
Chapter 4
Application to Life Sciences

Life is when structure acts as a function—is one of the many answers given to the
everlasting question “What is life?”.

The evolution of such functions of living beings in nature constitutes a vast group
of complex dynamical systems. In order to maintain their functioning and activity,
many of the processes tend to reach a balance between energy inflow and dissipated
energy—forming a periodic i.e. oscillatory process.

But how well is the balance maintained throughout the system’s evolution? In
general, the biological systems are not isolated and often they are thermodynamically
open. This causes a different type of energy exchange, in addition to the dissipated
energy needed to maintained the basic functioning of the system. In other words,
the system dynamics are no longer autonomic, and other processes contribute to its
time-evolution. Within the same environment (for example—the human body) the
sources of external influence are often known and closely related processes—which
can be regarded as deterministic. The effect of the external dynamics can cause the
intrinsic parameters, the interactions, or even functional dependencies to vary with
time.

The following chapter focuses on the discussion on effects from external influ-
ences on human physiology. The underlying physiological systems are considered
to be oscillatory processes and their dynamical characterization is studied. One of
the main objectives was to investigate some of the physiological mechanisms with
respect to deterministic non-autonomous perturbations. The latter involved physio-
logical measurements while the respiration frequency was varied in time. Another
issue discussed is the dynamical characterization of blood flow oscillations and their
transient effect when subject to external perturbations. Several methodological issues
regarding the time-varying analysis and estimates are also discussed. By exploiting
the measured time-series, the analysis (i.e. the inverse problem approach) employs
many of the theoretical and methodological concepts discussed in the previous
chapters.
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4.1 A Short Physiological Background

This section lays down the necessary human physiological background that any
non-biological scientist can find useful for the remaining of the chapter. For a more
comprehensive physiological background one can refer to [1–4].

4.1.1 Cardiovascular System

The cardiovascular system forms a blood distribution network for transport of nutri-
ents, gases and wastes to and from cells. It consists of three principle components: the
heart, blood vessels and blood. According to cardiovascular functioning the system
can be divided into pulmonary and systemic (peripheral) circulation. The pulmonary
circulation connects the lungs where the blood is oxygenated, while the systemic
supplies the rest of the body with the oxygenated blood.

The heart is a muscular organ, which forms two separate (right and left) pumps,
each composed of atrium and ventricle chambers. The function of the right side is
to collect the de-oxygenated blood in the right atrium and to pump it through the
right ventricle to the lungs where it is oxygenated. The oxygenated blood is collected
in the left atrium and pumped through the left ventricle to the rest of the body. The
pumping action of the heart is based on a rhythmic oscillatory sequence of relaxation
(diastole) and contraction (systole) procedures. The heartbeat coordination is tightly
controlled by the sinoatrial node which acts as a pacemaker that determines the heart
rate. The cardiac output i.e. the amount of blood pumped for a resting human subject,
is about 5 l in 1 min.

Depending on the blood flow direction, two types of vessels exist: arteries and
veins. The arteries take the blood away from the heart, and veins bring the blood
back to the heart. Due to the high pressure, the arteries have strong vascular walls
and blood flows rapidly to the tissues. At the endings of the arterial system are
arterioles acting as control valves through which blood is released to the capillaries.
The capillaries then allow the actual exchange substances between the blood and the
surrounding tissue. The walls of both arteries and capillaries is lined by a thin layer of
endothelia cells which cause the smooth muscles to constrict or relax, contributing to
the regulation of the vascular tone. The veins transport the blood from the capillaries
(through venules) to the heart, and serve as a reservoir of blood. Due to the low
pressure, the venous walls are thin.

The blood is a special fluid with the main function of conveying substances within
the body, such as gases (oxygen, carbon-dioxide), hormones, vitamins and enzymes.
It is composed of a liquid, called blood plasma, and blood cells suspended within
the plasma. An average human subject has around 5 l of blood, which accounts for
about 6–8 % of their body weight.
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4.1.2 Respiratory System

The respiratory system introduces respiratory gases to the interior of the body and
performs gas exchange. It includes the airways, lungs, and the respiratory mus-
cles. Molecules of oxygen and carbon dioxide are passively exchanged by diffusion
between the gaseous external environment and the blood. This exchange process
occurs in the alveolar region of the lungs. The respiration process is an oscillatory
cycle composed of two sub-processes: inspiration and expiration. Expiration is the
movement of air out of the bronchial tubes, through the airways to the external envi-
ronment during breathing, while inspiration is the movement of air from the external
environment through the air ways, and into the alveoli. The way in which the res-
piratory system works closely in concert with a circulatory system to carry gases to
and from the tissues—means it is often considered to be part of the cardiovascular
system.

4.1.3 Sympathetic Nervous System

The sympathetic nervous system is a part of autonomic nervous system (along with
enteric and parasympathetic) which mainly controls involuntary internal processes.
The sympathetic nervous system prepares the body for responses to stressful chal-
lenges, allowing sudden strenuous exercise and increased vigilance. Stress is thought
to counteract the parasympathetic system, which generally works to promote main-
tenance of the body at rest.

The sympathetic nervous system is responsible for up- and down-regulating many
homeostatic mechanisms in living organisms. Fibers from the sympathetic system
innervate tissues in almost every organ system, providing at least some regulatory
function to things as diverse as blood flow control, thermoregulation, gut motility,
and urinary output. It is perhaps best known for mediating the neuronal and hormonal
stress response, commonly known as the fight-or-flight response. This acts primar-
ily on the cardiovascular system and is mediated directly via impulses transmitted
through the sympathetic nervous system and indirectly via catecholamines secreted
from the adrenal medulla.

Messages travel through the sympathetic nervous system in a bidirectional flow.
Efferent messages can trigger changes in different parts of the body simultaneously,
such as the acceleration of the heart rate; widening of the bronchial passages; reducing
the motility (movement) of the large intestine or the constriction of blood vessels.
Afferent messages carry sensations such as heat, cold, or pain.

4.1.4 Oscillatory Processes in the Cardiovascular System

The functioning of cardiovascular system is characterized by several oscillatory
processes [3–5]. They are responsible for many of the modulations observed in the
blood flow and the heart rate variability signals. Each of the oscillating processes has
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Table 4.1 The frequency
intervals for the distinctive
oscillatory processes
determined from human
blood flow, and their
physiological origin

Interval Frequency (Hz) Physiological origin

I 0.6–2 Cardiac
II 0.145–0.6 Respiratory
III 0.052–0.145 Myogenic
IV 0.021–0.052 Neurogenic
V 0.0095–0.021 Endothelial metabolic
VI 0.005–0.0095 Endothelial

a characteristic period and is well defined in a certain frequency interval (summa-
rized in Table 4.1). Each also has a physiological interpretation, which is described
in the following:

I The frequency interval around 1 Hz corresponds to cardiac oscillatory activity.
It describes the periodicity for the functioning (pumping) of the heart.

II The oscillatory component around 0.2 Hz describes the respiratory activity and
the periodicity associated with the breathing process that supplies the body with
oxygenated blood.

III Around 0.1 Hz, corresponds to myogenic activity. The vessels are able to help
control blood flow via a mechanism known as myogenic autoregulation. The
vascular smooth muscles contract in response to an increase of intravascular
pressure, and relax in response to a decrease of pressure.

IV The periodicity around 0.04 Hz originates from the activity of the autonomic
nervous system on the heart, lungs and vessels. The nerves cause the release of
substances that affect the activities of smooth muscles, leading in turn to changes
in the vessels’ radii and resistance, which allows vasoconstriction to take place.

V The oscillations around 0.01 Hz, correspond to nitric oxide (NO)-related endothe-
lial activity. The layer of endothelial cells serves as a barrier between the blood
and the tissues of vessels, allowing metabolic regulation and the control of con-
traction and relaxation of smooth muscle through the release of various sub-
stances.

