˛/�hı / ; Jı..1 � ˛/.�sı � Rı�s///
C ��1.ŒjJı�sıD j � JıRı�s�CJı �sıDj�sıDj ; Jı .˛.�sıD �Rı�sD///

C ��1.ŒjJı�hıD j � JıRı�h�CJı �hıDj�hıDj ; Jı .˛.�hıD �Rı�hD/// D 0:

In (55) we may add the terms

Z T

0

��1

�
ŒJı�sD �JıRı�s�CJı �sDj�sD j ; Jı.˛�sıD � ˛Rı�sD/

�
dt D o.1/ as ı! 0 (95)

since the left hand factor in the scalar product is compact inL2 for� fixed, and there
is a similar term for the hard material. The resulting penalty terms (i.e. summands
with factor ��1) are � 0 due to monotonicity and will be dropped, replacing D by
�. Furthermore, we may add the term

�
Z T

0

�
AsJıD

�ıRı.˛�s/; Jı .˛�sı � ˛Rı�s/
	

dt D o.1/ (96)



On Prandtl-Reuss Mixtures 155

and a similar term for the hard material due to weak convergence

zsı WD Jı .˛�sı � ˛Rı�s/ * 0 in L2.L2/ (97)

and due to strong L2.L2/ convergence of

JıD
�ıRı .˛�s/! @

@t
.˛�s/ : (98)

Similarly zhı D Jı .˛�hı � ˛Rı�h/ * 0. Thus we are left with

Z T

0

�
AsD

�ızsı ; zsı
	
C
�
AhD

�ızhı ; zhı
	

dt � o.1/ (99)

from which we conclude (see the analogous reasoning in Sect. 5) that

ı�1
Z T

T�ı
jzsı j2 C jzhı j2 dt � o.1/: (100)

This holds for all T 2 fkıjk D 1; : : : ; N g and we conclude zsı ! 0, zhı ! 0

strongly in L2.L2/ which implies

Jı�sı ! �s ; Jı�hı ! �h strongly in L2.L2/: (101)

This allows us to pass to the limit in the Rothe equation (employing the extension
operator Jı ) and we arrive at the equation

0 D
Z t2

t1

�
As

@

@t
.˛�s/ ; 
s

�
C
�
Ah

@

@t
..1 � ˛/�h/ ; 
h

�
(102)

C
�
��1Œj�sD j � �s �C �sD

j�sD j ; ˛
s
�
C
�
��1Œj�hDj � �h�C �hD

j�hD j ; .1 � ˛/
h
�

dt

valid for all 
s , 
h satisfying the balance of linear momentum with zero force.
This proves the convergence of the Rothe method and the existence of solutions

�s ; �h 2 L2.L2/; P�s ; P�h 2 L2.L2/ of the penalty equation. ut
Since the discrete L2.L2/ norms of �s�ı , �h�ı , D�ı 
�s�ı

�
, D�ı 
�h�ı

�
are

uniformly bounded with respect to �! C0 (with error terms converging to zero as
ı ! 0, � fixed) we obtain the corresponding bounds for �s�, �h� as �!C0.

With a similar reasoning we have a uniform L1.L2/ bound for the penalty
potentials��1Œj�s�Dj��s�2C,��1Œj�h�Dj��h�2C as well as a uniformL1.L1/ bound
for the terms��1Œj�s�D j��s�C.

ˇ
ˇ�s�D

ˇ
ˇC1/, ��1Œj�h�D j��h�C.

ˇ
ˇ�h�D

ˇ
ˇC1/. This

proves the Theorems 4 and 6 of Sect. 3.
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We finish the section with a conditional L1.L1/ estimate for the penalty term
which is needed for the L1.L2/ estimate of P�s�, P�h� in the next section.

Lemma 2 (L1.L1/). Under the assumption of the main theorem there is a con-
stant K. P̨ ; PQ�s ; PQ�h/ such that, for a.e. t 2 Œ0; T �,

��1

Z

˝

Œj�s�Dj � �s�C.j�s�D C 1j/C Œj�h�Dj � �h�C.j�h�D C 1j/ dx

ˇ̌
ˇ̌
t

� K. P̨ ; PQ�s; PQ�h/ .



 P�s�





L2.˝/

C 

 P�h�




L2.˝/

/
ˇ̌
ˇ
t
: (103)

Proof. Use �s� � Q�s�, �h� � Q�h� as test functions and use the safe load condition
similar as in the L1.L1/ estimate for the penalty term before. This implies an
estimate for the left hand side of (103) by

ˇ̌
ˇ
ˇ

�
As

@

@t
.˛�s/ ; �s� � Q�s�

�ˇ̌
ˇ
ˇ (104)

and a corresponding term for the hard material. Since anL1.L2/ bound is available
for �s�, Q�s�, �h�, Q�h� we obtain (103). ut

7 L1.L2/-Estimate for the Time Derivatives of the Stresses

In the theory of the classical Prandtl-Reuss-problem there is the well known
inclusion P� 2 L1.L2/ for the stress � . A similar theorem holds also for Prandtl-
Reuss-mixtures, but the proof is a bit involved, although it is obviously motivated
by the classical theory.

Theorem 11. Let ��s ; ��h 2 L1.L2/ be the solution to the penalty approxi-
mation of the Prandtl-Reuss-mixture problem. Besides the hypotheses of the main
theorem let

R̨ ; R�s ; R�h; RQ�s ; RQ�h 2 L1.L1/ (105)

where Q�s ; Q�h are safe loads. Then




 P�s�





L1.L2/

C 

 P�h�




L1.L2/

� K. R̨ ; R�s ; R�h; RQ�s ; RQ�h/ (106)

uniformly as �! C0.
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Proof. Let D� D ��1.S� � I /, D�� D ��1.I � S��/ be the forward and
backward difference operators with stepsize �, with respect to the loading variable t ;
S�w.t/ D w.t C �/. We write �s ; �h rather than �s�; �h�. In the penalty equation
we use the test functions

� ��2 

˛�1S� .˛.�s � Q�s//� 2.�s � Q�s/C ˛�1S�� .˛.�s � Q�s//

�
;

���2 

.1 � ˛/�1S� ..1 � ˛/.�h � Q�h//
�2.�h � Q�h/C .1 � ˛/�1S�� ..1 � ˛/.�h � Q�h//

�
: (107)

They obey the balance of linear momentum with zero force. This yields

�
�
As

@

@t
.˛�s/ ;D

�D�� .˛.�s � Q�s//
�

�
�
Ah

@

@t
..1 � ˛/�h/ ;D�D�� ..1 � ˛/.�h � Q�h//

�

�
�
��1Œj�sD j � �s�C �sD

j�sD j ;D
�D�� .˛.�s � Q�s//

�

�
�
��1Œj�hDj � �h�C �hD

j�hDj ;D
�D�� ..1 � ˛/.�h � Q�h//

�
D 0:

(108)

We first get rid of the terms where Q�s ; Q�h occurs. We simply estimate (after
integration

R t2
t1

dt)










�
As

@

@t
.˛�s/ ;D

�D�� .˛ Q�s/
�





 � K









@

@t
.˛�s/









L2.L2/









@2

@t2
.˛ Q�s/









L2.L2/

� K2. R̨ ; RQ�s/ (109)

for �!1, since a uniform L2.L2/ estimate for

@

@t
.˛�s/ D @

@t



˛�s�

�
(110)

has been established in Sect. 4 and an appropriate estimate for Q� has been assumed.
A similar reasoning holds for the hard material.

The penalty part where the factor Q� occurs is simply estimated by a constant
K. R̨ ; RQ�s/ using the uniformL1.L1/ estimate for��1Œj�sD j��s �C and theL1.L1/
estimate for @2

@t2
.a Q�s/ from the assumption. Again, a similar reasoning is done for

the hard material. Thus we arrive at
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�
Z t2

t1

�
As

@

@t
.˛�s/ ;D

�D��.˛�s/
�

dt

�
Z t2

t1

�
Ah

@

@t
..1 � ˛/�h/ ;D�D��..1 � ˛/�h/

�
dt (111)

�
Z t2

t1

��1
�
Œj�sD j � �s�C �sD

j�sD j ;D
�D��.˛�s/

�
dt

�
Z t2

t1

��1
�
Œj�hD j � �h�C �hD

j�hDj ;D
�D��..1 � ˛/�h/

�
dt

� K. R̨ ; RQ�s ; RQ�h/:

We now move the operator D� to the first function in the scalar products (‘partial
summation’). It changes into D�� , we obtain boundary terms St1t2 and see that

Z t2

t1

�
AsD

��
�
@

@t
.˛�s/

�
;D�� .˛�s/

�

C
�
AhD

��
�
@

@t
..1 � ˛/�h/

�
;D�� ..1 � ˛/�h/

�
dt

C
Z t2

t1

��1
�
D��

�
Œj�sD j � �s�C �sD

j�sD j
�
;D�� .˛�sD/

�
dt (112)

C
Z t2

t1

��1
�
D��

�
Œj�hDj � �h�C �hD

j�hDj
�
;D�� ..1 � ˛/�hD/

�
dt C St1t2

D SA C Spen C St1t2 � K. R̨ ; RQ�s ; RQ�h/:

Then

SA D 1

2
.AsD

�� .˛�s/ ;D�� .˛�s//
ˇ
ˇt2
t1

C 1

2
.AhD

�� ..1 � ˛/�h/ ;D�� ..1 � ˛/�h//
ˇ
ˇt2
t1

(113)

and we take the limit �! 0.
Since P�s ; P�h 2 L2.L2/, this limit � ! C0 exists a.e. with respect to t1, t2 and

we obtain
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1

2

�
As

@

@t
.˛�s/ ;

@

@t
.˛�s/

�ˇˇ
ˇ
ˇ

t2

t1

C1
2

�
Ah

@

@t
..1 � ˛/�h/ ; @

@t
..1 � ˛/�h/

�ˇˇ
ˇ̌
t2

t1

C
Z t2

t1

��1
�
@

@t

�
Œj�sD j � �s�C �sD

j�sD j
�
;
@

@t
.˛�sD/

�
dt (114)

C
Z t2

t1

��1
�
@

@t

�
Œj�hD j � �h�C �hD

j�hDj
�
;
@

@t
..1 � ˛/�hD/

�
dt

C lim
�!0

S
t1t2
D A1 C Pensoft C Penhard C lim

�!0
S

t1t2
� K. R̨ ; RQ�s ; RQ�h/:

We write

@

@t

�
Œj�sD j � �s �C �sD

j�sD j
�
W @
@t
.˛�sD/ (115)

D Œj�sD j � �s�C˛j�sD j�1
 ˇ
ˇ
ˇ
ˇ
@

@t
.�sD/

ˇ
ˇ
ˇ
ˇ

2

�
ˇ
ˇ
ˇ
ˇ
@

@t
j�sD j

ˇ
ˇ
ˇ
ˇ

2
!

C
ˇ
ˇ
ˇ
ˇ
@

@t
Œj�sD j � �s �C

ˇ
ˇ
ˇ
ˇ

2

˛

C @

@t
Œj�sD j � �s �C˛ @

@t
�s C @

@t
Œj�sD j � �s�Cj�sD j P̨

D P1 C P2 C P3 C P4:

We have P1 � 0, P2 � 0 and these terms contribute to the final estimate. For P3 we
find via partial integration

��1
Z t2

t1

Z

˝

P3 dx dt D� ��1
Z t2

t1

Z

˝

Œj�sD j � �s�C @

@t

�
˛
@

@t
�s

�
dx dt

C ��1
Z

˝

Œj�sD j � �s �C˛ @
@t
�s dx

ˇ
ˇ
ˇ
ˇ

t2

t1

D QP31 C QP32
(116)

The term QP31 is uniformly bounded due to the L1.L1/ bound for the penalty
term and the hypotheses on ˛ and �s . The term QP32 is estimated via the L1.L2/
lemma for the penalty term. This yields

ˇ
ˇ
ˇ̌
ˇ
��1

Z

˝

QP32dx

ˇ
ˇ
ˇ̌
t2

t1

ˇ
ˇ
ˇ̌
ˇ
�K. P�s/


k P�s.t2; :/kL2.˝/ C kP�h.t2; :/kL2.˝/

�C o.t1/ (117)

where o.t1/ needs not be uniform in �.
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The term P4 is treated in a similar manner like P3. Thus we obtain

Pensoft � ��1
Z t2

t1

Z

˝

ˇ
ˇ
ˇ
ˇ
@

@t
jŒj�sD j � �s�Cj

ˇ
ˇ
ˇ
ˇ

2

˛ dx dt

D K � kP�s.t2; :/kL2.˝/ � kP�h.t2; :/kL2.˝/ � o.t1/
(118)

and a similar inequality for the hard material.
It remains to analyze the boundary terms coming from the partial summation

lim
�!0

St1t2 D S1t1t2 C S2t1t2 : (119)

From the result of the previous partial summation we obtain

lim
�!0

S
t1t2
D� 1

2

�
As

@

@t
.˛�s/ ;

@

@t
.˛�s/

�ˇˇ
ˇ
ˇ

t2

t1

� 1
2

�
Ah

@

@t
..1 � ˛/�h/ ; @

@t
..1 � ˛/�h/

�ˇˇ̌
ˇ

t2

t1

(120)

� ��1
�
@

@t

�
Œj�sD j � �s �C �sD

j�sDj
�
;
@

@t
.˛�sD/

�ˇˇ
ˇ
ˇ

t2

t1

� ��1
�
@

@t

�
Œj�hD j � �h�C �hD

j�hDj
�
;
@

@t
..1 � ˛/�hD/

�ˇˇ̌
ˇ

t2

t1

:

We have

S1t1t2 D
�
As

@
@t
.˛�s/ ;

@
@t
.˛�s/

	ˇˇ
ˇ
t2

t1

Ccorresponding term for hard material. (121)

S2t1t2 D ��1
�
Œj�sD j � �s �C �sDj�sD j ;

@
@t
.˛�s/

	ˇˇ
ˇ
t2

t1

Ccorresponding term for hard material. (122)

Let

St D
�
As

@

@t
.˛�s/ ;

@

@t
.˛�s/

�ˇˇ̌
ˇ
t

C ��1
�
Œj�sD j � �s�C �sD

j�sD j ;
@

@t
.˛�s/

�ˇˇ̌
ˇ
t

C corresponding term for hard material. (123)

With this notation lim�!0 St1t2 D St1 � St2 . Now we present an argument which
shows that lim�!0 St remains unchanged if we replace the right hand factors
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@
@t
.˛�s/ and @

@t
..1 � ˛/�h/ in the scalar products by @

@t
.˛ Q�s/ and @

@t
..1 � ˛/ Q�h/.

In fact, this follows if we use the test functions

ı�1
1

�
�s � Q�s � ˛�1S�ı1 .˛�s � ˛ Q�s/

	
;

ı�1
1

�
�h � Q�h � .1 � ˛/�1S�ı1 ..1 � ˛/.�h � Q�h//

	
(124)

and pass to the limit in the penalty equation ı1 ! 0, performing this procedure at
t1 and t2.

This gives us the equation

�
As

@

@t
.˛�s/ ;

@

@t
.˛�s � ˛ Q�s/

�
C ��1

�
Œj�sD j � �s�C �sD

j�sD j ;
@

@t
.˛�s/� ˛ Q�s

�

C a similar term for the hard material D 0 (125)

for all t D t1 and a.e. t2.
We conclude that

ˇ
ˇS1t1t2 C S2t1t2

ˇ
ˇ � K

 







@

@t
.˛�s/









L2.˝/









@

@t
.˛ Q�s/









L2.˝/

!ˇˇ
ˇ
ˇ
ˇ
t2

(126)

CK
 



��1Œj�sD j � �s �C





L1.L1/









@

@t
.˛ Q�s/









L1.L1/

!ˇˇ
ˇ
ˇ
ˇ
t2

C a similar termjt1
C the related summand for hard material at t1 and t2 a.e.

Thus, we see that

ˇ
ˇ
ˇS1t1t2 C S2t1t2

ˇ
ˇ
ˇ � K. P̨ ; PQ�s ; PQ�h/.1C k�skL2.˝/ jt2 C k�skL2.˝/ jt1

C k�hkL2.˝/ jt2 C k�hkL2.˝/ jt1 /: (127)

Collecting our results we obtain from (114)

ˇ
ˇ
ˇ
ˇ
ˇ
1

2

�
As

@

@t
.˛�s/ ;

@

@t
.˛�s/

�ˇˇ
ˇ
ˇ

t2

t1

C 1

2

�
Ah

@

@t
..1� ˛/�h/ ; @

@t
..1 � ˛/�h/

�ˇˇ
ˇ
ˇ

t2

t1

ˇ
ˇ
ˇ
ˇ
ˇ

� K
 Z

˝

j P�s j2 dx

ˇ
ˇ
ˇ̌
t2

C
Z

˝

j P�hj2 dx

ˇ
ˇ
ˇ̌
t2

! 1
2

(128)
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CK
 Z

˝

j P�sj2 dx

ˇ
ˇ
ˇ
ˇ
t1

C
Z

˝

j P�hj2 dx

ˇ
ˇ
ˇ
ˇ
t1

! 1
2

CK. R̨ ; R�s; R�h; RQ�s ; RQ�h/:

We finally get rid of the terms

�
As

@

@t
.˛�s/ ;

@

@t
.˛�s/

�ˇˇ
ˇ
ˇ
t1

;

Z

˝

j P�s j2 dx

ˇ
ˇ
ˇ
ˇ
t1

: (129)

In fact, from the penalty equation, with the above reasoning, we obtain

�
As

@

@t
.˛�s/ ;

@

@t
.˛�s � ˛ Q�s/

�ˇˇ̌
ˇ
t1

C ��1
�
Œj�sD j � �s�C �sD

j�sD j ;
@

@t
.˛�s � ˛ Q�s/

�ˇˇ
ˇ
ˇ
t1

C corresponding term with hard material D 0:

(130)

Now, since, for fixed �,

Œj�sD j � �s �C �sD

j�sD j ! 0 in L2.L2/ as t1 ! 0, (131)

(similarly for the hard material) we conclude that

lim
t1!0

�
As

@

@t
.˛�s/ ;

@

@t
.˛�s/

�
C corresponding term for hard material

� ess sup
0�t�ı

� �
As

@

@t
.˛ Q�s/ ; @

@t
.˛ Q�s/

�
C corresponding term for hard material

�
.

(132)

The theorem now follows from (128) and (132). ut
Corollary 3.




��1Œj�s�Dj � �s �C.j�s�D j C 1/





L1.L1/

C



��1Œj�h�D j � �h�C.j�h�Dj C 1/





L1.L1/

� C0 (133)

uniformly as �! C0.
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8 Passage to the Limit as the Penalty Parameter � Tends to
Zero

Theorem 12. Under the assumption of the main theorem the solutions .�s�; �h�/
of the penalty problem converge to the solution .�s ; �h/ of the variational inequality
(19) for the Prandtl-Reuss mixture. The convergence is strong in L1.L2/ and weak
in H 1.L2/.

Proof. Since �s�; �h�; P�s�; P�h� are uniformly bounded in L2.L2/ as � ! C0 we
may subtract a subsequence� D f�mj�m !C0g such that �s� * �s , �h� * �h,
P�s� * P�s , P�h� * P�h weakly in L2.L2/.

We may pass to the limit in the equation of balance of linear momentum and
obtain (11) for �s , �h. Furthermore, the symmetry of �s and �h is preserved. From
the L1.L1/-estimate (see the corollary to Theorem 9 in Sect. 6) we have that the
penalty term is bounded in L1.L1/ as �!C0. This implies Œj�s�D j��s�2C � K�,
Œj�h�Dj � �h�2C � K� and, since Œj
j � �s �2C is convex and continuous, we obtain
Œj�sD j � �s�2C � 0, Œj�hDj � �h�2C � 0 i.e. j�sDj � �s, j�hDj � �h. ut
The variational inequality (19) follows from the penalty equations

Z t2

t1

�
As

@

@t



˛�s�

�
; ˛.�s� � O�s/

�

C
�
Ah

@

@t



.1 � ˛/�h�

�
; .1 � ˛/.�h� � O�h/

�
dt

� ���1
Z t2

t1

�
Œj�s�D j � �s�C �s�D

j�s�Dj ; ˛.�s� � O�s/
�

(134)

C
�
Œj�h�Dj � �h�C �h�D

j�h�Dj ; .1 � ˛/.�h� � O�h/
�

dt

� 0 for all . O�s ; O�h/ 2 K:

The last step concerning that the left hand side is�0 follows from the monotonicity
property of

Œj
 j � ��C 
D

j
Dj (135)

and the fact that Œj O�s j � �s�C D 0, Œj O�hj � �h�C D 0 by definition of K. We may
pass to the weak limit � ! 0 in (134), keeping the inequality �0 due to lower
semicontinuity. This yields (19). The strong convergence

�s� ! �s �h� ! �h in L2.L2/ (136)
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follows by setting O�s D �s , O�h D �h in (134) and adding the terms

�
�
As

@

@t
.˛�s/ ; ˛.�s� � �s/

�

�
�
Ah

@

@t
..1 � ˛/�h/ ; .1 � ˛/.�h� � �h/

�
! 0 (137)

In fact, this yields (for t1 D 0)

lim sup
�!C0



As˛.�s� � �s/; ˛.�s� � �s/

�

C 
Ah.1 � ˛/.�h� � �h/; .1 � ˛/.�h� � �h/
� � 0 (138)

which even implies

�s� ! �s ; �h� ! �h; in L1.L2/: (139)

Since the solution �s , �h is unique, (136) holds for the full sequence (via the usual
contradiction argument). The convergence (139) for the full sequence can be derived
with an additional simple C.L2/ argument.

We now want to incorporate the partial strain velocities and the plastic strain
velocities into the discussion. Similar, as to the classical Prandtl-Reuss problem, the
situation is not quite satisfactory due to the fact that onlyL1-estimates are available.
Under the assumptions of Theorem (9) (in particular, no assumptions on R̨ ; R�s; R�h)
we have uniform L1.L1/-bounds for

1

2
.rPus� CrPus�T /; 1

2
.rPuh� CrPuh�T /; (140)

and the corresponding penalty terms.
With Temam’s imbedding theorem this implies a uniform L1.L

n
n�1 /-bound for

Pus�, Puh� and we obtain that, for a subsequence,

Pus� * Pus; Puh� * Puh (141)

and

1

2
.rPus� CrPus�T /! 1

2
.rPus CrPusT / (142)

1

2
.rPuh� CrPuh�T /! 1

2
.rPuh CrPuhT / (143)
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weakly in C �.Œ0; T � � N̋ /, �! C0. This means that the strain velocities need not
be functions, they are only Riesz measures.

In case that an L1.L1/-bound is available for the penalty terms, see Theorem
11 , Pus� and Puh� are bounded in L1.L n

n�1 /, the convergence in (141) takes place
in L

n
n�1 .L

n
n�1 /, and the limiting deformation velocities are (at least) L2.L

n
n�1 /-

functions. We want to derive a variational inequality which takes the strain velocity
into account.

From (33) and (34) we conclude

�
As

@

@t



˛�s�

�
; �s� � 


�
D
�
1

2
.rPus� CrPus�T /; �s� � 


�
� 0 (144)

for all 
 2 C. N̋ / such that 
 D 
T and j
Dj � �s , a.e. (no balance of linear
momentum for 
 is assumed).

The � inequality in (144) follows from the monotonicity property of the penalty
term and the fact that Œj
D j � �s �C D 0. An inequality similar to (144) holds for the
hard material.

We want to pass to the limit � ! C0 in (144). For the left hand side this is
possible due to weak and strong L2.L2/ convergence of the functions in the scalar
product. For the left hand side, obviously

1

2

�
rPus� CrPus�T ; 


	
! 1

2
.rPus CrPu�T ; 
/ (145)

but for 1
2

�
rPus� CrPus�T ; �s�

	
this convergence is not clear, since we do not know

that �s� ! �s in C. N̋ /. Thus we assume the hypothesis of Theorem 10 and we use
the L1.L n

n�1 / for Pus�, Puh� and write

1

2

�
rPus� CrPus�T ; �s�

	
D .Pus�; fs/C

Z

@˝

p�s� do (146)

due to the balance of linear momentum.
In the right hand side we may pass to the limit and obtain as limit

.us; f /C
Z

@˝

p�s do: (147)

So we arrive at the variational inequality

�
As

@

@t



˛�s�

�
; �s � 


�
� .f; us/C

Z

@˝

p�s do� 1
2
.rus Crus

T ; 
/ (148)

for all 
 2 C. N̋ ;M n
sym/, j
D j � �s and a similar inequality for the hard material.

Of course, this is not satisfactory.
In the case of the Hencky problem, in two dimension there is an interesting

way to overcome the formulation (148). An analogue approach might work also
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for the Prandtl Reuss problem. For Hencky’s problem, and similar for Prandtl-
Reuss’s problem, via a technique using a reverse Hölder inequality, there are
L

n
n�1

Cı and L1.L n
n�1

Cı/-estimates available for the displacements u (see [6])
or the displacement velocities Pu, respectively. Thus we have a . n

n�1 � ı0/ capacity
potential � of the set where the . n

n�1 � ı0/ capacity is small and, testing the penalty
equation with �s�, we obtain uniform smallness of

��1
Z

˝

Œj��D j � �s�Cj��Dj� dx (149)

on sets of small capacity. Hence the limiting Riesz measure shares this property.
Since interior H 1-estimates for � are available and thus �� is uniformly

continuous except on a set of small 2 � ı0 capacity we may give a meaning to�
1
2
.rPuCrPuT /; �

	
, � 2 C1

0 .˝/ by extending the measure to functions which are

2 � ı0 quasicontinuous in the sense of capacities.
We do not state the above discussion concerning capacity methods since, for a

rigorous discussion, this would take more space than available here. We confine to
fix the statement concerning convergence in C � of the strain velocities.

Theorem 13. Assume the hypotheses of the main theorem. Then the partial strain
velocities constructed in Sect. 3 converge weakly in C �

1

2
.rPus� CrPus�T / * 1

2
.rPus CrPusT /

1

2
.rPuh� CrPuh�T / * 1

2
.rPuh CrPuhT /

and Pus� * Pus ; Puh� * Puh weakly inC �: (150)

If, in addition, the assumption of Theorem 10 are satisfied (150) (�!C0) holds
in L

n
n�1 .L

n
n�1 /.

Remark 9. (150) holds strongly in L
n

n�1
�ı0

.L
n

n�1
�ı0

/ due to Temam’s imbedding
theorem, and in fact in L

n
n�1

Cı.L n
n�1

Cı/, ı small, if the reverse Hölder inequality
technique is used (which we did not do here).

Corollary 4. If the assumptions of Theorem 10 are satisfied, the variational
inequality (148) holds.

Concerning the Kuhn Tucker rule there are similar problems like the interpreta-
tion of the ‘pointwise’ inequality (144). The penalty terms converge weakly in C �
as �! C0. We have

��1Œj�s�D j � �s�C �s�D

j�s�Dj * Peps ;

��1Œj�h�D j � �h�C �h�D

j�h�Dj * Pehs (151)
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and one would like to conclude from

��1Œj�s�D j � �s �C ! �s

��1Œj�h�D j � �h�C ! �h

�
*-weakly in C (152)

that

Peps D �s �sDj�sDj ; Peph D �h �hDj�hDj : (153)

In the case of the two dimensional Hencky-Model this can be proved by the
tools indicated above, using the reverse Hölder inequality for the displacements,
smallness of the support of �s and �h on sets of small .2C ı0/ capacity and the fact
that �s�, �h� converges .2C ı0/ uniformly for a subsequence.

9 A Model for the Volume Fraction ˛ and the Yield
Parameter Depending on the History of the Rate of the
Plastic Strain of the Soft Material

In [10], the following model for ˛, �h, �s is suggested. Let

l.t; x/ D
Z t

0

j Peps.
; x/j d
 (154)

where Peps is the plastic deformation velocity of the soft material. Then the volume
fraction ˛ is defined by

˛.t; :/ D ˛0 C .1 � ˛0/e�c0l.t;:/ (155)

and the yield parameters by

�s D const > 0; �h D �0 C r0l (156)

with constants ˛0 > 0, c0 > 0, �0 > 0, r0 > 0. In the rigorous setting Peps.s; x/
may be a Riesz measure and we have to approach it via the penalty approximations,
see below. Since l could be unbounded we apply a simple (from our point of view
acceptable) modification by setting

l.t; x/ D
Z t

0

g.j Peps.s; x/j/ ds C ı0; ı0 > 0 (157)

with a bounded, non negative function g 2 C 1.
This also guarantees our condition that ˛ � ı1 > 0 and .1 � ˛/ � 1 � ı1, and

the condition

k P̨ kL1.L1/ C kP�skL1.L1/ C kP�hkL1.L1/ � K (158)
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whatever function Peps is chosen.
On the level of the penalty approximation, we have

Peps D ��1Œj�sD j � �s�C �sD

j�sD j and (159)

j Pepsj D ��1Œj�sD j � �s�C (160)

˛ D ˛0 C .1 � ˛0/ exp

�
�c0

Z t

0

g.��1Œj�sD j � �s �C/ d


�
(161)

�h D �0 C r0
Z t

0

g.��1Œj�sD j � �s�C/ d
: (162)

With this definition of ˛, �h, �s (which is constant) we assign to every pair (�s , �h)
satisfying the symmetry condition a solution N��s , N��h to the penalty equation (27),
and all the a priori estimates of this paper requiring the L1 property on P̨ , P�h (not
R̨ , R�h) are true.

For applying Schauder’s fix point theorem to obtain a solution N��s D ��s , N��h D
��h one needs an additional compactness condition in space direction which would
be achieved by a non local dependence of ˛ and �h in terms of �s , say

l.t; x/ D
Z t

0

g.��1Œj
Z

˝

K.x; y/�sD.t; y/ dyj � �s �C/ d
 (163)

with a compact singular integral operator K W L2 ! L2. With this compact
dependence it is possible to solve the penalty equation, due to the a priori estimates
given in Sects. 4 and 5, and also to prove the convergence of the penalty equation
as �! 0, which leads to a solution of a quasivariational inequality with the above
interpretation.
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Modeling and Simulation of Lipid Monolayers
as Surfactant in Lung Alveoli

Annelene Wittenfeld, Andrey Ryskin, and Wolfgang Alt

1 Biological Function of Surfactant Lipids
for the Breathing Cycle

The concave cellular surface inside lung alveoli is covered by a thin water film with
surfactant on top, whose continued preservation is essential for the rapid oxygen
and carbon dioxide exchange between air and lung tissue. Therefore, in order to
guarantee film stability during the regular breathing cycle of inhalation (expansion
of lung alveoli) and exhalation (their compression), the surfactant lipid-protein
layer must possess strong adaptive properties. This becomes even more important
in events of sudden expansion or compression of the lung, for example, while
coughing. On one hand, the function of the surfactant layer is to strongly reduce
surface tension for minimizing the work of breathing, which is achieved by forming
highly ordered monolayers of amphiphilic lipid molecules. On the other hand, the
layer has to be fluid enough to cover the expanding surface in a continuous and rapid
fashion, which requires stochastic mobility of the lipid molecules.

Synthetic chemical models of efficient pulmonary surfactant, also used for medi-
cal treatment, contain specific mixtures of phospholipids (e.g. phosphatidylcholine,
DPPC, palmitic acid, PA) and have been experimentally investigated under periodic
compression-relaxation conditions [3]. A typical result can be seen in Fig. 1, which
shows the quasistatic behavior as an isotherm plot (surface pressure versus inverse
density). During the first two compression cycles the pressure-density curve shows
an obvious hysteresis effect. The overall pressure decreases more rapidly at the
beginning of the expansion periods (to the left), compared to a more steady
increase during the compression periods (to the right). This is a strong indication
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Fig. 1 Quasistatic isotherm plot of surface pressure versus area per lipid molecule (inverse
density) for an artificial lipid mixture as a model of surfactant layer on lung alveoli. The two
compression-expansion trajectories are cycling counter-clockwise. (From [3], Fig. 1A)

for transformation processes, such as association and dissociation, to occur in the
different periods and phases.

Moreover, atomic force microscopy of such surfactant monolayers has revealed
remarkable inhomogeneities in height and stiffness (see [1], Fig. 1). One observes
larger and mostly rounded patches of thick homogeneous molecular layers, indi-
cating regions of strongly ordered lipid molecules (liquid condensed phase) and,
in-between, smaller and more fuzzy patches of thinner layers, indicating regions
of non-ordered and diffusing lipid molecules (liquid expanded phase). The interface
between these two kinds of patches appears to be quite sharp, suggesting a relatively
fast transition zone between the ordered and disordered phase.

These spatial phase separation phenomena together with the observed hysteresis
dynamics have important biophysical functions: regions of more fluid disor-
dered monolayers serve as a mechanical buffer of more easily compressible lipid
molecules; in addition, they serve as a chemical reservoir of diffusing lipids to be
supplied for insertion into the ordered regions of the monolayer. However, in order to
describe and understand the full dynamics of these biophysical/chemical processes,
one needs detailed mathematical models and their subsequent numerical simulation
on various spatio-temporal scales. For a 3-d molecular dynamics simulation see [4],
for a general 3-d continuum fluid-diffusion simulation including thin film dynamics
on a periodically extending alveolar surface see [5].

Here we present recent modeling and simulation results for two different scaling
approaches, showing certain connections with each other. The first is a stochastic
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multiparticle model of rod-like lipid molecules on a microscopic scale (space:
� 10–500 nm; time: �msec) with appropriate classical interaction potentials
(Sect. 2). The second describes a deterministic continuum two-phase fluid model
on a mesoscopic scale (space: & �m; time: & sec) with an appropriately chosen
free energy function and flow properties (Sects. 3–5).

2 Microscale Stochastic Multi-particle Model

We study a system of N stiff rod-like particles of fixed length L, which are
partially submersed in water at a sharp and flat water-air interface. In order to
model the amphiphilic properties of lipids, these rods are assumed to have a
hydrophilic head for length variable 0 < s < L=4, and a hydrophobic tail
for L=4 < s < L (see Fig. 2). The rods interact by means of a continuous,
distance-dependent force density f.s/ ds on each rod, accounting for the amphiphilic
properties of the rods as well as their location and motion with respect to the water-
air interface. For simplicity, we restrict our simulation model to a two-dimensional
spatial configuration, so that the rods are not allowed to overlap with each other.

We denote by ı D ı.r; s/ the distance of two points r; s on distinct rods i ¤ j .
The interactive force between head of rod i .0 < r < L=4/ and tail of rod j
.L=4 < s < L/ is purely repulsive, inversely proportional to the distance ı with
strength coefficient ˛. For head-head and tail-tail interaction we use a Lennard-
Jones potential, valid for various kinds of particles and molecules,

V";� .ı/ D 4"
���

ı

	12 �
��
ı

	6�
(1)

with different scaling coefficients " > 0 and � > 0.
Since the upper part of each rod is hydrophobic and the lower hydrophilic, there

is a kind of capillary force pulling each subpart into its optimal medium by tending
to reduce the length of the amphiphilic mismatch g, see Fig. 2.

Here we assume a simple proportionality

Fwat D ks g; (2)

with effective elasticity coefficient ks . This water surface force acts onto the center
of the amphiphilic mismatch region in the ‘wrong’ medium, pointing towards the
‘right’ medium in direction parallel to the rod. Since a rod has a ‘hydrophilic’ and a
‘hydrophobic’ part, we need to ensure that it does not flip over. Therefore, as angular
momentum, we assume an analogous non-linear term, modeled as to be induced by
the surface tension acting on both sides of the rod:

Mwat D � k�
�

tan


� � 0:5��C tan3



� � 0:5��

	
: (3)

This momentum tends to turn the rod into an upright position .� D 0:5�/.
The first summand acts as a linear spring in case of small angle differences.
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Fig. 2 Schematic picture of an amphiphilic rod and its location at a fixed water-air surface

The second summand represents a strong repulsive spring turning away from any
parallel orientation with the water surface .� D 0 or �/ in case of larger angle
differences.

Additionally, we model local collision of rods with the surrounding smaller water
and air molecules by means of a spatio-temporal stochastic Brownian sheet. On each
segment of the discretized rod, we assume small and independent random forces,
with amplitude adjusted via a parameter cw representing the standard deviation of
the corresponding Gaussian noise perpendicular to the rod. The perturbation along
the rod is twice as large. Additionally, the process depends on the surrounding
medium. If the segment of the rod is outside the water, the perturbation strength
is one tenth as compared to a segment within the water. Accordingly, the stochastic
force density is defined by

d fbrown.s; t/ D D.s/ dBs;t (4)

with a corresponding amplitude matrix D.s/. Finally, friction is considered to be
proportional to the local velocity of a point on the rod,

ffriction.s/ D �F.s/v.s/: (5)

In diagonal representation, i.e. when the coordinate system is aligned with the rod,
the friction matrix reads F D diag .�k; �?/. The imposed drag perpendicular to
the rod / �? is twice as large as compared to the friction along the rod / �k.
Additionally, there are different � -values for each surrounding medium, namely � A

in air and � L in liquid, since the viscosity of the fluid is larger than the viscosity
of air.

In this model, we treat the rod-like particles as rigid bodies. From the local force
densities above, we calculate the effective center-of-mass force and the torque acting
on each rod. The resulting Newtonian equations of motion are employed in their
over-damped limit with vanishing inertia.
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Fig. 3 Snapshots of simulation runs with N = 20 (first and second row) and N = 40 rods (third
and fourth row), performed on a small interval of length X D 900 nm, thus with densities 	 D
0:022 nm�1 and 	 D 0:044 nm�1, respectively. The second and the fourth row are about 300–
400 ms later than the first and the third, respectively. Clustered rods are marked by a star

The simulation program is conceived in a highly optimized manner, including
certain coding in assembler, on several cores at a time. The simulations are
performed with different numbers N of rods with fixed length L D 40 (in an
artificial length unit, comparable to nanometer, nm) initially distributed in random
positions at the flat (periodic) waterline (of width X D 22220nm) and with
randomly chosen angles, 0 < �i < � , but without intersections of the rods.
Simulation runs are performed for 20,000,000 timesteps (in an artificial time unit,
comparable to microseconds, �sec), thus for about 20 s, see Fig. 3 for typical
lipid configurations appearing in two different simulations (with shorter width).
After every 1,000 timesteps (thus each millisecond, msec) certain observables are
extracted for data evaluation.

As a first evaluation, we quantify proximity of the simulated rods. Two rods
i and j are defined to be clustered, if

j�i � �j j � ˇmax and jwi � wj j � bmax: (6)

If a rod does not obey these relations with any other, it is said to be unclustered.
Here, wi denotes the horizontal position, at which the rod i crosses the waterline.
The positive parameters ˇmax and bmax are suitably chosen thresholds, namely
ˇmax D 10ı, bmax D 15. As an observable we define the overall clustering

C D number of clustered rods

total number of rods N
(7)

of the simulated rods for every time step. Another observable is the polar order
parameter

R D 1

N

ˇ̌
ˇ
X

i

bei
ˇ̌
ˇ; (8)

where bei D .cos �i ; sin �i / represents the unit vector along the i -th rod.
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Fig. 4 In the plots above we show the mean polar order parameter R and clustering C depending
on the perturbation cw, for different particle numbers N . The plots below show examples of
corresponding time series. Note that the essential parameters cw andN vary, as separately indicated
for each plot. The other simulation parameters are the same for all plots shown. The friction is
� L

k
D 300; � L

?
D 600 inside of the liquid and � A

k
D 30; � A

?
D 60 outside. The remaining

interactive force parameters are �tt D 5; "t t D 100; �hh D 7:5; "hh D 20; ˛ D 1 and
ks D k� D 25

Time behavior of the observables (7) and (8) is presented in the lower part of
Fig. 4 for a typical set of simulation parameters. For the polar order index R (plots
in the left column), the overall behavior is almost the same for each simulation.
Starting from a ‘random’ initial value �0.94, within less than 100 ms the index
reaches a stationary value, about which it fluctuates, though with a slight adjusting
increase in case of the smaller perturbation amplitude cw D 2333:3. In contrast, the
clustering index C (plots in the right column) shows a quite different behavior. For
cw � 2333:3 and everyN , the index slowly approaches its potential stationary level
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with an exponential rate of time scales more than 5 s. This also explains the large
variances and the decreasing mean in the corresponding parameter plot (top right).
For cw � 3300, the stationary level of C is reached almost instantaneously, meaning
that the ‘clustering rate’, i.e. the speed of cluster growth, is strongly dependent on
the lipid mobility coefficient cw. Further simulations could reveal a more detailed
dependence.

The polar order index R exhibits a clear monotone dependence on cw (top left
plot in Fig. 4). Moreover, in the two parameter plots it can be seen that a higher
density of rods leads to a higher value of both indices, clustering and polar order. The
explanation for this feature is obvious: since the rods are generally closer at higher
densities, their short-range interactions give rise to enhanced mutual alignment of
adjacent rods. Thus, the rate of transition from ‘disordered’ rods (freely diffusing) to
‘ordered’ rods (mutually aligned in clusters) depends both on mobility and density
of the modeled lipid molecules, amphiphilically embedded into the water surface.

3 Mesoscale Continuum Mixture Model

As shown by the stochastic microscopic model in the previous section, the temporal
scale, on which clustering and order indices experience slow changes, lies in
the range of 1–5 s. Also, sizes of ordered lipid clusters in this one-dimensional
simulation model are in the range of 20–500nm, which is up to ten times the rod
length L D 40 nm, whereas the mean distance of lipids in clusters is about 10 nm.
Thus, when locally averaging the density of lipids, 	, and the mean fraction of
ordered lipids, ', on the larger spatial scale & �m, these quantities 	.t; x/ and
'.t; x/ could be considered as continuously varying over the time scale of seconds.

Since the clusters of ordered lipids have quite sharp boundaries in the order of rod
length L D 40 nm, this spatial transition zone from the disordered to the ordered
phase scales with a factor " / 0:05 compared to the �m length scale. Thus, the
continuum phase field model defined and treated in [1], seems to be in accordance
with the ‘empirical’ findings from the microscopic model, since the free energy of
the continuous lipid monolayer system is defined by

f .	; '/ D f 0.	; '/C "2

2
jr'j2: (9)

Here f 0.	; '/ is a suitable ‘interpolation’ between free energies in the single phases
with densities 	˛ D 	 �˛ and volume fractions �1 D .1�'/, �2 D ', for 0 � ' � 1.
They are chosen as canonical Gibbs energies

f˛.	/ D b0˛	


log.	=	0˛/ � 1

�C c˛ (10)

with positive model parameters. The free energy f 0 can then generally (even for
more than two phases) be written as
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f 0.	; �/ D
X

˛

�.�˛/
�
f˛.	/C b0˛	� .�˛.1� �˛//

�
(11)

with an interpolating function � : Œ0; 1� ! Œ0; 1� satisfying �0.0/ D �00.0/ D 0,
�0.1/ D �00.1/ D 0, and with the monotone function�.z/ D zC .1� z/ log.1� z/ W
Œ0; 1�! Œ0; 1� satisfying �0.0/ D 0.

In addition to the �-interpolation, for each phase ˛ there appears an excess energy
term �˛.#˛/ evaluated at the complementary volume fraction #˛ D .1 � �˛/. Here
�˛.#˛/ represents an increasing ‘reaction’ function with �˛.0/ D 0, describing
the amount of phase associations from other phases towards the ˛-component.
The more ‘other’ molecules are locally available, the larger is the probability
of transition to the ˛-component. Since ‘binding sites’ are limited as in usual
chemical Michaelis-Menten kinetics, we suppose a corresponding transition kinetics
of Monod type:

�˛.#/ D s˛#

1C s˛#=�˛ : (12)

Here s˛ > 0 denote the transition strengths and 0 < �˛ < 1 the asymptotic
saturation level, so that always �˛.#/ < 1. In the simulations below we choose
s1 D 9 and s2 D 4, meaning that association to ordered lipids is about half as easy
as their dissociation.

For a general thermodynamically correct theory of continuum mixture dynamics
with corresponding equations for mass and force balances, we refer to the contri-
bution by H.W. Alt and W. Alt in this volume [2]. For example, the total pressure
p0 D 	f 00� � f 0 of the model above can be computed as

p0.	; �/ D
X

˛

�.�˛/ .1C �˛.1 � �˛// b0˛	 : (13)

To characterize the special case of a two-phase ordered-disordered lipid monolayer
system with total density 	.t; x/ and volume fraction of ordered lipids '.t; x/ WD
�2.t; x/, several particular assumptions have to be implemented.

• There is only one mean transport velocity for both phases, V. We notice
that according to the microscopic simulation model (in Sect. 2) all lipids are
embedded into the water surface with part of their hydrophilic head region. Then
the assumed mean velocity V can be interpreted as a bulk velocity of the lipid
heads together with their surrounding water molecules near the surface. The
differences u˛ D v˛ � V for the two phases are due to possible diffusive flow,
which might be derived along the lines indicated in [2], Sects. 6–11.

This would be compatible with the following assumptions that have been made
in [1]:

• In addition to transport velocity the mass balance equation for 	 contains a
diffusive flux �d"rf0� with inverse diffusion coefficient being interpolated as
follows:
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1

d"
D ' 1

"d0
C .1 � '/ 1

d0
: (14)

Here " is the small positive constant defined above, meaning that the ordered
lipids diffuse much less than the disordered ones.

• The surfactant monolayer as a fluid-like system on top of the water surface can
be regarded as a viscous fluid, where the viscosity coefficients ˛; ˇ are those of
the water surface layer (˛0 and ˇ0) but increased by lipid shear forces. These
are stronger for ordered lipids than for disordered ones. Therefore we define � D
f˛; ˇg as � D �0 C .1 � '/ �1 C ' �2 with suitable positive constants.

Then two mass balance equations are complemented by one quasi-stationary
force balance equation in the limit of low Reynolds number (high viscosity), namely

@t	C div.	V � d"rf 00�/ D 0; (15)

@t' CVr' C f 00' � "2�' D 0; (16)

@j .p
0 ıij � ˛.@iVj C @jVi /� ˇ@kVkıij / D 0: (17)

This is the (quasi-stationary version of the) system that has been investigated in [1].
In the following sections we report on some further results that have been obtained
by modifying or extending the numerical methods used so far.

4 Sharp Phase Transition Approximation

In the limit of small " ! 0 we obtain a fast transition layer of width ", in which
the phase transition equation (16) for ' and the mass conservation (15) for 	 in
their quasi-steady-state limit for " D 0 constitute a 3-dimensional ODE system of
first order. For given ‘density jump’ levels 	1 > 0 and 	2 > 0 its solutions have
to connect the two outer asymptotic states (' D 0; 	 D 	1) and (' D 1; 	 D 	2).
Moreover, the ODE system contains a free parameter � representing the difference
between the interface velocity and the normal component of V at the interface. For
more details see [1], Sects. 5 and 6.

The solution of this sharp transition problem is equivalent to finding a value �
such that a reduced 2-dimensional ODE system for the phase transition derivative
 .'/ and the density 	.'/ as functions of the phase variable ' 2 Œ0; 1�, namely

d 

d'
D B.	; '/

 
� � (18)

d	

d'
D �C.	; '/

A.	; '/
C � '.	2 � 	/

d0A.	; '/ 
; (19)
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has a (unique) solution satisfying  .'/ > 0 for 0 < ' < 1 and the following
boundary conditions

 .0/ D  .1/ D 0 (20)

	.0/ D 	1; 	.1/ D 	2 (21)

for given density levels 	1 and 	2. Definitions of the parameter functions in (18)
and (19) can be found in [1], Eq. (7.3). When integrating Eqs. (18) and (19), the
boundary conditions above impose two compatibility conditions. One is for the free
parameter

� D
Z 1

0

B.	.'/; '/

 .'/
d' ; (22)

representing the relative speed of the sharp transition layer. The other is a condition
for the 	-level difference

	2 � 	1 D
Z 1

0

1

A.	.'/; '/

�
�
' .	2 � 	.'//
d0 .'/

� C.	.'/; '/
�
d' : (23)

Below we will show that in cases of positive �, meaning a ‘dissolving’ boundary of
the ordered domain, this condition determines an additional free integration constant
c. However, for negative �, meaning a ‘growing’ boundary of the ordered domain,
it imposes a compatibility relation between 	2 and 	1.

Since the boundaries of the unit interval are degenerate points of the ODE
system (18) and (19), one has to construct the asymptotics for 	.'/ and  .'/ in
the limit ' ! 0 and 1, for more details see [1], Sect. 7. In particular, 	 has the
following expansion near ' D 1:

	.'/ D 	2 � c.1 � '/� � �

2 � � .1 � '/
2 CO..1 � '/3/ (24)

with � � � and the integration constant c determined by condition (23). However,
it follows that for the case � < 0, and consequently � < 0, the boundary condition
	.1/ D 	2 can only be satisfied with c D 0.

We now solve the given boundary value problem by the following numerical
shooting method, which is slightly different from the method applied in [1] and
generally more stable. First, using the asymptotic expressions, particularly (24), we
determine the values of the functions  and 	 near particular points ' D ı and
1 � ı, with a positive distance ı � 1. Taking these values as initial data for the
ODE system (18) and (19), we solve this system numerically from both sides till
the point ' D 1=2. Thus we get two values for each function. For example, for the
function  .'/, we get  .1=2/� and  .1=2/C, where subscripts � and C indicate
from which side we have started the integration process.
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4.1 Case of Dissolving Ordered Monolayer: � > 0

We construct the error functions

F1.�; c; 	1; 	2/ D  .1=2/� �  .1=2/C (25)

F2.�; c; 	1; 	2/ D 	.1=2/� � 	.1=2/C (26)

where c is the constant of integration in (24). For any given pair of levels 	1 > 0 and
	2 > 0 both values � and c are taken as free parameters. Using a standard recurrent
iteration method with suitably chosen relaxation constants, the values converge to a
unique pair f O�; Ocg satisfying the zero-error condition

F1. O�; Oc; 	1; 	2/ D F2. O�; Oc; 	1; 	2/ D 0 : (27)

Then we have solved the boundary value problem (18)–(21) and found the corre-
sponding wave speed value � D O�, as long as O� � 0. If this fails, we have to switch
to the next case.

4.2 Case of Growing Ordered Monolayer: � < 0

For the case � < 0 the parameter c has to be zero and we cannot solve system (27)
for any pair of f	1; 	2g, since we have only one free parameter � for two equations.
In this case a solution is possible only for a special curve in the f	1; 	2g plane,
which then satisfies condition (23). Thus, we perform the same iteration procedure
in order to reduce the error functionsFi for c D 0 and fixed 	1 but with varying free
parameters .�; 	2/. Then, convergence towards values O� and b	2 D b	2.	1/ satisfying

F1. O�; 0; 	1; b	2/ D F2. O�; 0; 	1; b	2/ D 0 (28)

yields a solution with O� < 0.

4.3 Simulation Results

With a chosen parameter set (the same as in [1]), extensive numerical computations
reveal that only for values 	1 . 0:45 and 	1 & 7 we find � > 0, but in-between
� is negative. Figure 5 depicts the points in the .	1; 	2/ plane allowing for a solution
of the transition problem (18–21). Two grey areas on the right and on the left are
shown, where solutions exist with positive wave speed �. In-between the curve 	2 D
b	2.	1/ is plotted on which � is negative. At the endpoints of this curve we have two
point singularities representing particular states with � D 0.
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Fig. 5 Diagram of possible lipid phase transitions projected to the .	1; 	2/ plane of asymptotic
boundary values. Dark grey areas correspond to positive � values. In-between the curve 	2 D
b	2.	1/ is plotted, on which � is negative. The two end points of this curve are isolated singularities
.	�

1 ; 	
�

2 /

In [1], Sect. 8, the full two-phase lipid dynamics with sharp phase transition was
numerically investigated for the one-dimensional case of a fixed bounded interval
[0, X], where no-flux boundary conditions were imposed for the two outer densities
	1.t; x/, for x < s.t/, and 	2.t; x/, for x > s.t/, respectively. Here x D s.t/ defines
the moving sharp transition interface. If solutions start with an initial sharp transition
not too near to the boundaries, they generally converge to the unique steady state
with the singular transition levels 	1 D 	�

1 � 0:45 and 	2 D 	�
2 D b	2.	�

1/ �
1:79, representing the singularity in Fig. 5 with lower 	�

1 value. For initial data to
the left of the singularity, with 	1jtD0 < 	�

1 , both �.t/ and Ps.t/ become positive,
and the .	1; 	2/ trajectories approach the projected stable manifold of the singular
steady state, see [1], Fig. 14. For initial data to the right of the singularity, with
	1jtD0 > 	�

1 and 	2jtD0 D b	2.	1jtD0/, both �.t/ and Ps.t/ are negative and the
.	1; 	2/ trajectories stay on the singular curve (in Fig. 5), constituting the other side
of the projected stable manifold, on which they asymptotically approach the same
singular steady state.

However, the so far unsolved question is, what happens with the sharp transition
approximation, if the transition levels hit the ‘border line’, namely 	1.t/ D 	�

1 ,
while 	2.t/ ¤ 	�

2 . In Fig. 6a we plot the numerically computed transition
profiles of the density function 	.'/ for different boundary values 	1<	�

1 and
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Fig. 6 (a) Left: Functions 	.'/ for different boundary values 	1 < 	�

1 and for fixed 	2 D 1. When
approaching the critical value 	1 D 	�

1 monotonically from below, the profiles also monotonically
increase and approach the thick graph 	�.'/. Their maximal values 	max D max 	.'/ D 	.'�/

converge to 	�

2 > 1, however, '� converges to the right hand boundary ' D 1. (b) Right: The
profiles 	.
/ for different boundary values 	.�1/ D 	1 < 	�

1 and for fixed 	.1/ D 	2 D 1.
When monotonically approaching the critical value 	1 D 	�

1 , the profiles also monotonically
increase and approach the thick graph 	�.
/ but with decaying rate of exponential convergence
	.
/ ! 	2 for 	1 ! 	�

1

fixed 	2D 1<	�
2 . As we can see, when 	1! 	�

1 , the profiles 	.'/ approach an
asymptotic profile with � D 0, namely 	�.'/, which is plotted as a bold graph. This
is the unique singular transition profile connecting 	�

1 with 	�
2 , so that the right hand

boundary value is strictly larger than the prescribed value 	2 D 1 of all the other 	
profiles. This means that, the closer we come to the boundary value 	1 D 	�

1 , the
thinner becomes the boundary layer in the neighborhood of ' � 1.

If we plot the density profiles of the transition layer over the physical space
coordinate 
, we obtain the graphs in Fig. 6b. It is obvious that the decreasing
boundary layer near ' D 1, described in Fig. 6a, corresponds to a decreasing
exponential rate of convergence 	.
/ ! 1 for 
 ! 1. Thus, when approaching
the boundary of the left f� > 0g region in Fig. 5, the wave speed � converges
to zero, but the convergence towards the singular 	�.
/ profile is non-uniform in
space, except when we approach the singularity .	�

1 ; 	
�
2 /. We conclude that the

approximate equations (18) and (19) for a thin transition layer loose its validity
near the f� D 0g borders away from the singular points.

5 One-Dimensional Simulation of the Continuum Phase
Field Model

For exploring the quantitative solution behavior around the singular point and
for simulating the effects of cyclic breathing, we rely on the original phase field
continuum equations (15)–(17) for positive " with no-flux boundary conditions on a
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Fig. 7 Trajectories of the .	1; 	2/ values in simulations of the phase field equations (15)–(17), for
six different initial conditions, converging to the asymptotically stable singularity . Q	�

1 ; Q	�

2 / (red
dot)

given interval Œ0; X�. We perform numerical simulations for the qualitatively same
situation as in Sect. 4.3, namely a phase separation of the interval into a left hand
part with unordered and a right hand part with ordered lipids.

5.1 Smoothed Phase Separation in a Fixed Interval

On the unit interval f0 < x < 1g we choose the initial distribution of the phase
field ' to be zero in 0 < x < s0 and one in s0 < x < 1 for some transition point
0 < s0 < 1. Accordingly, for the density 	 we take step distributions with different
plateau values 	.0/ D 	1 and 	.1/ D 	2. Since the partial differential equations
(15)–(17) with positive ".D 0:05/ constitute a well-posed parabolic-elliptic system
with regularity properties, also when discretized by using a standard explicit scheme
with finite elements, the initial step data are smoothed instantaneously.

In all simulation runs we observe evolution to the same stationary state Q	 with
boundary values Q	�

1 � 1:79 and Q	�
2 � 0:47, both quite close to the coordinates of

the sharp transition singular point (	�
1 ; 	

�
2 ), see the trajectories in Fig. 7. The plots

in Fig. 8a show the density profiles of a specific trajectory at different times. One
can easily see the convergence towards a stationary profile, which is approximately
the same as the asymptotic profile in Fig. 6b. Starting point of the phase transition
interface was s0 D 0:35. Depending on the initial data, the position of the interface
s.t/ moves backward or forward (the latter is to be seen in Fig. 8b) and converges
to an asymptotic value (to be seen in Fig. 9a). Simultaneously, the relative speed
parameter �.t/ converges to zero (see Fig. 9b).
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Fig. 8 (a) Left: time evolution of the density profiles 	.t; x/ for one specific initial condition
.	1; 	2/ D .0:25; 1:4/ with �.t/ > 0. (b) Right: the corresponding phase transition functions
'.t; x/

Fig. 9 Simulation as in Fig. 8. (a) Left: the ‘interface’ position s.t/, where '.t; s.t // D 0:5.
(b) Right: the function �.t/ WD Ps.t/� V .t; s.t //

5.2 Phase Separation Behavior in an Oscillating Domain
Simulating “Breathing”

In order to mimic the alveoli expansion and compression during breathing, we
make our domain f0 < x < X.t/g to change periodically its size, for instance
in a sinusoidal manner: X.t/ D X0.1 C a sin!t/ with X0 D 1 (comparable to
�m), breathing amplitude a D 0:5 and breathing frequency ! D 2� (comparable
to 1.26/s). As can be observed from the density profile plots of Fig. 10a, it is the
‘exhalation’ period during which the interval size X.t/ shrinks and thereby both
densities of disordered and ordered lipids are lifted up while, after a certain time
lag, the transition interface starts to move left and leads to a quite fast growth of
the ordered lipid monolayer. Then the reverse process can be observed during the
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Fig. 10 ‘Breathing’ cycle simulation of the phase field model with " D 0:05. (a) Left: time
evolution of the profile 	.t; Qx/ over the rescaled variable Qx D x=X.t/ on the fixed unit interval.
The Q	2.t/-values just right of the transition layer together with their position values Qx2.t/ describe
a counter-clockwise cycle (red circles). A similar but smaller cycle is described by the Q	1.t/-values
just left of the transition layer together with their position values Qx1.t/ (magenta circles). (b) Right:
corresponding clockwise trajectories of the level pairs .	1; 	2/ at the interval boundaries (black
curve) and . Q	1; Q	2/ near the transition layer (red curve). Notice that the simultaneous decrease of
both values during ‘inhalation’ is much faster than the increase during ‘exhalation’

‘inhalation’ period, when due to the growth of interval size X.t/ both 	1- and 	2-
levels rapidly decrease while, again after a time lag, the transition interface moves
to the right and the ordered lipid monolayer shrinks.

