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Supervisor’s Foreword

In simple terms science might be defined as the systematic observation of nature
and of how natural processes evolve in time and space. Such processes can include
the beating of the heart of a living human or other mammal, the movements of the
planets, or simply how human society works. In all these cases, physics tries to
generate a model based on data collected over time—a time interval that depends
on how fast the processes occur, which may in some cases happen over centuries
and in others over seconds or microseconds. Science attempts to develop the
models that can most comprehensively link the causes and consequences of the
processes in question. One of the most frequently-used approaches, and arguably
the most useful one, is the Bayesian approach. It is based on Bayes’ theorem,
which is central to the inverse problem approach and dynamical inference, seeking
to answer the question: given a series of data resulting from observations, what can
we deduce about the nature of the system or the process that generated that data?

Thomas Bayes was fortunate that his friend Richard Price significantly edited
and updated his work and read it to the Royal Society in 1763, a year after his
death. It was published in the Philosophical Transactions of the Royal Society of
London the following year. The ideas gained limited exposure until they were
independently rediscovered and further developed by Laplace, who first published
the modern formulation in his 1812 Théorie analytique des probabilités.

The classical approach to statistics defines the probability of an event as ‘‘The
number of times the event occurs over the total number of trials, in the limit of an
infinite series of equiprobable repetitions’’, which is quite limited. Many of these
limitations can be avoided and paradoxes resolved by taking a Bayesian stance
about probabilities. Bayes defines probability as:

The probability of any event is the ratio between the value at which an
expectation depending on the happening of the event ought to be computed, and
the value of the thing expected upon its happening.

However even Bayes himself might not have embraced the broad interpretation
now called Bayesian. It is difficult to assess Bayes’ philosophical views on
probability, since his work does not go into questions of interpretation.

Today Bayesian probability is the name given to several related interpretations
of probability. To evaluate the probability of a hypothesis, the Bayesian
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probability specifies some prior probability, which is then updated in the light of
new, relevant data. ‘‘Bayesian’’ has been used in this sense since its rebirth in the
1950s. Advances in computer technology have allowed scientists from many
disciplines to extend and use this approach in diverse fields. Sir Harold Jeffreys ,
who wrote the book Theory of Probability, which first appeared in 1939, played an
important role in the revival of the Bayesian view of probability. He wrote that
Bayes’ theorem ‘‘is to the theory of probability what Pythagoras’s theorem is to
geometry’’.

Recently, we have faced huge developments in both the theory and applications
of Bayes theorem. The applications span practically every aspect of science,
including particle physics, astrophysics, cosmology, geophysics, and medical and
biological physics. The work by Tomislav Stankovski deals with one particular
aspect of Bayesian inference: it focuses on inference of the dynamical properties
of oscillatory systems.

The work is based on the development of Feynman’s path integral whose
central idea is that, for the motion of a particle between two points in space, all
possible connecting trajectories should be considered and a probability amplitude
assigned to each one of them. This path integral gives likelihood of observation of
the dynamical trajectory for a given set of distributions of model parameters. Once
the actual dynamical trajectory is measured in the experiment the distributions for
the set of model parameters can be improved using Bayes theorem.

The other important ingredient is based on recent developments in the under-
standing of the nonlinear dynamics of oscillatory processes, and the theory of
synchronization in particular. The main objective of Tomislav’s thesis, now pre-
sented as a book, was to study, detect and understand in greater detail the effect of
external dynamical influences on interacting selfsustained oscillators.

The work was motivated by problems associated with biological systems and
the cardiovascular system in particular. Not surprisingly, life cannot be understood
properly without a self-consistent theory of non-autonomous systems and associ-
ated methods to infer such dynamical characteristics from measured data. How-
ever, non-autonomicity is characteristic of many systems. In reality, practically all
systems are non-autonomous, though some can safely be simplified and studied as
closed or isolated. Hence, I can envisage very wide applicability of the method
proposed in this book.

Despite a long-standing general awareness of non-autonomous systems, rela-
tively little has been done in this field. Mathematics has included mainly the
process and the skew product flow formalism, while the physics approach to date
has mainly been to reduce the dynamics to being autonomous by adding an extra
dimension for the time-dependence.
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Tomislav’s work is one of the first systematic approaches to the treatment of
non-autonomous systems from a physics perspective and, in particular, to doing so
in an inverse approach. As a multitude of data are widely available today, we can
expect highly significant advances in many fields to be facilitated by the results
presented in this book.

Lancaster, May 2013 Prof. Aneta Stefanovska
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Abstract

The common assumption that a dynamical system found in nature can be
considered as isolated and autonomous is frequently a poor approximation. In
reality, there are always external influences, and these are often too strong to
ignore. In the case of an interacting oscillatory systems, they may, e.g. modify
their natural frequencies or coupling amplitudes. The main objective of this thesis
is to study, detect and understand in greater detail the effect of external dynamical
influences on interacting self-sustained oscillators.

Theoretical framework for the analysis of synchronization between non-
autonomous oscillating systems is discussed. Multiple-scale analysis is applied on
a phase oscillators model with slowly varying frequency. This analysis revealed
the analytic form of the synchronization state with respect to slow and fast time-
variations. Limit-cycle oscillators are used to study amplitude dynamics and to
investigate synchronization transitions, which occur in the bifurcation points
where the equilibrium solution for the phase difference and amplitudes changes
their stability. Bifurcation diagrams as functions of coupling parameters are also
constructed. In a case of non-autonomous interacting oscillators, the phase
difference varies dynamically, the external influences can be the cause for
synchronization transitions between different synchronization orders, and lag
synchronization is hardly achievable. It is also demonstrated that the time-
variations of the form of the coupling function alone can be the cause for
synchronization transitions.

A method is introduced for analysis of interactions between time-dependent
coupled oscillators, based on the signals they generate. It distinguishes
unsynchronized dynamics from noise-induced phase slips, and enables the
evolution of the coupling functions and other parameters to be followed. The
technique is based on Bayesian inference of the time-evolving parameters,
achieved by shaping the prior densities to incorporate knowledge of previous
samples. The dynamics can be inferred from phase variables, in which case a finite
number of Fourier base functions are used, or from state variables exploiting the
model state base functions. The latter is used for detection of generalized
synchronization. The method is tested numerically and applied to reveal and
quantify the time-varying nature of synchronization, directionality and coupling
functions from cardiorespiratory and analogue signals. It is found that, in contrast
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to many systems with time-invariant coupling functions, the functional relations
for the interactions of an open (biological) system can in itself be a time-varying
process. The cardiorespiratory analysis demonstrated that not only the parameters,
but also the functional relationships, can be time-varying, and the new technique
can effectively follow their evolution.

The proposed theory and methods are applied for the analysis of biological
oscillatory systems affected by external dynamical influences. The main inves-
tigation is performed on physiological measurements under conditions where the
breathing frequency is varied linearly in a deterministic way, which introduces
non-autonomous time-variability into the oscillating system. Methods able to track
time-varying characteristics are applied to signals from the cardiovascular, and the
sympathetic neural systems. The time-varying breathing process significantly
affected the functioning and regulation of several physiological mechanisms,
demonstrating a clear imprint of the particular form of externally induced time-
variation. Specifically, the low breathing frequencies provoked more information
flow, interfering the coordination and increasing the coupling strength between the
oscillatory processes. Statistical analyses are performed to identify significant
relationships. The proposed inferential method is applied to cardiorespiratory
signals of this kind. The technique successfully identified that the cardiorespiratory
coordination depends on, and is regulated to a great extent by, the respiration
dynamics. The time-varying respiration acted as a cause for synchronization
transitions between different orders. Additional complexity is encountered by the
coupling functions which are also identified as time-varying processes.

A technique based on wavelet synchrosqueezed transform shows how the
instantaneous phase can be extracted from complex mixed-mode signals with
time-varying characteristics. The latter is demonstrated on several physiological
signals of this kind. The dynamical characterization for the reproducibility of
blood flow is shown to be more appropriate than the time-averaged analysis. This
also implies that care must be taken when external perturbations are made
consecutively.

Finally, the study focuses on analysis of analogue simulation of two non-
autonomous van der Pol oscillators. The oscillators are unidirectionally coupled,
and the frequency of the first oscillator is externally and periodically perturbed.
The analogue simulation presents another model which encounters real experi-
mental noise. The intermittent synchronization and the corresponding transitions
are detected both through phase, and generalized synchronization, based on a
common inferential basis.

xii Abstract
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Chapter 1
Introduction

The only constant in life is change—it was Heraclitus, the famous philosopher, who
laid down this sentence that has a profound and universal meaning. Many of us enjoy
eating the sweet, healthy honey, produced by hard-working bees, collecting nectar
and spreading pollen from flower to flower. The flowers’ seeds blown by the wind
allow for the spread and the reproduction of the flowers. The wind itself depends
on the sea and the position of the Moon with respect to the Earth, which in turn,
rotates around the Sun. The mutual influence between such phenomena is essential
in nature. If they were to be isolated, then some of their states, behavior, or even their
very existence would be in question. External influences are one source of time-
evolution, building up the diversity, synergy and complexity in nature—which is of
course what makes life so fascinating.

Many systems found in nature are thermodynamically open—they exchange mat-
ter and energy with their environment and other systems with which they coexist.
Numerous examples are found in biology and can be seen, not only at the organ
level (see below) but also in cell populations, e.g. yeast and in the processes that
occur in animal vasculature. If one studies their time-evolution, they can be con-
sidered as dynamical systems [1]. Due to the time-dependent variations associated
with the external influences, they can also be treated as non-autonomous dynamical
systems [2, 3]. The sources of time-dependent variation can influence the observed
systems in a variety of ways by altering their dynamical characteristics. Qualitative
transitions and bifurcations can occur, contributing to a non-equilibrium state [4, 5].
Nonlinear oscillators [6, 7] form a large group of systems that tend to maintain a
certain degree of balance between the energy inflow and energy outflow, resulting in
a time evolution that is repeatable on specific time scales. A particular sub-group is
that of the self-sustained oscillators which, in the absence of external perturbation,
maintain a perfect balance between dissipation and a constant energy input from an
external source [8]. In nature, however, the reality is that processes are rarely found
to be strictly periodic. External influences usually cause the oscillatory processes to
be quasi-periodic, or periodic with several characteristic frequencies.

T. Stankovski, Tackling the Inverse Problem for Non-Autonomous Systems, 1
Springer Theses, DOI: 10.1007/978-3-319-00753-3_1,
© Springer International Publishing Switzerland 2014



2 1 Introduction

Many biological processes are found to be oscillatory. For example, it is known
that at least six oscillatory processes exist in the human cardiovascular system
[9–11], and that system dynamics can often be described by populations and ensem-
bles of many oscillators [7, 12, 13]. If two or more oscillators coexist in the same
environment, they can interact with each other in different directions and with dif-
ferent coupling strengths and coupling functions. When their rhythms adjust, due to
these interactions, a qualitative state of synchronization occurs [7, 14, 15]. Being
able to understand and study oscillating systems, their interactions and synchro-
nization phenomenon is of great importance in science and medicine. In the medical
context, nonlinear oscillators and synchronization have been used extensively in rela-
tion to the non-invasive studies of anesthesia [16], ageing [11] and cardiorespiratory
interactions [17], to name just a few examples.

