
Chapter 3
Bayesian Inference of Time-Evolving Coupled
Systems in the Presence of Noise

Open systems are often oscillatory in nature because their dynamics are determined
by a balance between energy inflow, outflow and usage which, in general, do not
match. Their lack of isolation means that such systems often interact with each
other. The strength, direction and the functional relationships can define the nature
of interactions, which can cause qualitative states to appear, such as synchronization
between the oscillators. The time-variability that characterizes the oscillators and
their interactions can cause transitions between the qualitative states.

In order to investigate and study interactions, one usually obtains observable
measurements of the oscillating dynamics in a form of time-series. Through analysis
of these readout signals one can detect and quantify the interacting phenomenons. In
such an inverse approach, often the source of a time-variability can not be uniquely
determined. Additionally, the observable time-series can involve part of a stochastic
indeterministic dynamics, arising due to (for example) influence of the environment
on the dynamics, or due to measurement noise.

For this reasons there is a need for technique that can infer parameters, functional
relationships and transitions between states of the interactions, starting from time-
series observations. Due to the nature of dynamics, the inference should be able
to trace the time-variability of the intrinsic parameters, and at the same time to be
able to deduce the effect of the noise. Offering such a complete and comprehensive
description of the dynamics within a single formalism, the technique can be of wide
applicability.

3.1 Phase Dynamics Decomposition

This section outlines the basic theoretical background for the implementation of
the inferential framework. At the core of the technique lies the Bayesian inferential
framework for stochastic dynamics, utilized to infer a time-evolution of the intrinsic
parameters.
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3.1.1 Main Concept

The methodological approach proposed in this study exploits the Bayesian inferen-
tial technique for inference of noisy time-varying phase dynamics. The parameters,
reconstructed from the base functions, allow the interactions and the respective states
between the oscillators to be determined. The method can be summarized as:

The starting point i.e. the inputs for the inference are multivariate phase time-series
that encapsulate the dynamics of an interacting oscillators. The actual observable
time-series represent instantaneous phases from the measured state signals, pre-
estimated using appropriate phase detection methods (e.g. using Hilbert transform,
angle variable or wavelet synchrosquueze transform).

Decomposition of the phase dynamics embedded within the Bayesian framework
is accomplished through the use of periodic base functions—represented in a form of
finite Fourier series. The use of probabilistic apparatus from Bayesian theory enables
the parameters’ distribution to be inferred. Furthermore, the Bayesian probability
lying at the core of the method is itself time-dependent via the prior probability
as a time-dependent informational process. The outcome of the inference i.e. the
time-varying parameters are then employed to estimate, quantify and describe the
underlying oscillatory interactions. By reconstructing the dynamics in terms of a set
of base functions, we evaluate the probability that they are driven by a set of equations
which are intrinsically synchronized, thus distinguishing phase-slips of dynamical
origin from those attributable to noise.

Estimation of the coupling is directly linked to the parametrization of the base
functions: for oscillators which are similar enough to share the same base functions,
confrontation between the parameters is sufficient for evaluation of which oscillator
drives which. The examination of the interacting base function as a group, can reveal
the functional relationship that describes the interactions among the oscillators.
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3.1.2 Base Functions

When two noisy, N -dimensional, self-sustained oscillators interact weakly [1], their
motion can be described by their phase dynamics:

φ̇i = ωi + fi (φi ) + gi (φi ,φ j ) + ξi (t), (3.1)

leaving all other coordinates expressed as functions of the phase: ri ≡ ri(φi ) [2]. The
constant terms ωi represent the oscillating angular frequencies, the fi (φi ) functions
describe the inner-oscillating dynamics, while gi (φi ,φ j ) functions characterize the
dynamics for the interactions between the oscillators. (The later functions gi (φi ,φ j )

are often referred to as coupling functions). ¸ is a two-dimensional spatially correlated
noise, usually assumed to be Gaussian and white: 〈ξi (t)ξ j (τ )〉 = δ(t−τ )Eij. Reliable
evaluation of the interaction phenomena must rely on precise inference of fi and gi

and of the noise matrix Eij. The periodic nature of the systems suggest periodic
base-functions, hence the use of Fourier terms for the decomposition:

fi (φi ) =
∞∑

k=−∞
c̃i,k sin(kφi ) + c̃i,2k+1 cos(kφi )

gi (φi ,φ j ) =
∞∑

s=−∞

∞∑

r=−∞
c̃i;r,s ei2πrφi ei2πsφ j . (3.2)

The inference of an underlying phase model through use of Fourier series has formed
the functional basis for several techniques to infer the nature of phase-resetting
curves and interactions viz. the structure of networks or proposed synchronization
prediction [3–8]. However, these techniques inferred neither the noise dynamics nor
the parameters characterising the noise.

It might seem natural at this point to consider the phase difference of the two
oscillators, as in the case of synchronization determination. But, due to the need to
extract as much information as possible from the whole dynamical space, the two
dynamical fields φ1 and φ2 are modeled separately.

Assuming that the dynamics are adequately described by a finite number K of
Fourier terms, one can rewrite the phase dynamics of (3.1) as a finite sum of base
functions:

φ̇l =
K∑

k=−K

c(l)
k �l,k(φ1,φ2) + ξl(t), (3.3)

where l = 1, 2, where �1,0 = �2,0 = 1, c(l)
0 = ωl , and other �l,k and c(l)

k are the K
most important Fourier components.

It is important to note that a use of Fourier series for the phase dynamics is a general
and model-independent decomposition. The latter results from the fact that the phase
inputs used are monotonically increasing with time, regarding of the dimensions and
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the complexity of the signals. The phase φi (t) possess the sufficient information
for the measures required to be inferred: synchronization, directionality and time-
varying phase dynamics. If one were about to decompose the oscillatory interactions
in state space, then the dynamics must be inferred using specific non-general and
model-dependent (e.g. polynomial) base function. The use of state base functions is
discussed in detail toward the end of this chapter in Sect. 3.7.

3.1.3 Bayesian Inference

The following outlines a general inferential framework for stochastic dynamical
processes. An M-dimensional time-series of observational data Y = {yn ≡ y(tn)},
defined over the time-grid tn = nh, is provided. It is assumed that a driving dynamic
exists, described by an L-dimensional (L ≥ M) stochastic process φ(t). The under-
lying dynamics can be described by a set of L-dimensional stochastic differential
equations in the form:

φ̇(t) = f(φ|c) + z(t), (3.4)

where c is a set of parameters that are embedded in the dynamical field f , and z(t)
is considered to be an L-dimensional white Gaussian noise processes. It is assumed
that the measurement noise is negligible and that a unique relationship exists: y(t) =
φ(t)∀t , i.e. the readout data is also the dynamical variable. A Bayesian inference
technique that includes inference of measurement noise and detailed derivations of
similar inferential framework is discussed in [9–12].

The fundamental question for the inference is: “given the readout data X, what
information can one obtain about the functions f , about their parameters c and about
the noisy processes z?”.

Due to the stochastic nature of the dynamics, the process of information extraction
involves the building of theoretical models that cannot be verified directly but can
be exploited by estimation of their probability. For these reasons, one can employ
Bayesian probability—an approach in statistical inference where the probability is
intended as a subjective measure of belief in an event or in the state of a variable
[13–16]. In particular, the Bayes’ theorem states:

Ppost(M|X) = P(X|M) Pprior(M)∫
P(X|M) Pprior(M)dM

, (3.5)

where M is a set of parameters on which the probabilities are assigned; X represents
the observational data. Pprior(M) is the prior probability of M: the measure of belief
on the particular values of M before the data X was observed. P(X|M) (also called
the likelihood) is the conditional probability of observing X given M. The desired
result Ppost(M|X) is the posterior probability: the probability that the hypothesis
(or parameters) are true, given the data and the previous state of belief about the
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hypothesis. Such a framework is ideal for applications with sequential data—the
current posterior probability can act as a prior for the next sequence of data.

Thus within the Bayesian framework, the problem is reduced to the calculation of
the likelihood function and the optimization of the posterior distribution with respect
to M = {c, E} .

In order to construct the expression for the likelihood function, an additional
assumption is made that the sampling scheme {tn = nh} is sufficiently dense in
respect of the dynamics that the time interval h is small enough for the Euler mid-
point approximation to be valid. If this is the case, Eqs. (3.4) can be approximated
by:

φn+1 = φn + h f(φ∗
n|c) + zn, (3.6)

where φ∗
n is the average between two consecutive states of the dynamical variable

φ:

φ∗
n = (φn+1 + φn)

2
.

In Eq. (3.6) the term zn is the stochastic integral:

zn ≡
∫ tn+1

tn
z(t) dt = √

h H ξn . (3.7)

H is the matrix that satisfies HHT = E, and ξn is a zero-average 〈ξn〉 = 0 and
unitary-variance normal variable 〈ξn ξm〉 = I δn m .

The main idea is to calculate the probability of φn+1 − φn − h f(φ∗
n|c) for each

single n as a function of the probability of the realization of the whole process {zn}.
The Gaussian probability of a single zn is:

P (zn) = dzn√
(2π)L hL det(E)

exp

{
−zT

n E−1zn

2h

}
.