VI The oscillations around 0.007 Hz, apparently corresponds to NO-independent
(probably prostaglandin-dependent) endothelial activity.

The differentiation of the oscillatory processes (as described above) will be exploited
greatly in the following discussion. For visual representation of the intervals, one can
refer to the analysis of blood flow signal presented on Figs. 4.14, 4.11a.
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4.2 The Effect of Time-Varying Respiration on Cardiovascular
System and Sympathetic Nerve Activity

4.2.1 Introduction

Time-variability and modulations are inherent part of the physiological oscillatory
dynamics. One of the most pronounced and early discovered modulation is the res-
piration sinus arrhythmia, which describes how the breathing patterns modulate the
heart rate [6, 7]. Modulations and time-variability investigated in different contexts
[8–10], have also shown that their study can be useful in understanding of many
physiological processes, their functioning and their existing relationships.

The objective of this investigation is to determine the effect of a deterministi-
cally varied respiration frequency on human oscillatory processes. The analysis will
attempt to uncover how these processes are coordinated and how they influence each
other. The time-variability of the respiration frequency is introduced externally, in a
predefined procedure known to the investigator—thus in this way deterministic non-
autonomous influences are introduced to the oscillatory dynamics. The controlled
variability of the respiration is performed in order to study specifically how the vary-
ing respiration affects other processes, but also to use the perturbation for identifying
existing relations and physiological mechanisms.

With its main function to provide oxygen, the respiration is one of the central
processes in the human body. As such, it has attracted a lot of attention in physiology
[11]. The relationship of respiration to heart rate variability has been identified as res-
piration sinus arrythmia [6]. Several studies have investigated how the sympathetic
nerve activity is affected by different modes of breathing [10, 12, 13]. Of special
interest is the study of low frequency components and sympathetic nerve activity [14],
which also has been analyzed previously in conjunction with blood flow measure-
ments [15]. Saul et al. have studied sympathetic nerve activity and haemodynamic
signals under randomly varied breathing processes [16]. However, they did not stud-
ied the time-variability, the low frequency components are also not well localized,
and the sympathetic nerve activity is not acquired by direct measurements of the
nerve activity.

The following reports wavelet phase coherence analysis and information-theoretic
approach for the detection of coupling between muscle sympathetic nerve activity and
haemodynamic signals under deterministic time-varying perturbation of the respira-
tion frequency. Wavelet phase coherence allows high resolution characterization of
coherence i.e. coordination of the oscillatory dynamics at both high and low frequen-
cies. The information-theoretic method quantifies the inter-oscillatory influences and
reveals existence of causal relationships. All of the proposed techniques were able to
trace (and to quantify statistically) the dynamical behavior and the time-variability,
and to assess the time-domain information in accordance with the time-varying ramp
perturbation. The main task was to investigate how the deterministic time-varying
respiration regulates the neural and haemodynamic processes, and how this affects
the causal inter-oscillatory relationships.
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4.2.2 Measurements, Subjects and Signals

The total number of subjects analyzed was thirteen, and none of which smoked, had
evidence of heart disease or took medication. The length of the recordings had mean
of 72.3 min and standard deviation of 11.5 min. The minimum length was 53.4 min.
There were two types of ramped paced breathing—first with gradually decreasing
frequency (fast-to-slow) and second with gradually increasing frequency (slow-to-
fast). Each recording contained several segments, with spontaneous breathing and
then followed by several ramp breathing segments—the order and duration of all
ramps is presented in Appendix D. The segments between the ramps were not ana-
lyzed because of the transient effect of the previous perturbation [17]. The mean
length of spontaneous breathing segments was 7.9 min, with standard deviation of
2.6 min and a minimum of 6 min (which allowed the wavelet analysis to trace low
frequencies down to 0.021 Hz). The ramps had lengths of approximately 9 min, with
mean 9.05 and standard deviation of only 0.14 min.

The subjects were asked to breath voluntarily in accordance to a sine wave signal
with time-varying frequency, which was shown on visual screen in front of them. In
this way, the frequency of their respiration was varied with time.

The recordings included: electrocardiogram (ECG), blood pressure (BP) and car-
bon dioxide (CO2) concentration signals. From the ECG signal a heart rate variability
(HRV) signal was derived through marking of the R-peaks and linear interpolation
between the consecutive time differences (for details see e.g. [3]). Similarly, the
diastolic and systolic blood pressures were derived from the blood pressure signal.
The recording also included the relatively rare and delicate measurement of muscle
sympathetic nerve activity (MSNA). A multifiber sympathetic efferent traffic was
measured invasively from the peroneal nerve muscle using microelectrodes with
uninsulated tip diameters of about 2 µm. The sampling frequency of the recordings
was 500 Hz.

4.2.3 Methods

This section briefly outlines the methods used for the analysis of the recordings.
Statistical tools that are needed for the group statistical analysis are presented as
well.

Wavelet Transform

The nature of the perturbation, where the frequency of the respiration was varied
with time, means that the wavelet transform and its ability to trace the time-frequency
dynamics was the optimal choice for analysis of the underlying oscillatory processes
[5]. The method based on the continuous wavelet transform projects the signal from
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time- to time-frequency domain with logarithmic frequency resolution [18]. Due to
the adjustable length of the mother wavelet, the wavelet transform provides good
frequency resolution, and by allowing time-localization, it improves upon Fourier
transforms, which are based on fixed window lengths.

The wavelet transform enables one to derive the frequency content continuously in
time by use of wavelets windows with variable length. A wavelet is shifted along the
signal and a coefficient is calculated representing the strength of correlation between
the signal and the wavelet. For the following analysis a Morlet mother wavelet was
used:

ν(u) = 1
4
√
π

e−i2π f0u · e−u2/2,

where the central frequency was set to be f0 = 1 Hz. To create various scales of
the wavelet comparable to the original signal, the mother wavelet is stretched and
compressed by scaling factor s:

�s,t (u) = |s|−1/2 · ν
(

u − t

s

)
. (4.1)

In order to reach logarithmic resolution for the frequency, the scale factor s is
increased exponentially. The transform itself is then a convolution of the wavelet and
the original signal:

W (s, t) =
∫ ∞

−∞
�̄s,t (u) · g(u)du, (4.2)

where the �̄ represents the complex conjugate of �. Thus any specific scale is
avoided and the analysis becomes scale-independent in terms of frequency. The
energy density in the time-scale domain is evaluated from the wavelet transform,
and the wavelet power within the f1: f2 frequency range can be calculated as:

ε( f1: f2) =
∫ 1/ f1

1/ f2

1

s2 |W (s, t)|2ds.

For the calculation of the transform the signals were re-sampled to 10 Hz, and
their spectra below the lowest frequency analyzed (0.021 Hz for the segments and
0.0095 Hz for the whole signals) were removed by moving average technique. Use
of longer wavelets for low frequency components, resulted in having higher wavelet
amplitudes for the low compared with high frequencies. Due to this effect the low
frequency oscillatory components are easily identified and traced. When one needs
to detect the actual strength of particular frequency component, the wavelet spectral
power is calculated.
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Wavelet Phase Coherence and Windowed Wavelet Phase Coherence

By investigating the phase relationships, the wavelet phase coherence can determine
the coordinating relationships between two signals. When inferring the relationships
between signals with different or very low powers, a big advantage of the wavelet
phase coherence is that it can detect significant coherence. This is particularly mean-
ingful for low-frequency components, which make important, but not necessarily
large contributions to total power.

The wavelet transform using Morlet wavelet is described as a complex function.
This allows for the instantaneous phases of the signals to be analyzed directly from the
transform. The latter was used for calculation of the respective phase difference and
thus for evaluation of the phase coherence. It gives normalized measure of coherence
ranging between 0 and 1.

Due to the complex nature of the Morlet wavelet, the wavelet transform for each
time tn and scale sk , consists also of complex values:

W (sk, tn) = Wk,n = ak,n + ibk,n .