The cardiovascular system is central to the function of the human body [18], and
it is the main focus of this study. It is a complex oscillatory system [9, 11], asso-
ciated with six physiological processes: cardiac, respiratory, myogenic, neurogenic,
and two distinct endothelial activities. Each of the oscillators has characteristic peri-
odic behavior, where the parameters that define the dynamics often vary with time.
Fig. 1.1 shows the time-variation of a human blood flow signal. The main cardiac
activity is well observed as an oscillatory component at around 1 Hz. From the pro-
jections, however, one can immediately see that both the amplitude and the frequency
are varying with time. When two or more such time-varying oscillatory processes
interact, synchronization can occur. The interactions, i.e. the coupling strength and
functions, can be also time-varying [19, 20]. These can lead to the existence of a
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Fig. 1.1 Time-variations present in human cardiovascular oscillations. The time-frequency rep-
resentation is evaluated as wavelet transform of a human peripheral blood flow signal, within the
cardiac frequency interval
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qualitative state, such as synchronization, which is not permanently stable: transi-
tions may occur as the result of the time-varying influences acting on the dynamical
properties and the interactions between the oscillators. The analysis of Fig. 1.1 and
the implications of time-varying interactions, naturally raise several questions: why
do qualitative transitions exist between synchronized and unsynchronized states, and
why do transitions exist between different synchronization ratios? Could it be because
the frequency and coupling of one or both of the oscillators is time varying? What can
we learn about the dynamics of these time variations? The figure demonstrates that
time-variability is an inevitable part of cardiovascular dynamics. Open biological
systems can consist of, and interact with, many physiological processes. It is very
likely that the time variability of these systems arises from their influence on each
other. If this time variability is not taken properly into account, and the oscillators
are considered to be isolated, an incomplete and even spurious understanding of the
underlying dynamics will result. It is these ideas, observations and questions that
provide the underlying motivation and the problem to be addressed in this work.

The aim of the thesis is to study, detect and understand in greater detail the
effect of external influences on interacting self-sustained oscillators—as motivated
by and applied to biological oscillators. First, the underlying phenomena are analyzed
theoretically. The primary goals are to develop methods and techniques that can
detect the phenomena, and to estimate characteristic quantities, for a general case of
interacting (non-autonomous) oscillators. The analysis of data from cardiovascular
measurements, under non-autonomous conditions, demonstrates the benefits and the
potential of this study for biological systems.

Starting from the governing equations and studying the respective dynamics and
qualitative states, constitutes the direct (bottom-up) approach in seeking under-
standing of a complex system. As already indicated, our interest focuses on non-
autonomous, self-sustained, oscillators. There are numerous publications dealing
with the phenomenon of synchronization [7, 21–24]. They refer, however, either to
autonomous conditions, or to the synchronization of non-autonomous systems [25,
26] that are not self-sustained oscillators—which lies beyond the scope of our interest.
Here, we study the synchronization of non-autonomous, self-sustained oscillators,
and link the effect of the external forces to the qualitative dynamical transitions. The
synchronization state itself is determined by the stability of the solution for the phase
difference. In order to describe the underlying problem, various cases with different
types of external sources and affected parameters are also investigated. This theo-
retical section broadens the perception and the general understanding of interacting
non-autonomous oscillators and lays down the necessary theoretical background for
the rest of the work.

The interactions between two dynamical systems are commonly described by
their coupling amplitude and coupling function. Much has been done to detect and
quantify the causality, magnitude and direction of coupling amplitude, leading to a
group of methods that have played an important role in studies of the interactions
between a diversity of different kinds of systems [27–34]. Unlike the coupling ampli-
tude, coupling functions have not yet been investigated in great depth, despite the
growing attention and large number of studies and methods published in recent years
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[13, 19, 31, 35–37]. Coupling functions are important primarily because they can
specify precisely the functional law that describes how the systems mutually interact.
They can also describe the possibility of qualitative transitions between the interact-
ing systems. In other words, coupling functions describe the mechanisms underlying
the interacting dynamics. They have opened up a whole new area of investigation that
promises a completely new perspective on the study of interactions. Not surprisingly,
therefore, one of the dominant themes of the thesis relates to coupling functions.

If we take measured signals as a starting point and try to use them as the basis
for understanding and quantifying the underlying dynamics and phenomena, we are
tackling the inverse problem (with a top-down approach). Given the phases of two
oscillators, the standard methods applied to test for the presence of synchronization
are based exclusively on the statistical properties of the phase difference [38–40].
A large body of work has been completed on how to detect the coupling strength
and directionality between oscillators [27–30] and towards the reconstruction of
coupling functions [13, 31, 35–37]. However, the proposed techniques rely on having
a reasonable density of the observed phase-space, and they are easily challenged by
the presence of time-variability and strong correlation of the two signals. On the
other hand, recent research on the Bayesian inference of noisy dynamics [41–45]
has opened new possibilities that have never been tested for the proposed problem.
In this book, a new, self-consistent approach is developed for the detection of inherent
phase dynamics from the phase time-series of interacting noisy oscillators. It allows
one simultaneously to estimate the synchronization, the directionality, and the nature
of the coupling functions. A characteristic feature of this approach is that, due to a
particular choice of information propagation, one can trace the time-variability and
the effect of the external forces on the parameters that describe the dynamics. It
is also shown that useful inference can be conducted from state space time-series.
The Lyapunov asymptotic stability [46] of the driven oscillator can then serve as an
indication of the presence of synchronization. The developed methods and techniques
are designed to be applied to any experimental oscillatory time-series.

The proposed theory and methods are particularly suitable for the study of oscil-
latory biological systems and their interactions. The presence of time-variability of
characteristic parameters and the existence of external sources have already been
identified and discussed [9, 11, 47]. In this thesis, the analyses are performed on
data obtained from resting human subjects, whose breathing has been externally,
and deterministically perturbed. The subjects’ breathing is paced as a ramp i.e. the
respiration frequency is gradually decreased/increased within a certain time interval.
This procedure induces time-variability in the observed oscillatory processes in a con-
trolled deterministic manner—thus offering for analysis a case that is of a particularly
complex non-autonomous nature. The measured signals included electrocardiogram
(ECG), blood pressure (BP), carbon dioxide (CO2) concentration and muscle sym-
pathetic nerve activity (MSNA). The delicate MSNA measurement has been used
in the past for successful characterization of human sympathetic activity in a diver-
sity of cases [48–50]. The data analyses were performed with several methods that
can deal with the time-variability present in the signals: wavelet transform, wavelet
phase coherence, and windowed wavelet phase coherence [10, 51, 52]. The results,
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together with the respective statistical analyses, identified the relationships and the
coherence between the oscillatory components and the effect of the non-autonomous
perturbations. In addition to this, we conduct a study of cardiorespiratory interac-
tions, which have played an important role in several previous investigations [11,
16, 29]. Before starting the cardiorespiratory analysis, one needs to estimate the
instantaneous phase from the complex ECG signal, a problem for which there is
currently no known method that yields wholly satisfactory results. A technique is
therefore proposed for the detection of instantaneous phase from complex mixed-
mode signals, based on synchrosqueezed wavelet decomposition [53]. The effect of
time-varying perturbations on cardiorespiratory directionality, synchronization and
their respective qualitative transitions, are identified and analyzed.

The study also explores the reproducibility of laser Doppler flowmetry (LDF)
blood flow measurements, showing that dynamical characterization is more appro-
priate than the conventional time-averaging approach. Signals are analyzed both from
human blood flow, and from numerical simulations of coupled oscillators that have
been subjected to non-autonomous perturbations. It is shown that the variability of
the flux should be considered, as well as its mean value and that, when subjecting
the microvasculature to a perturbation, care should be taken to understand the role
of oscillatory processes in relation to the transient physiological response [54].

In order to investigate non-autonomous effects in other real oscillating systems,
signals from an analogue simulation are analyzed. These can [55] be performed
under controlled experimental conditions, and a small amount of noise, additive
and/or multiplicative, is inevitably embedded in the signals due to non-idealities of
the electronic components. The model consists of two unidirectionally coupled van
der Pol oscillators, with the first one having a periodically time-varying frequency.
One of the main purposes of this study is to demonstrate how one should treat and
detect the underlying phenomena from experiments. Comparative analyses of phase
and generalized synchronization are also presented, together with a discussion of their
implications and limitations resulting from the presence of time-varying sources.

The book is organized as follows. Chapter 2 outlines the main theoretical aspects
of non-autonomous systems and their interactions. The basic characteristics and
formulations for non-autonomous systems generally, and for non-autonomous self-
sustained oscillators in particular, are given, together with the generic formalism
and definition of synchronization between such oscillators. Multiple-scale analysis
is conducted on coupled non-autonomous phase oscillators revealing the relation-
ship between the speed of the influence and the synchronization state. Concentrating
on specific limit-cycle models, the determination of synchronization and dynami-
cal characteristics for different cases of time-varying parameters are investigated.
Detailed stability and bifurcation analyses are also performed, followed by demon-
stration of the frameworks needed to cope different kinds of non-autonomous forcing
(periodic, stochastic and chaotic). The time-varying coupling function, and its impli-
cations for synchronization transitions, are discussed in detail. The content of this
chapter serves as the theoretical foundation for what follows.

Chapter 3 presents a method for the reconstruction of time-varying dynamics.
The technical aspects of implementing Bayesian inference (which forms the core of

http://dx.doi.org/10.1007/978-3-319-00753-3_2
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the method) are demonstrated. The use of inferred parameters for the detection of
synchronization, the nature of the coupling, and directionality, is presented in detail
and applied to several types of oscillatory systems. The detection of interacting time-
varying dynamics in state space is also discussed, together with its implications for
the detection of generalized synchronization.

The application of the proposed theory and methods to biological oscillatory
processes is demonstrated in Chap. 4. The first part investigates the effect of time-
varying respiration on the cardiovascular system and sympathetic nerve activity.
A wavelet transform of the time-varying frequency content is obtained and the car-
diorespiratory interactions are studied. A particular technique for phase detection
from complex mix-mode signals is also presented. The second part of Chap. 4 focuses
on the reproducibility of LDF blood flow, which compares the dynamical approach
with time-averaged measures, and provides evidence that care is needed when the
oscillators are subject to consecutive external perturbations.

Chapter 5 outlines the analogue simulation of interacting non-autonomous
Van der Pol oscillators and demonstrates how synchronization can be treated in
experiments. Phase and generalized synchronization are treated under a common
inference framework. Finally, Chap. 6 summarises the work and outlines future per-
spectives.
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33. K. Hlaváčkováá-Schindler, M. Paluš, M. Vejmelka, J. Bhattacharya, Causality detection based
on information-theoretic approaches in time series analysis. Phys. Rep. 441(1), 1–46 (2007)

34. M. Staniek, K. Lehnertz, Symbolic transfer entropy. Phys. Rev. Lett. 100, 158101 (2008)
35. R.F. Galán, G.B. Ermentrout, N.N. Urban, Efficient estimation of phase-resetting curves in real

neurons and its significance for neural-network modeling. Phys. Rev. Lett. 94, 158101 (2005)
36. J. Miyazaki, S. Kinoshita, Determination of a coupling function in multicoupled oscillators.

Phys. Rev. Lett. 96, 194101 (2006)
37. I.T. Tokuda, S. Jain, I.Z. Kiss, J.L. Hudson, Inferring phase equations from multivariate time

series. Phys. Rev. Lett. 99, 064101 (2007)
38. P. Tass, M.G. Rosenblum, J. Weule, J. Kurths, A. Pikovsky, J. Volkmann, A. Schnitzler, H.-J.

Freund, Detection of n : m phase locking from noisy data: application to magnetoencephalog-
raphy. Phys. Rev. Lett. 81, 3291–3294 (1998)

39. F. Mormann, K. Lehnertz, P. David, C.E. Elger, Mean phase coherence as a measure for phase
synchronization and its application to the eeg of epilepsy patients. Phys. D 144, 358–369 (2000)



8 1 Introduction

40. B. Schelter, M. Winterhalder, R. Dahlhaus, J. Kurths, J. Timmer, Partial phase synchronization
for multivariate synchronizing systems. Phys. Rev. Lett. 96, 208103 (May 2006)

41. V.N. Smelyanskiy, D.G. Luchinsky, A. Stefanovska, P.V.E. McClintock, Inference of a nonlin-
ear stochastic model of the cardiorespiratory interaction. Phys. Rev. Lett. 94, 098101 (2005)

42. D.G. Luchinsky, V.N. Smelyanskiy, A. Duggento, P.V.E. McClintock, Inferential framework
for nonstationary dynamics. I. Theory. Phys. Rev. E 77, 061105 (2008)

43. A. Duggento, D.G. Luchinsky, V.N. Smelyanskiy, I. Khovanov, P.V.E. McClintock, Inferential
framework for nonstationary dynamics. II. Application to a model of physiological signaling.
Phys. Rev. E 77, 061106 (2008)

44. A. Duggento, D.G. Luchinsky, V.N. Smelyanskiy, P.V.E. McClintock, Inferential framework
for non-stationary dynamics: theory and applications. J. Stat. Mech. Theory Exp. 2009, P01025
(2009)

45. U. von Toussaint, Bayesian inference in physics. Rev. Mod. Phys. 83(3), 943–999 (2011)
46. J.P. Eckmann, D. Ruelle, Fundamental limitations for estimating dimensions and lyapunov

exponents in dynamic systems. Phys. D 56, 185–187 (1992)
47. D. Rudrauf, A. Douiri, C. Kovach, J.P. Lachaux, D. Cosmelli, M. Chavez, C. Adam, B. Renault,

J. Martinerie, M.L. Van Quyen, Frequency flows and the time-frequency dynamics of multi-
variate phase synchronization in brain signals. Neuroimage 31(1), 209–227 (2006)

48. D.L. Eckberg, The human respiratory gate. J. Physiol. 548(2), 339–352 (2003)
49. L.J. Badra, W.H. Cooke, J.B. Hoag, A.A. Crossman, T.A. Kuusela, K.U.O. Tahvanainen, D.L.