Thanks to the assumption that the noise under consideration is white zn and
statistically independent of zm for n 
= m, one can write the joint probability of the
process {zn} as a product of the probabilities of each single zn :

P ({zn}) =
N−1∏

i=0

P (zi ) =
N−1∏

i=0

dzi√
(2π)L hL det(E)

exp

{
−zT

i E−1zi

2h

}
. (3.8)

The likelihood probability P(X|M) over a time grid can be expressed as the
probability density of a particular realization of the dynamical system P(X|M) =
P
({

φn
}) = ρ0

(
φ0
)∏N

i = 0 ρ
(
φi
)

. The expression of P(X|M) was decomposed

in this way because of the need for
∏N

i = 0 ρ
(
φi
)

to be expressed directly in terms
of {zn}.
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Thanks to the change of variable from zn to φn+1(zn), and the introduction of its

subsequent Jacobian term [J]ij = δij − h
2
∂[f(φ∗

n |c)]i
∂[φ∗

n] j
, one obtains the probability of

realization of the whole process
{
φn
}
:

P
({

φn+1
})

= dφn+1 det (J)√
(2πh)L det(E)

exp

{
−h

2

(
φ̇n − f

(
φ∗

n|c)
)T

E−1
(
φ̇n − f

(
φ∗

n|c)
)}

, (3.9)

where the following definition was used : φ̇n ≡ φn+1−φn
h . The determinant of the

Jacobian can be further approximated, since the Jacobian matrix consists of all quasi-
zero elements, except in the diagonal. Obtaining the probability density function
leads to the complete expression for the likelihood function given (for convenience
in logarithmic form) as:

− 2

N
ln
(
P(X|M)

) = ln
(

det(E)
)

+ h

N

N−1∑

n = 0

[(
−h

2

∂f
(
φ∗

n|c)
∂φ∗

n

)
+
((

φ̇n − f
(
φ∗

n|c)
)T

E−1
(
φ̇n − f

(
φ∗

n|c)
))]

.

(3.10)

The next task is to maximize the posterior probability i.e. to fit the likelihood Eq.
(3.10) to Bayesian theorem, in order to find the optimal probability of the parameter
set M given the data X.

The prior probability Pprior(M) was chosen to be a multivariate normal distribution
in respect of the parameters c; if c is an M-dimensional vector, its prior probability
is written as:

Pprior(c) = 1√
(2π)M det(�pr)

exp

[
−1

2
(c − cpr)

T �−1
pr (c − cpr)

]
, (3.11)

where cpr is a vector of a priori coefficients and �pr is its covariance matrix. The
latter two expressions Eqs. (3.10) and (3.11) gave the required probabilities, from
which (using the Bayesian theorem) the posterior probability can be estimated.

Before moving forward, explicit dependence of f in respect of parameters vector
c needs to be defined, and the following parametrization is introduced:

f(φ|c) = �(φ) c, (3.12)

where �(φ) is a L × M matrix of Fourier base functions, as described in
Sect. 3.1.2. With this linear parametrization of f , one obtains a quadratic log-
likelihood function in respect of parameters vector c . Hence, using a multivari-
ate normal distribution for the prior probability immediately leads to a multivariate
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normal distribution for the posterior. This is highly desirable because the Gaussian
posterior (described only by its mean and covariance) is computationally convenient
and can be easily used again as a prior for the next sequential block.

Finally, taking the discussed expressions into account, the stationary point of
the log-likelihood (and thus the posterior) can be calculated recursively with the
following equations:

E = h

N

N−1∑

n=0

[
φ̇n − �nc

]T[
φ̇n − �nc

]
, (3.13)

wX(E) = �−1
pr cpr + h

N−1∑

n=0

[
�T

n E−1 φ̇n − 1

2

∂�
(
φ∗

n

)

∂φ∗
n

]
, (3.14)

�X(E) = �−1
pr + h

N−1∑

n=0

�T
n E−1 �n, (3.15)

c = �−1
X (E)wX(E), (3.16)

where � is the inverse of the covariance matrix � = �−1 (often called concentration
or precision matrix).

In terms of the optimal algorithm for computational calculations, this make sense:
starting from initial prior �−1

pr and cpr, the noise matrix E can be calculated Eq. (3.13),
then given this E, using Eqs. (3.14–3.16), the parameter vector c can be evaluated.
The same procedure should be repeated recursively until c and E converge to stability.
In absence of any prior knowledge about the system, a non-informative initial prior
can be used: �−1

pr = 0 and cpr = 0. For details about the implementation and
programming see [17].

The proposed Bayesian inferential framework can be summarized as follows.
Thanks to the choice of the linear parametrization of the vector field f(φ|c) = �(φ)c ,
a log-likelihood quadratic function in respect of parameters has been obtained. The
choice of a multivariate normal distribution for the prior Pprior(c) leads to a posterior
which is still a multivariate normal distribution. Therefore, given a realization of X ,
with two input quantities, cpr and �pr, respectively the mean and the covariance of the
prior Ppr(c), the set of parameters that best describe the system, and their correlations,
are described by only two other quantities: cpost and �post, respectively the mean and
the covariance of the posterior Ppost(c). The posterior probability density is thus:

Ppost({c}) = 1

(2π)L/2|�post|−1/2
exp

[
−1

2
(c − cpost)

T�post(c − cpost)

]
. (3.17)

If then a new sequential data-block X (generated from the same dynamics) is given,
we can use the posterior information from the first data-block as the prior for the
second one. The latter procedure constitutes the information propagation process,
the utilization of which for time-varying dynamics will be discussed in the following
section.
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3.1.4 Time-varying Information Propagation

The multivariate probability Eq. (3.17) described by NX(c|c̄, �) for the given time
series X = {φn ≡ φ(tn)} explicitly defines the probability density of each parameter
set of the dynamical system. When the sequential data comes from a stream of
measurements providing multiple blocks of information, one applies (3.13–3.16) to
each block. Within the Bayesian theorem, the evaluation of the current distribution
relies on the evaluation of the previous block of data i.e. the current prior depends
on the previous posterior. Thus the inference defined in this way is not a simple
windowing, but each stationary posterior depends on the history of the evaluations
from previous blocks of data.

In classical Bayesian inference, if the system is known to be non-time-varying,
then the posterior density of each block is taken as the prior of the next one: �n+1

prior =
�n

post. This full propagation of the covariance matrix will allow good separation
of the noise and the uncertainties in the parameters steadily decrease with time as
more data are included. But if time-variability exists, this propagation will act as a
strong constraint on the inference and will fail to follow the time-variability of the
parameters. This situation is illustrated in Fig. 3.1a.1

On the other hand, if the noisy dynamical system has time-variability, one can
consider the processes between each block of data to be independent (i.e. to consider
them as Markovian processes). Then there can be no propagation between the blocks
of data and each inference starts from a flat distribution: �n+1

prior = 0. Now the inference
will follow more closely the time-variability of parameters, but the effect from the
noise and the uncertainty of the inference will be larger Fig. 3.1b.

If the system has time dependence, however, the method of propagating knowl-
edge about the state of parameters obviously has to be improved and refined. Our
framework prescribes the prior to be multinormal, so we synthesize our knowledge
into a squared symmetric positive definite matrix. We assume that the probability
of each parameter diffuses normally with a known diffusion matrix �diff. Thus, the
probability density of the parameters is the convolution of two normal multivariate
distributions, �post and �diff:

�n+1
prior = �n

post + �n
diff.

The particular form of �diff describes which part of the dynamical fields defining
the oscillators can change, and the size of the change. In general (�diff)i,j = ρijσiσ j ,
where σi is the standard deviation of the diffusion of ci in the time window tw, and
ρij is the correlation between the change in the parameters ci and c j :

1 Note that Fig. 3.1 shows inference of two coupled noisy Poincaré oscillators with time-varying
frequency of one oscillator—for clarity and compactness of presentation the details are not shown
here, but the reader can refer to the model and other details in Sect. 3.4.
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Fig. 3.1 Inference of steep time-varying coupling parameter from coupled noisy oscillators 3.22.
The gray line represents the intrinsic (as in the numerical simulation) parameter, while the black
line is for the inferred time-varying parameter, for: (a) full propagation: �n+1

prior = �n
post, (b) no

propagation: �n+1
prior = 0, and (c) propagation for time-varying processes: �n+1

prior = �n
post + �n

diff .
From [18], Copyright (2012) by the American Physical Society

�n
diff(i,j) =

⎡

⎢⎢⎢⎣

. . . · · · ρijσiσ j
... ρiiσiσi

...

· · · · · · . . .

⎤

⎥⎥⎥⎦ (3.18)

A particular example of �diff will be considered: it is assumed that there is no
change of correlation between parameters (ρij = δij) and that each standard deviation
σi from the main diagonal is a known fraction of the relevant parameter (or standard
deviation), σi = pwci , where pw indicates that the parameter p refers to a window
of length tw. It is important to note that this particular example is rather general
because it assumes that all of the parameters (from the �n

post diagonal) can have a
time-varying nature—which resembles inference of real (experimental) systems with
a priori unknown time-variability. The resulting inference on Fig. 3.1c demonstrates
that the time-variability is captured correctly and that the uncertainty is reduced with
time as more data are included.

If one knows beforehand that only one parameter is varying (or at most, a small
number of parameters), then �diff can be customized to allow tracking of time-
variability specifically on that parameter. This selective propagation can be achieved
if, for example, not all but only the selected correlation ρi i from the diagonal has non-
zero value. In the remaining presentation of the thesis, however, the general (with all
correlations from the diagonal) propagation for time-varying processes will be used.

3.2 Synchronization Detection

After performing the inference, one can use the reconstructed parameters, given
in a form of multivariate normal distribution NX(c|c̄, �), to study the interactions
between the oscillators under study. One of the major points of interest is to detect
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whether the dynamics described by the inferred parameters undergo synchronization
and if transitions exist between the qualitative states. The particular information
propagation for tracing time-varying parameters can allow the synchronization state
and its transitions to be observed in time.