Due to strong diffusion in the disordered phase, inducing long slopes in the
density profile, the left boundary values 	1.t/ oscillate much stronger than the Q	1.t/-
values directly left of the transition zone; the same is true for the corresponding
	2.t/- and Q	2.t/-levels of the ordered phase to the right, compare the ‘circle dots’ in
Fig. 10a and the corresponding trajectories plotted in Fig. 10b. The inner hysteresis
loop (red curve) is not only smaller but also strongly deformed compared to the
outer, more ellipsoid hysteresis loop (black curve). This is mainly due to the strong
difference 	2.t/� Q	2.t/ during the ‘exhalation’ period, when 	2 still increases, while
Q	2 already begins to decrease and the transition front moves to the left so rapidly,
that there appears a larger secondary transition zone (of size up to 0:25) between
the sharp transition layer and the 	2-plateau. Simultaneously, also the relative speed
�.t/ becomes negative, so that the . Q	1; Q	2/-trajectory enters the ‘forbidden region’
of Fig. 5, consistent with the result of Sect. 4, that in this region the fast transition
approximation breaks down.

Finally, we have simulated more realistic breathing cycles with shorter inhalation
and longer exhalation period, where in both cases the expanding or compressing
interval length X.t/ exponentially tends to a potential steady state: The cycle
duration is 0:5 time units (comparable to 5 s) with 0:2 for inhalation and 0:3 for
exhalation (see Fig. 11a). This time we used a doubled transition parameter " D 0:1,
resulting in a broader transition layer for the density profiles (see Fig. 12a). Again,
as in Fig. 10b, the trajectories in the .	1; 	2/ state space (Fig. 12b) show a clear
hysteresis behavior. Now the inner cycle of Q	 levels near the transition zone is
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Fig. 11 Two cycles of a more realistic ‘breathing’ simulation with " D 0:1. (a) Upper plots:
the interval excess length X.t/ � 1 (black) shows exponential curves with shorter ‘inhalation’
and longer ‘exhalation’; also plotted are the resulting boundary values 	1.t/ and 	2.t/ (green and
red graphs, respectively). (b) Lower plots: the resulting viscous transport velocity V .t; s.t // at
the middle point s.t/ of the smooth transition (blue graph) and the corresponding relative speed
parameter �.t/ D Ps.t/� V .t; s.t // (magenta graph)

not so much reduced in size, but only shifted to higher 	1 values in such a way
that the transition singularity (compare the small dot in Fig. 7) lies in the center of
this hysteresis loop. This again is consistent with the results in Sect. 4, since the
upper part of the hysteresis trajectory, roughly above this singularity, shows values
�.t/ < 0, see Fig. 12b, what can also be checked by the time plot in Fig. 11b.

It is worthwhile to have a closer look at the . Qx2; Q	2/ cycle in the upper part
of Fig. 12a: During ‘in- or exhalation’ there is first a period of changing Q	2 levels
with relatively constant Qx2, meaning also a constant phase transition zone, followed
by a period with changing position of the transition zone, while the Q	2 level
stays constant. Obviously this is a characteristic dynamic feature of the ordered
monolayer. During a fast change of the interval size, the following two subsequent
events take place: first, the lipid density is passively adjusted to the changing
pressure, then, as a reactive process at the phase boundary of the monolayer,
disordered lipids are associated or dissociated, respectively, while simultaneously
the pressure adapts due to viscous flow within the monolayer.

Summarizing the simulation results of this section we can state that both
‘breathing cycle’ models are able to reproduce the hysteresis property, which has
been experimentally observed from plotting the density-pressure isotherm curves
(see Fig. 1). Such a curve can be expected also in our simulation, since the total
pressure in Eq. (13) explicitly depends on the 	 and ' profiles.
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Fig. 12 Simulation of one periodic ‘breathing’ cycle as in Fig. 11: (a) Top: zoomed plots of
density profiles 	.Qx/ with depicted points .Qx1; Q	1/ and .Qx2; Q	2/ left and right of the phase transition
zone (magenta and red dots, respectively), cycling in a counter-clockwise sense. (b) Bottom:
corresponding clockwise trajectories of boundary values .	1; 	2/ (blue curve) and of . Q	1; Q	2/
(magenta diamonds when � > 0, and red circles when � < 0 ), the latter cycling around the
approximate steady-state singularity . Q	�

1 ; Q	�

2 / (small ellipse)

6 Conclusions

In extension of the results in [1] we demonstrated, how the mesoscopic continuum
phase transition model can produce realistic simulations of a periodically expanded
and compressed one-dimensional water surface with an embedded lipid monolayer
on top. The observed phenomenon of hysteresis could be reproduced and further
dynamical properties of the ‘patchy’ lipid monolayer system were revealed, which
characterize its suspected functional role as an adaptive surfactant buffering system
during breathing of the lung.

Moreover, a simple model for the stochastic motion and interaction of
amphiphilic lipids as stiff rods on top of a fixed water surface was introduced
and numerically simulated. The essential dynamics of ordered monolayer clustering
from a reservoir of disordered diffusing lipids were realized under varying parameter
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conditions. In spite of its simplicity, this microscopic submodel could serve as
an effective tool to study further connections between the detailed molecular
interaction parameters and the lumped reaction parameters in the continuum two-
phase mixture model.
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Fluid Mixtures and Applications to Biological
Systems

Hans Wilhelm Alt and Wolfgang Alt

Abstract We apply the free energy principle to fluid systems, where the compo-
nents react with each other. As example we treat the predator-prey system and cyclic
reactions. We deal with the polymerization of actin filaments and with the general
diffusion limit.

1 Introduction

We consider a mixture of fluids with applications as they widely occur in biology,
biophysics and biochemistry. It is assumed that for each fluid a conservation law
for the momentum is satisfied. This is true for a mixture of particle systems, where
the attraction force for molecules of the same kind is stronger than the attraction
between different species of the mixture. For example, this is the case for liquid-
solid mixtures, see Rajagopal [10, 3.3 Basic Equations].

In Sect. 3 we consider mass and momentum balances for each component of the
mixture, each component having it’s own velocity with interaction terms between
the different momentum equations, see the system (1).
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Constitutive equations will be derived with the help of the entropy principle in
the version of Müller [9]. That book also contains a treatment of mixtures, but his
theory of mixtures of fluids is restricted to the non-viscous case [9, Chap. 6 .6:18/2].
We insert also viscous terms in the momentum equations.

We consider the isothermal case. In this case the entropy principle becomes the
free energy inequality. We show how this leads to restrictions on the constitutive
equations and end up with an equivalent system (19), which is the basis for further
studies.

We deal with several special topics, among them free energies depending on
gradients (Sect. 6), the system for total density and fractional densities (Sect. 9), a
contribution to quasistatic problems (Sect. 8), which is followed by a consideration
of a diffusive limit (Sect. 10). Beside this we give some particular examples from
biology (Sects. 5 and 7) as the Lotka-Volterra system and the polymerization of
actin filaments. There is a full theory for chemical systems, but a theory for general
biological problems goes beyond this and is new. The reason is that the non-
negativity for each reaction is a too strong assumption for the non-negativity of
the free energy production. In this paper we cannot give a full theory for all cases so
this is reserved to considerations in a future paper.

2 Fluid Mixtures

We consider a mixture of compressible fluids, where 	˛ is the mass density and v˛
the velocity of the ˛-th constituent. The balance laws for mass and momentum for
each fluid component ˛ are1

@t	˛ C div.	˛v˛/ D 
˛;
@t .	˛v˛/C div.	˛v˛ ˝ v˛ C˘˛/ D g˛ C 
˛v˛ C f˛:

(1)

This holds for each ˛. Here 
˛ are reaction terms, f˛ are possible external forces
and g˛ are interaction forces. The matrix ˘˛ is the pressure tensor containing as
part the negative stress tensor, as we will see later in Theorem 1.

Besides these balance laws we have constitutive relations for 
˛ , ˘˛, and g˛ ,
which couple the equations. These conditions are subject to restrictions coming from
the principle of objectivity (see the Remark 1 below). So the mass production 
˛ is
an objective scalar, the pressure tensor ˘˛ is an objective tensor, f˛ transform like
an external force and the coupling term g˛ is an objective vector.

1Note that in the second equation the divergence acts on the second index of tensors.
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Definition 1 (Constitutive Equations). Using the notation

	 D 
	ˇ
�
ˇ
; v D 
vˇ

�
ˇ
; (2)

we assume constitutive relations for


˛; g˛ ; ˘˛;

in general depending on .	; v;r	;Dv/. We do not specify f˛.

In a single fluid it often happens that dependencies on the velocity drop out by
objectivity. For mixtures the situation is quite different, since differences v˛1

�v˛2
of

two velocities are objective vectors (see [10, 4. Constitutive Equations]). Therefore
we define in accordance with [7, Chap. XI &2] the following:

Definition 2 (Barycentric Velocity). A mean density and a mean velocity is
defined by

N	 WD
X

˛
	˛; Nv WD 1

N	
X

˛
	˛v˛

where ˛ runs from 1 to N , the number of components. We define the relative
velocities by

u˛ WD v˛ � Nv; (3)

and it follows that these are objective vectors (see Remark 1).

Lemma 1. Obviously

X

˛
	˛u˛ D 0: (4)

As a consequence

D Nv D
X

˛

	˛

N	 Dv˛ C
X

˛

1

N	u˛ ˝r	˛ : (5)

Proof. Equation (4) is a direct consequence of the definition of Nv. Computing the
derivative of (4) one obtains

0 D D
�X

˛
	˛u˛

	
D
X

˛
u˛ ˝r	˛ C

X

˛
	˛Du˛

D
X

˛
u˛ ˝r	˛ C

X

˛
	˛Dv˛ � N	D Nv

by using that u˛ D v˛ � Nv. ut



194 H.W. Alt and W. Alt

Here we consider materials where all velocities v˛ are independent variables.
Likewise Nv and the u˛, obviously with the constraint (4), are independent variables.
Summing up the Eqs. (1) and using (4) we obtain, that these mean quantities satisfy
the total mass and total momentum balance equations

@t N	C div. N	 Nv/ D
X

˛

˛;

@t . N	 Nv/C div
�
N	 Nv ˝ Nv C

X

˛
	˛u˛ ˝ u˛ C

X

˛
˘˛

	
D
X

˛
.g˛ C 
˛v˛ C f˛/:

(6)

We now interpret the quantities in these common equations.

Proposition 1 (Collective Quantities). It follows that (6) is equivalent to

@t N	C div. N	 Nv/ D N
;
@t . N	 Nv/C div

�
N	 Nv ˝ Nv C N̆

	
D Ng C N
 Nv C Nf;

(7)

if the production of the total mass N	 is

N
 WD
X

˛

˛

and if the pressure tensor N̆ for the total fluid is

N̆ WD
X

˛
	˛u˛ ˝ u˛ C

X

˛
˘˛ :

We assume that N̆ is a symmetric objective tensor (the tensors ˘˛ do not need to
be symmetric). Moreover, the momentum production terms are given by

Ng WD
X

˛
.
˛u˛ C g˛/; Nf WD

X

˛
f˛:

For a closed system one assumes that N
 and Ng vanish (see Lemma 2). To include
other systems we will proceed with arbitrary values of N
 and Ng, although then one
would insist to extend the system to a closed one, or one needs to say on which
closed system the model relies. For further considerations it is important how the
total kinetic free energy is defined. The sum of the kinetic energy of each fluid

f kin WD
X

˛

	˛

2
jv˛j2 D N	

2
j Nvj2 C

X

˛

	˛

2
ju˛j2 (8)

is a basis for it, and a single kinetic energy satisfies the following evolution equation.

Proposition 2. For each ˛ it follows from the equations in (1) that the following
identity
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@t

�	˛
2
jv˛j2

	
C div

�	˛
2
jv˛j2v˛ C˘T

˛ v˛

	
D Dv˛	˘˛ C v˛	.g˛ C f˛/C 
˛

2
jv˛ j2

is satisfied.

Proof. For each index ˛ and any linear first order differential operator L D ˇ0@t CP
i ˇi@i we compute

L.
	˛

2
jv˛j2/ D jv˛j

2

2
L	˛ C 	˛v˛	Lv˛ D �jv˛j

2

2
L	˛ C v˛	L.	˛v˛/;

and for L D @t C v˛	r we write the differential equations (1) as

L	˛ D �	˛divv˛ C 
˛;
L.	˛v˛/ D �	˛.divv˛/v˛ � div˘˛ C .g˛ C 
˛v˛ C f˛/

and obtain

L
�	˛ jv˛j2

2

	
D �jv˛j

2

2
L	˛ C v˛	L.	˛v˛/

D
� jv˛j2

2
� v˛	v˛

	
	˛divv˛ � jv˛ j

2

2

˛ � v˛	div˘˛ C v˛	.g˛ C 
˛v˛ C f˛/

D �jv˛ j
2

2
	˛divv˛ � div.˘˛T v˛/C Dv˛	˘˛ C v˛	.g˛ C f˛/C jv˛ j

2

2

˛ :

This gives the result

@t

�	˛
2
jv˛j2

	
C div

�	˛
2
jv˛j2v˛ C˘T

˛ v˛

	

D L
�	˛
2
jv˛ j2

	
C jv˛j

2

2
	˛divv˛ C div.˘T

˛ v˛/

D Dv˛	˘˛ C v˛	.g˛ C f˛/C 
˛ jv˛j
2

2
: ut

The equations have to be supplemented by the entropy principle, which in the
here considered isothermal case is equivalent to the free energy inequality. This
requires a definition of the (total) free energy, which as a part consists of the kinetic
free energy f kin.

Definition 3 (Postulate: Free energy principle). The postulate is that there exist
a (total) free energy f tot and a free energy flux � tot, such that for all solutions .	; v/
of the mixture problem the inequality

@tf
tot C div� tot � gtot � 0 (9)
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holds, and .f tot; � tot; gtot/ satisfy certain constitutive relations. Among this

f tot WD
X

˛

	˛

2
jv˛j2 C f D f kin C f; (10)

where the internal free energy f is an objective scalar. The constitutive assumption
on f is a consequence of the materials considered here (see (13) and (25)), in any
case it will depend on 	. For the flux we assume

� tot WD
X

˛

	˛

2
jv˛j2v˛ C f Nv C

X

˛
˘T
˛ v˛ C �;

where � is an objective vector, which has to be determined later. The term gtot has
in accordance with objectivity the form

gtot D N

2
j Nvj2 C Ng	 Nv C

X

˛
v˛	f˛:

This contains the usual external force terms f˛, but also terms containing the external
quantities N
 and Ng.

It is important to say that the inequality (9) implies that

h WD @tf tot C div� tot � gtot

has to be an objective scalar (see [2, Lemma 10.3]). That is the reason why a term
gtot is necessary. The free energy f tot transforms in the same way as f kin does. This
determines the transformation formula for the flux � tot, which has an unknown term
� and which turns out to be an objective vector. It can be written as

� tot D f tot Nv C
�X

˛

	˛

2
jv˛j2u˛ C

X

˛
˘T
˛ v˛

	
C �:

Remark 1 (Objectivity). The objectivity of the system itself can be found in [2,
Chap. 8]. In [2] an arbitrary observer transformation is given by a map Y ,

�
t

x

�
D Y

� �
t�
x�
� 	
D
�
t� C a
X.t�; x�/

�
; X.t�; x�/ D Q.t�/x� C b.t�/;

where the quantities with respect to the new observer are indicated by a star. Then,
besides well known transformations of terms in the ˛-system (1), in particular the
following is true. The velocity transforms like

v˛ ı Y D PX CQv�̨;

the force of the ˛-system transforms like

f˛ ı Y D 	�̨. RX C 2 PQv�̨/CQf�̨;
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and the force for the global system (6) transforms like

Nf ı Y D N	�. RX C 2 PQ Nv�/CQNf�;

which is consistent with the definition of the collective Nf. The objectivity about the
terms in (9), which assumes (7) can be found in [2, Chap. 10]. As mentioned above,
the term gtot has to contain the not objective scalar terms

N

2
j Nvj2 C . Ng C Nf/	 Nv;

and it can be shown that the term
P
˛ u˛	f˛ is an objective scalar. (It is not clear,

where an objective scalar should be placed, in gtot or h, one has to perform the
entropy inequality to clarify this.)

The free energy inequality reduces to the following inequality for the internal
free energy.

Proposition 3. For the free energy production h one computes

0 � h D @tf C div.f Nv C �/C
X

˛

�
Dv˛	˘˛ C u˛	g˛ C 
˛

2
ju˛j2

	
(11)

for every solution of system (1).

Proof. Summing up in Proposition 2 one obtains

@tf
kin C div

�X

˛
.
	˛

2
jv˛j2v˛ C˘T

˛ v˛/
	

D
X

˛

�
Dv˛	˘˛ C v˛	.g˛ C f˛/C 
˛

2
jv˛j2

	
:

Inserting this in the definition of h gives

h D @tf tot C div� tot � gtot

D @t .f kin C f /C div
�X

˛

�	˛
2
jv˛j2v˛ C˘T

˛ v˛

	
C f Nv C �

	
� gtot

D @tf C div.f Nv C �/� gtot

C
X

˛

�
Dv˛	˘˛ C v˛	.g˛ C f˛/C 
˛

2
jv˛j2

	
:

Since

X

˛

�
v˛	.g˛ C f˛/C 
˛

2
jv˛ j2

	
D
X

˛

�
.u˛ C Nv/	g˛ C 
˛

2
ju˛ C Nvj2

	
C
X

˛
v˛	f˛

D
X

˛

�
u˛	g˛ C 
˛

2
ju˛ j2

	
CR;
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where

R D
X

˛

�
Nv	g˛ C 
˛

2
.2u˛	 Nv C j Nvj2/

	
C
X

˛
v˛	f˛ (12)

DNv	
X

˛

�
g˛ C 
˛u˛

	
C j Nvj2

X

˛


˛

2
C
X

˛
v˛	f˛

DNv	 Ng C j Nvj2 N

2
C
X

˛
v˛	f˛ D gtot;

the assertion follows. ut
It is the aim to determine the consequences of the free energy principle. For this

it is now essential, what constitutive properties f and � have.

3 Exploiting the Free Energy Inequality

In this section we make use of the assumption that the free energy f depends on all
the densities 	˛, and with this assumption we go into the free energy inequality (11).

Proposition 4. If the free energy is given by

f � Of .	/; (13)

then we obtain for the free energy production

h D div� C
X

˛
f 0�˛


˛ C
X

˛
u˛	

�
g˛ C 
˛

2
u˛ C


f
N	 � f 0�˛

�r	˛
	

C
X

˛
Dv˛	

�
˘˛ C 	˛


f
N	 � f 0�˛

�
Id
	
:

Thus the production term is written in the independent gradient terms Dv˛ andr	˛ .

Proof. Since f D Of ..	˛/˛/we compute, by making use of the mass conservations,

@tf C div.f Nv/ D.@t C Nv	r/f C f div Nv
D
X

˛
f 0	˛ �

�
@t	˛ C Nv	r	˛

	
C f div Nv

D
X

˛
f 0	˛ �

�

˛ � div.	˛v˛/C Nv	r	˛

	
C f div Nv

D
X

˛
f 0	˛ 
˛ �

X

˛
f 0	˛u˛	r	˛ �

X

˛
	˛f 0	˛divv˛ C f div Nv:

We plug this into the expression for h and obtain



Fluid Mixtures and Applications to Biological Systems 199

h D div� CP˛ f 0�˛

˛ �P˛ f 0�˛

u˛	r	˛
�P˛ 	˛f 0�˛

divv˛ C f div Nv
CP˛ Dv˛	˘˛ CP˛ u˛	g˛ CP˛

�˛
2
ju˛j2:

Now we use (5) to derive

div Nv D
X

˛

	˛

N	 divv˛ C
X

˛

1

N	u˛	r	˛ ;

which gives

�P˛ 	˛f 0�˛
divv˛ C f div Nv

DP˛



�˛f

N� � 	˛f 0�˛

�
divv˛ CP˛

f
N� u˛	r	˛:

Therefore we obtain for the energy production

h D div�C
X

˛
f 0�˛


˛ �
X

˛
f 0�˛

u˛	r	˛

C
X

˛
u˛	g˛ C

X

˛


˛

2
ju˛j2 C

X

˛

f

N	 u˛	r	˛

C
X

˛
Dv˛	

�
˘˛ C


	˛f
N	 � 	˛f 0�˛

�
Id
	

D div�C
X

˛
f 0�˛


˛

C
X

˛
u˛	

�
g˛ C 
˛

2
u˛ C


f
N	 � f 0�˛

�r	˛
	

C
X

˛
Dv˛	

�
˘˛ C 	˛


f
N	 � f 0�˛

�
Id
	
: ut

If we now let

˘˛ D p˛Id� S˛; p˛ WD 	˛.f 0�˛
� fN	 /;

we can rewrite the Dv˛-term in the free energy production h. If in addition we now
define the specific free energy and the specific pressures by

f sp D f

N	 ; psp
˛ D

p˛

	˛
; (14)

where the specific pressure psp
˛ is defined with respect to the density 	˛, then we

obtain the following theorem as a consequence.
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Theorem 1. Let be f � Of .	/ and let the chemical potential be

�˛ WD f 0�˛
: (15)

If in addition to assumption (13) we suppose � D 0 and

˘˛ D p˛Id � S˛; p˛ D 	˛psp
˛ ; (16)

g˛ D psp
˛ r	˛ �


˛

2
u˛ C gfr

˛ � 	˛gsp;

where the objective quantities S˛, 
˛, gfr
˛ , and gsp are arbitrary constitutive

functions, then for solutions of (1) the free energy production h reads

0 � h D �
X

˛
Dv˛	S˛ C

X

˛

˛�˛ C

X

˛
gfr
˛	u˛: (17)

Proof. This follows immediately from Proposition 4, where one has to take into
account the constraint (4) for the relative velocities u˛. ut

We also have the identity

f 0�˛
� fN	 D N	

�f
N	
	

0�˛

D N	 � f sp
0�˛

and therefore

psp
˛ D N	 � f sp

0�˛
: (18)

The friction terms gfr
˛ are those terms of the interactive force, which contribute to

the free energy production. The vector field gsp, which is independent of ˛, is due
to the constraint (4) and contributes to the external term Ng and to the differential
equations, see Proposition 5 and Lemma 3 below.

Lemma 2 (External Quantities). Define

Ngfr WD
X

˛
gfr
˛ :

Then

N
 D
X

˛

˛;

Ng D
X

˛


˛

2
u˛ C N	.rf sp � gsp/C Ngfr:

Note here that the external terms N
 and Ng vanish for a completely closed model as
mentioned in Sect. 2, see Lemma 3 below.
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Proof. From (16) we obtain

g˛ C 
˛u˛ D 
˛

2
u˛ C psp

˛ r	˛ C gfr
˛ � 	˛gsp;

hence

Ng D
X

˛


˛

2
u˛ C

X

˛
.psp
˛ r	˛ � 	˛gsp/C Ngfr

and from (18)

X

˛
.psp
˛ r	˛�	˛gsp/ D

X

˛
N	f sp

0�˛
r	˛�


X

˛
	˛
�
gsp D N	.rf sp�gsp/: ut

In summary, we obtain the following conclusion.

Proposition 5. Under the assumptions of Theorem 1 the mixture system (1) is
equivalent to

@t	˛ C div.	˛v˛/ D 
˛;
	˛


@tv˛ C .v˛	r/v˛

�

D divS˛ � 	˛.rpsp
˛ C gsp/� 
˛

2
u˛ C gfr

˛ C f˛

(19)

for all ˛. The free energy inequality (17) is satisfied.

Proof. With the assumptions in Theorem 1 the momentum law in (1) becomes

@t .	˛v˛/C div.	˛v˛ ˝ v˛ C p˛Id� S˛/
D 
˛v˛ C g˛ C f˛

D 
˛ Nv C v˛
2
C psp

˛ r	˛ � 	˛gsp C gfr
˛ C f˛;

or if we use the mass equation in (1)

	˛


@tv˛ C .v˛	r/v˛

�C div.p˛Id � S˛/
D g˛ C f˛

D �
˛
2

u˛ C psp
˛ r	˛ � 	˛gsp C gfr

˛ C f˛;

or equivalently

	˛


@tv˛ C .v˛	r/v˛

�

D divS˛ � rp˛ C g˛ C f˛
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D divS˛ C psp
˛ r	˛ � rp˛ � 	˛gsp � �˛

2
u˛ C gfr

˛ C f˛

D divS˛ � 	˛.rpsp
˛ C gsp/� �˛

2
u˛ C gfr

˛ C f˛:

Here we have used the fact that

rp˛ D r.	˛psp
˛ / D 	˛rpsp

˛ C psp
˛ r	˛: ut

The additional term gsp can be chosen in a way that Ng D 0.

Lemma 3. It is Ng D 0, if we choose gsp as

gsp WD 1

2 N	
X

˛

˛u˛ Crf sp C 1

N	 Ng
fr:

This follows immediately from the representation in Lemma 2. With this
assumption we obtain the following theorem.

Theorem 2. Under the assumptions of Theorem 1 and if gsp is chosen as in
Lemma 3 the system (1) is equivalent to

@t	˛ C div.	˛v˛/ D 
˛;
	˛


@tv˛ C .v˛	r/v˛

�

D divS˛ � 	˛r�˛ � 1
2




˛u˛ C 	˛

N	
X

ˇ

ˇuˇ

�C gfr
˛ �

	˛

N	 Ng
fr C f˛

for all ˛. Here �˛ D f 0�˛
are the chemical potentials.

Proof. It is psp
˛ C f sp D f 0�˛

D �˛ . With this the assertion follows from the
previous Proposition 5. ut
If one makes the natural assumption that the friction terms gfr

˛ sum up to Ngfr D 0,
the Ngfr term in the momentum equation vanishes. The easiest way to verify that the
free energy inequality (17) is satisfied is to assume that all three components of the
free energy production have a sign. (We remark that in [3, &4] a different splitting is
used.) This is the case in the following lemma.

Lemma 4. Denote � D .�˛/˛ and u WD .u˛/˛ . If

S˛ � OS˛.	; .Dv/S / WD
X

ˇ



a˛ˇ .Dvˇ /

S C b˛ˇ � div.vˇ / � Id
�
;


˛ � O
˛.	; �/; gfr
˛ � Ogfr

˛ .	; u/;
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with

a˛ˇ � Oa˛ˇ .	/, b˛ˇ � Ob˛ˇ .	/ positive semidefinite in .˛; ˇ/,
X

ˇ
�ˇ O
ˇ .	; �/ � 0;

X

ˇ
uˇ	 Ogfr

ˇ
.	; u/ � 0;

then the free energy inequality (17) is satisfied.

4 Remark on Pressure

If we change in the Eqs. (1)

˘˛ D ˘ new
˛ C !˛Id; g˛ D gnew

˛ Cr!˛ ; (20)

the differential equations stay the same, since div.!˛Id/ D r!˛ . This would only
transfer a part of the pressure to the right side of the equations. Exactly this happens
if one chooses a nonzero term

� D
X

˛
Q!˛u˛

in the proof of the free energy inequality (compare [9, .6:52/4]). If we define

N! D
X

˛
Q!˛

then, using the representation (5), we have

div� D
X

˛
u˛	r Q!˛ C Du˛	. Q!˛Id/

D
X

˛
u˛	.r Q!˛ � N!N	 r	˛/C Dv˛	.. Q!˛ � N!N	 	˛/Id/

D
X

˛
u˛	r!˛ C Dv˛	.!˛Id/ if !˛ D Q!˛ � N!N	 	˛;

since (4) holds. If we would use this in the computation of Sect. 3 we would get the
new terms in (20). We remark that then

� D
X

˛
!˛u˛ with

X

˛
!˛ D 0:
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5 Examples

We describe three examples, the first is a gradient flow, for which the 
˛ are
proportional to �˛ , the second is the predator-prey system, for which the 
˛ are
partially orthogonal to �˛ , and the last one is a cyclic reaction with an intermediate
state of 
˛. In all cases the sum of the 
˛ values is 0 and the free energy inequality
(see (17))

X

˛

˛�˛ � 0 where �˛ D f 0�˛

.	/ (21)

is satisfied. Besides this we assume for simplicity that the relative velocities u˛ are
all 0, and that the fluid as a whole is incompressible or, is a rigid body. Then the
mass equations reduce to

P	˛ D 
˛;

where P D @t C Nv	r for functions  . The following considerations generalize
to the general case of system (1).

Example 1 (Gradient Flow). For a given free energy function f consider the
gradient flow system

P	˛ D ���˛ ;

where � � �.	/ > 0. Then inequality (21) is satisfied. In this case the sum of the
reaction terms does not need to be zero.

In the literature you will find a system consisting of the second and third equation
below, the classical Lotka-Volterra system. We refer to [8, Chap. 6] and [11].

Example 2 (Lotka-Volterra System). For the predator-prey model we let x > 0 be
the number of prey and y > 0 the number of predator and consider the system

Pb D ��x;
Px D x � .˛ � ˇy/;
Py D �y � .� � ıx/;
Pz D �xy;
Pd D �y

The additional variables are a quantity b proportional to birth of prey, d proportional
to death of predator, and z proportional to interactions between predator and prey.
This system satisfies the inequality (21), which reduces to

"�x C ��y C 
�xy � 0;
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if the free energy is given by

f � OQf .b; x; y; z; d / D �� logx � ˛ logy C ıx C ˇy C "b � �d � 
z;

which is a convex function for constants � > 0 and ˛ > 0. The inequality (21)
holds, if in addition the constants ", �, �, �, � and 
 satisfy "� > 0, �� > 0, and

� > 0. The remaining quantities ˇ and ı are positive because of biological reasons.

The variables transform into (bio)mass densities by 	b D bmb, 	x D xmx ,
	y D ymy , 	d D dmd , 	z D zmz with positive mass constants satisfying

� D ˛mx

mb
; � D �my

md
;

� D ˇmx � ımy
mz

; (22)

which implies that the sum of the mass production terms are 0. The parameter � is
positive if and only if biomass is lost during transfer from prey to predator.

Proof. It is f D �logK C "b � �d � 
z with

K � OK.x; y/ D x	y˛

e�ıxe�ˇy

and one computes for solutions of the system that PK D 0, that is, this convex part
of f is constant for solutions, and moreover, we see that solutions rotate around the
equilibrium

x D �

ı
; y D ˛

ˇ
:

This is the basis for the entire result: For the mass densities the system is

P	b D 
b D mb
 0
b; 
 0

b WD ��x;
P	x D 
x D mx
 0

x; 
 0
x D x � .˛ � ˇy/;

P	y D 
y D my
 0
y ; 
 0

y D �y � .� � ıx/;
P	z D 
z D mz


0
z ; 
 0

z WD �xy;
P	d D 
d D md 
 0

d ; 
 0
d WD �y;

and, using the identities (22), that is

ˇmx D ımy C �mz; �mb D ˛mx; �md D �my ; (23)
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we obtain


b D �rb; rb WD �mbx;

x D rb � rxy ; rxy WD cxy; c WD ˇmx;

y D �rd C .1 � !/rxy ; ! WD �mz

c
;


z D !rxy ;


!c D �mz; .1 � !/c D ımy

�


d D rd ; rd WD �mdy;

hence N
 D 0. Then one easily computes


 0
x
Qf 0x C 
 0

y
Qf 0y D � 1

K
.
 0
xK 0x C 
 0

yK 0y/

D � 1
K
. PxK 0x C PyK 0y/ D � 1

K
PK D 0;

and therefore

X

ˇ

ˇ�ˇ D 
 0

b
Qf 0b C 
 0

x
Qf 0x C 
 0

y
Qf 0y C 
 0

z
Qf 0z C 
 0

d
Qf 0d

D 
 0
b
Qf 0b C 
 0

z
Qf 0z C 
 0

d
Qf 0d D �"�x � ��y � 
�xy � 0: ut

Example 3 (Cyclic Processes). As a last example we consider cyclic reactions,
which are important cases and often the basis for biological processes. We have

P	˛ D 
˛ for ˛ D 1; : : : ; N;

˛ WD �˛C1	˛C1 � �˛	˛; (24)

with cyclic repetition, 	NC1 WD 	1, �NC1 WD �1. Here �˛ are positive constants.
This system satisfies the inequality (21), if

f � Of .	/ D f0. N	/C b. N	/
X

˛
�˛	

2
˛

with positive functions b. N	/ > 0.

The stationary solutions are values 	0 D .	0˛/˛ with

�˛C1	0˛C1 D �˛	0˛ DW �0:

This 	0 2 R
N is a unique point, if the value of N	0 is considered to be given. For

general solutions 	 is rotating around the stationary line and converging to a value
	0, what can be seen from the free energy. We mention that the sum in the free
energy can be written as
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X

˛
�˛	

2
˛ D

X

˛
�˛.	˛ � 	0˛/2 C 2�0 N	 �

X

˛
�˛.	

0
˛/
2:

Moreover, we again obtain overall mass conservation, that is N
 D 0.

Proof. If f D f . N	; 	/, the derivative with respect to N	 has no effect, since the total
mass production is zero. Therefore it is enough to consider a free energy

f D f .	/ D 1

2

X

˛
b˛	

2
˛ ;

so that

�˛ D f 0�˛
.	/ D b˛	˛ :

Then, with b˛ D �˛ Qb˛ and assuming Qb˛ > 0,

X

˛

˛�˛ D

X

˛
.�˛C1	˛C1 � �˛	˛/b˛	˛

D
X

˛


 Qb˛.�˛C1	˛C1/.�˛	˛/� Qb˛.�˛	˛/2
�

D
X

˛

�
s Qb˛
Qb˛C1

� 
˛C1
˛ � 
2˛
	
;

where 
˛ WD �˛	˛
q
Qb˛. Letting

c˛ WD
s Qb˛
Qb˛C1

and using 
˛
˛C1 � 1
2
.
2˛ C 
2˛C1/, this is

D
X

˛



c˛
˛C1
˛ � 
2˛

� �
X

˛


c˛
2

2˛C1 C

c˛

2

2˛ � 
2˛

�

D
X

˛


c˛�1
2
C c˛

2
� 1�
2˛ D 0 if c˛ D 1;

that is

b D Qb˛ D Qb˛C1 > 0 for all ˛;

or b˛ D �˛b. ut
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6 Handling Gradient Terms

It is often necessary to consider a gradient dependence of the free energy. For a
biological application see for example [6]. In general we consider f to depend on
all densities 	˛ and density derivatives r	˛ , that is

f � Of .	;r	/: (25)

In particular situations f usually depends only on the gradient of one species or on
the gradient of a fraction. Both are special cases of (25). In analogy to Sect. 3 we
state a version of Theorem 1 but now with the following chemical potentials

�˛ WD ıf

ı	˛
D f 0�˛

� div.f 0r�˛
/; (26)

and the following generalization of the specific pressures

P sp
˛ WD

� ıf
ı	˛
� fN	

	
IdC

X

ˇ

1

N	r	ˇ ˝ f 0r�ˇ

D N	ıf
sp

ı	˛
IdC

X

ˇ
r	ˇ ˝ f sp

0r�ˇ
(27)

with f D N	f sp as usual. (If f does not depend on the gradients, the matrix P sp
˛ will

reduce to psp
˛ Id.) With these definitions the following holds

Proposition 6. If the free energy is given by (25) then we obtain for the free energy
production

h D div
�
� C

X

˛
P	˛f 0r�˛

	

C
X

˛

˛�˛ C

X

˛
u˛	

�
g˛ C 
˛

2
u˛ � P sp

˛ r	˛
	

C
X

˛
Dv˛	

�
˘˛ � 	˛P sp

˛

	
:

Proof. The proof follows the one of Proposition 4, but now we have to use the
identity

P.@j 	˛/ D .@t C Nv	r/@j 	˛ D @j P	˛ � .@j Nv/	r	˛ ;

hence for z 2 R
n

P.r	˛/	z D .r P	˛/	z � D Nv	.r	˛ ˝ z/: (28)
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We therefore compute

@tf C div.f Nv/ D Pf C f div Nv
D
X

˛
f 0�˛
P	˛ C

X

˛
f 0r�˛

	 P.r	˛/C f div Nv

D
X

˛
.f 0�˛

P	˛Cf 0r�˛
	r P	˛/C D Nv	

�
f Id�

X

˛
r	˛ ˝ f 0r�˛

	

D div
�X

˛
P	˛f 0r�˛

	
C
X

˛

ıf

ı	˛
� P	˛

C D Nv	
�
f Id �

X

˛
r	˛ ˝ f 0r�˛

	

and

X

˛

ıf

ı	˛
� P	˛ D

X

˛
�˛ �

�

˛ � div.	˛v˛/C Nv	r	˛

	

D
X

˛
�˛
˛ �

X

˛
�˛u˛	r	˛ �

X

˛
Dv˛	.	˛�˛Id/:

We plug this into the expression for h in Proposition 3 and obtain

0 � h D @tf C div.f Nv C �/
C
X

˛

�
Dv˛	˘˛ C u˛	g˛ C 
˛

2
ju˛j2

	

D div
�
� C

X

˛
P	˛f 0r�˛

	
C
X

˛
�˛
˛

C
X

˛
u˛	g˛ C

X

˛


˛

2
ju˛j2 CR

with

R D �
X

˛
�˛u˛	r	˛ C D Nv	

�
f Id �

X

˛
r	˛ ˝ f 0r�˛

	

C
X

˛
Dv˛	.˘˛ � 	˛�˛Id/:

Using formula (5) for D Nv this equation for R becomes

R D
X

˛
.u˛ ˝r	˛/	

�
� �˛IdC 1

N	
�
f Id �

X

ˇ
r	ˇ ˝ f 0r�ˇ

		

C
X

˛
Dv˛	

�
˘˛ � 	˛�˛IdC 	˛

N	
�
f Id �

X

ˇ
r	ˇ ˝ f 0r�ˇ

		

D
X

˛
.u˛ ˝r	˛/	P sp

˛ C
X

˛
Dv˛	.˘˛ � 	˛P sp

˛ /;

and .u˛ ˝r	˛/	P sp
˛ D u˛	.P sp

˛ r	˛/. ut



210 H.W. Alt and W. Alt

Then we obtain the following version of Theorem 1 as a consequence.

Theorem 3. Let

f � Of .	;r	/; � WD �
X

˛
P	˛f 0r�˛

: (29)

Suppose that

˘˛ D P˛Id � S˛; P˛ D 	˛P sp
˛ ;

g˛ D P sp
˛ r	˛ �


˛

2
u˛ C gfr

˛ � 	˛gsp; (30)

then for solutions of (1) the free energy production h reads

0 � h D �
X

˛
Dv˛	S˛ C

X

˛

˛�˛ C

X

˛
gfr
˛	u˛: (31)

The result is the same as in Sect. 3, where only the scalar p˛ is replaced by the matrix
P˛ . It follows directly from Proposition 6 where now in the free energy inequality
the new chemical potentials �˛ from (26) are used. We remark that also now the
term P

sp
˛ r	˛ in the momentum equation cancels since

div.	˛P sp
˛ / D P sp

˛ r	˛ C 	˛divP sp
˛ :

In summary we arrive at the following conclusion.

Proposition 7. Under the above assumptions the mixture system (1) is

@t	˛ C div.	˛v˛/ D 
˛ ;
	˛


@tv˛ C .v˛	r/v˛

�

D divS˛ � 	˛.divP sp
˛ C gsp/ � 
˛

2
u˛ C gfr

˛ C f˛

for all ˛. The free energy inequality (31) is satisfied.

Again a statement like Theorem 2 holds, if in the momentum equation one
considers the term 	˛.divP sp

˛ Crf sp/.
We now go back to the standard case psp

˛ .

7 Polymerization of Actin Filaments

We consider a four component system, a reactive polymer-solvent mixture. The
mass densities are 	m for actin monomers, 	a for polymerized actin filaments, 	c
for cross-linked actin filaments, and the mass density 	s for the solvent. We consider
the following conservation laws
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@t	c C div.	cvc/ D 
c WD �rc ;

@t	a C div.	ava/ D 
a WD rc � ra;

@t	m C div.	mvm/ D 
m WD ra;

@t	s C div.	svs/ D 
s WD 0:

(32)

Here the reactions are given by

ra D �a.	/


�a	a � �	m

�
;

rc D �c.	/
�
�c	c � � 	2a

K2 C 	2a
	
;

(33)

where �a, �c , �, �, and K are assumed to be positive and constant, and �a and �c
are positive functions. Obviously the sum of the mass productions

N
 D
X

˛Dm;a;c;s 
˛ D 0:

The following theorem shows the existence of a free energy. We emphasize that
there might by a different free energy also satisfying the free energy inequality. It is
important for the dynamics of the system which free energy one chooses.

Theorem 4. With 	 D .	m; 	a; 	c ; 	s/ a possible free energy is defined by

f .	/ D �c

2
	2c C � Km

.	m/C � Ka
.	a/C fs.	s/;

where �Km D �aKa and

 K.z/ D z �K arc tan

 z

K

�
for z 2 R:

The function fs is an arbitrary (convex) function. Then

X

ˇ

ˇ�ˇ � 0:

Therefore this part of the free energy inequality is satisfied (compare Lemma 4).

Proof. It is

 0
K.z/ D 1 �

1

1C . z
K
/2
D z2

K2 C z2
;
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therefore we obtain

�c D �c	c ; (34)

�a D � 	2a
K2
a C 	2a

�m D � 	2m
K2
m C 	2m

D �


�
�a
	m
�2

K2
a C



�
�a
	m
�2 :

We then compute

X

ˇDc;a;m;s 
ˇ�ˇ D 
c�c C 
a�a C 
m�m
D �rc�c C .rc � ra/�a C ra�m D rc � .�a � �c/C ra � .�m � �a/;

and obtain

� rc � .�a � �c/ D �c.	/ �
�
�c	c � � 	2a

K2 C 	2a
	2 � 0;

� ra � .�m � �a/ D �a.	/�a� �

 �
�a
	m � 	a

��


�
�a
	m
�2

K2
a C



�
�a
	m
�2 �

	2a
K2
a C 	2a

	
� 0:

This shows the result. ut
One can also define a different free energy by applying a given monotone

function to the definitions of the chemical potentials in (34). There is another point
to be mentioned. The proof above shows that each reaction, rc and ra, gives a
nonpositive contribution to the free energy production as it is common in chemical
processes. But this is in contrast to the proofs of the Examples 2 and 3, indicating
that the situation in biological processes is generally more complex.

8 The Quasistatic Problem

The momentum equation of the ˛-component contains the term ˘˛ under the
divergence and the term g˛ on the right side. By (16) these two terms have the
representation

˘˛ D 	˛psp
˛ Id� S˛;

g˛ D psp
˛ r	˛ � 	˛gsp � 
˛

2
u˛ C gfr

˛ : (35)
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It has been shown in the previous sections that system (1) is equivalent to

@t	˛ C div.	˛v˛/ D 
˛;
	˛.@tv˛ C .v˛	r/v˛/ D divS˛ � 	˛.rpsp

˛ C gsp/� 
˛
2

u˛ C gfr
˛ C f˛: (36)

We suppose that the terms on the right side of these equations have the property in
Lemma 4 which is the free energy inequality

0 � h D �
X

˛
Dv˛	S˛ C

X

˛

˛�˛ C

X

˛
gfr
˛	u˛:

In biological systems one often has the situation that some of the terms in the
differential equation have large coefficients compared to the others, for example

• The stress tensor and the pressure and the friction.
• The pressure and the friction (see Sect. 10).
• The pressure and the friction and the external force (for example in a rotating

cylinder).

In the first case, for example as "& 0,

" � S"˛ ! S˛; " � f" ! f; " � gfr
"˛ ! gfr

˛ ;

then it follows also that " � p"˛ ! p˛ (from (15)) and " � gsp
" ! gsp (at least for

closed systems), whereas the other coefficients stay bounded and have a limit. The
solutions .	"; v"/ of the "-problem satisfying the system (1)

@t	"˛ C div.	"˛v"˛/ D 
"˛ ;
@t .	"˛v"˛/C div.	"˛v"˛ ˝ v"˛ C˘"˛/ D g"˛ C 
"˛v"˛ C f"˛

converge in the limit .	"; v"/! .	; v/ and satisfy a reduced problem

@t	˛ C div.	˛v˛/ D 
˛;
div˘˛ D g˛ (37)

for all ˛. Alternatively, the equivalent system in Proposition 5 for .	"; v"/ leads to
the reduced problem for the limit .	; v/

@t	˛ C div.	˛v˛/ D 
˛;
0 D divS˛ � 	˛.rpsp

˛ C gsp/C gfr
˛ : (38)

One also has in the limit

Ng D N	.rf sp � gsp/C Ngfr: (39)
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In addition one has to consider the limit in the free energy inequality. From the
inequality

0 � "h" D �
X

˛
Dv"˛	."S"˛/C

X

˛

"˛."�"˛/C

X

˛
."gfr

"˛/	u"˛

one obtains, that the limit "h" ! hred exists with

0 � hred D �
X

˛
Dv˛	S˛ C

X

˛

˛�˛ C

X

˛
gfr
˛	u˛: (40)

In this connection we refer to [4] and [5] where a limit entropy inequality is
considered. In [1] the second author treats a functional, whose first variation with
respect to v are the quasistatic momentum equations.

Remark 2 (Quasistatic functional). Consider a function J D OJ .	; v;r	;Dv/
which satisfies

ıJ

ıv˛
D div˘˛ � g˛ ; (41)

where ıJ
ıv˛
WD J 0v˛

� divJ 0Dv˛
, which requires some assumptions on ˘˛ and g˛ .

Concerning the dependence on .Dv/S, the free energy inequality in the form of
Lemma 4 is equivalent to the convexity of J in .Dv/S.

9 Fractional Densities

Often in mixture models one is confronted with the fractional densities

�˛ WD 	˛

N	 D
	˛

	1 C � � � C 	N : (42)

Then instead of the variables .	˛/˛ one can use as new variables . N	; .�˛/˛/, where
one has the side condition

X

˛
�˛ D 1: (43)

For the mass equations the following lemma holds.

Lemma 5. The N mass equations in (1) are equivalent to

@t N	C div. N	 Nv/ D N
;
N	 P�˛ C div. N	�˛u˛/ D 
˛ � �˛ N
 for all ˛;
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where P WD @t C Nv	r for any function  . These again are N independent
equations, the sum of the ˛-equations is 0.

Proof. One obtains the new equations, if one subtracts from the old one �˛ times
the equation for the sum. Thus


˛ � �˛ N

D @t	˛ � �˛@t N	C div.	˛v˛/� �˛div. N	 Nv/
D @t . N	�˛/� �˛@t N	C div. N	�˛.v˛ � Nv//C N	 Nv	r�˛
D N	@t�˛ C div. N	�˛u˛/C N	 Nv	r�˛:

Because of (43) and (4) the sum of these equations is equal to zero. ut
One could use the same procedure for the momentum equations. We will do this
here for the quasistatic case, that is, for system div˘˛ D g˛ in (37). We obtain the
following theorem.

Theorem 5. In the quasistatic regime the Eqs. (37) are equivalent to the equations
in Lemma 5 and

div N̆ D Ng;
div.˘˛ � �˛ N̆ / D g˛ � �˛ Ng � N̆ r�˛ for all ˛:

Here we use

˘˛ D 	˛psp
˛ Id � S˛;

g˛ D psp
˛ r	˛ � 	˛gsp C gfr

˛ :

and the new definitions of N̆ and Ng in Eq. (44) below.

Proof. The procedure for the momentum equation says

g˛ � �˛ Ng D div˘˛ � �˛div N̆ ;

where now

N̆ D
X

˛
˘˛; Ng D

X

˛
g˛ : (44)

With this

div˘˛ � �˛div N̆ D div.˘˛ � �˛ N̆ /C N̆ r�˛:
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Hence the equation becomes

div.˘˛ � �˛ N̆ / D g˛ � �˛ Ng � N̆ r�˛: ut

Since N̆ D NpId � NS and

Ng D N	.rf sp � gsp/C Ngfr; Np D
X

˛
	˛p

sp
˛ ; (45)

we can write this equation also as

� div.S˛ � �˛ NS/
D g˛ � �˛ NgC NSr�˛ � div.	˛psp

˛ Id/C �˛div. NpId/

D psp
˛ r	˛ � 	˛ Ngsp C gfr

˛

� �˛
X

ˇ
p

sp
ˇ
r	ˇ C N	�˛gsp � �˛ Ngfr

� r.	˛psp
˛ /C �˛r Np C NSr�˛

D �	˛rpsp
˛ C �˛

X

ˇ
	ˇrpsp

ˇ
C gfr

˛ � �˛ Ngfr C NSr�˛

D � N	�˛

rpsp

˛ �
X

ˇ
�ˇrpsp

ˇ

�C gfr
˛ � �˛ Ngfr C NSr�˛:

Since psp
˛ D �˛ � f sp we can replace

rpsp
˛ �

X

ˇ
�ˇrpsp

ˇ
D r�˛ �

X

ˇ
�ˇr�ˇ :

The equation div N̆ D Ng becomes 0 D div NS C Ng �r Np and in the quasistatic case Ng
is given by (39).

A different equivalent version of the system in Theorem 5 is

div NS D r Np � N	
rf sp � gsp
� � Ngfr;

div.S˛ � �˛ NS/ D N	�˛

r�˛ �

X

ˇ
�ˇr�ˇ

� � .gfr
˛ � �˛ Ngfr/� NSr�˛ (46)

for all ˛. The sum of the ˛-equations is zero. Here we mention that the following
identity for the entire pressure

N	
X

ˇ
�ˇr�ˇ D r Np

holds, if f is a function of 	 alone.
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10 Diffusion Limit

Usual biochemical and cell-biological situations are characterized by a relatively
low Reynolds number and relatively high friction, so that the quasi-steady-state
hypothesis can be assumed (see Sect. 8). Then the corresponding force balance
equations yield a generalized system of Darcy type equations, see (51). To derive
this we assume the following form of friction forces

gfr
˛ D �

X

ˇ
�˛ˇuˇ ; �˛ˇ � O�˛ˇ .	/; (47)

where the �˛ˇ are called friction coefficients. Also the free energy f is relatively
high, and we assume that there is no mass exchange, that is 
˛ D 0, and no viscosity,
that is S˛ D 0. Then the system (38) with gsp as in Lemma 3 is equivalent to

@t	˛ C div.	˛ Nv C 	˛u˛/ D 0;
	˛r�˛ D gfr

˛ �
	˛

N	 Ng
fr

(48)

for all ˛. The free energy inequality (40) reduces to

0 � hred D
X

˛
gfr
˛	u˛ D �

X

˛ˇ
�˛ˇuˇ	u˛; (49)

and this is satisfied, if


�˛ˇ

�
˛ˇ

is positive semidefinite. If

X

˛ˇ
�˛ˇuˇ D 0; (50)

that is, Ngfr D 0, the system (48) is

@t	˛ C div.	˛ Nv C 	˛u˛/ D 0;
� 	˛r�˛ D

X

ˇ
�˛ˇuˇ :

(51)

These equations are of Darcy’s type. Eventually this can be used to compute the
relative velocities u˛ explicitly, so that by substitution into the mass equations one
obtains a system of diffusion equations. This procedure can be used to derive from
the general system (1) a single momentum equation for Nv and diffusion equations
for the ˛-components containing the velocity, see (51).

The Eq. (50) is satisfied for the following example. We choose the following form
of friction forces

gfr
˛ D � Q�	˛u˛ �

X

ˇ¤˛ Q�˛ˇ	˛	ˇ .u˛ � uˇ / (52)
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with a nonnegative friction coefficient Q� and nonnegative drag coefficients Q�˛ˇ being
symmetric in ˛ and ˇ. Then gfr

˛ has the properties (49) and (50). The property (49)
follows from

X

˛
gfr
˛	u˛ D � Q�

X

˛
	˛ ju˛j2 � 1

2

X

ˇ¤˛ Q�˛ˇ	˛	ˇ ju˛ � uˇ j2:

For example, such friction forces could appear for a mixture of polymers in a
solvent.

11 Polymer Mixtures Including Gradients

Consider general mixtures of polymers being of a similar type but attaining different
configuration states. In [3] we have treated a biophysical two-component system of
lipid monolayers in lung alveoli. They can consist of ordered lipid clusters, but the
lipids can also be in a diffusive unordered phase. In such a model the free energy
would typically be a function of the volume fractions of the mixture components,
see Sect. 9, and on the partial gradients

r�˛ D r
�
	˛

N	
�
D
X

ˇ
.	ˇr	˛ � 	˛r	ˇ /:

For more details compare [12, Sect. 3]. Then, the free energy is of the general type
as in (25), namely

f � f .	;r	/ D Qf . N	; �;r�/:

Using Sect. 6 for this free energy, we derive the balance equations in Proposition 7
and in the quasistatic case the system (46). However in [3] this free energy was
considered in a one momentum system. Section 10 leads to a connection of these
two approaches.

12 Conclusion

We have considered a mixture of fluids in the isothermal case, for which we
successfully developed a theory based on the free energy inequality. Also a theory
with gradients has been presented, but its comparison with various biological
problems, see [6], still has to be made. In principle the dependence of the free energy
on other quantities is possible.

The theory has been applied to several biological problems, and it turns out
that the complexity of biological systems goes beyond the well-known methods
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for chemical reactions. In biological problems the free energy inequality comprises
several reaction terms as the example of Lotka-Volterra system shows (there PK D 0
andK contains two reaction terms).

This paper is a short version of a more detailed elaboration to be published later.
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A Nested Variational Time Discretization
for Parametric Anisotropic Willmore Flow

Ricardo Perl, Paola Pozzi, and Martin Rumpf

Abstract A variational time discretization of anisotropic Willmore flow combined
with a spatial discretization via piecewise affine finite elements is presented. Here,
both the energy and the metric underlying the gradient flow are anisotropic, which
in particular ensures that Wulff shapes are invariant up to scaling under the gradient
flow. In each time step of the gradient flow a nested optimization problem has to be
solved. Thereby, an outer variational problem reflects the time discretization of the
actual Willmore flow and involves an approximate anisotropicL2-distance between
two consecutive time steps and a fully implicit approximation of the anisotropic
Willmore energy. The anisotropic mean curvature needed to evaluate the energy
integrand is replaced by the time discrete, approximate speed from an inner, fully
implicit variational scheme for anisotropic mean curvature motion. To solve the
nested optimization problem a Newton method for the associated Lagrangian is
applied. Computational results for the evolution of curves underline the robustness
of the new scheme, in particular with respect to large time steps.

1 Introduction

This paper generalizes a recently proposed variational time discretization [1]
for isotropic Willmore flow to the corresponding anisotropic flow. Thereby, the
anisotropic Willmore flow is defined as the gradient flow of the anisotropic Willmore
energy with respect to the corresponding anisotropicL2-metric.
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The isotropic Willmore energy is given by wŒx� D 1
2

R
M h2da, where x denotes

the identity map and h the mean curvature on a surface M . The isotropicL2-metric
is given by .v; v/M D R

M jvj2da , which is considered as a squared L2-distance
of the surface M being displaced with the vector field v from the non displaced
surface M . In the hypersurface case Willmore flow leads to a fourth order parabolic
evolution problem, which defines for a given initial surface M0 a family of surfaces
M .t/ for t � 0 with M .0/ D M0 [30, 47, 49]. Applications of a minimization
of the isotropic Willmore energy and the corresponding Willmore flow include the
processing of edge sets in imaging [13,34,36,51], geometry processing [8,9,48,50]
and the mathematical treatment of biological membranes [24, 29, 46]. Starting with
work by Polden [40,41] existence and regularity of Willmore flow was advanced in
the last decade [31, 33, 43].

Now, in the context of Finsler geometry the classical area functional is replaced
by the anisotropic area functional a	 Œx� D

R
M �.n/da with a local area weight �.n/

depending on the local surface orientation. Here, � is a positive, 1–homogeneous
anisotropy function. In analogy to the isotropic case, the anisotropic mean curvature
h	 is defined as the L2-representation of the variation of the anisotropic area
in the direction of normal variations of the surface and can be evaluated as
h	 D divM .r�.n//. Hence, a possible first choice for an anisotropic Willmore
functional is given by 1

2

R
M h2	 da . Clarenz [15] has shown that Wulff shapes

are the only minimizers of this energy. Palmer [39] studied variational problems
involving anisotropic bending energies for surfaces with and without boundaries.
Unfortunately, this energy definition does not imply the scale invariance property
of Wulff shapes known for round spheres under isotropic Willmore flow. Indeed,
any round sphere is a stationary point of the isotropic Willmore functional in R

3.
In R

2 a circle of radius R0 evolves under isotropic Willmore flow according to the
ordinary differential equation PR D 1

2
R�3. The counterpart of a round sphere in

the anisotropic context is the Wulff shape as the unit ball with respect to the norm
associated with the dual �� of the anisotropy � . But there is no such scaling law for
the evolution of Wulff shapes under the above anisotropic variant of Willmore flow.

To ensure full consistency with the Finsler geometry, one has to adapt both the
anisotropic energy and the anisotropic metric as suggested in [42] (see Sect. 2).
Indeed, we make use of the associated anisotropic metric

R
M �� .v/ .r��/ .v/ �

v �.n/da (here only defined for v.x/ ¤ 0 for all x 2M , cf. Sect. 3 for the general
case), acting on a motion field v of the surface M with normal n. Furthermore,
we will use the anisotropic area weight to define the anisotropic Willmore energy,
i.e. w	 .x/ D 1

2

R
M h2	 �.n/da. Then, it turns out that Wulff shapes in R

2 actually
evolve according to the same evolution law for radial parameter valid for the
evolution of circles under the isotropic flow. Recently, Bellettini and Mugnai [6]
investigated the first variation of this functional in the smooth case. Concerning
the proper time and space discretization, this consistent choice of the anisotropic
Willmore energy and the anisotropic metric on surface variations perfectly fits to the
framework of the natural variational time discretization of geometric gradient flows.

The finite element approximation of Willmore flow was first investigated by
Rusu [44] based on a mixed method for the surface parametrization x and the
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mean curvature vector hn as independent variables, see also [17] for the application
to surface restoration. In [23] a level set formulation of Willmore flow was
proposed. In the case of graph surfaces Deckelnick and Dziuk [18] were able
to prove convergence of a related space discrete and time continuous scheme.
Deckelnick and Schieweck established convergence of a conforming finite element
approximation for axial symmetric surfaces [20]. In the case of the elastic flow of
curves an error analysis was given by Dziuk and Deckelnick in [19]. An alternative
scheme, which in particular ensures a better distribution of nodes on the evolving
surface was presented by Barrett, Garcke and Nürnberg [2, 4]. Using discrete
geometry calculus Bobenko and Schröder [10] suggested a discrete Willmore flow
of triangular surfaces. The time discretization of the second order, anisotropic
mean curvature flow has been considered by Dziuk already in [27, 28] and he
gave convergence results for curves. Diewald [21] has extended the discretization
approach for isotropic Willmore flow of Rusu [44] to some anisotropic variant, for
which Droske [22] and Nemitz [35] investigated a level set discretization.