Eckberg, Respiratory modulation of human autonomic rhythms. Am. J. Physiol. Heart Circ.
Physiol. 280(6), H2674–H2688 (2001)

50. V.G. Macefield, B.G. Wallin, Modulation of muscle sympathetic activity during spontaneous
and artificial ventilation and apnoea in humans. J. Auton. Nerv. Syst. 53(23), 137–147 (1995)

51. A. Bandrivskyy, A. Bernjak, P. McClintock, A. Stefanovska, Wavelet phase coherence analysis:
application to skin temperature and blood flow. Cardiovasc. Eng. 4(1), 89–93 (2004)

52. L.W. Sheppard, A. Stefanovska, P.V.E. McClintock, Testing for time-localized coherence in
bivariate data. Phys. Rev. E 85, 046205 (2012)

53. I. Daubechies, J. Lu, H.-T. Wu, Synchrosqueezed wavelet transforms: an empirical mode
decomposition-like tool. Appl. Comput. Harmon. Anal. 30(2), 243–261 (2011)

54. A. Stefanovska, L.W. Sheppard, T. Stankovski, P.V.E. McClintock, Reproducibility of ldf blood
flow measurements: dynamical characterization versus averaging. Microvasc. Res. 82(3), 274–
276 (2011)

55. D.G. Luchinsky, P.V.E. McClintock, M.I. Dykman, Analogue studies of nonlinear systems.
Rep. Prog. in phys. 61(8), 889–997 (1998)



Chapter 2
Theoretical Background: Non-Autonomous
Systems and Synchronization

Physicists usually try to study isolated systems, free from external influences, that
can be described precisely by well-defined equations. In practice, of course, this ideal
is seldom completely realised and it is normally necessary to take account of a vari-
ety of external perturbations. Where the latter are parametric, i.e. tending to alter the
parameters of the modelling equations, a wide range of often counter-intuitive effects
can arise, e.g. the occurrence of noise-induced phase transitions [1] or spontaneous
shifts in synchronization ratio in cardiovascular interactions [2], and particular care is
needed in analysing the underlying physics. Such phenomena are especially impor-
tant in relation to oscillatory systems, whose frequency or amplitude may be modified
by external fields. One approach to the problem involves focusing on the idealised
model system but, at the same time, accepting that it is non-autonomous, i.e. that
one or more of its parameters may be subject to external modulation. Without some
knowledge of the form of modulation, little more can be said other than admitting
to the corresponding inherent uncertainty in the analysis. It often happens, however,
that the external field responsible for the non-autonomicity may itself be determin-
istic, e.g. periodic. At the other extreme, it might be either chaotic or stochastic. In
each of these cases, it is possible to perform a potentially useful analysis.

Oscillatory systems are widespread in nature and they are mostly, to a greater or
lesser extent, non-autonomous. Analysis of their signals can often be used to infer
information about them, even where very little is known a priori. Where two or more
oscillatory systems mutually interact, synchronization may occur, leading to a mutual
adjustment of their respective frequencies [3]. It is a widespread phenomenon that
arises in e.g. engineering [4], biology [2, 5, 6], communications [7], ecology [8],
meteorology [9], and deterministic chaos [10–12]. It is often useful to investigate
synchronization phenomena because of the information such studies provide about
the oscillators and, in particular, about their interactions. The situation considered
is one where the non-autonomicity induces its own dynamics, superimposed on
top of the dynamics of the synchronizing oscillatory systems. The possibility of
understanding this higher dynamics is potentially important because it promises to
allow the time series analyst to determine details of the non-autonomicity—e.g. its

T. Stankovski, Tackling the Inverse Problem for Non-Autonomous Systems, 9
Springer Theses, DOI: 10.1007/978-3-319-00753-3_2,
© Springer International Publishing Switzerland 2014
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frequency and amplitude, and which term(s) of the model equation is/are affected—
from measured signals. Thus the following discussion serves as a theoretical base for
the study of the synchronization phenomenon under non-autonomous conditions.

2.1 Non-Autonomous Systems

Non-autonomous (Greek: auto-‘self’ + nomos-‘law’ ) systems are those whose law
of behaviour is influenced by external forces. From a dynamical point of view, a
set of differential equations are non-autonomous if they include an explicit time-
dependance. The external influence can have different nature, for instance, it could
be a periodic force, a quasi-periodic function or a noisy process, and it could affect
the systems in a various ways i.e. it might be additive, could enter in the definition of a
parameter, or might modulate the functional relationships that define the interactions
between systems. When we focus our attention on only one or few components of
a high dimensional autonomous dynamical system, we will actually be dealing with
non-autonomous differential equations because of the time-variability embedded
within their interactions with the rest of the system.

Often in the literature, and especially in inverse problems, the non-autonomous
dynamics have been associated or referred to as non-stationary. The stationarity
is a statistical property of the output signal, and as such is characterized by the
application of tools for statistical mechanics [13]. In seeking to justify and motivate
a different approach to the problem, first the connection between non-stationary and
non-autonomous dynamics is outlined. The solution of an autonomous dynamical
systems x(t) = f (x) depends only on the time difference (t − t0) between the
current state x(t) and the initial condition x(t0). It therefore follows that the statistical
behaviour of a bounded-space solution, if far enough from the initial condition, must
be time-independent. In contrast, when a process is bounded and non-stationary, then
it is clearly impossible to represent the driving dynamics with autonomous equations.
For this reason, non-autonomous dynamics x(t) = f (x, t) must constitute the core
mechanism underlying a non-stationary output signal. On the other hand, for an
appropriate time-dependence of the external dynamical field, it is possible that a
non-autonomous dynamics may be perfectly stationary in the statistical sense. Hence
non-autonomous dynamics can act as a functional “generator” for both stationary
and non-stationary dynamics.

Non-autonomous dynamical systems have attracted considerable attention from
mathematicians, much effort being expended on the development of a solid formalism
[14, 15]. This included mainly the process and the skew product flow formalism.
For the two-parameter semi group or process formalism, instead of only the time
difference t − t0, both the current time t and the starting time t0 are important and
play role. The skew product formalism includes an autonomous dynamical system as
a driving mechanism which is responsible for the temporal and qualitative change of
the vector field of the non-autonomous system. It has been discussed that, even though
the process formalism is intuitive and the skew product formalism abstract, the latter
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contains more information about how the system evolves in time. The treatment
of pullback attractors, with fixed target set and progressively earlier starting time
t0 → −∞ (as opposite from forward attractors with moving target and fixed t0) gives
additional insight for the analysis of non-autonomous attractors. The proposed theory
has been found useful in number of applications, including switching and control
systems [16] and complete (dissipative) synchronization [17, 18]. Being recently
established and still evolving, this mathematical theory promises many application
in more complex non-autonomous systems.

In the physics community, on the other hand, there seems to have been a degree
of reluctance to address the problem as it really is and, in general, the issue has
been sidestepped by reducing the non-autonomous equation to an autonomous one
by addition of an extra variable to play the role of time-dependence in f(x, t). It
has been argued that this approach is not mathematically justified because the new
dimension is not bounded in time (as t → ∞), and that attractors cannot be defined
easily. Certain transformation can be employed to bound the extra dimension, but
this approach does not work in general case. Beside this, the procedure of reduction
to autonomous form has been safely employed in many situation—especially in
studies closely related with experiments, where the dynamical behaviour is observed
for finite length of time. There are two cases, in particular, that recur in the literature:
(i) where the dynamical field is a periodic function of t (i.e. x = f(x, sin(t)), often
referred as an “oscillating external perturbation”); and (ii) when the dynamical field
is stochastic (the noise being the time-dependent part). The first case is obviously one
where an extra variable is often substituted, and the latter case involves the application
of the mathematical instruments of stochastic dynamics. These can be seen as the
two limiting-cases of an external perturbation that comes from a system with either
one degree of freedom, or with an infinite number of degrees of freedom. In between
these two extremes there is a continuum of cases when the time dependence is neither
precisely periodic, nor purely stochastic. An example of an intermediate case of this
kind would be a dynamical system x = f(x, g(t)) where g(t) is the n-th component
of a chaotic (low dimensional) dynamical system.

The equations of the non-autonomous systems involve terms containing the inde-
pendent variable on the right hand side. Hence, obtaining the exact solution can be
difficult and not a trivial task, often unavoidable ending up as unsolvable. More-
over, there is no general mathematical technique for evaluation of solutions, but
(similarly to nonlinear systems) each non-autonomous equation has its own type, or
belongs to a group of solutions. Popular techniques for treatment (or sidestepping)
include perturbation methods, non-homogenous differential equation, Floquet theory
or instantaneous solutions.

The non-autonomous systems constitute a vast and very general class of systems.
For the purpose of this thesis, and as motivated by the biological systems to be
analyzed, the discussion is concentrated on non-autonomous self-sustained oscilla-
tory systems. Anishchenko et al. have summarized [19] all of the common cases of
non-autonomicity in oscillating dynamical systems, including those in which limit
cycles are induced by external non-autonomous fields. In what follows, however, the
discussion is restricted to self-sustained oscillators, which are taken to be those that
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exhibit stable limit cycles in the absence of the non-autonomous contribution. Thus,
even though the characteristics of the oscillator (its frequency, shape of limit cycle,
etc.) are varying, it can still be considered as self-sustained at all times.

2.1.1 Single Non-Autonomous Self-Sustained Oscillator

Before discussing the interactions and the respective states and phenomena (like
synchronization, directionality or stability), an outline of the general characteristics
of a single self-sustained oscillator subject to external non-autonomous source will
be given. Consider an oscillator dx/dt = f(x(t)) with a stable periodic solution
x(t) = x(t + T ) in an absence of external influence, characterized by a period T .
The field f(x(t), t) can be set to be an explicit function of the time. This will be the
case, for instance, if one or more of the parameters that characterize f are bounded
(periodic or non-periodic) functions of time. The periodic solution x(t) is, in general,
lost; and the definition of the period T becomes somewhat “blurred”. An example of
such non-autonomous oscillator is presented on Fig. 2.1. In the absence of a periodic
solution x(t) = x(t + T ), the definition of period could be replaced by the concept
of “instantaneous period” (and correspondingly “instantaneous frequency”): at any
instant of time τ the instantaneous period T (τ ) of the dynamics is the period of the
limit cycle solution of f(x(t), τ ), with τ fixed.

Following the definition of phase-function, given by Kuramoto [20], a general-
ization for non-autonomous oscillators can be discussed. In an autonomous system,
the phase over the limit cycle is defined as quantity which increases by 2π during
each cycle of the dynamics. A non-autonomous version of the phase-function φ(x, t)
could then be defined as:

dφ(x, t)

dt
= ω(t) + ∂φ(x, t)

∂t
, (2.1)

Fig. 2.1 Phase portrait of
non-autonomous van der Pol
oscillator with time-varying
frequency. The black line is
for autonomous ( Ã = 0) and
grey line for non-autonomous
( Ã = 0.3) portrait. The system
is given as: ẍ − μ(1 − x)ẋ +
[ω+ Ã sin(ω̃t)]2x = 0, where
ω = 1, ω̃ = 0.01 and μ = 0.2
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where ω(t) ≡ 2π/T (t) is the instantaneous frequency, i.e. the characteristic fre-
quency of the limit cycle of the dynamics defined at a given time:

ω(τ ) = 1/T (τ )

∫ T (τ )

0
�xφ(x(t), τ ) · f(x(t), τ )dt,

a natural generalization of the phase for an autonomous oscillator where dφ(x)/dt ≡
2π/T = �xφ f(x). The second term in (2.1) can be present for example due to the
non-isochronoucity of the oscillator i.e. due to the effect that the perturbed amplitudes
have on the phase dynamics.