From here the instantaneous phase can be determined as the angle variable φk,n =
arctan(bk,n/ak,n). To evaluate the wavelet phase coherence, the respective phase
difference �φk,n = φ2k,n − φ1k,n is calculated [19]. To get normalized measure of
coherence between 0 and 1, the sine and cosine of the phase difference are averaged
in time, yielding the phase coherence function:

Cφ( fk) =
√

〈cos(�φk,n)〉2 + 〈sin(�φk,n)〉2 .

In order to follow how the phase coherence is varying with time, a windowed
wavelet phase coherence can be calculated. A window is slide along the data in
time domain and the phase coherence is evaluated and plotted as function of both
frequency and time: CWφ( fk, tk)—with window of given size centered on a particular
time tk . The window size is varied for low to high frequencies in the same manner as
the wavelet transform was calculated. In this way the same logarithmic scale for the
frequency is preserved. On the end, each windowing is normalized by the particular
window size, so that the measure returns normalized phase coherence between 0 and
1. Due to the finite length of the windows on the end of the sliding—there is a cut-off
of information, and the corresponding plot has goblet-like shape. Detailed description
of the method and its significance for adaptive windows is discussed in [20].

Coupling Between Interacting Oscillators: An Information-Theoretic
Approach

An information-theoretic method proposed by Paluš & Stefanovska [21] was used
for analysis of directionality of couplings and influences between weakly coupled
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oscillatory processes. The method has prove to be useful in number of technical and
physiological studies [22–24].

For inferring causality relationships i.e. directionality between two oscillatory
processes, it estimates the ‘net’ information about certain time units in the future
of the first process contained in the second process itself, by using an information-
theoretic tool known as conditional mutual information. The two resultant conditional
mutual information quantify the significant influence from the first to the second, and
from the second to the first oscillatory signal. The influence that has the larger strength
determines the predominant direction of coupling.

The information-theoretic method for quantification of couplings is based on
conditional mutual information between the first X1(t) and the second X2(t) signal.
The conditional mutual information is estimated as net information about the τ time
units in future of the first signal X1(t) contained in the second signal X2(t) itself.
First the τ increments are defined:

�τ X1 = X1(t + τ ) − X1(t).

Then the conditional mutual information i.e. the coupling of the first to second
signal is defined as:

I21 = I (X2,�τ X1|X1) = H(X2|X1) + H(�τ X1|X1) − H(X2,�τ X1|X1),

where H(x |y) and H(x, y|z) are the conditional entropies defined in usual Shannon-
ian sense. Similarly the coupling I12 from the first to the second signal is defined. The
conditional mutual information I12 and I21 can be calculated by simple box-counting
algorithm based on equiquantal marginal bins.

By applying the method one can infer the causality relationships between the
signals, quantifying both the total influences and their time-variability by window-
ing the measure. Thermodynamically open systems and interacting physiological
processes often can be mutually (bi-directionally) coupled, therefore it made sense to
analyze not only the dominant direction, but also the two separate influences and their
time-variations. The number of equiquantal bins used was N = 4, time shifts were
taken from 5:50 and re-sampled signals to 10 Hz in normalized state space were used.

Statistical Analysis

Many data sets were not distributed normally (Kolmogorov-Smirnov test), so only
medians, individual values and ranges were analyzed. A non-parametric statistical
test was used, together with these quantities, to identify significant coherence, cou-
plings and changes due to the time-varying ramped breathing.

The evaluation of the wavelet transform using different window lengths decom-
posed the signal into independent observations of particular frequency oscilla-
tions. The logarithmic scale for the spontaneous and ramped breathing segments
(0.021–2 Hz) was divided into 95 independent segments for statistical analysis.
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For the statistical investigation of changes in the wavelet power introduced by the
ramped breathing, a non-parametric rank sum test on the individual wavelet powers
was conducted. The significant segments were denoted as red vertical lines plotted
between the two medians. Wherever a contiguous range of frequencies show a sig-
nificant effect these lines are confluent, forming red areas. Additionally, the fixed
frequency ranges for the oscillatory intervals (as described in Sect. 4.1.4) were tested
for significance. Their significance was plotted with red asterisks.

When analyzing relationships between oscillatory processes in terms of wavelet
phase coherence and coupling directionality, special care is needed. Namely, there
can exist small non-zero values of the measures, even when in reality there are no real
relationships. To overcome this discrepancy and to determine the statistical signif-
icance, a surrogate statistical analysis was performed. Amplitude-Adjusted Fourier
transform (AAFT) surrogate signals were generated by shuffling the phases of the
original time series to create new time series with the same means, variances, autocor-
relation functions (and therefore, the same power spectra) as the original sequences,
but without their phase relations [25, 26]. The average was calculated for 100 mea-
sures (phase coherence or couplings) calculated from 100 surrogate realizations of
the signals. The phase coherence and coupling direction were considered to be sta-
tistically significant if their values were above the surrogate threshold, which was
determined as the mean plus two standard deviations of the surrogate realizations.

When evaluating the wavelet phase coherence, the low-frequencies are repre-
sented with fewer periods than the high-frequency components. Consequentially,
less variation of phase differences occurs at low-frequencies, and this is reflected in
higher coherence values for low than high frequencies. The significant coherence of
separate frequency segment was denoted with red area, and the significant ranges
with red asterisks. A paired signed rank test was used for comparison of the mea-
sures with the surrogate threshold values. For visual inspection of the time-varying
couplings only the values above the surrogate threshold were considered as signif-
icant. For quantification, the paired signed rank test was performed on the whole
segment (spontaneous and ramp breathing) length. In all statistical tests, P < 0.05
was considered significant.

4.2.4 Results: Wavelet and Information-Theoretic Based Analysis

The main results of the individual and group analysis are presented in this section.
Three subsections encapsulate the results in conceptual groups.

Oscillatory Dynamics

Figure 4.1 shows recordings made from one subject during spontaneous breathing
at the beginning and the following ramp breathing. The carbon dioxide concentra-
tion recording presents the gradual frequency decrease of the breathing oscillatory
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Fig. 4.1 Recording during spontaneous and first ramped breathing from Subject 9. During the first
6 min the subject breathed spontaneously, while in the following 9 min the breathing was gradually
decreasing from fast to slow

process. The respiratory imprints are easily noticeable on the R-R interval and the
diastolic pressure signal. Low frequency oscillations are also present in these signals.
Muscle sympathetic nerve activity occur as groups of narrow bursts, which seem to
appear in coordination with carbon dioxide cycles and are the most conspicuous for
the slow breaths within the ramp segment. The enlarged time segments within one
cycle of the carbon dioxide are presented on the right of the figure.

Figure 4.2 shows a wavelet transform of carbon dioxide concentration signal from
one subject. With the ability to trace the time-frequency domain, the wavelet trans-
form clearly demonstrates the time-varying nature of the ramp perturbation (note
that the lines parallel to the ramped breathing are only their higher harmonics). Dur-
ing spontaneous segments the subject breathed freely and the wavelet amplitude is
represented over a wide range of frequencies. The controlled ramp breathing sharply
confined the wavelet amplitude around the time-varying frequency bands introduced
deterministically by the perturbation.