Most of the above discretization methods are based on some semi-implicit time
discretization, which requires the solution of linear systems of equations at each
time step. Thereby, the involved geometric differential operators are assembled on
the surface from the previous time step. In the application one observes strong
restrictions on the time step size. This shortcoming motivated the development of
a new approach for the time discretization of Willmore flow in [1] based on the
following general concept for a variational time discretization of gradient flows:
The gradient flow on a (in general infinite dimensional) manifold with respect to
an energy eŒ�� and a metric g on the manifold is defined as the evolution problem
Px D �gradgeŒx� with initial data x0, where gradgeŒx� is the representation of the
variation e0Œx� in the metric g, i.e. g.gradgeŒx�; �/ D e0Œx�.�/ for all infinitesimal
variations � of x. Now, one defines a time discrete family .xk/kD0;��� with the desired
property xk � x.k
/ for the given time step size 
 . To this end, one successively
solves a sequence of variational problems, i.e. in time step k

xkC1 D arg minx dist.xk ; x/2 C 2
 eŒx�;

where dist.xk; x/ D inf
	2
 Œxk ;x�

R 1
0

p
g	.s/. P�.s/; P�.s//ds denotes the Riemannian

distance of x from xk on the manifold and � Œxk ; x� is the set of smooth
curves � with �.0/ D xk and �.1/ D x. The striking observation for this
abstract scheme is that one immediately obtains an energy estimate, i.e. eŒxkC1�
C 1

2�
dist.xk ; xkC1/2 � eŒxk � : In the context of geometric flows, this approach was

studied by Luckhaus and Sturzenhecker [32] leading to a fully implicit variational
time discretization for mean curvature motion in BV and by Chambolle [11],
who reformulated this scheme in terms of a level set method and generalized it
for the approximation of anisotropic mean curvature motion in [7, 12]. The time
discretization for Willmore flow proposed in [1] builds upon this general paradigm.
In this paper, we will show how to adapt the approach to the time discretization of
the anisotropic Willmore flow which is fully consistent with Finsler geometry.
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The paper is organized as follows. In Sect. 2 we briefly review the time
discretization of isotropic Willmore flow. Building on these prerequisites the
generalization to anisotropic Willmore flow is discussed in Sect. 3. Then, in Sect. 4
we discuss a fully discrete numerical scheme based on piecewise affine finite
elements on simplicial surface meshes. In Sect. 5 the Lagrangian calculus from PDE
constraint optimization is used to develop a suitable algorithm for the solution of
the nested optimization problem to be solved in each time step. Finally, in Sect. 6
computational results are presented. An appendix collects essential ingredients of
the corresponding algorithm.

2 Review of the Time Discretization of Isotropic
Willmore Flow

In this section we will briefly recall the nested time discretization of isotropic
Willmore from [1]. We denote a hypersurface in R

dC1 by M D M Œy�. Here, y
indicates a parametrization of M and can also be considered as the identity map on
M parametrizing M over itself. Then, the abstract variational time discretization
of isotropic Willmore flow reads as follows:

For a given surface M Œxk � with parametrization xk and a time step 
 find a
mapping x D xŒxk � such that dist.M Œxk �;M Œx�/2C
 RM Œx� h2da �! min , where

dist.M Œz�;M Œv�/2 D RM Œz�.v� z/2da is the squaredL2-distance of surfaces M Œv�

from the surface M Œz�, h D hŒx� is the mean curvature of M Œx�, and
R
M Œx�

da
denotes the surface area of M Œx�.

Now, we take into account that the mean curvature h D hŒx� is the L2-gradient
of the area functional on a surface M Œx� and that mean curvature motion is
the corresponding gradient flow. Thus, the mean curvature vector hŒx�nŒx� with
n D nŒx� denoting the normal on M Œx� can be approximated by the discrete time
derivative yŒx��x

Q� , where yŒx� is a suitable approximation of a single time step of
the evolution of mean curvature motion with initial data x and time step size Q
 . This
time step itself can again be approximated using an (inner) variational scheme, i.e.
we define yŒx� to be the minimizer of

einŒx; y� WD
Z

M Œx�

.y � x/2 C Q
 jrM Œx�yj2da : (1)

In fact, the corresponding Euler Lagrange equation is identical to the defining
equation of the semi-implicit scheme for mean curvature motion proposed by
Dziuk [26]:

0 D
Z

M Œx�

.y � x/� C Q
rM Œx�y � rM Œx��da: (2)
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Now, given yŒx� as the minimizer of (1) for small Q
 the functional
1
2

R
M Œx�

.yŒx��x/2
Q�2 da is an approximation of the Willmore functional on M Œx�.

This approximation is then used to define a variational scheme for a time step of the
actual Willmore flow. To this end, we consider for given surface parametrization xk

the functional

eoutŒx
k ; x; y� WD

Z

M Œxk �

.x � xk/2daC 


Q
2
Z

M Œx�

.y � x/2da ;

where we suppose y D yŒx� to be the minimizer of (1). To summarize, we obtain
the following scheme for the kth time step of Willmore flow:

Given an initial surface M Œx0� with parametrization x0 we define a sequence
of surfaces M Œxk � with parametrizations xk for k D 1; : : : via the solution of the
following sequence of nested variational problems

xkC1 D arg minx eoutŒx
k ; x; yŒx�� , where (3)

yŒx� D arg miny einŒx; y� : (4)

The inner variational problem (4) is quadratic, thus the resulting Euler–Lagrange
equation (2) is linear and we end up with a PDE constrained optimization problem
to be solved in each time step. For more details we refer to [1].

3 Nested Time Discretization for Anisotropic Willmore Flow

Now, let us investigate the time discretization of anisotropic Willmore flow in the co-
dimension one case. Here, we will in particular focus on the proper choice of energy
and metric. We assume that � W RdC1 ! Œ0;1/ is a positive, 1–homogeneous (i.e.
�.�p/ D j�j�.p/ for all � 2 R; p 2 R

dC1) and sufficiently regular function that
satisfies the ellipticity condition

� 00.p/qq � c0kqk2 8p; q 2 R
dC1; kpk D 1; p � q D 0 (5)

for some positive constant c0 and the Euclidean norm k � k. As already mentioned
�.n/ represents the anisotropic area weight for a surface normal n. The isotropic
case is recovered by choosing �.�/ D k � k. We define the dual function of � as

��.x/ WD supfhx; i j  2 B	 g 8 x 2 R
dC1 ;

where B	 denotes the unit Ball in the � -norm. The ellipticity assumption ensures
that .RdC1; �/ and its dual space .RdC1; ��/ are uniformly convex Banach spaces
and the duality map T W .RdC1; ��/! .RdC1; �/, with
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T .x/ D 1

2
@.��.x/2/;

is an odd single-valued bijective continuous map. More precisely T .0/ D 0, T .x/
D ��.x/r��.x/ for x ¤ 0, and T �1.
/ D �.
/r�.
/ for 
 ¤ 0. For details we
refer to [42]. The unit ball F WD fx 2 R

dC1 W �.x/ � 1g in .RdC1; �/ is denoted
the Frank diagram, the associated dual unit ball W WD fx 2 R

dC1 W ��.x/ � 1g
is the corresponding Wulff shape. Wulff shapes are known to be solutions to the
isoperimetric problem, that is, @W minimizes the anisotropic area functional

a	 Œx� D
Z

M Œx�

�.nŒx�/da (6)

(with �.nŒx�/da denoting the anisotropic area element) in the class of surfaces
enclosing the same volume (cf. [16] and the references therein). Now, based on the
anisotropy � and its dual �� we define an anisotropic distance dist	 of a manifold
M Œy� from a manifold M Œx� by

dist	 .M Œx�;M Œy�/2 WD
Z

M Œx�

��.y � x/2�.nŒx�/da (7)

for sufficiently regular x and y. The choice of the norm �� together with the
anisotropic area weight �.nŒx�/ in (7) reflects the fact that the anisotropic area of
the boundary of a convex bodyK � R

dC1 can be interpreted as

a	 .@K/ D lim
�!0

jK C �W j � jKj
�

;

where j � j denotes the usual Lebesgue volume in R
dC1. In particular, the underlying

metric structure is dictated by the Wulff shape and its norm �� (see [5, 42] and
references therein).

Based on these considerations let us first consider anisotropic mean curvature
motion, which is defined as the gradient flow of the anisotropic surface area
with respect to the above anisotropic metric. In this case the variational time
discretization is associated with the minimization of

dist	 .M Œx�;M Œy�/2 C 2 Q

Z

M Œy�

�.nŒy�/da (8)

with respect to y for a given surface M Œx� and Q
 > 0. Let us denote by yŒx� the
minimizer for given surface parameterization x. The Euler Lagrange equation for
(8) is given by
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0 D
Z

M Œx�

T .y � x/ � � �.nŒx�/daC Q
ha0
	 Œy�; �i

D Q

Z

M Œx�

T
�y � x
Q


	
� � �.nŒx�/daC Q
ha0

	 Œy�; �i (9)

for smooth test functions � W M Œx� ! R
dC1. Together with @ty.k Q
/ � y�x

Q� this
reflects the weak formulation of anisotropic mean curvature motion given by

Z

M Œy�

T .@ty/ � � �.nŒy�/da D �ha	 0Œy�; �i (10)

for a parametrization y and smooth test functions � defined on M Œy� (cf. [42]).
Here, the variation of the anisotropic area functional is given by

ha	 0Œy�; �i D
Z

M Œy�

h	 Œy�
nŒy�

�.nŒy�/
� � �.nŒy�/da ;

where h	 Œy� D divM Œy�.n	 Œy�/ D divM Œy�.r�.nŒy�// denotes the anisotropic
mean curvature with n	 Œy� D r�.nŒy�/ (see [14]). Thus, from (10) we deduce
that

T .@ty/ D �h	 Œy�
nŒy�

�.nŒy�/

or equivalently we achieve the strong formulation of anisotropic mean curvature
motion

@ty D �	 Œy� WD T �1
�
�h	 Œy�

nŒy�

�.nŒy�/

�
D �h	 Œy�r�.nŒy�/ :

Indeed, as pointed out in [42], the last equality holds due to the 1-homogeneity
of � , i.e.

�

�
�h	 Œy�

nŒy�

�.nŒy�/

�
r�

�
�h	 Œy�

nŒy�

�.nŒy�/

�
D � h	 Œy�

�.nŒy�/
�.nŒy�/r�.nŒy�/

D �h	 Œy�r�.nŒy�/ :

Next, we deal with the actual anisotropic Willmore flow and consider the aniso-
tropic Willmore functional defined as follows for a parametrization x of M Œx�:

w	 Œx� WD 1

2

Z

M Œx�

h	 Œx�2 �.nŒx�/da D 1

2

Z

M Œx�

��.�	 Œx�/2 �.nŒx�/da : (11)
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Here, we have used that the 1-homogeneity and r�.
/ 2 @W for all 
 2 R
dC1

imply

��.�	/2 D �� 
�h	r�.n/
�2 D h2	�

� .�r�.n//2 D h2	 :

Then the abstract variational time discretization of anisotropic Willmore flow reads
as follows:

Given M Œxk � and time step 
 find a mapping x D xŒxk � such that x minimizes

dist	 .M Œxk �;M Œx�/2 C 

Z

M Œx�

��.�	 Œx�/2 �.nŒx�/da : (12)

As in the isotropic case, we will now replace the anisotropic mean curvature
vector by the discrete speed extracted from a scheme for a single time step of
anisotropic curvature flow (10). Explicitly, ��.yŒx��xQ� /2 is a suitable approximation

of h2	 Œx� D ��.�	 Œx�/2, where yŒx��x
Q� is the time discrete speed extracted from

the variational time discretization of anisotropic curvature motion. Furthermore, we
use the definition of the anisotropic distance measure in (7). Finally, based on this
approximation we derive the actual time discretization of anisotropic Willmore flow.
For a given surface parametrization xk of the surface M Œxk � at a time step k we
define the functionals

eoutŒx
k ; x; y� WD

Z

M Œxk �
��.x � xk/2 �.nŒxk�/daC 


Q
2
Z

M Œx�
��.y � x/2 �.nŒx�/da ;

einŒx; y� WD
Z

M Œx�
��.y � x/2 �.nŒx�/daC 2 Q


Z

M Œy�
�.nŒy�/da ;

and in analogy to the isotropic case above, we end up with the following fully
nonlinear variational time discretization of anisotropic Willmore flow:

Given an initial surface M Œx0� with parametrization x0 we define a sequence
of surfaces M Œxk � with parametrizations xk for k D 1; : : : via the solution of the
following sequence of nested variational problems

xkC1 D arg minx eoutŒx
k ; x; yŒx��; where (13)

yŒx� D arg miny einŒx; y� : (14)

Different from the variational scheme for isotropic Willmore flow, the inner
variational problem is no longer quadratic. It is worth to mention that this variational
time discretization does not involve derivatives of the anisotropy. Nevertheless, as
we will discuss below in the context of the actual computation, differentiation is
required to run Newton methods for the associated Lagrangian functional. Indeed,
for this we will need �; �� 2 C 3.RdC1 nf0g/; moreover, unless .��/2 2 C 3.RdC1/
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(which holds for �.p/ D pAp � p with a symmetric positive definite matrix A), a
regularization will be required (see Sect. 6 below).

Let us conclude this section with a study of boundaries @W of two-dimensional
Wulff shapes W moving under anisotropic Willmore flow in the plane. To this end
consider the parametrization x W .0; T / � S1 ! R

2, x.t; �/ D R.t/r�.�/ of the
boundary of a (rescaled) Wulff shape R.t/W . Using the results given in [42] it is
easily seen that x moves under anisotropic Willmore flow if R.t/ solves the ODE

PR.t/ D 1

2R.t/3
:

Hence, we observe that Wulff shapes expand in time like in the isotropic case
(cf. [1]) with R.t/ D 4

p
R.0/4 C 2t . Next let us compare this with the time discrete

evolution based on the proposed nested variational time discretization. We write
x; y; xk W S1 ! R

2, x.�/ D Rr�.�/, y.�/ D QRr�.�/, xk.�/ D Rkr�.�/. Since
��.r�.�// D 1 we immediately derive

eoutŒx
k ; x; y� D .R � Rk/2a	.xk/C 


Q
2 .
QR �R/2a	 .x/;

einŒx; y� D . QR � R/2a	 .x/C 2 Q
a	 .y/:

Considering variations y�.�/ D . QR C � /r�.�/ in direction of the anisotropic
normal n	 we infer from the inner problem that

. QR � R/a	.x/C Q
QRa	 .y/ D 0:

More precisely, since a	.y/ D QR
R

a	.x/ due to the homogeneity property of � , we
have that

QR D R � Q

R
:

This, together with a	 .x/ D R
Rk a	.xk/, gives

eoutŒx
k ; x; y� D a	 .xk/

�
.R �Rk/2 C 


RRk

	
;

from which we deduce

R �Rk



D 1

2RkR2
:

Note that this is a slightly different time step scheme than the one reported for the
isotropic case (�.�/ D k�k) in [1, & 2.1]. This is due to the fact that we use an implicit
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formulation of the inner problem as opposed to the linear equation (1) in the scheme
for isotropic Willmore flow (cf. Sect. 2).

4 Finite Element Discretization in Space

Following the approach in [1] we now derive a suitable spatial discretization based
on piecewise affine finite elements. This is in close correspondence to the surface
finite element approach by Dziuk [25]. To this end, we consider simplicial meshes
M ŒX� as approximations of the hypersurfaces M Œx� in R

dC1, i.e. polygonal curves
for d D 1 and triangular surfaces for d D 2. Thereby, X is a parametrization of
the simplicial mesh M ŒX� which is uniquely described by a vector NX of vertex
positions of the mesh. Here, and in what follows, we will always denote discrete
quantities with upper case letters to distinguish them from the corresponding
continuous quantities in lower case letters. Furthermore, a bar on top of a discrete
function indicates the associated vector of nodal values, i.e. NX D . NXi /i2I , where
NXi D .X1i ; � � � ; XdC1

i / is the coordinate vector of the i th vertex of the mesh and
I denotes the index set of vertices. For d D 1 each element T is a line segment
with nodes X0 and X1 (using local indices) and for d D 2 the elements T are
planar triangles with vertices X0, X1, and X2 and edge vectors F0 D X2 � X1,
F1 D X0�X2, and F2 D X1�X0. Given a simplicial surface M ŒX�, the associated
piecewise affine finite element space is given by

V .M ŒX�/ WD ˚U 2 C 0.M ŒX�/ jU jT 2P1 8T 2M ŒX�
�

with the nodal basis denoted by f˚igi2I . Here, P1 is the space of affine functions
on a simplex T . Thus, for U 2 V .M ŒX�/ we obtain U D P

i2I U.Xi/˚i and
NU D .U.Xi //i2I . Let us emphasize that the parametrization mapping X itself is

considered as an element in V .M ŒX�/dC1 and we recover the vector of nodes
NX D .Xi /i2I .

With these algorithmic ingredients at hand we now can derive a fully discrete
nested time discretization of anisotropic Willmore flow, as the spatially discrete
counterpart of (13) and (14):

Given a discrete initial surface M ŒX0� with discrete parametrization X0 we
compute a sequence of surfaces M ŒXk � with parametrizations Xk by solving the
nested, finite dimensional variational problems

XkC1 D arg minX2V .M ŒXk �/dC1 EoutŒX
k ; X; Y ŒX��; where (15)

Y ŒX� D arg minY2V .M ŒX�/dC1 EinŒX; Y � : (16)

Here, the functionals Ein and Eout are straightforward spatially discrete counterpart of
the functionals einŒx; y� and eoutŒx

k ; x; y� and are defined by
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EinŒX; Y � WD
Z

M ŒX�

I


��.Y �X/2� �.N ŒX�/daC 2 Q


Z

M ŒY �

�.N ŒY �/da ;

EoutŒX
k ; X; Y � WD

Z

M ŒXk �

I
�
��.X �Xk/2

	
�.N ŒXk�/da

C 


Q
2
Z

M ŒX�

I


��.Y � X/2� �.N ŒX�/da ;

where the nodal interpolation operator I renders the resulting scheme fully
practical. To simplify the exposition, we introduce the discrete quadratic form
M	 ŒZ;X� D

R
M ŒX�

I


��.Z/2

�
�.N ŒX�/da (a nonlinear counterpart of the

quadratic form induced by the lumped mass matrix) and the discrete anisotropic
area functional A	 ŒY � D

R
M ŒY �

�.N ŒY �/da; both of which are assembled from
local contributions on simplices of the underlying simplicial grid Th:

M	 ŒZ;X� D
X

T2Th

1

.d C 1/Š

0

@
X

iD0;:::;d
��. NZT;i /2

1

A �.RT Œ NX�/; (17)

A	 ŒX� D
X

T2Th

1

dŠ
�.RT Œ NX�/: (18)

Here, RT Œ NX� D D90. NXT;1 � NXT;0/ for d D 1 and RT Œ NX� D . NXT;1 � NXT;0/ ^
. NXT;2 � NXT;0/ for d D 2. Hence, we can rewrite

EoutŒX
k ; X; Y � D M	 ŒX � Xk; Xk�C 


Q
2M	 ŒY � X;X� ;
EinŒX; Y � D M	 ŒY �X;X�C 2 Q
A	 ŒY � :

The necessary condition for Y ŒX� to be a minimizer of EinŒX; �� is given by the
corresponding discrete Euler Lagrange equation

0 D @Y EinŒX; Y ŒX��.�/ D @ZM	 ŒY �X;X�.�/C 2 Q
@YA	 ŒY �.�/

for all � 2 V .M ŒX�/dC1.

5 Optimization Algorithm for the Time Steps

In this section, the actual optimization algorithm for the nested, fully discrete
variational problem derived in Sect. 4 is presented. Thereby, we apply a step size
controlled Newton method (cf. [45] Sect. 7) for the corresponding Lagrangian (cf.
Nocedal and Wright [37]). In our context the Lagrangian function for problem (15),
(16) is given by
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L Œ NX; NY ; NP � D EoutŒX
k ; X; Y � � @Y EinŒX; Y �.P /

for independent unknowns NX; NY 2 R
.dC1/jI j and the Lagrange multiplier NP 2

R
.dC1/jI j (with a slight misuse of notation, we consider these unknowns as finite

element function in the spaces V .M ŒXk �/dC1 and V .M ŒX�/dC1, respectively,
or as the associated nodal vector in R

.dC1/jI j). For an extensive discussion of
the Lagrangian ansatz we refer to [38]. Now, we ask for critical points . NX; NY ; NP /
of L. Indeed, 0 D @ NPL Œ NX; NY ; NP �. N�/ D �@Y EinŒX; Y �.�/ is the Euler Lagrange
equation of the inner minimization problem with respect to Y for given X and
0 D @ NYL Œ NX; NY ; NP �. N�/ D @Y EoutŒX

k ; X; Y �.�/�@2Y EinŒX; Y �.P;�/ is the defining
equation for the dual solutionP given Y as the solution of the above Euler Lagrange
equation. Finally, the Euler Lagrange equation for the actual constraint optimization
problem coincides with

0 D @ NXL Œ NX; NY ; NP �. N�/ D @XEout.X
k; X; Y /.�/ � @X@Y EinŒX; Y �.P;�/ :

For the gradient of the Lagrangian L we obtain

grad L D
0

@
@XEout � @X@Y Ein.P /

@Y Eout � @2Y Ein.P /

�@Y Ein

1

A

with

@XEoutŒX
k ; X; Y �.�/ D @ZM	 ŒX �Xk; Xk �.�/

C 


Q
2 .@XM	 ŒY � X;X�.�/ � @ZM	 ŒY � X;X�.�// ;

@Y EoutŒX
k ; X; Y �.�/ D 


Q
2 @ZM	 ŒY � X;X�.�/ ;

@X@Y EinŒX; Y �.P;�/ D �@2ZM	 ŒY � X;X�.P;�/C @X@ZM	 ŒY � X;X�.P;�/ ;
@2Y EinŒX; Y �.P;�/ D @2ZM	 ŒY �X;X�.P;�/C 2 Q
@2YA	 ŒY �.P;�/ :

The Hessian of L , which is required to implement a Newton scheme, is given (in
abbreviated form) by

Hess L D
0

@
@2XEout � @2X@Y Ein.P / @X@Y Eout � @X@2Y Ein.P / �@X@Y Ein

@X@Y Eout � @X@2Y Ein.P / @2Y Eout � @3Y Ein.P / �@2Y Ein

�@X@Y Ein �@2Y Ein 0

1

A :

The different terms in Hess L are evaluated as follows:

@2XEout.�;�/ D @2ZM	 ŒX �Xk ; Xk �.�;�/C 


Q
2


@2XM	 ŒY �X;X�.�; �/
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�2@Z@XM	 ŒY �X;X�.�; �/C @2ZM	 ŒY �X;X�.�;�/
�
;

@Y @XEout.�;�/ D 


Q
2


@Z@XM	 ŒY �X;X�.�; �/� @2ZM	 ŒY �X;X�.�; �/

�
;

@2Y Eout.�;�/ D 


Q
2 @
2
ZM	 ŒY �X;X�.�; �/ ;

@2X@Y Ein.�;�;�/ D @3ZM	 ŒY �X;X�.�; �;�/ � @X@2ZM	 ŒY �X;X�.�; �;�/
�@X@2ZM	 ŒY �X;X�.�;�;�/C @2X@ZM	 ŒY �X;X�.�;�;�/ ;

@X@
2
Y Ein.�;�;�/ D �@3ZM	 ŒY �X;X�.�; �;�/C @X@2ZM	 ŒY �X;X�.�; �;�/ ;
@3Y Ein.�;�;�/ D @3ZM	 ŒY �X;X�.�; �;�/C 2 Q
@3Y A	 ŒY �.�;�;�/ :

In the implementation of the proposed scheme it is convenient to directly treat
the squared, dual anisotropy ��;2.:/ WD .��.://2 in the calculation of derivatives
of the anisotropic functionals, which is particularly advantageous for anisotropies
of the type �.p/ D PK

kD1
p
p �Gkp where the Gk are symmetric and positive

definite (cf. Garcke et al. [3]). The different terms of the gradient grad L and
the Hessian Hess L are in the usual way assembled from local contribution on
simplices of the polygonal mesh. The required formulas are given in the Appendix.

6 Numerical Results

In this section, we show applications of the proposed algorithm to the evolution of
curves in R

2 under anisotropic Willmore flow. Beside anisotropies with ellipsoidal
Wulff shapes we study regularized crystalline anisotropies �.�/ D k � k`1 and
�.�/ D k � k`1

based on a suitable regularization. A particular emphasis is on the
verification of the robustness and stability of the proposed approach in particular
for large time steps. Furthermore, we experimentally verify that Wulff shapes grow
self-similar in time under the corresponding anisotropic Willmore flow.

At first, we study anisotropies of the type

�.z/ D
q
a21z21 C a22z22

for given a1; a2 > 0. In that case, the squared dual anisotropy function is given by

��;2.z/ D z21
a21
C z22
a22
:

Figure 1 compares the evolution of a circle of radius R0 D 1 under isotropic
Willmore flow for a1 D a2 D 1 with the evolution of an ellipse with half axes a1 D
6 and a2 D 1 under the corresponding anisotropic flow. As discussed in Sect. 2,
in both cases the initial curve M0 expands in a self-similar fashion, i.e. M Œx.t/�

D R.t/M0 with R.t/ D 4

q
R40 C 2t for r0 > 0. In Fig. 1 we plot the evolution
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Fig. 1 The evolution of an unit circle under isotropic Willmore flow is plotted on the top left. For
the computation we used as initial grid size h D 0:0981 resulting from 64 vertices. Furthermore,

 D h, Q
 D h2 and the resulting discrete curves are shown for t D 0; 10
; 50
; 100
; 500
 . In
the bottom left we display the evolution of an ellipse (with half axes 6 and 1) under anisotropic
Willmore flow with 256 elements and h D 0:0984. Here, we consider 
 D h, Q
 D h2 and
display the approximate solutions for t D 0; 10
; 50
; 100
; 500
 . Next, the associated L2-errors
are plotted over time on the right, where the lower error curve corresponds to the evolution results
(top left)

Table 1 The L2-error between the exact solution of the self-similar evolution of circles under
Willmore flow and the discrete solution of the fully implicit variational time discretization is plotted
at time t D 0:1542 for a grid size h.t/ (left) and t D 0:3927 (right). On the left we consider time
step sizes 
 and Q
 of the order of the squared spatial grid size h0 at the initial time 0, whereas on
the right both time step sizes are taken equal to the grid size. In both cases we have considered 2n

vertices for the polygon, resulting in an initial grid size h0 D 2�
2n

L2-error L2-error
n h.t/ .
 D Q
 D h20/ eoc h.t/ .
 D Q
 D h0/ eoc

4 4.166e�1 4.830e�3 4.482e�1 1.916e�2
5 2.096e�1 1.328e�3 1.879 2.258e�1 1.087e�2 0.826
6 1.049e�1 3.403e�4 1.969 1.132e�1 5.804e�3 0.909
7 5.249e�2 8.561e�5 1.992 5.668e�2 3.000e�3 0.954
8 2.625e�2 2.144e�5 1.998 2.836e�2 1.525e�3 0.977

of the error err.h/ WD kIhx.t/ � xh.t/kL2 in time. Thereby, the L2-error is
evaluated on the polygonal curve xh.t/ and Ih denotes the nodal interpolation of
x.t/ at the projected positions of the nodes of xh.t/ in direction r�.nŒxh.t/�/.
In Tables 1 and 2 we provide results on the experimental order of convergence
eoc WD log.err.h1/=err.h2//= log.h1=h2/ for varying grid and time step size in
case of the evolution of the circle and the ellipse.

Now, we want to study crystalline anisotropies �.�/ D k � k`1 and �.�/ D k � k`1
.

As already pointed out, even though the formulation of the scheme itself doesn’t
explicitly need assumptions on the smoothness of � , the application of the opti-
mization algorithm requires the computation of derivatives of � up to order 3. In
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Table 2 As in Table 1 experimental orders of convergence are reported, now for the self-similar
evolution of the ellipses (with half axis 6 and 1) under anisotropic Willmore flow. Here, again
polygons with 2n vertices are considered, equi-distributed along the initial ellipse with an initial
grid size h0 D 24:172

2n
. On the left the error is evaluated at time t D 0:596576 and on the right at

time t D 0:77238

L2-error L2-error
n h.t/ .
 D Q
 D h20/ eoc h.t/ .
 D Q
 D h0/ eoc

5 1.435eC0 1.648e�1 1.274eC0 1.942e�1
6 6.487e�1 3.476e�2 1.960 5.875e�1 7.089e�2 1.303
7 3.069e�1 8.762e�3 1.841 2.842e�1 3.424e�2 1.002
8 1.525e�1 2.182e�3 1.987 1.396e�1 1.724e�3 0.966

fact, we use the following regularization: For a small parameter " > 0 we regularize
the `1-norm by

`1".z/ D
2X

lD1

q
"jzj2 C z2

l
:

Since in R
2 the `1-norm equals a rotated and scaled `1-norm we use as regulariza-

tion of the `1-norm

`1
" .z/ D

p
"jzj2 C .z1 C z2/2

2
C
p
"jzj2 C .z1 � z2/2

2
:

Figure 2 shows the evolution of a sphere with respect to the regularized `1-norm
under the associated anisotropy Willmore flow with anisotropy �.�/ D k � k`1

"
for

" D 0:0001. Results on the self-similar evolution of spheres with respect to the
regularized `1-norm are depicted in Fig. 3. In these simulations, we use the analog
regularization for the dual anisotropy �� required in the algorithm.

Next, we generalize Willmore flow and replace the Willmore energy by the
modified energy

e	 Œx� WD
Z

M Œx�

�
1

2
h2	 C �

�
�.nŒx�/da ; (19)

with a second term given by the anisotropic area weighted with a constant � > 0.
The incorporation of this generalized energy in our computational approach is
straightforward. The generalized flow combines expansive forcing with respect
to the anisotropic Willmore flow of curves with contractive forcing due to the
anisotropic mean curvature motion associated to the anisotropic area functional.
Thus, for the generalized model we expect convergence to a limit shape given by
a scaled Wulff shape, where the scaling depends on the factor �. Figure 4 shows
the impact of the factor � on the evolution, whereas in Fig. 5 we compare the
evolution of different initial shapes under the generalized anisotropic Willmore flow
for different anisotropies.
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Fig. 2 Evolution of the unit sphere with respect to the regularized `1-norm under anisotropic
Willmore flow for the anisotropy k � k`1" with " D 0:0001. For this computation we consider 200
vertices leading to an initial grid size h0 D 0:04. Furthermore, 
 D h0 and Q
 D h20 and the
resulting discrete curves are shown for t D 0; 10
; 50
; 100
; 200
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Fig. 3 Evolution of the unit sphere with respect to the regularized `1-norm under anisotropic
Willmore flow for the anisotropy �.�/ D k � k`1

"
. The parameters are h0 D 0:0078, " D 0:001,


 D Q
 D h20 and curves are plotted at times t D 0; 10
; 50
; 100
; 500
; 1;000
 on the top left
and h0 D 0:0283, " D 0:0001, 
 D h0, Q
 D h20, t D 0; 10
; 50
; 100
; 200
; 275
 in the
bottom left. On the right the associated L2-errors are plotted over time, where the lower error
curve corresponds to the evolution results (top left)
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Fig. 4 The impact of the parameter � is shown for the evolution of a circle to an ellipse with
aspect ratio 4 W 1 (i.e. a1 D 4 and a2 D 1). We evolve polygons with 160 vertices approximating
the unit sphere as initial curve, h0 D 0:0393 and 
 D Q
 D 0:01, h D 0:000393. On the left
� D 0:025 and on the right � D 4

Fig. 5 The evolution of different initial shapes for different anisotropies is displayed. For all
computations we use 100 vertices and choose � D 0:25. On the left we start with an ellipse with
aspect ratio 4 W 1 under an isotropic flow with �.�/ D k � k (h0 D 0:1739, 
 D h0, Q
 D h20)
results are shows at t D 0; 0:1739; 0:5218; 1:739; 3:478; 6:956; 173:9. In the middle and on the
right an ellipsoidal anisotropy with aspect ratio 2 W 1 is used (i.e. a1 D 2, a2 D 1) in the first case
(middle), we take as initial shape the unit sphere for the l1-norm (h0 D 0:0566, 
 D Q
 D 0:001 h0)
and results are displayed at t D 0; 0:00017; 0:00085; 0:00169; 0:006; 0:056; 0:251. In the second
example (right), the initial shape is the unit sphere for the l1-norm (h0 D 0:08 and 
 D Q
 D
0:01 h0) and results are depicted for t D 0; 0:0024; 0:008; 0:04; 0:08; 0:8; 4:8

Acknowledgements Ricardo Perl was supported by the DFG project Ru 567/14-1 and Martin
Rumpf acknowledges support by the SFB 611.

Appendix

Here, we collect the computational ingredients to evaluate the Lagrangian, its gra-
dient and Hessian based on a standard local assembly procedure. In the following,
for vectors x 2 R

dC1 and functions f , we use the notation fi;j .x/ D @fi .x/
@xj

and
in analogous notation for higher order derivatives. Furthermore, for matrices A we
use fk;ij.A/ D @fk.A/

@Aij
and again in analogous notation for higher order derivatives.

In fact, we can restrict ourselves to the local functionals

MT;	 ŒZ;X� D 1

.d C 1/Š

0

@
X

iD0;:::;d
��. NZi /2

1

A �.RŒ NX�/ ; AT;	 ŒX� D 1

dŠ
�.RŒ NX�/ ; (20)
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where we denote by NZ D .Z0; : : : ; Zd / and NX D .X0; : : : ; Xd / the corre-
sponding vectors of simplex nodes in R

dC1 with coordinate representation Zj D
.Zjr/rD1;:::;dC1 and Xj D .Xjr/rD1;:::;dC1. Here, R is a mapping from R

.dC1/2

to R
dC1 representing the 90ı rotated edge vector for d D 1 and the cross product

of edge vectors for d D 2, respectively. For d D 1 we obtain for the first derivatives

of RŒ NX� D
�
X02 �X12
X11 �X01

�
with respect to the entries .ij/ with i D 0; : : : ; d and

j D 1; : : : ; d C 1

R;01Œ NX� D
 
0

�1

!

; R;02Œ NX� D
 
1

0

!

; R;11Œ NX� D
 
0

1

!

; R;12Œ NX� D
 
�1
0

!

:

Because of the linearity of R for d D 1 all higher derivatives vanish. For d D 2 we
have

RŒ NX� D
0

@
3X

u;vD1
�iuv.X1u �X0u/.X2v �X0v/

1

A

iD1;2;3
;

where �wuv is the Levi-Civita symbol (�wuv D ˙1 if .w; u; v/ is a even/odd
permutation of .1; 2; 3/ and 0 else). Thus, for w D 1; 2; 3 we have

Rw;jsŒ NX� D
3X

u;vD1
�wuv



.ı1j � ı0j /ısu.X2v �X0v/C .ı2j � ı0j /ısv.X1u �X0u/

�
;

Rw;js ltŒ NX� D
3X

u;vD1
�wuv



.ı1j � ı0j /.ı2l � ı0l /ısuıtv C .ı2j � ı0j /.ı1l � ı0l /ısvıtu

�
;

and all third derivatives Ru;ir js ltŒ NX� vanish. Here j; l 2 f0; 1; 2g refer to the local
node and s; t 2 f1; 2; 3g to the spacial component. Next we derive expressions
for the derivatives of (17) and (18) under the assumption that �; �� are sufficiently
smooth in R

dC1 n f0g ( thus Zi ; RŒ NX� ¤ 0):

Derivatives of MT;�

@Zir MT;� ŒZ;X� D 1

.d C 1/Š
��;2
;r .Zi /�.RŒ NX�/ ;

@Zjs@Zir MT;� ŒZ;X� D ıij

.d C 1/Š
��;2
;rs .Zi /�.RŒ NX�/ ;

@Zlt@Zjs@Zir MT;� ŒZ;X� D ıijıil

.d C 1/Š
�

�;2
;rst .Zi /�.RŒ NX�/ ;
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@Xir MT;� ŒZ;X� D 1

.d C 1/Š

0

@
X

˛D0;:::;d

��;2. NZ˛/
1

A
mX

sD1

�;s .RŒ NX�/Rs;irŒ NX� ;

@Xjs@Xir MT;� ŒZ;X� D 1

.d C 1/Š

0

@
X

˛D0;:::;d

��;2. NZ˛/
1

A

�
0

@
mX

tD1

�;t .RŒ NX�/Rt;ir jsŒ NX�C
mX

t;uD1

�;tu.RŒ NX�/Rt;ir Œ NX�Ru;jsŒ NX�
1

A ;

@Xjs@Zir MT;� ŒZ;X� D 1

.d C 1/Š
��;2
;r .Zi /

mX

tD1

�;t .RŒ NX�/Rt;jsŒ NX� ;

@Xlt@Zjs@Zir MT;� ŒZ;X� D ıij

.d C 1/Š
��;2
;rs .Zi /

mX

uD1

�;u.RŒ NX�/Ru;ltŒ NX� ;

@Xlt@Xjs@Zir MT;� ŒZ;X� D 1

.d C 1/Š
��;2
;r .Zi /

�
0

@
mX

vD1

�;v.RŒ NX�/Rv;js ltŒ NX�C
mX

v;uD1

�;vu.RŒ NX�/Rv;jsŒ NX�Ru;ltŒ NX�
1

A ;

Derivatives of AT;�

@Yir AT;� ŒX� D 1

dŠ

mX

sD1

	;s.RŒ NX�/Rs;irŒ NX� ;

@Yjs@Yir AT;� ŒX� D 1

dŠ

0

@
mX

tD1

	;t .RŒ NX�/Rt;ir jsŒ NX�C
mX

t;uD1

	;tu.RŒ NX�/Rt;irŒ NX�Ru;jsŒ NX�
1

A ;

@Ylt@Yjs@Yir AT;� ŒX� D 1

dŠ

� mX

u;vD1

	;vu.RŒ NX�/Rv;ir jsŒ NX�Ru;ltŒ NX�C
mX

vD1

	;v.RŒ NX�/Rv;ir js ltŒ NX�

C
mX

u;v;wD1

	;vuw.RŒ NX�/Rv;irŒ NX�Ru;jsŒ NX�Rw;ltŒ NX�

C
mX

u;vD1

	;vu.RŒ NX�/Rv;ir ltŒ NX�Ru;jsŒ NX�C
mX

u;vD1

	;vu.RŒ NX�/Rv;irŒ NX�Ru;js ltŒ NX�
	
:
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Energy Scaling and Domain Branching
in Solid-Solid Phase Transitions

Allan Chan and Sergio Conti

Abstract We consider a vectorial model for solid-solid phase transformations,
namely,

E"Œu� D
Z

˝

W.Du/C "jD2uj dx ;

where u W ˝ � R
2 ! R

2 and W vanishes on a set of the form K D
SO.2/A [ SO.2/B , with A, B two rank-one connected matrices representing the
eigenstrains of two martensitic variants. We study the scaling of the minimal energy
under Dirichlet boundary conditions corresponding to the average ofA andB . In the
case that A and B have two rank-one connections we show that the minimum of E"
scales, for small ", as "2=3, in agreement with previous results on the scalar version
of the model. In the case that the two matrices have a single rank-one connection
instead we show that a different scaling appears, with energy proportional to "4=5.
Both results correspond to a self-similar refinement of the microstructure around the
boundary, with a different period-doubling pattern. Our results extend to a vectorial,
properly frame-indifferent framework previous results on a scalar model by Kohn
and Müller.

1 Introduction

Materials undergoing a solid-solid phase transformation, such as shape-memory
alloys or iron, develop characteristic microstructures where domain boundaries
arrange themselves along a few preferred orientations, which are selected by the
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compatibility conditions among the spontaneous strains. Starting with the works of
Ball and James [1, 2] there has been in the last two decades a vast effort in the
mathematical community towards understanding such microstructures via the study
of appropriate variational models, whose main ingredient is a term of the form

E0Œu;˝� D
Z

˝

W.Du/dx :

Here u W ˝ � R
n ! R

n represents the elastic deformation and W W Rn�n ! R the
energy density, a typical form being

W.F / D dist2.F;K/ D inffjF �Gj2 W G 2 Kg : (1)

The set of energy-minimizing deformation gradients K � R
n�n depends on the

specific phase transformation considered. For cubic-tetragonal phase transitions in
three dimensions K equals K3 D SO.3/fU1; U2; U3g, where the Ui are the three
diagonal matrices with eigenvalues .�; �; ��2/, � ¤ 1 being a positive parameter.
In two dimensions one uses K2 D SO.2/fU1; U2g, with eigenvalues � and 1=�. If
sufficient regularity of u is assumed, then solutions of Du 2 K have a very rigid
structure. For example, if they are assumed to be piecewise smooth, then they are
piecewise affine, and interfaces have prescribed directions. In particular, Du can
jump from the value Ui to the value QUj , with Q 2 SO.n/, only if the difference
is a rank-one matrix, in the sense that

Ui �QUj D a˝ � (2)

for some a; � 2 R
n. The vector � is then the normal to the interface.

If the regularity requirement is relaxed, then it is possible to find a large class
of deformations u such that W.Du/ D 0 pointwise almost everywhere, using the
theory of convex integration [12, 18]. Precisely, for both K2 and K3 one can show
that there is 	 > 0 such that for any bounded Lipschitz set˝ , and v 2 C 1;ˇ .˝IRn/
which obeys det v D 1, kDv � IdkL1 � 	, one can find infinitely many u 2
Lip.˝IRn/ such that u D v on @˝ and dist.Du; K/ D 0 almost everywhere in ˝ .
These deformations are, however, unphysical since they have very low regularity.
(The maps u are typically Lipschitz but nowhere C 1, and their gradients do not
have bounded variation, see [14, 15]).

Therefore, one is led to consider singularly perturbed functionals which include
terms penalizing interfaces, of the form

E"Œu;˝� D
Z

˝

W.Du/ dxC "jD2uj.˝/ : (3)

Here " is a (small) positive parameter, u 2 W 1;2.˝IRn/ with Du 2 BV.˝IRn�n/,
and jD2uj.˝/ denotes the total variation of the measure D2u, which for smooth
functions coincides with

R
˝
jD2uj dx.
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A scalar simplification of this problem was considered by Kohn and Müller in
1992–1994, see [16, 17]. Precisely, they proposed the functional

J"Œv;˝� D
( R

˝
.D1v/

2dxC "jD2D2vj.˝/ if jD2vj D 1 a.e.,

1 otherwise ;

where ˝ D .0; L/2 � R
2, and v W ˝ ! R. They have shown that there is c > 0

such that, for sufficiently small ",

1

c
"2=3L4=3 � minfJ"Œv;˝� W v D 0 on @˝g � c"2=3L4=3 (4)

(and a corresponding result on rectangles .0; L/�.0;H/). The functional J" is rigid
even for " D 0, in the sense that if we ignore the singular perturbation and require
J0Œv;˝� D 0, which means Dv 2 f.0; 1/; .0;�1/g almost everywhere, then only
very special deformations v are possible – precisely, those which do not depend on
x1 and obey D2v 2 f1;�1g a.e. This is compatible only with very few boundary
conditions. The functional E0, due to fact that K D W �1.0/ is infinite, is instead
much softer, and as discussed above possesses a large number of minimizers. One
may expect that this difference between J0 and E0 could be reflected in a different
behavior of the regularized functionals, i.e., in a corresponding difference between
J" and E" for small ". We prove here that this is not the case.

We consider the full vectorial problem in two dimensions, and obtain a result
similar to (4). We focus for simplicity on a domain ˝ D .0; L/2, and assume that
the set K has the form

K D SO.2/A[ SO.2/B (5)

for two matrices A;B 2 R
2�2 such that detA; detB > 0 and rank.A � B/ D 1.

It can be shown that the condition rank .A � QB/ D 1, Q 2 SO.n/, has either
only the trivial solution Q D Id or two distinct solutions, corresponding to one or
two possible orientations of the interfaces (see (2)). We shall focus on the canonical
form

A D
�
1 ˛

0 1

�
and B D

�
1 �˛
0 1

�
; (6)

for the case of two rank-one connections and on the form

A D
�
1 0

0 1C ˛
�

and B D
�
1 0

0 1 � ˛
�
; (7)

for the case of a single rank-one connection; in both cases ˛ 2 .0; 1/ is a
crystallographic parameter. The reduction to these canonical forms can in general
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be obtained by composing u with suitable affine deformations, an operation that
however changes the shape of the domain. The canonical forms are chosen so that,
in the absence of boundary conditions, an essentially one-dimensional structure is
possible, with Du depending only on x2 and taking values A and B .

Our main result is the following.

Theorem 1. Let E" and K be as in (1), (3), and (5) with n D 2 and ˝ D .0; L/2.
Then there is c > 0 such that, for all " 2 .0; L/:
(i) If A, B are as in (6), then

1

c
"2=3L4=3 � minfE"Œu;˝� W u.x/ D x on @˝g � c"2=3L4=3 :

(ii) If A, B are as in (7), then

1

c
"4=5L6=5 � minfE"Œu;˝� W u.x/ D x on @˝g � c"4=5L6=5 :

The constant c depends only on ˛.

Part (i) of the statement was first obtained in [5] and announced in [11] for a
similar model. The second part was first proven in [6]. The proof is based on giving
separately an upper and a lower bound on the energy, building upon the strategy of
Kohn and Müller [16, 17] and following refinements [7–10, 19, 20]. We give here a
short self-contained proof, discussing the upper bounds in Sect. 2, the lower bounds
in Sect. 3.

Proof. Existence of minimizers is immediate by the direct method of the calculus
of variations, thanks to the compact embedding of BV into L1.

The upper bounds follow from Theorems 2 and 3, the lower bounds from
Theorems 4 and 5. Notice that by scaling it suffices to prove the theorem forL D 1,
and that since " � 1 the linear terms in the upper bounds can be absorbed into the
sublinear one. ut

2 Upper Bounds

In this section we show how to prove the upper bounds in Theorem 1, by
constructing suitable deformations u. To clearly distinguish the horizontal and
vertical directions we shall work on a rectangle˝ D .0; L/� .0;H/. In the case of
two rank-one connections one can use a construction similar to the one developed
in the scalar case by Kohn and Müller [17], but the different scaling in the case
of one rank-one connection requires a different treatment of the period-doubling
step. Further, in both cases one cannot use branching up to the boundary, since
the singular perturbation penalizes all derivatives of the strain (at variance with J",
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Fig. 1 Sketch of the self-similar construction used for proving the upper bound. The construction
in each of the dotted rectangles is illustrated in Fig. 2

where only D2D2v enters). Therefore, we need to insert interpolation layers close
to the lateral boundaries, as it was already done in [5, 19, 20]. In the whole proof of
the upper bound we denote by c a positive constant which does not depend on ˛, ",
H and L. Its value may change from line to line.

2.1 The Case of Two Rank-One Connections

Theorem 2. Let E" and K be as in (1), (3), (5), (6) and ˝ D .0; L/ � .0;H/. For
all ˛ 2 .0; 1/ and all " 2 .0; L/ there is u W ˝ ! R

2 with u.x/ D x on @˝ and

E"Œu;˝� � c˛4=3"2=3L1=3H C c˛".LCH/ :

The constant c does not depend on ˛, ", L andH .

Proof. Step 1: Decomposition of the domain. We split ˝ vertically into two
equal parts˝l and˝r . We only present the construction on the left part˝l since
the other one is similar. For a small 
� 2 .0; L=2/we further separate a boundary
layer ˝l;l D .0; 
� / � .0;H/ from the interior part ˝l;r D .
� ;

L
2
/ � .0;H/,

where domain branching will be used. On the thin part˝l;l the deformation will
simply interpolate between the left boundary data and the construction on˝l;r .

Step 2: Global domain subdivision, domain branching. On ˝l;r we shall use
the technique of global domain branching, see Fig. 1. We shall start from the
center of the domain (i.e., from the line x1 D L=2) with N oscillations of
period h0 D H=N in the vertical direction, and refine approaching the lateral
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Fig. 2 Details of the period-doubling step in the construction, and subdivision of the reference
rectangle ! into five subsets

boundaries. At refinement step i , for i D 1; 2; : : : ; 
 , the distance to the left
boundary is 
i D L� i=2 and Du has 2iN oscillations, with a period hi D 2�ih0.
The period-doubling transition must then occur on a rectangular box of size
li � hi , with li D 
i�1 � 
i D � i�1.1 � �/L

2
. The parameter � 2 .0; 1=2/

and the number of branching blocks N 2 N will be chosen below. This will
proceed as long as hi � li (this condition defines implicitly 
). We observe that
the distance to the left boundary 
� D L��=2, the width of the last refinement
step l� and the last period h� differ from each other by factors of order 1. The
parameter 
 is the number of steps of branching towards the left boundary before
coming to the interpolation; in order to have 
 � 1 we need h0 � l0, which
corresponds (up to irrelevant factors) to H=N � L.

Step 3: Local domain subdivision. For simplicity we work on a reference rect-
angle ! D .0; l/ � .0; h/, we can assume h � l . We split ! into five sets as
follows (see Fig. 2):

!1 D
�
x 2 !

ˇ
ˇ
ˇ
ˇ 0 � x2 �

h

8
C �.x1/

�
;

!2 D
�
x 2 !

ˇ̌
ˇ
ˇ
h

8
C �.x1/ < x2 < 3h

8
C �.x1/

�
;

!3 D
�
x 2 !

ˇ
ˇ
ˇ̌ 3h
8
C �.x1/ < x2 < 5h

8
� �.x1/

�
;

!4 D
�
x 2 !

ˇ
ˇ
ˇ
ˇ
5h

8
� �.x1/ < x2 < 7h

8
� �.x1/

�
;

!5 D
�
x 2 !

ˇ
ˇ̌
ˇ
7h

8
� �.x1/ < x2 < h

�
;
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where the smooth function � W Œ0; l� ! Œ0; h=8� can be chosen so that it obeys
the boundary values

�.0/ D � 0.0/ D � 0.l/ D 0; �.l/ D h

8

and the estimates

k�kL1 � ch; k� 0kL1 � c h
l
; k� 00kL1 � c h

l2
:

In the sets !2 and !4 the strain Du will be close to B , in the other three close
to A.

Step 4: Local construction and local energy. On ! we set u2.x/ D x2 and

u1.x/ D

8
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
:̂

x1 C ˛x2 in !1;

x1 � ˛x2 C 2˛
�
h
8
C �.x1/

	
in !2;

x1 C ˛x2 � ˛h
2

in !3;

x1 � ˛x2 C 6
8
˛h � 2˛�.x1/ in !4;

x1 C ˛x2 � ˛h in !5:

It is easy to see that u1 is continuous. In !1, !3 and !5 one has Du D A. In !2
and !4 we have

dist.Du; K/ � jDu� Bj � 2˛k� 0kL1

and the elastic energy can be estimated by

Z

!

dist2.Du; K/ dx � clh˛2k� 0k2L1 :

For the surface energy we treat separately the smooth part, inside the !j , and the
jump part on the boundaries. We obtain

jD2uj.!/ � c �max
j
jhighest jump of Duj � length of � C cL 2.!/max

j
max
!j
jD2u.x/j

and therefore

"jD2uj.!/ � c"˛.hC l/.1C k� 0kL1/C c"˛hlk� 00kL1 :

By the properties of � stated in Step 3 we obtain

Z

!

dist2.Du; K/ dxC "jD2uj.!/ � c˛2 h
3

l
C c˛"l :
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Step 5: Global construction and global energy on ˝l;r . We first extend the
function u constructed in Step 4 to .0; l/ � R, so that u.x/ � x is h-periodic
in x2. Continuity of the resulting function follows from the fact that u1.x/ D x1
for x1 2 f0; hg. We denote by ui the function constructed by this procedure,
working with l D li and h D hi . We define u globally by setting u D uiC
ie1 on
.
i ; 
i�1/ � .0;H/. One can then check that the resulting function is continuous
on ˝l;r (the boundary conditions on � play a role here). The global energy on
˝l;r can be computed by

E"Œu;˝l;r � �
�X

iD1

�
c

˛2H 3

22i� iN 2L.1 � �/ C c˛"2
iN� i .1 � �/L

�
:

We now choose � 2 .1
4
; 1
2
/, so that both geometric series are convergent, and

extend the sum to1. Therefore,

E"Œu;˝l;r � � c ˛
2H 3

N 2L
C c˛"NL :

It remains to choose for N the integer that makes this expression smallest. Up to
irrelevant factors, and recalling the requirements N � 1, N � H=L, N 2 N,
this is

N D
&
˛1=3H

"1=3L2=3
C H

L

'

;

where dte D minfz 2 Z W z � tg 2 Œt; t C 1/. Inserting into the previous estimate
gives

E"Œu;˝l;r � � c˛4=3"2=3HL1=3 C c˛".H C L/ :

Step 6: Boundary layer ˝l;l . For x1 2 .0; 
� / we define u.x/ as the affine
interpolation in x1 between the boundary values (i.e., x2e2) and u.
� ; x2/. One
obtains jDu � Idj � c˛, jD2uj � ˛=
� , and

Z

˝l;l

dist2.Du; K/ dxC "jD2uj.˝l;l/ � c
�˛2H C c"˛H.1C 
�

h�
/ :

Since 
� , l� and h� are all of the same order, this energy is bounded (up to a
factor) by the term with i D 
 in the series above, hence does not modify the
sum by more than a factor.

Step 7: Conclusion. The other half of the domain˝r is treated in the same way.
At the vertical boundaries between the four subdomains interfaces arise, each
with a cost of at most c˛"H . Combining all terms the proof is concluded. ut
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2.2 The Case of One Rank-One Connection

Theorem 3. Let E" and K be as in (1), (3), (5), (7) and ˝ D .0; L/ � .0;H/. For
all ˛ 2 .0; 1/ and all " 2 .0; L/ there is u W ˝ ! R

2 with u.x/ D x on @˝ and

E"Œu;˝� � c˛6=5"4=5L1=5H C c˛".LCH/ :

The constant c does not depend on ˛, ", L andH .

First of all we point out the main difference between the two constructions. The
construction in Theorem 2 involves only the u1 component and makes no use of
the rotations. Indeed, the same energy would have been obtained if the distance to
fA;Bg was considered. In that construction, the partial derivative @2u1 oscillates
between ˛ and �˛, generating error terms of order ˛h=l in the component @1u1.
These error terms generate the main contribution to the elastic energy.

In the case of a single rank-one connection, we have that @2u2 oscillates between
1 C ˛ and 1 � ˛, generating error terms of order ˛h=l in the component @1u2.
Since this is an off-diagonal component, by SO.2/ invariance we can to leading
order compensate for this error by using the @2u1 component which will, therefore,
also have oscillations of order ˛h=l (and opposite sign). In turn, this generates error
terms of order ˛h2=l2 in the @1u1 component, which give the main contribution
to the elastic energy (see (8) below). To exploit this fact we shall first construct u2
oscillating as above, and then define u1 by setting @2u1 D �.1˙˛/@1u2. Therefore,
in this case we need to involve both components, and to track rotations. A similar
strategy was used, with O.2; 3/ instead of SO.2/, in the case of thin-film blistering
in [3, 4].

Proof. Steps 1–3: are identical to the proof of Theorem 2 and are not repeated.
Step 4: Local construction and local energy. On ! D .0; l/ � .0; h/ we define

u.x/ D

8
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂̂
:̂

 
x1

.1C ˛/x2

!

x 2 !1;
0

@
x1 � 2˛.1 � ˛/� 0.x1/x2 C 2˛.1 � ˛/� 0.x1/

�
h
8
C �.x1/

	

.1� ˛/x2 C 2˛
�
h
8
C �.x1/

	

1

A x 2 !2;
 
x1 � 1

2
˛.1 � ˛/� 0.x1/h

.1C ˛/x2 � 1
2
˛h

!

x 2 !3;
 
x1 C 2˛.1 � ˛/� 0.x1/x2 � 2˛.1 � ˛/� 0.x1/



7
8
h� �.x1/

�

.1 � ˛/x2 C 6
8
˛h � 2˛�.x1/

!

x 2 !4;
 

x1

.1C ˛/x2 � ˛h

!

x 2 !5 :
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The estimate of jD2uj is identical to the case of Theorem 2. The estimate for
dist.Du; K/ is however different. In !1 and !5 we have Du D A 2 K . In !2 we
use the freedom to choose a rotation in K to estimate

dist.Du;K/ � min
Q2SO.2/

jDu �QBj

�min
'2R j@1u1 � cos 'j C j@2u2 � .1 � ˛/ cos 'j (8)

C j@1u2 � sin 'j C j@2u1 C .1 � ˛/ sin 'j
�j@1u1 � 1j C j@2u2 � .1� ˛/j C j@2u1 C .1 � ˛/@1u2j C cj@1u2j2 ;

where we have chosen ' such that sin ' D @1u2 if @1u2 2 Œ�1; 1�, ' D 0

otherwise. This implies

dist.Du; K/ � c˛hk� 00kL1 C c˛k� 0k2L1 C c.˛k� 0kL1/2 � c˛h
2

l2
in !2 :

The set !4 is similar, in !3 one simply uses jDu�Aj � c˛k� 00kL1h � c˛h2=l2.
Combining all terms, the energy in the rectangle ! can be estimated by

E"Œu; !� � c˛2 h
5

l3
C c˛"l :

Step 5: Global construction and global energy on ˝l;r . The definition of u on
˝l;r proceeds exactly as in the previous case. This time also the boundary
conditions on � 0 play a role in checking for continuity.
The global energy on ˝l;r can be computed as in the previous case,

E"Œu;˝l;r � �
�X

iD1

�
c

˛2H 5

24iN 4�3iL3.1 � �/3 C c˛"2
iN� i .1 � �/L

�
:

Choosing � 2 .1=16; 1=2/ both series converge. We choose

N D
&
˛1=5H

"1=5L4=5
C H

L

'

and estimate

E"Œu;˝l;r � � c˛6=5"4=5HL1=5 C c"˛.LCH/ :

Steps 6 and 7: are identical to the proof of Theorem 2 and not repeated. ut
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3 Lower Bound

Before presenting the proof in detail, we illustrate the main ideas, focusing on the
case of two rank-one connections. One main ingredient in the proof of the lower
bound is the observation that we can choose inside˝ an appropriate squareQ such
that u is approximately affine on Q. The optimal length of the sides of Q, called `,
will turn out to be proportional to "1=3. To prove this, we first observe that, since
the total energy scales as "2=3, on a typical square of this size there is an energy of
the order `2"2=3. Since every jump of Du from one to the other well generates an
energy proportional to " times the interfacial area, we obtain that the total area of
the interface inside Q is controlled by `2"�1=3. For ` � "1=3 this is less than the
area needed to cut the cube into two halves, hence for the isoperimetric inequality
(or, equivalently, the Poincaré inequality) we obtain that there is one phase which is
dominant inside Q. In other words, Du is close to a fixed matrix F 2 K inside Q,
and u is close to an affine map whose gradient is F .