2.2 Synchronization of Non-Autonomous Self-Sustained
Oscillators

Synchronization between coupled oscillator is a universal physical phenomenon that
arises in many areas of science. It is defined as: mutual adjustment of rhythms due to
weak interactions between oscillatory systems [3]. When the oscillators are weakly
nonlinear and the couplings are weak as well, the synchronization phenomenon can
be described qualitatively and sufficiently well by the corresponding phase dynam-
ics. The latter is often referred to as phase synchronization [3, 11]. To set up a
general description of synchronization between non-autonomous systems, two non-
autonomous oscillators are set to interact through coupling function g1, g2 parame-
terized by the coupling constants ε1, ε2

1:

ẋ1 =f1(x, t) + ε1(t)g1(x1, x2)

ẋ2 =f2(x, t) + ε2(t)g2(x1, x2).

When the frequency mismatch is relatively small, one can observe for which
parameter values the system is synchronized and does not exhibit phase-slips [3],
i.e. when |ψ(φ1,φ2, t)| < constant, where the phase difference is defined as2:
ψ(φ1,φ2, t) ≡ φ2(x2(t), t) − φ1(x1(t), t) . Using Eq. (2.1) the time derivative of
the phase difference dψ/dt can be expressed explicitly as:

dψ(φ1,φ2, t)

dt
= (�xφ2) (f2(x2, t) + ε2 g2(x1, x2))

− (�xφ1) (f1(x1, t) + ε1 g1(x1, x2))

+ ∂φ(x2, t)

∂t
− ∂φ(x1, t)

∂t

1 In general, the coupling parameters and functions can also be time-dependent (as discussed later),
but for simplicity and clarity they are considered autonomous in this notation.
2 The following statement holds also for higher frequency ratios in the form ψ = nφ2 −mφ1 where
n and m are integer numbers.
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= ε2 �x φ2 · g2(x1, x2) − ε1 �x φ1 · g1(x1, x2)

+ ∂φ(x2, t)

∂t
− ∂φ(x1, t)

∂t
+ 2π

T2(t)
− 2π

T1(t)
.

The synchronization condition |ψ(φ1,φ2, t)| < constant will be satisfied if there
exists a stable solution for the dynamics dψ(φ1,φ2, t)/dt . Because the velocity field
is a function of time explicitly dependant on the terms ∂φ(xi ,t)

∂t , the existence of a
stable equilibrium ψeq(t) satisfying dψ(φ1,φ2, t)/dt = 0 does not mean that the
relative phase remain constant. Not even the existence of a time-dependent stable root
can guarantee an absence of phase-slips: as ψeq(t) changes, the instantaneous phase
difference ψ(t) may fall outside the basin of attraction, in which case a phase-slip
occurs, perhaps to another equilibrium point. But if ψeq(t) changes in time slowly
enough for the solution ψ(t) to remain continuously within its attracting basin, then
the phase difference will vary with time (as imposed by the non-autonomous source)
while the system remains within the state of synchronization.

2.3 Phase Oscillators Model

When limit-cycle oscillators are coupled weakly, their interactions can be studied by
means of phase oscillators [20]—which, by neglecting the amplitude dynamics, rep-
resent approximative notation of the oscillators’ full dynamics. The justification of
the latter arises because the amplitudes are robustly stable, unlike the phase dynam-
ics which correspond to the direction of the limit-cycle and are border-line stable. In
terms of Lyapunov exponents this means that the amplitude dynamics are described
by negative, while the phase with zero Lyapunov exponents. This sensitive stability
of the phase dynamics can be easily affected even by weak perturbations in terms
of coupling interactions or other external sources. Therefore, the phase oscillators
serve as functional models that can describe qualitatively the interactions, the syn-
chronization phenomenon and the corresponding transitions.

A simple model of two coupled phase oscillators is used for the study of synchro-
nization phenomenon under the influence of external non-autonomous sources. This
elementary model does not capture the whole dynamics (mostly because it omits
the amplitude dynamics), but serves as a good starting example where the synchro-
nization phenomenon and the respective qualitative nature can be observed in easy
and transparent way. The following also presents one of the most used procedures
for treating non-autonomous problems—which includes reductions to autonomous
form and multiple time scale analysis [21, 22].

The model consists of two phase oscillators, where the frequency of the first
oscillator is periodically perturbed:
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dφ1

dt
= ω1 + Ã sin(ω̃t) + ε1 sin(φ2 − φ1)

dφ2

dt
= ω2 + ε2 sin(φ1 − φ2). (2.2)

The two oscillators are synchronized if their phase difference is bounded |φ2(t) −
φ1(t)| = |ψ(t)| < const [3], and if the equilibrium solution remains in its basin
of attraction. Hence, for synchronization purposes the dynamics of Eq. (2.2) can be
studied through the phase difference ψ(t) dynamics.

The non-autonomous source (for different frequency and amplitude) can affect
the dynamical behavior of the phase difference and the synchronization state itself.
Instead of being constant, like in autonomous case, now the phase difference can
vary with time, as imposed by the non-autonomous source. If the amplitude of the
non-autonomous source is relatively large, for certain time intervals the oscillators
can go in and out of synchrony—which due to the periodicity of the perturbation can
result in intermittent synchronization. The effect of the non-autonomous sources on
the dynamical behaviour of the interacting oscillators including amplitude dynamics,
will be discussed in more detail in Sect. 2.4.

The equations in system (2.2) are nonlinear non-autonomous equations that can
not be solved exactly. In such situation the most common approach for analytical
treatment of non-autonomous equations is introducing an additional dimension for
the independent variable. Even though mathematically not fully justified (for reasons
discussed above in Sect. 2.1), this procedure often allows useful analysis to be con-
ducted. If the oscillating frequency mismatch (ω = ω2 − ω1) is significantly larger
compared to the frequency ω̃ of the non-autonomous source (ω̃/ω � 1), one can try
to analyze the dynamics on two separate and independent time scales (slow and fast).
When the frequency ω̃ is smaller than the order of the other parameters—singular
perturbation theory can be applied.

Grouping the phases into the phase difference variable ψ(t) = φ2(t) − φ1(t) and
transforming the equations to autonomous form, system (2.2) becomes:

dψ

dt
= ω − Ã sin(z) − ε sin(ψ)

dz

dt
= εν, (2.3)

where ω̃ = εν, with ε being the small parameter and ν = const; and the frequency
mismatch is ω = ω2 −ω1 with group coupling ε = ε1 + ε2. The variable ψ(t) is fast,
while z(t) is slow variable.

First, system (2.3) is analyzed for slow time-scale by introducing τ = εt and
rescaling accordingly to:
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Fig. 2.2 a–d Comparison of slow time scale analytic solution (2.5)-red line and numerical sim-
ulation of the full system (2.2)-grey line, with Ã = 0.1, ω̃ = 0.009, ω = 0.4 and ε = 0.55: (a)
synchronization case, (b) intermittent case Ã = 0.19—horizontal red line indicates where solu-
tion (2.5) is not defined: c enlarged transitions segment from (b): (d) synchronous case for fast
external force ω̃ = 1. (e) The fast time scale analytic solution (2.7) with black: dashed line for
synchronization case, and with full line unsynchronized case for ε = 0.36 exhibiting phase slips

ε
dψ

dτ
=ω − Ã sin(z) − ε sin(ψ)

dz

dτ
=ν. (2.4)

As ε → 0 the trajectories of system (2.3) converge during slow epochs to solutions
of the slow subsystem (2.4)—often called the critical manifold or quasi-steady state.
Substituting τ back for the z variable (z = τν = ω̃t), the solution of the slow
subsystem is expressed as:

ψ(t) = arcsin
(ω − Ã sin(ω̃t)

ε

)
. (2.5)

The results, for particular parameters are presented on Fig. 2.2. The synchronized
case on Fig. 2.2a shows the phase difference variations with period T = ω̃/2π,
while the intermittent synchronization and the transitions to in and out of synchrony
are presented on Fig. 2.2b. Both examples demonstrate that for slow non-autonomous
source, solution (2.5) resembles the dynamics in good agreement with the numerical
simulation (compare red and grey lines).

The stability of the phase difference ψ(t), and thus the synchronization state, can
be determined by linearization about the quasi-steady equilibrium. Linearization for
the solution (2.5) yields:

dψ(t)

dt
= −ε

√
1 − [ω − Ã sin(ω̃t)]2

ε2 .
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The stability requirement (dψ(t)/dt < 0) gives the synchronization condition:
[ω− Ãsin(ω̃t)]/ε < 1. The latter allows the critical couplings for transitions between
synchronization, intermittent synchronization and non-synchronization to be deter-
mined:

⎧⎪⎨
⎪⎩

ε > ω + Ã : synchronization

ω − Ã < ε < ω + Ã : intermittent synchronization

ω − Ã > ε : non-synchronization

Even though the solution for the slow time scale (2.5) qualitatively captures the
dynamics (as shown on Fig. 2.2a, b), it fails to describe the fast transitions, as pointed
out on the enlarged segment on Fig. 2.2c. Also the dynamics perturbed by faster non-
autonomous sources can not be described by the same solution—Fig. 2.2d. This is
where the fast epochs of the original system play an important role.

During the fast time-scale, as ε → 0 the trajectories of system (2.3) converged to
solutions of:

dψ

dt
= ω − Ã sin(ω̃t0) − ε sin(ψ), (2.6)

where dz(t)/dt = 0, hence z(t) = const = z0 = ω̃t0 in the limit ε → 0. Equa-
tion (2.6) describes autonomous case of two coupled phase oscillators—the solution
of which can be express as:

ψ(t) = arctan

(
1

ωa

[
tan

(
1

2
t
√
ω2

a − ε2

)√
ω2

a − ε2 + ε
])

, (2.7)

where ωa = ω − Ã sin(ω̃t0) for simpler notation. The latter solution Eq. (2.7)
is responsible for the dynamics of the fast synchronization transitions. The phase
slips appearing where the slow-time scale solution is not defined (horizontal lines,
Fig. 2.2b, c)—are govern by dynamics described by this solution (2.7)—Fig. 2.2e.
The fast initial transient dynamics are also described by Eq. (2.7). The physical inter-
pretation implies that the effect from the fast external sources on averaged is reduced
within one cycle of oscillation, and the variations of ψ(t) are hinder, converging to
the autonomous case.

For the intermediate case when the external variation is moderately fast and not
very slow, the effect on the synchronization i.e. phase difference is significantly
reduced but still present. For example, if one keeps the same amplitude, but varies
the speed of the non-autonomous term gradually from very slow to very fast—
the variations of the phase difference will gradually decrease (and so the effect on
synchronization), until the limit for very fast scale ε → 0 is reached. As described,
at this point the variations of the phase difference completely vanish, and the state
of the autonomous coupled systems is reached.

The multiple time-scale approach allowed the dynamics of the full system (2.2)
to be described and understand by analyzing the fast and slow time-scale subsystems
(2.3) and (2.4), respectively. The solution (2.5) of the slow subsystem described
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the time-varying dynamics and the intermittent synchronization transitions. The fast
time-scale solution (2.7) converged to solution of autonomous synchronization case.
The latter solution described the fast transitions and the phase slips dynamics during
the unsynchronized states.

2.4 Limit-Cycle Oscillators Model

In this section the synchronization phenomenon is presented on a model of interacting
limit-cycle oscillators. The effect of the non-autonomous sources on the interactions
is studied both on phase and amplitude dynamics. Dynamical characterization is
also shown for different types of non-autonomous sources, acting on several impor-
tant properties of the oscillators’ interaction. The systems also serve as model for
determination of the stability and synchronization state.