The wavelet transform of muscle sympathetic nerve activity and its corresponding
wavelet power from one subject are shown on Fig. 4.3. The influence of the respi-
ration on the muscle sympathetic nerve activity is revealed by the presence of the
ramp frequency content (compare the frequency components and the time-variability
during spontaneous and ramp segments). The wavelet power demonstrates that the
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Fig. 4.2 Wavelet transform of carbon dioxide from Subject 4. The contour plot shows the wavelet
transform for the whole duration of measurements. It is easy to notice the spontaneous breathing and
the four (9 min) epochs of ramp breathing, which intermittently change from slow-to-fast to fast-to-
slow. The wavelet amplitude during the spontaneous breathing is spread across various frequency
bands, while during the ramped breathing the amplitudes are more concentrated around the ramping
frequency

Fig. 4.3 Wavelet transform for muscle sympathetic nerve activity from Subject 5. The left contour
plot shows the wavelet transform for the spontaneous breathing (8.5 min) and the slow-to-fast
ramped breathing (9 min). The wavelet amplitudes on lower frequency (around and below 0.1 Hz)
during the spontaneous breathing are changed due to the ramped breathing, making them dense
around the controlled breathing frequency. The time-averaged wavelet power, plotted on the right,
demonstrates that the strength of the higher frequency (around 1 Hz) is the highest, while the low
frequencies are spread over the ramping bands
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(a) (c)

(b) (d)

Fig. 4.4 Median wavelet power spectra of spontaneous (black) and ramped (grey) breathing seg-
ments. The figure shows how the time-varying breathing affected (a) the wavelet power spectra of
carbon dioxide (a), R-R interval (b), muscle sympathetic nerve activity (c) and diastolic pressure
(d). The red areas indicate significant change of individual wavelet powers, while the red asterisks
show the significant range change. The perturbation that changed significantly the carbon dioxide,
also significantly affected the R-R interval and the diastolic pressure at ramp and lower than ramp
frequencies. The muscle sympathetic nerve activity power was not affected greatly

predominant periodic oscillations are around 1 Hz, while the lower frequency com-
ponents that have less power are spread around the ramp breathing frequencies.

Figure 4.4 compares the median wavelet powers for all subjects and segments
during spontaneous (black lines) and ramped (grey lines) breathing. Red shaded
areas indicate specific frequencies at which the effect from the ramped breathing
is significant (as indicated, a non-parametric rank sum test was applied to wavelet
powers at each of the 95 frequencies). The red asterisks indicate the significance of
the ramp effect within frequency ranges. The large significant difference in wavelet
powers of spontaneous and ramped carbon dioxide shown on Fig. 4.4a demonstrates
the nature and the effect of the ramp perturbation. The wavelet powers for R-R
interval (Fig. 4.4b) and diastolic pressure (Fig. 4.4d), show that besides the significant
effect on the ramp frequencies (around intervals II and III), there is also a significant
difference on very low-frequency bands (interval IV), which are outside the initial
frequency range from the ramp perturbation. The ramp breathing had little effect
on the wavelet power of muscle sympathetic nerve activity (Fig. 4.4c), which was
significant only within the ramp frequencies.

Coordination and Phase Coherence

Wavelet phase coherence was used to identify and quantify how the oscillatory signals
interact i.e. if they are coordinated on some frequency ranges. Figure 4.5a–d shows the
time-averaged coherence for spontaneous breathing while Fig. 4.5i–l shows ramped
breathing coherence. The red shaded area represents statistically significant phase
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(a)

(b)

(c)

(d)

(i)

(j)

(k)

(l)

(e)
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(g)

(h)

Fig. 4.5 Wavelet phase coherence and windowed wavelet phase coherence from Subject 9. The four
contour (goblet-like) plots (e)–(h) show the windowed phase coherence for the first 15 (spontaneous
6 + ramp 9) min. One can easily notice the time-variability of the coherence from spontaneous to
gradually changing during the ramp breathing. The plots (a)–(d) are for spontaneous, while (i)–
(l) are for ramped breathing. The red shaded area represents the significant coherence above the
surrogate threshold (mean plus two standard deviations), which is indicated by the gray dashed
line. The implications of the coherence between the signals (as given on the left vertical axis-label)
are discussed in more detail in the main text

coherence. Due to the time-varying nature of the ramp perturbation, windowed
wavelet phase coherence was used to trace the time-variability of the coherence
among ramp frequencies—Fig. 4.5e–h. The phase coherence shown on Fig. 4.5a, e, i,
indicates that carbon dioxide and systolic pressure are highly and significantly coher-
ent on breathing frequencies. The coherence was varying during the ramp breathing,
following the frequencies introduced by the deterministic perturbation. Figure 4.5b,
f, j represents the coherence between carbon dioxide and electrocardiogram (ECG)
signal. The ECG signal was analyzed because it contains the 1 Hz oscillatory com-
ponent of the heart activity. The relationship showed significant coherence only on
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the breathing frequencies, which were affected during the ramp segment. The win-
dowed wavelet phase coherence between muscle sympathetic nerve activity and car-
bon dioxide (shown on Fig. 4.5g) was not very high, and mostly it was concentrated
around the breathing frequencies. During the ramp segment, this phase coherence
was affected and spread across the ramp breathing frequencies. The latter resulted
in lower and insignificant time-averaged coherence (Fig. 4.5k)—as opposed to the
significant coherence during spontaneous breathing shown on Fig. 4.5c. Unlike the
previous three relationships, the phase coherence between muscle sympathetic nerve
activity and diastolic pressure was not qualitatively affected by the ramped breathing,
and was relatively high at low frequencies. This was evident both from the windowed
phase coherence Fig. 4.5h, and from the comparison of significant phase coherence
in (Fig. 4.5d, cf. Fig. 4.5). The median phase coherence relationships were consistent
with the individual presented on Fig. 4.5.

The effect from the ramp breathing on the relationships not directly connected with
breathing, is presented on Fig. 4.6. Breathing does not affect the strong phase coher-
ence that exists between diastolic pressure and muscle sympathetic nerve, and systolic
pressure and R-R interval oscillations in low- and very low-frequency ranges (Pan-
els A and B). However, breathing substantially augments phase coherence between
systolic pressure and R-R interval oscillations at usual breathing frequencies (Panel
B, red shading).

Couplings and Causal Relationships

Figure 4.7 shows the time evolution of carbon dioxide (grey) and muscle sympathetic
nerve activity (black), and their respective coupling intensities (in both directions)
from one subject. The red shaded areas indicate significant coupling above the sur-
rogates threshold. The coupling intensities are an information-theoretic measure that
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Fig. 4.6 Median phase coherence and the effect from the ramped breathing. Although neither
breathing mode affected coherence between breathing and muscle sympathetic nerve oscillations
(Panel (a)), breathing significantly increased phase coherence between systolic pressure and R-R
interval oscillations in a limited range within the usual breathing frequency (Panel (b), red shading)
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(a)

(b)

(c)

(d)

Fig. 4.7 Carbon dioxide and muscle sympathetic nerve activity, and their coupling during one fast-
to-slow ramp from Subject 13. The three plots (a)–(c) show the time evolution of CO2 (gray) and
MSNA (black)—(b) continues after (a), and (c) after (b). The nerve bursts appear more coordinated
with the high value of CO2 as the ramp progress. d Shows the CO2-to-MSNA coupling (thick black)
and MSNA-to-CO2 coupling (thick gray), and their surrogate thresholds with dashed black and grey
lines, respectively. The red shaded areas represent the significant influences of the two directions.
One can notice that the CO2 influenced the MSNA more strongly and this coupling is increased as
the ramped breathing progresses

quantifies the inter-oscillatory influences between carbon dioxide and muscle sym-
pathetic nerve activity. The time-evolution of the signals during a ramp breathing
shown on Fig. 4.7a–c demonstrate that muscle sympathetic nerve activity occurs as
valleys of bursts appearing mostly during the inspiration cycle. As the ramp breath-
ing progressed, the bursts appeared more frequently and in good coordination with
the carbon dioxide cycles. The cause of the latter phenomenon is due to the coupling
from carbon dioxide to muscle sympathetic nerve activity—as indicated on Fig. 4.7d.
Namely, the intensities of the inter-oscillatory influences (shown on Fig. 4.7d) suggest
that CO2 to MSNA is the dominant direction, and its intensity becomes significant
and increased as the ramp breathing progresses. The specific time-variability verifies
the tight relationship between the influence of CO2 on MSNA and the deterministic
ramp perturbation.