It is important to notice that a non-zero noise can induce phase slips in a system
that would be synchronized in the noiseless limit. However, the currently proposed
methods for synchronization detection are based on the presence and statistics of
phase-slips, rather than on the nature of the phase-slip itself [19–21]. The novelty
embedded in this study is that it proposes evaluation of the probability that the
equations that drive the dynamics are intrinsically synchronized and if the possibly
observed phase-slips are dynamics-related or noise-induced.

Every parameter set can be distinguished depending on whether it belongs to
the Arnold tongue region i.e. whether it belongs to the synchronization parameter
space. For the inferred parameters one needs to find a criterium for determining if
the dynamics governed by the base phase function are in a synchronized state. This
binary property was called s(c(l)

k ) = {1, 0}. Thus the posterior probability of the
system to be synchronized or not is obtained by evaluating the probability of s:

psync ≡ pX(s = 1) =
∫

s(c)NX(c|c̄, �) dc . (3.19)

In general, the border of the Arnold tongue might not have an analytic form, and,
even if it had, the integral has no analytic solution and must be evaluated numerically.
A practical way to proceed is to estimate numerically psync by sampling many real-

izations from the parameters space {c(l)
k }m , where m labels each testing parameter

vector, and for every set of cm synchronization to be computed s(cm). The probability
sampling is discussed in more detail in Sect. 3.4.4.

But, how can one detect the binary property s(c) = {1, 0} describing if a single
set of parameters makes the phase dynamics synchronized or not? For the simple
form of the base function �l,k (e.g. the phase model Eq. (3.1) described in Sect. 3.5.1
there might exist an analytic solution—then s(c) is explicitly defined. But in order
to keep the generality of the method, there is a need for a technique that can detect
synchronization of phase dynamics described by any number and general form of
the base function �l,k defined.

3.2.1 Torus Dynamics and Map Representation

In this section a simple technique to recognize whether a phase oscillatory system
is synchronized or not is presented. The technique itself is a simple check through
numerical integration of an ordinary differential equation system (defined by Eq.(3.1)
without the inferred noise) through one cycle of the dynamics, and testing whether
the synchronization condition |ψ(t)| = |φ1(t) − φ2(t)| < K is always verified.
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=0

Fig. 3.2 Torus representation of the phase dynamics, given with toroidal coordinate ζ(φ1(t),φ2(t))
and polar coordinate ψ(φ1(t),φ2(t)). The white circle denotes the Poincaré cross section. From
[18], Copyright (2012) by the American Physical Society

Let us assume we are observing the motion on the torus T
2 defined by the toroidal

coordinate ζ(φ1(t),φ2(t)) = (φ1(t) + φ2(t))/2, and the polar coordinate ψ(t).
For determination of synchronization the phase difference ψ(t) will be defined as
ψ(φ1(t),φ2(t)) = φ1(t) − φ2(t). Schematic representation of the phase dynamics
on torus is shown in Fig. 3.2. Let us consider a Poincaré section defined by ζ = 0 and
assume that dζ(t)/dt |ζ=0 > 0 for any ψ. This means that the direction of motion
along the toroidal coordinate is the same for every point of the section. Ideally one
would follow the time-evolution of every point in the section and check if there is a
periodic orbit; if a periodic orbit exists and if its winding number is zero, then the
system is synchronized. If such a periodic orbit exist, then there is at least another
periodic orbit with one of them being stable and the other unstable.

The solution of the dynamical system over the torus induces a map M : [0, 2π] →
[0, 2π] that defines, for each ψn on the Poincaré section, the next phase ψn+1 after
one round of the toroidal coordinate: ψn+1 = M(ψn). The map M is continuous,
periodic, and has two fixed points (one stable and one unstable) if and only if there
is a pair of periodic orbits for the dynamical system, i.e. synchronization is verified

if ψe exists such that ψe = M(ψe) and
∣∣∣ d M(ψ)

dψ |ψe

∣∣∣ < 1.

3.2.2 Synchronization Discrimination

The procedure of synchronization detection between the two oscillators that generate
the phase time-series reduces to investigation of synchronization of the synthetic
phase model using the parameters returned from the Bayesian machine. To calculate
s(c) for any of the sampled parameter sets, one can proceed as follows:

(i) From an arbitrary fixed ζ, and for an arbitraryψ0 integrate numerically (with the
standard fourth order Runge–Kutta algorithm) the dynamical system prescribed
by the phase base function (Eq.(3.3) without the noise) for one cycle of the
toroidal coordinate, obtaining the mapped point M(ψ0);

(ii) The same integration is repeated for multiple ψi coordinates next to the initial
one, obtaining the map M(ψi );
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(iii) By finite difference evaluation of d M/dψ a modified version of the Newton’s
root finding method is employed in respect of the function M(ψ) − ψ. The
method is modified by calculating M at the next point ψn+1 such that

ψn+1 = ψn + 0.8 ∗ |(M(ψn) − ψn)/(M ′(ψn) − 1))|.

Note that in this version, Newton’s method can only test the function by moving
forward; in fact (a) the existence of the root is not guaranteed; (b) we are not
interested in the root itself but only in its existence;

(iv) If there is a root, s(c) = 1 is returned. If the root is not found, s(c) = 0 is
returned.

3.3 Interactions Description

On of the main goals of this work is to infer and describe the interactions between
oscillators in a dynamical environment subject to external deterministic and stochas-
tic influences. The interactions characterize the inner relationships between several
or large population of oscillators, and represent a base that defines phenomenologi-
cal states (such as synchronization) and the flow of information, i.e. structure of the
connectivity.

The nature of an interaction mainly depends on the physical properties of the oscil-
lating systems, their functionality and how they react to perturbations. The central
idea is to use the inferred parameters from NX(c, �) to describe the interacting prop-
erties. Because the dynamics are reconstructed separately as described by Eq. (3.1),
usage can be made only of those inferred parameters from the base functions which
are linked to the influences between the oscillators. The influence of one oscillator
on the other can either be direct through fi (φ j ), or can arise through the combined
interacting base functions gi (φi ,φ j ). In what follows, the base functions fi (φ j ) and
gi (φi ,φ j ) are described with a common notation qi (φi ,φ j ).

One can seek to determine the properties that characterize the interaction in terms
of a strength of coupling, predominant direction of coupling or even by inference
of a coupling function. As the use of information propagation allows inference of
time-varying dynamics, the interactions’ properties can be traced in time as well.
This is especially important for inference of open interacting oscillatory processes,
which are often found in nature, where the time-variability interactions can lead to
transitions between qualitative states, such as synchronization or oscillation death.

3.3.1 Directionality Estimation

The interaction strength or the coupling amplitude quantifies the net information flow
between the oscillators. It has been found useful in many investigations, including
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determination of causality relationships [22, 23] or reconstruction of structure of
networks [4, 8]. Several approaches have been proposed for quantification of the
couplings, including mutual theoretic information [24, 25], phase dynamics decom-
position [26, 27], wavelet bispectrum [28] and perturbation techniques [3, 8, 29].
However, these techniques did not inferred explicitly the noise dynamics nor the
parameters characterizing the noise, and not all of them were able to cope with the
time-variability of the intrinsic parameters.

The coupling amplitude quantifies the total influence between the oscillators in
some direction: for example how much the dynamics of the first oscillator affect the
dynamical behavior of the second oscillator (1 → 2). If the coupling is in only one or
in both directions, we speak of unidirectional or bidirectional coupling, respectively.
In the proposed inferential framework, the coupling amplitudes are evaluated as
normalized measures from the interacting parameters inferred from the coupling
base functions qi (φi ,φ j ). The quantification is calculated as a Euclidian norm:

ε21 = ‖q1(φ1,φ2)‖ ≡
√

c2
1 + c2

3 + . . .

ε12 = ‖q2(φ1,φ2)‖ ≡
√

c2
2 + c2

4 + . . ., (3.20)

where e.g. in the proposed implementation the odd inferred parameters were assigned
to base functions q1(φ1,φ2) for the coupling from the second oscillator on the first
(ε21 : 2 → 1), and the even parameters for the first on second oscillator (ε12 : 1 → 2).

The direction of coupling often gives useful information about the interactions
[26], and is defined as normalization about the predominant coupling amplitude:

D = ε12 − ε21

ε12 + ε21
. (3.21)

If D ∈ (0, 1] the first oscillator drives the second (1 → 2), or if D ∈ [−1, 0) the
second (2 → 1) drives the first. The quantified values of the coupling strengths εi
or the directionality D represent measures of combined relationships between the
oscillators. Thus, a non-zero value can be inferred even when there is no interactions.
The latter discrepancy can be overcome by careful surrogate testing [30, 31]—by
rejecting values below an acceptance surrogate threshold, which can be determined
as the mean plus two standard deviations of many realization of the measures.

3.3.2 Coupling Function Reconstruction

Beside the coupling strength and the directionality, one can also infer the function that
characterizes the interactions. This coupling function defines the law that describes
the functional relationships between the oscillators. Its characteristic form results
from the nature of the oscillators and how their dynamics react under perturbations.
The inference of an underlying phase model has formed the basis for techniques to
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(a) (b)

Fig. 3.3 Schematic representation of coupling function. The coupling as a function of the phase
difference ψ = φ2 − φ1 and its implications for synchronization transitions (a). The full line is for
unsynchronized while the dashed for the synchronized case—the white circle corresponds to stable
and black to unstable equilibrium solutions. (b) The coupling as a function of both phase variables

infer the coupling functions [4, 5, 7, 27]. However, these techniques did not inferred
the noise dynamics nor the parameters characterising it, and they did not treated
time-varying dynamics.