2.4.1 The Model

The Poincaré oscillator was chosen as an example of a non-autonomous limit-cycle
system whose dynamical field can be made explicitly time-dependent. In polar coor-
dinates (r,φ), it rotates at a constant-frequency, attracted with exponential velocity
towards the radius, ṙ = αr(a − r); φ̇ = ω. Here φ represents both the angle variable
and the phase of the oscillator, making it isochronous oscillator. Another advan-
tageous property of the Poincaré oscillator is that the signal is purely sinusoidal,
without any high frequency harmonics, which allows better traceability of any fre-
quency variations over time.

A model of two weakly interacting Poincaré oscillators in terms of Euclidean
coordinates, takes the form:

ẋ1 = −q1x1 − ω1(t)y1 + ε1(t)g11(x1, x2)

ẏ1 = −q1 y1 + ω1(t)x1 + ε1(t)g12(y1, y2) (2.8)

ẋ2 = −q2x2 − ω2(t)y2 + ε2(t)g21(x1, x2)

ẏ2 = −q2 y2 + ω2(t)x2 + ε2(t)g22(y1, y2) (2.9)

qi = αi

(√
x2

i + y2
i − ai

)
.

The dynamics of each subsystem is described by states (xi , yi ), where i = 1, 2
denotes the oscillator. Parameters αi and ai are constants (ai being the amplitude
parameter),ωi are angular frequencies, εi are the coupling amplitudes and gi1(x1, x2),
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gi2(y1, y2) are the coupling functions. The frequency and coupling parameters each
consist of a leading constant part and a small non-autonomous term: ω1(t) = ω1 +
Ã11 sin(ω̃11t), ω2(t) = ω2 + Ã21 sin(ω̃21t), ε1(t) = ε1 + Ã12 sin(ω̃12t) and ε2(t) =
ε2 + Ã22 sin(ω̃22t), where Ãi1 and ω̃i1 are small compared to ωi , while Ãi2 and ω̃i2
are small compared to εi . Note that, in the absence of the non-autonomous terms
( Ã11 = Ã12 = Ã21 = Ã22 = 0), the oscillators generate self-sustained oscillations
[19, 23]. This implies that the non-autonomicity here should be seen, not as a source of
oscillations, but more as an external perturbation/influence on the autonomous form
of the oscillators, which of course have their own inherent oscillatory dynamics. In
this case, the non-autonomous terms present in the system (2.8, 2.9) obviously come
from periodic external modulations—some forms of non-periodic non-autonomous
terms, and their implications for synchronization, are discussed in Sect. 2.4.6.

2.4.2 Analytic Calculations

As already indicated, the phases of the oscillators in Eq. (2.8) are given by the angular
coordinate φ:

φ̇i = d

dt
arctan

yi

xi
,

where the arctan is defined as four-quadrant operation. Developing the right-hand
term for the derivative of the phase difference ψ̇ ≡ φ̇2 − φ̇1, one obtains:

ψ̇ = −ω2(t) + ω1(t) + cosφ2

r2
ε2(t)g22(x1, x2) − sin φ2

r2
ε2(t)g21(x1, x2)+

− cosφ1

r1
ε1(t)g12(x1, x2) + sin φ1

r1
ε1(t)g11(x1, x2). (2.10)

The case where the coupling functions are linear and of the form: g1(x1, x2) =
x2 − x1, g2(y1, y2) = y2 − y1, g3(x1, x2) = x1 − x2, g4(y1, y2) = y1 − y2 was
considered. After some trivial algebra, the analytic expression for ψ̇ is obtained
(details given in Appendix B).

Next, a change of variables was performed by substitution of φ2 = ψ + φ1.
Because φ1 changes much faster that ψ, one can average ψ̇ by integrating over φ1:

〈ψ̇〉 = 1

2π

∫ 2π

0
ψ̇ dφ1 = −ω2(t) + ω1(t) −

(
ε2(t)

r1

r2
+ ε1(t)

r2

r1

)
sinψ.

Similarly, after the integration of the fast variable, one can write the mean velocity
of the amplitudes r1 and r2 as:

〈ṙ1〉 = 1

2π

∫ 2π

0
ṙ1 dφ1 = a1r1α1 − r1

2α1 − ε1(t)(r1 − r2 cosψ)
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〈ṙ2〉 = 1

2π

∫ 2π

0
ṙ2 dφ2 = a2r2α2 − r2

2α2 − ε2(t)(r2 − r1 cosψ).

To obtain an equilibrium solution for the synchronization regime requires that one
solves ⎧⎪⎪⎨

⎪⎪⎩
ψ̇ = ω1(t) − ω2(t) +

(
− r2ε1(t)

r1
− r1ε2(t)

r2

)
sinψ = 0

ṙ1 = a1r1α1 − r1
2α1 − r1ε1(t) + r2ε1(t) cosψ = 0

ṙ2 = a2r2α2 − r2
2α2 − r2ε2(t) + r1ε2(t) cosψ = 0

(2.11)

and analyze the equilibrium of the system in respect of the three variablesψ, r1, r2. To
find the solution for the system in Eq. (2.11) a numerical multidimensional minimizer
[24] was employed, which returns a solution {ψeq, r1eq, r2eq}. The equilibrium is
stable when the eigenvalues of the Jacobian matrix of the functions {ψ̇, ṙ1, ṙ2}, in
respect of the three variables {ψ, r1, r2}, have negative real parts.

It is important to note that this approach of stability analysis through the eigen-
values for the parameters at each time i.e. through instantaneous eigenvalues, is not
valid in general when the systems are time-varying. There are number of practical
examples, however, where this approach has been safely used for determination of
synchronization [25, 26], but also some counter examples were pointed out as well
[27]. For the model under investigation and the types of non-autonomous sources
considered, this approach was able to determine correctly the stability of system
(2.11) and the synchronization state. The last was consistent with other methods for
synchronization detection, Lyapunov exponents evaluation and numerical bifurca-
tion analysis.

2.4.3 Dynamical Behaviour and Synchronization Analysis

There are many natural oscillatory systems that have characteristic frequencies which
vary in time, examples being the cardiovascular system [28–30] and brain [31]. In
order to understand them, one needs to consider the origins of this variability and
to establish how it affects the nature of the oscillations and the mutual interactions
between the oscillators. As a first step, synchronization between a pair of limit-cycle
oscillators is studied, where one of the oscillators has an explicitly time dependent
frequency. It is unidirectionally coupled to the other oscillator, which is autonomous.
The two Poincaré oscillators (2.8) and (2.9) are set up with the following parameters:
αi = ai = 1, ε1 = 0, ε2 = 0.38, f1 = 1 Hz, f2 = 0.95 Hz (where ωi = 2π fi ;
i = 1, 2) and the coupling functions are specified as linear g21(x1, x2) = x1 − x2
and g22(y1, y2) = y1 − y2. The oscillating frequency of the first oscillator is time-
varying due to the presence of the non-autonomous term—in respect of parameters
this mean that Ã11 = 0.23 and f̃11 = 0.003 Hz, and the other parameters are
Ã12 = Ã21 = Ã22 = f̃12 = f̃21 = f̃22 = 0.
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(a)

(d)

(b) (c)

Fig. 2.3 Dynamical behaviour of the unidirectionally-coupled (1 → 2) Poincaré oscillators (2.8,
2.9), with slow periodic variations in the frequency of oscillator-1. The parameter values used are
given in the text. a Signals x1(t) and x2(t) are shown by the full and dashed lines respectively. Parts
b and c show time-frequency analyses of x1(t) and x2(t) respectively using the wavelet transform.
The variations in frequency and amplitude can be seen from the lines of peak values, and their
projections on the amplitude-time planes, respectively. d Comparison of analytically evaluated
(r2(t), ψ(t)) and numerical (x2(t)) analyses. The values for ψ(t) are given in {−π,π} radians

The model was simulated numerically by fourth-order Runge-Kutta integration;
the same method was also used for the other simulations described below. The time
evolution of the signals is shown on Fig. 2.3a. The corresponding time-frequency
wavelet representation of the first oscillator is shown in Fig. 2.3b (details about
wavelet analysis are given in Chap. 4). The time-frequency variations of the peak
value line are clearly evident. For the chosen parameters, the oscillators can synchro-
nize, even though the frequency of the first oscillator is time-varying. The second
oscillator oscillates with a correspondingly time-varying frequency Fig. 2.3c, due to
the effect of synchronization. The oscillator has turned from one whose frequency is
constant into one whose frequency is time-varying, and in order to retain the phase
locking its amplitude also starts to vary with time (shown in Fig. 2.3a and on the pro-
jection in Fig. 2.3c). The variations of r2 and ψ are presented in Fig. 2.3d. It is imme-
diately evident that the phase difference is not constant (as in classical autonomous
synchronization) but varies with time, as imposed by the non-autonomous term. The
evaluation of the stability condition of (r1eq(t), r2eq(t),ψeq(t)) for system (2.11)
showed that the two oscillators are synchronized.

Next, it was investigated what happens when the two oscillators lose synchrony.
The coupling was set to ε2 = 0.26 and the amplitude of the non-autonomous term
was increased to Ã11 = 0.25; (all the other parameters were same as in Fig. 2.3). It
was found that for some intervals within the period of the non-autonomous modu-
lation (the light gray regions in Fig. 2.4a) the conditions for synchronization do not
hold: (r2eq(t),ψeq(t)) is unstable or does not exist, a continuously-running phase
appears and the two oscillators lose synchrony. More precisely, they go in and out
of synchrony as time passes, i.e. there is intermittent synchronization.

The existence of synchronization and the corresponding transitions were inves-
tigated by application of method for the detection of phase synchronization—

http://dx.doi.org/10.1007/978-3-319-00753-3_4
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(a)

(b)

(c)

Fig. 2.4 Intermittent synchronization transitions for unidirectionally coupled (1 → 2) Poincaré
oscillators (2.8, 2.9). a r2(t),ψ(t) are obtained from analytic calculations and x2(t) (only its envelope
is resolved) from numerical simulation. The light gray regions indicate the non-synchronous state.
The dashed lines of ψ(t), r2(t) within this state indicate existence of phase-slips or that an analytic
solution does not exist. b 1:N synchrogram for the case under (a). c 2:N synchrogram showing
synchronization transitions from 2:2 to 2:3 ratio

synchrogram [3] (Fig. 2.4b, c. Details of the implementation are given in Appendix
C.) The synchrogram provides a qualitative measure where (for autonomous systems)
the appearance of horizontal lines is normally taken to correspond to the synchronous
state. The method clearly detect synchronization consistently with our analysis. The
synchrograms show, however, that now synchronization is characterized by a smooth
curve rather than a horizontal line, owing to the continuously changing phase shift
induced by the non-autonomous modulation.

The non-autonomous source can also induce transitions between different fre-
quency synchronization ratios. This situation is often encountered in high order
interactions of open oscillatory systems—obvious example being the cardiorespi-
ratory system (to be discuss in later chapters). Numerical example of this kind is
presented on Fig. 2.4c—the Poincaré oscillators (2.8, 2.9) now had quadratic cou-
pling function g21(x1, x2) = (x1 − x2)

2 and g22(y1, y2) = (y1 − y2)
2, with other

parameters Ã11 = 0.4, ω̃11 = 0.008 Hz, ω1 = 2, ω2 = 3.013 and ε2 = 0.8. The syn-
chrogram shows consecutive transitions from 2:2 (or 1:1) to 2:3 frequency locking,
with short non-synchronized epoches in between. The external influence caused not
only the system to loose and gain synchrony, but also induced qualitative transitions
between different synchronization states.
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Another important property that defines the states of an interaction is the coupling
strength. Similarly, to the previously discussed case of time-varying frequency, the
coupling parameter can also be affected by non-autonomous force, turning the syn-
chronization state time-varying. The corresponding phase difference and amplitudes
will turn time-varying, while the oscillating frequencies will not vary substantially.
There can be synchronization transitions depending on the nature of the external
force.