Figure 4.8 presents the median and individual couplings between carbon diox-
ide and R-R interval, including the spontaneous (a and b), fast-to-slow (c and d)
and slow-to-fast (e and f) ramp breathing segments. On the left plots (a, c and
e) are the CO2 to R-R interval, while on the right (b, d and f) the R-R interval
to CO2 couplings. The dashed black lines denote the surrogates’ threshold. The
P-value on each plot is evaluated within the whole segment between individuals, and
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(a)

(c) (d)

(e) (f)

(b)

Fig. 4.8 Median (red) and individual (grey) couplings between carbon dioxide and R-R interval. On
(a), (c) and (e) the CO2 to R-R interval couplings are presented, while (b), (d) and (f) are showing the
R-R interval to CO2 couplings. The top two plots are for spontaneous, while the middle and bottom
are for fast-to-slow and slow-to-fast ramped breathing. The dashed lines are the surrogate threshold
(mean plus two standard deviations). During spontaneous breathing the couplings have almost
constant values. The ramped breathing introduced time-variability and increased the influences
towards low-frequencies. Overall the CO2 to R-R interval couplings were more dominant

indicates if the coupling is significantly higher than the surrogates’ threshold. During
spontaneous breathing the couplings had almost constant values. The influence from
CO2 to R-R interval was the dominant direction. The ramped breathing enhanced
the intensities of the couplings, and this effect was larger for low frequencies.
The latter resulted in very clear time-varying imprint of the ramp perturbation (see
e.g. Fig. 4.8c). These couplings had relatively large intensities, with CO2 to R-R
interval coupling having greater intensity and being the predominant direction.
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4.2.5 Discussion

Simultaneous recordings from carbon dioxide concentration, muscle sympathetic
nerve activity and haemodynamic signals were analyzed. The primary goal was
to investigate how a deterministic time-varying respiration regulates and affects the
oscillatory processes in cardiovascular and sympathetic neural system. Because their
dynamics usually involve influence from several processes with diverse time-scales,
which can be also time-varying, the time domain methods (such as time averages) are
not appropriate for their analysis. Dynamical characterization (e.g. through wavelet
based methods) on the other hand, offered better insight into the dynamics of the
oscillators and the existing phenomena.

The advantage of measuring human subjects who can regulate the speed of their
breathing voluntarily was used to introduce linearly increasing (decreasing) time-
variability in the oscillators’ dynamic. The wavelet analysis from CO2 concentration
(Fig. 4.2) showed how the perturbation confined the originally wide frequency range
around the ramp frequency, and that the averaged wavelet power was significantly
altered on all frequency intervals (Fig. 4.4a). The time-frequency representation
demonstrated that at any frequency and time, the ramp perturbation can be deter-
mined consistently with the externally predefined variations.

The strong relationships between the respiration and heart activity, was observed
in almost all of the performed analysis. The ramp breathing significantly altered not
only the wavelet power at frequencies corresponding to the perturbation, but also
the very low-frequencies [7], which were below the actual ramp breading frequen-
cies (Fig. 4.4b). Figure 4.5 reveals that CO2 and ECG are significantly coherent at
breathing frequencies, probably due to the respiration sinus arrythmia modulation
[6]. This phase coherence was following the specific time-varying breathing, and
was enhanced for the lower frequencies of the ramping. The high intensities of inter-
oscillatory couplings (Fig. 4.8) imply that there is high information flow between CO2
and RR-interval signals. The results (Fig. 4.8) confirm and support the notion that
respiration has a greater influence on the heart [21, 27, 28]. The ramp time-variability
of the inter-oscillatory couplings pointed out that these causal relationships are more
pronounced on lower breathing frequencies (see e.g. Fig. 4.8c, e).

The analysis of MSNA oscillatory [29] time-frequency content (Fig. 4.3) showed
traces of the specific ramp breathing pattern, which at the same time did not exert a
large effect on the averaged wavelet power (Fig. 4.4c). The phase coherence between
MSNA and CO2 was mostly concentrated around the breathing frequencies and
during the ramp intervention it was significantly affected and spread around the ramp
breathing frequencies Fig. 4.5. A simple time-domain observation (Fig. 4.7a–c) also
suggests that MSNA appears as volleys of bursts within the CO2 cycles [10, 11].
The cause of this phenomenon might be due to the coupling from CO2 to MSNA,
which was present throughout the ramp breathing and was significantly increased at
low frequencies (in the same way as the bursts Fig. 4.7d).

The time-varying breathing also affected the diastolic and systolic blood pres-
sure. The low frequency wavelet power of diastolic pressure was reduced outside the
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ramped frequencies (Fig. 4.4d). The high phase coherence followed the respiration
variations (Fig. 4.5). Interestingly, the phase coherence between sympathetic activity
and diastolic pressure, and systolic pressure and R-R interval oscillations was high at
low-frequencies, and was unaffected by the pattern of breathing (Fig. 4.6a, b). Con-
trariwise, phase coherence between systolic pressure and R-R interval oscillations
(Fig. 4.6b) is augmented by spontaneous breathing, within a narrow portion of the
usual breathing frequency range.

In summary, the time-varying breathing process significantly affected the func-
tioning and regulation of several mechanisms in cardiovascular and sympathetic
neural systems. In general, the gradually slower breathing provoked more ‘informa-
tion’ flow, altered the coordination and increased the influences between the oscil-
latory processes. The manifestations and effects on this multi-coupled oscillatory
system had the imprint of the particular form of the externally induced deterministic
time-variation. The proposed analysis was able to detect, follow and statistically to
quantify these features and phenomena.

4.3 Cardiorespiratory Interactions

In the previous section the effects from time-varying respiration were analyzed and
statistically quantified on the whole group of measurements. The following discus-
sion, first investigates more closely how the respiration with deterministic varying
frequencies can affect the cardiorespiratory interactions i.e. how the ramped breath-
ing affects the inherent dynamics and transitions between oscillatory processes of
the heart and respiration. The cardiorespiratory interactions in relation to ageing are
outlined shortly too. The Bayesian inferential technique (discussed previously in
Chap. 3) is employed for the reconstruction of the interacting phase dynamics, and
for evaluation of the qualitative states and transitions.

Before presenting the actual analysis, an important technical preprocessing issue
is addressed. Namely, in order to infer the phase dynamics, one needs to have good
estimate of the phases from the observable time-series. This is even more important
when the oscillatory dynamics are time-varying and the analysis requires instanta-
neous phases. Potential difficulties for the phase estimation occur when the signals
emanate from complex and/or mixed-mode oscillatory dynamics. Therefore, atten-
tion will first be spent on addressing some of the known methods for phase detection
and the problems they hold, and an alternative approach for overcoming these issues
will be proposed.

http://dx.doi.org/10.1007/978-3-319-00753-3_3
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4.3.1 Instantaneous Phase Detection: Methods and Problems

The problem faced is to detect the phase at every moment in time from time-series
containing oscillatory characteristics.1 There exist two widely accepted methods for
phase detection, which are used differently depending on the form of the signal.

The first method considers the interval between two well-defined events as a
cycle, and that the phase increment between the events is exactly 2π. The procedure
is similar to having a Poincaré cross section on the phase portrait of the attractor [30].
A cycle is described by only one information point while the intermediate points are
linearly interpolated i.e. assigning the values of phase φ(tk) = 2πk to the times tk ,
and for arbitrary instant of time tk < t < tk+1 the phase is defined as:

φm(t) = 2πk + 2π
t − tk

tk+1 − tk
. (4.3)

A detection of phase from an ECG signal (which has complex form), was used to
present how the methods work. Figure 4.9a shows the ECG signal and the marked
maxima tk events. The instantaneous phase (Fig. 4.9 (b)). was estimated from the
marked points and using Eq. (4.3).