Having done this, we proceed to show that the stripe connecting Q with the
boundary contains high energy. Indeed, inside Q the deformation is close to a map
of the form Fx C c, whereas on the boundary u.x/ D x. We observe that Ae1 D
Be1 D e1 and that the energy controls the component of Du along e1, in the sense
that jDu e1j � jAe1j C dist.Du; K/. However, the integral of Du e1 over a segment
parallel to e1 with endpoints on @˝ can be computed by the boundary values, and
equals the integral of e1. Therefore, the inequality is actually almost an equality.
This way we obtain that u is close to x inside the domain. The key step in the proof
is to make this quantitative; the difference in scaling between the two cases arises
from the fact that we can estimate u1� x1 better than u2 � x2 (see (12) and (19) for
details).

3.1 The Case of Two Rank-One Connections

Theorem 4. Let K D SO.2/A [ SO.2/B , where A and B are as in (6) for some
˛ 2 .0; 1/ and let ˝ D .0; 1/2. Then there is c > 0 such that for every u 2
W 1;2.˝IR2/ which obeys u.x/ D x on @˝ and every " 2 .0; 1/ one has

c"2=3 �
Z

˝

dist2.Du; K/ dxC "jD2uj.˝/ :

The constant c may depend only on ˛.

Proof. We fix ` 2 .0; 1/, to be chosen later, and subdivide ˝ into stripes of width
`, of the form Si D fx 2 ˝ W i` < x2 < .i C 1/`g, i D 0; : : : ; b1=` � 1c. Let S be
the one with the least energy, which obeys

E"Œu; S� � 2`E (9)
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S

Ω

0 1
0

1

Q S

Ω

0 1
0

1

Fig. 3 Sketch of how the stripe S and the square Q are chosen inside the domain ˝

where we set for brevity E D E"Œu;˝� (see Fig. 3). We proceed analogously in the
other direction and choose a squareQ D x� C .0; `/2 � S such that

E"Œu;Q� � 4`2E : (10)

One crucial observation is that jFe1j D 1 for all F 2 K . Indeed, Ae1 D
Be1 D e1, and the length of a vector is not influenced by rotations. This implies
that dist.Du; K/ controls the stretching of horizontal lengths,

j@1u1j � j@1uj D jDu e1j � min
F 2K jDu� F j C jFe1j D 1C dist.Du; K/ : (11)

Therefore, for any x 2 ˝ , recalling that u.x/ D x on @˝ , we have

u1.x/ D
Z x1

0

@1u1.t; x2/dt � x1 C
Z x1

0

dist.Du; K/.t; x2/dt ;

and analogously

u1.x/ D 1 �
Z 1

x1

@1u1.t; x2/dt � 1 � .1 � x1/�
Z 1

x1

dist.Du; K/.t; x2/dt :

We conclude that

ju1.x/ � x1j �
Z 1

0

dist.Du.t; x2/;K/dt

for all x 2 ˝ . Integrating over x 2 Q this gives

Z

Q

ju1.x/ � x1j dx � `
Z

S

dist.Du; K/dx � `3=2kdist.Du; K/kL2.Q/ � 2`2E1=2 ;

(12)

where we used Fubini, Hölder, and (9), respectively.



Energy Scaling and Domain Branching in Solid-Solid Phase Transitions 255

The other crucial observation is that if E is sufficiently small, then (10) implies
that u is approximately affine on Q, with gradient close to K . This is essentially an
isoperimetric fact: (10) implies jD2uj.Q/ � 4`2E="; if the latter quantity is small
compared to ` (the side length of Q) then the oscillation of Du has to be small, in
an appropriate sense. In turn, if the oscillation is small, and dist.Du; K/ is small (in
L2), then Du must be close (in L2) to a fixed matrix in K . Precisely, by (10) and
Poincaré’s inequality there is F 2 R

2�2 such that

kDu � F kL1.Q/ � c
`3E

"
: (13)

Since

kdist.Du; K/kL1.Q/ � `kdist.Du; K/kL2.Q/ � 2`.`2E/1=2 D 2`2E1=2

we conclude that

`2dist.F;K/ � c `
3

"
E C 2`2E1=2 :

By (13) there is F� 2 K such that kDu � F�kL1.Q/ � 2c `3

"
E C 2`2E1=2. Another

application of the Poincaré inequality shows that there is b 2 R
2 such that

ku � F�x � bkL1.Q/ � c
`4

"
E C c`3E1=2 : (14)

Equation (12) shows that u1 is close to x1, Eq. (14) shows that u is approximately
affine. The lower bound comes from the fact that there is no affine function with
gradient in K and close to x1, because there is no matrix in K such that its first
row is .1; 0/. Indeed, F 2 K implies detF D 1 and jFe2j2 D 1 C ˛2. If we had
F11 D 1 and F12 D 0 then the condition on the determinant would imply F22 D 1,
contradicting the condition on jFe2j. Since K is compact this means that

ı� D min
F2K jF

T e1 � e1j > 0 :

Setting a D F T� e1 � e1 we obtain

min
b2R

Z

Q

j.F�x/1 � x1 � bj dx D min
b2R

Z

Q

ja � x � bj dx

� min
b2R

Z

B`=2

ja � x � bj dx D jaj
Z

B`=2

jx1j dx D jaj`
3

6

� ı�
`3

6
:
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Therefore, with F� and b� as above,

1

6
ı�`3 �

Z

Q

j.F�x/1 C b1 � x1j �
Z

Q

ju1.x/ � x1j C
Z

Q

ju.x/ � Fx � bjdx :

Recalling (12) and (14) we conclude that

ı�
6
`3 � 2`2E1=2 C c `

4

"
E C c`3E1=2 ;

hence at least one of

E � c "
`
; E � c`2 ; E � c

must hold. Choosing ` D "1=3 the proof is concluded. ut
We remark that the parameter ˛ enters the argument only through ı�, which is a
quantity of order ˛2. Taking this into account, we see that the above argument gives

E � c "˛
2

`
or E � ˛4`2

which leads to ` � "1=3˛�2=3 (admissible for " < ˛2) and the suboptimal bound
E � c"2=3˛8=3. The optimal scaling requires a more subtle argument, see [6].

3.2 The Case of One Rank-One Connection

Theorem 5. Let K D SO.2/A [ SO.2/B , where A and B are as in (7) for some
˛ 2 .0; 1/ and let ˝ D .0; 1/2. Then there is c > 0 such that for every u 2
W 1;2.˝IR2/ which obeys u.x/ D x on @˝ and every " 2 .0; 1/ one has

c"4=5 �
Z

˝

dist2.Du; K/ dxC "jD2uj.˝/ :

The constant c may depend only on ˛.

Proof. The general structure of the proof is similar to the previous case. We set
E D E"Œu;˝�, fix ` 2 .0; 1/, choose a stripe S D fx 2 ˝ W i` < x2 < .i C 1/`g
with

E"Œu; S� � 2`E : (15)

and a square Q D x� C .0; `/2 � S with

E"Œu;Q� � 4`2E : (16)
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Since the two matrices differ in the second row, we have to estimate the derivative
of u2. This is, however, not possible with the same method as above, since the length
of Du2 varies inside K . The key idea is to show first that @1u1 is close to 1, which
will imply – since the vector @1u has length close to 1 - that the other component
@1u2 is small. To make this precise we write

j@1u2j2 D j@1uj2 � j@1u1j2 D .j@1uj C j@1u1j/.j@1uj � j@1u1j/
� 2j@1uj.j@1uj � @1u1/

(17)

and estimate, using the boundary conditions,

Z 1

0

.j@1uj � @1u1/.t; x2/ dt D
Z 1

0

.j@1uj � 1/.t; x2/ dt :

Since jFe1j D 1 for all F 2 K we obtain (dropping the argument .t; x2/ for brevity)

Z 1

0

.j@1uj � 1/ dt �
Z 1

0

min
F2K.jFe1j C jDu � F j � 1/dt D

Z 1

0

dist.Du; K/ dt :

With Hölder we obtain from (17)

Z 1

0

j@1u2jdt �
�
2

Z 1

0

j@1ujdt

�1=2 �Z 1

0

.j@1uj � @1u1/dt

�1=2
;

and, using again j@1uj � 1C dist.Du; K/,

Z 1

0

j@1u2j.t; x2/dt � 2
�Z 1

0

dist.Du; K/dt

�1=2
C2

�Z 1

0

dist.Du; K/dt

�
: (18)

Using the boundary conditions and Hölder we deduce, for all x 2 ˝ ,

ju2.x/ � x2j � 2
�Z 1

0

dist2.Du; K/dt

�1=4
C 2

�Z 1

0

dist2.Du; K/dt

�1=2
:

Integrating over x 2 Q gives

Z

Q

ju2.x/ � x2j dx � 2`7=4EŒu; S�1=4 C 2`3=2EŒu; S�1=2 � 4`2E1=4 C 4`2E1=2 :
(19)

The same argument leading to (14) shows that there are F� 2 K , b 2 R
2 with

ku � F�x � bkL1.Q/ � c
`4

"
E C c`3E1=2 : (20)
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Equation (19) shows that u2 is close to x2. The lower bound comes from the fact
that there is no affine function with gradient in K with this property, since there is
no matrix in K such that its second row is .0; 1/. Indeed, for all F 2 K the two
columns are orthogonal and detF D 1. The only matrix with these two properties
and F T e2 D e2 is the identity matrix, which does not belong to the compact set K .
Therefore

ı� D min
F2K jF

T e2 � e2j > 0 :

Setting a D F T e2 � e2 we obtain

Z

Q

j.F x/2 � x2 � b2j dx D
Z

Q

ja � x � b2j dx �
Z

B`=2

jajjx1j dx D jaj`
3

6
� ı�

`3

6
:

Then

1

6
ı�`3 �

Z

Q

j.F�x/2 � x2 � b2jdx �
Z

Q

ju2.x/ � x2j C
Z

Q

ju.x/� F�x � bjdx :

Recalling (19) and (20) we conclude that

ı�
6
`3 � c `

4

"
E C c`3E1=2 C c`2E1=4 C c`2E1=2 ;

hence at least one of

E � c "
`
; E � c`2 ; E � c`4 ; E � c

must hold. Choosing ` D "1=5 the proof is concluded. ut

4 Outlook

The results discussed here can be refined in a variety of directions. One natural
question is the scaling with the parameter ˛. Whereas the upper bounds presented
here are optimal, as discussed above, the strategy used here for proving the lower
bounds does not deliver the optimal exponents. A more refined strategy is discussed
in [6], for both choices of the matrices, and shows that the correct scalings are
"2=3˛4=3 and "4=5˛6=5.

A second natural generalization is the extension to domains which are not
squares. In [6] rectangles of the form .0; l/ � .0; h/ are treated. In the case of
two rank-one connections a transition between horizontal and vertical branching
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appears, if h is large enough. In the case of a single rank-one connection the behavior
in h is linear instead.

One may replace the regularization "jD2uj.˝/ with "2
R
˝
jD2uj2dx. As in

similar problems [19, 20] this only leads to small changes in the argument, which
will be discussed elsewhere.

The results discussed here can be naturally extended to higher dimension and
possibly to more general domains, building for the upper bound on the strategy
used in [3, 4]. A more difficult question, which was recently answered positively in
the simpler setting of geometrically linear elasticity by Diermeier [13], concerns the
extension of the lower bounds to situations in which boundary conditions are fixed
only on part of the boundary.

Acknowledgements This work was partially supported by the Deutsche Forschungsgemeinschaft
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(2007)

13. Diermeier, J.: Domain branching in geometrically linear elasticity. Master’s thesis, Universität
Bonn (2013,in preparation)

14. Dolzmann, G., Müller, S.: Microstructures with finite surface energy: the two-well problem.
Arch. Ration. Mech. Anal. 132, 101–141 (1995)



260 A. Chan and S. Conti

15. Kirchheim, B.: Lipschitz minimizers of the 3-well problem having gradients of bounded
variation. Preprint 12, Max Planck Institute for Mathematics in the Sciences, Leipzig (1998).
http://www.mis.mpg.de/publications/preprints/1998/prepr1998-12.html

16. Kohn, R.V., Müller, S.: Branching of twins near an austenite-twinned-martensite interface.
Philos. Magazine A 66, 697–715 (1992)

17. Kohn, R.V., Müller, S.: Surface energy and microstructure in coherent phase transitions.
Commun. Pure Appl. Math. 47, 405–435 (1994)

18. Müller, S., Šverák, V.: Convex integration with constraints and applications to phase transitions
and partial differential equations. J. Eur. Math. Soc. (JEMS) 1, 393–442 (1999)

19. Schreiber, C.: Rapport de stage D.E.A., Universität Freiburg (1994)
20. Zwicknagl, B.: Microstructures in low-hysteresis shape memory alloys: analysis and com-

putation. Preprint 12-CNA-011, Center for Nonlinear Analysis, Carnegie-Mellon University
(2012). http://www.math.cmu.edu/CNA/publications/Publications2012/011abs/011abs.html

http://www.mis.mpg.de/publications/preprints/1998/prepr1998-12.html
http://www.math.cmu.edu/CNA/publications/Publications2012/011abs/011abs.html


Part III
Numerics for Multiscale Models

and Singular Phenomena



On a Multilevel Preconditioner and its Condition
Numbers for the Discretized Laplacian on Full
and Sparse Grids in Higher Dimensions

Michael Griebel and Alexander Hullmann

Abstract We first discretize the d -dimensional Laplacian in .0; 1/d for varying d
on a full uniform grid and build a new preconditioner that is based on a multilevel
generating system. We show that the resulting condition number is bounded by
a constant that is independent of both, the level of discretization J and the
dimension d . Then, we consider so-called sparse grid spaces, which offer nearly
the same accuracy with far less degrees of freedom for function classes that involve
bounded mixed derivatives. We introduce an analogous multilevel preconditioner
and show that it possesses condition numbers which are at least as good as these of
the full grid case. In fact, for sparse grids we even observe falling condition numbers
with rising dimension in our numerical experiments. Furthermore, we discuss the
cost of the algorithmic implementations. It is linear in the degrees of freedom of
the respective multilevel generating system. For completeness, we also consider the
case of a sparse grid discretization using prewavelets and compare its properties to
those obtained with the generating system approach.

1 Introduction

In this paper, we deal with the preconditioning of finite element system matrices
that stem from elliptic partial differential equations (PDEs) of second order. Here,
we are especially interested in the higher-dimensional case. For example, high-
dimensional Poisson problems and high-dimensional convection diffusion equations
result from diffusion approximation techniques or the Fokker–Planck approach.
Examples are the description of queueing networks [45,53], reaction mechanisms in
molecular biology [54,55], or various models for the pricing of financial derivatives
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[41, 51]. Furthermore, homogenization with multiple scales [1, 17, 38, 43] as well
as stochastic uncertainty quantification [2, 3, 18, 36, 39, 42, 47, 48] result in high-
dimensional PDEs. Next, we find quite high-dimensional problems in quantum
mechanics and particle physics. There, the dimensionality of the Schrödinger
equation [44] grows with the number of considered electrons and nuclei. Then,
problems in statistical mechanics lead to the Liouville equation or the Langevin
equation and related phase space models where the dimension depends on the
number of particles [5]. Furthermore, reinforcement learning and stochastic optimal
control in continuous time give rise to the Hamilton–Jacobi–Bellman equation
in high dimensions [8, 46, 56]. Finally data mining problems involve differential
operators as smoothing or regularization terms (priors) whose dimension grows with
the number of features of the data [23, 24, 26, 37, 52].

We want to derive multilevel preconditioners with condition numbers that are
bounded independently of both, the discretization level J and the dimension d .
Furthermore, they should possess linear cost complexity with respect to the degrees
of freedom.

We will focus on the model problem of the d -dimensional Laplacian, which
has been intensively analyzed in numerical analysis, albeit mostly for fixed dimen-
sion d . To this end, we first consider the simple case of a discretization based
on a uniform grid using, e.g., piecewise d -linear finite elements. The solution of
the resulting system of linear equations is computed iteratively. This involves the
cost of a matrix-vector multiplication times the number of iterations needed to
achieve a given accuracy. Here, a sparse system matrix can usually be applied with
a number of floating point operations that is linear in the number of degrees of
freedom. An optimal iteration count which is independent of the number of degrees
of freedom is typically achieved by multiplicative multigrid methods [11,28,34,58],
the additive BPX preconditioner [10, 49, 50] or wavelet-based methods. But even if
the overall additive or multiplicative preconditioned matrix-vector product is linear
in the number of degrees of freedom and the number of iterations is independent of
the mesh width, the involved order constants are in general still dependent on the
dimension d , which can be an issue in the higher-dimensional case.

Furthermore, the number of degrees of freedom itself is subject to the curse of
dimension [6]. One remedy is the use of so called sparse-grid discretizations. To
this end, regular sparse grids, energy sparse grids [12, 14] and general sparse grids
[30, 31, 35, 40] have been employed with good success. Furthermore, space- and
dimension-adaptive extensions exist [22, 25]. However, the condition number of
the resulting system and the cost of a matrix-vector multiplication are now more
difficult to reduce than in the regular full-grid case. For example, already for a
straightforward regular sparse grid discretization, cf. [32], a simple diagonal scaling
similar to the case of the BPX-preconditioner does not result in asymptotically
bounded condition numbers in dimensions d � 3. Here, more complicated basis
functions like prewavelets offer a solution [33]. Furthermore, the system matrix is
not inherently sparse, and a dimension-recursive algorithm based on the so-called
unidirectional principle [4,13] is needed to perform the matrix-vector-multiplication
in linear time.
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In this paper, we present a new additive preconditioner that is based on
the multilevel idea and relies on isotropic and anisotropic subspaces. We show
for the full grid case that the resulting condition number is bounded independently
of the level J of the discretization and that it is also independent of the dimension d .
The cost complexity is linear in the number of degrees of freedom of the enlarged
generating system with a constant that grows at most polynomially in the dimension.
However, it needs to be mentioned that the enlarged generating system has a factor
of about 2d more degrees of freedom than there are on the finest mesh. Our
preconditioner is applicable to sparse grid discretizations as well, and the resulting
condition number is now also bounded independently of J for d � 3. Furthermore,
it is bounded independently of d and we even observe a falling condition number
with rising dimension d . The new preconditioner can also be applied to prewavelet
discretizations and then produces exactly the same condition numbers.

In Sect. 2, we introduce a multilevel discretization, and we present a norm
equivalence with dimension-independent constants. Then, in Sect. 3, we introduce
the full grid preconditioner with dimension-independent condition numbers for our
enlarged generating system and discuss its costs. The new approach is extended to
sparse grids in Sect. 4. In Sect. 5 we show that the same results can be obtained for
prewavelet discretizations as well. In Sect. 6 we give numerical results that support
our theory. In fact, for sparse grids, we even observe falling condition numbers with
rising dimension d . Final remarks in Sect. 7 conclude the paper.

2 Discretization

We denote the unit interval by˝ D .0; 1/ and its d -fold tensor product by˝d . The
Poisson problem on ˝d for a given right-hand side f W ˝d ! R with � D @˝d

and homogeneous boundary conditions reads as

��u D f on ˝d ; (1)

u D 0 on � :

2.1 Discretization by an Isotropic Full-Grid

Our aim is to discretize problem (1) by piecewise polynomials on a uniform grid
and to precondition the resulting system of linear equations optimally not only
with respect to the number of degrees of freedom, but also with respect to the
dimension d . As usual, we define the bilinear form a W H 1.˝d /�H 1.˝d /! R as

a.u; v/ D
Z

˝d

ru � rv dx
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and the right-hand side b 2 H 1.˝d /� as

b.v/ D
Z

˝d

f v dx :

The weak formulation then reads: Find a solution u 2 H 1
0 .˝

d / that satisfies

a.u; v/ D b.v/ for all v 2 H 1
0 .˝

d / : (2)

We discretizeH 1
0 .˝

d / by the d -fold tensor product of one-dimensional function
spaces. To this end, we first consider a one-dimensional multiresolution scale of
subspaces, i.e

V1 � V2 � V3 � : : : ; (3)

for which V
k�k1 D H 1

0 .Œ0; 1�/ holds with V D [1
lD1Vl . Here, we assume

Vl D spanf�l;i W 1 � i � nl g (4)

with nl D O.2l/ locally supported basis functions �l;i ; 1 � i � nl , on level l . We
define the d -dimensional tensor product space

V d D V ˝ � � � ˝ V

and the spaces

V dl D Vl ˝ � � � ˝ Vl ; (5)

which are spanned by the functions

�l;i D �l;i1 � � ��l;id (6)

for i D .i1; : : : ; id / 2 N
d with 1 � ip � nl ; p D 1; : : : ; d .

On level J , the weak problem (2) for V dJ then leads to the system

Ad;Jxd;J D bd;J (7)

of Nd;J WD .nJ /d linear equations with

Ad;J 2 R
Nd;J �Nd;J ; .Ad;J /i;j D a.�J;i; �J;j/

and

xd;J ;bd;J 2 R
Nd;J ; .bd;J /i D .f; �J;i/L2.˝d /
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again for i; j 2 N
d with 1 � ip; jp � nJ ; p D 1; : : : ; d . Note that, with

a lexicographic ordering of the degrees of freedom, the system matrix can be
expressed as a sum of Kronecker product matrices, i.e.

Ad;J D A1;J˝Md�1;JC
d�1X

pD2
Mp�1;J˝A1;J˝Md�p;JCMd�1;J˝A1;J ; (8)

where A1;J 2 R
nJ �nJ is the stiffness matrix of the one-dimensional problem

.A1;J /ij D
�@�J;i
@x

;
@�J;j

@x

	

L2.˝/
for 1 � i; j � nJ ;

and Mp;J 2 R
.nJ /

p�.nJ /
p

also has Kronecker product structure

Mp;J D
pO

qD1
M1;J

with M1;J 2 R
nJ �nJ and

.M1;J /ij D .�J;i ; �J;j /L2.˝/ for 1 � i; j � nJ : (9)

2.2 The Multilevel Approach

The system matrix Ad;J in (7) for, e.g., linear splines, possesses a condition number
that is of the order O.22J /. Thus, classical iterative solution methods for (7) like the
Jacobi method, the steepest descent approach or the conjugate gradient technique
converge successively slower for rising values of J . The same is true for the Gauss-
Seidel and the SOR methods. This problem is remedied by a multigrid method or
a multilevel preconditioner. Then, the number of iterations necessary to obtain a
prescribed accuracy is bounded independently of J , cf. [9, 11, 34, 57]. To this end,
besides the grid and the basis functions on the finest scale J , also the grids and basis
functions on all coarser isotropic scales are included in the iterative process, i.e. the
multiscale generating system

J[

lD1
f �l;i W 1 � ip � nl ; p D 1; : : : ; d g

is employed. Note that there is work that relates classical multigrid theory to
multiplicative iterative algorithms operating on such a generating system [27, 28].
Furthermore, the BPX-preconditioner [10] can be identified with one step of the
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additive Jacobi iteration. Both methods guarantee asymptotically optimal conver-
gence rates that are independent of J . However, the corresponding rates still depend
on the dimension d .

To overcome this issue, we follow a different approach which relies on all coarser
isotropic and anisotropic scales. To this end, we define the spaces

Vl D Vl1 ˝ � � � ˝ Vld (10)

for the multiindices l D .l1; : : : ; ld / 2 N
d . Next, we define the index sets

�l D f1; : : : ; nl1g � � � � � f1; : : : ; nld g

and the associated basis functions

�l;i D �l1;i1 � � � � � �ld ;id for i D .i1; : : : ; id / 2 �l : (11)

Obviously, it holds Vl D spanf�l;i W i 2 �lg. From now on, nl WD j�lj denotes
the number of degrees of freedom of the subspace Vl. The isotropic spaces (5) can
be expressed in this setting by V d

l
D Vl, where l D .l; : : : ; l/, and the isotropic

functions (6) are given as �l;i D �l;i for i 2 �l.
Our enlarged generating system includes all basis functions

[

l2Fd
J

f�l;i W i 2 �lg ; (12)

where the index set

Fd
J D fl 2 N

d W jlj1 � J g (13)

contains the multiindices l of all coarser scales, i.e. Vl � V dJ for l 2 Fd
J . Next, the

weak problem (2) for V dJ leads with (12) to the enlarged system

OAd;J Oxd;J D Obd;J (14)

of linear equations, with OAd;J 2 R
ONd;J � ONd;J and Oxd;J ; Obd;J 2 R

ONd;J , where

ONd;J WD
�PJ

lD1 nl
	d

. The matrix OAd;J is block-structured with blocks . OAd;J /l;k 2
R
nl�nk for l;k 2 Fd

J , where

.. OAd;J /l;k/i;j D a.�l;i; �k;j/ for i 2 �l; j 2 �k

and the right-hand side vector Obd;J consists of blocks . Obd;J /l 2 R
nl , l 2 Fd

J , with

.. Obd;J /l/i D .�l;i; f /L2.˝d / for i 2 �l :
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Note that the non-unique representation of functions in the enlarged generating
system (12) results in a non-trivial kernel of OAd;J . Thus OAd;J is not invertible.
But the system (14) is nevertheless solvable since the right-hand side Obd;J lies in
the range of the system matrix. A solution can be generated by any semi-convergent
iterative method [7]. Many convergence results, e.g., for the steepest descent or
conjugate gradient method, also apply to the semi-definite case, cf. [28]. There, the
usual condition number � is no longer defined, but the generalized condition number
Q�, i.e. the ratio of the largest and the smallest non-zero eigenvalue, is now decisive
for the speed of convergence.

Just like in (8), we can express our enlarged system matrix as the sum of
Kronecker product matrices, i.e.

OAd;J D OA1;J ˝ OMd�1;J C
d�1X

pD2
OMp�1;J ˝ OA1;J ˝ OMd�p;J C OMd�1;J ˝ OA1;J ;

where OA1;J 2 R
.
PJ

lD1 nl /�.
PJ

lD1 nl / is the multilevel stiffness matrix of the one-
dimensional bilinear form and reads

. OA1;J /.l;i/;.k;j / D
�@�l;i
@x

;
@�k;j

@x

	

L2.˝/
for 1 � i � nl ; 1 � j � nk ; 1 � l; k � J :

Furthermore, OMp;J 2 R
.
PJ

lD1 nl /
p�.PJ

lD1 nl /
p

also has Kronecker product structure

OMp;J D
pO

qD1
OM1;J

with OM1;J 2 R
.
PJ

lD1 nl /�.PJ
lD1 nl / and

. OM1;J /.l;i/;.k;j /D.�l;i ; �k;j /L2.˝/ for 1 � i � nl ; 1 � j � nk; 1 � l; k � J :

Of course, at some point, we need to be able to transform the non-unique solution
Oxd;J of (14) to the unique solution xd;J of (7). To this end, we assume to have
matrices Ik

l
2 R

nk�nl , which are one-dimensional restrictions from level l to level k
for l > k, prolongations from level l to level k for l < k and the identity matrix
for l D k. Note here that the Ik

l
; k ¤ l ˙ 1 can be expressed as just a product of

successive 2-level restrictions and prolongations, respectively, i.e. we have

Ikl D IkkC1 � � � Il�1l for l > k and Ikl D Ikk�1 � � � IlC1l
for l < k : (15)

Naturally, the multi-dimensional case is obtained by the product construction

Ik
l D

dO

pD1
Ikp

lp
: (16)
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Then, for l;k 2 Fd
J , we can express any block . OAd;J /l;k 2 R

nl�nk and any part
. Obd;J /l as

. OAd;J /l;k D Il
JAd;J IJ

k and . Obd;J /l D Il
Jbd;J ; (17)

respectively, where J D .J; : : : ; J / is the multiindex that describes the finest
level on the isotropic scale. In the special case of identity matrices, we sometimes
abbreviate Il

l
by Il and Il

l by Il, i.e. we drop the superscript if it is equal to the
subscript.

Further, let us define the rectangular block-structured matrix

OS1;J WD . IJ1 j : : : j IJJ / 2 R
nJ �.PJ

lD1 nl /:

Then, we can express the block-structured matrix OSd;J as

OSd;J D
dO

pD1
OS1;J ;

and with (17) we obtain

OAd;J D OSTd;JAd;J OSd;J and Obd;J D OSTd;Jbd;J :

As a result, we see that xd;J D OSd;J Oxd;J solves (7), if Oxd;J is any solution to (14).
Note that we will never set up the matrices OSd;J and OST

d;J
in our implementation, but

compute their application to vectors by a straightforward algorithm in O.d � ONd;J /
floating point operations using (15) and (16).

In Sect. 3, we will propose a matrix OCd;J that can be applied cheaply to a vector
and acts as a preconditioner on the enlarged system (14) with

Q�. OCd;J OAd;J / D O.1/ (18)

independently of the level J and the dimension d . Since

Q�. OCd;J OAd;J / D Q�. OCd;J OSTd;JAd;J OSd;J / D �. OSd;J OCd;J OSTd;JAd;J / ;

we can deduce that Cd;J WD OSd;J OCd;J OSTd;J is thus a preconditioner for Ad;J with
a resulting condition number that is bounded independently of J and d . Before
we can present this preconditioner in Sect. 3, we need to discuss a specific norm
equivalence in the next subsection.
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2.3 A Norm Equivalence Based on Orthogonal Subspaces

The multiresolution scale of subspaces (3) induces a sequence of L2-orthogonal
complement spaces .Wl /1lD1 with

Vl D Vl�1 ˚L2 Wl for l � 1; and V0 WD f0g : (19)

A recursive application of (19) then yields Vl D ˚lkD1Wk . Analogously to the
anisotropic full-grid subspaces Vl in (10), we can now define anisotropic orthogonal
complement spaces by the d -fold tensor products

Wl D Wl1 ˝ � � � ˝Wld ; (20)

which satisfy Wl � Vl and Wl ?L2 Wk for l ¤ k.
Now, we assume that, due to Jackson- and Bernstein-inequalities [19, 50] for the

spaces .Vl/1lD1, we have a one-dimensional equivalence

�min

X

l2N
22lkwlk2L2.˝/

�






@u

@x







2

L2.˝/
� �max

X

l2N
22lkwlk2L2.˝/

(21)

for u 2 H 1
0 .˝/ with u DPl2N wl , where wl 2 Wl ; l 2 N, and 0 < �min � �max <

1. In the following, we will use the symbol ' to indicate such an equivalence
and call �min and �max norm equivalence constants. The next theorem shows
that a similar equivalence exists in higher dimensions with dimension-independent
constants.

Theorem 1. For u 2 H 1
0 .˝

d /, it holds that

a.u; u/ '
X

l2Nd

� dX

pD1
22lp

	
kwlk2L2.˝d /

for u D
X

l2Nd

wl with wl 2 Wl; l 2 N
d ;

(22)

where the constants �.d/min and �.d/max associated with (22) are the same as in (21), i.e.

�
.d/
min D �min and �.d/max D �max.

Proof. In (4), we have introduced .�J;i /
nJ

iD1 as a basis for the space VJ . Of course,
there also exists a L2-orthonormal basis . J;i /

nJ

iD1 of VJ . Furthermore, we need
the orthogonal decomposition .!l;i /JlD1 of  J;i 2 VJ for all i D 1; : : : ; nJ with
!l;i 2 Wl ; l D 1; : : : ; J and

 J;i D
JX

lD1
!l;i :
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Next, analogously to (11), we define

 J;i.x/ D  J;i1.x1/ : : :  J;id .xd / and ! l;i.x/ D !l1;i1.x1/ � � �!ld ;id .xd /

for all i 2 �J and l 2 Fd
J . This opens a direct way to find orthogonal

decompositions of functions u DPi2�J
˛i J;i 2 V dJ by

u D
X

i2�J

˛i

X

l2Fd
J

! l;i D
X

l2Fd
J

X

i2�J

˛i! l;i D
X

l2Fd
J

wl

with

wl D
X

i2�J

˛i! l;i 2 Wl (23)

for all l 2 Fd
J .

Now, we show that the norm equivalence (22) holds for any u 2 V dJ with the
constants �max and �min from (21). We have

a.u; u/ D
dX

pD1

� @

@xp

X

i2�J

˛i J;i;
@

@xp

X

j2�J

˛j J;j

	

L2.˝d /
(24)

D
dX

pD1

X

i2�J

X

j2�J

� @

@xp
˛i J;ip ;

@

@xp
˛j J;jp

	

L2.˝/

dY

qD1
q¤p

. J;iq ;  J;jq
/L2.˝/

(25)

D
dX

pD1

X

i0Di
fipg
i2�J

� @

@xp

nJX

ipD1
˛i0˚fipg J;ip ;

@

@xp

nJX

jpD1
˛i0˚fjpg J;jp

	

L2.˝/
:

(26)

We obtain (25) by repeated application of the distributive law and by using the
product structure of the L2-scalar product. Then, the orthonormal basis property of
the . J;i /

nJ

iD1 cancels all terms for iq ¤ jq ; q ¤ p, and we get (26). Note that

i0 WD i � fipg D .i1; : : : ; ip�1; ipC1; : : : ; id / and

i0 ˚ fipg D .i1; : : : ; ip�1; ipipC1; : : : ; id / :

We can apply the one-dimensional norm equivalence (21) to (26) and get the upper
bound
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� � � �
dX

pD1
�max

X

i0Di
fipg
i2�J

JX

lpD1
22lp

� nJX

ipD1
˛i0˚fipg!lp ;ip ;

nJX

jpD1
˛i0˚fjpg!lp;jp

	

L2.˝/

(27)

D�max

dX

pD1

X

i2�J

X

j2�J

JX

lpD1
22lp .˛i!lp ;ip ; ˛j!lp;jp

/L2.˝/ �
dY

qD1
q¤p

. J;iq ;  J;jq
/L2.˝/

(28)

D�max

dX

pD1

X

i2�J

X

j2�J

X

l2Fd
J

22lp .˛i!lp ;ip ; ˛j!lp ;jp
/L2.˝/ �

dY

qD1
q¤p

.!lq ;iq ; !lq ;jq
/L2.˝/

(29)

D�max

X

l2Fd
J

� dX

pD1
22lp

	�X

i2�J

˛i! l;i;
X

j2�J

˛j! l;j

	

L2.˝d /
: (30)

In (27) and (28), we used the distributive law again and reintroduced the terms we
dropped previously. In (29), we replaced the  J;iq and J;jq

by the decompositions
PJ
lqD1 !lq ;iq and

PJ
lqD1 !lq ;jq

, respectively. Then, in (30), we recombined the

product of d one-dimensional L2-scalar products to one d -dimensional L2-scalar
product. Note that the lower bound with �min can be proven in the same way.
Now, in combination with (23), we know that (22) is a norm equivalence with
constants �.d/max � �max and �.d/min � �min.

Next, our goal is to prove the sharpness of the estimates, i.e. we will show that
indeed �.d/max D �max and �.d/min D �min. Since (21) holds for �max and �min on V d ,
it also holds on V dJ � V d with optimal constants �max.J / � �max and �min.J / �
�min. We now choose umax;J 2 VJ associated with the constant �max.J / of (21), and
plug the multivariate function

u.x/ D umax;J .x1/ � � � umax;J .xd /

into (24). This results in an equality instead of an upper bound in (27) with the
constant �max.J / instead of �max. Because of

�.d/max � �max.J /% �max for J !1 ;

we can conclude that �.d/max D �max. The �.d/min-case can be shown analogously. ut
The norm equivalence (22) can be found in, e.g., [31] or in [33] for the 2d -case,
but so far no special attention was paid to the dimension-independence of the
equivalence constants. A remark in that direction can also be found in [16].
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3 A Dimension-Independent Full Grid Preconditioner

The norm equivalence (22) holds for orthogonal subspaces .Wl/l2Fd
J

. In order to
make this result available to our discretization, which is based on the subspaces
.Vl/l2Fd

J
, see Sect. 2, we need an orthogonalization operator, which will be

defined in the next subsection. Then, in Sect. 3.2, we can finally present our new
preconditioner.

So far, we have used d and J as subscripts to indicate the dependence on the
dimension and the discretization level. For the following operators and matrices this
dependence is still present, but we will omit these subscripts for better readability.

3.1 Orthogonalization Operator

We now consider the whole multivariate sequence of subspaces Vl; l 2 Fd
J , which

we denote as

OV dJ D .Vl/l2Fd
J
:

For Ou; Ov 2 .Vl/l2Fd
J

, we define the scalar product

.Ou; Ov/ OV d
J
D

X

l2Fd
J

.ul; vl/L2.˝d / for Ou D .ul/l2Fd
J

and Ov D .vl/l2Fd
J
:

Then, we define the operator OP W OV dJ ! OV dJ by

OP Ou D .QWlul/l2Fd
J
;

whereQWl W V d ! Wl is the standard L2-projection into Wl, i.e. it holds

.QWlu;wl/L2.˝d / D .u;wl/L2.˝d / for all wl 2 Wl (31)

for u 2 V d . The following well-known Lemma 1 is the basis for an efficient
computation of QWlu; l 2 Fd

J , without an explicit discretization of the spacesWl.

Lemma 1. There holds the identity

QWl D .QVl1
�QVl1�1

/˝ � � � ˝ .QVld
�QVld �1

/ ;

where QVl
W V ! Vl denotes the one-dimensional standard L2-projection into the

space Vl .
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Proof. We abbreviate zl D .QVl1
�QVl1�1

/˝ � � � ˝ .QVld
�QVld �1

/u. First, we
have to show that zl 2 Wl. It is obvious that zl 2 Vl, but we also have to establish
the orthogonality to all vk 2 Vk for k � l;k ¤ l. To this end, let us pick an index
i 2 f1; : : : ; d g with ki < li . Then, we have

.zl; vk/L2.˝d / D .� � � ˝ .QVli
�QVli �1

/˝ : : : u; vk/L2.˝d /

D .� � � ˝ .QVli
�QVli

/˝ : : : u; vk/L2.˝d / D 0 : (32)

In (32), we used the d -dimensional generalization of the equality

.QVl�1u; vk/L2.˝/ D .u; vk/L2.˝/ D .QVl u; vk/L2.˝/ for all vk 2 Vk with l � 1 � k ;

which holds since Vk � Vl�1 � V . Now, we know that zl 2 Wl, but we still need
to show (31). Due to the L2-orthogonality of wl 2 Wl to all functions in Vk with
k � l;k ¤ l, it holds that

.zl;wl/L2.˝d / D ..QVl1
�QVl1�1

/˝ � � � ˝ .QVld
�QVld �1

/u;wl/L2.˝d /

D ..QVl1
˝ � � � ˝QVld

/u;wl/L2.˝d /

D .u;wl/L2.˝d / ;

and thus we have proven that zl D QWlu. ut
The operator OP can be given in block-diagonal matrix form as OP W R ONd;J � ONd;J

with blocks . OP/l;k 2 R
nl�nk and

. OP/l;k D
(

QWl for l D k ;

0 else
(33)

for all l;k 2 Fd
J , where QWl 2 R

nl�nl is the matrix representation of the operator
QWl restricted to the subspace Vl. According to Lemma 1, the matrices QWl can be
expressed by

QWl D .Il1 � Il1l1�1.M1;l1�1/
�1Il1�1

l1
M1;l1 /˝� � �˝ .Ild � Ildld�1.M1;ld�1/

�1Ild�1
ld

M1;ld / ; (34)

where M1;l are the non-hierarchical isotropic mass matrices from (9) with J D l .
Note that, besides the simple 2-level restrictions and prolongations, d applications
of one-dimensional mass matrices and d applications of the inverse of one-
dimensional mass matrices are employed. Both operations can be cheaply executed
since only band matrices are involved here, e.g., tridiagonal matrices for linear
splines.



276 M. Griebel and A. Hullmann

Note furthermore that OP possesses the overall Kronecker product structure

OP D
dO

pD1
OP1

with a block-diagonal OP1 2 R
N1;J �N1;J , where

OP1 D diag.I11; I
2
2 � I21.M1;1/

�1I12M1;2; : : : ; IJJ � IJJ�1.M1;J�1/�1IJ�1
J M1;J / :

The block-diagonal structure of OP in combination with the Kronecker product
structure (34) allows for an efficient application of OP in our generating system, which
involves O.d � ONd;J / floating point operations. A more detailed cost discussion will
be given in Sect. 3.3.

Note that even though the matrix OP is block-diagonal, it is not symmetric since
its blocks on the diagonal are not symmetric. This is even more remarkable as the
corresponding operator OP W OV dJ ! OV dJ is self-adjoint. In fact, the non-symmetry is
a property only of the matrix representation.

For our preconditioner, we also need to apply OPT efficiently. To obtain a favorable
representation of OPT , we first consider the mapping

OZ W R ONd;J ! OV dJ
that maps a block-structured vector Oxd;J D .xl;i/i2�l;l2Fd

J
of the enlarged generat-

ing system to a collection of subspaces by

OZ W Oxd;J 7! .
X

i2�l

xl;i�l;i/l2Fd
J
: (35)

Note that OP and OP are linked by OP D OZ�1 OP OZ.

Lemma 2. The adjoint OZ� W OV dJ ! R
ONd;J of (35) is given by

OZ� W Ou 7! Oxd;J with Oxd;J D ..ul; �l;i/L2.˝d //i2�l;l2Fd
J

for Ou D .ul/l2Fd
J
:

Proof. For any Ov D .vl/l2Fd
J
2 OV dJ and Oxd;J 2 R

ONd;J , we have

. OZ Oxd;J ; Ov/ OV d
J
D

X

l2Fd
J

.
X

i2�l

xl;i�l;i; vl/L2.˝d / D
X

l2Fd
J

X

i2�l

xl;i.vl; �l;i/L2.˝d /

D .Oxd;J ; OZ� Ov/`2 : ut
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Now, having OZ and OZ�, we are able to give a computationally efficient representa-
tion of OPT .

Lemma 3. It holds that

OPT D OG OP OG�1 ;

where OG W R ONd;J � ONd;J is a block-diagonal matrix with blocks . OG/l;k 2 R
nl�nk and

. OG/l;k D
(

Ml for l D k ;

0 else

for all l;k 2 Fd
J with the mass matrices Ml DNd

pD1 M1;lp .

Proof. It holds that

. OZ� OZ Oxd;J ; Oyd;J /`2 D . OZ Oxd;J ; OZ Oyd;J / OV d
J
D

X

l2Fd
J

X

i;j2�l

xl;i.�l;i; �l;j/L2.˝d /yl;j

D OxTd;J OGOyd;J ;

and thus OZ� OZ D OG. Then, we can infer

. OP/T D . OZ�1 OP OZ/� D OZ� OP . OZ�1/� D OG OZ�1 OP OZ OG�1 D OG OP OG�1 : ut

Note furthermore that the operator OP is a projection, i.e. OP OP D OP . The same is true
for OP since

OP OP D OZ�1 OP OZ OZ�1 OP OZ D OZ�1 OP OP OZ D OZ�1 OP OZ D OP :

Finally, we need the following Lemma.

Lemma 4. For a block-diagonal scaling matrix OD 2 R
ONd;J � ONd;J with blocks

. OD/l;k 2 R
nl�nk for l;k 2 Fd

J and

. OD/l;k D
(
clIl for l D k ;

0 else ;

the matrix OD commutes with any other block-diagonal matrix OB 2 R
ONd;J � ONd;J , i.e.

a block-structured matrix with blocks . OB/l;k 2 R
nl�nk for l;k 2 Fd

J , where

. OB/l;k D
(

Bk for l D k ;

0 else ;

and Bk 2 R
nk�nk are general matrices.
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Proof. For ease of notation, we use Kronecker’s ı in this short proof. It holds that

. OD OB/l;k D
X

m2Fd
J

. OD/l;m. OB/m;k D
X

m2Fd
J

ıl;mclım;kBk D ıl;kclBk

D ıl;kBlck D
X

m2Fd
J

ıl;mBmım;kcm D
X

m2Fd
J

. OB/l;m. OD/m;k D . OB OD/l;k ;

and thus OD OB D OB OD . ut
Obviously, Lemma 4 can be applied to, e.g., OB D OP or OB D OG.

3.2 Preconditioner

Now we will present our new preconditioner for the operator matrix OAd;J . To this
end, the most important ingredient is the norm equivalence (22). From Theorem 1
we already know that its constants are independent of the dimension d and bounded
independently of J .

Theorem 2. Let OD 2 R
ONd;J � ONd;J be a diagonal block-structured scaling matrix

with blocks . OD/l;k 2 R
nl�nk and

. OD/l;k D

8
ˆ̂
<

ˆ̂:

.

dX

pD1
22lp/Il for l D k ;

0 else

for all l;k 2 Fd
J . Then, the generalized condition number of the symmetric matrix

OL�1 OPT OD�1=2 OAd;J OD�1=2 OP OL�T (36)

is bounded asymptotically with respect to J and is completely independent of the
dimension d . Here, OL is the Cholesky-factor of OG, i.e. OG D OL OLT .

Proof. For any block-structured vector Oxd;J 2 im OP, we have

OxTd;J OPT OAd;J OPOxd;J D OxTd;J OAd;J Oxd;J (37)

D a.
X

l2Fd
J

X

i2�l

xl;i�l;i;
X

l2Fd
J

X

i2�l

xl;i�l;i/
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'
X

l2Fd
J

� dX

pD1
22lp

	



X

i2�l

xl;i�l;i






2

L2.˝d /
(38)

D
X

l2Fd
J

� dX

pD1
22lp

	
xTl Mlxl

D OxTd;J OD OGOxd;J : (39)

In (37), we have used OPOxd;J D Oxd;J and in (38), we have applied the norm
equivalence (22). The levelwise summation of the mass matrix products was then
expressed using the matrix OG in (39). In the following, we need the block-diagonal
factor OL of the Cholesky-decomposition

OG D OL OLT :

We set Oyd;J D OLT OD1=2 Oxd;J and obtain with OD OG D OD1=2 OG OD1=2, see Lemma 4, the
equation

OxTd;J OD OGOxd;J D OxTd;J OD1=2 OL OLT OD1=2 Oxd;J D OyTd;J Oyd;J :

Then, using the equivalence of (37) and (39), and Oxd;J D OD�1=2 OL�T Oyd;J , we obtain
the relation

OyTd;J OL�1 OD�1=2 OPT OAd;J OP OD�1=2 OL�T Oyd;J ' OyTd;J Oyd;J (40)

for all Oyd;J 2 im OLT OD1=2 OP with the same favorable constants as in (22). With the
commuting of the matrices OP and OD�1=2, see Lemma 4, the left-hand side of (40)
leads to (36).

Finally, we have to show that no Ovd;J 2 R
ONd;J with Ovd;J ? Oyd;J affects the

spectrum. From the Fundamental Theorem of Linear Algebra, from OPT D OG OP OG�1,
see Lemma 3, and from OPT OD1=2 D OD1=2 OPT we know that

Ovd;J 2 ker OPT OD1=2 OL D ker OD1=2 OG OP OG�1 OL D ker OD1=2 OG OP OL�T OL�1 OL
D ker OP OL�T : (41)

We dropped the matrix OD1=2 OG from the kernel in the last equality (41), as it is a full-
rank matrix and thus has no effect on the kernel. Obviously, if Ovd;J 2 ker OP OL�T ,
then Ovd;J belongs to the kernel of the preconditioned system (36). This finally
proves the theorem. ut
As a result of Theorem 2, we can express our preconditioner for OAd;J as

OCd;J WD OP OD�1 OG�1 OPT :
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Moreover, this approach also gives us with OAd;J D OSTd;JAd;J OSd;J the precondi-
tioner

Cd;J WD OSd;J OP OD�1 OG�1 OPT OSTd;J (42)

for the fine grid system matrix Ad;J . The preconditioned system possesses the same
condition number, i.e. it is also independent of d and bounded independently of J .

3.3 Cost Discussion for the New Preconditioner

So far, we obtained a preconditioner with condition numbers independent of d
and bounded independently of J . Of course, the question is now how high its
computational costs are. Remember that a perfect preconditioner would be A�1

d;J

anyway, but it involves way too many computations. With (42) we now have a
preconditioner Cd;J which comes, up to a d - and J -independent constant, close
to A�1

d;J
, but involves only a number of floating point operations that is linear in the

number of degrees of freedom ONd;J of the enlarged system.
We will now give a short discussion of the required matrix-vector multiplications

and their costs, also with respect to the dimension d . As stated earlier, the
application of the matrices OSd;J and OST

d;J
onto a vector can be implemented by

a simple algorithm that exploits (15) in O.d � ONd;J / floating point operations. The
application of OD�1 is obviously possible with the same cost complexity. The matrix
OG�1 needs however a more elaborate discussion. As it is block-diagonal, its action
can be implemented with an algorithm that works subspace by subspace. On every
Vl; l 2 Fd

J , the mass matrix Ml DNd
pD1 M1;lp must be inverted. As these matrices

have Kronecker product structure, the inversion can be realized by the application
of M�1

1;lp
to the dimension p for p D 1; : : : ; d . We assume the functions f�l;igi2�l

to be of finite element type (h-version with fixed polynomial degree) having local
support. Consequently, the associated one-dimensional matrices M1;lp have band
matrix structure with constant band size and are thus invertible with linear costs.1

As a result, we have a cost of O.d �nl/ on each subspace and obtain a cost complexity
of O.d � ONd;J / in total. The same argumentation holds for OP, which has a somewhat
more complicated form, see (33) and (34), but also works subspace by subspace,
where we can again exploit a Kronecker product structure. In total, we arrive at
costs of O.d � ONd;J / for our preconditioner. The application of Ad;J is directly

1Non-local basis functions (p-version) are likely to result in a Toeplitz-type matrix, which can be
inverted in log-linear time.
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possible2 in O.d 2 �Nd;J / due to the representation of the system matrix as a sum of
Kronecker product matrices (8). In comparison, our preconditioner (42) is slightly
more expensive since its costs depend on the enlarged system with ONd;J degrees of
freedom. However, a geometric series argument shows that

ONd;J D O.2dNd;J / D O.2d2Jd/ D O.2.JC1/d / D O.Nd;JC1/ ;

and thus the costs for our preconditioner on level J compare simply to the costs for
a regular fine grid system on level J C 1.

4 Sparse Grids

So far, we have dealt with the preconditioning of an isotropic full grid with O.Nd;J /
degrees of freedom. They scale exponentially with the dimension d and are thus
impossible to deal with for d > 4 anyway. Under some additional smoothness
requirements, sparse grids [15] remove this curse of dimension to some extent.
Then, the multivariate multilevel structure is a fundamental necessity for both, a
good preconditioner and the discretization itself. The implementation of a sparse
grid multilevel discretization was already dealt with in [15,22]. In the following, we
discuss our new preconditioner for the sparse grid case in detail.

4.1 Definition

We can use an index set I � N
d ; jI j <1, which defines the subspaces included

in some discretization by

VI WD
X

l2I

Vl :

A proper choice of I now depends – besides the error we want to achieve – on the
smoothness of the function class3 for which we want to approximate.

2Note that it is even possible to execute this matrix-vector product in O.d � Nd;J / operations by
the successive multiplications of Md;J and of Ad;JM�1

d;J D Pd
pD1.

Np�1
qD1 IJ / ˝ A1;JM�1

1;J ˝
.
Nd

qDpC1 IJ /.
3In this paper, we restrict ourselves to homogeneous boundary conditions and do not introduce
functions at the boundary. However, by u D u˝d Cu� with u˝d j� D 0 and ��u˝d D f C�u� ,
we cover any case with Dirichlet boundary functions u� D g on � .
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For example, the full grid space V dJ from (5) can be described by the index set
Fd
J from (13), i.e. V dJ D VFd

J
, and has the approximation property4

inf
v2V

Fd
J

ku � vk2
H s.˝d /

� c.d/2�2.t�s/Jkuk2
H t .˝d /

with rate t � s and u 2 H t
0.˝

d /. Its number of degrees of freedom is of
the order O.2Jd/. Thus, the accuracy as function of the degrees of freedom
deteriorates exponentially with rising d , which resembles the well-known ‘curse
of dimensionality’, cf. [6, 15].

The sparse grid index set

S d
J D fl 2 N

d W jlj1 � J C d � 1g (43)

circumvents this problem to some extent provided that additional mixed smoothness
u 2 H t

0;mix.˝
d / is present. For details, see [15]. An example for the function

system associated to S d
J is given in Fig. 1 (right) for the two-dimensional case.

The associated rate of best approximation

inf
v2V

S d
J

ku � vk2
H s.˝d /

� c.d/2�2.t�s/J kuk2
H t

mix.˝
d /

is the same5 as for the full grid space, i.e. t�s, but the number of degrees of freedom
now is only of the order O.2JJ d�1/ in J . This is a substantial improvement of
the asymptotics in J in comparison to the full grid case. A-priori H s-optimized
sparse grids need, depending on the available smoothness class, even less degrees
of freedom. For further details, cf. [15, 31].

It is furthermore possible to adapt the index set I a-posteriori to a given function
by means of a proper error estimation and a successive refinement procedure. This
approach results in adaptively refined sparse grids, see e.g. [22, 25]. Note that
for both, practical and theoretical reasons, our index set I needs to satisfy the
admissibility condition

l 2 I ;k 2 N
d ;k � l) k 2 I : (44)

The number of degrees of freedom in the enlarged system for the regular sparse
grid space VS d

J
is ON SG

d;J
D P

l2S d
J
nl. Note that here again some redundancy is

involved, but the asymptotics in J of the number of degrees of freedom remains the

4This holds for a range of parameters 0 � s < t � r with r being the order of the spline of the
space construction. In our case of linear splines r D 2 holds.
5Note that an additional logarithmic term appears in the error estimate for s D 0, cf. [15].
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L
ev

el

Fig. 1 The first four levels of a one-dimensional multilevel generating system based on linear
splines (left). Two-dimensional tensorization and the sparse subspace (right)

same as for the sparse grid approach based on, e.g., the hierarchical basis [15], that
is ON SG

d;J
D O.2JJ d�1/ in J .

The weak problem (2) on VS d
J

with the generating system

[

l2S d
J

f�l;i W i 2 �lg (45)

now leads to the equation

OASG
d;J OxSG

d;J D ObSG
d;J : (46)

Here, the matrix OASG
d;J

is block-structured with blocks . OASG
d;J
/l;k 2 R

nl�nk for l;k 2
S d
J , where

.. OASG
d;J /l;k/i;j D a.�l;i; �k;j/ for i 2 �l; j 2 �k

and the right-hand side vector ObSG
d;J

consists of blocks . ObSG
d;J
/l 2 R

nl , l 2 S d
J , with

.. ObSG
d;J /l/i D .�l;i; f /L2.˝d / for i 2 �l :

Similar to the full grid case (14), the non-unique representation in an enlarged sparse
grid generating system (45) results in a non-trivial kernel of OASG

d;J
. Thus, the matrix
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OASG
d;J

is not invertible. But, again, the system (46) is solvable since the right-hand

side ObSG
d;J

lies in the range of the system matrix and a solution can be generated by
any semi-convergent iterative method.

We will now describe the enlarged sparse grid system (46) as a submatrix and
a subvector of the enlarged full grid system (14). Note that this is done here
for theoretical purposes only. In our implementation we of course avoid the full
grid system with ONd;J degrees of freedom. In fact, our computational costs stay
proportional to ON SG

d;J
, which is substantially smaller, cf. Sect. 4.3.

Like in (17), we can express the blocks of OASG
d;J

and ObSG
d;J

with respect to (7) by

. OASG
d;J /l;k D Il

JAd;J IJ
k and . ObSG

d;J /l D Il
Jbd;J

for l;k 2 S d
J . Now, we can express our sparse grid operator matrix by

OASG
d;J D ORd;J OAd;J ORTd;J ; (47)

and our right-hand side by

ObSG
d;J D ORd;J Obd;J ;

where ORd;J 2 R
ON SG

d;J
� ONd;J is a rectangular block-structured matrix with

. ORd;J /l;k D
(

Il for k D l ;

0 else ;

for l 2 S d
J ;k 2 Fd

J . Note that ORT
d;J
ORd;J 2 R

ONd;J � ONd;J is a block-diagonal
scaling matrix in the enlarged full grid system which simply sets all vector blocks

to zero that belong to l 2 Fd
J n S d

J , and ORd;J ORTd;J 2 R
ON SG

d;J
� ON SG

d;J is simply the

identity matrix on R
ON SG

d;J .

4.2 Sparse Grid Submatrix and Preconditioner

The proof of Theorem 2 showed that the condition number of Cd;JAd;J is
independent of the dimension d and bounded independently of J . We will now
extend this result to the sparse grid case by a submatrix argument. For reasons of
simplicity, we stick here to the case of the regular sparse grid space VS d

J
and the

associated matrix OASG
d;J

, i.e. to the index set S d
J of (43). But note that the following

proof works with any index set I � N
d with I � Fd;J for which condition (44)

is fulfilled.



On the Condition Numbers for the Discretized Laplacian in Higher Dimensions 285

Theorem 3. The generalized condition number of the symmetric matrix

ORd;J OL�1 OPT OD�1=2 ORTd;J OASG
d;J
ORd;J OD�1=2 OP OL�T ORTd;J 2 R

ON SG
d;J

� ON SG
d;J (48)

is less than or equal to the condition number of the preconditioned system Cd;JAd;J
of the full grid with same dimension d and level J . Thus, the generalized condition
number of OCSG

d;J
OASG
d;J

with

OCSG
d;J WD ORd;J OP OD�1 OG�1 OPT ORTd;J (49)

is bounded asymptotically with respect to J and d .

Proof. We recall (40) from the proof of Theorem 2, i.e.

OyTd;J OL�1 OD�1=2 OPT OAd;J OP OD�1=2 OL�T Oyd;J ' OyTd;J Oyd;J (50)

for Oyd;J 2 im OLT OD1=2 OP. We obtain equivalence constants, which are at least as
good as those in (40), by the stronger condition

Oyd;J 2 im ORTd;J ORd;J OLT OD1=2 OP � im OLT OD1=2 OP � R
ONd;J :

The image of ORT
d;J

is not enlarged by block-diagonal matrices, and we can safely

replace OAd;J by ORT
d;J
OASG
d;J
ORd;J on im ORT

d;J
. This gives us

OyTd;J OL�1 OD�1=2 OPT ORTd;J OASG
d;J
ORd;J OP OD�1=2 OL�T Oyd;J ' OyTd;J Oyd;J

with the same constants as in (50). Setting OzSG
d;J
D ORd;J Oyd;J results in

Oyd;J D ORTd;J ORd;J Oyd;J D ORTd;J OzSG
d;J ;

and we obtain

.OzSG
d;J /

T ORd;J OL�1 OD�1=2 OPT ORTd;J OASG
d;J
ORd;J OP OD�1=2 OL�T ORTd;J OzSG

d;J ' .OzSG
d;J /

T OzSG
d;J

on

OzSG
d;J 2 im ORd;J ORTd;J ORd;J OLT OD1=2 OP D im ORd;J OLT OD1=2 OP � R

ON SG
d;J :

It is left to show that vectors OvSG
d;J

with OvSG
d;J
? OzSG

d;J
are indeed in the kernel of (48).