The coupling function is defined as the law through which the interactions undergo
transitions to synchronization i.e. transitions to stable states. This physical meaning
is illustrated schematically on Fig. 3.3a for the case of simple phase oscillators with
sine coupling function (following Kuramoto [2]). The black lines represent situations
where the oscillators are not synchronized and there are no stable solutions for the
phase difference. For certain parameters (frequency mismatch and coupling ampli-
tudes) the coupling function intersect the equilibrium axis (ψ̇ = 0), and two solutions
appear, one stable and one unstable, and the oscillators are synchronized. To deter-
mine synchronization, it is sufficient to analyze the coupling function through the
phase difference alone. In general, however, one can study the function with respect
to both phases Fig. 3.3b. Winfree [32] used a function that is defined by both phases,
rather than just the phase difference, while Daido and Crawford [33–35] used a more
general form where the function was expanded in its Fourier series.

The coupling function should be 2π-periodic. In the inferential framework under
study, the coupling functions was decomposed into finite number of Fourier com-
ponents. The function describing the interactions between the two oscillators was
decomposed by the odd parameters q1(φ1,φ2) ∈ {c1, c3, . . .} and the correspond-
ing base functions �n[q1(φ1,φ2)] ∈ {sin(φ1,φ2), cos(φ1,φ2)} up to order n of the
decomposition. The other function q2(φ1,φ2) ∈ {c2, c4, . . .} was similarly decom-
posed.

The propagation of time-variability allows the coupling function to be inferred
in time. This constitutes one of the novelties of the approach, because now one
can trace the time-evolution of this functional relationships. From Chap. 2 and Sect.
3.5.4 it is clear that the latter is very important, and can act as a reason for transitions
to synchronization. The importance for studying time-varying coupling functions is
even greater given that it is a property observed in real life oscillatory systems—such
as the cardiorespiratory system.

http://dx.doi.org/10.1007/978-3-319-00753-3_2
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3.4 Technical Aspects of the Bayesian Inference

Before applying the inference method, as presented theoretically in the previous
sections, some attention is spent on the technical properties, capabilities and limi-
tations of the technique. Understanding the technical aspects is crucially important
for appropriate and correct applications, especially because the final framework is
a combination of several concepts and their functioning together must be set up
correctly.

There are number of technical aspects characterizing the technique, which include
inference of stochastic dynamics and parameters with time-varying nature, where the
resulting measures are probabilistic distributions. For this reasons, we considered the
following: how the different number of base functions affects the inference, how does
the inference behave under different strengths of noise, what time-resolutions of the
time-varying parameters can be traced and how to sample the combined measures
of the resulting probability distributions. There exist many other technical aspects,
but the ones presented here are considered to be sufficient for proper understanding
of the particular (and similar) implementation of inferential technique.

3.4.1 Number of Base Functions

In this section, the discussion is focussed on the question of what is the optimal
number of base functions to be used. The problem is basically an interplay between
achieving the desired precision and computational speed. To infer the dynamics more
precisely, we need to use larger number of base functions. This is even more pro-
nounced when one tries to infer properties (like time-varying frequencies, coupling
functions, . . .) that have ‘non-sine’ steep form. Then, in order to trace the higher
harmonics, the inference needs to include expansion of the Fourier components up
to higher orders. On the other hand, having large number of base functions for
inference reduces the computational speed of the algorithm, and the functions that
are not part of the actual dynamics can infer (pick up) some components from the
noise. The base functions within the inferential framework are presented as multi-
variate Gaussian distribution in matrix form. Thus a large number of base functions
increases the parameter space vastly and the iterative calculations (especially the
evaluation of inverse of a matrix) slow down the speed of processing exponentially.
It is worth noting that, even though the Bayesian inference is popular for its real-time
applications, the proposed inference framework for general phase dynamics does not
allow (in computational speed sense) real-time applications.

In order to demonstrate the inference precision of time-varying parameters the
technique was applied on a numerically simulated signal. The simulation was per-
formed on a model of two coupled Poincaré oscillators subject to white noise:
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ẋ1 = −
(√

x2
1 + y2

1 − 1
)

x1 − ω1(t)y1 + ε21(t)(x2 − x1) + ξ1(t)

ẏ1 = −
(√

x2
1 + y2

1 − 1
)

y1 + ω1(t)x1 + ε21(t)(y2 − y1) + ξ1(t)

ẋ2 = −
(√

x2
2 + y2

2 − 1
)

x2 − ω2(t)y2 + ε12(t)(x1 − x2) + ξ2(t)

ẏ2 = −
(√

x2
2 + y2

2 − 1
)

y2 + ω2(t)x2 + ε12(t)(y1 − y2) + ξ2(t), (3.22)

where the frequency parameters ωi (t) and the coupling amplitudes εij(t) were
allowed to be time-varying. The same model will be used for the remaining dis-
cussion of this section. The coupling function is a linear state difference (x j − xi ,
y j − yi ) and at this point is considered to have constant (non time-varying) form.

A particular case was considered, where the coupling amplitude from the first
oscillator was periodically time-varying: ε12(t) = ε12 + Ã sin(ω̃t). The parameters
were: ω1(t) ≡ ω1 = 2π1.1, ω2(t) ≡ ω2 = 2π2.77, ε21 = 0, ε12 = 1.7, ω̃ =
2π0.0025, Ã = 1.3 and noise strength E1 = E2 = 0.5 . Evaluation of the coupling
amplitude is done through calculation of the norm (Eq. 3.20) from the inferred
coupling parameters. Results of the ε12(t) inference from the same signal for three
cases with different number of base functions are presented in Fig. 3.4. From the
parameter estimations around the local maxima (also enlarged on the inset), one can
notice that the inference is not following the sine form promptly. This can be due to
particular effect of the noise, or if the two oscillators have become more coherent
around these parameter values. The figure demonstrates that the three cases were
different, and that the inference with larger numbers of base functions was getting
closer to the intrinsic parameter values.
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Fig. 3.4 Inference of time-varying coupling amplitude with different number of base functions,
applied on signal from numerical simulation of model (3.22); parameters are given in the text. The
particular number of base functions is shown on the legend. The difference of precision is mostly
observe around the local maxima—also enlarged on the inset
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3.4.2 Effect of Noise Intensity

The proposed technique tries to infer dynamics of coupled oscillators subject to noise.
One of the main tasks are to decompose what is considered to be intrinsic dynamics
from the effect of the noise. The question posed here is: how well can we infer the
parameters when the dynamics are subject to noise of different strengths. The answer
partially depends on how the propagation of information is achieved. The results
will be slightly better for full propagation and constant parameters, but because the
objective is inference of time-varying dynamics, the following investigation is done
for propagation that can trace time-varying parameters.

The same numerical example (3.22) is considered, but for constant parameters
and different noise strengths. The parameters were: ω1 = 2π1.1, ω2 = 2π1.77,
ε21 = 0.05, ε12 = 1.17 and E1 = E2 = E . The main idea is to investigate how
much will the parameters deviate from their intrinsic values. The frequency ω1 and
the coupling amplitude ε12 were followed from the same simulation performed for
each value of the noise intensities Ei . Fig. 3.5 shows the statistical properties in terms
of boxplots for different noise intensities. It is easy to notice that the inference of the
parameters is worse i.e. their values deviate more as the noise intensity E is increased.
Another feature is that the coupling amplitude ε12 has larger deviations than the
frequency ω1 parameter. This is probably because ε12 is the result of evaluation of
the norm as a combination of several inferred parameters, and the noise effect from
all of them contributes to the final deviation. Finally, it is worth pointing that in
experiments (cardiorespiratory and electronically simulated interactions), the noise
strength inferred was not usually very high (0.01 ≤ E ≤ 0.2).
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Fig. 3.5 Statistical properties of inferred parameters for different noise intensity E . The dotted
line shows the intrinsic values of the parameters presented with boxplots. The boxplots indicate:
median with black tick line, the lower and the upper quartile are shown within the gray box, while
the range (minimum, maximum) is denoted with the vertical dashed line. Outliers are not shown.
(a) The influence of noise on frequency, (b) on coupling parameters
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Fig. 3.6 Inference of a time-varying frequency (a) and coupling parameter (b) from model (3.22)
for four different lengths of the inference windows. The size of the windows is shown on the legend

3.4.3 Time Resolution

The main objective of this work is to infer time-varying dynamics. The issue
addressed here is: how fast/slow dynamics can be traced by the proposed technique
and what precision is achieved. The problem is related to the size of the sequential
windows i.e. the amount of information included within one block of data. The issue
is also implicitly dependent on a time-resolution (i.e. frequencies) of dynamics of
the interacting oscillators.

Using numerical model (3.22), the time-resolution was investigated for case where
the frequency ω1(t) = ω1 + Ã1 sin(ω̃t) and coupling amplitude ε12(t) = ε12 +
Ã1 sin(ω̃t) were varying periodically at the same time. The parameters were: ω1 =
2π1.1, ω2 = 2π2.77, ε21 = 0, ε12 = 1, ω̃ = 2π0.002, Ã1 = 0.1 Ã2 = 0.5
and noise strengths E1 = E2 = 0.15 . The parameters were reconstructed using
four different lengths of the inference windows. The results presented on Fig. 3.6
demonstrate that for small windows (0.5s) the parameters are sparse and sporadic,
while for very large windows (100s) the time-variability is faster than the size of the
window and there is cut-off on the form of the variability. A better suited window
size will be in between this two. Another interesting feature is that for the smallest
window (0.5s), the coupling amplitude is improved with information propagation as
time progresses, while the frequency inferred (as a constant component without base
function) is sparse throughout the whole time interval.