The second method involves construction of the complex analytic signal ζ(t) [31]
from a scalar experimental time series s(t) via the Hilbert transform:
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Fig. 4.9 Phase detection with marked-events and Hilbert transform methods. a ECG signal and
marked maxima R-peaks. b The phase estimated as (4.3) using the peaks from (a). c The two-
dimensional embedding using Hilbert transform of the same signal as a. d The spuriously detected
phase using Hilbert transform (4.4)

1 Note that instantaneous or ‘every instant of time’ in this context is finite and defined by the
sampling frequency of the time-series.
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ζ(t) = s(t) + isH (t) = A(t)eiφH (t), sH (t) = π−1 P.V .

∫ +∞

−∞
s(τ )

t − τ
dτ , (4.4)

where sH (t) is the Hilbert transform of signal s(t). Hence, the angle variable φH (t)
from the complex signal ζ(t) describes the required instantaneous phase. This
approach is parameter free, very convenient for implementation, and if the signal
is well defined and has narrow band spectra it gives phase information in every point
of the time. However, if the two-dimensional embedding has loops or intersections
this method will fail. In fact, due to its complex form with (P and Q) minor peaks
between the maxima R-peak, the ECG signal is one such example. This is illus-
trated on Fig. 4.9c where the Hilbert transform embedding show clear folding and
intersection. Thus the detected instantaneousness phase will be spurious Fig. 4.9d.

In studies of cardiorespiratory interactions, the phases from the respiration sig-
nal usually are estimated with Hilbert transform, while the ECG phase is detected
through the marked events technique [3, 32]. This approach works well enough for
observing dynamical behaviour which is longer than several oscillatory cycles, and
where having only few phase information is enough (for example phase synchroniza-
tion with synchrograms). But if one tries to infer the inherent oscillatory dynamics
from complex signals, such as the coupling function and intrinsic time-varying para-
meters, then there is a need for instantaneous phase that contains more information
of the cycle. For example, for cardiorespiratory interactions the ECG phase from
the marked-events method contains only one information event per cycle, while the
rest is simple interpolation. Alternatively, the Hilbert phase is not correctly detected
either. Hence, there is a need for a phase estimate from complex signals that describes
the phase (time-variability) at every instant in time.

Additionally, care must be taken when the signals contain parts and modula-
tions from other (oscillatory) processes. In such cases, a preprocessing in terms of
de-trending, filtering or decomposing is required. This will allow for interactions
to be studied on self-sustained oscillatory processes with their own fundamental
frequency. For example, the respiration signal might contain components from the
heart activity, and if they are not taken into account, one might end up investigating
synchronization between the heart and the influence from the heart on respiration
[33, 34]. This is clearly wrong since the components are artifacts from the measuring
procedure rather than the oscillatory dynamics of respiration, and the dynamics are
coming from the same (cardiac) oscillator.

4.3.2 Instantaneous Phase Detection from Complex
Mixed-Mode Signals

Recent development of techniques for decomposition of mix-mode signals has lead
to the synchrosqueezed wavelet transform [35]. This method aims to decompose the
signal into intrinsic mode components which can have time-varying spectrum. The
transform is a combination of the wavelet transform and a special case of reallocation
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method which tries to “sharpen” the time-frequency component R(t,ω) by allocating
its value to a different point (t ′,ω′) in the time-frequency plane, determined by the
local behavior of R(t,ω) around (t,ω). It is based on wavelet transform W (s, t), as
described previously by Eqs. (4.1) and (4.2), which gives a time-scale representation
of the frequency content that is spread out in s, but its oscillatory behavior in t are
located around the original frequency ω, regardless of the value of s.

The synchrosqueezed transform aims to ‘squeeze’ the wavelet around the intrin-
sic frequency in order to provide better frequency localization. For any (s, t) for
which W (s, t) �= 0, a candidate instantaneous frequency for the signal g can be
calculated as:

ωg(s, t) = −i
∂
∂t Wg(s, t)

Wg(s, t)
. (4.5)

The information from the time-scale plane is transferred to the time-frequency
plane, according to a map (s, t) → (ωg(s, t), t), in an operation called syn-
chrosqueezing. The synchrosqueezed wavelet transform is then expressed as:

Tg(w, t) =
∫

A(t)
Wg(s, t)s−3/2δ(ω(s, t) − ω)ds, (4.6)

where A(t) = {a; Wg(s, t) �= 0}, and ω(s, t) is as defined in (4.5) above, for (s, t)
such that s ∈ A(t). Defined in this way, the transform is invertible and the signal can
be reconstructed after the synchrosqueezing:

g(t) = 
e

[
C−1
ψ

∫ ∞

0
Wg(s, t)s−3/2ds

]
, (4.7)

where C−1
ψ has a constant value which is calculated from the mother wavelet C−1

ψ =
1
2

∫ ∞
0 �(ξ) dξ

ξ . For practical reasons, when dealing with time series the frequency
variableω and the scale variable s can be “binned”, i.e. Wg(s, t) can be computed only
at discrete values sk , with sk − sk−1 = (�s)k , and the synchrosqueezed transform
Tg(ω, t) can be likewise determined only at the centers ωl of the successive bins
[ωl − 1

2�ω,ωl + 1
2�ω], with ωl −ωl−1 = �ω. The integral is written in this discrete

form as the summation of different contributions, and Eq. (4.7) becomes:

g(t) = 
e

[
C−1
ψ

∑
k

Wg(sk, t)s−3/2
k (�s)k

]
= 
e

[
C−1
ψ

∑
k

Tg(ωl , t)(�ω)

]
.

(4.8)
Due to the good frequency localizations and invertibility, the synchrosqueezed

wavelet transform can be used as an appropriate tool for identification and extraction
of intrinsic oscillatory modes in time domain [35]. Moreover, the complex nature
of the synchrosqueezed transform allows one to extract the phase of non-harmonic
signals, or of some of their modes. The instantaneous phase can be calculated as the
angle of the synchrosqueezed wavelet transform:
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Fig. 4.10 Instantaneous phase detection from ECG signal, using the synchrosqueezed wavelet
transform. The ECG signal is shown with grey line, and the phase φc(t) with black

φl(t) = ∠
[∑

k

Tg(ωl , t)(�ω)

]
. (4.9)

The transform’s great potential lies in its ability to determine instantaneous charac-
teristics from signals with non-harmonic waveform [36]. The robust implementation
and the visual time-frequency representation offer a convenient way for identification
and analysis of mixed-mode oscillatory dynamics [37].

Figure 4.10 presents a specific application of the technique as a response to the
originally posed question of how to detect reliably the instantaneous phase from
ECG signal. One can notice that the phase was detected correctly in respect of
the 2π cycles defined by the R-peaks, and that time-variability within the cycle is
traced appropriately. It is worth noting that the ECG phase detected in this way
(with instantaneous values) can be used appropriately by the Bayesian technique for
inference of properties like coupling functions.

Exploiting the decomposition property of the transform, the phase can be detected
only for certain specific oscillatory modes. For example the cardiac phase can be
detected only from the intrinsic mode within the cardiac interval (Table 4.1), thus at
the same time, a preprocessing procedure for removal of undesired modulations will
be performed.

On the other hand, there exist cases where the modulations and external oscilla-
tory premises can actually be used for further analysis. The latter can be even more
important if the oscillatory mode is not directly measurable. For example, the blood
flow signal measured with laser Doppler flowmetry (LDF), contains information
about the blood propagations which are modulated by several oscillatory compo-
nents. The activity within these frequency intervals, as elaborated in Table 4.1, can
be decomposed and used for other analysis. Figure 4.11a shows the synchrosqueezed
wavelet transform from human blood flow signal (also given by the wavelet transform
and time-averaged wavelet power on Fig. 4.14). It is easy to notice the oscillatory
modes in the corresponding frequency intervals (separated by dashed lines). This
subject had very low respiratory influence on the blood flow processes. By applying
the proposed technique, the oscillating processes were decomposed Fig. 4.11b–g and
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Fig. 4.11 Synchrosqueezed wavelet transform (a) from human blood flow signal. The oscillatory
components as explained by Table 4.1 are separated by black dashed lines. The decomposed time-
evolution (b)–(g) and their instantaneous phases (h)–(m), of the respective oscillatory component
as shown on the left in (a). For example (d) shows the myogenic signals and (j) its phase

their instantaneous phases were detected directly Fig. 4.11h–m. Within each interval,
the modes were selected as the maximal energy components, preserving their fre-
quency and amplitude time-variations. This novel facility gives the opportunity for
further analysis to be performed—including, for example, inter-oscillatory interac-
tions in terms of synchronization and directionality. These results will be even more
important because not all of the underlaying oscillatory processes can be measured
directly. The inter-oscillatory analysis can give deeper insight into the cardiovascular
mechanisms and causal relationships, and are certainly worth pursuing in the future.