We obtain this by

OvSG
d;J 2 ker. ORd;J OLT OD1=2 OP/T D ker OPT OD1=2 OL ORTd;J D ker OD1=2 OG OP OG�1 OL ORTd;J

D ker OD1=2 OG OP OL�T ORTd;J D ker OP OL�T ORTd;J ;
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where we have used similar arguments as in the proof of Theorem 2. Altogether,
this proves that the matrix (48) has a generalized condition number that is at least as
good as that for the full grid case, i.e. that of Cd;JAd;J . Finally, we can rewrite the
preconditioner in the form (49) since

Q�. ORd;J OL�1 OPT OD�1=2 ORTd;J OASG
d;J
ORd;J OD�1=2 OP OL�T ORTd;J /

D Q�. ORd;J OD�1=2 OP OL�T ORTd;J ORd;J OL�1 OPT OD�1=2 ORTd;J OASG
d;J / (51)

D Q�. ORd;J OP OD�1 OG�1 OPT ORTd;J OASG
d;J / D Q�. OCSG

d;J
OASG
d;J / : (52)

In (51), we used that Q�.EF/ D Q�.FE/ for arbitrary square matrices E and F, and
in (52) we used that ORT

d;J
ORd;J is the identity on im ORT

d;J
, that OL�T OL�1 D OG�1 and,

finally, that block-diagonal scaling matrices commute with block-diagonal matrices,
see Lemma 4. This proves the theorem. ut

4.3 Cost Discussion

It is of course important not to implement the matrix OASG
d;J

nor the preconditioner
OCSG
d;J

from (49) naively, if we want to keep their computational costs proportional to

the number of degrees of freedom ON SG
d;J

of the sparse grid. First, let us consider OCSG
d;J

in more detail. In fact, all the matrices OP, OD�1, OG�1 and OPT are block-diagonal,
which means that they can be implemented as subspace-wise operations. As for
Oxd;J 2 im ORT

d;J
all vector blocks .Oxd;J /l with l 2 Fd

J n S d
J are zero and get

removed by the final application of ORd;J anyway, they do not need to be considered
in the implementation. By the same arguments as in Sect. 3.3, we obtain that our
preconditioner can indeed be applied in O.d � ON SG

d;J
/.

An efficient matrix-vector multiplication with the operator matrix OASG
d;J

is
however far more complicated than in the full grid case. One reason is that the
index S d

J has, unlike Fd
J , no representation as a Cartesian product, which means

that OASG
d;J

has no Kronecker product structure like OAd;J does. Of course, we
must not use (47), which was given only for theoretical reasons to allow for the
submatrix argument of the last subsection. Instead, we resort to a quite sophisticated
dimension-recursive algorithm based on the so-called unidirectional principle [4,13]
to perform the matrix-vector-multiplication linearly in the number of degrees of
freedom ON SG

d;J
. Typically the associated dimension-dependent constant in the costs

is proportional to 2d . This factor can however be reduced to d 2 in the case of
the Laplacian by exploiting the L2-orthogonality between subspaces, see [21].
Then, the total algorithmic cost of one application of OCSG

d;J
OASG
d;J

is of the order

O.d 2 � ON SG
d;J
/.
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So far, we have expressed the computational effort with respect to the enlarged
sparse grid system with ON SG

d;J
degrees of freedom, which has by a factor of about

2d more degrees of freedom than the hierarchical basis [15]. We consider this
acceptable, because the number of degrees of freedom of regular sparse grids is
of the order O.2JJ d�1/, which is exponential in d anyway. Moreover, the number
of degrees of freedom of energy sparse grids is of the order O.2J / in J , but which
involves a constant that is also exponential in d , cf. [29].

Note that it is possible to remove the redundancy of our multilevel discretization
via the generating system (45) by using a prewavelet discretization. This seems to
eliminate the 2d -factor by construction. It however still appears hidden in the setup
of the discrete right-hand side for general functions f . The prewavelet approach and
a new improved preconditioner will be discussed in the next section.

5 Prewavelets

The enlarged generating system introduced some additional difficulties like a non-
trivial kernel of the operator matrix and the need for an orthogonalization operator OP.
This can be avoided in the first place if a direct discretization of the orthogonal
subspaces Wl is available, which is just the case for so-called prewavelets and for
wavelets.

Let us first consider the full grid case. To this end, let us assume that we have
basis functions . l;i/i2�l;l2Fd

J
with

Wl D spanf l;i W i 2 
lg for l 2 Fd
J ; (53)

and set Nnl WD j
lj. Note here that we haveL2-orthogonality between different levels
by definition, but we have not necessarily L2-orthogonality within one level. The
multilevel matrix NAd;J 2 R

Nd;J �Nd;J with

. NAd;J /.l;i/;.k;j/ D a. l;i;  k;j/ for i 2 
l; j 2 
k; l;k 2 Fd
J (54)

results just from the system matrix Ad;J of (7) by a change of the basis, since

M

l2Fd
J

Wl D V dJ :

Thus,

NAd;J D TTAd;JT ;
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where T maps from f l;igi2�l;l2Fd
J

to f�J;igi2�J . The analogue holds for the right-

hand side Nbd;J 2 R
Nd;J with

. Nbd;J /l;i D .f;  l;i/L2.˝d /; i 2 
l; l 2 Fd
J ; i.e. Nbd;J D TT bd;J :

Note here that, in contrast to OAd;J , the system matrix NAd;J is now invertible, since
the functions in (53) form a basis of VFd

J
.

5.1 Preconditioner

Now, we will present our preconditioner for prewavelets and discuss its result-
ing condition number. To this end, we need a diagonal scaling matrix ND 2
R
Nd;J �Nd;J with blocks . ND/l;k 2 R

Nnl� Nnk and

. ND/l;k D

8
ˆ̂
<

ˆ̂
:

.

dX

pD1
22lp/NIl for l D k ;

0 else ;

(55)

where the NIl 2 R
Nnl� Nnl denote identity matrices on the subspaces. Furthermore, we

need the subspace-wise mass matrix NG 2 R
Nd;J �Nd;J with blocks . NG/l;k 2 R

Nnl� Nnk ,
where

. NG/l;k D
( NMl for l D k ;

0 else :

Here, NMl 2 R
Nnl� Nnl denotes the mass matrix

. NMl/i;j D . l;i;  l;j/ for i; j 2 
l :

Then, we have the following theorem:

Theorem 4. The condition number of

ND�1 NG�1 NAd;J (56)

is bounded asymptotically with respect to J and is completely independent of the
dimension d .

Proof. We translate the norm equivalence (22) into the matrix-vector setting for
Nxd;J 2 R

Nd;J �Nd;J and obtain
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NxTd;J NAd;J Nxd;J D a.
X

l2Fd
J

X

i2�l

Nxl;i l;i;
X

l2Fd
J

X

i2�l

Nxl;i l;i/

'
X

l2Fd
J

� dX

pD1
22lp

	




X

i2�l

Nxl;i l;i






2

L2.˝d /
(57)

D
X

l2Fd
J

� dX

pD1
22lp

	
NxTl NMl Nxl

D NxTd;J ND NGNxd;J :

From Theorem 1 we know that the constants in (57) are independent of the
dimension d and bounded independently of J . This concludes the proof. ut
In the case of a regular sparse grid with I D S d

J , the equality

M

l2S d
J

Wl D
X

l2S d
J

Vl (58)

holds. The analogue is valid for a general sparse grid with any arbitrary index set
I for which the condition (44) is satisfied. Thus, the regular sparse grid spaceP

l2S d
J
Vl or the general sparse grid space

P
l2I Vl can both be expressed by the

left-hand side of (58), i.e. with the help ofWl-subspaces. The resulting linear system
matrix NASG

d;J
is just a submatrix of the full matrix6 NAd;J . Consequently, the condition

number for the sparse grid system is at least as good as the one of (56). Analogously
the resulting right-hand side NbSG

d;J
is just a subvector of Nbd;J .

Note here that prewavelets have been frequently used in the past as the basis
functions of sparse grid discretizations [22, 33] but mostly no special attention was
paid to the dependence of the condition number on the dimension. A simple Jacobi-
diagonal scaling of NAd;J is equivalent to replacing the subspace-wise inversion of
the mass matrices NG�1 in (56) by the identity and the ND from (55) by diag. NAd;J /.
This does not affect the asymptotics in J for L2-stable basis functions, but
the condition number of the operator matrix grows now exponentially with the
dimension [21]. Sometimes . ND/l;l D 22jlj1 diag. NMl/ is chosen, see [31, 32], which
also results in condition numbers that grow with the dimension d .

6Here, the level J of the full grid is to be equal to the level J of the regular sparse grid or equal to
the finest level involved in I for the general sparse grid.
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5.2 Cost Discussion

We now have the preconditioner NCd;J WD ND�1 NG�1 for NAd;J in prewavelet
discretization. At first sight, this approach looks simpler and more efficient than
the more complicated discretizations OAd;J and OASG

d;J
using the enlarged generating

system and the associated preconditioners OCd;J and OCSG
d;J

, respectively. This is due
to the fact that the prewavelet system f l;i W i 2 
lgl2I forms a basis and therefore
exhibits no redundancies. Thus, by a factor of about 2d less degrees of freedom are
involved than for the corresponding generating system.

However, there are additional difficulties to be faced in the prewavelet approach,
which should not be underestimated and may give the generating system method a
practical advantage. First, prewavelets are less local than, e.g. the corresponding
multilevel spline basis. Thus, the mass matrix inversions in NG�1 become more
involved. From a programming perspective, the more complicated basis functions
and different types of prewavelet functions near the boundary make the application
of the matrix NAd;J to a vector more difficult. The efficient application of the action
of the sparse grid system matrix NASG

d;J
onto a vector is even more involved, since the

unidirectional principle strongly relies on the nestedness of the subspaces. If this is
no longer the case, the one-dimensional operators have to be tailored to the specific
discretization [22] or the algorithm must switch to a generating system anyway [59].

Finally, as already mentioned at the end of Sect. 4.3, the cost complexity of the
setup of the right-hand side NbSG

d;J
also has at least a 2d -factor if the corresponding

integrations are realized by the interpolation of the function f from (1) in our
prewavelet sparse grid space and a subsequent multiplication by the mass matrix
to account for the necessary numerical quadrature. As stated in [21], for general
functions f , this approach requires the inclusion of boundary functions in the
interpolation step (even if the solution u of our Poisson problem has homogeneous
boundary conditions). Since the d -dimensional hypercube ˝d has 2d faces, an
additional factor of the order 2d enters the cost complexity for the setup of the
right-hand side. The dependence of the cost complexity on the dimension d of other
techniques for the assembly of the right-hand side for wavelets and prewavelets
with sufficient accuracy, e.g. by the solution of an eigenvector-moment problem
associated with the coefficients of the refinement equation [20], is unknown to us.
We however believe that also these methods involve a factor of at least 2d in the
d -dimensional case due to the tensor product construction.

Altogether, the generating system approach from (36) and (48) can be seen as
a simple form of implementation of the prewavelet approach and, indeed, both
methods give exactly the same condition numbers for the piecewise linear case.

6 Numerical Experiments

Now, we give the results of numerical experiments for our new full and sparse grid
preconditioners (42) and (49), respectively. We consider the d -dimensional Laplace
operator on the domain˝d D .0; 1/d with vanishing Dirichlet boundary conditions.
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Table 1 Degrees of freedom ONd;J and ON SG
d;J and condition numbers Q� of the preconditioned

matrices (36) and (48) for the Laplacian on the unit hypercube with a full- and sparse-grid
discretization for the generating system approach based on linear splines

DOFs ONd;J and ON SG
d;J Condition number Q�

Level J Full grid Sparse grid Full grid Sparse grid

Dim D 1 2 4 4 3.40 3.40
3 11 11 4.67 4.67
4 26 26 5.17 5.17
5 57 57 5.84 5.84
6 120 120 6.37 6.37
7 247 247 6.80 6.80
8 502 502 7.16 7.16
9 1,013 1,013 7.47 7.47
10 2,036 2,036 7.74 7.74
11 4,083 4,083 7.96 7.96
12 8,178 8,178 8.16 8.16
13 16,369 16,369 8.33 8.33

Dim D 2 2 16 7 3.40 2.99
3 121 30 4.67 4.46
4 676 102 5.17 5.06
5 3,249 303 5.84 5.65
6 14,400 825 6.37 6.20

Dim D 3 2 64 10 3.40 2.71
3 1,331 58 4.67 4.28
4 17,576 256 5.17 5.00

Dim D 4 2 256 13 3.40 2.51
3 14,641 95 4.67 4.12

Dim D 5 2 1,024 16 3.40 2.36

As locally supported basis functions in (4), we choose on level l the nl D 2l �1 hat
functions

�l;i .x/ D max.1 � 2l ˇˇx � xl;i
ˇ
ˇ ; 0/ ;

which are centered at the points of an equidistant mesh

xl;i D 2�l i

for i D 1; : : : ; nl . The resulting space [1
lD1Vl is indeed equal to the underlying

Sobolev space H 1
0 .˝/ up to completion with the H 1-norm, see [15].

Table 1 shows the generalized condition numbers of the preconditioned matri-
ces (36) and (48) of the enlarged generating systems in the full and sparse grid
case for different dimensions d and levels J . We clearly observe that the full
grid condition numbers are bounded from above by a constant independently of
the level J . Moreover, they are perfectly independent of the dimension as our
theory suggests. The sparse grid condition numbers are even smaller than the
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Table 2 Degrees of freedom and generalized condition numbers of the preconditioned sparse grid
system (48) for different dimensions d and levels J

Dim 2 3 4 5 6 7 8 9 10 11 12 13

Degrees of freedom with respect to the level J

1 4 11 26 57 120 247 502 1,013 2,036 4,083 8,178 16,369
2 7 30 102 303 825 2,116 5,200 12,381
3 10 58 256 955 3,178 9,740
4 13 95 515 2,310 9,078
5 16 141 906 4,746
6 19 196 1,456 8,722
7 22 260 2,192 14,778
8 25 333 3,141
9 28 415 4,330
10 31 506 5,786

Condition number with respect to the level J

1 3.40 4.67 5.17 5.84 6.37 6.80 7.16 7.47 7.74 7.96 8.16 8.33
2 2.99 4.46 5.06 5.65 6.20 6.65 7.04 7.36
3 2.71 4.28 5.00 5.49 6.06 6.53
4 2.51 4.12 4.94 5.35 5.95
5 2.36 3.97 4.88 5.23
6 2.24 3.83 4.82 5.17
7 2.15 3.71 4.77 5.15
8 2.07 3.60 4.71
9 2.00 3.50 4.66
10 1.94 3.41 4.61

corresponding full grid ones for d > 1, which is in accordance with our submatrix
argument from Theorem 3. In Table 2 (top) we give the number of degrees of
freedom ON SG

d;J
for various values of J and d .

Finally, Table 2 (bottom) reveals that the condition numbers of the sparse grid
even decrease with rising dimension d for a fixed level J . For a sparse grid
discretization of the Poisson problem, these numbers clearly show that we are
altogether able to efficiently solve the associated linear systems of equations for
both, quite large values of J and larger dimensions d .

Finally note that the prewavelet approach from Sect. 5 results in exactly the same
condition numbers.

7 Concluding Remarks

We presented preconditioners Cd;J (42) and OCSG
d;J

(49) for an isotropic full grid and
an enlarged sparse grid system, respectively. Both result in condition numbers that
are bounded independently of the level J and are constant or, in the sparse grid case,
even decreasing for rising dimension d .
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The computational costs of the preconditioner remained linear in the number of
degrees of freedom. The size of the enlarged systems grows by a factor of about 2d

compared to the corresponding basis. This seems a fair price to pay. Better constants
in the respective norm equivalence and associated condition numbers reduce the
number of iterations of Krylov methods and also make corresponding residual-based
error estimates more reliable.

Our new preconditioners can be applied to differential operators other than
the Laplacian. The approach works straightforwardly for constant coefficients or
variable coefficients which are separable, i.e. can be written as a product of
one-dimensional diffusion functions, or can be well approximated by a low-rank
representation. But then the equivalence constants of

a.u; u/ ' kuk2
H1.˝d /

;

i.e. the ellipticity constants, cf. [16], at least partly enter the condition estimate of
the resulting system. If they grow exponentially with the dimension d we may run
into problems, though.

In a similar way, equivalences to H s-norms can be dealt with by using diagonal
scaling matrices

. OD/l;k D

8
ˆ̂<

ˆ̂
:

.

dX

pD1
22slp/Il for l D k ;

0 else ;

and the associated OG�1 if the regularity of the employed basis functions is sufficient.
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Simulation of Droplet Impact with Dynamic
Contact Angle Boundary Conditions

Michael Griebel and Margrit Klitz

Abstract The numerical simulation of dynamic wetting processes is of interest for
a vast variety of industrial processes, where practical experiments are costly and
time-consuming. In these simulations, the dynamic contact angle is a key parameter,
but the modeling of its behavior is poorly understood so far. In this article,
we simulate droplet impact on a dry flat surface by using two different contact
angle models. Both models show good qualitative and quantitative agreement with
experimental results. For our numerical method, we solve the three-dimensional
Navier-Stokes equations with finite differences on a staggered grid. The free surface
is captured by a level-set method, and the contact angle determines the shape
of the level-set function at the boundary. Additionally, we investigate the mass-
conservation properties of two volume-correction methods, which are invaluable
for the analysis of the droplet behavior.

1 Introduction

The numerical simulation of dynamic wetting processes is of critical importance for
a number of industrial applications such as coating, lamination, lubrication or ink-
and spray-painting. All these applications have in common that liquid comes into
contact with a solid surface and that the phase boundary is in motion. Thereby,
a moving contact-line is produced along the substrate, which is the line where
the air is replaced by the liquid. The quality of the wetting highly controls the
quality of the industrial end products and, therefore, needs to be optimized to reduce
wetting defects and instabilities such as air entrainment or ribbing. Here, numerical
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simulation and optimization is a reliable and cheap alternative to the traditional
time-consuming adjustment of machines and the expensive waste of raw materials.

Despite the industrial interest in the numerical simulation of dynamic wetting
processes, the existing theoretical and numerical approaches so far often fail to
correctly predict the results of practical experiments. This is due to two fundamental
difficulties which constitute the so-called ‘moving-contact line problem’: First, the
classical theory of continuum fluid mechanics (i.e. the Navier-Stokes equations
with the no-slip condition for the velocity) predicts a shear stress singularity at
the moving contact line. The second difficulty is the modeling of the contact angle
which is usually required as a boundary condition and determines the shape of the
free surface at the contact line.

Numerous mathematical models have been developed to remedy the moving
contact-line problem. Most of them remove the stress-singularity, but are unable to
describe the contact angle and flow behavior as observed in practical experiments;
see [13] and the references therein. One of the few models, which considers the
overall physical context of the moving contact line problem, is Shikhmurzaev’s
interface formation model [13]. This model not only removes the stress-singularity,
but is also able to describe a large variety of flow with singularities such as breakup,
malescence or casp formation.

In this article we couple a reduced version of Shikhmurzaev’s interface formation
model with our three-dimensional incompressible two-phase Navier-Stokes solver.
For this solver, we employ a standard discretization on uniform Cartesian staggered
grids and use Chorin’s projection approach. The free surface between the two fluid
phases is tracked with the level-set approach. Here, the interface conditions are
implicitly incorporated into the momentum equations by the continuum surface
force (CSF) [2] method. Surface tension is evaluated using a smoothed delta
function and third order interpolation. The parallelization of the code is based on
conventional domain decomposition techniques using MPI. This allows us to deal
with reasonably fine mesh resolutions in three dimensions.

For the simulation of dynamic wetting problems, our numerical scheme has to
be mass conservative. Otherwise, the comparison of, e.g., numerically evaluated
droplet diameters with those from experiments is impossible. However, the
conventional level-set approach is rather renowned for its lack of mass conservation.
Therefore, we investigate two different techniques for a better conservation of mass
in this article [4, 20].

A further difficulty stems from the need for a correct implementation of
the contact angle, which is necessary as a boundary condition for the level-set
function ' for the computation of curvature, the level-set advection step and the
reinitialization equation. Here, we present a new Neumann boundary condition for
the level-set function, which is a refined version of the approach used in [9, 12].

The contribution of this article is as follows: We present a simple and effective
way to include dynamic contact angle models into three-dimensional flow solvers.
Furthermore, we extend the droplet impact study by Yokoi et al. [22] to three dimen-
sions and compare their contact angle model to the reduced interface formation
model by Shikhmurzaev [13]. Thereby, we obtain droplet shapes and diameters,
which compare well with those from practical experiments.
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The remainder of this article is organized as follows: The first section is dedicated
to the details of the moving contact line problem, i.e. to the difficulties involved in
the modeling of the dynamic contact angle and to its numerical implementation.
In the second section, we discuss our Navier-Stokes solver and the implemented
level-set method. We then explain how the contact angle can be included as a
boundary condition for the level-set function. Additionally, the dynamic contact
angle has to be modeled: Here, we present the model by Yokoi et al. and the
interface formation model by Shikhmurzaev. In the third section, we describe the
discretization of our two-phase Navier-Stokes solver. We discuss the discretization
of the contact angle boundary condition and the incorporation of the dynamic
contact angle models into our flow solver. Moreover, we present two different
methods to improve on the mass conservation properties of our approach. In the
forth section, we simulate droplet impact behavior on a dry surface and compare the
evolving droplet shapes and diameters to those obtained from practical experiments.
Furthermore, we compare our two improved mass conservation methods and discuss
their convergence behavior. Finally, we give some concluding remarks.

2 The Moving Contact Line Problem

In this section, we describe the moving contact line problem and some of the current
mathematical models for its solution. In this discussion, we include the two contact
angle models by Yokoi et al. [22] and Shikhmurzaev [13], which we use in this
article. Furthermore, tackling the problem from a numerical point of view, we
address the question how the dynamic contact angle can be incorporated into our
two-phase Navier-Stokes solver.

2.1 Modeling Issues

The key to the solution of the moving contact line problem is twofold: On the one
hand, the stress singularity has to be removed and, on the other hand, the contact-
angle behavior has to be modeled accurately.

In the framework of the so-called ‘slip models’ both problems are addressed
independently: First, the no-slip condition for the velocity is relaxed and the fluid is
allowed to slip at the contact line (see, e.g., [7, 8, 15]), which eliminates the stress
singularity. Then, the contact angle �d is often chosen as a function

�d D f .Ca; �s ; k1; k2; : : :/: (1)

of the contact line speed with the capillary number Ca, the static contact angle �s
and material-related parameters ki , which are used to fit the numerical results to the
experiments.
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A fundamental difficulty with these models is, for example, that they fail to
describe the dependency of the contact angle on the flow rate, which is however,
observed in experiments [13]. Thus, the dynamic contact angle is not simply a
function of the contact-line speed and the material properties of the contacting media
as assumed in Eq. (1). Instead, even for the same contact line speed, the dynamic
contact angle can be changed by, e.g., changing the flow field or geometry near
the contact line. For example, in the curtain coating context, Blake et al. [1] have
shown that for a fixed substrate speed, the observed contact angle varies with the
flow rate and curtain height. This effect has been termed the ‘hydrodynamic assist
of wetting’ and it cannot be described by an equation such as (1) – where the contact
angle depends foremost on the speed of the contact line.

In the theory of thin films, the moving contact line problem is circumvented by
assuming that the surface is already covered by a thin film of fluid [20]. Then, with
a scaled lubrication approximation, one can derive Tanner’s law

U D A�3; (2)

where � is now an apparent contact angle, which can be defined anywhere on
the free surface. Here, U is a dimensionful velocity and A depends on the fluid
properties. This law is often used for the modeling of the contact angle behavior in
the framework of slip models as a variant of Eq. (1) and becomes

Ca D k.�d � �s/3: (3)

This use of Tanner’s law is conceptually questionable [13, p. 165], since there is
no actual contact angle involved in the derivation of Tanner’s law in the first place.
In this article, we use a related kind of slip model which has been improved and
extended by Yokoi et al. [22].

Instead of an ad-hoc and separable treatment of the moving contact-line problem,
Shikhmurzaev [13] considers its overall physical context in the derivation of his
model for the formation and disappearance of interfaces. Let us shortly state his
idea: We know from experimental observation that the dynamic contact angle differs
from the static one and that the Young equation (Fig. 1) holds. Therefore, we can
conclude that the surface tensions in the Young equation become dynamic as well,
when the phase boundary is in motion. The fluid particles at the different interfaces
relax to their new equilibrium values. This process occurs in finite time and is
captured by Shikhmurzaev’s interface formation model.

In contrast to other approaches, the interface formation model not only removes
the singularity, but is able to predict the experimentally observed rolling motion
of the interface, as well as the dependence of the contact angle on the flow
field. Within the literature, Shikhmurzaev’s interface formation model has been
considered scarcely so far, which is mostly due to its complexity (see [13] and
the references therein and [17]). Therefore, we consider a reduced version of the
interface formation model for small capillary numbers in this article. However, even
this simplified model has been scarcely used so far [5, 11, 14].
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LIQUID µ

Fig. 1 Young’s force diagram: �sg D �slC�lg cos � . Here, �sg is the solid/gas, �sl the solid/liquid
and �lg the liquid/gas interfacial tension

Obviously, there are fundamental differences between both contact angle models
considered in this article: The contact angle model by Yokoi et al. lacks a
thorough underlying mathematical theory. It is developed for and based on a single
droplet impact experiment only. A straightforward application of this model to the
numerical simulation of other wetting experiments is difficult. Rather, this model
is a prescription of contact angle values which fit well with a specific practical
experiment. Since the prescribed dynamic contact angle values are very close to
the ones observed in the experiment, the modeling error for the specific experiment
is very small. Therefore, it gives us the opportunity to test our contact angle
implementation as well as our methods for volume conservation and compare them
to the results of the experiments.

On the other hand, behind Shikhmurzaev’s model, there is a whole theoretical
framework to explain the formation and disappearance of interfaces. This model is
able to describe a vast variety of dynamic wetting phenomena. However, we use the
reduced interface formation model, which is derived for small capillary numbers
only. Therefore, we expect to obtain an approximate and smoothed contact line
speed-contact angle relationship compared to the practical experiments and Yokoi’s
results in [22]. Still, the reduced model is an excellent trade-off between the complex
full interface formation model and an easily implementable and reasonably accurate
dynamic contact angle model. This will be seen in the remainder of this article.

2.2 Numerical Issues

Numerically, we have to address the difficulty of the correct implementation of the
contact angle, which is needed as a boundary condition for the level-set function '.

In the literature, a number of different approaches for the contact angle boundary
condition of the level-set function can be found: Here, the simplest model is the zero
Neumann boundary condition, which effectively fixes the contact angle to be 90ı. If
� is variable, the implementation is less clear. One of the main approaches [22, 23]
was developed by Sussman [18]. Here, the contact angle is taken into account by
extrapolating the liquid interface, represented by the level-set function, into the
solid. This approach requires the construction of an appropriate extension velocity,
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but the exact location of the position of the contact-line is not needed. Moreover,
in a method by Spelt [16], contact-line position and contact angle or contact line
velocity are determined iteratively.

In [24], the movement of the contact line is induced by diffusion. Instead of
using a direct relation between the gradient of the level-set function and the normal
of the interface, a regularized normal vector field is constructed to avoid flux of '
over the boundary. Thereby, two additional regularization parameters appear, which
influence the shape of the free surface at the contact line.

In [9, 12] a Neumann boundary condition for the level-set function is derived as
follows: Let our fluid flow domain˝ be a box and x D .x; y; z/ 2 ˝ . Then, at, e.g.,
the wall y D 0, the geometric relation

nl � nw D cos.�/ (4)

holds for the contact angle � . Here, nl is the outward surface normal and nw D
.0;�1; 0/t is the outward normal at y D 0. Now, a Neumann boundary condition
for the level-set function can be prescribed by rewriting relation (4) as

'y D � cos.�/ for k'k D 1: (5)

However, the condition k'k D 1 is not always fulfilled. Thus, the recovery of this
property of the level-set function is achieved by some reinitialization equation in the
first place. In this article, we extend this approach and show that

'y D � cot.�/
q
'2x C '2z for 0 < � < � (6)

without further assumptions on '. Similar techniques have already been used by
Fang et al. [6] and Mourik [21] within the volume-of-fluid approach. Note here,
that our approach is consistent with the extension technique by Sussman [18] for
the case that the geometry is a box. Like in his approach, we do not need to
locate the exact contact line position. Additionally, relation (6) allows us to set
contact angle boundary conditions for complex geometrical objects in our fluid flow
domain.1

3 Mathematical Model

In this section, we discuss the mathematical model for the three-dimensional flow of
two immiscible incompressible fluids. We show how the contact angle can become
a boundary condition for the level-set function and present two different models for
the dynamic contact angle as given by Yokoi et al. [22] and Shikhmurzaev [13].

1Then, contact angles at corner cells of the geometry have to fulfill further restrictions as described
in [6].
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3.1 The Navier-Stokes Solver

The behavior of the fluids is governed by the incompressible Navier-Stokes
equations defined on an open set ˝ D ˝1 [ ˝2 [ �f � R

3 with Lipschitz
boundary � WD @˝ . The two fluid domains ˝1 and ˝2 and the free interface
�f WD @˝1 \ @˝2 depend on time. We capture the interface by a level-set
formulation, and surface tension effects are included via the CSF method [2]. Thus,

	.'/ .@tuC .u � ru//Crp D r � .�.'/S/� ��.'/ı.'/r' C 	.'/g
r � u D 0 (7)

with time t 2 Œ0; T �, fluid velocity u, pressure p and volume forces g. Here, � is the
viscosity and 	 the density. The fluid stress tensor is defined by S D ruC .ru/t .
The curvature of the free surface is given by �, the surface tension is denoted by � ,
and ı is the one-dimensional Dirac-delta functional introduced in the CSF approach.

We choose a level-set function ' as a signed-distance function such that

'.x; t/

8
<

:

< 0 if x 2 ˝1
D 0 if x 2 �f
> 0 if x 2 ˝2

(8)

holds and the Eikonal equation kr'k D 1 is fulfilled. The interface between the
two fluids is then given by the zero level-set of ':

�f .t/ D fx W '.x; t/ D 0g (9)

for all times t 2 Œ0; T �. The level-set function is advected by the pure transport
equation

't C u � r' D 0 (10)

with initial value '0.x/ D '.x; 0/.
With the help of ' we define the density 	 and the viscosity � on the whole

domain, i.e., on both fluid-phases. To this end, we set

	.'/ WD 	2 C .	1 � 	2/H.'/ and �.'/ WD �2 C .�1 � �2/H.'/; (11)

whereH.'/ denotes the Heaviside function which is defined as

H.'/ WD
8
<

:

0 if ' < 0
1
2

if ' D 0
1 if ' > 0:

(12)

The Navier-Stokes equations (7) have to be complemented with boundary
conditions for the pressure, the velocity and the level-set function.
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In the next subsection, we present a boundary condition for the level-set function,
which is required for the transport equation (10), the level-set reinitialization and
the computation of the curvature �. This condition determines the shape of the free
surface at the contact line and, therefore, depends on the dynamic contact angle �d
as soon as the contact line is moving.

Finally, in addition to the standard equations of fluid dynamics described above,
the dynamic contact angle has to be modeled properly, which will be presented in
Sects. 3.3 and 3.4.

3.2 The Contact Angle as a Boundary Condition

As already exemplified in Sect. 2.2, we now formulate a Neumann boundary
condition for the level-set function, which incorporates the dynamic contact angle.
Thus, at the boundary of ˝ the contact angle is defined by the geometric relation

nl � nw D cos.�/; (13)

where � is the contact angle (static or dynamic), nw is the outward normal drawn
from the flow region into the boundary, and nl is normal to the level-set function
which points from the fluid phase with lower level-set values to the one with higher
values, i.e.

nl D r'
kr'k : (14)

Then, the boundary condition for the level-set function is given in the following
proposition.

Proposition 1. At any wall of ˝ , whose outward normal is given by niw D ˙ei for
some i 2 f1; 2; 3g, the level-set’s i -th derivative 'xi

can be related to � by

'xi
D ˙ cot.�/

vuu
t

3X

jD1; j¤i
'2xj

(15)

for any angle 0 < � < � .

Proof. We prove this proposition here for two walls with outward normals
n2w D �e2 and n2w D e2, since the cases niw D ˙ei for i D 1 or i D 3 can be
treated in the very same way. For both boundaries, we have to distinguish between
the cases 0 < � � �

2
and �

2
< � < � .
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Let n2w D �e2 D .0;�1; 0/t . Then, from Eqs. (13) and (14), we have

nl � n2w D cos.�/, �'x2
D cos.�/kr'k: (16)

First, let 0 < � � �
2

. Then, 0 � cos � < 1 and sin2.�/ D 1 � cos2.�/ > 0. Since
cos.�/ � 0, we conclude that �'x2

� 0 as well, and define the positive function
Q' WD �'x2

with Q'2 D '2x2
. Inserting Q' into Eq. (16), we obtain

Q' D cos.�/
q
'2x1
C Q'2 C '2x3

:

Now, only positive variables constitute both sides of the equation. Thus, we are
allowed to take the square of both sides and still obtain the equivalent relation

Q'2 D cos2.�/.'2x1
C Q'2 C '2x3

/

, Q'2 
1 � cos2.�/
� D cos2.�/.'2x1

C '2x3
/

, Q'2 D cos2.�/

sin2.�/
.'2x1
C '2x3

/

, Q' D cos.�/

sin.�/

q
'2x1
C '2x3

:

Again, taking the root to obtain the last equivalency relation is only allowed since
all parts of the equation (including sin2.�/) are greater than or equal to zero. Then,
for 0 < � � �

2
, we have sin.�/ D p

1 � cos2.�/. Resubstituting Q' D �'x2
, we

obtain the desired result

'x2
D � cot.�/

q
'2x1
C '2x3

:

Now, let �
2
< � < � . Then, �1 < cos � < 0 and sin2.�/ D 1 � cos2.�/ > 0.

From (16), we know that 'x2
> 0, since cos � < 0. We define the positive function

Qc WD � cos.�/ with Qc2 D cos2.�/ and obtain likewise

'x2
D Qc

q
'2x1
C '2x2

C '2x3
, 'x2

D � cot.�/
q
'2x1
C '2x3

:

In the second part of this proof, the outward normal of the boundary is given by
n2w D e2. Then, from (13) and (14), we have

nl � n2w D cos.�/, 'x2
D cos.�/kr'k: (17)

Again, we consider the two cases 0 < � � �
2

and �
2
< � < � . First, let 0 < � � �

2
.

Then, 0 � cos � < 1 and sin2.�/ D 1 � cos2.�/ > 0. From (17), we know that
'x2

> 0, since cos � > 0. Similar to the first case above, we can then show that
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'x2
D cos.�/

q
'2x1
C '2x2

C '2x3
, 'x2

D cot.�/
q
'2x1
C '2x3

:

Now, let �
2
< � < � . Then, �1 < cos � < 0 and sin2.�/ D 1 � cos2.�/ > 0.

From Eq. (17), we know that �'x2
> 0, since cos � < 0. We define the positive

function Qc WD � cos.�/ with Qc2 D cos2.�/ and the positive function Q' WD �'x2

with Q'2 D '2x2
. With these definitions and similar equivalency relations as in all the

other cases, we obtain

Q' D Qc
q
'2x1
C Q'2 C '2x3

, 'x2
D cot.�/

q
'2x1
C '2x3

: ut

The above proposition allows us to write the contact angle � as a boundary
condition of the level-set function. Now, the hard part is a reliable model for the
dynamic contact angle � D �d . In the next two subsections, we will describe
two different dynamic contact angle models, which we will later employ in our
numerical method.

3.3 The Dynamic Contact Angle Model by Yokoi et al. (C1)

Yokoi et al. [22] propose a dynamic contact angle model, which combines Tanner’s
law (3) with a static advancing and receding contact angle, since Tanner’s law holds
for small capillary numbers only. In the combined model, similar to what is observed
in experiments, the contact angle tends to both the limit of a maximum advancing
angle �mda as the dimensionful contact line speed ucl increases and the limit of a
minimum dynamic receding angle �mdr as ucl decreases:

�d D

8
<̂

:̂

minf�s C
�
�ucl
�ka

	 1
3

; �mdag if ucl � 0
maxf�s C

�
�ucl
�kr

	 1
3

; �mdrg if ucl < 0:

(C1)

Here, �s is the static contact angle, and the material-related parameters ka and kr
are adjusted to fit the numerical results to the results obtained by measurements.
Furthermore, the stress singularity is circumvented by inducing numerical slip for
the velocity at the contact line.

3.4 The Dynamic Contact Angle Model by Shikhmurzaev (C2)

The second model for the dynamic contact angle at small capillary number is a
reduced version of Shikhmurzaev’s interface formation model [13]. The full model
accounts for different classes of flows, where interfaces are formed or destroyed.
The equations, which capture the surface tension relaxation process and have to
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be solved on the surface itself, are derived from mass, momentum and energy
conversation. For the case of small capillary and Reynolds numbers, we can analyze
them as a local problem whose solution can be incorporated into various types of
global flow problems. Here, lots of experimental works simplify the verification of
numerical results.

We follow the description in [13]. There, the flow domain is split into two
asymptotic regions, and in both the limit Ca ! 0 is studied analytically. In the
inner asymptotic region to leading order in Ca the dynamic contact angle and the
dimensionless contact-line speed V are related by

cos.�s/� cos.�d / D
2V

�
cos.�s/ � �sg C .1 � 	sG/�1.1C 	sGu.12/.�d ; k�//

�

V C �V 2 C 1C .cos.�s/ � �sg/.1 � 	sG/
� 1

2

(C2)

with �s the static contact angle, k� the gas-to-liquid viscosity ratio, and 	sG � 1 �
�sg��sl

� cos �d
, where �sg and �sl denote the surface tension in the gas-solid and liquid-

solid interface, respectively, and � is a material parameter. Here, the radial velocity
u.12/.�d ; k�/ must be derived from the solution in the outer region.

In particular, in the outer region to leading order in Ca the free-surface curvature
becomes zero and one obtains a flow problem in a wedge [13]. The solution to this
problem was given by Moffatt in [10] as

u.12/.�d ; 0/ D sin �d � �d cos �d
sin �d cos �d � �d : (18)

If the viscosity of the gas phase is taken into account, Moffatt’s solution becomes

u.12/.�d ; k�/ D .sin �d��d cos �d /K.�2/�k�.sin �2 � �2 cos �2/K.�d /

.sin �d cos �d��d /K.�2/C k�.sin �2 cos �2��2/K.�d / ; (19)

with �2 D � � �d andK.�/ D �2 � sin2 � [13].
Alternatively, u.12/.�d ; k�/ in (C2) can be replaced by the inner limit of the outer

solution, i.e. by a numerically computed far field velocity sufficiently close to the
contact line. This alters the dynamic contact angle for the same contact line speed
and is exactly what is observed in laboratory experiments as the nonlocal influence
of the flow field/geometry on the dynamic contact angle.

As described in [13], we introduce the reference velocityU and the scaling factor
Sc by

U D
s
�	s0.1C 4˛ˇ/


ˇ
and Sc D

s
�2
ˇ

�2�	s0.1C 4˛ˇ/
: (20)

Here, � is the equilibrium surface tension, ˛ and ˇ are phenomenological constants
depending on the ‘state of the interface’, � is a phenomenological constant
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Table 1 Parameters for distilled water impacting on a silicon wafer onto which hydrophobic silane
has been grafted

Distilled water: �l D1:0�3 kg=ms, 	l D13 kg=m3 Surface tension: � D7:2�2 N=m
Air: �g D1:82�5 kg=ms, 	g D1:250 kg=m3 Boundary conditions: no-slip
Forces: g D.0 ;�9:81; 0/m=s2 Droplet diameter 2:28�3 m
Inital velocity: u D.0 ;�1:0; 0/m=s ka: 9:0�9

�mda: 114ı kr : 9:0�8

�mdr: 52ı

describing the compressibility of the fluid, 
 is the surface tension relaxation time
and 	s0 is the surface density for zero surface tension, both of which can be treated
as material constants. Thus, Sc depends on the material properties of the fluid and
the interface. Then, the dimensionless contact line velocity is given by

V D ucl

U
D ucl�

�
Sc; (21)

and Sc can be chosen to fit the numerical results to the experimental data.
Let us demonstrate how the dimensionless parameter Sc influences the results of

Eq. (C2). As an example, we consider a droplet of distilled water which impacts on
a silicon wafer onto which hydrophobic silane has been grafted. The equilibrium
contact angle of the substrate with distilled water is 90ı, and the relevant physical
and numerical parameters of this experiment are listed in Table 1.

Thus, (C2) can be resolved with respect to positive V as given in [13]. Since
we are interested in the relationship between the dynamic contact angle and the
dimensionful contact line velocity, we also use (21) to plot the dimensionful speed-
angle relationship for different values of Sc. The remaining parameters are chosen
according to Table 1, 	sG D 0:9, �sg D 0, and u.12/.�d ; 0/ is determined by
Moffatt’s solution (18). The effect of the variation of Sc is shown in Fig. 2: We
see that the contact angle as a function of ucl increases from its static value �s and
tends the faster to 180ı the more we increase Sc. The horizontal straight red line
indicates the maximum dynamic advancing contact angle of 114ı determined from
the experiments. For Sc D 11:5 this value is reached at a maximum contact line
speed of about ucl D 0:4 m=s.

4 The Numerical Method

In this section, we describe the discretization of the Navier-Stokes equations (7)
in space and time with special emphasis on the level-set method. We discuss the
implementation of the contact angle boundary condition and of the two contact angle
models. Last, we present two methods for a better conservation of mass within the
level-set method.
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Fig. 2 Dynamic contact angle vs. dimensionful contact-line speed for different values of Sc given
in [rad] and [m=s], respectively. From left to right: Sc D 0:1, 1:5, 5:5, 11:5, 18:5, 25:5. The straight
dashed line corresponds to the maximum of the dynamic advancing contact angle of 114ı observed
in the experiments

4.1 Discretization of the Navier-Stokes Equations and the
Level-Set Method

We discretize the Navier-Stokes equations with finite differences on a staggered
uniform grid and use an explicit second-order Adams-Bashforth time integration
scheme. The solution process is based on the well-known projection method: First,
an intermediate velocity field u�, which may not be divergence free, is advanced
by the Adams-Bashforth time scheme; second, we compute a correction rpnC1
of the intermediate velocity field by the pressure Poisson equation which leads to
a divergence free velocity field unC1. Thus, we treat the pressure implicitly and
solve the Poisson equation by a Jacobi-preconditioned conjugate gradient method.
A fifth-order weighted essentially non-oscillatory (WENO) scheme is used for the
discretization of the convective transport of the Navier-Stokes equations (7) as well
as for the level-set transport (10). The diffusion term is computed by using second-
order central differences.

For the treatment of the free surface between the two fluid phases we employ the
level-set approach [3, 4]. Here, the interface conditions are implicitly incorporated
into the momentum equations by the continuum surface force (CSF) [2] method.

Note that we have to reinitialize the level-set function '� after each transport
step to recover its signed distance property jr'nC1j D 1 without disturbing the
zero level-set. To generate the appropriate signed-distance function 'nC1.x/ with
the same zero level-set as '�.x/, we solve the following pseudo-transient Hamilton-
Jacobi problem to steady state

'�
� D sign.'0/.1 � jr'�j/ (22)
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with initial value '0 D '�.x/. Again, we discretize this equation by a fifth
order WENO scheme in space and employ a third-order Runge-Kutta for its time-
integration.

For reasons of numerical stability, we employ a regularized signum function

S.'�/ D '�
p
.'�/2 C jr'�j2.ıx2/ : (23)

and a smoothed Heaviside and Dirac-delta functional in an "-environment of the
free surface. Then the Hamilton-Jacobi problem reads

'�
� D S.'�/.1 � jr'�j/: (24)

For further details on the implementation of our Navier-Stokes solver NaSt3DGPF
and of the level-set method see [3, 4].

4.2 Discretization of the Contact Angle Boundary Condition

The discretization of the contact angle boundary condition (15) is very similar to
the discretization of the standard Neumann boundary condition for the level-set
function. Again, we exemplify this at the wall y D 0, where Eq. (15) becomes

'y D � cot.�/
q
'2x C '2z : (25)

On the staggered grid (Fig. 3), the level-set values are discretized in the cell
center. Then, with grid cells denoted by integers (i; j; k),

'i;j;k � 'i;j�1;k
ıyj

D � cot.�/
q
'2xi;j;k

C '2zi;j;k
; (26)

where ıyj is the mesh width. The derivatives 'xi;j;k
and 'zi;j;k

can be discretized
by central differences. This equation can be solved for the staggered grid’s ghost
cell value 'i;j�1;k, which gives the required boundary condition for '.

The values for the contact angle � are computed by the discretized dynamic
contact angle models of Yokoi et al. (C1) or Shikhmurzaev (C2), which we will
discuss subsequently.

4.3 Implementation of the Contact Angle Models

In this subsection, we describe how the contact angle models are incorporated into
our two-phase Navier-Stokes solver. For this, both models require the computation
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Fig. 3 On the staggered grid, the level-set function ' is discretized at the cell center and the
velocity is discretized at the face centers of the grid

Fig. 4 The contact line velocity is evaluated at the contact point xp at the intersection with the
line z D zmax=2

of the contact line velocity ucl. Additionally, for Shikhmurzaev’s model, we also
need the velocity u.12/.�d ; k�/.

In the following, we focus on the example of drop impact, and we assume that
the drop spreads symmetrically (cf. Fig. 4). Then ucl is taken as the velocity value u
in x-direction which is closest to the contact point xp at the line zmax=2 and still lies
in the droplet’s fluid phase. This simplified computation of the contact line velocity
is also done by Yokoi et al. [22] and we stick to it for the sake of comparability.

Furthermore, we compute u.12/ either by Moffatt’s solution (18) or we use a
velocity value of the far field. This far field velocity value is arbitrarily chosen to
be about two grid cells away from the contact line. Thus, if e.g. at y D 0, 'i;1;k �
'iC1;1;k < 0 and 'i;1;k in the liquid phase, u.12/ D ui�1;2;k . In the following, we
will refer to these two options for u.12/ as (M1) and (M2), respectively.
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For (M1), the contact angle Eq. (C2) becomes nonlinear and we invoke a Newton
iteration method to solve for �d . For (M2), the equation can be solved directly by
evaluating the arccos-function. Here, if the argument of the arccos is not in Œ�1; 1�,
we use Moffatt’s solution (M1) instead.

All in all, the contact line models fit into our flow solver as follows:

1. Let �n be given from the previous time-step.
2. Solve the level-set advection Eq. (10) with the boundary condition (15) and
� D �n.

3. C1: Use a velocity value near xnC1
p for unC1

cl and compute �nC1 from (C1)
C2: Use a velocity value near xnC1

p for unC1
cl . Compute the radial velocity u.12/

by (M1) or (M2) and �nC1 from (C2).
4. Solve the level-set reinitialization (24) with the boundary condition (15) and
� D �nC1.

Finally, note that we use the no-slip condition for the velocity for both contact
angle models. On the staggered grid, as drawn in Fig. 3, the no-slip condition is
never fulfilled exactly, which introduces enough numerical slip to eliminate the
stress singularity at the contact line.

4.4 Methods for Mass Conservation

An important issue – especially for level-set methods – is mass conservation. In
the reinitialization step the current level-set function is replaced by a smoother,
less distorted function which has the same zero level-set. However, this also
introduces numerical diffusion to the solution which leads to difficulties with
volume conservation. To this end, we use a global and a local volume correction
method to remedy this problem.

For the global volume correction, already described and investigated in [4], we
employ a Picard iteration after the reinitialization step:

'nC1 'nC1 C !.V.'0/� V.'nC1//: (27)

Here, Vi .'0/ is the initial volume of ˝0
2 and V.'nC1/ WD R

˝
H.'nC1/dx denotes

the volume of ˝nC1
2 at time t D n C 1 after the reinitialization procedure. The

relaxation parameter ! depends on the specific problem and is chosen to minimize
the number of iterations in the relaxation process.

For the local volume correction, we follow [19] in improving the re-distancing
algorithm of the level-set function by formulating a constraint which conserves the
volume of the domain and prevents the straying of the level-set function from its
initial position. We require that

@t

Z

˝

H.'�/dx D 0 (28)
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and modify the Hamilton-Jacobi problem by

'�
� D sign.'0/.1 � jr'�j/C �f .'�/: (29)

Then we determine the time-dependent function � by

@�

Z

˝

H.'�/dx D
Z

˝

H 0.'�/'�
� dx D

Z

˝

H 0.'�/


sign.'0/.1 � jr'�j/C �f .'�/

�
dx;

(30)

i.e.

� D �
R
˝
H 0.'�/ sign.'0/.1 � jr'�j/dx
R
˝ H

0.'�/f .'�/dx
: (31)

The choice of

f .'�/ D H 0.'�/ jr'�j (32)

ensures that the correction takes place at the interface only.
The discretization of the local mass correction in two-dimensions is described

in [19]. In three dimensions, the numerical integration of some function g over the
domain

˝ijk D f.x; y; z/ 2 ˝ W xi� 1
2
< x < x

iC 1
2
; y
j� 1

2
< y < j

jC 1
2
; z
k� 1

2
< z < z

kC 1
2
g;

changes to

Z

˝ijk

gijk dx � 1

78

�
52gijk.ıxi ıyj ızk/C

1X

p;q;rD�1
.p;q;r/¤.0;0;0/



giCpIjCqIkCr .ıxi ıyj ızk/

��
:

Furthermore, in the original article [19], a non-smooth signum-function is
employed. For better conservation properties and numerical stability, we again
choose a smooth variant and replace sign.'0/ by S.'�/ as given in (24).

This volume correction is ‘local’ since the mass should remain unchanged in any
sub-domain of˝ , so that

R
H.'�/dx is preserved in every grid cell. It is also ‘local’

in a negative sense, since it only prevents the straying of the level-set function, but
does not correct mass errors which occur due to the numerical diffusion introduced
when solving the transport equation (10).
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5 Numerical Results

In this section we evaluate the mathematical and numerical models for the example
of a droplet impact simulation. Specifically, we consider a droplet of distilled water
which impacts on a silicon wafer onto which hydrophobic silane has been grafted.
The equilibrium contact angle of the substrate with distilled water is 90ı, and the
relevant physical and numerical parameters of this experiment have already been
listed in Table 1.

The numerical simulation of this specific droplet impact scenario is valuable
due to various reasons: First, Yokoi et al. [22] provide experimental results for the
droplet behavior. Thus, we can compare the droplet shape, droplet diameter and
dynamic contact angle from the physical experiments with the numerical results
of our dynamic contact angle models (C1) and (C2). Additionally, we do not
have to re-adapt the parameters ka and kr in (C1), since the contact angle model
has been designed for this specific experiment. Second, Yokoi et al. [22] present
two-dimensional numeric results in their work, which we can use for comparison
with our three-dimensional results as well. Last, in this specific droplet impact
experiment, the numerically computed droplet behavior is very sensitive to the
applied contact angles: For example, using the static contact angle instead of a
dynamic contact angle model causes the drop to rebound; the same happens if only
static advancing and receding contact angles are applied; see [22] for further details.
Therefore, this specific kind of droplet impact simulation is a very sensitive test case
for our Navier-Stokes solver, the implemented contact angle boundary condition and
the two contact angle models.

However in the work of Yokoi et al., we also see the difficulty in obtaining
accurate experimental results. There, the presented droplet shapes are obtained from
a different experiment (E1) than the measured contact angle and diameter (E2). For
the latter, only the right hand side of the droplet has been observed to increase the
resolution around the contact line. If we compare the experimental droplet shapes
in Figs. 5 and 6 with the experimentally measured droplet diameter in Fig. 7, we see
that at times t D 10 and 15ms the diameter of the droplet shapes (obtained from
E1) is visibly smaller than the one given in Fig. 7 (obtained from E2), which gives
us an indication of the involved measuring error.

Let us give an example for the discrepancy between experiments (E1) and (E2).
In Figs. 5, 6 and 8 at t D 4ms all numerical methods predict a horizontally wider
droplet than the laboratory experiment (E1), which is depicted in the first row of the
respective figures. However, if you compare this result with the diameter-time curve
in Figs. 7 and 9, the numerically computed droplet diameter at t D 4ms reproduces
the droplet diameter from the laboratory experiment (E2) nearly perfectly – at least
for the highest numerical resolution, which is also used in the pictures for the droplet
shapes.

In the following, we present our results in three steps: First, we take Yokoi’s
model (C1) and compare the experimentally evaluated droplet shapes and diameters
with our three-dimensional simulation computed by the pure level set method and
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Exp.

Pure

Glob.

Loc.

Fig. 5 Droplet impact t D 0–4 ms. In descending order: experimental results, pure level set
method, level-set with global volume-correction, level-set with local volume-correction

the two volume correction methods. Second, we use two variants of the reduced
interface formation model (C2) to simulate the same droplet with global volume
correction only. In a last step, we discuss the mass conservation behavior of our
numerical methods.

5.1 The Contact Angle Model by Yokoi

In this subsection we present the results of the droplet impact simulation with the
Navier-Stokes equations (7) and (C1). The numerically obtained droplet shapes
(white) during the impact are shown in Figs. 5 and 6 compared with experiments
by Yokoi et al. [22] (black).
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Exp.

Pure

Glob.

Loc.

Fig. 6 Droplet impact t D 10–30 ms. In descending order: experimental results, pure level set
method, level-set with global volume-correction, level-set with local volume-correction

The results of the laboratory experiments (E1) are always shown in the first row
of the respective figures. The second row corresponds to the computed numerical
solution with the pure level set method, i.e. without any volume-correction methods:
We see that during the first three points in time (Fig. 5), when inertia is dominant,
these droplet shapes compare very well with the experimental snapshots from (E1).
At t D 10ms the simulated droplet shape is still remarkably close to the experiment,
while at the next time steps, the numerical droplet fails to reproduce the correct
droplet height and width of the experiment (Fig. 6). This is partly due to its obvious
loss in mass: Despite the very high resolution, the droplet still looses about 20 % of
its volume during the simulation. Thus, the comparison with the droplet diameter
measured in the laboratory experiment (E2) becomes difficult as well. In Fig. 7, we
see that the pure level set method is unable to produce the final droplet diameter
for all applied resolutions. Nevertheless, at about t D 4ms the maximum diameter
is well recovered and the overall behavior of the diameter-time curve is close to
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Fig. 7 Comparison of droplet diameter over time with experimental results. Our 3D simulations
with the pure level set method (black), global (blue) and local (red) volume correction compared to
2D numerical and experimental results by Yokoi et al. [22]. The theoretical final droplet diameter is
given by the straight dashed line. The thin black line corresponds to the 2D numerical results and
is very close to that of the experiments given by the thin dashed line. Above, the grid resolution is
121� 61� 121 and below it is 241 � 121 � 241

the experiment. We see here that the simulated droplet diameter at times t D 10 and
15ms is closer to the experiment (E2) than to (E1). All in all, despite its obvious loss
in volume and within the experimental measuring error, the pure level set method is
able to produce simulation results, which correspond well with the experimentally
observed droplet behavior.

At this point, we nevertheless see the need for volume-conserving simulation
methods. Therefore, we simulate the droplet impact with the global volume correc-
tion and the local volume correction. The resulting droplet shapes are presented in
the third and forth row of Figs. 5 and 6.

We expect that the results from the global volume correction are very close to
those by the pure level set method, since the fix-point iteration tends to simply inflate
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Exp.

M1

M2

Exp.

M1

M2

Fig. 8 Droplet impact t D 0–30 ms. In descending order: experimental results, reduced interface
formation model with Moffatt’s solution (M1) and Sc D 11:5, reduced interface formation model
with far field velocity (M2) and Sc D 5:5
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Fig. 9 Comparison of droplet diameter over time with experimental results. Our 3D simulations
with M1 (black) and M2 (red) compared to 2D numerical and experimental results by Yokoi
et al. [22]. The theoretical final droplet diameter is given by the straight dashed line. The thin
black line corresponds to the 2D numerical results and is very close to that of the experiments
given by the thin dashed line. Above, the grid resolution is 241� 121� 241

the droplet. This is exactly what we observe in Figs. 5 and 6: The droplet shapes
recovered by the global correction method are similar to those by the pure level
set method, but the volume of the drop is now preserved up to 100 %. Again, the
droplet diameters produced by the global volume correction method are closer to
experiment (E2) than to (E1). If we compare the droplet diameter with (E2), we see
that its evolution over time is also very similar to the pure level set method’s results
(Fig. 7). Due to the improved volume conservation, the maximum droplet diameter
at t D 4ms and the final droplet diameter are captured excellently by the global
volume correction method.

If we apply the local volume correction, we get results which also compare better
with (E2) than with (E1): The droplet diameter results agree with the experimental
ones, as we can see from Fig. 7. For the first three points in time, the droplet
shapes with the local volume correction method are in good agreement with the
other simulation results and the experiments (Fig. 5). However, we then get a larger
deviation from (E1) at times t D 10 and 15ms (Fig. 6); where the droplet width is
more overshot than with the other two methods.

If we compare our two volume correction methods, we first note that both are
able to conserve the volume of the droplet up to nearly 100 % for the highest grid
resolution. Second, we observe that the global volume correction simply inflates
the droplet everywhere, while the local volume correction tends to widen the
droplet horizontally. All in all, we conclude that both correction methods are in
good agreement with the experimental results and lie well within the scope of the
experimental error.

In a next step, we compare our three-dimensional results to the two-dimensional
ones by Yokoi et al. obtained by a coupled level set and volume-of-fluid method.
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The 2D droplet diameter is given in Fig. 7 and is nearly indistinguishable from
experiment (E2). Therefore, we must expect the computed 2D droplet shapes to
deviate from (E1). These 2D droplet shapes can be found in Fig. 8 of [22], where
they are visualized as three-dimensional results. Contrary to our simulation, the
droplet shape at t D 2ms tends more to a pyramid shape and does not convincingly
show the three layers obtained in the experiment. This might well be due to the
lacking third dimension. Later, the two-dimensional results are comparable with
our 3D results, but the width of the droplet at t D 10 and 15ms is even larger than
in our case. Here, we have to remember that the two parameters ka and kr in (C1)
were used to fit Yokoi’s 2D numerical results to the experiment (E2), and we did not
adapt these parameters for our 3D simulation. Even so, the 2D and 3D simulations
show remarkably good agreement with each other.

5.2 The Contact Angle Model by Shikhmurzaev

In this subsection, we present results for the droplet impact simulation with
the reduced interface formation model (C2) combined with the global volume
correction for the level-set method. We present two different variants of the model:
On the one hand we take Moffatt’s solution for the radial velocity (M1) and on the
other hand we choose a far field velocity value to incorporate the influence of the
flow field on the dynamic contact angle (M2). The parameter Sc is chosen to be
11:5 for (M1) and 5:5 for (M2). We set the values 	sG D 0:9 and �sg D 0 according
to [13].

The results of the laboratory experiments (E1) are always shown in the first row
of Fig. 8. The droplet shapes computed by (M1) are given in the second row. As with
(C1), the first three results are very close to the experimental snapshots, which is to
be expected, since inertia dominates capillary effects. In addition, also at the later
time steps, the computed droplet shapes agree very well with (E1). At t D 10ms
the height and width of the droplet is reproduced very accurately. Further, at t D
15ms, the droplet even forms a little dent before it meets the substrate and compares
best with the experiment of all simulation results. A look at the droplet diameter
evolution (Fig. 9) confirms that the interface formation model, although it is not
specifically based on this experiment, produces nearly as good results as Yokoi’s
model: The maximum and final droplet diameter are captured, and the computed
curve is very close to that of the experimental results.