3.4.4 Probability Sampling

The final result of the inference is given with the set NX(c|c̄, �). Every inferred
parameter has the nature of a Gaussian distribution, and it is a part of a multivariate
Gaussian distribution for the whole parameter space given by the mean vector c̄ and
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the covariance matrix � . If one needs to infer a measure that is evaluated from the
combination of the inferred parameters then, in theory, one needs to evaluate the
probability of the measure from the multivariate Gaussian distribution NX(c|c̄, �).
Assume that a binary property of the measure m(c) = {1, 0} is given. For example,
m(c) can be the synchronization index s(c) = {1, 0} presented in Sect. 3.2.1, a
normalized evaluation of the directionality index, or some other. Then the posterior
probability of the measure can be evaluated as:

pm ≡ pX(m = 1) =
∫

m(c)NX(c|c̄, �) dc . (3.23)

This integral may not have an analytic solution, and in order to keep the generality
and practicality of the approach, one can try to solve it by numerical evaluation. Pro-
ceeding in a Monte Carlo manner, using the parameter space, one can sample many
realizations mk , where k labels each vector of testing parameter. Fig. 3.7 shows sev-
eral examples of sampling distributions from the inference of model (3.22). Fig. 3.7a
shows the Gaussian-like distribution of single frequency parameter after the sam-
pling of NX(c|c̄, �), while Fig. 3.7b, c demonstrate the distribution correlation of
two inferred parameters. The two latter bivariate distributions only tackle the com-
plexity of the full multivariate normal distribution NX(c|c̄, �), which can have many
more multivariate dimensions.

To find pm arbitrarily precisely it is enough to generate a number K of parameters
ck , with k = 1, . . . , K sampled fromNX(c|c̄, �), since pm = limK→∞ 1

K

∑K
k m(ck).

However, this high dimensional integration quickly becomes inefficient with an
increasing number of Fourier components. On the other hand, if the posterior proba-
bility pX is sharply peaked around the mean value c̄, then pm will be indistinguishable
from m(c̄), and evaluation of m(c̄) only, would suffice.

(a)

(b) (c)

Fig. 3.7 Probability distribution for the inferred parameters of model (3.22). (a) Gaussian-like
distribution of frequency ω1. Bi-variate distribution of two inferred, (b) coupling parameters, (c)
frequency parameters. Note the high (blade-like) correlation on (c). There was no time-variability,
and the parameters were ω1 = 1.27, ω2 = 0.67, ε21 = 0.05, ε12 = 0.25 and the rest same as on
Fig. 3.4
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3.5 Application Examples

After laying down the theoretical and technical aspects of the inferential framework,
here we proceed with application of the technique on several characteristic models.
This section demonstrates all the aspects, and shows how optimally one can exploit
and benefit from the method. It also reveals the novelties brought by this approach
in respect of application of earlier known methods.

The only requirements (inputs) for the method are phase time-series of interact-
ing oscillators. As long as they are properly defined and detected, the phases are not
model-dependent and they can come from any general form of oscillator. This con-
tributes to the generality of the method and its wide applicability. In the following,
different types of models are used to demonstrate particular features of the method.

3.5.1 Phase Oscillators model

In order to be systematic, and before going to more complicated realistic models, the
technique is applied on a simple phase oscillators model. This will give a sufficient
base model for synchronization description, which is analytically traceable at the
same time. Moreover, the base functions embedded in the inferential framework are
a perfect match for the inference of the interacting phase model.

The main objective in this section is to demonstrate how the synchronization
detection works, and to investigate the implications when applied to noisy time-
series. In this sense, the detection of synchronization means if the examination of
the constructed map M(ψ) (followed after Bayesian inference) can distinguish syn-
chronized (s(c) = 1) from unsynchronized dynamics (s(c) = 0), i.e. whether the
root M(ψe) = ψe exists or not. It is important to notice that a non-zero noise can
induce phase slips in a system that would be synchronized in the noiseless limit.
Therefore, a genuine inference should not only detect the presence of a phase-slips,
but also needs to describe the nature of the phase-slip itself: whether it is noise-
induced or dynamic-related. The latter means to describe the dynamics in parameter
space in relation to the inferred parameters, without the contribution of the noise.
The parameter space for synchronization phenomenon can effectively be described
by Arnold tongues [1]. Fig. 3.8a illustrates schematically a particular situation: in a
noiseless case the systems are synchronized (black circle inside the Arnold tongue)
and only because of the effect of the noise phase-slips occur (white circle outside the
Arnold tongue). Thus the main goal is to detect whether the systems are intrinsically
synchronized, and if the existence of phase slips is due to effect of the noise.

The model for generating a numerical phase signal for analysis is given by two
coupled phase oscillators subject to white noise:
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(a)
(b) (c) (d)

0

Fig. 3.8 Synchronization discrimination for the coupled phase oscillators (3.24). a Schematic
Arnold tongue to illustrate synchronization [1]. b Map of M(ψ) for ε12 = 0.25 demonstrating that
the oscillators are not synchronized. c Map of M(ψ) for (d) demonstrating that a root of M(ψ) = ψ
exists, i.e. that the state is, in fact, synchronized. d Phase difference, exhibiting two phase slips.
From [18], Copyright (2012) by the American Physical Society

φ̇1 =ω1 + ε21 sin(φ2 − φ1) + ξ1(t) (3.24)
φ̇2 =ω2 + ε12 sin(φ1 − φ2) + ξ2(t).

The parameters were ε21 = 0.1, ω1 = 1.2, ω2 = 0.8 and E1 = E2 = 2. Note that
there is no time-variability i.e. all of the parameters are constant in time. Thus the
discussion shall be focussed more on the effect of the noise, and the inference will
be applied to a single block of data.

The dynamics of the phase difference will be described as: ψ̇ = �ω− ε sin(ψ)+
ξ1(t) + ξ2(t), where �ω = ω2 − ω1 is the frequency mismatch and ε = ε21 + ε12
is the resultant coupling. In the noiseless case, the analytic condition for synchro-
nization i.e. the existence of stable equilibrium solution ψ̇ < 0 can be reduced to
�ω/ε < 1. Next, characteristic cases of numerically simulated signals from model
(3.24) were analyzed. For coupling amplitude of ε12 = 0.25 the reconstructed map
M(ψ) (Fig. 3.8b) shows that root M(ψe) = ψe does not exist and the oscillators are
not synchronized s(c) = 0. To demonstrate the novelty of our method, the para-
meters were such that the oscillators were only just inside the Arnold tongue. This
was achieved by enlarging the coupling amplitude to ε12 = 0.35—-then the analytic
condition for synchronization �ω/ε = 0.4/0.45 < 1 is fulfilled and the systems
should be synchronized. However, due to the effect of the moderate noise, phase-
slips occurred, see Fig. 3.8d. The application of earlier methods based on the statistics
of the phase difference [19–21] suggests that the oscillators are not synchronized.
In contrast, the proposed technique shows that the oscillators are intrinsically syn-
chronized as illustrated in Fig. 3.8c: the phase slips are attributable purely to noise
(the intensity of which is inferred in matrix Ei,j), and not to deterministic interac-
tions between the oscillators. The ability to identify noise-induced phase slip could
be important in a number of contexts, including both noise-induced synchronization
[36–38] and desynchronization [39].
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3.5.2 Limit-Cycle Oscillators Model

The proposed inferential framework offers a possibility of doing comprehensive
analysis within one sole formalism. The following discussion explores this and
investigates how the proposed method can trace time-varying parameters, coupling
functions, directionality and synchronization.

The model under consideration consisted of two coupled non-autonomous
Poincaré oscillators subject to white noise:

ẋ1 = −
(√

x2
1 + y2

1 − 1
)

x1 − ω1(t)y1 + ε1(t)q1(x1, x2, t) + ξ1(t)

ẏ1 = −
(√

x2
1 + y2

1 − 1
)

y1 + ω1(t)x1 + ε1(t)q1(y1, y2, t) + ξ1(t)
(3.25)

ẋ2 = −
(√

x2
2 + y2

2 − 1
)

x2 − ω2(t)y2 + ε2(t)q2(x1, x2, t) + ξ2(t)

ẏ2 = −
(√

x2
2 + y2

2 − 1
)

y2 + ω2(t)x2 + ε2(t)q2(y1, y2, t) + ξ2(t).

All of the parameters can be time-varying, and the coupling function can have
different forms with or without time variability.

First, we consider unidirectional coupling (1→2), where the natural frequency
of the first oscillator, and its coupling strength to the second one, vary periodically
at the same time: ω1(t) = ω1 + Ã1 sin(ω̃1t) and ε2(t) = ε2 + Ã2 sin(ω̃2t). The
other parameters were: ε2 = 0.1, ω1 = 2π1, ω2 = 2π1.14, Ã1 = 0.2, Ã2 = 0.13,
ω̃1 = 2π0.002, ω̃2 = 2π0.0014 and noise E11 = E22 = 0.1. The coupling func-
tion was simple linear difference in the state variables: qi (xi , x j , t) = xi − x j

and qi (yi , y j , t) = yi − y j . The phases were estimated as the angle variable
φi = arctan(yi/xi ). With ε1 = 0.1 there is no synchronization and the time-varying
parameters ( f1(t) and ε2(t)) are accurately traced: see full lines of Fig. 3.9a, b.
The form and the speed of the inferred parameters demonstrate the precision of the
method and the benefits of the time-varying information propagation. For a coupling
amplitude of ε1 = 0.3 the two oscillators will be synchronized for part of the time,
resulting in intermittent synchronization. The time-variability of the parameters in
the non-synchronized intervals is again determined correctly, while in the synchro-
nized intervals they differ from the values of the intrinsic parameters, Fig. 3.9a, b,
dashed lines. Within these synchronized intervals, all of the base functions are highly
correlated, with values lying within the Arnold tongue. The latter was detected as
synchronized (s(c) = 1) intervals, Fig. 3.9a, b, grey shaded regions.