4.3.3 Cardiorespiratory Interactions and the Effect
from Time-Varying Respiration

The cardiac and respiratory activity can be seen as two self-sustained oscillatory
processes that interact with each other. This sections investigates the cardiorespira-
tory interactions under conditions when the breathing pace is perturbed deterministi-
cally in a linear (ramp) manner—as explained in Sect. 4.2. The instantaneous cardiac
phase was estimated from the ECG signal by synchrosqueezed wavelet transform
described by Eq. (4.9). Similarly the respiratory phase was extracted from the CO2
concentration signal. In order to avoid the potential phase disturbances introduced by
the synchrosqueezed transform, the two phases were processed in a protophase-phase
[38].

The Bayesian framework for inference of phase dynamics (Chap. 3) was applied on
a segment with fast-to-slow ramp breathing. The results are summarized in Fig. 4.12.

http://dx.doi.org/10.1007/978-3-319-00753-3_3
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Fig. 4.12 Synchronization, directionality and coupling functions in the cardiorespiratory interac-
tion. a Standard 1:N synchrogram. b Synchronization index for ratios 1:4, 1:5 and 1:6, as indicated.
The dashed line represents the mean (dotted) +2 SD of synchronization indices from 100 surrogate
[25] realizations. c The time-varying respiration frequency (note the downward ramp due to pacing).
The gray areas on c represent ±2 SD from the mean value. d Directionality index: the dashed lines
represent the mean (dotted) +2 SD of directionality indices from 100 surrogate realizations. e–g
Coupling functions q1(φ1,φ2) calculated at different times, as indicated by the grey arrows. From
[41] © (2012) by the American Physical Society

The inferred respiratory frequency shown on Fig. 4.12c demonstrates the ramped
breathing variability. The secondary purpose for presenting the ramp is to follow the
changes of other measures with respect to the perturbation applied. By normalizing
the inferred coupling parameters, one can determine the net directionality of the inter-
actions. Figure 4.12d suggests that the degree of directionality is time-varying, but
confirms that respiration-to-heart is dominant [3, 28, 39, 40]. To determine whether
cardiorespiratory synchronization exists in certain ratios, the set of inferred coupling
parameters was used to reconstruct the torus map and for investigating whether the
root M(ψe) = ψe exists or not. Figure 4.12b shows the detection of transitions from
the non-synchronized to the synchronized state, which in turn change in different
ratios: 1:4 to 1:5 to 1:6, as the ramp progressed. The synchronization detection and
the respective transitions were consistent with the respective synchrogram Fig. 4.12a.
The surrogate testing on (b) and (d) was performed in order to refute the hypothesis
that the measures happen by chance, and to determine the significance threshold.
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The cardiorespiratory coupling function, evaluated for three different time win-
dows indicated by the arrows, is presented on Fig. 4.12e–g. For simplicity and clar-
ity only q1 is shown (the qualitative behavior of q2 was similar). The interactions
are described by complex functions whose form changes qualitatively over time—
cf. Fig. 4.12e with (f) and (g). The latter implies that the functional relation for the
cardiorespiratory interactions is not a time-invariant function, but is in fact a time-
varying process for itself. The time-evolution of the coupling functions is evident by
analyzing consecutive time windows—cf. the similarities i.e. evolution of Fig. 4.12f,
g. It is important to note that this variability is not caused by the ramp time-varying
respiration frequency (which is decomposed separately), and that the phenomenon
of time-evolving coupling functions was observed also on spontaneously breathing
subjects.

The ramped breathing showed that the cardiorespiratory coordination depends
and is regulated to a great extent by the respiration dynamics. The analysis indicated
that the Bayesian technique detected the occurrence of transitions to/from synchro-
nization and revealed details of the phase dynamics, thus describing the inherent
nature of this transitions. It was found that the externally induced varying respiration
acts as a cause for these qualitative transitions. Additional complexity for the inter-
actions and their analysis was encountered by the coupling functions which were
also time-varying processes.

4.3.4 Cardiorespiratory Interactions and Ageing

The Bayesian inference (presented in Chap. 3) can be quite useful in treating real-life
problems. Its application for reconstruction of cardiorespiratory interactions can be
used to study and quantify certain physiological states and diseases. This was already
proven useful in a study about the evolution of human cardiorespiratory interactions
in relation to ageing [41]. In the following, the main results are shortly reported
and reviewed. The study describes an analysis of cardiac and respiratory time series
recorded from 189 subjects of both genders, with age ranging from 16 to 90 years.

The phases were estimated using the wavelet synchrosqueeze decomposition from
the ECG and the respiration signal. The Bayesian inference is applied to decompose
the deterministic phase dynamics and the noise. After the time-varying parameters are
decomposed, synchronization, directionality and coupling functions are studied and
statistically assessed in relation to different age groups. The heart and respiratory cou-
pling functions are further divided into three parts, representing: coupling-induced
self-interaction; direct driving by the other system; and indirect interactions.

It was found that there is no significant correlation of the overall synchronization
duration with age. It seems also that certain synchronization ratios may be characteris-
tic of particular ages and genders. The commonest cardiorespiratory synchronization
ratio was found to be 4:1. The overall influence of respiration on the heart decreases
with age, while influence in the opposite direction stays constant, leading to a net
decrease of coupling directionality with age.

http://dx.doi.org/10.1007/978-3-319-00753-3_3
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Fig. 4.13 Typical time-averaged coupling functions for a young (left) and an old (right) male sub-
jects, aged 21 and 71 years respectively. The coupling function qh(φh,φr ) represents the influence
from respiration to heart, while qr (φh,φr ) the influence from heart to respiration. From [42] ©
(2013) The Royal Society

To gain further insight into the nature of the cardiorespiratory interaction, the
overall form of the reconstructed coupling functions is analyzed. Figure 4.13 shows
the time-averaged versions of the coupling functions qh,r typical of a younger and
an older subject. Decrease of the respiration sinus arrythmia amplitude with age can
be seen by comparing Fig. 4.13a and b. The respiratory coupling qr shown in (c),
(d) seems to be quite irregular and not age dependent. Underlying all these separate
effects, the heart coupling function qh changes markedly with age, both in its average
form and in its time-variability, whereas the respiratory coupling function seems to
be irregular and unaffected by age.

4.4 Reproducibility of LDF Blood Flow Measurements:
Dynamical Characterization Versus Averaging

In experimental analysis it is crucially important to have precise and reliable measure-
ments. One of the tests for precision is reproducibility, which is the degree of agree-
ment between measurements conducted on replicate conditions in different locations
by different people. Recently, a question about the reproducibility of Laser Doppler
Flowmetry (LDF) measure of blood flow was raised [42]. By means of determining
cutaneous vascular conductance (CVC), the authors seek to evaluate reproducibil-
ity by averaging relatively short time segments of data during or immediately after
some perturbation. They concluded that the reproducibility of measurements on the
forearm is limited by spatial variability in the microvasculature.