In a next step, we compare the angle-speed curve of the interface formation
model (M1) with Yokoi’s 2D numerical results and the experiments. We expect
that Yokoi’s model, since it is fit to this experiment, produces dynamic contact
angles which are very close to the ones measured in the experiment. From
Shikhmurzaev’s model we expect a smooth angle-speed relationship equal to our
preliminary computation in Fig. 2. This is exactly what we see in Fig. 10: The
contact angles computed by (C1) are nearly identical to the experimental values,
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Fig. 10 Angle-speed relationship of a 3D simulation with the reduced interface formation model
M1 (black) and M2 (red) compared to experiments (+) and 2D simulation with Yokoi’s model
(dashed), both taken from [22]

while the ones computed by (C2) develop in a smoother and nearly linear fashion
but show a larger deviation from the experiment. For zero contact line velocity, the
model predicts the equilibrium contact angle of 90ı. Here, the values measured in
the experiment are between 52ı and 110ı. This is due to the space-time resolution
of the experiment, where the contact line velocity is considered to be zero, if the
liquid interface does not cross any pixel. Interestingly, however, the smooth speed-
angle curve predicted by the interface formation model, lies quite well in between
the maximum advancing and minimum receding contact angle of the experiment.

The droplet shapes computed by (M2) are close to the results by (M1) (Fig. 8).
Additionally, the droplet diameter varies only little between both models (Fig. 9).
Furthermore, in Fig. 10, the angle-speed curve shows that both models compute
very similar dynamic contact angles in specific regimes of the contact line velocity.
For large contact line velocities, (M2) overshoots the maximum dynamic advancing
angle determined from the laboratory experiment even more than (M1). However,
for small contact line velocities, (M2) tends to be closer to the minimum dynamic
receding angle than (M1). The curve for (M2) is scattered, since we use Moffatt’s
solution, if the contact angle cannot be evaluated directly from the arccos of
Eq. (C2). Here, we observe that for similar contact line velocities both Moffatt’s
solution and an inserted far field velocity value give similar results with a difference
of only a few degrees for the computed contact angle.

All in all, the results by Shikhmurzaev’s reduced interface formation model are
most promising. Although it is not based on this specific droplet experiment, the
computed droplet shapes are very close to those observed in the experiment. Also,
the evolving droplet diameter and speed-angle relationship support these very good
results.
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Table 2 Details of the mesh used for the mass convergence study (left) and grid convergence of
initial mass towards the analytical solution

Level l �xl �yl �zl dofl m0
l 	l

1 2:206�4 2:280�4 2:206�4 31� 15� 31 6:511�9 –
2 1:121�4 1:103�4 1:121�4 61� 31� 61 6:281�9 2:020

3 0:565�4 0:561�4 0:565�4 121 � 61� 121 6:225�9 1:965

4 0:284�4 0:283�4 0:284�4 241 � 121 � 241 6:211�9 1:985

5.3 Mass Conservation

In this subsection, we investigate the mass convergence behavior of our numerical
schemes for the impact of water on hydrophobic siliane. First, we measure how well
the analytical sphere volume can be initially approximated on our computational
grids. Then, we investigate how much volume can be conserved with the pure level
set method and the two volume correction methods at time t D 30ms, which
corresponds to the last time-step in Fig. 6. Last, we study the convergence of the
mass error. The details of the grids used for our convergence study are given in
Table 2.

The analytical volume of the sphere, computed from the parameters in Table 1 is
V D 4

3
�r3 D 6:2059�9. We evaluate the initial mass of the droplet as

m0l D
X

xi

H.'0l .xi //�xl�yl�zl (33)

on grid levels l D 1 : : : 4 as given in Table 2. Then, at time t D 0, the discrete error
norm and convergence rate are evaluated as

el D
ˇ
ˇ̌
ml � V

ˇ
ˇ̌ and 	lC1 D log el

elC1

log 2
; (34)

since there holds 2hl � hlC1 for the discrete mesh width. The convergence results
are given in Table 2. We clearly see that initial sphere volume shows second-order
convergence towards the analytical value.

In a next step, we quantify the volume loss of our numerical schemes after 30ms,
which corresponds to the last droplet shapes displayed in Fig. 6. We expect that
the local volume-correction will perform worse than the global volume correction
at least on the coarser grids, since the local volume correction only prevents the
straying of the level set function, but does not correct mass errors which occur due
to the numerical diffusion introduced when solving the transport equation (10). The
global volume correction, on the other hand, employs an absolute stopping criterion
of " D 10�7 in the fixed point iteration and we anticipate to find a very small error
in volume for all mesh sizes.
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Table 3 Volume
conservation in % at
t D 30ms

Level l Pure Local Global

1 0 64:4 100:0

2 39:5 91:5 100:0

3 62:8 96:4 100:0

4 78:9 99:3 100:0

Table 4 Table of mass convergence for the three level set-methods

Pure level-set Local correction Global correction

Level elpure 	lpure ellocal 	llocal elglobal 	lglobal
1 1:587�1 – 9:572�2 – 3:453�8 –
2 7:152�2 1:150 2:954�2 1:696 2:769�8 0.318
3 2:633�2 1:442 1:114�2 1:408 4:342�8 �0.649
4 8:971�3 1:553 3:897�3 1:515 6:412�8 �0.562

Thus, we measure the volume

mtl D
X

xi

H.'tl .xi //�xl�yl�zl (35)

at t D 30ms and compare it to the initial sphere volume at t D 0. In Table 3
the percentage of the still remaining volume is given. Mass conservation with the
pure level set method is difficult for this particular case: On the coarsest grid, no
mass is left after t D 30 ms and on the finest grid, we still loose about 20 % of mass.
However, both the local and the global volume correction method tend to near 100 %
mass conservation on the finest grid. As we expected, the global volume correction
is able to conserve 100 % of mass on all meshes, while the local volume correction
performs worse on coarser grids.

Last, we distinguish the effects of the pure level set method and the local and
global volume correction on the overall convergence behavior in space and time at
t D 2ms.

We compute the discrete error norm and convergence rate by

el D
ˇ
ˇmt

l
�m0

l

ˇ
ˇ

ˇ
ˇm0

l

ˇ
ˇ and 	lC1 D log el

elC1

log 2
; (36)

since there holds 2hl � hlC1 for the discrete mesh width. Our results are
summarized in Table 4, where we see at least first order convergence for the pure
level set method and the local volume correction in space and time. As expected, the
discrete error for the global volume correction is constant<10�7 due to the absolute
stopping criterion. Therefore, we obtain a convergence rate 	lglobal � 0.
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6 Conclusion

In this paper we presented the numerical simulation of droplet impact with two
different models for the dynamic contact angle in three space dimensions. First, we
used Yokoi’s model. The resulting droplet shapes were very close to those of the
experiments and the previous two-dimensional results. Furthermore, we measured
the droplet diameter over time, which confirmed the validity of the model and our
numerical method. Here, we saw that both, the global and the local volume correc-
tion, are able to conserve the mass of the droplet, while still giving accurate results.

In a next step, we employed the reduced interface formation model by Shikhmur-
zaev for the droplet impact simulation, combined with the global volume correction.
Here, we used Moffatt’s solution for the radial velocity on the one hand, and a far
field velocity value near the contact line but within the bulk flow on the other hand.
The droplet shapes computed with this model were very close to each other and in
good agreement with the experiment, as also confirmed by the computation of the
droplet diameter over time.

Additionally, we compared the contact line speed-contact angle curve of Shikh-
murzaev’s model with the angle-speed curves of the experiments and Yokoi’s
model. As was to be expected, Shikhmurzaev’s reduced model gives an approx-
imate smoothed angle-speed relationship compared to the practical experiments
and Yokoi’s results. Thus, a future challenge might be to implement the full
interface formation model without any restrictions for the capillary number in three
dimensions. But still, the reduced model offers an excellent trade-off between the
complex and costly full model and an easily implementable and accurate dynamic
contact angle model, which is not restricted to a specific wetting experiment like
Yokoi’s model is.

In a last step, we compared the pure level set method with the two volume
correction methods concerning their ability to conserve mass. On the finest grid,
both the local and the global volume-correction were able to conserve about 100 %
of the droplet’s mass, while the pure level set method only retained about 80 %. We
are currently implementing a coupled level set and volume-of-fluid method, which
should further improve the mass conservation behavior of our flow solver.
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A Parallel Multiscale Simulation Toolbox
for Coupling Molecular Dynamics
and Finite Elements

Dorian Krause, Konstantin Fackeldey, and Rolf Krause

Abstract It is the ultimate goal of concurrent multiscale methods to provide
computational tools that allow to simulation physical processes with the accuracy
of micro-scale and the computational speed of macro-scale models. As a matter of
fact, the efficient and scalable implementation of concurrent multiscale methods on
clusters and supercomputers is a complicated endeavor. In this article we present
the parallel multiscale simulation tool MACI which has been designed for efficient
coupling between molecular dynamics and finite element codes. We propose a
specification for a thin yet versatile interface for the coupling of molecular dynamics
and finite element codes in a modular fashion. Further we discuss the parallelization
strategy pursued in MACI, in particular, focusing on the parallel assembly of transfer
operators and their efficient execution.

1 Introduction

The goal of project C6 of the collaborative research center 611 “Singular Phenom-
ena and Scaling in Mathematical Models” at the University of Bonn, Germany,
was the development and implementation of novel computational techniques for
the concurrent coupling of different physical models in the numerical simulation of
solids. In particular, the project was concerned with multiscale coupling between
atomistic and continuum models. Such concurrent multiscale approaches can be
used, for example, in the numerical simulation of fracture processes. By using a
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molecular dynamics model to capture the complicated physical processes in the
vicinity of the crack tip and a computationally faster but less accurate continuum
model for the surrounding material, one can achieve good accuracy at a lower price
compared to fully atomistic simulations.

The design of efficient computational tools for such multiscale simulations is
itself a challenging task. This is even more so when building parallel simulation
tools. In this article we describe the design of the versatile multiscale simulation
toolbox MACI and discuss the novel parallelization approach used in MACI. We
introduce a thin yet capable interface designed for efficient coupling between
molecular dynamics (MD) and finite elements (FE) codes.

1.1 Related Work

While the design of algorithms for concurrent multiscale coupling is an active
field of research in the past years, relatively few work has been published about
implementation and parallelization of these algorithms. Broughton et al. [8] report
on a parallel multiscale simulation using the concurrent coupling of length scales
method. This work is limited to one-dimensional domain decompositions for the
molecular dynamics domain. Ma et al. [20] have implemented their MD/GIMP
method in the SAMRAI framework. In comparison to most multiscale methods
for the coupling of MD and finite elements their constraints are local. Xiao et al.
[28] describe a parallel implementation of the Bridging Domain method in a
grid environment. However, this work is restricted to one-dimensional simulations.
Anciaux et al. [2] have implemented the Bridging Domain method in the parallel
LIBMULTISCALE. Their approach is closest to our work.

In this article we present a versatile interface for coupling MD and FE codes. The
common component architecture (CCA) [3] aims to develop a component model for
high performance scientific computing. So far we are not aware of any work using
CCA for multiscale coupling between atomistic and continuum models.

It is one of the goals of the European MAPPER project [21] to develop software
and services for distributed multiscale simulations. While our work focuses on
tightly-coupled simulations on clusters and supercomputers, this work is aimed
towards the utilization of distributed resources in the European e-Infrastructure.

1.2 Article Contribution and Outline

The outline of the article is as follows. In Sect. 2 we review the multiscale simulation
method implemented in MACI, focusing on the computational aspects. In Sect. 3
we propose and discuss a thin interface allowing for the reusing coupling logic
with different molecular dynamics and finite element codes. This work is not
limited to the coupling algorithm presented in Sect. 2 but can be applied to a broad
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range of multiscale coupling methods. In Sect. 4 we discuss the parallelization of
MACI focusing on the description of the data and work distribution in the code. In
comparison to our previous work [18] the focus of this section is the description
of the high-level structure without a detailed discussion of the communication
mechanisms employed.

2 Multiscale Simulation Method

In this section we shortly present atomistic (micro-scale) and continuum (macro-
scale) models for the simulation of the behavior of a solid˝ � R

3. We then proceed
to discuss an approach to concurrent coupling of these models using projection-
based constraints.

2.1 Molecular Dynamics

On an atomistic level we can model ˝ as a discrete set of N atoms/particles A D
f˛g with coordinates and momenta .x˛ ;p˛/ 2 R

6. The motion of these particles is
governed by the Hamiltonian equations

Px˛ D @H

@p˛
D 1

m˛
p˛

Pp˛ D �
@H

@x˛
D �r x˛

V C Fext
˛

(1)

with the Hamiltonian H D K C V . Here, K denotes the kinetic energy of the
atomic systemK DP˛

1
2m˛

p2˛ ; V is the interaction potential V D V.x1; : : : ; xN /
and m˛ the particle mass. In this article, we concentrate on short-ranged potential
that allow for efficient (i.e., in linear time) computation of energy and forces using
a linked cell method [16] or Verlet neighbor lists [1].

As a particle method, MD does not require discretization in space but only in
time. Usually, lower order symplectic integrators (such as a second order Störmer-
Verlet scheme) are used for their computational efficiency and good long-term
stability properties.

2.2 Continuum Mechanics and Finite Elements

In continuum mechanics, the macroscopic deformation of a body ( � R
3 is

described by a volume preserving mapping ' W Œ0; T � � ˝ ! R
3, such that

'.ftg � ˝/ equals the configuration of the body at time t . The deformation field
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U D ' � 1 is the solution of the variational problem

Z

˝

	 RU � V dx D
Z

˝

	b � V dx �
Z

˝

P.U/ W rU dxC
Z


N

f � V dS ;

U D UD on �D C initial conditions for U and PU :

(2)

Here, 	 denotes the density in the undeformed configuration, b and f are external
body and surface forces (the latter one applied on �N � @˝) and P denotes the
first Piola-Kirchhoff tensor. Dirichlet values UD are applied on �D � @˝ . The test
function V is an element of an appropriate subspace of C 0



Œ0; T �IH 1.˝/

�
.

In this article, we concern ourselves with first-order (P1 or Q1) finite elements for
the spatial discretization of (2) resulting in a system of coupled partial differential
equations

RUA DM�1
A



FA C Fext

A

�
for each mesh node A ,

which has the same structure as Eq. (1). Hence, the same temporal discretization
methods can be applied.

2.3 Coupling Method

The goal of concurrent coupling schemes is to allow for interfacing highly accurate,
but expensive, simulation techniques (such as MD) with less accurate, but faster,
approximate schemes. For the latter we consider a continuum mechanics model
discretized on a finite element mesh of a mesh size that is sufficiently larger than
the average atomic distance. In the following we refer to this problem as MD-FE
coupling.

The challenge in the design of concurrent coupling schemes is implementing
appropriate transfer conditions between the micro- (MD) and macro- (FE) scales.
Since each scale features a different resolution, not all modes (e.g., pressure waves
of high wave number) can be resolved on all scales. The interface conditions need
to account for this, in order not to create spurious effects (e.g., wave reflection) that
spoil the solution accuracy.

In the following we review the coupling strategy using projection-based con-
straints described in [11, 12].

2.3.1 Coupling with Overlap

We consider an overlapping decomposition of the simulation domain˝ into an MD
domain ˝MD and an FE domain ˝FE with handshake region ˝H D ˝MD \ ˝FE.
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In˝H, the micro- and macro-scale coexist. Inspired by the Bridging Domain method
[29], volumetric constraints

0
ŠD G.u;U/ D O1u �O2U (3)

are used in [12] to couple the MD displacement field u and the FE displacement
field U. Here, the atomistic displacement field is given by u˛.t/ D x˛.t/ � x˛.0/.

In [12], the operators O1 and O2 are chosen to be equal to a projection ˘ from
micro- to macro-scale and the identity 1, respectively. The projection ˘ allows
for additively decomposing the micro-scale displacement field u into a macro-scale
field u and high fluctuation remainder u0 (cf. [27]):

u D uC u0 D ˘uC .1 �˘/ u :

Note that˘u0 D 0. Hence, the constraints G provide a pointwise coupling between
U and u while not affecting the high fluctuation field u0 which is not representable
on the macro-scale.

Inspired by non-conforming domain decomposition theory, in [10], an L2

projection is proposed for micro-to-macro scale transfer. An embedding of the

atomistic displacement space


R
3
�N

into L2.˝/ is constructed using scattered-
data approximation methods. Hence, given a vector .w˛/˛2A a function w\ is
constructed such that w\.x˛.0// � w˛ . One possible approach for constructing
w\ 2 X � L2.˝H/ is to introduce a set partition of unity basis functions  ˛ (see,
for example, [13]) with

P
˛2A  ˛ D 1 and define

w\ D
X

˛2A
w˛ ˛ :

Given the embedding of


R
3
�N

into L2 we can define the projection˘ W 
R3�N !
SH by

.˘u;V/� D
�

u\;V
	

�
for all V 2 SH:

Here, SH denotes the first-order finite element space on˝H (we assume that˝H can
be written as the union of a set of elements in the tessellation of ˝FE) and .�;�/�
equals the L2 scalar product weighted by the continuum mass density 	.

The assembly of the L2 projection ˘ requires the computation of (and quadra-
ture on) the cuts between the elements in the tessellation of ˝H and the support of
the basis functions  ˛ . Even though, this computation needs to be performed only
as part of the simulation setup (i.e., not during the time integration), the assembly
can be costly. Alternatively, a least-squares projection
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˘u D argminV2SH

1

2

X

˛

m˛ju˛ � V .x˛.0//j2

has been discussed in [11].
Let us point out that in either case we can write ˘ D QM�1

T with a mass matrix
QM and a rectangular matrix T and hence we can equivalently use the constraints

G D Tu � QMU.
The coupled equations of motion for the micro- and macro-scale are derived from

a weighted Hamiltonian/Lagrangian (cf., [12,29]) resulting in a system of algebraic
differential equations. We use a RATTLE integration scheme, requiring two linear
solves per time step.

2.3.2 Damping High Fluctuation Modes

The design of the projection-based constraints G ensures that the high fluctuation
field u0 is not affected by the constraints, irrespective of the resolution of the finite
element mesh. To avoid spurious reflections at @˝MD, a modified perfectly matched
boundary layer (PML) method is proposed in [12] which (approximately) removes
the high fluctuation field and has only a minor effect on the information transfer
between micro- and macro-scale. To this end, an additional force term

fPML
˛ D �2d .x˛.0//

�
.qv/˛ C d .x˛.0// .qu/˛

	

is added to the MD forces f˛. Here, d W ˝MD ! Œ0;1/ is a scalar function
with support in ˝H and q D 1 � N˘ , N being the interpolation operator from

SH !


R
3
�N

.

2.3.3 Complete Algorithm

In Algorithm 1 the seven most important steps in the RATTLE integration from
time t to time t C 
 are explained. As mentioned earlier, two linear systems need to
be solved in each timestep to compute the Lagrange multipliers � and �. We refer
to [12] for the definition of the symmetric positive definite matrix�.

Two simulation results for a wave propagation benchmark and mode-I fracture
computation using this concurrent coupling technique are shown in Figs. 1 and 2.

3 Multiscale Simulation Toolbox

The development of capable, efficient and scalable molecular dynamics or finite
element codes is a complicated and labor-intensive task. Unless the scope of
the application is limited, it is therefore often infeasible to develop a multiscale
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Algorithm 1: RATTLE time integration scheme
1. Apply standard “Verlet kicks” and “Verlet drifts” to the micro-and macro-scale

displacements and velocities yielding trial values u�, v�, U�, V�:

�
v�

V�

�
D
�

vn

Vn

�
C 


2

�
m�1fnC1

M�1FnC1

�
;

�
u�

U�

�
D
�

un

Un

�
C 


�
v�

V�

�
;

where fn, Fn denote the forces computed in step 4 of the previous time step.
2. Evaluate the displacement residual G� D Tu� � QMU� and solve G� D �� for �.
3. Correct the trial values

"
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#

:

4. Evaluate forces fnC1, FnC1 according to the Hamiltonian equation (without constraints).
5. Add the damping term fPML to the MD force fnC1.
6. Compute trial velocity values

�
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�
D
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vnC
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#
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2

�
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M�1FnC1

�
:

7. Evaluate the velocity residual PG� D Tv� � QMV� and solve PG� D �� for �.
8. Correct the velocities

�
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�M�1 QMT
�

#

:

simulation tool as a single monolithic code that implements MD and FE functional-
ity along with the coupling logic. Instead we focus on reusing existing, established
molecular dynamics and finite element implementations, such as TREMOLO [16],
LAMMPS [19, 23] and UG [5].

In this article we are concerned with the design and efficient implementation of
concurrent coupling codes for MD-FE coupling that allow for reuse of the coupling
logic with different implementations of the molecular dynamics and finite element
functionality. In comparison to the on-going research on the common component
architecture [3], we are restricting ourselves to the scenario of concurrent MD-FE
coupling and expose more details (e.g., about the data distribution) to the coupling
code to simplify the development of efficient and scalable code. Additionally we
impose some restrictions onto the MD and FE codes that we consider (see below).
We have verified that our assumptions are fulfilled by the major molecular dynamics
and finite element software packages that are discussed in the literature.
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Fig. 1 Results of a two-dimensional wave propagation benchmark at the beginning, middle and
end of the simulation. A radial wave propagates from˝MD into˝FE on the lower and upper side of
the MD domain. The elongation in z-direction equals the (scaled) magnitude of the displacement
field

Fig. 2 Results of a mode-I fracture simulation using 2,496 finite elements and 62,390 atoms.
Surface forces are applied on the left and right boundary of ˝FE. (a) Velocity distribution. The
velocities can be seen to fluctuate strongly in ˝MD but to be smooth towards the boundary of the
handshake region. (b) Distribution of atoms and finite elements over 12C 4 processing elements

3.1 Interface Design

In this section we propose a simple yet versatile interface for coupling molecular
dynamics and finite element simulations. Our work addresses modularity, perfor-
mance and parallelization. We assume that the FE component is parallelized with
a standard domain decomposition approach based on a partition of elements. We
do not expose halo or ghost-cells through the presented interface. We moreover
assume that the finite element mesh is statically balanced, i.e., that no dynamic load
balancing (as used, for example, for adaptive mesh refinement) is performed. For the
MD component we also assume a non-overlapping decomposition of the particles,
i.e., each particle is stored on exactly one processing element. These assumptions
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are fulfilled by the majority of the molecular dynamics codes known to the authors,
whether they use a domain decomposition (as do most codes such as TREMOLO,
LAMMPS, NAMD [22] and DESMOND [7]) or particle-based decomposition (as,
e.g., used by DDCMD [26]). Note that the (potentially) dynamic distribution
of particles is deliberately exposed to the coupling code for parallel scalability
considerations. For further discussions of the parallelization aspects we refer to
Sect. 4.

Our approach is based on the following three pillars:

• Use of opaque handles for particles, nodes and elements to hide the details of the
data layouts used by the MD and FE components.

• Use of access epochs to hide differences in data representation and allow to
couple codes working in separate address spaces.

• The use of piggybacking to manage metadata in a simple and effective manner.

In the following we elaborate on theses three aspects of the coupling interface.

3.1.1 Opaque Handles

In general, the data layouts used by different MD or FE codes will depend strongly
on the choice of the algorithms and the scope as well as the intended use case for the
application. For example, the data layout used by a MD code based on a linked-cell
method will be very different from the data layout used in a code that utilizes Verlet
neighbor lists. Similarly, the data layout in a FE code will be different depending on
whether the code supports dynamic (e.g., adaptively refined) or only static meshes.
To hide these differences, the proposed interface provides opaque handles for the
local particles, nodes and elements on a processing element in the form of iterators
ParticleHandle, NodeHandle and ElementHandle. These iterators implement
increment, comparison and assignment operators.

Since the abstraction of the data layout necessarily incurs a performance penalty,
these iterators are intended for use in gather/scatter operations that copy the
component data from or to a buffer in a layout suited for the coupling code.
Each iterator provides a GetLocalId() function that can be used to address a
contiguous buffer. Moreover, to have a unique local identifier for all mesh nodes
in ˝H we provide GetUserChosenId() and SetUserChosenId() functions for
NodeHandle that allow to assign arbitrary (local or global) indices to the mesh
nodes (for ParticleHandle this index can be stored as part of the PiggybackType,
see below). Access to the particle data and dynamic variables (ParticleMass,
ParticlePos, ParticleDispl, ParticleVel, ParticleForce, FeDispl, FeVel,
FeLumpedMass) is possible through static functions taking a ParticleHandle or
NodeHandle instance as an argument. Note that these functions are application
specific (in this case targeted to coupled simulations of solids) but the approach can
be generalized easily. Since the data distribution of the MD component can change
dynamically in a parallel simulation, the life time of a ParticleHandle should be
limited to the scope of the coupling routine that created it.
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To allow for parallelization of the coupling code we also expose node ownership
information (for nodes shared by multiple processing elements) and we provide
ParallelSumup, ParallelMax and ParallelCopy routines to compute the sum
(or max) of values stored at duplicated mesh nodes. These functions can be more
efficiently implemented by taking advantage of the communication primitives of the
FE component.

3.1.2 Access Epochs

MD and FE components do not always work with compatible data representations or
with the same reference frame. For example, some MD codes rescale the simulation
domain to the unit cube Œ0; 1�3. Hence, all coordinates, velocities and forces need
to be scaled before being accessed by the coupling code. Similarly, any updated
particle position needs to be rescaled. Moreover, updating the particle positions
might require a subsequent exchange of particles that have crossed subdomain
boundaries (if the MD component uses a domain decomposition approach).

To cope with these difficulties we propose the use of access epochs, which
work similar to RMA epochs in the MPI standard [14]. The coupling interface
provides subroutines AccessBegin(int), AccessEnd() and CanAccess(). A call
to AccessBegin starts an access epoch. The bit field passed to AccessBegin

specifies which data fields can be accessed in read, write or read-write mode during
the epoch. Access to any data field (via the functions ParticlePos, FeDispl,
etc.) outside of an access epoch is illegal. An access epoch ends with a call to
AccessEnd. The function CanAccess allows to check whether access is permitted
(in particular for debugging). For example, in Algorithm 1, the third step would be
wrapped by calls to AccessBegin(VEL RD | VEL WR | DISPL RD | DISPL WR)

and AccessEnd() (note that “|” is a bit-wise or operation in C allowing to build
bitfields from, e.g., enum variables). Providing detailed information about read and
write accesses to the state variables allows the interface code to optimize the actions
performed in AccessEnd(). While it is likely that in a parallel MD code, AccessEnd
needs to trigger an exchange of particles between processing elements after step
three, this usually is not required after step six, since in this step only velocities
are modified. The calls to AccessBegin and AccessEnd are collective, i.e., all MD
or FE processing elements need to call these functions in order to achieve progress.
The rationale for this decision is that AccessEnd might require exchange of particles
and hence (global) communication.

Beyond a transparent handling of the differences in data representation between
MD and FE components, this epoch-based design also permits for coupling codes
storing data in a different address space than the one of the coupling code. For
example we have successfully coupled MACI with a CUDA MD code. In this
case, the coupling code ran on the CPU while the particle data resided in the
graphics card memory. In AccessBegin and AccessEnd data is copied between
CPU and GPU memory. The use of asynchronous copies is possible but would
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require modifications of the MD code to ensure that the MD code blocks for the
completion of the host-to-device copy started in AccessEnd at the appropriate time.

3.1.3 Piggybacking of Metadata

For the efficient implementation of a concurrent coupling scheme such as
Algorithm 1, a set of states need to be maintained for each particle. For example,
each particle with x˛.0/ 2 ˝H is assigned a local index and needs to store a
weight w 2 .0;1/ as well as the value d .x˛.0//. Depending on the algorithm
and use case, the amount of data and its structure can vary. In order not to impact
the scalability of the coupling code this data should be migrated together with
the particles. Hence, it appears impracticable to leave the management of it to the
coupling code since particle migration is managed by the MD component. Here,
we piggyback this data onto the particles and use the communication subroutines
of the MD code to exchange it along with the other state of the particle (positions,
velocities, etc.). This might require modification of the MD code, for example, to
add a PiggybackType to the Particle structure and to ensure that the additional
data is communicated correctly. We have done these modifications in a copy of
the TREMOLO code in less than 50 lines of code (mainly to add serialization and
de-serialization of PiggybackType). For other codes, such as LAMMPS even less
modifications may be required since serialization and de-serialization routines can
be easily added by defining a new AtomVec class.

Note that we do not provide a PiggybackType for the FE component because
we restricted ourselves to statically balanced meshes. However, the same piggyback
technique can used in dynamically balanced finite element simulations.

3.2 Description of the MACI Code

We have implemented a new concurrent coupling code MACI (Multiscale atomistic
continuum interface) based on the interface defined in the previous section. In this
section we shortly describe the architecture of MACI, as depicted in Fig. 3.

MACI is written in C/C++ for efficiency and portability. Since C, C++ and Fortran
are the predominant programming language in high performance computing, this
choice allows us to interface to most MD and FE codes without the need for
additional language translation (for example, via BABEL [25]). MACI is scriptable
using the Python programming language. The translation from C++ to Python
is performed using the SWIG tool [6]. It is worth pointing out that while we
believe that scripting capabilities are of great advantage for complicated scientific
applications like MACI, the use of Python in this project had some inevitable
impact on portability (for example, onto earlier Cray massively parallel systems)
and complexity (in particular the handling of dynamically shared objects without
circular references).
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Fig. 3 Overview of the architecture of the MACI multiscale simulation tool

MACI consists of three major components (MD component, FE component,
coupling component). The code is designed to run in an SPMD (single program,
multiple data) fashion. Each processing element runs the coupling code along with
either MD or FE code. Hence, MACI needs to run with at least two processing
elements. Each component performs communication using different MPI commu-
nicators, effectively shielding the MD and FE code from mutual interference.

The coupling code implements functionality for managing the handshake geom-
etry (to allow, for example, to find all particles with x˛.0/ 2 ˝H), for the assembly
of the transfer operator ˘ , the high fluctuation filter q and �; for computing
the Lagrange multipliers �, � (cf. Algorithm 1) and the corresponding Lagrange
accelerations as well as for the computation of fPML. To solve the linear systems
arising in the RATTLE integration scheme, MACI can use iterative solvers from
the PETSC [4] and TRILINOS [17] packages as well as the direct solver packages
UMFPACK [9] (if the handshake region ˝H is not distributed over multiple FE
processing elements).

4 Parallelization Aspects

Molecular dynamics and finite element workloads each are well parallelizable and
highly scalable implementations do exist. To allow for the treatment of interesting
problem sizes using concurrent multiscale methods, their parallelization is of high
interest. Unfortunately, the coupling of two scalable codes is not readily scalable. In
fact, the parallelization of the coupled code introduces several challenges related to
the data and work distribution and load balancing. In this section we describe how
these challenges are approached in MACI.
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Fig. 4 The challenge of dynamic particle distribution in parallel concurrent MD-FE coupling.
Particle migration introduces new edges in the communication graph

4.1 Challenges

Finite elements codes are usually parallelized using an element-wise partitioning of
the computational mesh (computed, for example, via graph partitioning algorithms).
As mentioned earlier, we restrict ourselves to statically balanced meshes in which
this domain decomposition is kept fixed over the course of the (time-dependent)
simulation.

In contrast to this fixed partition, molecular dynamics codes that support
short-ranged interactions usually feature dynamically balanced load since the pair
interaction lists (i.e., the set of tuples .˛; ˇ/ of particles that interact with each
others) depends on the current particle positions. Hence, to achieve maximum
locality in the expensive force evaluation, particles are migrated between processing
elements. One common scheme (found, e.g., in LAMMPS, TREMOLO, NAMD

and DESMOND) is to statically decompose the simulation box B D S
p Bp

into subdomains Bp (one for each processing element) and to assign particles to
processing element p if x˛.t/ 2 Bp . Hence, if a particle crosses a subdomain
boundary it is assigned to a different processing element.

In the context of our concurrent coupling strategy the dynamic data distribution
of particles is a challenge since our displacement-based constraints (3) are non-
local. In fact, we have TA˛ ¤ 0 if and only if meas .supp ˛ \ supp �A/ > 0,
where �A is the nodal basis function with �A.xA/ D 1. Since supp ˛ is a polygon
or sphere centered at the initial particle position x˛.0/ we can have TA˛ ¤ 0 even if
jx˛.t/�xAj is very large, cf. Fig. 4. This implies that the communication graph (i.e.,
the graph with processing elements as nodes and edges between pairs of nodes that
exchange messages) is dynamically changing. Thus a scalable implementation of
the multiplication by the matrices T (the scale transfer) and q is much complicated
compared to “classical” parallel sparse linear algebra, cf. [18].
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Fig. 5 Speedup plots from a two-dimensional fracture simulation with 142,628 atoms and 28,178
finite elements on up to 32 cores. The simulation was run on an 4� DDR Infiniband cluster with
dual-socket quad-core Barcelona Opteron nodes. (a) Speedups (for the optimal choice of MD and
FE processing element). (b) Ratio between time per time step in the worst and best configuration

Additionally, parallel concurrent coupling introduces novel challenges for load
balancing. Much research has been devoted to devising and implementing good load
balancing schemes for MD and FE algorithms (and hence for Steps 1, 3, 4, 6 and
8 in Algorithm 1). However, Steps 2, 5 and 7 introduce additional load on a subset
of processing elements. For example, the matrix � is of size L � L where L is the
number of mesh nodes in˝H. In practiceL is much smaller than the total number of
mesh nodes or particles and hence the (iterative) solver for �� D G� usually does
not scale well enough to distribute this task over all processing elements. Instead
only a subset (e.g., all the FE processing elements that own cells intersecting the
handshake region) will be responsible for solving the linear system. This introduces
a strong load imbalance. Even worse, the synchronous nature of the RATTLE
integrator does not permit the other processing elements to overlap the wait time
with other computations (since the Lagrange forces need to be available before the
algorithm can proceed), resulting in unwanted idle time.

In this article we concentrate on the first challenge. At this point MACI does not
provide functionality to optimize the load balancing. This is a strong limiting factor
for the parallel efficiency (cf. Fig. 5a). As can be seen in Fig. 5b, for a fixed number
of processing elements, the choice of the number of MD and the number of FE
processing elements is crucial for the performance even on a moderate number of
cores. Here, a priori load models need to be developed to assist users in finding an
optimal configuration.

4.2 Data Distribution in the MACI Code

MACI is written in an MPMD (multiple programm, multiple data) fashion (even
though it is implemented as a single executable), i.e., processing elements that run
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the MD component (plus coupling code) take a (mostly) disjoint execution path
compared to the execution path of the FE processing elements. Any exchange of
data between MD and FE processing elements is done via message passing. To
decrease communication cost it might be advantages to use threading and let one
MD and one FE processing element share one address space. We refrained from
this design in MACI since it complicates the coupling code (which in this case must
be able to cope with one FE and one MD component) and requires good a priori
knowledge about the communication graph including the communication volume
per edge. Since the graph is dynamic, it usually is not feasible to do an optimal
process mapping statically.

An example of the data distribution used by MACI is shown in Fig. 2b. In this
simulation, the MD domain is distributed over 12 processing elements. The FE mesh
is distributed over four processing elements. All the datastructures (including the T,
q and�matrices) are distributed over the four FE processing elements and the eight
MD processing element that own mesh nodes with xA 2 ˝H or owned (at t D 0)
particles in the handshake region.

The matrices T, q and � are distributed by row. For T and � the Ath row
is stored on the processing element that owns the node A (note that the cellwise
mesh decomposition results in the duplication of mesh nodes on several processing
elements). Also for the matrix q we use a static distribution: The ˛th row is stored on
the processing element p with x˛.0/ 2 Bp. This static decomposition of q implies
that the matrix-vector multiplication y D qx requires two communication steps: one
gather operation to collect x values on the processing elements storing rows of the
matrix and a second scatter operation, after the local matrix vector multiplication,
to send the entry y˛ to the current owner of particle ˛. On the other hand a dynamic
distribution of q (where the ˛th row of q is stored on the processing element owning
the particle ˛) would require MD processing elements to be informed about the
particle distribution on other processing elements. In particular if q˛ˇ ¤ 0 and
ˇ 2 Bq , the processing element q would need to know on which processing element
particle ˛ is located. Maintaining such a mapping from particles to processing
elements in a scalable manner is itself very complicated.

The sets fA j TA˛ ¤ 0g,
˚
ˇ j qˇ˛ ¤ 0

�
are stored as part of the PiggybackType

structure of the particle ˛ and hence migrate with the particle. This allows MD
processing elements to create lists of data item that have to be send to either FE
processing elements (multiplication by T) or handshake MD processing elements
(multiplication by q). Note however that this information is only available on
the sender side. To the receiver side, the particle data distribution is unknown,
cf. Sect. 4.4.

4.3 Parallel Assembly

In order to avoid bottlenecks in the computational workflow it is crucial to
parallelize the complete application, in particular, the assembly of the transfer
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Algorithm 2: Parallel assembly of T
Exchange tree root bounding boxes between MD and FE processing elements.
On FE processing elements: Build lists of elements E intersecting the bounding boxes of

the MD processing elements.
Send element lists from FE processing elements to MD processing elements.
forall the elements E received (only on handshake MD processing elements) do

Query (locally) all particles ˛ with meas .supp ˛ \E/ > 0.
forall the found ˛ do

forall the Q as in Equation (4) do
Compute intersection Q \E .
Perform quadrature on the intersection.

Send computed values back to the FE processing element.
On FE processing elements: Merge the received lists and construct sparse matrix

datastructure.

operator T and of the interpolation matrix N. In MACI, the matrices q and � are
computed from T, QM and N using sparse matrix-matrix multiplications. Compared
to direct assembly of the matrix entries (used initially in MACI), this approach is
slower but the additional flexibility allows us to easily implement different transfer
operators.

For a given mesh node A, the assembly of T and N requires the identification of
all particles ˛ 2 A such that either meas .supp ˛ \ supp �A/ > 0 or �A.x˛/ ¤ 0.
To find all ˛ in (quasi-)optimal time we use (parallel) tree queries.

In a first step, a parallel quad- or octree is build with particles as leaves. The
bounding boxes of intermediate nodes are chosen in a leaf-to-root pass such that
the bounding box of a parent node contains the union of the bounding boxes of all
children. On the leaf level, the bounding box is chosen to be the support of ˛ . Note
that, different from [24], we do not use the tree to construct !˛ D supp ˛ , since
we require an algorithm producing open covers without adding additional points to
the set of particles. Instead we make use of the lattice structure of the MD system to
choose the patch size h a priori in such a way that

!˛ D
3Y

iD1

�
.x˛/i � 1

2
hi ; .x˛/i C 1

2
hi

�

yields an open covering of ˝H. When using Shepard’s method, the evaluation of
the basis function  ˛ requires the detection of overlapping patches. This can be
achieved by using again a tree. In MACI, the rectangular domain decomposition
used by most MD applications is employed to compute a priori potential remote
intersection partners (this is possible since we know the patch size h). These lists
are exchanged and inserted into the local tree. Once this extended local tree is
constructed, all intersection queries can be performed locally. The assembly of
the transfer operator T is performed on the MD processing elements as shown in
Algorithm 2.
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Note that basis functions  ˛ computed with Shepard’s method are only C 0. To
achieve good accuracy in the computation of T via numerical quadrature, we need
to compute a partition

!˛ D
[

Q

Q such that  ˛ jQ 2 C1: (4)

This is possible (though not inexpensive) since our patches !˛ are axis parallel
quadrilaterals or hexahedra.

4.4 Runtime Support

In this section we consider the implementation of Steps 2, 5 and 7 in Algorithm 1
in MACI. As noted in [18], the computation of the Lagrange forces TT ��1G�
and TT ��1 PG�

can be handled in the same way as the multiplication by q. These
operations can be written as

Scatt ı Op ı Gatt ; (5)

where Scatt and Gatt are time-dependent (since the particle distribution is changing
over time) scatter and gather operations and where Op is some (black box) operation
executed on a subset of processing elements (the workers). For example, in Step 2
of Algorithm 1, the black box operation is given by

Op.z/ D TT ��1 
Tz � QMU�� :

Finite element processing elements owning handshake mesh nodes (or equivalently,
a non-zero row of T) are designated as workers. The computation of the Lagrange
multipliers required for the correction of the FE displacement is a side effect of the
execution of Op on the worker processing elements.

Note that the choice of the workers and the order of the input and output data to
and from Op is not time-dependent. Hence, Gatt and Gatt 0 (t ¤ t 0) are required to
order the input data for Op in the same way. Similarly, Scatt receives the output of
Op always in the same order.

The advantage of this approach is that the data distribution is transparent to the
workers. In particular no adaptation of the worker data structures are required when
the particle distribution changes (this is to compare with the approach in [2] where
the worker datastructures are updated using an event-based notification system).

The implementation of the gather and scatter operations are based on the
piggybacked metadata. As noted in Sect. 4.2, the piggyback data allows MD
processing elements to build send lists. However, workers/receivers do not know
about the particle distribution and therefore cannot post matching receives. To cope
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Algorithm 3: Implementation of step two in Algorithm 1
1. Pack displacements into contiguous buffer.
2. On MD processing elements: Extract list of workers and corresponding local indices for

each particle.
3. On FE processing elements: Compute QMU�.
4. Communicate MD displacements to worker (MEXICO).
5. On worker: Compute G� using the input buffer containing MD displacements.
6. On worker: Solve �� D G�.
7. On worker: Compute TT� and store the result in the output buffer.
8. Communicate Lagrange forces to MD processing elements (MEXICO).
9. Correct displacements and velocities.

with this problem, in [18] the use of one-sided communication or remote memory
access is proposed.

In MACI we use the newly developed communication library MEXICO [18] to
implement the operation (5). The unique feature of MEXICO is that the library
provides gather and scatter operations in the described asymmetric setup. All
information required by MEXICO is provided by the source processing elements
(processing elements that provide data to Gatt ) and target processing elements
(processing elements that retrieve data from Scatt ). In MACI this information (the
list of worker processing elements including local indices in the input and output
buffers of Op) are stored in the piggyback data. MEXICO can use MPI RMA, MPI
Point-to-point, MPI collectives, the GLOBAL ARRAYS library [15] or SHMEM for
inter-process communication.

In Algorithm 3, the implementation of the second step in the RATTLE integration
scheme (cf. Algorithm 1) is shown. The computational work is performed in Steps
5, 6 and 7. The input and output buffers for these operations are ordered according
to an a priori (during the assembly phase) chosen ordering. Hence, the sparse-matrix
storage scheme for, e.g., T, can be kept unmodified over time.
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A Moving Least Squares Approach to the
Construction of Discontinuous Enrichment
Functions

Marc Alexander Schweitzer and Sa Wu

Abstract In this paper we are concerned with the construction of a piecewise
smooth field from scattered data by a moving least squares approach. This approxi-
mation problem arises when so-called enrichment functions for a generalized finite
element method are computed by a particle scheme on a finer scale. The presented
approach is similar in spirit to the so-called visibility criterion but avoids the explicit
reconstruction of the location of the discontinuity.

1 Introduction

Generalized finite element methods (GFEM) were essentially introduced [6] to
attain numerical schemes whose convergence properties are not limited by the
regularity of the solution u of the considered partial differential equation (PDE),
see also [1, 2, 4, 5, 7–9, 11–13, 21–23, 28, 29]. This desirable property is obtained
in GFEM via the use of so-called enrichment functions which can represent the
(dominant) non-smooth behavior of the solution. Thus, the approximation space
V GFEM used in a GFEM comprises classical piecewise-polynomial and problem-
dependent discontinuous and singular shape functions; i.e.,

V GFEM D V smooth C V enrichment D V smooth C V discontinuous C V singular ; (1)

and we attain an improved convergence behavior essentially if the sought solution
u 2 H t .˝/ e.g. admits a splitting

u D us C ue (2)
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Fig. 1 Contour plot of the Von Mises stress on the deformed material configuration for a crack
problem (left) and a surface plot of the approximation of a Poisson problem on a L-shaped domain
(right)

such that ue 2 V enrichment and us 2 H r.˝/ with r > t . Thus, this information must
be available a priori to be incorporated in the design of the trial space V GFEM, i.e. in
the selection of the basis functions for the enrichment space V enrichment.

If the discontinuities and singularities of the solution are directly induced by
geometric information as for instance at re-entrant corners or in crack problems,
compare Fig. 1, this a priori knowledge is (often) available in closed form.

For a straight crack in two-dimensional linear fracture mechanics appropriate
enrichment basis functions are obtained from an asymptotic expansion of the
solution, compare [16, 26]. However, in three dimensions or for a curved crack,
the quality of these enrichment functions is limited and the improvement in the
convergence behavior is less pronounced. Thus, we must either employ adaptive
refinement in the global GFEM or we can try to improve on the quality of the
enrichment functions. This may either be achieved in an a priori fashion [30, 31] or
a posteriori. Here, one technique is the global-local approach [10, 17] which allows
for the correction of the enrichment functions in an iterative fashion. The approach
proposed in [3] is aimed directly at the construction of optimal local approximation
spaces for the considered PDE problem via the approximate solution of a sequence
of local cell problems.

The common feature of all enrichment strategies is that the enrichment space
must resolve an intrinsically finer scale or feature of the solution than the resolution
of the standard approximation space V smooth admits. Thus, enriched GFEM can
be interpreted as a multiscale finite element method where the construction of the
enrichment space aims at the resolution of the fine scale features of the solution
u �˘smoothu, i.e. the components of u that cannot be approximated well in V smooth.

In this paper, we assume that this approximation of the fine scale components is
carried out by a particle method and focus on the (re-)construction of a respective
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field on the continuum scale which can be used as an enrichment function in
a GFEM. The assumption that a particle method is employed on the fine scale
stems from the fact that many physical processes such as crack formation and
crack initiation, which we consider as our reference problem, are naturally included
in particle models whereas they require additional assumptions and equations in
classical continuum models. Thus, we focus on the construction of enrichment
functions with discontinuities and singularities from given particle data.

The remainder of this paper is structured as follows. First we discuss the types
of data we assume to get from the particle method used for the construction of
enrichment functions. This will turn out to be data admitting a broad class of
underlying particle methods with a natural representation of particle adjacency.
Next we give a brief review of the Moving Least Squares (MLS) Method for
approximating scattered data. Then we discuss an adjacency data based modification
of the MLS weights that allows for the construction of discontinuous approximants.
Finally we give some application examples for simple standard discontinuities and
conclude with some remarks.

2 Particle Data

As basis for the construction of enrichment functions � W ˝ 
 R
d ! R we assume

to have access to

particle positions xi 2 ˝ ; (3a)

function values ui 2 R and (3b)

adjacency data Ai;j D
(
1 no discontinuity

0 discontinuity
between particles xi; xj (3c)

from the fine scale approximation by a particle method. We first remark that � W
˝ ! R is not a restriction as vector fields can be simply modeled as several such
interpolation problems. Except for the Ai;j this is the basis for a regular textbook
interpolation or approximation problem. However, as stated in the introduction, we
want to construct fields on the continuum scale from the fine scale particle data
which may be discontinuous or may have discontinuous derivatives.

On the particle level an adjacency matrix based representation of known fault
lines seems very natural. With molecular dynamics the nucleation and growth
of microfractures can be modelled by using bonded potentials and checking for
individual bond breakage. This kind of representation also allows the integration of
adjacency information strictly based on function values as used in edge detection.
Furthermore we require no such thing as level set functions or even an explicit mesh
for lines of discontinuity.
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Discontinuous interpolation techniques, e.g. [20, 33], often rely on such a direct
representation of discontinuities or extract these from function data. On the other
hand many algorithms from image analysis deal with discontinuities, e.g. edge
detection, but generally do not take more information than just the image into
account, i.e. just .xi; ui/.

Note, however, that we are not concerned with the solution of an arbitrary
approximation problem of discontinuous functions (which is usually stated in
different function spaces). The fields u we are interested in are piecewise smooth
functions e.g. uj˝k

2 H t .˝k/ for ˝k � ˝ and k D 1; 2; : : : ;M with (relatively)
small M . Thus, our focus is on the automatic identification of such discontinuities
from function values and adjacency information only to attain a piecewise smooth
field.

3 The Moving Least Squares Method

The Least Squares Method is a standard meshfree method for approximation of
scattered data. By minimizing the (global) error functional

J.�/ D
NX

kD1

.�.xk/� uk/
2 (4)

over some function space V.˝/ we obtain at one � 2 V.˝/ approximating all data
in an average sense. This minimization problem is typically posed in some linear,
finite dimensional space V D span .p1; � � � ; pDV/, often the space of polynomial
functions PK for some K. This leads to a single linear system

�
NP

kD1
pi.xk/pj.xk/

�DV

i;jD1

�
˛j

�DV

jD1

D
�

NP

kD1
pi.xk/uk

�DV

iD1

; (5)

whose solution gives the coefficients of the global solution u D PDV

iD1 ˛ipi. With
this approach local changes to ui or xi generally change the whole global solution u
everywhere.

A localized weighted extension to remedy this issue can be obtained by the inclu-
sion of weighting functions Wk W ˝ ! Œ0;1/, usually splines or Gaussians. For
each x, Wk.x/ should signify, how important data uk at xk is for the approximation
at x 2 ˝ . This leads to the Moving Least Squares Method [14,15,18,19,25,27,32].
Taking (4) and adding the weightsWk leads to a family of x dependant functionals

Jx.�/ D
NX

kD1

Wk.x/ .�.xk/� uk/
2 : (6)



A Moving Least Squares Approach to the Construction of Discontinuous . . . 351

defined on some possibly x dependant function spaces Vx. The minimizer �x 2 Vx

of Jx now denotes an approximation at a specific location x 2 ˝ only; i.e. just the
value �x.x/ is relevant from �x. The global solution � is then simply the collection
of all the pointwise approximations �x.x/, i.e.

�.x/ D �x.x/ : (7)

As with regular Least Squares, taking �x from some linear space

Vx D span


px;1; � � � ; px;DVx

�
;

we obtain the minimizer of (6) via the solution of a linear system Gx˛x D fx, i.e.

�
NP

kD1
Wk.x/px;i.zk/px;j.zk/

�DVx

i;jD1„ ƒ‚ …
DWGx

�
˛x;j

�DVx

jD1„ ƒ‚ …
DW˛x

D
�

NP

kD1
Wk.x/px;i.zk/uk

�DVx

iD1„ ƒ‚ …
DWfx

; (8)

where zk D xk� x. This yields

�.x/ D �x.x/ D
DVxX

iD1
ux;ipx;i.0/ : (9)

The formulation is given in terms of shifted coordinates xk� x rather than xk, i.e. the
basis functions are given as f .y/ D g.y� x/. This is useful since with V D PK

and the usual monomial basis this shifted approach yields �.x/ D ˛x;1, compare
Chap. 22 of [15]. Additionally shifting and scaling relative to the evaluation point is
a standard technique for improvement of stability.

For stability concerns one might also circumvent the direct solution of (8) by
“solving”


p
Wk.x/px;j.xk� x/

�
kD1;:::;NIjD1;:::;DVx„ ƒ‚ …

DWAx



˛x;j
�DVx

jD1
D 
pWk.x/uk

�N

kD1„ ƒ‚ …
DWbx

(10)

via a pseudoinverse obtained from a singular value decomposition of Ax to obtain a
minimum of (6), as seen in [24], Sect. 2.6.

Note that in the most general case the approximation is defined by single
evaluations of different functions �x from different spaces Vx. Even if the local
approximations �x stem from the same function space Vx D V , generally � … V .
For instance taking Shepard approximation [27], i.e. V DP0 D span.x 7! 1/, � is
not a constant function, as it would be with regular least squares with V DP0.
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Fig. 2 Surface plot of a particular weight Wk (left) and its support (right)

4 Adjacency Based Modification

Recall that we are interested in the construction of piecewise smooth functions. The
smoothness of � in (9) depends on the smoothness of the weightsWk, the distribution
of xk and the smoothness of the functions found in Vx. Let us assume that the
employed approximation spaces Vx D V are identical throughout the domain. This
leaves us the particle distribution and the weight functions to control the regularity
of �. In our setting the particle distribution comes from a simulation itself and thus
is not a free parameter that we may manipulate. Hence, we may affect the regularity
of � through the choice of the weight functionsWk only.

To this end, we will modify the classical MLS weights Wk, e.g. see Fig. 2, with
the help of the adjacency information A in such a way, that the approximation at a
particular location x 2 ˝ employs information of nearby particles xk in a strongly
weighted fashion. Consider the particle xk which is closest to the point of evaluation
x 2 ˝ . Now assume that there is another particle xl in the vicinity of x that would be
used in the classical MLS approximation but is not connected to the particle xk; i.e.,
there may be a discontinuity between particles xk and xl. Then, we want to limit or
reduce the influence of the value ul at xl on the value �x at x whereas the influence
of uk at xk should be increased. In essence, the value of the weightWk.x/ at x should
be much larger than the value of the weightWl.x/. Such a modification of the weight
functions is attained in the following way.

Assume that each particle is assigned a standard spline or Gaussian weight
functionWk such that the diameter of the support of this weight function is e.g.

1

2
diam.supp.Wk// D 3 h (11)

where

hk D min
l
kxk� xlk ; h D max

k
hk : (12)
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Fig. 3 Supports of all wl with Ak;l D 0 (right) and a surface plot of several wl (left)
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Fig. 4 Surface plot of the sum
P QWk of all modified weights QWk (14) for a uniform particle

distribution (green dots) and a straight discontinuity (red line)

To make use of the adjacency information A we assign an additional weight function
wk to each particle xk which satisfies

wk.xk/ D 1; 1

2
diam.supp.wk// � hk: (13)

With the help of these weights wl we now correct the original MLS weights Wk

such that the flow of information across a potential discontinuity indicated by A is
limited; i.e., we define the modified weights

QWk.x/ D Wk.x/
Y

lW Ak;lD0

.1� wl.x// (14)

to be used in (6), (8), compare Fig. 3. Note that QWk.xl/ D QWl.xk/ D 0 if Ak;l D 0,
i.e., if the particles xk and xl are not directly connected, see Fig. 4.
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Fig. 5 Surface plot (left) of the modified weight QWk (14) and its support (right)

Fig. 6 Surface plot of a weight incorporating the visibility criterion (left) and its support (right)

Thus, the MLS approximation (6), (8) using the weights (14) in the vicinity of
xl is (essentially) not influenced by the value uk at xk and vice versa. The resulting
weight QWk and its support are depicted in Fig. 5. The formulas for the particular
weights used here can be found in Sect. 5.

Note that by multiplication with wk we essentially shrink the size of the supports
of the resulting weight functions. This may lead to a violation of the unisolvence
condition and thereby to a deterioration of the regularity of Gx. Hence we may
obtain discontinuities wherever our modification makes the system matrix singular.
This, however, is not a cause of concern in our setting since the respective
enrichment (on the macroscale) will not be evaluated in the immediate vicinity of
this discontinuity.

In spirit this approach is similar to various visibility criteria otherwise known
from meshfree methods, e.g. EFG, which result in weights as depicted in Fig. 6.
These however generally require explicit knowledge about the location of disconti-
nuity prior to the approximation.
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5 Proof of Concept

In the following, we present some initial numerical results which are especially
concerned with the automatic identification of a known discontinuity by our
modified MLS approach. To this end we consider weight functions

Wk.x/ D s0;R.kx� xkk/ (15a)

wk.x/ D srk;2rk.kx� xkk/ (15b)

where

p.x/ D 2x3 � 3x2 C 1 ; sa;b.x/ D

8
ˆ̂
<

ˆ̂
:

1 x � a
p.x�a

b�a / a < x < b

0 x � b
(16)

with p being the first Hermite polynomial, which satisfies

p.0/ D 1 ; p.1/ D0 ; p0.0/ D0 ; p0.1/ D 0 ;

h is as in (12) and

R D 3h ; rk D min
lW Ak;lD0

1

2
kxk� xlk : (17)

For the sampling points xk we use a regular Cartesian grid.
In the 1D case we employ the presented approach to the approximation of the

three reference functions

u1.x/ D �Œ0;1�.x/ D
(
0 x < 0

1 x � 0 ; u2.x/ D jxj ; u3.x/ D
(
�p.�x/ x < 0

p.x/ x � 0
(18)

on ˝ D Œ�1; 1�.
The adjacency information was just initialized to split Œ�1; 1� at 0, i.e.

Ai;j D
(
1



xi � 0 ^ xj � 0

� _ .xi < 0 ^ xi < 0/

0 otherwise
(19)

for all three functions.
The plots in Figs. 7–9 show the approximations with 20 nodes and V D P3

using regular weights on the left, our modified approach on the right. The underlying
functions u.l/i are the blue lines, the point evaluations of the MLS approximants red
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Fig. 7 Approximations of u1 (18) by a MLS approach using Wk (15) (left) and with our modified
weights QWk (14) (right)
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Fig. 8 Approximations of u2 (18) by a MLS approach using Wk (15) (left) and with our modified
weights QWk (14) (right)
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Fig. 9 Approximations of u2 (18) by a MLS approach using Wk (15) (left) and with our modified
weights QWk (14) (right)

dots, and the underlying data nodes .xk; uk/ green dots. From these plots we can
clearly observe the improvement due to the modification of the weights. With the
standard weights over- and undershoots near the discontinuities are attained whereas
our approach yields a perfect agreement with the data at the nodes even next to the
discontinuity.

Note that the values of the approximation obtained in the interval Œxk; xkC1�

which contains the discontinuity will never be used in our enrichment approach. An
enrichment function will essentially be evaluated only at certain integration points
(on the macroscale) which are placed well away from the discontinuities.
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Fig. 10 Approximation of v1 (20a) by a MLS approach using our modified weights QWk (14)

Fig. 11 Approximation of v2 (20b) by a MLS approach using our modified weights QWk (14)

Finally, shown in Figs. 10 and 11, we consider the two dimensional examples

v1.x/ D 1 � �B0:8.0/.x/ D
(
1 kxk � 0:8
0 kxk < 0:8 (20a)

v2.x/ D
(
�s0;0:8.jx1j/s0;0:8.jx2j/ x2 < 0

s0;0:8.jx1j/s0;0:8.jx2j/ x2 � 0
(20b)

on ˝ D Œ�1; 1�2 with s from (16) and
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.A1/k;l D
(
1 .xk; xl 2 B0:8.0// _ .xk; xl … B0:8.0/ ^ Œxk; xl� \ B0:8.0/ ¤ ;/
0 otherwise

(21a)

.A2/k;l D
(
1 Œxk; xl� does not intersect Œ.�0:8; 0/; .0:8; 0/�
0 otherwise

(21b)

denoting the adjacency information for vi.
Again, with respect to the (fine scale) data nodes xk we obtain a very good agree-

ment of our approach and observe a highly localized zone near the discontinuity
where Gx becomes singular.