The definition states that the synchronization phenomenon is a result of the inter-
play between the frequency missmach and weak interaction between the oscilla-
tors. Hence, the interaction of oscillators found in nature often encounter the case
where a non-autonomous external modulation is acting on both the frequency and
the interaction strength at the same time. Moreover, the time-varying interactions
can be bidirectional, affecting both of the oscillators and the underlying synchro-
nization state. Such circumstances are relatively complex, but they reflect more
closely the time-variability present in the open complex oscillatory systems found
in nature [28]. Therefore, the two Poincaré oscillators were investigated each with
non-autonomous time-varying frequency, interacting bidirectionally, with the cou-
pling amplitude time-varying as well. This represents the full model (2.8, 2.9) i.e.
where all the components are active and none of the parameters is zero. Furthermore,
the non-autonomous parameters were considered to be unequal, so that the time-
variability introduced is different in each oscillating frequency and coupling ampli-
tude. In respect of non-autonomous parameters this meant that: Ã11 = 0.3, Ã21 =
0.225, Ã12 = 0.155, Ã22 = 0.13, f̃11 = 0.005, f̃21 = 0.0075, f̃12 = 0.004 and
f̃22 = 0.0045. The rest of the parameters were set to be: αi = ai = 1, ε1 = 0.32,
ε2 = 0.4, f1 = 1 Hz and f2 = 0.95 Hz. The results presented on Fig. 2.5 indicate
that due to the external forces, both of the amplitudes and the frequencies are vary-
ing with time, while the oscillators are in a state of synchronization. The form of the
variations is rather complex, even though the non-autonomous sources are simple
periodic signals. It is important to note that this complex figure will cause potential
difficulty to a data analyst when trying to identify the nature of the dynamics and
the effect on synchronization. Therefore, proper tools are needed for inference and
analyses of the underlaying dynamical characteristics.

The external source can affect different properties of the systems, here only the
cases that are of interest for this study were outlined. For example, the unidirection-
ally coupling can be reverse, where the autonomous can drive the non-autonomous
oscillator. In this case the time-variability can be reduced or totally suppressed. The
non-autonomous source can affect not only the parameters, but also the functional
relationship existing among the oscillators. Very important example of this kind is
the time-variability of the coupling function—for which special attention will be
given in the next chapter.
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(a) (b) (c)

Fig. 2.5 Numerical simulations of bidirectionally coupled Poincaré oscillators (2.8, 2.9), with
variations in the oscillator frequencies and the strengths of the inter-oscillator couplings, but such
that the oscillators remain in synchrony. a Signals x1(t) and x2(t) are indicated by full blue and grey
dashed line respectively. Time-frequency wavelet analysis is applied (b) to x1(t) and (c) to x2(t)

2.4.4 Stability and Bifurcation Analysis

This section presents the analysis needed to determine the stability of synchroniza-
tion state of non-autonomous oscillators. Note that the investigating is not focused
on the stability of the oscillators themselves, but on the stability of the composite
system (2.11), through which one can determine whether or not the two oscillators
are synchronized [3, 32]. One can do this by evaluation of the three eigenvalues
obtained from the Jacobian matrix of the linearized system (2.11), λ1,λ2,λ3, for
given parameters at every instant of time. Because the oscillating systems (2.8, 2.9)
have a relatively large number of parameters, especially those coming from the four
non-autonomous terms, there are rich possibilities for dynamical changes in stability
and bifurcations: e.g. changes in stability, bifurcation points, changes in the nature
of stability, the existence or absence of a solution, etc. For the sake of clarity, the
presentation is restricted to the case of unidirectional coupling with only one non-
autonomous source applied to the oscillating frequency. The parameters of the model
are the same as in the example of Fig. 2.3, except for ε2 = 0.255, Ã11 = 0.23 and
f̃11 = 0.0015 Hz.

Figure 2.6a shows the signal x2(t) from the second oscillator together with the real
and imaginary parts of the corresponding eigenvalues, from which one can observe
the stability of system (2.11) over a long time span. The actual stability analysis
for the transition from synchronization to non-synchronization (and vice versa) will
be discussed in relation to the short time segment shown in Fig. 2.6b. The stability
will be investigated through observation of the eigenvalues in four characteristic
regions. In region I, the real parts of the eigenvalues are all negative and there are no
imaginary parts (they are all equal to zero). This means that the equilibrium solution
of (2.11) is a stable node and that the two oscillators are synchronized. On crossing
into region II, two complex conjugate eigenvalues appear. The real parts are still
negative, however, and so the equilibrium is still stable, but it has now turned into
a stable spiral. When crossing from region II into region III.1, the real parts of the
complex eigenvalues become positive, and a Hopf bifurcation occurs. This point is
denoted by the small circle in Fig. 2.6b. The equilibrium has become unstable and,
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Fig. 2.6 Stability analysis of the synchronization state for unidirectionally-coupled (1 → 2)
Poincaré oscillators (2.8, 2.9). a Three black lines for the real parts of the eigenvalues of sys-
tem (2.11) (with solid, dashed and dotted lines) and three brown lines for the imaginary part of
the eigenvalues of system (2.11), together with signal x2(t). Note that the lines overlap occasion-
ally. Two different colors exist for the qualitatively distinct (real and imaginary) groups of lines.
b Loss of synchronization and stability through a Hopf bifurcation together with other stabil-
ity/synchronization characteristic regions: I–III.2 (separated by black vertical dashed lines). This
panel provides enlarged time segment for one transition from (a); cf. the time scale on (a) compared
with (b)

because the imaginary parts still exist, it is an unstable spiral. Starting from entry
to region III.1 the oscillators oscillate in synchrony, even though the equilibrium
of (2.11) is unstable. This discrepancy can be seen as a transitional region where
the synchrony is “fading away”. The phase difference ψ(t) grows rapidly (spiraling
out) until phase slips appear overtly in region III.2. Here the oscillators are not in
synchronization.

Similarly, one can observe a stability/synchronization analysis of the case when
the oscillators make a transition from the non-synchronous to the synchronous state.
The phase slips then disappear and the phase difference ψ(t) decreases, spiraling
inwards. Note that the bifurcation point in Fig. 2.6b is presented in terms of time,
and not in respect of parameters as normally. One may do so, because the parame-
ters are explicitly time-dependent and are thus fully determined at every instant of
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(a) (b)

Fig. 2.7 Amplitude-coupling bifurcation diagram describing synchronization of the Poincaré oscil-
lators (2.8, 2.9). a The autonomous case, illustrating stable synchronization above εA. b The non-
autonomous case with time-varying frequencies, where intermittent synchronization occurs within
the range 0.124 < εN A2 < 0.221. Each numerical run has random initial conditions and the first
transient 1,000 s are discarded

time—which is advantageous for this kind of non-autonomous analysis, because
one can observe the qualitative changes through bifurcation together with the
other dynamical properties (e.g. signals, instantaneous phase, synchronization state)
throughout all time.

For completeness, however, an alternative representation of the bifurcation phe-
nomena, in terms of parameters is presented. The bifurcation diagram (often referred
as an orbit diagram, since it does not present the unstable objects [33]) is constructed
directly from the time-series of the numerical simulation of the oscillators. This
classical method was used extensively in the past to study synchronization and/or
chaotic behavior [34–36]. First, the method is presented for the classical case of
two autonomous oscillators. The results are used later for comparison with the non-
autonomous case. For autonomous oscillators, there are no time-variations Ã11 = 0,
the two oscillators are unidirectionally coupled, the frequencies are f1 = 0.15 Hz,
f2 = 0.11 Hz and all the other parameters are the same as in Fig. 2.3. One can
observe the time series in respect of the coupling amplitude, following a long inter-
val for transient effects to die away. For fixed values of the coupling amplitude, one
plots the points from the phase space of the second oscillator each time when the
first oscillator passes through a perpendicular phase plane. The latter can be inter-
preted also as: points equally separated in time by the period (T1 = 1/ f1) of the
first oscillator. In practical terms, the model (2.8, 2.9) was simulated for specified
coupling amplitudes (e.g. ε2 = 0.15), and then the maxima (or zero-crossing, or
other) events from the first oscillator were marked. From the times of these points,
one then plots vertically (for ε2 = 0.15) the points of the second oscillator. The cor-
responding bifurcation diagram is shown in Fig. 2.7a. One may note that, for small
coupling amplitudes, the points of the second oscillator are spread widely and the
two oscillators are not synchronized. The bifurcation point appears for the critical
coupling amplitude εA ≈ 0.192, above which the two oscillators are synchronized;
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this state is characterized by all points for a given coupling value coinciding in a sin-
gle point, and therefore forming a smooth curve as the coupling amplitude is varied.
This result was in good agreement with the outcome of the analytic investigation, for
which the equilibrium solution of the system (2.11) passed from unstable to stable
synchronization at the critical coupling εA ≈ 0.192.

Next, a bifurcation diagram in much the same way was considered, but for the
non-autonomous case. The time-varying frequency case of the two unidirectionally
coupled oscillators was observed with Ã11 = 0.1, f̃11 = 0.0025 Hz and the other
parameters as in Fig. 2.7a. In constructing the bifurcation diagram one cannot assume
that the points from the first oscillator are equally separated in time, because the oscil-
lating period is now varying due to the non-autonomous source. Instead, detection
of the points as the maxima of each cycle of the first oscillator was performed. This
makes the method adaptive, in a sense, because one can trace the variations in order
to detect the different oscillating period in each cycle. From these time events, the
points of the second oscillator are plotted in respect of the coupling amplitude ε2. The
corresponding bifurcation diagram is shown in Fig. 2.7b. For small coupling ampli-
tude (ε2 � εN A1 = 0.124) the points of the second oscillator are spread widely,
corresponding to the two oscillators not being synchronized. For increased values
of the coupling (up to ε2 � εN A2 = 0.221) the oscillators are intermittently syn-
chronized. The transitions in and out of synchrony are due to the periodicity of the
non-autonomous term, while the total time in which the oscillators are in synchrony
rises as the coupling amplitude increase. For a sufficient coupling amplitude, above
some critical value εN A2 ≈ 0.221, the two oscillators undergo continuous synchro-
nization: they remain phase-locked even though their oscillatory frequencies vary
with time. From Fig. 2.7b one can notice that the synchronization state is not now
characterized by a very dense line, but by a bounded dense region. This results from
the existence of a small and bounded phase shift.

2.4.5 Non-Autonomous Phase Shift and Lag Synchronization

When two oscillators are synchronized in the classical autonomous way, the phase
shift is constant. In synchronization of non-autonomous self-sustained oscillators,
the phase shift is varying, because the conditions (e.g. oscillating frequencies, cou-
plings, …) for synchronization are varying in time. In other words, the interacting
state is continuously changing through different synchronization states in time, with
a time-varying phase shift and amplitudes—but staying synchronized all the time,
with a continuously stable solution for the phase difference (system (2.11)). The
time-varying phase shift implies immediately that, under these conditions, lag syn-
chronization [37, 38] is not possible. This was verified by the use of a similarity
function S, which quantifies the time-averaged difference between the two state
variable x1, x2 taken with the time shift τ , [37]:
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S2(τ ) = 〈[x2(t + τ ) − x1(t)]2〉
[〈x2

1 (t)〉〈x2
2 (t)〉]1/2

.

By analyzing the minimum σ = minτ (S(τ )), one can determine whether the two
oscillators undergo lag synchronization. It was found that in synchronization of non-
autonomous oscillators, the minimum σ cannot be sharp and nearly equal to zero
(and that the minimum σ is always larger than that from autonomous synchronization
under the same conditions). This is because neither the time lag nor the amplitude is
constant over the whole time of observation. For very large couplings the variations
of the phase difference and the amplitudes can be suppressed. The two states then
became identical, x1(t) = x2(t), and the oscillators are in complete synchronization.

2.4.6 Sources of Non-Autonomous Dynamics

The external modulations acting as sources of non-autonomicity can be of widely
differing natures, forms, intensities and speeds. In the above discussion, for the
sake of clarity and simplicity, the non-autonomous external source was taken to be
periodic with a simple sinusoidal form. In general, of course, the external source may
be of a more complex form and nature, e.g. quasi-periodic, non-periodic, chaotic, or
stochastic.

2.4.6.1 Conditions

The non-autonomous term itself should fulfil two conditions in order to affect the
underlying onset of synchronization (or at least to do so in the manner considered in
this study):

1. The amplitude of the external source should be relatively bounded with intensity
smaller then the property affected. For example the Ã11 in Sect. 2.4.3 on Fig. 2.3
should be small compared toω1. For very large intensity the oscillatory dynamics
may become qualitatively different (for example, exhibiting chaotic behavior or
unstable oscillations), which would be beyond the scope of our interest—which
is synchronization between weakly-coupled limit-cycle oscillators.