The reconstructed sine-like functions q1(φ1,φ2) and q2(φ1,φ2) are shown in
Figs. 3.9c, d for the first and second oscillators, respectively. They describe the func-
tional form of the interactions between the two Poincaré systems (3.25). The applica-
tion of the proposed approach suggests that the form of the coupling functions does
not evolve with time—q1 and q2 evaluated for later time segments are presented on
Fig. 3.9e, f respectively. By comparison of Fig. 3.9c, e or of Fig. 3.9d, f, we see that
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(a)

(b) (d)

(c) (e)

(f)

Fig. 3.9 Extraction of time-varying parameters, synchronization and coupling functions from
numerical data created by (3.25). The frequency f1(t) (a) and coupling ε2(t) (b) are independently
varied. The dotted and full lines plot the parameters when the two oscillators are synchronized for
part of the time (ε1 = 0.3), and not synchronized at all (ε1 = 0.1), respectively. The regions of
synchronization, found by calculation of the synchronization index, are indicated by the gray shaded
regions. c–f Show the coupling functions q1(φ1,φ2) and q2(φ1,φ2) for time windows centered at
different times: (c, d) at t = 350s; (e, f) at t = 1000s. The window length tw = 50s, and coupling
strength ε12 = 0.1 in both cases. Note the similarity in forms of (c, e), and of (d, f)

the coupling functions are time invariant and they did not change qualitatively, even
though there were time-varying parameters and weak effects from the noise.

Next, the method was applied to detect the predominant direction of coupling pre-
sented through a quantitative measure evaluated as the norm of the inferred coupling
base parameters. To illustrate the detection and precision of directionality, the fre-
quencies now were considered to be constant, while both of the coupling strengths
to be discretely time-varying. The parameters were ω1 = 2π1.3, ω2 = 2π1.7,
E11 = E22 = 0.2, and the coupling function were as in the previous example:
qi (xi , x j , t) = xi −x j and qi (yi , y j , t) = yi −y j . Synchronization, however, was not
achieved for these parameters. The couplings alternate (in time intervals as depicted
on Fig. 3.10) from unidirectionally (1 → 2), to bidirectionally (1 → 2), then bidi-
rectionally (2 → 1), so as to finish with zero bidirectional couplings (1 = 2). The
detected directionality index was consistent with the hypothetical values. Note that
the value of unidirectionally coupling has not reached 1, due to the noise disturbance.

The oscillatory models used for studying interactions and synchronization, usually
are considered to have time-invariant coupling functions (for example the coupling
function on Fig. 3.9c–f) However, when the oscillators are open by nature, the func-
tions defining their interactions can also be time-varying processes by themselves.
Moreover, as discussed in the previous chapter, the variations of the form of a coupling
functions can be the reason alone for which synchronization transitions can occur.

To investigate the issue of time-varying coupling functions and the implications
when the inferential technique is applied, the same model (3.25) was used but now
the coupling functions were absolute values of the state difference on power of time-
varying parameter:
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Fig. 3.10 Directionality of coupling for discrete time-varying coupling strengths. Different unidi-
rectionally and bidirectionally cases are reached by different values of the coupling amplitudes ε1
and ε2—as indicated by the square insets. From [18], Copyright (2012) by the American Physical
Society

qi (xi , x j , t) = |(x j − xi )
ν(t)|; qi (yi , y j , t) = |(y j − yi )

ν(t)|, (3.26)

where i = j = {1, 2} and i 
= j . The exponent parameter varied linearly with
time ν(t) = {1 → 3}, and the rest of the parameters were constant: ω1 = 2π1,
ω2 = 2π2.14, ε1 = 0.2, ε2 = 0.3 and E11 = E22 = 0.05.

Following the Bayesian inference, the phase coupling functions qi (φ1,φ2) were
calculated from the base parameters for the interacting terms. The results for four
consecutive windows are presented on Fig. 3.11. Observing the inferred coupling
functions, it can be easily noticed that their complex form now is not constant, but
varies with time. Comparing them in neighboring (consecutive) pairs: (a) and (b),
then (b) and (c), then (c) and (d), one can actually follow the time-evolution of the
functions’ form. Even though we can follow the time-variability between them, the
two most distant functions Fig. 3.11a, d have substantially different forms. It can also
be noticed that beside the form, the functions’ norm i.e. coupling strength varies too
(compare e.g. the scale of maxima on Fig. 3.11a, d). This probably happens because
the coupling functions were varied in state space, and the way that the oscillators

(a) (c)(b) (d)

Fig. 3.11 Time-evolution of Coupling function from model (3.25) with exponentially varying
(3.26). a–d coupling function q2(φ1,φ2) from second oscillator for four consecutive time windows
(the window length was tw = 50s). For simplicity and clarity only function q2(φ1,φ2) is shown
(the behavior of q1(φ1,φ2) from the first oscillator was similar). From [18], Copyright (2012) by
the American Physical Society
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react on this perturbation affects the coupling strength. The latter can be even more
significant for inducing synchronization transition.

The proposed method for inference of phase dynamics enables the evolution of the
system under study to be tracked continuously. Unlike earlier methods that only detect
the occurrence of transitions to/from synchronization, the method reveals details of
the phase dynamics, thus describing the inherent nature of the transitions, and at the
same time deducing the characteristics of the noise responsible for stimulating them.
It can identify the time-varying nature of the functions that characterize interactions
between open oscillatory systems. It was shown that not only the parameters, but
also the functional relationships, can be time-varying, and the new technique can
effectively follow their evolution.

3.5.3 Analogue Simulations

In the previous sections the method was applied on signals generated by synthetic
numerical models. In the following, the attention will be concentrated more on appli-
cations on signals emanating from real oscillatory systems. In this way the noise
embedded in the signals has more realistic meaning, and usually it is attributed
to environmental disturbances or imperfections of some properties of the systems.
Additionally, during the process of data acquisition and discretization, some amount
of measurement noise can be introduced—a noise which has no links with the actual
dynamics of the interacting oscillators.

The following example analyzes data from experimental analogue simulation of
two coupled van der Pol oscillators. Details about the electronic implementation
and further analysis are presented in Chap. 5. The noise here is emanating from the
imperfections of the electronic elements (determined by their tolerance), from their
thermal heating due to inner-dissipation and partly because of measurement noise.

The phase portrait from the first oscillator, whose frequency is time-varying is
shown on Fig. 3.12a. The first oscillator is driving the second oscillator:

1

c2 ẍ1 − μ1(1 − x2
1 )

1

c
ẋ1 + [ω1 + ω̃1(t)]2x1 = 0,

(3.27)
1

c2 ẍ2 − μ2(1 − x2
2 )

1

c
ẋ2 + ω2

2 x2 + ε(x1 − x2) = 0,

where the periodic time-variability ω̃1(t) = Ã1 sin(ω̃t) (Fig. 3.12b) comes from an
external signal generator. The parameters were ε = 0.7,ω1 = 2π15.9,ω2 = 2π17.5,
Ã1 = 0.03, ω̃ = 2π0.2 and c is constant resulting from the analogue integration.
The phases were estimated as φi = arctan(ẋi/xi ).

The oscillators were synchronized for the given parameters and dynamical prop-
erties. Due to the effect of synchronization, the frequency of the second driven oscil-
lator changed from constant to time-varying (as discussed in Chap. 2). Applying

http://dx.doi.org/10.1007/978-3-319-00753-3_5
http://dx.doi.org/10.1007/978-3-319-00753-3_2
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Fig. 3.12 Analysis of signals from analogue simulation of system (5.1). a Phase portrait from the
oscilloscope; b Frequency ω̃1(t) from the external signal generator; c Detected frequency ω2(t) of
the second driven oscillator; d Fast Fourier Transform (FFT) of the detected frequency ω2(t). From
[18], Copyright (2012) by the American Physical Society

the inferential technique and investigating the detected synchronization showed that
the oscillators were synchronized (s(c) = 1) throughout the whole time period.
The frequency of the second driven oscillator was inferred as time-varying, as shown
in Fig. 3.12c. Performing simple FFT (Fig. 3.12d) showed that ω2(t) is periodic
with period 0.2H z (exactly as set on the signal generator). Therefore, the technique
revealed information regarding the nature and the dynamics of the time-variability
of the parameters.

3.5.4 Cardiorespiratory Interactions

Another interesting example, given its real-life nature, is the cardiorespiratory inter-
action. The analysis of physiological signals to detect and quantify cardiorespiratory
interactions have already been found to be useful in relation to several diseases and
physiological states (see [23] and references therein). Additionally, the transitions in
cardiorespiratory synchronization have been studied in relation to anaesthesia [40],
sleep cycles [41] and exercise [42].

It is well known that modulations and time-varying sources are present and can
affect the synchronization between biological oscillators [23, 43, 44]. For compre-
hensive and genuine analysis there is a need for technique that can not only identify
the time-varying information, but will allow the evaluation of the interacting mea-
sures (like synchronization and directionality) to be based solely on such inferred
information.

To demonstrate the method on real biological data, cardiorespiratory measure-
ments from human subject under anaesthesia were analyzed. During the experiment,
the breathing rate was paced constantly by a respirator which acted as an exter-

http://dx.doi.org/10.1007/978-3-319-00753-3_5
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Fig. 3.13 Synchronization and time-varying parameters in the cardiorespiratory interaction. a Stan-
dard 2:N synchrogram. b Synchronization index for ratios 2:8 and 2:9 as indicated. c Time-evolution
of the cardiac fh(t) and respiratory fr (t) frequency. Note the detected constant pacing of the breath-
ing frequency. From [18], Copyright (2012) by the American Physical Society

nal source of energy. In such systems the analytic model is not known (in contrast
to analogue and numerical examples), but the oscillatory nature of the signal is
easily observed. The instantaneous cardiac phase was estimated by wavelet syn-
chrosqueezed decomposition [45] of the ECG signal. Details about instantaneous
phase detection and the respective problems and advantages are discussed in Chap. 4.
Similarly, the respiratory phase was extracted from the respiration signal. The final
phase time-series were reached after protophase-phase transformation [6].