6 Concluding Remarks

We presented an MLS based approach for the construction of discontinuous
approximants from particle data. The overall goal of our research is the construction
of appropriate enrichment functions for a generalized finite element method from
(local) fine scale particle simulations. So far we have merely considered simple ref-
erence problems in one and two dimensions. These results are promising. However
a detailed numerical study and comparison with other approaches (visibility, direct
representation of the discontinuity) is necessary prior to the use of the computed
enrichment functions in a three dimensional application setting.
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31. Strouboulis, T., Zhang, L., Babuška, I.: p-Version of the generalized FEM using mesh-
based handbooks with applications to multiscale problems. Int. J. Numer. Methods Eng. 60,
1639–1672 (2004)



360 M.A. Schweitzer and S. Wu

32. Wendland, H.: Local polynomial reproduction and moving least squares approximation. IMA
J. Numer. Anal. 21, 285–300 (2001)

33. Xu, J., Belytschko, T.: Discontinuous radial basis function approximations for meshfree
methods. In: Griebel, M., Schweitzer, M.A. (eds.) Meshfree Methods for Partial Differential
Equations II. Lecture Notes in Computational Science and Engineering, vol. 43, pp. 231–253.
Springer, Berlin (2005)



Second Moment Analysis for Robin Boundary
Value Problems on Random Domains

Helmut Harbrecht

Abstract We consider the numerical solution of Robin boundary value problems
on random domains. The proposed method computes the mean and the variance of
the random solution with leading order in the amplitude of the random boundary
perturbation relative to an unperturbed, nominal domain. The variance is computed
from the solution’s two-point correlation which satisfies a deterministic boundary
value problem on the tensor product of the nominal domain. We solve this moderatly
high-dimensional problem by either a low-rank approximation by means of the
pivoted Cholesky decomposition or the combination technique. Both approaches are
presented and compared by numerical experiments with respect to their efficiency.

1 Introduction

Many problems in physics and engineering sciences lead to boundary value
problems for an unknown function. In general, the numerical simulation is well
understood provided that the input parameters are given exactly. Since, however,
exact input parameters are often not known in engineering, it is of growing interest
to model such parameters as random variables.

A principal approach to solve boundary value problems with random input
parameters is the Monte Carlo approach, see e.g. [37] and the references therein.
However, it is hard and extremely expensive to generate a large number of suitable
samples and to solve a deterministic boundary value problem on each sample.
Particularly in the present case of random domains, each new sample corresponds
to a new domain which needs to be discretized. Thus, we aim here at a direct,
deterministic method to compute the random solution.
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Deterministic approaches to solve stochastic partial differential equations have
been proposed in e.g. [1, 11, 13, 14, 28, 32, 38]. Therein, loadings and coefficients
have been considered as random input parameters. Recently, in [6,23,26,33,34,43],
also the underlying domain has been modeled as a random input parameter D.!/.
For example, this enables the consideration of tolerances in the shape of products
fabricated by line production. Other applications arise from blurred interfaces like
cell membranes or molecular surfaces.

The present paper is dedicated to the numerical treatment of Robin boundary
value problems on random domains which, to the best of our knowledge, is the first
time this subject is dealt with in the scientific literature. We assume small random
perturbations around a nominal domainD with known second order statistics. Then,
following [26], we can linearize to derive, with leading order in the amplitude
of the perturbation parameter, deterministic equations for the random solution’s
expectation and two-point correlation

Eu.x/D
Z

˝

u.x; !/ dP.!/

Coru.x; y/D
Z

˝

u.x; !/u.y; !/ dP.!/

9
>>=

>>;
x; y 2 D:

From these quantities the variance is derived by

Vu.x/ D Coru.x; y/
ˇ
ˇ
xDy � E

2
u .x/; x 2 D:

The solution’s two-point correlation is given by a partial differential equation
which lives on the tensor product domain D � D. We solve this moderatly high-
dimensional problem by either a low-rank approximation via the pivoted Cholesky
decomposition or by the combination technique which is a special variant of a
sparse tensor product approximation. This way, we are able to compute both, the
expectation and the variance, by standard finite element techniques.

Besides the modeling and the derivation of the underlying equations, we discuss
in this paper the implementation of the proposed algorithms. In particular, we
compare the low-rank approximation and the sparse tensor product approximation
with respect to their cost-complexities by numerical results.

The rest of the paper is organized as follows. In Sect. 2, we model the random
domain under consideration. Moreover, for the associated Robin boundary value
problem, we derive deterministic boundary value problems for the expectation
and two-point correlation of the random solution. In Sect. 3, we introduce the
variational formulations of these deterministic boundary value problems. Section 4
is dedicated to an abstract overview on the efficient solution of tensor product-type
boundary value problems which arise in the present context. The particular finite
element discretization of the problems under consideration is performed in Sect. 5.
In Sect. 6, numerical experiments are carried out to validate the theoretical findings
and to compare the low-rank approximation with the sparse grid approach. Finally,
in Sect. 7, we state concluding remarks.
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2 Robin Boundary Value Problems on Random Domains

Let .˝;˙;P / be a suitable probability space. We consider the domain D.!/ as
the uncertain input parameter of an elliptic boundary value problem with Robin
boundary conditions, i.e.,

��u.x; !/D f .x/; x 2 D.!/
˛.x/u.x; !/C @u

@n
.x; !/D g.x/; x 2 @D.!/

9
=

;
! 2 ˝: (1)

Here, ˛.x/ � 0 is a nonnegative function, where the particular choice ˛.x/ � 0

yields the Neumann boundary condition.
To model the random domain D.!/, let D denote a smooth reference domain

and consider random boundary variations in the direction of the outer normal

U.x; !/ D "�.x; !/n.x/ W @D ! R
n

with

�.!/ 2 L2P


˝;C 2;1.@D/

�
such that k�.!/kC2;1.@D/ � 1

almost surely. Then, the random domainD.!/ will be described via perturbation of
identity

@D.!/ D ˚
IC "U.!/�.x/ D xC "�.x; !/n.x/ W x 2 @D�:

For what follows we assume that the expectation E� and the two-point correlation
Cor� of the boundary perturbation � are given. Without loss of generality (otherwise
we redefine D correspondingly) we further assume that the perturbation field � is
centered, i.e., that E� � 0.

For a small perturbation amplitude " > 0, one can linearize (1) by means of shape
calculus [12, 40]. This leads to the following stochastic shape-Taylor expansion

u.x; !/ D u.x/C "ıuŒ�.!/�.x/C O."2/; x 2 K b D: (2)

Therein, the compact set K b D is assumed to satisfy K b D.!/ almost surely.
Moreover, u 2 H 1.D/ denotes the solution to the deterministic Robin boundary
value problem

��u.x/ D f .x/; x 2 D

˛.x/u.x/C @u

@n
.x/ D g.x/; x 2 @D

(3)
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and the shape derivative ıu D ıuŒ�� 2 H 1.D/ satisfies the following Robin
boundary value problem with random loading (cf. [31])

�ıu.x/ D 0; x 2 D

˛.x/ıu.x/C @ıu

@n
.x/ D div




�.x/r
 u.x/

�C �.x/h.x/; x 2 @D:
(4)

Here, we used the abbreviation

h.x/ WD f .x/CH .x/


g.x/ � ˛.x/u.x/�C @.g � ˛u/

@n
.x/; (5)

where H D .n � 1/H is the additive curvature and H is the mean curvature of
the surface � .

Theorem 1. Assume that the compact set K b D satisfies K b D.!/ almost
surely. Then, it holds that

Eu.x/D u.x/C O."2/

Vu.x/D "2 Corıu.x; y/
ˇ
ˇ
xDy C O."3/

)

x 2 K: (6)

Herein, u 2 H 1.D/ and Corıu.x; y/ 2 H 1
mix.D �D/ WD H 1.D/ �H 1.D/ satisfy

the deterministic boundary value problems (3) and

.�x ˝�y/Corıu.x; y/ D 0; x; y 2 D;
�x Corıu.x; y/ D 0; x 2 D; y 2 @D;
�y Corıu.x; y/ D 0; x 2 @D; y 2 D;

��
˛.x/C @

@nx

�
˝
�
˛.y/C @

@ny

��
Corıu.x; y/ D Cor�.x; y/

�
h.x/˝ h.y/�

C div
;x
�

Cor�.x; y/

r
 u.x/˝ f .y/��C div
;y

�
Cor�.x; y/



h.x/˝r
 u.y/

��

C.div
;x˝ div
;y/
�

Cor�.x; y/

r
 u.x/˝r
 u.y/

��
; x; y 2 @D: (7)

Proof. By using the shape-Taylor expansion (2), we obtain

Eu.x/ D u.x/C "E
ıuŒ�.!/�.x/�C O."2/:

By the linearity of the expectation operator E, taking the expectation on both sides
of (4), and observing that E�.x/ � 0, we have Eıu.x/ D E



ıuŒ�.!/�.x/

� � 0,
which yields the first claim.
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Now, observe the following estimate

V.aC bX C cY / D b2V.X/C 2bc Cov.X; Y /C c2V.Y /
� b2V.X/C 2bc

p
V.X/V.Y /C c2V.Y /;

where X and Y are two random variables with finite second moments. By
combining this estimate with the shape-Taylor expansion (2), we conclude

Vu.x/ D "2V


ıuŒ�.!/�.x/

�C
q
V


ıuŒ�.!/�.x/

�
O."3/C O."4/

D "2Vıu.x/C O."3/:

Due to Eıu.x/ � 0, we arrive at the identity Vıu.x/ D Corıu.x; y/
ˇ
ˇ
xDy which proves

the second claim. The boundary value problem (7) for Corıu is finally derived by
tensorizing (4) and taking the expectation. This completes the proof. ut
Remark 1. The relative error of the expectation is O."2/ while the relative error of
the variance is O."/. According to [7], the first order shape-Taylor expansion (2) is
nevertheless sufficient to compute also higher order moments of the random solution
with relative accuracy O."/.

3 Variational Formulation

We shall introduce the variational formulations of the boundary value problems
under consideration. The approximate expectation u 2 H 1.D/, satisfying (3), is
determined by the variational formulation

seek u 2 H 1.D/ such that a.u; v/ D `1.v/ for all v 2 H 1.D/; (8)

where the bilinear form a W H 1.D/ �H 1.D/! R is given by

a.u; v/ WD
Z

D

ru.x/rv.x/ dxC
Z

@D

˛.x/u.x/v.x/ d�

and the linear form `1 W H 1.D/! R by

`1.v/ WD
Z

D

f .x/v.x/ dxC
Z

@D

g.x/v.x/ d�:

The shape derivative ıu D ıuŒ�� 2 H 1.D/ in a given direction � 2 C 2;1.@D/
satisfies the boundary value problem (4). The associated variational formulation
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involves the same bilinear form as (8), but a different linear form on the right hand
side. Namely, we find

seek ıu 2 H 1.D/such that a.ıu; v/ D `2.v/ for all v 2 H 1.D/; (9)

with the linear form `2 W H 1.D/! R being defined by

`2.v/ WD
Z

@D

�.x/
˚
h.x/� r
 u.x/r


�
v.x/ d�:

Note that we applied integration by parts in the definition of the linear form.
Moreover, the function h is defined in (5). Thus, the two-point correlation function
Corıu 2 H 1

mix.D �D/, which is given by the tensor Robin boundary value problem
(7), satisfies the variational formulation

seek Corıu 2 H 1
mix.D �D/ such that

A.Corıu; v/ D L.v/ for all v 2 H 1
mix.D �D/:

(10)

Here, the bilinear form A W H 1
mix.D �D/ �H 1

mix.D �D/! R reads as

A.u; v/ WD
Z

D

Z

D

.rx ˝ry/u.x; y/.rx ˝ry/v.x; y/ dy dx

C
Z

D

Z

@D

˛.y/rxu.x; y/rxv.x; y/ d�y dx

C
Z

@D

Z

D

˛.x/ryu.x; y/ryv.x; y/ dy d�x

C
Z

@D

Z

@D

˛.x/˛.y/u.x; y/v.x; y/ d�y d�x

and the linear form L W H 1
mix.D �D/! R is

L.v/ WD
Z

@D

Z

@D

Cor�.x; y/
˚
h.x/� r
 u.x/r
;x

�

� ˚h.y/� r
 u.y/r
;y
�
v.x; y/ d�y d�x:

Theorem 2. The variational problems (8)–(10) are uniquely solvable provided that
˛.x/ 6� 0.
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Proof. The standard theory of Robin boundary value problems yields the existence
of constants 0 < cE � cS <1 such that it holds

cEkuk2H1.D/
� a.u; u/; a.u; v/ � cSkukH1.D/kvkH1.D/

for all u; v 2 H 1.D/. Thus, we conclude

c2Ekuk2H1
mix.D�D/ � A.u; u/; A.u; v/ � c2SkukH1

mix.D�D/kvkH1
mix.D�D/

for all u; v 2 H 1
mix.D � D/ by a tensor product argument since the bilinear form

A.�; �/ is derived from a.�; �/ via tensorization. The Lax-Milgram theorem implies
finally the assertion. ut
Remark 2. If ˛.x/ � 0, then we arrive at the Neumann boundary value problem

and obtain thus the ellipticity of a.�; �/ only in the space H
1
.D/ WD H 1.D/ n R

and that of A.�; �/ in the space H
1

mix.D �D/ WD H
1
.D/˝H 1

.D/. Consequently,
unique solvability of the variational problems (8)–(10) is obtained in these energy
spaces.

4 Solving Tensor Product Boundary Value Problems

4.1 An Abstract View on the Linearization Approach

The linearization of a linear second order elliptic boundary value problem with
respect to a given input parameter �.!/ involves the associated derivative ıu.!/ 2
H .D/. It is generally given by a boundary value problem

A ıu.!/ D f .!/ on D;

where A W H .D/ ! H 0.D/ denotes a linear, second order elliptic partial
differential operator which is defined on a domain D � R

n. Typically one might
think of H .D/ being a Sobolev space with dual H 0.D/. Moreover, the random
input parameter linearly enters the right hand side f .!/ 2 H 0.D/ since the
mapping �.!/ 7! ıu.!/ is linear.

The two-point correlation Corıu 2 Hmix.D � D/ WD H .D/ ˝H .D/, which
pops up in the asymptotic expansions (6), is given by the tensor product problem

.A ˝A /Corıu D Corf on D �D: (11)

Especially it holds Corf 2H 0
mix.D �D/ DH 0.D/˝H 0.D/.

In the following, we give an overview on the efficient solution of partial
differential equations with the tensor product operator A ˝A on the product of the
physical domain D � D such as (11). Various concepts are available to overcome
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the curse of dimension which is already observed in this moderatly high-dimensional
situation.

4.2 Sparse Tensor Product Spaces

The starting point of the definition of sparse tensor product spaces for the Sobolev
space Hmix.D �D/ are traditional and widely used multilevel hierarchies

V0 � V1 � V2 � � � � �H .D/; (12)

where dim.Vj / � 2jn. Then, appropriate complement spaces

W0 WD V0; Wj WD Vj � Vj�1; j > 0

are chosen to derive the multiscale decomposition

VJ D W0 ˚W1 ˚ � � � ˚WJ :

In general, such complement spaces are defined by hierarchical bases like
e.g. wavelet or multilevel bases, see [5] and the references therein. The sparse
tensor product space OVJ � Hmix.D � D/ is finally given via the complementary
spaces according to

OVJ D
M

jCj 0�J
Wj ˝Wj 0 D

JM

jD0
Vj ˝WJ�j : (13)

The sparse tensor product space OVJ possesses only O.2JnJ / degrees of freedom
which is much less than the O.22Jn/ degrees of freedom of the full tensor product
space VJ ˝ VJ . However, the approximation power of the sparse tensor product
space and the full tensor product space are essentially (i.e., except for logarithmic
factors) identical if extra smoothness in terms of Sobolev spaces with dominating
mixed derivative is given [5].

4.3 Sparse Multilevel Frames

In the meantime, the construction of wavelets on fairly general domains and surfaces
is well understood [24, 25, 42]. However, the construction is expensive and the
wavelets have large supports, particularly on complicated geometries. Therefore,
other sparse tensor product approximations have been developed. In [17, 27], the
sparse tensor product approximation has been performed via multilevel frames. The
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frame construction is based on the BPX-preconditioner (see e.g. [3, 10, 35]) and
related generating systems (see e.g. [16, 17, 19, 20]).

By rewriting the sparse tensor product space (13) according to

OVJ D
X

jCj 0�J
Vj ˝ Vj 0

it is obvious that the collection of tensor products of the basis functions in fVj gJjD0
can be used to represent the functions in OVJ . It has been shown in [27] that this
collection forms a frame for the sparse tensor product space provided that the basis
functions are appropriately normalized.

The discretization of boundary value problems by frames and the solution of
operator equations in frame coordinates is well understood and quite similar to
the basis case, see e.g. [8, 9, 41]. The algorithms developed in [38], especially the
applications of tensor product operators, can be extended to multilevel frames. It
turns out that, in order to efficiently solve boundary value problems of the type (11),
it suffices to provide standard multigrid hierarchies and associated finite elements
together with prolongations and restrictions, see [22, 27].

4.4 Combination Technique

Consider the tensor product boundary value problem (11). With respect to the ansatz
spaces (12), we define the associated complement spaces by

Wj WD .Pj � Pj�1/H .D/ � Vj
with Pj W H .D/! Vj being the Galerkin projection associated with the operator
A . Then, the Galerkin system decouples due to Galerkin orthogonality. Namely, it
holds



.A ˝A /vi;i 0;wj;j 0

�
L2.D�D/ D 0 for all vi;i 0 2 Wi ˝Wi 0 ; wj;j 0 2 Wj ˝Wj 0

provided that i 6D j or i 0 6D j 0. As a consequence, the Galerkin solution bCorıu;J to
(11) in the sparse tensor product space (13) can be written as

bCorıu;J D
JX

jD0
.pj;J�j � pj;J�j�1/ 2

JM

jD0
Vj ˝WJ�j D OVJ

where pj;j 0 denotes the Galerkin solution of (11) in the full (but small) tensor
product space Vj ˝ Vj 0 , cf. [28]. If the differential operator has not the form
(11), then the combination technique induces an approximation error. Related error
estimates have been derived in [21, 30, 36].
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4.5 Low-Rank Approximation

A rank-r approximation of a given function Corf 2 L2.D �D/ is defined by

Corf .x; y/ � Corf;r .x; y/ WD
rX

`D1
a`.x/b`.y/

with certain functions a`; b` 2 L2.D/. Inserting such a low-rank approximation in
the tensor product boundary value problem (11) leads to the representation

CorıuD


A �1˝A �1�Corf �



A �1˝A �1�Corf;r D

rX

`D1



A �1a`

�˝
A �1b`
�
;

i.e., the tensor product boundary value problem is reduced to 2r simple boundary
value problems on the domainD.

This approach has firstly been proposed in [15] for m-fold tensor product prob-
lems and right hand sides of tensor product type. In the case of the second moment
analysis in uncertainty quantification, we find the special situation that Corf is
symmetric and positive semi-definite. Thus, the pivoted Cholesky decomposition
can be used to efficiently compute the low-rank approximation to the right hand
side, see [23, 29].

5 Finite Element Discretization

5.1 Parametric Finite Elements

For the application of multilevel techniques, we shall define a nested sequence of
finite dimensional trial spaces

V0 � V1 � � � � � Vj � � � � � H 1.D/: (14)

In general, due to our smoothness assumptions on the domain, we have to deal with
non-polygonal domains. To realize the multiresolution analysis (14) we will use
parametric finite elements.

Let 4 denote the reference simplex in R
n. We assume that the domain D is

partitioned into a finite number of patches

clos.D/ D
[

k


0;k; 
0;k D �k.4/; k D 1; 2; : : : ;M;

where each �k W 4 ! 
0;k defines a diffeomorphism of 4 onto 
0;k . The
intersection 
0;k \ 
0;k0 , k 6D k0, of the patches 
0;k and 
0;k0 is either ;, or a
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Fig. 1 Construction of parametric finite elements

lower dimensional face. The parametric representation is supposed to be globally
continuous which means that the diffeomorphisms �i and �i 0 coincide at common
patch interfaces except for orientation. A mesh of level j on D is then induced by
regular subdivisions of depth j of 4 into 2jn simplices. This generates the 2jnM
curved elements f
j;kg. An illustration of such a triangulation is found in Fig. 1.

The ansatz functions ˚j D f'j;k W k 2 �j g are finally defined via parameteri-
zation, lifting continuous piecewise linear Lagrangian finite elements from4 to the
domain D by using the mappings �i and gluing across patch boundaries. Setting
Vj D span˚j yields (14), where dimVj � 2jn.

5.2 Galerkin Discretization

We shall be concerned with Galerkin’s method for solving the variational problems
(8)–(10). To this end, we define first the system matrix

Aj WD .r˚j ;r˚j /L2.D/ C .˛˚j ; ˚j /L2.@D/: (15)

Then, the Galerkin solution

uj D
X

k2�j

uj;k'j;k D ˚juj 2 Vj

of the variational formulation (8) is derived from the linear system of equations

Ajuj D fj ; where fj WD .f; ˚j /L2.D/ C .g; ˚j /L2.@D/: (16)
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The solution of this Eq. (16) by multigrid accelerated finite element methods
is straightforward and along the lines of the standard literature, see e.g. [2, 4].
Therefore, we will skip all the details here.

The shape derivative ıu D ıuŒ��, given by (9), is approximated in a similar way:
we seek

ıuj D
X

k2�j

vj;k'j;k D ˚j vj 2 Vj

such that

Aj vj D gj ; where gj WD .�h;˚j /L2.@D/ C .�r
 u;r
 ˚j /L2.@D/: (17)

Likewise to the mean field equation, the solution of (17) is straightforward.
For the combination technique, we need to compute certain Galerkin approxima-

tions

pj;j 0 D
X

k2�j

X

k02�j 0

w.j;k/;.j 0;k0/.'j;k ˝ 'j 0;k0/ D .˚j ˝ ˚j 0/wj;j 0

to the two-point correlation Corıu (10) in full tensor product spaces Vj ˝ Vj 0 . They
are obtained from the following linear system of equations

.Aj ˝ Aj 0/wj;j 0 D hj;j 0 : (18)

Here, the right hand side is given by

hj;j 0 WD 
Cor�.h˝ h/; ˚j ˝˚j 0

�
L2.@D�@D/

� 
Cor�.r
 u˝ h/;r
 ˚j ˝ ˚j 0

�
L2.@D�@D/

� 
Cor�.h˝r
 u/; ˚j ˝r
˚j 0

�
L2.@D�@D/

C 
Cor�.r
 u˝r
 u/;r
˚j ˝r
˚j 0

�
L2.@D�@D/:

(19)

The iterative solution of the tensor product problem (18) is of optimal complexity if
the tensor product of the BPX-preconditioner [3] is applied.

5.3 Implementation of the Combination Technique

According to Sect. 4.4, the combination technique amounts to solving all the
Galerkin systems (18) which are needed to determine the expression

bCorıu;J D
JX

jD0
.pj;J�j � pj;J�j�1/ 2 OVJ :
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For the implementation of the combination technique, we have thus to explain how
to efficiently compute the right hand side (19) to the linear system of equations (18).
To this end, we shall introduce some notation first.

Let the index set �@Dj � �j denote the indices which belong to finite element

functions at the boundary @D and set '@D
j;k
WD 'j;kj@D for all k 2 �@Dj . Then,

setting r@D0 WD �@D0 and rj WD �@Dj n �@Dj�1 for j > 0, the hierarchical basis

in the trace space VJ j@D is given by
SJ
jD0f'@Dj;k gk2r@D

j

. We replace the two-point

correlation function Cor� by its piecewise linear sparse grid interpolant

bCor�;J D
X

jCj 0�J

X

k2r@D
j

X

k02r@D
j 0

�.j;k/;.j 0;k0/



'@Dj;k ˝ '@Dj 0;k0

� � OVJ j@D�@D

which can be computed in optimal complexity (see [5]). Thus, the right hand side
hj;j 0 becomes

hj;j 0 D
X

`C`0�J
.Mj;` ˝Mj 0;`0/Œ�.`;k/;.`0;k0/�k2r@D

j
;k02r@D

j 0

(20)

where the matrices Mj;j 0 , 0 � j; j 0 � J , are given by

Mj;j 0 D
h

'@Dj 0;k0h; 'j;k

�
L2.@D/

C 
'@Dj 0;k0r
 u;r
 'j;k
�
L2.@D/

i

k2�j ;k
02r@D

j 0

:

The expression (20) can be evaluated in essentially optimal complexity by applying
the matrix-vector multiplication from [27]. In particular, by using prolongations and
restrictions, the matrices Mj;j 0 are needed only in the situation j D j 0. Thus, the
over-all computational complexity of the combination technique is essentially linear
in the number j�J j of finite element functions on D.

5.4 Implementation of the Low-Rank Approximation

The piecewise linear interpolant of the two-point correlation Cor� in the trace space
.Vj ˝ Vj /j@D�@D is given by

Cor�;j D
X

k;k02�@D
j

Cor�.xj;k; xj 0;k0/


'@Dj;k ˝ '@Dj;k0

�
:

Here, xj;k 2 @D denotes the node which belongs to the finite element basis function

'@D
j;k
2 Vj j@D . We shall thus compute a low-rank approximation of the matrix
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C D ŒCor�.xj;k; xj 0;k0/�
k;k02�@D

j

� Cr D
rX

iD1
�i�

T
i (21)

by the pivoted Cholesky decomposition. Afterwards, we just have to compute all
the local shape derivatives ıu in the directions

P
k2�@D

j

�i;k'
@D
j;k

via (17). Thus,

having the low-rank approximation (21) at hand, the complexity to compute Corıu;j

is O.r j�j j/. Note here that, in accordance with [18, 39], the rank r hinges on the
smoothness of the underlying two-point correlation Cor� .

The pivoted Cholesky decomposition is a purely algebraic approach which is
quite simple to implement, see Algorithm 1. It produces a low-rank approximation
of C for any given precision " > 0 where the approximation error is rigorously
controlled in the trace norm. n D j�@Dj j. A rank-r approximation is computed

Algorithm 1: Pivoted Cholesky decomposition
Data: matrix C D Œci;j � 2 R

n�n and error tolerance " > 0
Result: low-rank approximation Cm D Pm

iD1 `i `
T
i such that trace.C � Cm/ � "

begin
set m WD 1;
set d WD diag.C/ and error WD kdk1;
initialize � WD .1; 2; : : : ; n/;
while error > " do

set i WD arg maxfd�j W j D m;mC 1; : : : ; ng;
swap �m and �i ;

set `m;�m WD p
d�m ;

for mC 1 � i � n do

compute `m;�i WD
�
c�m;�i �

m�1X

jD1

`j;�m`j;�i

�.
`m;�m ;

update d�i WD d�i � `2m;�i ;

compute error WD
nX

iDmC1

d�i ;

increase m WD mC 1;

in O.r2n/ operations, where n denotes the matrix dimensions, that is Exponential
convergence rates in r are proven under the assumption that the eigenvalues of C
exhibit a sufficiently fast exponential decay, see [29]. Numerical experiments given
there show that the pivoted Cholesky decomposition in general converges optimally
in the sense that the rank r is bounded by the number of terms required for the
spectral decomposition of C to achieve the error ".
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6 Numerical Results

6.1 Model Verification

We present some numerical tests to demonstrate our theoretical predictions. Let
D D fx 2 R

2 W kxk < 1g be the unit disk. We parametrize the boundary @D by
polar coordinates

� W Œ0; 2��! @D; s 7! �.s/ WD
�

cos.s/
sin.s/

�
:

Correspondingly, the boundary @D".!/ of the random domain D".!/ can be
expressed via the perturbed parametrization

�.s; !/ WD �.s/C "�.s; !/
�

cos.s/
sin.s/

�
:

Herein, we assume that the random perturbation is given by

�.s; !/ WD
5X

kD0
ak.!/ cos.ks/C bk.!/ sin.ks/

with random coefficients ak.!/ and bk.!/ which are equally distributed in Œ�1; 1�
and mutually stochastically independent. This results in the two-point correlation
function

Cor�.s; t/ D 1

3

5X

kD0
cos.ks/ cos.kt/C sin.ks/ sin.kt/: (22)

For our numerical experiments, we vary 0 � " � 0:05. Even though " is small, the
perturbation is considerably large since the norm k�.!/kC2;1.Œ0;2��/ might become
large.

On the above defined random domain D".!/, we consider the Robin boundary
value problem (1) with f .x/ � 1, ˛.x/ � 1, and g.x/ � 0. For a given value of
", we determine first the expectation and the variance of the random solution by a
Monte Carlo method, using M D 25;000 samples. Note that the triangulation hast
to be constructed for each sample in order to resolve the random domain. To evaluate
the sample mean and variance, we interpolate each solution to a fixed quadrangular
grid on the disk K D fx 2 R

2 W kxk � 0:7g with radius 0:7 which lies always in
the interior of the random domainD".!/. The result of the Monte Carlo simulation
is then compared with the solution of our deterministic model. Here, we used the
pivoted Cholesky decomposition since the two-point correlation (22) is of finite rank
r D 11.
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Fig. 2 Asymptotic behaviour with respect to the perturbation parameter " in the case of the
expectation (left plot) and in the case of the variance (right plot)

In Fig. 2, one finds the absolute difference between the mean (left plot) and
variance (right plot) of the Monte Carlo simulation and the deterministic approach.
To be on save ground, we repeated the comparison five times and computed the
average of the differences. We observe that the difference behaves like O."2/
for the expectation (left plot) and like O."4/ for the variance (right plot) as
indicated by the dashed lines. Hence, in this example, the asymptotic behaviour
of the expectation with respect to the perturbation parameter " is as predicted
by Theorem 1. But the asymptotic behaviour of the variance with respect to the
perturbation parameter " is even one order better than predicted.

In Fig. 3, we visualized the approximate moments computed by the Monte Carlo
simulation (first row of Fig. 3) and by the deterministic approach (second row of
Fig. 3) in the specific case " D 0:025. The difference between both approaches are
found in the last row of Fig. 3. The relative difference in the mean has the order
of magnitude 10�3 while the relative difference in the variance has the order of
magnitude 10�2.

6.2 A Correlation Kernel of Arbitrary Smoothness

We shall next compare the low-rank approximation with the combination technique
based sparse grid approach. To this end, we choose the same input data as before,
but employ the Gaussian kernel

k.r/ D exp

�
� r

2

`2

�
; r D k�.s/� �.t/k
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Fig. 3 Sample mean and variance (first row) versus the deterministic mean and variance (second
row) in the case of " D 0:025. The differences are found in the last row
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Fig. 4 Accuracy (left plot) and computing times (right plot) in the case of the Gaussian kernel

instead of the kernel (22). The Gaussian kernel is of arbitrary smoothness for any
given correlation length ` > 0. In particular, the eigenvalues of the associated
Hilbert-Schmidt operator decay double-exponentially (see e.g. [39]). In our numer-
ical tests, we vary the correlation length according to ` D 1; 1=2; 1=4; 1=8.

We compute a reference solution on a very fine level and compare the solutions of
both approaches with respect to lower levels with this reference solution. The results
are plotted in Fig. 4, where the left plot shows the relative error of the variance
versus the discretization level and the right plot shows the related computing times
versus the discretization level. Note that on level 10, there are about two million
finite elements.

It is observed that both, the convergence rates (left plot of Fig. 4) and the
computing times (right plot of Fig. 4), scale identically for both approaches. The
relative errors of both approaches increase when the correlation length decreases.
The approximation errors of the low-rank approximation (green lines) are, however,
a certain factor lower than the related approximation errors of the sparse grid
method (blue lines). Also the computing times of the low-rank approximation (green
lines) are a certain factor lower than the related computing times of the sparse
grid approach (blue lines). Nevertheless, the computing times with respect to the
sparse grid approach are essentially independent of the correlation length `while the
computing times of the low-rank approximation increase in ` as the rank increases.

6.3 A Correlation Kernel of Finite Smoothness

We finally compare the low-rank approximation with the combination technique in
case of the Matérn kernel

k3=2.r/ D
�
1C
p
3r

`

�
exp

�
�
p
3r

`

�
; r D k�.s/ � �.t/k
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Fig. 5 Accuracy (left plot) and computing times (right plot) in the case of the Matérn kernel

which is of finite smoothness. The correlation length ` is again chosen to be
` D 1; 1=2; 1=4; 1=8. The computational set-up of our comparison is in complete
analogy to that of Sect. 6.2.

In the left plot of Fig. 5, we plotted the relative error of the variance versus the
discretization level. Again, both approaches seem to produce the same convergence
rates but the relative errors of the low-rank approximation (green lines) are again
a certain factor lower than relative error of the sparse grid approach (blue lines).
Moreover, for a fixed discretization level, the relative error increases as the
correlation length decreases.

In the right plot of Fig. 5, the associated computing times are found. The
computing times of the low-rank approximation (green lines) clearly depend on the
correlation length, whereas, in the case of the sparse grid approach, the computing
times are independent of the correlation length. Additionally, one figures out of the
plot that the computing times of the low-rank approximation seem to grow with
a higher rate compared with the sparse grid approach. This corresponds to the
theoretical predictions from [18]. Nevertheless, if one compares accuracy versus
computing time, the low-rank approximation is still superior to the sparse grid
approach.

7 Concluding Remarks

In this paper, we modeled and solved Robin boundary value problems on random
domains. We derived deterministic equations for the expectation and variance of
the associated random solution. The variance can be computed by means of a low-
rank approximation or by the combination technique. By numerical experiments,
we compare these two approaches. It turns out that for our specific examples the
low-rank approximation performs better than the combination technique. However,
the combination technique has the advantage that the memory requirements are
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independent of the given two-point correlation function. We emphasize that, in the
present case of boundary value problems on random domains, the low-rank approx-
imation needs only to be computed for an .n � 1/-dimensional function (cf. (21))
whereas the combination technique is an n-dimensional approach. Nevertheless, we
expect that, in the case of random coefficients (see [28]) or random loadings (see
[38]), the combination technique performs much better in comparison with the low-
rank approximation since there the low-rank approximation of an n-dimensional
function is required.
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Simulation of Q-Tensor Fields with Constant
Orientational Order Parameter in the Theory
of Uniaxial Nematic Liquid Crystals

Sören Bartels and Alexander Raisch

Abstract We propose a practical finite element method for the simulation of
uniaxial nematic liquid crystals with a constant order parameter. A monotonicity
result for Q-tensor fields is derived under the assumption that the underlying
triangulation is weakly acute. Using this monotonicity argument we show the
stability of a gradient flow type algorithm and prove the convergence outputs to
discrete stable configurations as the stopping parameter of the algorithm tends to
zero. Numerical experiments with singularities illustrate the performance of the
algorithm. Furthermore, we examine numerically the difference of orientable and
non-orientable stable configurations of liquid crystals in a planar two dimensional
domain and on a curved surface. As an application, we examine tangential line fields
on the torus and show that there exist orientable and non-orientable stable states
with comparing Landau-de Gennes energy and regions with different tilts of the
molecules.

1 Introduction and Derivation of the Mathematical Setting

The modelling of liquid crystals has attracted considerable attention among
mathematicians in the last decade [1–4, 10, 12–14, 18]. Starting with the prediction
of stationary configurations for the classical Oseen-Frank model we continue
right through to studies of the motion of liquid crystals governed by the
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Ericksen-Leslie model. In recent years it has become more popular to useQ-tensors
to describe nematic liquid crystals. One of the main features of this theory is that it
captures symmetries of the molecules which are not seen by classical models. In [4]
this feature is examined analytically and examples are constructed to show that
there are settings where the classical theory misses stationary configurations that
are energetically more favorable for the liquid crystal. The analysis leads directly to
topological issues and the question of the orientability of given line fields. It is the
aim of this paper to devise numerical methods for both models and to understand
relations between them. Following [4], the molecules of a nematic liquid crystal
can be thought of as rod-like molecules with two ends indistinguishable from
each other, a center of mass at a position x 2 ˝ and a certain direction in space.
Here and in the rest of this report ˝ � R

d (d D 2; 3) is a bounded Lipschitz
domain representing the vessel. For a well-defined macroscopic variable describing
the crystal it is required to use statistical averages of the molecular orientation
of the crystal. We let L .S2/ denote the family of Lebesgue measurable subsets
of the unit sphere S

2, and assign to every point x 2 ˝ a probability measure
�.x; �/ W L .S2/ ! Œ0; 1� so that �.x; fng/ is the probability of the crystal x to
point in direction n. Since the molecules admit the so-called head-to-tail symmetry
we have that �.x;A/ D �.x;�A/ for every x 2 ˝ and every A � S

2. This
property yields that all odd moments of � must vanish. The lowest order even
moment, which is assumed to be the most important quantity for describing liquid
crystals, is given by

Mij.x/ D
Z

S2

pipj d�.x; p/; i; j D 1; 2; 3; x 2 ˝:

The matrix valued functionM W ˝ ! R
3�3 has the properties

M DM T ; M � 0 and trM D 1:

We define the trace-free de Gennes order parameter tensor Q WD M � 1
3

id and
distinguish three different cases: (1) If Q has three equal eigenvalues then Q D 0

and we call the liquid crystal isotropic, that means, the orientation of molecules is
totally random. (2) If Q has two equal eigenvalues, then the liquid crystal is called
uniaxial and Q admits a representation of the form

Q D s.n˝ n � 1
3

id/;

where n 2 S
2 is the optical axis and s 2 R is the orientational order parameter.

The orientational order s takes values between s D �1
2

(molecules are planar
oriented and perpendicular to the optical axis) and s D 1 (perfect alignment of
molecules with the optical axis). The uniaxial case is characteristic for nematics and
cholesterics. (3) If Q has three distinct eigenvalues, then the liquid crystal is called
biaxial. In practice, however, it is observed that liquid crystals are uniaxial almost
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everywhere with a constant order parameter s between 0:6 and 0:8. We therefore
restrict ourselves to the case Q.x/ D s.n.x/ ˝ n.x/ � 1

3
id/ with s constant and

n.x/ 2 S
2 for x 2 ˝ . When we talk about the classical Oseen-Frank model we

think of the liquid crystal being described simply by a director field n W ˝ ! S
2, the

optical axis. As in our simplifiedQ-tensor model we assume a constant orientational
order parameter. More details for a substantial treatment of this derivation and an
introduction to the classical model can be found in [13, 18].

A model to predict stable liquid crystal configurations is to compute stationary
points of the energy

EOF.n/ WD
Z

˝

W.n;rn/ dx

WD
Z

˝

k1jdivnj2 C k2jn � curlnj2 C k3jn � curlnj2C

.k2 C k4/.jrnj2 � jdivnj2/ dx;

with elastic constants k1; k2; k3; k4. It is possible to choose a function� , depending
on the tensorQ D s.n˝n� 1

3
id/, so that the energy densityW can be expressed as

W.n;rn/ D �.Q;rQ/;

see [4] for details. We will refer to the constrained Landau-de Gennes theory when
considering the energy density � and de Gennes order parameter tensors. If Q D
s.n˝ n � 1

3
id/ almost everywhere in ˝ with n W ˝ ! S

2 then

EOF.n/ D
Z

˝

W.n;rn/ dx D
Z

˝

�.Q;rQ/ dx DW ELdG.Q/;

and the Landau-de Gennes theory can be interpreted as a generalization of the
classical Oseen-Frank model. In the most simple (equal constant) setting EOF

reduces to the standard Dirichlet energy for functions with values in S
2 and the

fact that

jr.n˝ n/j2 D 2jrnj2

yields

jrQj2 D s2jr.n˝ n� 1
3

id/j2 D s2jr.n˝ n/j2 D 2s2jrnj2:

Thus, if Q D s.n˝ n � 1
3

id/ in ˝ then

1

2

Z

˝

jrnj2 dx D 1

4s2

Z

˝

jrQj2 dx
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and ELdG is a multiple of the Dirichlet energy for functions with values in

QL2 WD
�
A 2 R

3�3 W 9n 2 S
2; 9s 2 Œ�1=2; 1� W A D s.n˝ n� 1

3
id/

�
:

Since we are interested only in the Dirichlet energy it is convenient to set s D 1 and
replace QL2 by the submanifold

L
2 WD ˚A 2 R

3�3 W 9n 2 S
2; A D n˝ n� :

We observe that L2 can be identified with the real projective space RP 2 D S=˙
using the map

b W L2 ! RP 2; A D n˝ n 7! fn;�ng:
It is possible to endow L

2 with a Riemannian structure so that it is a Riemannian
manifold. Throughout this work we refer to the Oseen-Frank energy as

EOF W W 1;2.˝;S2/! R; n 7! 1

2

Z

˝

jrnj2 dx

and to the Landau-de Gennes energy as

ELdG W W 1;2.˝;L2/! R; Q 7! 1

4

Z

˝

jrQj2 dx:

We will call stationary points of EOF harmonic director fields and stationary points
of ELdG will be called Q harmonic tensor fields or harmonic line fields.

The molecules of the liquid crystal tend to align themselves parallel to the
boundary when they are in contact with other materials. These boundary conditions
are often referred to as partial constraint or planar anchoring conditions. When the
surface is worked in a special manner the liquid crystal aligns with the treatment
and can be specified. In this case one speaks about strong or homeotropic anchoring
conditions. In our two-dimensional simulation in Sect. 6 we will also allow for
Neumann boundary conditions in parts of @˝ . They are not motivated by the physics
but simplify the computations and help us to underline the difference of the Oseen-
Frank and the Landau-de Gennes theory.

Clearly every n 2 W 1;2.˝;S2/ defines a map Q D n˝ n 2 W 1;2.˝;L2/. The
interesting question is whether the converse statement holds in the sense that for
Q 2 W 1;2.˝;L2/ there exists n 2 W 1;2.˝;S2/ such that Q D n˝ n. This is true
in some situations, cf. the left plot in Fig. 1, but in general this is not the case as can
be seen in the right plot of Fig. 1. In the latter one we set G1 D .�1; 1/ � .�1; 0/,
G2 D B1.0/\ fx2 � 0g and G D G1 [G2 n B1=2.0/. We define the field

n.x/ D
�
.�x2; x1; 0/ if x 2 G \ fx2 � 0g
.0; 1; 0/ if x 2 G \ fx2 < 0g:
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Fig. 1 Orientable and non-orientable line fields in the plane

Then Q WD n ˝ n 2 W 1;2.˝;L2/ and if Q D Qn ˝ Qn then Qn D ˙n almost
everywhere but there is no way to construct a vector field Qn without any jump in
˝ and satisfying Qn.x/ D n.x/ or Qn.x/ D �n.x/ for almost every x 2 ˝ . These
observations motivate the following definition.

Definition 1. We say that a line field Q 2 W 1;2.˝;L2/ is orientable if there
exists n 2 W 1;2.˝;S2/ such that Q D n ˝ n a.e. in ˝ . Otherwise Q is called
non-orientable.

In the discrete setting we work with piecewise affine tensor fieldsQh that satisfy
Qh.z/ 2 L

2 for all nodes z in the triangulation. Analogously we work with discrete
vector fields nh which are piecewise affine and satisfy nh.z/ 2 S

2. Thus, there
always exists a discrete director field nh such that Qh.z/ D nh.z/ ˝ nh.z/ for all
nodes z and for h > 0 fixed we have that nh 2 W 1;2.G;R3/. From this it follows
that we can always assign a discrete director field to a discrete line field and every
line field is orientable in a discrete sense but the identity jrQhj2 D 2jrnhj2 may
be violated. Thus, using the energies ELdG and EOF enables us to compare the two
models and to introduce the notion of discrete orientable and non-orientable stable
configurations. In Fig. 2 we depict a non-orientable line field in G and a possible
discrete vector field nh such that Qh.z/ D nh.z/ ˝ nh.z/ for all nodes z. This
discrete effect is reflected in the critical mesh-dependence of EOF. The energies are
ELdG � 0:9543 and EOF � 13:7151, thus, the jump in nh contributes dramatically
to the energy. The difference becomes even more dramatic when the mesh is refined
reflecting the fact that there exists no continuous extension.

The outline of this work is as follows. In Sect. 2 we characterize the manifold L
2

and derive Euler-Lagrange equations forELdG. In Sect. 3 we deduce a finite element
discretization of ELdG with pointwise constraints on the admissible functions.
In Sect. 4 we propose an algorithm for the computation of Q harmonic line
fields based on a gradient flow approach. Right after that we prove stability and
convergence of the algorithm to a discrete Q harmonic line field in Sect. 5. Finally
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Fig. 2 Discrete line fields and vector fields and triangulation ofG (left). The line fieldQh (middle)
and a possible discrete director field nh that satisfies Qh.z/ D nh.z/ ˝ nh.z/ at the nodes z. The
vectors and lines at the nodes are scaled by the factor 1=5. Note that ELdG.Qh/ � 0:9543 �
EOF.nh/ � 13:7151

in Sect. 6 we execute some interesting experiments illustrating the performance of
our algorithm. Furthermore, we numerically examine orientability issues discussed
in [4] in two and three space dimensions.

2 Euler Lagrange Equations for ELdG and EOF

We denote the tangent space of L2 at a given Q0 2 L
2 by TQ0

L
2 and for every

tangent vector V 2 TQ0
L
2 there exists a path �0 W .�ı; ı/! L

2 (ı > 0) satisfying

�.0/ D Q0 and d
dt

ˇ
ˇ
ˇ
tD0�.t/ D V . The following lemma can be found in [4] and

will help us to establish a complete characterization of TQ0
L
2. We include a sketch

of the proof to give an idea of how to work with line fields.

Lemma 1 ([4], Lemma 3). If �1 < t1 < t2 < 1 and Q W Œt1; t2� ! L
2

is continuous then there exist exactly two continuous maps (liftings) nC; n� W
Œt1; t2�! S

2, so that Q.t/ D n˙.t/˝ n˙.t/ and nC D �n�.

Proof. Let 0 < " <
p
2. Given n;m 2 S

2 with jn˝ n �m˝mj < " we have that
2.1� .n �m/2/ D jn˝ n �m˝mj2 < "2 and so

n �m �
r

1 � "
2

2
> 0 or n �m � �

r

1 � "
2

2
< 0:

Thus n˝ n D nC ˝ nC D n� ˝ n�, where nC � m > 0 and n� D �nC satisfies
n� �m < 0. Now letQ.
/ D n.
/˝n.
/ be continuous on Œt1; t2�. Then there exists
ı > 0 such that jn.
/ ˝ n.
/ � n.�/ ˝ n.�/j � p2. For all �; 
 2 Œt1; t2�

with j� � 
 j � ı, and we may suppose that t2 � t1 D Mı for some integer
M 2 N. First take m WD n.t1/ and for each 
 2 Œt1; t1 C ı� choose nC.
/ as
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above so that nC.
/ ˝ nC.
/ D n.
/ ˝ n.
/ and nC.
/ � m > 0. We claim
that nC W Œt1; t1 C ı�! S

2 is continuous. Indeed, let �j ! � in Œt1; t1 C ı� and
suppose for contradiction that n.�j / 6! n.�/. Then since nC.�j / ˝ nC.�j / !
nC.�/˝nC.�/ there is a subsequence �jk

such that nC.�jk
/! �nC.�/. But then

�nC.�/ �m � 0 is a contradiction which proves the claim. Repeating this procedure
with n WD nC.t1 C ı/ we obtain a continuous lifting nC W Œt1; t1 C 2ı� ! S

2, and
thus inductively a continuous lifting nC W Œt1; t2� ! S

2. Setting n� D �nC gives
a second continuous lifting. Again, by a standard continuity argument we see that
there exist only two continuous liftings. ut

Let n0 2 S
2 satisfyQ0 D n0˝n0. According to Lemma 1, there exists for ı > 0

a Q� W .�ı; ı/ ! S
2 satisfying Q�.0/ D n0 and � j.�ı;ı/ D Q� ˝ Q� j.�ı;ı/. We define

d
dt

ˇ
ˇ
ˇ
tD0 Q� WD v 2 Tn0

S
2 and obtain V 2 TQ0

L
2 as

V D d

dt

ˇ̌
ˇ
tD0�.t/ D

d

dt

ˇ̌
ˇ
tD0 Q�.t/˝ Q�.t/

D n0 ˝ d

dt

ˇ
ˇ̌
tD0 Q�.t/C

d

dt

ˇ
ˇ̌
tD0 Q�.t/˝ n0 D n0 ˝ v C v ˝ n0:

This means that there is a one-to-one correspondence between the tangent space
TQ0

L
2 and Tn0

S
2.

Let @˝ D �nor [ �tan [ �N be a partition of the boundary of ˝ . For line fields
and director fields we impose natural Neumann boundary conditions on �N and the
essential boundary conditions of homeotropic anchoring and planar anchoring on
�nor and �tan, respectively:

Q D nQ ˝ nQ 2 L
2 n 2 S

2

x 2 �tan nQ.x/ jj �@˝.x/ n.x/ jj �@˝.x/
x 2 �nor nQ.x/ ? �@˝.x/ n.x/ ? �@˝.x/

Admissible tensor and director fields for ELdG and EOF are

ALdG WD fQ 2 W 1;2.˝;R3�3/ W Q 2 L
2 a.e. in ˝;

Q satisfies the boundary conditions on �nor [ �tang and

AOF WD fn 2 W 1;2.˝;R3/ W n 2 S
2 a.e. in ˝;

n satisfies the boundary conditions on �nor [ �tang:

Stationary points of ELdG in the set of admissible line fields satisfy the imposed
boundary conditions and

.rQ;rV / D 0;
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for all V 2 FL2 ŒQ� given by

FL2 ŒQ� WD fV 2 C1
0 .˝ n .�nor [ �tan/;R

3�3/ W V.x/ 2 TQ.x/L2 for x 2 ˝g:

At least locally, there exists always a vector field n satisfyingQ D nQ˝nQ and
therefore we can rewrite the Euler Lagrange equation as

.rQ;r.nQ ˝ v C v ˝ nQ// D 0

for all v 2 FS2 ŒnQ� given by

FS2 ŒnQ� WD fv 2 C1
0 .˝ n .�nor [ �tan/;R

3/ W v.x/ 2 TnQ.x/S
2 for x 2 ˝g:

Stationary points of EOF in the set AOF satisfy the imposed boundary conditions
and the Euler Lagrange equations

.rn;rv/ D 0
for all v 2 FS2 Œn�. Clearly, it is only possible to consider EOF if the boundary
values are orientable in the sense that there exists an orientable line field realizing
the boundary conditions.

3 Discrete Setting

We let Th be a regular triangulation into triangles (d D 2) or tetrahedra (d D 3) of
maximal diameter h > 0 in the sense of [9]. We denote by V D V.Th/ the space
of all continuous functions on ˝ that are affine on the elements in the triangulation
Th and we set Vnor D V \ fv 2 W 1;2.˝/ W vj
nor D 0g. We call a triangulation Th
weakly acute if

Kij WD
Z

˝

r'ai
� r'aj

dx � 0 for all ai ¤ aj 2 N ; (1)

where N D fa1; : : : ; aN g denotes the set of nodes in Th and .'a/a2N is the
standard nodal basis of V. Note that if d D 2 the triangulation Th is weakly acute
if the sum of every pair of angles opposite to an interior edge is bounded by � and
if the angle opposite to every edge on the boundary is less than or equal to �=2.
We denote by Ih W C 0.˝/ ! V the standard nodal interpolant and for a fixed
time-step size 
 > 0 let tj D j
 for all j � 0.

3.1 Monotonicity Estimates

We include a monotonicity estimate from [6] that is a discrete version of a
corresponding statement in [2].
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Lemma 2 (Monotonicity I). Let Th be weakly acute, and let Qnh 2 V
3 be such that

j Qnh.a/j � 1 for all a 2 N , and define nh 2 V
3 by setting nh.a/ D Qnh.a/=j Qnh.a/j

for all a 2 N . Then

krnhk � kr Qnhk: (2)

Proof. Let .'ai
/ai 2N denote the nodal basis of V. Besides (1), the symmetric

matrix .Kij/
N
i;jD1 satisfies

PN
jD1Kij D 0 owing to

PN
jD1 'aj

D 1. We observe
the relations

jjrnhjj2 D
NX

i;jD1

Kijnh.ai / � nh.aj /

D 1

2

NX

i;jD1

Kijnh.ai / � 
nh.aj /� nh.ai /
�C 1

2

NX

i;jD1

Kijnh.aj / � 
nh.ai /� nh.aj /
�

D �1
2

NX

i;jD1

Kij

ˇ
ˇnh.ai /� nh.aj /

ˇ
ˇ2:

The assertion is proved if jnh.ai / � nh.aj /j2 � j Qnh.ai / � Qnh.aj /j2 for all i; j D
1; � � � ; N . Hence, it suffices to show

ˇ
ˇ ajaj � b

jbj
ˇ
ˇ � ˇ

ˇa � bˇˇ, for a; b 2 R
3 with

jaj; jbj � 1. This follows from the Lipschitz continuity with constant 1 of the map
�S2 W fx 2 R

3 W jxj � 1g ! S
2; x 7! x=jxj. ut

Before we turn to the characterization of discrete harmonic director fields and
Q harmonic line fields we state another monotonicity estimate result which is an
adoption from the previous argument to the finite element space of functions that
have nodal values in L

2. The result is a consequence of the following auxiliary
estimate.

Lemma 3 (Tensor Estimate). Let Qv; Qw 2 R
3 such that j Qvj; j Qwj � 1. Set v D Qv=j Qvj

and w D Qw=j Qwj, then

1 � .v ˝ v/ W .w˝ w/ � 1

2

ˇ
ˇ
ˇ Qv ˝ Qv � Qw˝ Qw

ˇ
ˇ
ˇ
2

; (3)

where for A;B 2 R
3 A W B D tr.ATB/ and tr W R3�3 ! R is the usual trace of a

square matrix.

Proof. We deduce

1� .v˝ v/ W .w˝w/ D 1� .v �w/2 D .1� v �w/.1C v �w/ D 1

4
jv�wj2jvCwj2:
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Where we incorporated the identity 1˙ v �w D 1
2
jvj2C 1

2
jwj2˙ v �w D 1

2
jv˙wj2

and the fact that

.v ˝ v/ W .w˝ w/ D
X

k;`

vkv`wkw` D
X

k

vkwk
X

`

v`w` D .v � w/2:

Since �S2 is point symmetric with respect to the origin and Lipschitz continuous on
R
3 n B1.0/ with Lipschitz constant one we deduce that

jv ˙ wj D
ˇ
ˇ
ˇ
Qv
j Qvj ˙

Qw
j Qwj
ˇ
ˇ
ˇ � j Qv ˙ Qwj:

This yields

1 � .v ˝ v/ W .w˝ w/ � 1

4
j Qv � Qwj2j Qv C Qwj2

D 1

4

�
j Qvj2 C j Qwj2 � 2 Qv � Qw

	�
j Qvj2 C j Qwj2 C 2 Qv � Qw

	

D 1

4

h 
j Qvj2 C j Qwj2�2 � 4. Qv � Qw/2
i

D 1

4

h 
j Qvj4 � 2. Qv � Qw/2 C j Qwj4�C 2 
j Qvj2j Qwj2 � . Qv � Qw/2�
i

� 1

2


j Qvj4 � 2. Qv � Qw/2 C j Qwj4� D 1

2

ˇ
ˇ
ˇ Qv ˝ Qv � Qw˝ Qw

ˇ
ˇ
ˇ
2

;

where we used Young’s inequality 2j Qvj2j Qwj2 � j Qvj4 C j Qwj4 and the identity j Qvj4 D
j Qv ˝ Qvj2. ut
Lemma 4 (Monotonicity II). Let Th be weakly acute, and let Qnh 2 ŒV�3 be such
that j Qnh.a/j � 1 for all a 2 N , and define nh 2 ŒV�3 by setting nh.a/ D
Qnh.a/=j Qnh.a/j for all a 2 N . Furthermore we define QQh;Qh 2 ŒV�3�3 by setting

QQh.a/ WD Qnh.a/˝ Qnh.a/ and Qh.a/ WD Qnh.a/
j Qnh.a/j ˝

Qnh.a/
j Qnh.a/j for all a 2 N :

Then

krQhk � kr QQhk: (4)

Proof. We start the proof with the same arguments as in Lemma 2 which yield

krQhk2 D �1
2

NX

i;j

KijjQh.ai /�Qh.aj /j2



Simulation ofQ-Tensor Fields with Constant Orientational Order Parameter in . . . 393

D �1
2

NX

i;j

Kij

jQh.ai /j2 � 2Qh.ai / W Qh.aj /C jQh.aj /j2

�

D �
NX

i;j

Kij


1 �Qh.ai / W Qh.aj /

�
:

For i; j 2 f1; : : : ; N g arbitrary we incorporate the estimate (3) from Lemma 3 with
Qv WD Qnh.ai /, Qw WD Qnh.aj /, v D Qv=j Qvj and w D Qw=j Qwj and arrive at

1 �Qh.ai / W Qh.aj / � 1

2
j QQh.ai /� QQh.aj /j2:

We conclude

jjrQhjj2 D �
X

ij

Kij.1�Qh.ai / W Qh.aj // � �1
2

X

ij

Kijj QQh.ai /� QQh.aj /j2 D jjr QQhjj2;

which proves the lemma. ut

3.2 Euler Lagrange Equation in the Discrete Setting

For the discrete version of the boundary conditions we assume that all nodes on the
boundary of ˝ lie either in �N , �tan or �nor. For discrete line and director fields
we impose natural Neumann boundary conditions on �N and the discrete essential
boundary conditions of homeotropic anchoring and planar anchoring on �nor and
�tan, respectively:

Qh.z/ D nQh .z/˝ n
Q
h
.z/ 2 L

2 for all z 2 Nh nh.z/ 2 S
2 for all z 2 Nh

z 2 �tan n
Q
h
.z/ jj �@˝.z/ nh.z/ jj �@˝.z/

z 2 �nor n
Q
h
.z/ ? �@˝.z/ nh.z/ ? �@˝.z/

Thus, we define the discrete admissible line fields and director fields for ELdG

and EOF

A h
LdG WD fPh 2 ŒV�3�3 W Ph.a/ 2 L

2 for all a 2 N ;

Ph satisfies the boundary conditions on �nor [ �tang and

A h
OF WD fvh 2 ŒV�3 W vh.a/ 2 S

2 for all a 2 N ;

vh satisfies the boundary conditions on �nor [ �tang:
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Definition 2. (i) A map Qh 2 A h
LdG is called a discrete Q harmonic tensor

field into L
2 subject to homeotropic anchoring, planar anchoring and Neumann

boundary conditions if Qh is stationary for ELdG among all Ph 2 A h
LdG.

(ii) A vector field nh 2 A h
OF is called a discrete harmonic director field subject to

homeotropic anchoring, planar anchoring and Neumann boundary conditions if
nh is stationary for EOF among all vh 2 A h

OF.