2. More important, the variations should be slow compared to the oscillatory
dynamics of the affected oscillator. In other words, if the frequency of the non-
autonomous term is equal to, or larger than, the frequency of the oscillators,
the variations do not affect qualitatively the onset of synchronization. This was
the consequence of the fast-time scale solution from the coupled phase oscilla-
tors model in Sect. 2.3. The point is that, if the non-autonomous external source
introduces variations that are faster than the period of oscillation, they can be
averaged within one period of the oscillations, not affecting the synchronization
state.
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Stochastic External Source

Interactions between oscillators in the presence of random stochastic processes have
been studied extensively in the past [3, 39, 40] and it has been shown that noise
can either induce the synchronization between the oscillators or attenuate it [40–42].
Recently stochastic phase reduction for limit-cycle oscillators has been achieved
for noises of different kinds [43, 44]. Such studies are typically based on a statis-
tical approach (e.g. Fokker-Planck analysis): it is necessary to have a long time of
observation (t → ∞) and the measures are statistically averaged over time. In prac-
tice, however, the time of observation is often restricted to shorter intervals, or there
is a need to identify certain states in real time, and at every point of time, e.g. in
biomedical measurements or communications.

The main features of the earlier discussion of synchronization of non-autonomous
oscillators are reconsidered briefly, but for the case when the non-autonomous exter-
nal sources are stochastic rather than periodic. The Ornstein-Uhlenbeck stochastic
process was used as the non-autonomous source of modulation in the model (2.8,
2.9):

η̇(t) = −1

τ
η(t) +

√
2D

τ
ξ(t)

where τ and D are the correlation time and noise strength respectively, and ξ(t)
is Gaussian white noise. The statistical properties of the colored noise are then:
〈η̇(t)〉 = 0 and 〈η̇(t)η(s)〉 = D

τ e−|t−s|/τ . One can consider the unidirectionally
coupled case of time-varying frequency from Sect. 2.4.3 presented on Fig. 2.3 (the
same effect can be observed for time-varying couplings). The noisy source was added
to the natural frequency of the first oscillator: ω1(t) = ω1 + η(t), but all the other
parameters and conditions were kept the same. The correlation time and the strength
of the colored noise were τ = 50 and D = 25. The resultant numerical signal is
presented in Fig. 2.8a.

From Fig. 2.8b, c, it is clear that the amplitude and frequency of the second oscil-
lator now vary too, due to the effect of the synchronization. One can noticed that, in
accord with the above discussion of the frequency of variation of the non-autonomous
source, only the lower-frequency components of the Ornstein-Uhlenbeck process
affect the variations, whereas the higher frequencies did not, because they were
faster than a period of the first oscillator. Using the observations made in Sect. 2.4.2
one can find that all the eigenvalues have negative real parts, demonstrating that the
two oscillators remained synchronized while their frequencies are varying, following
the dynamics of the stochastic source.

Chaotic External Source

The next case to be consider was when the source of non-autonomicity is a
quasi-periodic signal generated by a chaotic deterministic system. Its worth noting
en passant that chaotic systems have played an important role in synchronization
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(a)

(b)

(c)

(d)

(e)

Fig. 2.8 Synchronization of unidirectionally-coupled (1 → 2) Poincaré oscillators (2.8, 2.9),
under conditions where there are stochastic (a)–(c) and quasi-periodic variations (d)–(e) in the
frequency of oscillator-1. a Time evolution of the colored noise signal η(t). b The signal x2(t) and
the numerically evaluated phase difference ψ(t). c Contour plot of wavelet analysis of the signal
x2(t) from the second oscillator. d Time evolution of the chaotic signal z(t) and the signal x2(t) from
the second oscillator (seen as its envelope). e Wavelet analysis of x2(t) from the second oscillator.
The frequency variations are indicated by the black line plotting the locus of the peak values

theory, both in studying the interactions among chaotic systems and defining new
synchronization concepts [7, 10, 11]. Synchronization of chaotic systems and peri-
odic non-autonomous sources has been studied in [45, 46]. Here, the interest is more
in using the non-periodic forms of signals generated by chaotic systems, rather than
in the chaotic properties of the systems. The well-known Lorenz system [47] was
used, in the following form:

γ ẋ = σ(y − x)

γ ẏ = x(ρ− z) − y (2.12)
γ ż = xy − βz

where the parameters were set to be: σ = 10, β = 8/3 and ρ = 28. The constant
parameter γ = 0.005 was introduced in order to reduce the velocity in the system, so
that the frequency of the signals would be low compared to those of the oscillators.

Again the unidirectionally coupled case of synchronization was considered, with
the frequency of the first oscillator being time-varying (Sect. 2.4.3, Fig. 2.3). The
non-autonomous source now is taken to be z(t) from (2.12), presented in Fig. 2.8d.
The time-varying frequency is defined as: ω1(t) = ω1 + Ã(z(t) − c̃), where Ã =
1/60, c̃ = 23 and the other parameters are all as discussed before. Under these
conditions, the two oscillators can synchronize. In order for the second oscillator to
be synchronized and to stay in frequency entrainment, its amplitude and oscillating
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frequency start to vary, as imposed by the quasi-periodic non-autonomous source as
shown in Fig. 2.8d, e.

2.4.7 Generalization of the Model

It is reasonable to wonder to what extent the above results are general, rather than
confined to the particular model (2.8, 2.9) of two Poincaré oscillators. The Poincaré
oscillator as a unit, in its uncoupled form, is a radial isochronal oscillator. All trajec-
tories starting at one point of φ go to the same asymptotic phase and, as mentioned
above, the variable φ represents both the phase and the angle variable (φ̇ = ω). There
is, however, a vast group of limit-cycle oscillators where the local oscillatory fre-
quency depends on the local amplitude. The terms introducing this nonisochronicity
are related to the shear of the phase flow near the limit cycle. Synchronization of
oscillators with shear terms has been studied along with the oscillation death (Bar-
Eli) effect [32, 48]. It was reported [49, 50] that nonisochronicity can be a cause of
anomalous phase synchronization in a population of non-identical oscillators.

The phenomenon of synchronization between non-autonomous oscillators was
observed in a variety of limit-cycle oscillators, including van der Pol and Stuart-
Landau oscillators, as well as the Poincaré oscillators with shear terms. It was found
that the qualitative characteristic of the synchronization under such non-autonomous
conditions was valid for the other types of limit-cycle oscillators. The results of
analogue experiments exploring synchronization between non-autonomous van der
Pol oscillators will be presented in Chap. 5.

2.5 Non-Autonomous Coupling Function

So far the discussion was focused on non-autonomous parameters and how they affect
the interactions. Another important property that characterizes the interactions among
oscillators is the coupling function. Opposite to closed autonomous oscillators, the
coupling function in open oscillatory systems can vary in time, both in intensity
and form. In fact, a functional relationships that characterize the cardiorespiratory
interactions are time-varying (as will be demonstrated in the following chapter).

But, why is coupling function important and how does it affect the interactions?
It defines the functional law about the interactions and the law by which the inter-
action undergo transitions to synchronization i.e. transitions to equilibrium stability.
(Qualitative description about the role of coupling function in oscillatory interaction
is discussed in more details in Chap. 3 Sect. 3.3.2).

In order to investigate how the coupling function can affect the interacting sys-
tems and cause transitions to synchronization, a special case was considered where:
the time-variability of the form of the coupling function alone is the cause for
synchronization transitions. This was accomplished by maintaining the parameters

http://dx.doi.org/10.1007/978-3-319-00753-3_5
http://dx.doi.org/10.1007/978-3-319-00753-3_3
http://dx.doi.org/10.1007/978-3-319-00753-3_3
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Fig. 2.9 Coupling function and synchronization transition as a result of its time-variability. a Form
of the coupling function Eq. (2.13) with constant a(t) = 1 and b(t) = 1. Phase difference (b) and
coupling function q1(ψ(t)) (c) for system (2.14) indicating the synchronization transition due to
the variability of the function of interactions. The parameters for the coupling function are varied
linearly in time: a(t) = 0 → 1.4 and b(t) = 1.4 → 0; rest of parameters are constant: ε1 = 0.013,
ε2 = 0.01, ω1 = 0.11 and ω2 = 0.07

(frequencies ωi and coupling strengths εi ) constant, while the form of the coupling
function is varying by some predefined non-autonomous source.

A coupling function represented in the reduced phase model: φ̇i = ωi +
εi q(φi ,φ j ), should be a 2π-periodic function. In his phase models Kuramoto [20]
used a simple sine form function of the phase difference q(φ1,φ2) = sin(φ2 − φ1),
Winfree [51] used function that is defined by both phases rather than just the phase
difference q(φ1,φ2) = [1 + cos(φ2)] sin(φ1), while Daido and Crawford [52–54]
used more general form where the function can be expanded in Fourier series. Here
the discussion is concentrated on numerical simulation of two coupled phase oscilla-
tors (similar to those presented with Eq. 2.2), but the coupling function for the phase
difference consists of four Fourier components up to the second order:

q(φ) = a(t) sin(φ) + b(t) cos(φ) + a(t) sin(2φ) + b(t) cos(2φ), (2.13)

where the a(t) and b(t) parameters are considered to be time dependent terms.
The form of the coupling function is presented on Fig. 2.9a. The simple model for
investigation will then have the following form:

φ̇1 =ω1 + ε1q1(φ2 − φ1) (2.14)
φ̇2 =ω2 + ε2q2(φ1 − φ2).

By changing the parameters a and b in time one can vary the form of the coupling
function. For the case under study, the goal was to maintain the coupling strength
constant while only the form of the function to vary. The latter means that besides the
coupling parameters εi , also the norm of the coupling function should be constant
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throughout the time. Therefore the function parameters a and b were non-autonomous
sources varying linearly (and then square rooted) in time, while the norm of the
function was constant in every instant of the time.

Figure 2.9b shows the phase difference ψ(t) = φ2(t) − φ1(t) which serves as
indicator for synchronization of systems (2.14), i.e. if the phase difference is bounded
(ψ < const) or not. Figure 2.9c shows the dynamical time-evolution of the coupling
function (of second to first oscillator) as a function of phase difference. The two
figures demonstrate that: at the beginning the oscillators are not synchronized and
as the form of the coupling function is varied, the oscillators get more coherent and
around time = 1000 s there is transition to full synchronization. The latter means that
the coupling function changed qualitatively the dynamical behaviour, equilibrium
solution appeared and synchronized stable state is reached.

The non-autonomous coupling functional relation is important because it resem-
bles the dynamics of many real oscillatory systems found in nature. One of the main
systems of interest for this study, the cardiorespiratory system has coupling function
which is evidently time-varying. The latter was discovered by the use of the method
presented in the following chapter.
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Chapter 3
Bayesian Inference of Time-Evolving Coupled
Systems in the Presence of Noise

Open systems are often oscillatory in nature because their dynamics are determined
by a balance between energy inflow, outflow and usage which, in general, do not
match. Their lack of isolation means that such systems often interact with each
other. The strength, direction and the functional relationships can define the nature
of interactions, which can cause qualitative states to appear, such as synchronization
between the oscillators. The time-variability that characterizes the oscillators and
their interactions can cause transitions between the qualitative states.

In order to investigate and study interactions, one usually obtains observable
measurements of the oscillating dynamics in a form of time-series. Through analysis
of these readout signals one can detect and quantify the interacting phenomenons. In
such an inverse approach, often the source of a time-variability can not be uniquely
determined. Additionally, the observable time-series can involve part of a stochastic
indeterministic dynamics, arising due to (for example) influence of the environment
on the dynamics, or due to measurement noise.

For this reasons there is a need for technique that can infer parameters, functional
relationships and transitions between states of the interactions, starting from time-
series observations. Due to the nature of dynamics, the inference should be able
to trace the time-variability of the intrinsic parameters, and at the same time to be
able to deduce the effect of the noise. Offering such a complete and comprehensive
description of the dynamics within a single formalism, the technique can be of wide
applicability.