By applying the inferential technique one reconstructs the phase parameters that
govern the interacting dynamics. Figure 3.13c shows the time-evolution of the cardiac
and respiration frequencies. It is easy to notice that the (approximately) constant
pacing of the breathing is well inferred, and that the cardiac frequency i.e. heart rate
variability is increasing with time. The set of inferred parameters and how they are
correlated can be used to determine whether cardiorespiratory synchronization exists
and, if so, in what ratio. The synchronization evaluation Isync = s(c) ∈ {0, 1}, shown
on Fig. 3.13b reveals that several transitions exist between synchronized and non-
synchronized states, and transitions between different ratios: from 2:8 (i.e. 1:4) at the
beginning to 2:9 synchronization in the later intervals. Because the evaluation of the
synchronization state is based on all of the given details about the phase dynamics,
the proposed method not only detects the occurrence of transitions, but also describes
their inherent nature. The synchronization detection (Isync) was in good agreement
with the corresponding synchrogram shown on Fig. 3.13a.

http://dx.doi.org/10.1007/978-3-319-00753-3_4
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(a) (b) (c)

(d) (e) (f)

Fig. 3.14 Coupling functions in the cardiorespiratory interaction calculated at different times.
a–c coupling function q1(φ1,φ2) from first oscillator, d–f q2(φ1,φ2) from second oscillator. The
window time intervals were calculated at: t = 725s for (a, d); t = 1200s for (b, e); and at t = 1250s
for (c, f). The window length was tw = 50s. From [18], Copyright (2012) by the American Physical
Society

The cardiorespiratory coupling functions, evaluated for three different time
windows, are presented on Fig. 3.14. Figure 3.14a–c shows the coupling function
q1(φ1,φ2) from the first oscillator, and Fig. 3.14d–f shows q2(φ1,φ2) from the sec-
ond oscillator. Note that the interactions are now described by complex functions
whose form changes qualitatively over time—compare for example Fig. 3.14a with
b, c, or d with e, f. This implies that, in contrast to many systems with time-invariant
coupling functions, the functional relationships for the interactions of an open (bio-
logical) system can in itself be a time-varying process. By analyzing consecutive time
windows, we can even follow the time-evolution of the coupling functions—compare
the similarities i.e. evolution of Figs. 3.14b, c, or e, f.

Thus, the proposed method identified the time-varying nature of the functions
that characterize interactions between open oscillatory systems. The cardiorespira-
tory analysis demonstrated that not only the parameters, but also the functional rela-
tionships, can be time-varying, and the new technique can effectively follow their
evolution. This discovery immediately invites many new questions and points out
that in future studies and modeling of such open systems, the time-varying coupling
functions should be taken into account.

3.6 Generalization to Networks of Oscillators

A network of many complex dynamical systems can describe a large number of
processes and system in the nature—examples including chemical reactions, ecolog-
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ical systems, electrical power grid, populations of synchronized crickets, the internet,
and many others [46]. Especially important and relevant to this study are networks of
complex oscillatory systems. This type of networks often require reconstruction of
the coupling links i.e. structure of the network, or detection and study of qualitative
phenomena such as synchronization [47].

For the sake of simplicity and clarity, all of the demonstrations in the previous
sections were performed on systems of two interacting oscillatory processes. In fact,
the proposed inference procedure can be applied with only minimal modification to
any number N of interacting oscillators within the general coupled-network struc-
ture [18].

The general notation of Eq. (3.1) is readily generalized for the N oscillators, and
the inference procedure, is then applied to the corresponding N -dimensional phase
observable. For example, if one wants to include all k-tuple interactions with k ≤ 4,
then Eq. (3.1) would be generalized to

φ̇i =ωi + fi (φi ) +
∑

j

g(2)
i (φi ,φ j ) +

∑

jk

g(3)
ijk (φi ,φ j ,φk)

+
∑

jkl

g
(4)
i jkl(φi ,φ j ,φk,φl) + ξi . (3.28)

Every function g(k) is periodic on the k-dimensional torus, and can be decomposed
in the sum of Fourier k-dimensional series of trigonometric functions. Although, this
decomposition is theoretically possible, it becomes less and less feasible in practice as
the number of oscillators and the number of k-tuples are increased. The computational
power required increases very fast with N , which makes the method unsuitable for the
inference of large-scale networks. As a general approach, one could limit the number
of base functions to the most significant Fourier terms per g(k) functions. Automatic
selection of the most important Fourier terms to be used as base functions is hard to
achieve on a network of more than just a few oscillators. Known information about
the system can be used to reduce the number of base functions such that only those
terms relevant to the N -oscillator dynamics are included. Other sub-procedures like
the time-varying propagation, and the noise inference, apply exactly as before.

The strength of the method is that it allows one to follow the time-variability
of the structural and functional connectivity within the network. This is especially
important when inferring the interactions of biological oscillators, for which it is
known that the dynamics is time-varying [48–50]. To illustrate the latter we infer the
following network of four phase oscillators subject to white Gaussian noise

φ̇1 = ω1 + a sin(φ1) + ε13(t) sin(φ3) + ε14(t) sin(φ4) + ξ1(t)

φ̇2 = ω2 + a sin(φ2) + ε21(t) sin(φ2 − φ1) + ξ2(t) (3.29)
φ̇3 = ω3 + a sin(φ3) + ε324(t) sin(φ2 − φ4) + ξ3(t)

φ̇4 = ω4 + a sin(φ4) + ε42(t) sin(φ2) + ξ4(t).
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Note that, because the coupling strengths are functions of time, we were effec-
tively changing the structural connectivity of the network by varying their val-
ues. The parameter values for the simulations were: ω1 = 2π 1.11, ω2 = 2π 2.13,
ω3 = 2π 2.97, ω1 = 2π 0.8, a = 0.2, and noise strengths Ei = 0.1. The couplings
were varied discreetly in three time-segments, as follows. (i) For 0–500s: ε13 = 0.4,
ε14 = 0.0, ε324 = 0.4 and ε42 = 0.4. (ii) For 500–1000s: ε13 = 0, ε14 = 0.35,
ε324 = 0 and ε42 = 0.4. (iii) For 1000–1500: ε13 = 0.45, ε14 = 0.35, ε324 = 0 and
ε42 = 0. The coupling ε21 was continuously varied between 0.5 → 0.3. Note also
that in Eq. (3.29) the coupling functions are qualitatively different i.e. the arguments
in the sine functions are not the same for each oscillator. For example the coupling
functions for ε13, ε14 and ε42 have one phase argument, while the coupling functions
for ε21 and ε324 have the phase difference as their argument. The last two are addi-
tionally different because the coupling function with ε21 for the second oscillator
contains its own phase φ2 in the phase difference.

The results presented in Fig. 3.15 demonstrate that the method follows the time-
variability of the couplings effectively and precisely. The dynamical variations are
taking the network structure through various different connectivity states, and the
different topologies are detected reliably throughout their time-evolution.
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Fig. 3.15 Inference of time-varying coupling structure for the network (3.29). The color/grayscale
code for the couplings is presented in the box at the top, where ε21 is represented by a dotted line,
ε13 by a dashed line, ε14 by a dash-dotted line, ε324 by a bold full line and ε42 by a light full
line. The four couplings ε13, ε14, ε324 and ε42 were held constant at different values within three
time segments each of length 500 s. However, ε21 was varied continuously through the whole time
interval. For each segment the structure of the network is presented schematically on the diagrams
in the dashed grey boxes. The parameters are given in the text. From [18], Copyright (2012) by the
American Physical Society
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3.7 State Space Inference

In previous sections of this chapter, an inferential technique for reconstructions of
phase dynamics was presented. Starting from the phase time-series and using phase
base functions, the method inferred and described the interactions between the oscil-
lators. This section, on the other hand, presents the case of inference in the state
space, where the starting points are the state time-series and the base functions are
also in state domain. The objective is to describe the interacting oscillatory dynamics
by the inference of the state variables.

3.7.1 Main Concept

Given the state time-series xi (t), the estimation of instantaneous phases φi (t) is not
often a trivial task. Many procedures for phase extraction are problematic when the
state signals come from complex mixed-mode dynamics, or some information from
the measurements is not used (or is interpolated). When inferring from the state
signals, the technique exploits all of the measurement information. Moreover, if one
can effectively use the state variables, then there is no need for the phase extraction
and one step (subprocedure) of the inferential framework can be avoided.

The construction of the Bayesian technique now encloses a set of base functions
that describe the state dynamics � = {xi

n}. For example, the base functions can be
a finite number of polynomial functions. In general, the choice of the functions is
not unique, and usually is model-dependent. The biggest disadvantage comes from
not knowing the right number of dimensions, because often the only available input
is a one dimensional readout signal. One can choose, for example, a large set of
many combinations of base functions [51, 52], but this will incorporate a lot of
noise from the base functions which are not present in the actual dynamics, and the
computational expenses and parameter space will be unnecessarily increased.

On the other hand, if the model is known a priori, then fewer base functions will
be needed, the processing will be faster and more efficient, and the separation of the
noise will be more effective. The latter make sense because many of the processes in
nature can be described by models—examples include models in biology, chemistry
or climate science. Additionally, a lot of situations exist when the model is known
and the objective is to determine the dynamical states at any point in time. For
example, in interacting technical systems and communications [53], or in chemical
Belousov-Zhabotinsky oscillators [5].