Given nh 2 A h
OF we define the space of tangential updates with respect to the

sphere by

FS2 Œnh� D
˚
rh 2 ŒVnor�

3 W rh.a/ � nh.a/ D 0 for all a 2 N ;

and rh.a/ � �@˝.a/ D 0 for all a 2 N \ �tan
�
: (5)

For computations with line fields we define the space of tangential updates for a
givenQh 2 A h

LdG as

FL2 ŒQh� D
˚
Rh 2 ŒVnor�

3�3 W Rh D IhŒrh ˝ nQh C nQh ˝ rh� for rh 2 FS2 Œn
Q

h �
�
; (6)

where nQ
h
2 ŒV�3 satisfies jnQ

h
.a/j D 1 and Qh.a/ D n

Q

h
.a/ ˝ n

Q

h
.a/ for all

a 2 N . The following proposition is a variation of Lemma 3.1.4 from [5].

Proposition 1. 1. A tensor field Qh 2 A h
LdG is a discrete Q harmonic tensor field

into L
2 according to Definition 2 if and only if there holds

.rQh;rVh/ D 0 (7)

for all Vh 2 FL2 ŒQh�.
2. A vector field nh 2 A h

OF is a discrete harmonic director field according to
Definition 2 if and only if there holds

.rnh;rvh/ D 0 (8)

for all vh 2 FS2 Œnh�.

Proof. For the proof of (1) we note that a variation of Qh can be given by the term
Ih�L2.Qh C tPh/ for t > 0 small enough and Ph 2 ŒVnor�

3�3. Then

Ih�L2.Qh C tPh/.a/ D Qh.a/C tD�L2.Qh.a//Ph.a/C o.t/

for all a 2 N . If Ph 2 FL2 ŒQh� thenD�L2.Qh.a//Ph.a/ D Ph.a/ for all a 2 N
and we obtain that

Ih�L2.Qh C tPh/ D Qh C tPh C o.t/:



Simulation ofQ-Tensor Fields with Constant Orientational Order Parameter in . . . 395

Thus, (7) follows by computing

0 D lim
t!0

t�1 .ELdG.Ih�L2.Qh C tPh//�ELdG.Qh// D .rQh;rPh/ :

The proof of (2) follows analogously. ut

4 Iterative Algorithms
We compute stationary points of EOF and ELdG via iterative algorithms that are
motivated by the corresponding H 1 gradient flows. The continuous H 1 gradient
flow for harmonic maps into a submanifold˙ � R

n subject to Dirichlet conditions
on �D seeks a function V W .0;1/�˝ ! ˙ satisfying V.0; �/ D V0, V.t; �/j
D

D
VD and

.r@tV;rP/C .rV;rP/ D 0 (9)

for almost every t 2 .0;1/ and all P 2 W 1;2
D .˝;Rn/ such that P.x/ 2 TV.x/˙

for almost every x 2 ˝ .

4.1 Fully Discrete Algorithm for Discrete Harmonic Director
Fields

For the computation of discrete harmonic director fields a semi-implicit
discretization of (9) yields the following algorithm. Well-posedness, unconditional
stability for weakly acute triangulations, termination and convergence of the
algorithm can be found in [6].

Input Triangulation Th, stopping criterion " > 0, time-step size 
 > 0 and n0
h
2

A h
OF. Set i D 0.

1. Compute wi
h
2 FS2 Œnih� such that

�
rwih;rvh

	
C
�
r.nih C 
wih/;rvh

	
D 0

for all vh 2 FS2 Œnih�.
2. Set

niC1
h

.a/ WD ni
h
.a/C 
wi

h
.a/

jni
h
.a/C 
wi

h
.a/j ;

for all a 2 N .



396 S. Bartels and A. Raisch

3. Stop, if jjrwi
h
jjL2 < ".

4. Set i D i C 1 and go to (1).

Output: n�
h
WD ni

h
.

Remark 1. (i) For dtnih WD wi
h

and QniC1
h
WD ni

h
C 
dtnih the equation in Step 1

reads

.rdtn
i
h;rvh/C .r QniC1h

;rvh/ D 0
which is a discrete version of (9).

(ii) As it was already discussed in [7, 16] the same algorithm without Step 2 yields
for the output n�

h

jjIhŒjn�
hj2 � 1�jjL1 � C
EOF.n

0
h/:

Thus, for 
 > 0 small enough the projection step can be skipped and the
violation of the constraint at the nodes is controlled by the time-step size 
 .

4.2 Fully Discrete Algorithm for Discrete Q Harmonic
Tensor Fields

For the computation of discrete Q harmonic tensor fields we propose the following
algorithm which is a discretization of a variation of the H 1 gradient flow. Locally,
we have that Q D nQ ˝ nQ and @tQ D @tn

Q ˝ nQ C nQ ˝ @tnQ as well as
the relation V D nQ ˝ v C v ˝ nQ for V 2 FL2 ŒQ� and some v 2 FS2 ŒnQ�.
We employ the modifiedH 1 gradient flow as

.r@tnQ;rv/C �.r@tQ;rV /C .rQ;rV / D 0;
with a discretization parameter � > 0 that coincides with the time-step size. In
Sect. 5 we will provide proofs of stability, termination and convergence of the
algorithm to a discrete Q harmonic tensor field.

Input Triangulation Th, stopping criterion " > 0, time-step size 
 > 0
andQ0

h
2 A h

LdG. Set i WD 0.

1. Compute wi
h
2 FS2 Œn

Q;i

h
� such that

�
rwih;rvh

	
C

�
r.Qi

h C 
IhŒn
Q;i

h
˝ wih C wih ˝ nQ;ih

�/;rIhŒn
Q;i

h
˝ vh C vh ˝ nQ;ih

�
	
D 0;

for all vh 2 FS2 Œn
Q;i

h
�.
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2. Set

QiC1
h

.a/ WD n
Q;i

h
.a/C 
wi

h
.a/

jnQ;i
h
.a/C 
wi

h
.a/j
˝ n

Q;i

h
.a/C 
wi

h
.a/

jnQ;i
h
.a/C 
wi

h
.a/j

;

for all a 2 N .
3. Stop, if jjrwi

h
jjL2 < ".

4. Set i D i C 1 and go to (1).

Output: Q�
h
D Qi

h
.

5 Analysis of the Algorithms and Q Harmonic Tensor Fields

In the first part of this section we analyze the proposed algorithm for the compu-
tation of Q harmonic tensor fields. Related results for the H 1 gradient flow for
director fields can be found in [6]. Furthermore, we discuss a weak compactness
result for Q harmonic tensor fields on a continuous level which provides the basis
for a convergence analysis of the discrete approximations. We refer to [5] for a
corresponding analysis in the case of discrete harmonic director fields.

5.1 Stability and Convergence of the Tensor Field Algorithm

We start our analysis by showing well-posedness of the algorithm. A stability result
enables us to show termination of the algorithm and convergence to discrete Q
harmonic tensor field.

Lemma 5 (Well-posedness). Given Qh 2 ŒV�3�3 satisfying Qh.a/ 2 L
2 for all

a 2 N there exists wh 2 FS2 Œn
Q

h
� satisfying

�
rwh;rvh

	
C
�
r.QhC
IhŒn

Q

h
˝whCwh˝nQh �/;rIhŒn

Q

h
˝vhCvh˝nQh �

	
D 0
(10)

for all vh 2 FS2 Œn
Q

h
�. Moreover we have the following estimate


krwhk2 � ELdG.Qh/: (11)

Proof. We set

T WD
n
vh 2 ŒVnor�

3 W vh.a/ 2 TnQ

h
.a/

S
2 for all a 2 N

o
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and note that T is a subspace of ŒVnor�
3. The bilinear form AQ W T � T ! R,

defined through

.wh; vh/ 7!
�
rwh;rvh

	
C
�
rIhŒn

Q

h
˝whCwh˝nQh �;rIhŒn

Q

h
˝vhCvh˝nQh �

	

fulfills the requirements of the Lax-Milgram Lemma. For the unique solution wh
of (10) we obtain by choosing vh D 
wh that


krwhk2C
2krIhŒn
Q

h ˝whCwh˝nQh �k2 D �

�
rQh;rIhŒn

Q

h ˝whCwh˝nQh �
	

� 1

4
krQhk2 C 
2krIhŒn

Q

h
˝ wh C wh ˝ nQh �k2;

which is the asserted estimate. ut
Lemma 6 (Stability). Assume that Th is weakly acute. For a givenQ0

h
2 A h

LdG let
.Qi

h
/0�i�J � A h

LdG be the sequence of tensor fields computed in ourQ tensor field
algorithm and let

C 0 WD 1 � CC 1=20 
h1�d=2.logh�1
min/� CC0
3h2�d .logh�1

min/
2;

where C0 WD ELdG.Q
0
h
/, h2min WD minT2Th

diamT and the constant C > 0 depends
on the geometry of the mesh but is independent of the mesh-size h > 0. If the
time-step size 
 > 0 is small enough, so that C 0 > 0 then for all J � 1

ELdG.Q
JC1
h

/C C 0.
=2/
JX

iD0
krwihk2 � ELdG.Q

0
h/;

and the Q-field algorithm terminates within a finite number of iterations.

Proof. We recall that Qi
h
D IhŒn

Q;i

h
˝ nQ;i

h
� and

QiC1
h

.a/ D n
Q;i

h
.a/C 
wi

h
.a/

jnQ;i
h
.a/C 
wi

h
.a/j
˝ n

Q;i

h
.a/C 
wi

h
.a/

jnQ;i
h
.a/C 
wi

h
.a/j

;

for all a 2 N . We set

QQiC1
h
WD Qi

h C 
IhŒw
i
h ˝ nQ;ih

C nQ;i
h
˝ wih�

and

QQQiC1
h
WD IhŒ.n

Q;i

h
C 
wih/˝ .nQ;ih

C 
wih/� D QQiC1
h
C 
2IhŒw

i
h ˝ wih�:
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Furthermore, we know that according to Lemma 4 ELdG.
QQQiC1
h

/ � ELdG.Q
iC1
h

/,

since Th is weakly acute. In Step 1 of the algorithm we compute wi
h
2 FS2 Œn

Q;i

h
�

satisfying

.rwih;rvh/C .r QQi
h;rIhŒvh ˝ nQ;ih

C nQ;i
h
˝ vh�/ D 0;

for all vh 2 FS2 Œn
Q;i

h
�. We test the equation with vh D 
wi

h
and obtain


krwihk2 C .r QQiC1
h

;r. QQiC1
h
�Qi

h// D 0:

Upon using the binomial identity 2a.a � b/ D .a � b/2 C a2 � b2 we infer that


krwihk2C2.ELdG. QQiC1
h

/�ELdG.Q
i
h//C .
2=2/krIhŒw

i
h˝nQ;ih

CnQ;i
h
˝wih�k2 D 0:

The monotonicity estimate for line fields together with the identity

ELdG.
QQQiC1
h

/ D ELdG. QQiC1
h

/C.
2=2/.r QQiC1
h

;rIhŒw
i
h˝wih�/C
4ELdG.IhŒw

i
h˝wih�/

yields


krwihk2C2.ELdG.Q
iC1
h

/�ELdG.Q
i
h//C.
2=2/krIhŒw

i
h˝nQ;ih

CnQ;i
h
˝wih�k2

� 
2.r QQiC1
h

;rIhŒw
i
h ˝ wih�/ � 2
4ELdG.IhŒw

i
h ˝ wih�/ � 0:

To bound the first negative term we employ the representation of QQiC1
h

and Young’s
inequality


2.r QQiC1
h ;rIhŒw

i
h ˝ wih�/ D 
2.r.Qi

h C 
IhŒw
i
h ˝ n

Q;i

h C n
Q;i

h ˝ wih�/;rIhŒw
i
h ˝ wih�/

� 2
2.ELdG.Q
i
h//

1=2krIhŒw
i
h ˝ wih�k

C 2
4ELdG.IhŒw
i
h ˝ wih�/

C .
2=2/krIhŒw
i
h ˝ n

Q;i

h C n
Q;i

h ˝ wih�k2:

Thus, we arrive at


krwihk2 C 2.ELdG.Q
iC1
h

/ �ELdG.Q
i
h//

� 2
2.ELdG.Q
i
h//

1=2krIhŒw
i
h ˝ wih�k � 4
4ELdG.IhŒw

i
h ˝ wih�/ � 0: (12)
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We argue by induction and assume thatELdG.Q
j

h
/ � C0 for j D 0; : : : ; i . A discrete

norm equivalence on every triangle T 2 Th shows that

krIhŒw
i
h ˝ wih�kL2.T / � Ckr.wih ˝ wih/kL2.T / � 2CkwihkL1.T /krwihkL2.T /:

We incorporate the inverse estimate kwi
h
kL1.T / � Ch

1�d=2
T logh�1

T krwi
h
kL2.T /,

cf., e.g., [9], and sum over all T 2 Th to arrive at

krIhŒw
i
h ˝ wih�k � Ch1�d=2

min logh�1
minkrwihk2:

Furthermore, if we incorporate (11) and the induction hypotheses we obtain the
following bound

ELdG.IhŒw
i
h ˝ wih�/ � Ch2�dmin .logh�1

min/
2krwihk4 � CC0
�1h2�dmin .logh�1

min/
2krwihk2:

We use the derived bounds in (12) and deduce that


.1 � CC 1=20 
h
1�d=2
min logh�1

min � CC0
2h2�d
min .logh�1

min/
2/krwihk2

C2.ELdG.Q
iC1
h

/� ELdG.Q
i
h// � 0:

Upon choosing 
 > 0 small enough so that

C 0 WD 1 � CC 1=20 
h
1�d=2
min logh�1

min � CC0
2h2�d
min .logh�1

min/
2 > 0;

we obtain the local energy inequality

C 0
krwihk2 C 2.ELdG.Q
iC1
h

/� ELdG.Q
i
h// � 0:

Therefore, ELdG.Q
iC1
h

/ � ELdG.Q
i
h
/ � C0 and this allows us to proceed by

induction. Summing over i from 0 to J yields

ELdG.Q
JC1
h

/C C 0.
=2/
JX

iD0
krwihk2 � ELdG.Q

0
h/: ut

Theorem 1 (Termination and convergence to a discrete Q harmonic tensor
field). Suppose that the conditions of Lemmas 5 and 6 are satisfied. Then the
tensor field algorithm terminates within a finite number of iterations and the output
Q�
h
2 A h

LdG satisfies

�
rQ�

h;rIhŒn
Q;�
h
˝ vh C vh ˝ nQ;�h

�
	
D Res.vh/
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for all vh 2 FS2 Œn
Q;�
h

�, where the linear functional Res W FS2 Œn
Q;�
h

� ! R

satisfies jRes.vh/j � "krvhk2 for all vh 2 FS2 Œn
Q;�
h

�. For a sequence ."J /J2N
of positive numbers such that "J ! 0 as J !1, every accumulation point of the
corresponding bounded sequence of outputs .Q�;J

h
/J2N � A h

LdG of the algorithm is
a discrete Q harmonic line field according to Definition 2.

Proof. The proof is a direct consequence of Theorem 3.2.7 from [5]. ut

5.2 Weak Compactness Result for Q Harmonic Tensor Fields

For ease of presentation we assume homeotropic boundary conditions on the entire
boundary and let .Q`/` � W 1;2.˝IL2/ be a bounded sequence of Q harmonic
tensor fields. Then there exists ˙n` W ˝ ! S

2 satisfying Q`.x/ D n`.x/˝ n`.x/
for almost every x 2 ˝ . Note that, on every simply connected ! � ˝ , we can
chose˙n` 2 W 1;2.!;S2/. Moreover, we have that

.rQ`;rV / D 0

for all V 2 W
1;2
0 .˝IR3�3/ satisfying V.x/ 2 TQ`.x/L

2 for almost every x 2
˝ . We will show convergence on every simply connected ! � ˝ . For this let
V 2 W 1;2

0 .˝IR3�3/ be such that suppV � ! and V.x/ 2 TQ.x/L2 for almost
every x 2 !. Thus, there exists v 2 W 1;2

0 .!;R3/ satisfying v.x/ 2 Tn`.x/S
2 for

almost every x 2 ! and V D n` ˝ v C v ˝ n`. Furthermore, we can rewrite
v D n`�� for some function � 2 W 1;2

0 .!;R3/ and the usual cross product�. From
the boundedness of .Q`/` we infer that for (not relabeled) subsequences

Q` *Q in W 1;2; Q` ! Q in L2 and Q` ! Q pointwise almost everywhere in˝:

Since Q` D n` ˝ n` almost every, we know that ni
`
n
j

`
! ninj pointwise almost

everywhere for i; j D 1; : : : ; 3. We proceed

.rQ`;rV / D .rQ`;r.n` ˝ v C v ˝ n`//

D .rQ`;r.n` ˝ .n` � �/C .n` � �/˝ n`//

D
dX

kD1
.@kQ`; @k.n` ˝ .n` � �/C .n` � �/˝ n`//

D
dX

kD1
..@kn`/˝ n` C n` ˝ .@kn`/; @k.n` ˝ .n` � �/C .n` � �/˝ n`//:
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For a; b; c; d 2 R
3 we have that .a ˝ b; c ˝ d/ D .aT d; bT c/. Since n` ? @kn`

for k D 1; : : : ; d and n` ? n` � � we see that terms of the form

.@kn` ˝ n`; @kn` ˝ .n` � �// D ..@kn`/T .n` � �/; nT` .@kn`//
vanish and we obtain the identity

.rQ`;rV / D
dX

kD1
..@kn`/˝ n` C n` ˝ .@kn`/; n` ˝ .n` � @k�/C .n` � @k�/˝ n`/

D
dX

kD1
.@kQ`; n` ˝ .n` � @k�/C .n` � @k�/˝ n`/:

The products n`˝ .n` � @k�/ and .n` � @k�/˝ n` are quadratic in the components
of n` and therefore we have that n`˝ .n`�@k�/! n˝ .n�@k �/ pointwise almost
everywhere in ˝ . Since jn`j D 1 and � 2 L1 we have by Lebesgue’s dominated
convergence that n` ˝ .n` � @k�/! n˝ .n � @k�/ strongly in L2. Together with
the weak convergence of @kQ` we infer that

0 D .rQ`;rV / �!
dX

kD1
.@kQ;n˝ .n � @k�/C .n � @k�/˝ n/

D .rQ;r.n˝ .n � �/C .n � �/˝ n/:
Since this holds for all � and the previous arguments are independent of ! � ˝ we
have that Q is a harmonic line field.

6 Numerical Experiments

6.1 Extinction of Singularities

We consider a liquid crystal cell V D .�1; 1/3 � R
3 with planar anchoring

conditions. In this case defects at the boundary can be observed leading to so called
Schlieren textures. There are different types of defects (disclinations) and to each
type is assigned a number and a sign. Some of them may cancel out each other
if they come into contact. We consider the upper boundary of V and simulate
the annihilation of opposite degree one-half and degree one singularities in the
iteration of the algorithm. The preference of the alignment parallel to the surface
˝ D .�1; 1/2 � f1g is modelled by the use of a Ginzburg-Landau penalty-term.
Thus, we consider

E"LdG.Q/ D
1

2

Z

˝

jrQj2 dx C 1

2"2

Z

˝

jQ33j2 dx:
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Fig. 3 Annihilation of two opposite degree one-half singularities during the computation and an
energy plot demonstrating the decay of energy for different mesh-sizes. The energy shows a strong
decay when the attracting defects eventually annihilate

Penalizing the out of plane component is physically consistent since the alignment
parallel to ˝ is favored but not forced. Mathematically this is crucial since
singularities in the plane have infinite energy. Let Th;0 be a triangulation of
˝ consisting of two triangles obtained by dividing .�1; 1/2 along the diagonal
x1 D x2. The sequence of triangulations T` is generated by ` uniform refinements
of T0 with mesh-size h` D

p
22�`. We use a time-step size 
 D 5h and set

" D 10�1. In our first experiment we examine the extinction of two opposite
degree one-half singularities. We place a positive degree one-half singularity at
x1 D 0:5 and a negative degree one-half singularity at x1 D �0:5. Boundary
values are chosen to be nD D Œ0; 1; 0�T . The unique minimizer of E"LdG is given
by u D Œ0; 1; 0�T . For the construction of such initial defect data we refer the reader
to [8, 16]. In a second experiment we place a negative degree one singularity at
x1 D 0 and two positive degree one-half singularities at x1 D �0:3 and x1 D 0:7.
As in the first experiment the boundary values are nD D Œ0; 1; 0�T . Snapshots of the
evolution and decay of energy in the two examples can be seen in Figs. 3 and 4.
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Fig. 4 Extinction of three singularities during the computation and an energy plot demonstrating
the decay of energy for different mesh-sizes: The nearby negative degree one and positive degree
one-half singularities come together and result in a negative degree one-half singularity. Then, as in
the first experiment an annihilation takes place when the remaining singularities meet. The energy
shows strong decays when the annihilations take place

6.2 Orientability Versus Non-orientability

Let D1 WD .�1:5; 1:5/ � .�1; 1/, let D2 WD B1.Œ�1:5; 0�T / [ B1.Œ1:5; 0�T /,
let D3 WD B1=2.Œ�1:5; 0�T / [ B1=2.Œ1:5; 0�T / and let D WD .D1 [D2/ nD3,
see Fig. 5. We use the DistMesh package [15] to generate quasi-uniform triangu-
lations of D with arbitrary mesh-size. Thus, the quantities h D 0:1; 0:075 and
h D 0:05 in Fig. 5 are approximate values to the actual mesh-sizes according to the
definition in Sect. 3. The two-dimensional domainD was introduced in [4] to point
out that there exist settings in which theQ-tensor theory yields stable configurations
that cannot be seen by the classical Oseen-Frank model. We impose tangential
boundary conditions on the outer part of the boundary and Neumann conditions
at the interior. Furthermore we consider the energy

E"LdG.Q/ D
1

2

Z

˝

jrQj2 dx C 1

2"2

Z

˝

jQ33j2 dx;
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Fig. 5 Energy decay for different mesh-sizes and final states for a triangulation of D with mesh
size h D 0:1. The energy of the final state in the class of non-orientable line fields is strictly smaller
than the energy in the class of orientable line fields. The classical Oseen-Frank theory would not
detect the absolute minimum prefered by the liquid crystal

which allows for an out-of-plane component and thereby for singularities in the
interior as in Sect. 6.1. We compute stable configurations in the class of orientable
and non-orientable line fields with our algorithms from Sect. 4, see Figs. 5 and 6.
We observe for a sequence of triangulations with approximate mesh-sizes h D
0:1; 0:075 and h D 0:05 that the energies in the class of non-orientable line fields
are strictly smaller than the energies in the class of orientable line fields. Thus, the
classical Oseen-Frank theory fails to detect stable configurations of the liquid crystal
with small energy.

6.3 Torus Experiments

We investigate stable configurations of line fields on a vertically stretched torus T2

which can be parametrized by X W .0; 2�/2 ! R
3,

.'; �/ 7!
2

4
.RC rcos�/cos'
.RC rcos�/sin'

2:5rsin�

3

5

with R > r > 0, see Fig. 7. Planar anchoring conditions are imposed everywhere
on the surface and we compute the tangent vectors


1 WD @'X

j@'X j and 
2 WD @�X

j@�X j ;
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Fig. 6 Snapshots of an evolution under the H1 gradient flow and decay of energy for director
fields (left) and line fields (right): The initial line field Q0

h admits a positive degree one singularity
at x1 D �0:5, the holes are located at x1 D ˙1:5 and have a radius r D 0:5. In the orientable
case the singularity moves into the hole on the right. In the non-orientable case the singularity
splits into two positive degree one-half singularities that repulse from each other and vanish in the
holes leading to a strictly smaller energy

as well as the unit normal outer normal � D �1��2j�1��2j . Let QT0 be a triangulation of

.0; 2�/2 consisting of two triangles obtained by dividing .0; 2�/2 along the diagonal
x1 D x2. The sequence of triangulations QT` with mesh-size Qh` D

p
2.2�/2�` and

nodes QN` is generated by ` uniform refinements of QT0. We identify the following
nodes

Œ0; 
 Qh`
�T  ! Œ2�; 
 Qh`

�T and Œ
 Qh`
; 0�T  ! Œ
 Qh`

; 2��T
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Fig. 7 Generating the triangulation of a torus: On a uniform triangulation of .0; 2�/2 we identify
the nodes on the left with the ones on the right (red lines) and the nodes on the top with the ones
on the bottom (green lines). We plot the obtained stretched torus for ` D 4, r D 1 and R D 2 and
the two identification lines (middle) as well as the resulting mesh (right)

for 
 Qh`
D 0; Qh=p2; 2 Qh=p2; : : : ; 2� . By this, we obtain a new triangulation T` with

a new set of nodes N ` and define

N` WD
n
X.z/ W z 2 N `

o
:

This results in a closed triangulated surface T
2
h

approximating T
2 with a new mesh

size h` D jjDX jjL1
Qh` > 0, where jjDX jjL1 WD maxijjj@iXj jjL1 D maxfR C

r; 2:5rg. On T
2
h

we define the discrete tangent vector fields

Qn0h;1 WD IhŒ
2 C rand�

Qn0h;2 WD IhŒsin.'=2/
1C sin.'=2/
2 C rand�;

where rand W T2
h
! R

3 takes random values in .�0:1; 0:1/3 and ' denotes the
horizontal angle in the torus coordinates defined by the parametrizationX . To obtain
a vector field that is tangential and has unit length at the nodes we define n0h;i WD
IhŒ Qn0h;i � . Qn0h;i � �/�� for i D 1; 2 and then the initial data

n0h;i WD Ih

"
n0h;i

jn0h;i j

#

for i D 1; 2:

As can be seen in Fig. 8 the initial line field Q0
h;1
WD IhŒn

0
h;1
˝ n0

h;1
� is orientable

while Q0
h;2
WD IhŒn

0
h;2
˝ n0

h;2
� is a Moebius strip rotated around the x3-axis and,

therefore, non-orientable.
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Fig. 8 Initial data for the torus experiments: On the fundamental domain .0; 2�/2 of T2 we plot
the line fields Q0

h;1 and Q0
h;2. Since Q0

h;2 is a Moebius strip in one direction the resulting line field
on the torus is non-orientable
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Fig. 9 Numerically confirmed invariance of the energy ELdG under a rescaling x 7! �x of the
surface (left) and final energies for ratios R=r 2 .1:05; 3/ and two meshes (right). On the left we
plot ELdG.r/ � ELdG.r D 0:5/ for the ratios R=r D 1:3; 1:4 and 1:5 and initial data Q0

h;1 and
Q0
h;2. On the right we plot the final energies for r D 1 and initial dataQ0

h;1 andQ0
h;2. Note that the

energies of the final states in the class of orientable line fields is much smaller than the energies of
the non-orientable final states for R=r > 2 and they are of comparable size for R=r 
 1:5
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Fig. 10 Stationary points of ELdG in the class of orientable (left column) and non-orientable (right
column) tangential line fields on the torus: Snapshots of the evolution under the gradient flow with
initial data Q0

h;1 (left) and Q0
h;2 (right). On the outer part of the torus we see different tilts of the

liquid crystal when the evolution becomes stationary. We color the surface by Qh;33 D jnQh;3j2,
where the color blue corresponds to Qh;33 D 0, that is, the molecules of the liquid crystal lie in a
plane orthogonal to e3 D Œ0; 0; 1�T
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Fig. 11 Stationary points ofELdG on the torus (colored by theQ33 component): We plot snapshots
of a cut through the non-orientable (left) and orientable (right) line fields during the evolution

6.3.1 Different Ratios R=r

Since ELdG and the corresponding Euler-Lagrange equations are invariant under
a rescaling x 7! �x for � > 0 on two-dimensional surfaces stationary points
computed by a gradient flow algorithm only depend on the initial data Q0 and
the ratio R=r of the two radii that define the torus. We start the investigation of
tangential line fields by computing final energies for the starting values Q0

h;1
;Q0

h;2

and different ratios R=r . As can be seen in Fig. 9 on the right for R=r > 2 and our
choice of the initial data the energies of the final states in the class of orientable line
fields is much smaller than the energies of the non-orientable configurations. We will
have a closer look at the ratioR=r D 1:5 where the energies are of comparable size
and discuss properties of the stable orientable and non-orientable line fields.

6.3.2 Analyzing the Tilt for R=r D 1:5

The interest for physicists and engineers involved in the construction of bistable and
multistable devices is the difference in the tilt of liquid crystal molecules in stable
configurations. The tilt of liquid crystal molecules has an impact on polarized light
crossing the device possibly leading to a new polarization. A polarizer at the end of
the device measures the deviation of the outgoing from the ingoing polarization.
Since the polarizer passes light of a specific polarisation, say the ingoing one,
regions of different polarisations due to tilted molecules appear as darker spots.
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Fig. 12 Stationary points of ELdG in the class of orientable (upper two rows) and non-orientable
(lower two rows) tangential line fields on the torus: Some more snapshots of a cut through the line
field. All observed stationary points in the torus experiments are rotational symmetric with respect
to the x3-axis

For a ratio R=r D 1:5 and a refinement step ` D 6 we compute stationary points
ofELdG using orientable and non-orientable initial dataQ0

h;1
andQ0

h;2
, respectively.

We measure the tilt of the molecules in terms of the x3-componentQh;33 of the line
field. While the tilt of the crystal is almost the same on the inner part of the torus
for orientable and non-orientable stable configurations we observe a difference on
the outer part, see Figs. 10 and 11. We color all surfaces and line fields by Qh;33 D
jnQ
h;3
j2. In contrast to common bistable devices where different tilts of the crystal are

obtained with defect and non-defect states [11,17] we discuss, here, different stable
configurations under the notion of orientability and non-orientability (Fig. 12).

Acknowledgements The authors acknowledge support by the DFG through the Collaborative
Research Center (SFB) 611 Singular Phenomena and Scaling in Mathematical Models.
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A Fast and Accurate Numerical Method for the
Computation of Unstable Micromagnetic
Configurations

Sören Bartels, Mario Bebendorf, and Michael Bratsch

Abstract We present a fast and accurate numerical method to compute unstable
micromagnetic configurations. The proposed scheme, which combines various state
of the art methods, is able to treat the pointwise unit-length constraint of the
magnetization field and to efficiently compute the stray field energy. Furthermore,
numerical results are presented which are in agreement with the expected results in
simple situations and allow predictions beyond theory.

1 Introduction

The computation of minimal switching energies between two given stable states
and the detection of a corresponding unstable critical configuration is an important
task in the mathematical modeling of many physical phenomena [2, 20, 29]. In this
paper we address this problem and thereby aim at contributing to the understanding
of the energy landscape for a mathematically challenging and well established
model energy functional in micromagnetics; cf. [9, 22]. Its particular features are
that it involves a unit-length constraint for the magnetization field and requires the
computation of a stray field.

The finite element treatment of minimization problems and partial differential
equations with pointwise constraints has been investigated intensively in recent
years [1, 2]. Reliable and efficient methods are now available that typically impose
the constraint at the nodes of a triangulation [4,5]. In iterative schemes the constraint
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is linearized and afterwards updates are made which consist of corrections of tangent
spaces and a subsequent nodewise nearest-neighbor projection onto the given target
manifold which lead to linear systems of equations.

Computing the solution of an exterior domain problem is often formulated as
a boundary equation with a non-local operator and then requires the solution of
linear systems of equations with large, fully populated matrices. This is can be done
efficiently with the technique of so-called H -matrices which can approximate the
arising matrices with almost linear complexity, cf. [7, 16, 24].

Various methods are available to compute unstable critical points, i.e., saddle
points, of energy functionals known as mountain pass algorithms [8]. They typically
assume that the functional under consideration is defined on a linear space and
therefore cannot be employed if this is not the case, i.e., if the linear interpolation
between admissible configurations does not belong to the domain of the functional.
A method that is capable to cope with related difficulties is the recently developed
string method, see [28, 30], which evolves an entire path that connects two given
states in the set of admissible configurations.

For the Landau-Lifschitz energy in micromagnetics certain stable critical con-
figurations such as the so-called flower and vortex state are known [19, 26]. To
efficiently switch between such states, e.g., by an applied field, it is important to
determine the minimal energy required to achieve this change. We use the string
method in combination with finite element methods to deal with the pointwise
unit-length constraint and the H -matrix technology to efficiently compute this
energy and to identify a corresponding magnetization. The resulting numerical
method is verified for a standard problem [23] and a so-called minimum energy
path connecting the flower and vortex state is presented.

2 The Landau-Lifschitz Model

Let ˝ � R
3 be a domain and let the magnetization m W R3 ! R

3 satisfying
km.x/k2 D 1 in ˝ and m.x/ D 0 for all x 62 ˝ be given. The energy associated
with m is

E.m/ WD 1

2

Z

˝

kDmk2F dx C
Z

˝

'.m/ � f �m dx C Es.m/; (1)

where '.m/ WD 1 � .e �m/2 with given e; f 2 R
3 satisfying kek2 D 1 and

Es.m/ WD �0

2

Z

R3

kHk22 dx; �0 WD 4� � 10�7;

denotes the energy of the stray field H corresponding to m. H can be computed
from the Maxwell equations in the absence of electrical currents and charges
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divB D 0; (2a)

curl H D 0: (2b)

H and the magnetic induction B are coupled by the equation B D �0.H Cm/.
From Eq. (2b) it follows that there is the so-called magnetostatic potential um W

R
3 ! R satisfying H D �rum. Then (2a) becomes

�um D div m;

which is equivalent with the weak formulation

Z

R3

rum � rw dx D
Z

˝

m � rw dx for all w 2 H 1.R3/: (3)

Notice that this defines a linear mapping m 7! um with

krumkL2.R3/ � kmkL2.˝/: (4)

Using w D um in (3), it follows that

Es.m/ D �0

2

Z

˝

m � rum dx: (5)

In addition to the energyE.m/ also its derivativeE 0.m/Œv�will be important. Let
the direction v be given such that v.x/ �m.x/ D 0 for almost every x 2 ˝ . Then
we obtain that

E 0.m/Œv� D
Z

˝

trace .Dm/T .Dv/ dx�2
Z

˝

.e�m/.e�v/ dx�
Z

˝

f �v dxCE 0
s.m/Œv�;

where

E 0
s.m/Œv� D �0

Z

R3

H.v/H.m/ dx D �0
Z

˝

v � rum dx

due to (3).

3 Efficient Computation of the Stray Field Energy

The stray field energy represents the non-local effects of the magnetization. Hence, it
is the numerically most challenging part of the computation of the Landau-Lifschitz
model; see (1). In the following, a reformulation will be shown so that H -matrices
can be applied to approximate the local and non-local parts of the stray field energy.
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3.1 Different Formulations

Our aim is to find an explicit expression for the magnetostatic potential um.
Equation (3) is equivalent to the following boundary value problem

�um D
(

div m; in ˝;

0; in ˝c WD R
3 n˝; (6a)

Œum� D 0 on @˝; (6b)

Œ@�um� D �m � � on @˝; (6c)

which has the solution

um.x/ D
Z

˝

rS.x � y/ �m.y/ dy;

where S.x/ WD � 1
4�
kxk�12 denotes the singularity function of the Laplacian. Note

that Œ�� in (6) denotes the jump across the boundary @˝ .
The computation of the stray field energy using the latter representation of um

in combination with hierarchical matrices was already done in [24]. We favor the
following representation (see [11]), because it leads to the interaction of ˝ with its
boundary @˝ . Let u1 and u2 satisfy the following boundary value problems

�u1 D div m in ˝;

u1 D 0 on @˝

and

�u2 D 0 in ˝ [˝c ; (7a)

Œu2� D 0 on @˝; (7b)

Œ@�u2� D g on @˝; (7c)

where g WD .ru1�m/ ��. Then um D u1Cu2 and the solution of the homogeneous
problem (7) is

u2.x/ D
Z

@˝

S.x � y/g.y/ dsy :

Hence, from (5)

Es.m/ D �0

2

Z

˝

m � ru1 dx C �0

2

Z

˝

Z

@˝

m.x/ � rS.x � y/g.y/ dsy dx:
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From
Z

˝

m.x/�rS.x�y/ dx D �
Z

˝

S.x�y/.div m/.x/ dxC
Z

@˝

S.x�y/m.x/��x dsx

we obtain that

Es.m/ D �0

2

Z

˝

m � ru1 dx � �0
2

Z

˝

Z

@˝

S.x � y/.div m/g.y/ dsy dx

C �0

2

Z

@˝

Z

@˝

S.x � y/m.x/ � �x g.y/ dsy dsx:

3.2 Discretization

We assume that the computational domain ˝ is decomposed into a set of tetrahe-
dra Th such that ˝ D [�2Th


 . The finite element space consisting of linear ansatz
functions ˚ D .'i /i2I is denoted by S 1.Th/, the corresponding set of nodes will
be referred to as Nh. We discretize the magnetization mh 2 S 1.Th/

3 such that

mh D
X

i2I
˛i'i ; ˛i 2 R

3:

ThenDmh D
P
i2I ˛i .r'i /T , and the first term in (1) can be computed from

Z

˝

kDmhk2F dx D
Z

˝

trace .Dmh/
T .Dmh/ dx D X

i;j2I

Z

˝

trace r'i˛Ti ˛j .r'j /T dx

D
X

i;j2I

˛i � ˛j

Z

˝

trace r'i .r'j /T dx D
X

i;j2I

˛i � ˛j

Z

˝

r'i � r'j dx:

The second and the third term in (1) have the values

Z

˝

'.mh/ dx D
Z

˝

1 � .e �mh/
2 dx D vol.˝/�

X

i;j2I
.e � ˛i /.e � ˛j /

Z

˝

'i'j dx

and
Z

˝

f �mh dx D
X

i2I
f � ˛i

Z

˝

'i dx:
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Since u1 vanishes on @˝ , for the discretization of u1 only the inner degrees of
freedom are used, i.e.,

uh1 D
X

j2Iin

ˇj'j

with Iin WD InIbd , where Ibd are the boundary indices. Let Ilay � Iin be the vertices
which have a neighbor in the set of boundary indices Ibd . Then the restriction of uh1
to the boundary @˝ reads .ruh1/j@˝ D

P
i2Ilay

ˇir'i and

gh D
X

j2Ilay

ˇj � � r'j �
X

j2Ibd

� � ˛j'j :

Hence,

Es.mh/ D �0

2

X

i2I

0

@
X

j2Iin

ˇj˛i �
Z

˝

'ir'j dx � ˛i �
Z

˝

Z

@˝

r'i .x/S.x � y/g.y/ dsy dx

1

A

C �0

2

X

i2Ibd

˛i �
Z

@˝

Z

@˝

�x'i .x/S.x � y/g.y/ dsy dx

D �0

2

X

i2I

0

@
X

j2Iin

ˇj˛i �
Z

˝

'ir'j dx � X

j2Ilay

ˇj˛i � aij C X

j2Ibd

˛i � .Bij˛j /

1

A

C �0

2

X

i2Ibd

0

@
X

j2Ilay

ˇj˛i � cij � X

j2Ibd

˛i � .Dij˛j /

1

A ;

where

aij D
Z

˝

Z

@˝

r'i .x/S.x � y/� � r'j .y/ dsy dx; (8)

Bij D
Z

˝

Z

@˝

r'i .x/S.x � y/'j .y/�Ty dsy dx; (9)

and

cij D
Z

@˝

Z

@˝

�x'i .x/S.x � y/�y � r'j .y/ dsy dsx; (10)

Dij D
Z

@˝

Z

@˝

�x'i .x/S.x � y/'j .y/�Ty dsy dsx : (11)

The efficient numerical evaluation of the singular integrals (8)–(11) using the Duffy
transformation is described in the appendix.
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4 Hierarchical Matrices

For the computation of the different energies in (1) it is necessary to efficiently
treat fully populated matrices arising from the discretization of non-local operators,
e.g. finite or boundary element discretizations of integral operators and inverses
or the factors of the LU decomposition of FE discretizations of elliptic partial
differential operators. For this purpose, Tyrtyshnikov [27] and Hackbusch et al. [15–
17] introduced the structure of mosaic skeleton matrices or hierarchical (H -)
matrices. A similar approach, which is designed towards only the fast multiplication
of a matrix by a vector, are the earlier developed fast summation methods tree
code [3], fast multipole methods [13, 14], and panel clustering [18].

Many existing fast methods are based on multi-level structures. In contrast to
multigrid methods, the efficiency of H -matrices is based on a suitable hierarchy
of partitions of the matrix indices. Let I D f1; : : : ;M g and J D f1; : : : ; N g be
sets of indices corresponding to the rows and columns of a matrix A 2 R

M�N .
The efficiency of hierarchical matrices is based on the low-rank representation of
sub-blocks from an appropriate partition P of the set of matrix indices I � J ; see
Fig. 1.

The construction of P is usually done in the following way. First, cluster trees
TI and TJ are constructed by recursive subdivision of I and J . Each subdivision
step is done such that indices that in some sense are close to each other are grouped
into two clusters. In a second step the block cluster tree TI�J is built by recursive
subdivision of I � J . Each block t � s is subdivided into the sons t 0 � s0, where
t 0 and s0 are taken from the list of sons of t and s in TI and TJ , respectively. The
recursion stops at blocks t � s which either are small enough or satisfy a so-called
admissibility condition. This condition guarantees that the restriction Ats of A to
t � s can be approximated by a matrix of low rank. It usually takes into account the
geometry that is associated with the rows t and the columns s. The partition P is
found as the leaves of TI�J . The set of hierarchical matrices on the partition P and
blockwise rank k is then defined as

H .P; k/ D fA 2 R
I�J W rank Ab � k for all b 2Pg:

The elements of this set can be stored with logarithmic-linear complexity and
hence provide data-sparse representations of fully populated matrices. Additionally,
exploiting the hierarchical structure of the partition, an approximate algebra can be
defined [12] which is based on divide-and-conquer versions of the usual arithmetic
operations. At least for discretizations of elliptic operators, these approximate
operations have logarithmic-linear complexity (see [7]) and can be used to define
substitutes for higher level matrix operations such as inversion, LU factorization,
and QR factorization.

Using hierarchical matrices, we are able to efficiently compute the local and non-
local parts of the energy functional (1) with almost optimal complexity. Especially
approximations to the fully populated matrices (8)–(11) can be constructed with
logarithmic-linear complexity via adaptive cross approximation (ACA) [6].
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Fig. 1 A hierarchical matrix with its rank distribution

5 Iterative Minimization of the Energy

The numerical computation of local energy minima of the functional (1) is a
challenging task due to the pointwise restriction km.x/k2 D 1 for almost every
x 2 ˝ . In this section we will see how this constraint can be treated efficiently.

5.1 The Minimization Algorithm

We describe and analyze in this section our method to iteratively minimize the
energy functional (1). To simplify the presentation, we consider the Dirichlet energy
and a lower order term, i.e., the model functional

E.m/ D �.m/C 1

2

Z

˝

kDmk2F dx (12)

with a smooth functional� W H 1.˝IR3/! R. The following algorithm realizes a
discrete H 1 flow for E with time-step size ˛ > 0 and employs ideas from [1, 2, 4].



A Fast and Accurate Numerical Method for the Computation of Unstable . . . 421

Algorithm (minimization algorithm). Given m0
h

such that km0
h
.z/k2 D 1 for all

z 2 Nh iterate for n D 0; 1; 2; : : : the following steps:

(1) Compute wn
h
2 S 1.Th/

3 with
R
˝

wn
h

dx D 0 such that wn
h
.z/ �mn

h
.z/ D 0 for

all z 2 Nh and

Z

˝

trace Œ.Dwnh/
T .Dvh/� dx D ��0.mn

h/Œvh� �
Z

˝

trace Œ.Dmn
h/
T .Dvh/� dx

for all vh 2 S 1.Th/
3 with

R
˝

vh dx D 0.

(2) Define mh 2 S 1.Th/
3 through

mnC1
h

.z/ D mn
h
.z/C ˛wn

h
.z/

kmn
h
.z/C ˛wn

h
.z/k2

for all z 2 Nh with a suitable ˛ > 0.

To ensure that the iteration is energy decreasing, we assume that the underlying
triangulation Th is weakly acute, i.e., that the off-diagonal entries of the correspond-
ing P1 stiffness matrix are non-positive, cf. [4] for details.

Lemma 1 ([4]). Assume that Th is weakly acute and suppose that mh;wh 2
S 1.Th/

3 are such that kmh.z/k2 D 1 and mh.z/ � wh.z/ D 0 for all z 2 Nh.
Then








D

�
mh C ˛wh
kmh C ˛whk2

�






L2.˝/

� kD.mh C ˛wh/kL2.˝/

for every ˛ 2 R.

To show convergence of the iterative algorithm, we argue as in [1, 2, 4]. For mn
h

and wn
h

as in the algorithm we have, upon choosing vh D wn
h

that

Z

˝

traceŒ.Dmn
h/
T .Dwnh/� dx D ��0.mn

h/Œw
n
h� �

Z

˝

kDwnhk2F dx:

Lemma 1 implies that

1

2

Z

˝
kDmnC1

h
k2F � kDmnhk2F dx � 1

2

Z

˝
kD.mnh C ˛wnh/k2F � kDmnhk2F dx

D ˛
Z

˝
traceŒ.Dmnh/

T .Dwnh/�C
˛2

2
kDwnhk2F dx

D �˛�0.mnh/Œw
n
h�C .˛2=2 � ˛/

Z

˝
kDwnhk2F dx:



422 S. Bartels et al.

Hence, it follows that

E.mnC1
h

/� E.mn
h/ D �.mnC1

h
/ ��.mn

h/C
1

2

Z

˝

kDmnC1
h
k2F � kDmn

hk2F dx

D �.mnC1
h

/ ��.mn
h/ � ˛�0.mn

h/Œw
n
h�C

C .˛2=2� ˛/
Z

˝

kDwnhk2F dx:

We assume here and will show below for the specification of � that corresponds to
the model problem that we have

ˇ
ˇ�.mnC1

h
/��.mn

h/� ˛�0.mn
h/Œw

n
h�
ˇ
ˇ � C�˛2kwnhk2H1.˝/

: (13)

This estimate may be regarded as a Taylor expansion of� but its proof also requires
to bound the difference between mnC1

h
and mn

h
C ˛wn

h
. With a Poincaré inequality

in (13) we thus have

E.mnC1
h

/� E.mn
h/ � .�˛ C ˛2=2C CPC�˛2/

Z

˝

kDwnhk2F dx

� �˛.1 � ˛=2� CPC�˛/
Z

˝

kDwnhk2F dx:

If ˛ is sufficiently small so that .1 � ˛=2� CPC�˛/ � 1=2 then it follows that

E.mnC1
h

/ �E.mn
h/ � �

˛

2

Z

˝

kDwnhk2F dx

and after summation over n D 0; 1; : : : ; N

E.mNC1
h

/C ˛

2

NX

nD0

Z

˝

kDwnhk2F dx � E.m0
h/:

This proves the stability and convergence of our numerical method.

5.2 Application to the Model Problem

In our model (12), the functional�.m/ is given by

�.m/ D
Z

˝

1 � .e �m/2 � f �mC �0

2
m � rum dx:
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We claim that for this functional the estimate (13) is satisfied. For this we first show
that

j�.m/ ��. Qm/j � C1km � QmkL2.˝/ (14)

provided that kmkL2.˝/; k QmkL2.˝/ � C . With Hölder’s inequality we verify that

�.m/ ��. Qm/ �
Z

˝

.e �m/2 � .e � Qm/2 dx C kfkL2.˝/km � QmkL2.˝/

C �0

2

Z

˝

rum �m � ru Qm � Qm dx:

Using Cauchy-Schwarz inequality and kek2 D 1, the first term on the right-hand
side can be bounded by

Z

˝

.e �m/2 � .e � Qm/2 dx � km � QmkL2.˝/kmC QmkL2.˝/:

Similarly, we have with (4) that

Z

˝

rum �m� ru Qm � Qm dx D
Z

R3

krumk22 � kru Qmk22 dx

� kr.um � u Qm/kL2.R3/kr.um C u Qm/kL2.R3/

� km � QmkL2.˝/.kmkL2.˝/ C k QmkL2.˝//:

Hence, the property (14) follows from the assumed bounds on m and Qm. We next
show that

ˇ
ˇ�.mC ˛w/ ��.m/� ˛�0.m/Œw�

ˇ
ˇ � C2˛2kwk2L2.˝/

: (15)

Straightforward calculations lead to

�.mC ˛w/ ��.m/� ˛�0.m/Œw�

D
Z

˝

.e � .mC ˛w//2 � .e �m/2 � 2˛.e �m/.e � w/ dx

C �0

2

Z

˝

rumC˛w � .mC ˛w/ � rum �m� 2˛rum � w dx

D ˛2
Z

˝

.e � w/2 dx C �0

2

Z

˝

rumC˛w � .mC ˛w/ � rum �m� 2˛rum � w dx

� ˛2kwk2
L2.˝/

C �0

2

Z

˝

rumC˛w � .mC ˛w/ � rum �m � 2˛rum � w dx:
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Using (3) and rumC˛w D rum C ˛ruw, we find that the second integral on the
right-hand side of the previous estimate satisfies

Z

R3

krumC˛wk22 � krumk22 dx � 2˛
Z

˝

rum � w dx

D
Z

R3

krumk22 C 2˛rum � ruw C kru˛wk22 � krumk22 dx � 2˛
Z

˝

rum �w dx

D
Z

R3

kru˛wk22 dx � ˛2
Z

˝

kwk22 dx:

This leads to the estimate (15). The combination of (14) and (15) implies that for
iterates mn

h
, wn

h
, and mnC1

h
we have, noting that kmn

h
kL2.˝/; kwnhkL2.˝/ � C ,

ˇ
ˇ�.mnC1

h
/��.mn

h/ � ˛�0.mn
h/Œwh�

ˇ
ˇ

� ˇˇ�.mnC1
h

/��.mn
h C ˛wnh/

ˇ
ˇC C2˛2kwnhk2L2.˝/

� C1kmnC1
h
� .mn

h C ˛wnh/kL2.˝/ C C2˛2kwnhk2L2.˝/
:

For every node z 2 Nh we have

kmnC1
h

.z/ �mn
h.z/ � ˛wnh.z/k2 D










mn
h
.z/C ˛wn

h
.z/

kmn
h
.z/C ˛wn

h
.z/k2 �mn

h.z/ � ˛wnh.z/









2

D kmn
h.z/C ˛wnh.z/k2 � 1

D 
1C ˛2kwnh.z/k22/1=2 � 1 �
˛2

2
kwnh.z/k22

and the continuous embeddingH 1.˝/ ,! L4.˝/ yields

kmnC1
h
� .mn

h C ˛wnh/kL2.˝/ � C˛2kwnhk2L4.˝/
� C 0˛2kwnhk2H1.˝/

:

Hence, the model problem fulfills the desired property (13).

6 The String Method

We aim at computing an unstable critical configuration whose energy is minimal
among all maxima of curves connecting two given states, i.e., we compute a
saddle point. For this, we adopt a method proposed in [30] that does not require
an energy that is defined on a linear space as it is needed for classical mountain
pass algorithms. The difficulty for the energy functional under consideration is the
appropriate incorporation of the pointwise unit length constraint.
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To describe the problem in a continuous setting, we assume that we are given two
local minima m0 2 A and m1 2 A of the energy functional E W A ! R, where
the space of admissible magnetic configurations A is defined by

A D fm 2 H 1.˝IR3/ W km.x/k2 D 1 for almost every x 2 ˝g:
We then consider a family of curves connecting m0 and m1 parametrized by t � 0,
i.e., a continuous mapping

'.t; �/ W Œ0; 1�! A

such that '.t; 0/ D m0 and '.t; 1/ D m1.
Our aim is it to compute a curve connecting m0;m1 2 A such that the

component of rE normal to ' vanishes, i.e.

.rE/?.'/ D 0; (16)

where

.rE/?.'/ D rE.'/� .rE.'/ � 
/

and 
 denotes the unit tangent vector of '. A path ' satisfying (16) is called a
minimum energy path (MEP).

To numerically evaluate such a path, we deploy the string method which was
proposed in [28, 29] and modified in [30]. The modified string method stands out
due to its simplicity. Another known method to compute MEPs is the nudged elastic
band (NEB) method; cf. [21].

Algorithm (modified string method). Let two local minima m0;m1 2 A of the
energy functional E be given. Define a path '0 W f0; : : : ; N g ! A as a collection
of N C 1 points with '0.0/ D m0 and '0.N / D m1. The points '0.i/, i D 1; : : : ;
N � 1, are computed via interpolation. Iterate for n D 0; 1; 2; : : : the following
steps:

(1) Let 'n�.0/ D 'n.0/ and 'n�.N / D 'n.N /. Compute for each configuration
'n.i/ with i D 1; : : : ; N � 1 a single iteration step of the minimization
algorithm as proposed in Sect. 5.1 and assign the result to 'n�.i/.

(2) Compute via interpolation the new path


'nC1.i/

�
iD0;:::;N as a reparametriza-

tion of


'n�.i/

�
iD0;:::;N .

The interpolation used in the modified string method can be done in arbitrary
ways. We choose to interpolate geodesically on the sphere to obtain a reparametriza-
tion of the string.

The advantage of the modified string method is that the point-wise constraint
km.x/k2 D 1, x 2 ˝ , is inherited from the above minimization algorithm. In
Fig. 2, an initial path and an MEP as the result of the modified string method are
shown.
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1

0

S

Fig. 2 A scheme for the modified string method showing the initial path (blue line) and the MEP
(red line) connecting the two energy minima m0 and m1. The configuration mS is the saddle point
on the MEP

7 Numerical Examples

In this section, we first verify our implementation using a standard problem,
afterwards we investigate the overall complexity of the presented numerical method
and finally we compute an MEP for a cubic magnetic particle.

All tests were performed on a single core of an Intel Xeon X5482 processor with
3.2 GHz and 64 GB of RAM. The programming was done in C++ and is based
on the hierarchical matrix library AH MED.1 Furthermore, we set the minimal
block cluster size of the created H -matrices to 50 and the relative blockwise
approximation accuracy to 1e� 3.

7.1 Validation of Implementation

A problem proposed by A. Hubert, University of Erlangen-Nuremberg, to check the
computation of the different energies in (1) is to calculate the single domain limit of
a cubic magnetic particle.

This is the length of the cube for which the so-called flower and vortex state have
equal energies. The test is also known as the �-mag standard problem #3; see [23].

In our tests, the cube was discretized into 24,576 tetrahedra and 3,072 triangles.
Figure 3 shows the reduced energy, as proposed in [23], relative to the size of the
cube. Our numerical tests show a single domain limit of 8.23, which represents the
theoretically expected value of approximately 8.

7.2 Time and Memory Consumption

To demonstrate the almost linear behavior of the presented numerical algorithms in
terms of memory and time consumption, we chose different discretizations of the
unit cube which were created using netgen.2

1http://bebendorf.ins.uni-bonn.de/AHMED.html
2http://www.hpfem.jku.at/netgen/

http://bebendorf.ins.uni-bonn.de/AHMED.html
http://www.hpfem.jku.at/netgen/
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Fig. 3 The resulting energy minima of the �-mag standard problem #3
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Fig. 4 The time and memory consumption of the matrices A and B; cf. (8) and (9)

As a first test, we look at the construction of the matrices (8)–(11). These matrices
have to be set up only once for a certain geometry and approximation accuracy
in an initialization step. Figure 4 shows that the time and memory needed to
construct the matrices (8) and (9) is linear up to logarithmic terms with respect to the
number of tetrahedra. Furthermore, from Fig. 5 it can be seen that the construction
of (10) and (11) is quasi-optimal with respect to the number of triangles. For the
string method, the minimization algorithm from Sect. 5.1 is the dominant part of
the computational time. As can be seen from Fig. 6, these minimization steps of
the algorithm presented in Sect. 5.1 are almost linear in terms of the number of
tetrahedra. Hence, using H -matrices to compute the different energies results in a
numerical scheme which has logarithmic-linear complexity.
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7.3 Minimum Energy Paths

In the following test, we use the simplified string method from Sect. 6 to compute
a MEP. The geometry and the parameter configuration are chosen as in the �-mag
standard problem #3 with a cube edge length of 8:2. Hence, the two energy minima
are the flower and the vortex state. For the tests, the cube was discretized into
24;576 tetrahedra and 3;072 triangles. For each iteration step the discretized path
consists of 41 single magnetization points.

In Fig. 7, the two energy minima (flower and vortex state) which are used to
define our initial path are depicted. Different colors of the arrows representing the
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Fig. 7 A model of the two energy minima used to compute the MEP. (a) Flower state. (b) Vortex
state
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Fig. 8 The reduced energy of the magnetization points of the initial path and the MEP connecting
the flower (left) and the vortex state (right)

magnetization indicate different directions in space. The initial magnetization points
in between the energy minima were computed using geodesical interpolation.

A comparison of the reduced energies of the initialized path and the MEP is
shown in Fig. 8.

Here, the magnetization point 25 maximizes the reduced energy of the MEP
and is about 28:5% lower than the energy barrier of the initial path. Furthermore,
in Table 1 slices of selected magnetization states of the MEP are shown. It is
remarkable that in the magnetization point 40 the vortex is opening on the front
side and closing on the back.
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Table 1 The different magnetization states of the MEP connecting the vortex and the flower state

point # magnetization of the cube

front mid back

0

5

10

15

20

25

30

35

40
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The limiting factor of the numerical experiments is the computational time since
all the single magnetization points along the discretized path need to be minimized
consecutively. Even with the employed fast methods approximately 2 days were
needed to perform the computations.

Appendix

The efficient numerical evaluation of the singular integrals from Sect. 3, see (8)–
(11), is a challenging task. One way to overcome difficulties is to use spherical
coordinates, which has the disadvantage of awkward integration bounds.

Another way is to use the Duffy transformation as proposed in [10]. The general
principle is to transform a triangle onto a square to get rid of the singularity. The
following example demonstrates this approach. Using the transformation x D 
 and
y D 
�, one obtains that

Z 1

0

Z x

0

1

x C y dy dx D
Z 1

0

Z 1

0

1

1C � d� d


and integration can be done by using standard methods.
This principle has already been applied to the integration on pairs of triangles

in [25] and can be used to evaluate the integrals in (10) and (11). Similar ideas can
be applied to the combination of a triangle and a tetrahedron. For the kernel function
� W R3 � R

2 ! R we need to evaluate the following integration on the reference
triangle and tetrahedron

I WD
1Z

0

1�x1Z

0

1�x1�x2Z

0

1Z

0

1�y1Z

0

�.x; y/ dy dx

with x D .x1; x2; x3/ and y D .y1; y2/. By introducing relative coordinates, the
integral I can be transformed to

I D
1Z

0

Qx1Z

0

Qx1� Qx2Z

0

1� Qx1Z

� Qx1

Qy1C Qx1� Qx2Z

� Qx2

�

0

@

0

@
1 � Qx1
Qx2
Qx3

1

A ;

0

@
1 � Qy1 � Qx1
Qy2 C Qx2
0

1

A

1

A dQy dQx:

The kernel is singular only for Qy D 0, Qx3 D 0, which we can be eliminated using a
Duffy transformation. Similar to the approach in [25], we split the integral into six
different domains.
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The resulting integrals I WD I1 C : : : C I6, can be transformed onto a five-
dimensional unit cube. The single terms are given in the following way.
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• I5:
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The integrals I1; : : : ; I6, can be evaluated efficiently using standard quadrature
formulas, e.g., Gaussian quadrature.
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