This naturally raised the discussion if the analyzing methods used were appro-
priate for analysis of LDF blood flow signals, which have a mixed mode oscillatory
nature. Another important issue raised was how to assess external (non-autonomous)
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Fig. 4.14 Wavelet transform of LDF variability (top left), plotted above the raw signal in standard
perfusion units (bottom) and the averaged wavelet power spectrum (right). The six frequency inter-
vals as presented in Table 4.1 are indicated by horizontal lines and correspond (from the top) to:
cardiac activity; respiration; myogenic oscillations; neurogenic; NO-related endothelial processes;
and non-NO-related endothelial processes. From [17] © (2011) Elsevier

perturbations, the kind of discrepancy that can occur and how to analyze them prop-
erly. These two issues are presented in more detail below [17].

4.4.1 Blood Flow Analysis

The reproducibility of forearm LDF measurements was investigated in earlier work
[43] by means of dynamical characterization of the oscillatory signals. It was estab-
lished that the issue of spatial variability could be mitigated by careful placement of
the sensors: good reproducibility was obtained by avoiding proximity to the larger
vessels, hairs, and blemishes. It was found that this is true both for spatial repro-
ducibility, with simultaneous measurements at different positions on the same arm,
and for temporal reproducibility, with sequential measurements at the same position.

Time-averages measures are a standard tool for analysis in physiology. But the
question raised is whether time-averaging provides a satisfactory method for char-
acterising blood flow, developing LDF criteria, or testing LDF reproducibility. Since
blood flow is inherently oscillatory in nature [4], averaging will inevitably produce
variable results depending on how the window is positioned relative to the phase of
an oscillation unless, of course, the window is very much longer than the oscillation
period. In reality, the situation is even more complex because there is not just one
oscillatory process in blood flow, but at least six [44]. Figure 4.14 shows a wavelet
transform of typical LDF blood flow data. The slower of the two endothelial-related
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Fig. 4.15 The raw LDF blood flow signal from Fig. 4.14 averaged over successively larger window
sizes, as indicated by the numbers in each box. From [17] © (2012) Elsevier

oscillations has a period of about 0.007 Hz, so that the averaging window would need
to be much longer than 2.4 min in order to avoid irreproducibility from this source.
One can in principle always achieve reproducibility of an LDF average by using a
long enough averaging interval, or by averaging over a large enough spatial area but,
in doing so, one inevitably throws away a lot of potentially useful information.

The dynamical characterization, on the other hand, prescribes that it is better
to accept that blood flow is inherently oscillatory, and to frame the criteria for LDF
reproducibility on that basis. Thus, rather than asking whether the average blood flow
has changed over time or in spatial position, it will be better and more rewarding to
ask whether the characteristics of the oscillations have changed, for example: their
amplitudes and frequencies, which are already known to be reproducible in time
and space; or the extent to which the different oscillations mutually interact and
perhaps synchronize with each other. Changes in these quantities have been related
successfully to several different pathological conditions e.g. congestive heart failure,
hypertension and diabetes as well as to other states of the body like e.g. exercise and
anaesthesia [44]. Even if averages could be measured reproducibly, they would do
little to characterize or help diagnose these conditions.

To illustrate these points, Fig. 4.15 shows the same LDF segment as Fig. 4.14 and a
series of time-averaged flux values made with different window sizes. If a short time
is taken to “read” the value, the difference between readings can be as high as 60 %
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of the baseline value. The longer the window is, the less variable the average value
becomes. However, as shown in Fig. 4.14 there are distinct patterns in the variability
that are missed if only the average is taken into account. Moreover, the patterns are
visible on several different time-scales so that a relatively long recording time is
needed to capture the dynamical properties of the blood perfusion signal. Thus, for
analysis of LDF measurements, the dynamical description in terms of the parameter
values characterizing the oscillations, can be more appropriate. In their response
[45], the authors also add that both approaches: the time-averaging and dynamical
characterizations are of interest, being different but complementary.

4.4.2 Numerical Study of Transient Effect on Interacting
Oscillators Subject to Non-Autonomous Perturbations

In physiology, one of the standard procedures for investigating the mechanisms and
existing relationships is to subject the systems to external perturbations. In this way
the examiners can follow how the system reacts to this influence, and if there are
some interactions with other systems which are affected by this perturbation. Obvi-
ous examples include the ramp breathing discussed in Sect. 4.2, local heating or
post-occlusive reactive hyperaemia. Often several perturbations are performed con-
secutively, and in this particular case special care must be taken. When the systems
are oscillatory processes, the transient response from the perturbations (if not treated
well) can have an effect on the analysis and their reproducibility.

In a complex dynamical system such as the skin microvasculature, any pertur-
bation is likely to involve nonlinear hysteresis effects. Figure 4.16 shows the results
of a numerical simulation of just two coupled oscillatory processes subjected to
repeated external perturbation. The model consists of bi-directionally-coupled limit-
cycle oscillators (based on Poincaré oscillators), subject to external perturbations
and weak noise:

ẋ1 = −α1(r1 − a1)x1 − ω1(y1 − β1r1) + ε1x2 + ξ1(t) (4.10)

ẏ1 = −α1(r1 − a1)y1 + ω1(x1 − β1r1) + ε1 y2 + ξ1(t) − s1(t) − s2(t),

ẋ2 = −α2(r2 − a2)x2 − ω2(y2 − β2r2) + ε2x1 + ξ2(t)

ẏ2 = −α2(r2 − a2)y2 + ω2(x2 − β2r2) + ε2 y1 + ξ2(t) − s2(t), (4.11)

ri =
√

x2
i + y2

i ; i = {1, 2}.

The parameters were set to values mimicking the frequency spectra: cycle radii
a1 = a2 = 1; frequencies ω1 = 2π0.1, ω2 = 2π0.011; couplings ε1 = 0.01,
ε1 = 0.001; parameters for speed of convergence α1 = 0.001,α2 = 0.1 and
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4.16 The effect of repeated perturbations on the two-oscillator model described by Eqs. (4.10)
and (4.11), showing the resultant changes in the mean value and transient effects as they are observed
using different window sizes. From [17] © (2011) Elsevier

parameters for the center of rotation β1 = 0.4 and β2 = 0.01. The noise is white
Gaussian, with zero mean 〈ξi (t)〉 = 0 and correlation 〈ξi (t)ξi (s)〉 = Dδ(t − s),
where D is the noise strength (D1 = D2 = 0.003). A long initial transient time
(1000 s) was discarded and the stationary state was analyzed. The non-autonomous
perturbations s1(t), s2(t) are simple step signals, each with length t = 200 s and
amplitudes s1H = s2H = 0.2, as presented on Fig. 4.16a.

For the first 200 s, the first oscillator is unperturbed and its time-averages are
around the baseline (except for small deviations due to weak noise and coupling).
During the high value of s1(t) (t = 200–400 s) the first oscillator is perturbed and
its time-averages are affected accordingly. It is evident that x1 is then subject to the
gradually decreasing after effect of the perturbation. This transient period (t = 400–
700 s) appears because the oscillator needs a certain time to converge to its limit
cycle. The length of the transient depends on the characteristics and the parameters
of the oscillator. The associated time-averages are affected and the values are far
from the baseline. A second perturbation (t = 700–900 s) involves perturbing both
of the oscillators by s2(t). Note that, during this period, the first oscillator is subject



106 4 Application to Life Sciences

to the additional and indirect influence of the second oscillator, resulting in higher
time-averages. After the second perturbation s2(t) finishes, the first oscillator is again
left in perturbed state and only gradually returns towards its baseline value.

It is evident that transients in the oscillatory behaviour may persist for much longer
than the timescale of the perturbation itself. Due to the coupled nature of the oscilla-
tory processes, perturbing either oscillator results in the transient behaviour of both
oscillators, leading to changes in the time-averaged values (which obscure the oscil-
lations themselves). Repeated perturbations result in overlapping transient responses.
Hence, when subjecting the microvasculature to a perturbation, care should be taken
to understand the role of oscillatory processes: short-time average values may capture
only a part of the transient physiological response.
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