The previously proposed Bayesian technique is one of the first to infer phase
oscillatory dynamics, while most of the known Bayesian techniques actually infer
in state space [9–11]. Especially relevant is the work by Smelyanskiy et al. [54]
where the authors have used Bayesian inference to reconstruct the cardiorespiratory
interactions in the state space. However, their analysis was performed on a single
stationary block of data where time-variability was not taken into account implicitly
and synchronization was not studied.
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The main idea for the following discussion is: starting from the state time-series
as inputs and given the model’s state base functions, to infer the multivariate state
dynamics of the interacting oscillators, using the same concepts for the Bayesian
framework as discussed in Sect. 3.1.3. The use of the particular information propa-
gation Sect. 3.1.4 can allow time-varying dynamics to be followed again. Defined in
such a way and assuming that the model is known, the technique will give explicit
inference information about the coupling strength and coupling functions. However,
the synchronization in the state domain, also known as generalized synchronization,
has not been studied in this manner and in the following section special attention
will be given to this issue.

3.7.2 Detection of Synchronization

When two oscillators synchronize, their behaviour can be easily explained in terms
of phase relationships: synchronization occurs if there exists a bounded phase shift
i.e. if the equilibrium solutions of the phase difference are stable [1]. But how is
synchronization reflected in the state dynamics of oscillators? Basically, when syn-
chronization is reached, the state trajectories become dependent on each other as a
result of the interactions. Thus by investigating the stability of individual oscilla-
tors in respect of the interactions, one can effectively determine the synchronization
entrainment.

At the beginning of the chaos synchronization era, the concept of identical syn-
chronization was one of the first established forms of state space synchronization.
It defines the two oscillators to be synchronized if certain states reach unity i.e.
if the Lissajou curves are a diagonal line [55]. Not long afterwards, a more gen-
eral description was given for the cases of state synchronization, called generalized
synchronization, where the trajectories do not necessarily reach unity [56]. A more
specific definition of generalized synchronization, in terms of asymptotic stability,
was also proposed [57].

Directional coupling has been studied in depth and can be viewed as a gen-
eralization of periodic or quasiperiodic driving which have been used in physics,
mathematics, and engineering for a long time. The unidirectionally coupled systems
can be represented with a skew product structure:

ẋ = f(x)

ẏ = g(y, u) = g(y, h(x)), (3.30)

where x ∈ Rn, y ∈ Rm, a subset B = Bx × By ⊂ Rn × Rm is given and the state
coupling functions are u(t) = (u1(t), . . . , uk(t)) with u(t) = (u1(t), . . . , uk(t)).
The first and second systems in 3.30 are referred to as a drive and driven oscillator,
respectively. The question of under what conditions does generalized synchroniza-
tion occur for a unidirectionally coupled system 3.30, is addressed in the following
theorem (see [57] for proof):
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Theorem: Generalized synchronization occurs in system 3.30, if given for all
(x0, y0) ∈ B the driven system ẏ = g(y, u) = g(y, h(x)) is asymptotically stable
[i.e. ∀y10, y20 ∈ By : limt→∞ ||y(t, x0, y10) − y(t, x0, y20)|| = 0].

The physical meaning of the theorem indicates that due to interactions the driven
oscillator changes its independent stability, for example, from marginally stable to
asymptotically stable, because of the entrainment to the drive oscillator. In fact,
the vector field ẏ = g(y, h(x)) is non-autonomous in respect of ẋ(t) to which is
entrained.

One of the basic techniques for proving asymptotic stability is through numerical
evaluation of conditional Lyapunov exponents of the driven oscillator. In this case,
generalized synchronization occurs if all of the Lyapunov exponents from the driven
oscillator are negative.

Several techniques have been proposed for detection of generalized synchroniza-
tion from time-series. The most popular are based on mutual false nearest neighbors
[56], mutual information [58, 59] or generalized angle [60]. These methods, how-
ever, are based on statistics and information flows and they do not take into account
the intrinsic dynamics of the systems, nor do they consider the noise embedded in
the interacting dynamics.

In the following, the discussion is focussed on generalized synchronization detec-
tion technique that uses the Bayesian framework to infer the interacting state dynam-
ics and the noise, and determines the existence of synchronization if the driven oscil-
lator is asymptotically stable i.e. if its largest Lyapunov exponent is negative.

Application Example

To demonstrate the main concept about the detection of generalized synchronization,
a model of two coupled van der Pol oscillators subject to weak noise is considered:

ẍ − μ1(1 − x2)ẋ + ω2
1 x + ε1(t)y + ξ1(t) = 0

ÿ − μ2(1 − y2)ẏ + ω2
2 y + ε2(t)x + ξ2(t) = 0, (3.31)

where the noise is assumed to be white Gaussian: 〈ξi (t)ξ j (τ )〉 = δ(t − τ )Eij.
In order to apply the inferential technique, one needs first to prescribe appropriate

base functions. Each oscillator can be described in two dimensions by a simple
variable change: x1 = x , x2 = ẋ and y1 = y, y2 = ẏ. Assuming the models are
known beforehand, the following base functions were chosen for reconstruction of
system (3.31):

� =

⎧
⎪⎪⎨

⎪⎪⎩

x2

x1, x2, x2
1 x2, y1

y2

y1, y2, y2
1 y2, x1

⎫
⎪⎪⎬

⎪⎪⎭
, (3.32)

where each row corresponds to the respective dimension of system (3.31).
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Table 3.1 Results from the inference of numerically simulated system (3.31)

Parameter Base function Intrinsic values Inferred mean values

dx x2 1 1.0051
ω2

1 x1 −1.21 −1.2099
μ1 x2 1 1.0110
μ1 x2

1 x2 −1 −0.9925
ε1 y1 0 −0.0116
dy y2 1 1.0036
ω2

2 y1 −0.81 −0.8144
μ2 y2 0.7 0.7104
μ2 y2

1 y2 −0.7 −0.6971
ε2 x1 −0.15 −0.1563

The first column describes the physical meaning of the parameters, the second column shows the
base functions used within the Bayesian inference, and the last two columns show the values of the
intrinsic parameters and their inferred mean values, respectively

The coupled system (3.31) was simulated numerically for a specific case—the
coupling was considered to be unidirectional (1 → 2) i.e. ε1(t) = 0 and the rest
of the parameters were set to: ω1 = 1.1, ω2 = 0.9, μ1 = 1, μ2 = 0.7 and the
noise strength E1 = E2 = 0.2. To demonstrate the properties and precision of the
inference in state space, first the coupling was set to a constant value ε2(t) = 0.15
(for which the oscillators were not synchronized). The Bayesian inferential technique
Sect. 3.1.3 exploiting the state base functions (3.32) was applied on the time-series of
the two noisy oscillators. The inferred parameters acting as coefficients of appropriate
base functions, are summarized together with the intrinsic parameters in Table 3.1.
Comparing the last two columns, one observes the validity and precision with which
the intrinsic parameters were inferred. The full and the inferred dynamics can be
visualized and compared on Fig. 3.16a, b. Fig. 3.14a shows the phase portrait of
the first oscillator from the numerical simulation of (3.31) affected by noise, while
Fig. 3.14b shows the phase portrait of the same system simulated with the inferred
parameters without the effect of noise.

But how can one use the inferred parameters to determine if the two oscillators
are synchronized? Namely, the second driven oscillator y(t), when not synchronized,
has limit-cycle dynamics with marginal stability i.e. its largest Lyapunov exponent is
zero. According to the theorem for generalized synchronization, when synchroniza-
tion occurs the driven oscillator becomes asymptotically stable with negative largest
Lyapunov exponent. Thus, by following the Lyapunov exponents of the inferred
driven oscillator one can detect if synchronization exists. Moreover, using the dis-
cussed information propagation within the Bayesian framework, one can follow the
generalized synchronization in time.

To demonstrate the latter, system (3.31) was simulated for unidirectionally inter-
acting case where the coupling was non-autonomous function varying discretely
between two predefined values ε2(t) = ε = {0, 0.4} for which the two oscillators
were intermittently synchronized. The application of the technique and the detection
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Fig. 3.16 Inferred state dynamics and detection of intermittent generalized synchronization. a
Phase portrait from numerically simulated noisy van der Pol oscillator x(t). b Phase portrait of van
der Pol oscillator numerically simulated with the inferred parameters. c Largest Lyapunov exponent
λ indicating non-synchronized intervals for zero values and synchronized for negative. The coupling
amplitude ε was discretely varying on intermittent intervals as indicated on the top of the figure

of generalized synchronization are presented on Fig. 3.14c. It can be noticed that,
when the oscillators are not synchronized, the largest Lyapunov exponent [61] λ is
zero, and when synchronization occurs (for ε = 0.4) the driven oscillator becomes
asymptotically stable and λ becomes negative. Thus the largest Lyapunov exponent
λ can act as synchronization index for detection of generalized synchronization in
time.

Many of the concepts discussed above for the detection of phase synchronization
are valid and can be applied for the detection of state synchronization. The identi-
fication of synchronization from the inferred dynamics through Lyapunov exponent
λ can be seen as equivalent to the map reconstruction of torus phase dynamics.
Using the information propagation procedure, the generalized synchronization and
the respective transitions can be traced in time too. As the noise is decomposed
separately, if there exist noise-induced phase slips i.e. noise-induced transitions to
generalized non-synchronized states, the proposed method will be able to detect it.
Having said this, the inferential technique is anticipated to be a useful tool in describ-
ing the time-varying nature and transitions of state synchronization in the presence
of noise.
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