3.1 Phase Dynamics Decomposition

This section outlines the basic theoretical background for the implementation of
the inferential framework. At the core of the technique lies the Bayesian inferential
framework for stochastic dynamics, utilized to infer a time-evolution of the intrinsic
parameters.
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3.1.1 Main Concept

The methodological approach proposed in this study exploits the Bayesian inferen-
tial technique for inference of noisy time-varying phase dynamics. The parameters,
reconstructed from the base functions, allow the interactions and the respective states
between the oscillators to be determined. The method can be summarized as:

The starting point i.e. the inputs for the inference are multivariate phase time-series
that encapsulate the dynamics of an interacting oscillators. The actual observable
time-series represent instantaneous phases from the measured state signals, pre-
estimated using appropriate phase detection methods (e.g. using Hilbert transform,
angle variable or wavelet synchrosquueze transform).

Decomposition of the phase dynamics embedded within the Bayesian framework
is accomplished through the use of periodic base functions—represented in a form of
finite Fourier series. The use of probabilistic apparatus from Bayesian theory enables
the parameters’ distribution to be inferred. Furthermore, the Bayesian probability
lying at the core of the method is itself time-dependent via the prior probability
as a time-dependent informational process. The outcome of the inference i.e. the
time-varying parameters are then employed to estimate, quantify and describe the
underlying oscillatory interactions. By reconstructing the dynamics in terms of a set
of base functions, we evaluate the probability that they are driven by a set of equations
which are intrinsically synchronized, thus distinguishing phase-slips of dynamical
origin from those attributable to noise.

Estimation of the coupling is directly linked to the parametrization of the base
functions: for oscillators which are similar enough to share the same base functions,
confrontation between the parameters is sufficient for evaluation of which oscillator
drives which. The examination of the interacting base function as a group, can reveal
the functional relationship that describes the interactions among the oscillators.
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3.1.2 Base Functions

When two noisy, N -dimensional, self-sustained oscillators interact weakly [1], their
motion can be described by their phase dynamics:

φ̇i = ωi + fi (φi )+ gi (φi ,φ j )+ ξi (t), (3.1)

leaving all other coordinates expressed as functions of the phase: ri ≡ ri(φi ) [2]. The
constant terms ωi represent the oscillating angular frequencies, the fi (φi ) functions
describe the inner-oscillating dynamics, while gi (φi ,φ j ) functions characterize the
dynamics for the interactions between the oscillators. (The later functions gi (φi ,φ j )

are often referred to as coupling functions). ¸ is a two-dimensional spatially correlated
noise, usually assumed to be Gaussian and white: 〈ξi (t)ξ j (τ )〉 = δ(t−τ )Eij. Reliable
evaluation of the interaction phenomena must rely on precise inference of fi and gi

and of the noise matrix Eij. The periodic nature of the systems suggest periodic
base-functions, hence the use of Fourier terms for the decomposition:

fi (φi ) =
∞∑

k=−∞
c̃i,k sin(kφi )+ c̃i,2k+1 cos(kφi )

gi (φi ,φ j ) =
∞∑

s=−∞

∞∑
r=−∞

c̃i;r,s ei2πrφi ei2πsφ j . (3.2)

The inference of an underlying phase model through use of Fourier series has formed
the functional basis for several techniques to infer the nature of phase-resetting
curves and interactions viz. the structure of networks or proposed synchronization
prediction [3–8]. However, these techniques inferred neither the noise dynamics nor
the parameters characterising the noise.

It might seem natural at this point to consider the phase difference of the two
oscillators, as in the case of synchronization determination. But, due to the need to
extract as much information as possible from the whole dynamical space, the two
dynamical fields φ1 and φ2 are modeled separately.

Assuming that the dynamics are adequately described by a finite number K of
Fourier terms, one can rewrite the phase dynamics of (3.1) as a finite sum of base
functions:

φ̇l =
K∑

k=−K

c(l)k �l,k(φ1,φ2)+ ξl(t), (3.3)

where l = 1, 2, where�1,0 = �2,0 = 1, c(l)0 = ωl , and other�l,k and c(l)k are the K
most important Fourier components.

It is important to note that a use of Fourier series for the phase dynamics is a general
and model-independent decomposition. The latter results from the fact that the phase
inputs used are monotonically increasing with time, regarding of the dimensions and
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the complexity of the signals. The phase φi (t) possess the sufficient information
for the measures required to be inferred: synchronization, directionality and time-
varying phase dynamics. If one were about to decompose the oscillatory interactions
in state space, then the dynamics must be inferred using specific non-general and
model-dependent (e.g. polynomial) base function. The use of state base functions is
discussed in detail toward the end of this chapter in Sect. 3.7.

3.1.3 Bayesian Inference

The following outlines a general inferential framework for stochastic dynamical
processes. An M-dimensional time-series of observational data Y = {yn ≡ y(tn)},
defined over the time-grid tn = nh, is provided. It is assumed that a driving dynamic
exists, described by an L-dimensional (L ≥ M) stochastic process φ(t). The under-
lying dynamics can be described by a set of L-dimensional stochastic differential
equations in the form:

φ̇(t) = f(φ|c)+ z(t), (3.4)

where c is a set of parameters that are embedded in the dynamical field f , and z(t)
is considered to be an L-dimensional white Gaussian noise processes. It is assumed
that the measurement noise is negligible and that a unique relationship exists: y(t) =
φ(t)∀t , i.e. the readout data is also the dynamical variable. A Bayesian inference
technique that includes inference of measurement noise and detailed derivations of
similar inferential framework is discussed in [9–12].

The fundamental question for the inference is: “given the readout data X, what
information can one obtain about the functions f , about their parameters c and about
the noisy processes z?”.

Due to the stochastic nature of the dynamics, the process of information extraction
involves the building of theoretical models that cannot be verified directly but can
be exploited by estimation of their probability. For these reasons, one can employ
Bayesian probability—an approach in statistical inference where the probability is
intended as a subjective measure of belief in an event or in the state of a variable
[13–16]. In particular, the Bayes’ theorem states:

Ppost(M|X) = P(X|M) Pprior(M)∫
P(X|M) Pprior(M)dM

, (3.5)

where M is a set of parameters on which the probabilities are assigned; X represents
the observational data. Pprior(M) is the prior probability of M: the measure of belief
on the particular values of M before the data X was observed. P(X|M) (also called
the likelihood) is the conditional probability of observing X given M. The desired
result Ppost(M|X) is the posterior probability: the probability that the hypothesis
(or parameters) are true, given the data and the previous state of belief about the
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hypothesis. Such a framework is ideal for applications with sequential data—the
current posterior probability can act as a prior for the next sequence of data.

Thus within the Bayesian framework, the problem is reduced to the calculation of
the likelihood function and the optimization of the posterior distribution with respect
to M = {c,E} .

In order to construct the expression for the likelihood function, an additional
assumption is made that the sampling scheme {tn = nh} is sufficiently dense in
respect of the dynamics that the time interval h is small enough for the Euler mid-
point approximation to be valid. If this is the case, Eqs. (3.4) can be approximated
by:

φn+1 = φn + h f(φ∗
n|c)+ zn, (3.6)

where φ∗
n is the average between two consecutive states of the dynamical variable

φ:

φ∗
n = (φn+1 + φn)

2
.

In Eq. (3.6) the term zn is the stochastic integral:

zn ≡
∫ tn+1

tn
z(t) dt = √

h H ξn . (3.7)

H is the matrix that satisfies HHT = E, and ξn is a zero-average 〈ξn〉 = 0 and
unitary-variance normal variable 〈ξn ξm〉 = I δn m .

The main idea is to calculate the probability of φn+1 − φn − h f(φ∗
n|c) for each

single n as a function of the probability of the realization of the whole process {zn}.
The Gaussian probability of a single zn is:

P (zn) = dzn√
(2π)L hL det(E)

exp

{
−zT

n E−1zn

2h

}
.

Thanks to the assumption that the noise under consideration is white zn and
statistically independent of zm for n 
= m, one can write the joint probability of the
process {zn} as a product of the probabilities of each single zn :

P ({zn}) =
N−1∏
i=0

P (zi ) =
N−1∏
i=0

dzi√
(2π)L hL det(E)

exp

{
−zT

i E−1zi

2h

}
. (3.8)

The likelihood probability P(X|M) over a time grid can be expressed as the
probability density of a particular realization of the dynamical system P(X|M) =
P
({

φn
}) = ρ0

(
φ0
)∏N

i = 0 ρ
(
φi
)

. The expression of P(X|M) was decomposed

in this way because of the need for
∏N

i = 0 ρ
(
φi
)

to be expressed directly in terms
of {zn}.
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Thanks to the change of variable from zn to φn+1(zn), and the introduction of its

subsequent Jacobian term [J]ij = δij − h
2
∂[f(φ∗

n |c)]i
∂[φ∗

n] j
, one obtains the probability of

realization of the whole process
{
φn
}
:

P
({

φn+1
})

= dφn+1 det (J)√
(2πh)L det(E)

exp

{
−h

2

(
φ̇n − f

(
φ∗

n|c))T
E−1

(
φ̇n − f

(
φ∗

n|c))
}
, (3.9)

where the following definition was used : φ̇n ≡ φn+1−φn
h . The determinant of the

Jacobian can be further approximated, since the Jacobian matrix consists of all quasi-
zero elements, except in the diagonal. Obtaining the probability density function
leads to the complete expression for the likelihood function given (for convenience
in logarithmic form) as:

− 2

N
ln
(
P(X|M)

) = ln
(

det(E)
)

+ h

N

N−1∑
n = 0

[(
−h

2

∂f
(
φ∗

n|c)
∂φ∗

n

)
+
((

φ̇n − f
(
φ∗

n|c))T
E−1

(
φ̇n − f

(
φ∗

n|c))
)]
.

(3.10)

The next task is to maximize the posterior probability i.e. to fit the likelihood Eq.
(3.10) to Bayesian theorem, in order to find the optimal probability of the parameter
set M given the data X.

The prior probability Pprior(M)was chosen to be a multivariate normal distribution
in respect of the parameters c; if c is an M-dimensional vector, its prior probability
is written as:

Pprior(c) = 1√
(2π)M det(�pr)

exp

[
−1

2
(c − cpr)

T �−1
pr (c − cpr)

]
, (3.11)

where cpr is a vector of a priori coefficients and �pr is its covariance matrix. The
latter two expressions Eqs. (3.10) and (3.11) gave the required probabilities, from
which (using the Bayesian theorem) the posterior probability can be estimated.

Before moving forward, explicit dependence of f in respect of parameters vector
c needs to be defined, and the following parametrization is introduced:

f(φ|c) = �(φ) c, (3.12)

where �(φ) is a L × M matrix of Fourier base functions, as described in
Sect. 3.1.2. With this linear parametrization of f , one obtains a quadratic log-
likelihood function in respect of parameters vector c . Hence, using a multivari-
ate normal distribution for the prior probability immediately leads to a multivariate
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normal distribution for the posterior. This is highly desirable because the Gaussian
posterior (described only by its mean and covariance) is computationally convenient
and can be easily used again as a prior for the next sequential block.

Finally, taking the discussed expressions into account, the stationary point of
the log-likelihood (and thus the posterior) can be calculated recursively with the
following equations:

E = h

N

N−1∑
n=0

[
φ̇n − �nc

]T[
φ̇n − �nc

]
, (3.13)

wX(E) = �−1
pr cpr + h

N−1∑
n=0

[
�T

n E−1 φ̇n − 1

2

∂�
(
φ∗

n

)
∂φ∗

n

]
, (3.14)

�X(E) = �−1
pr + h

N−1∑
n=0

�T
n E−1 �n, (3.15)

c = �−1
X (E)wX(E), (3.16)

where� is the inverse of the covariance matrix� = �−1 (often called concentration
or precision matrix).

In terms of the optimal algorithm for computational calculations, this make sense:
starting from initial prior �−1

pr and cpr, the noise matrix E can be calculated Eq. (3.13),
then given this E, using Eqs. (3.14–3.16), the parameter vector c can be evaluated.
The same procedure should be repeated recursively until c and E converge to stability.
In absence of any prior knowledge about the system, a non-informative initial prior
can be used: �−1

pr = 0 and cpr = 0. For details about the implementation and
programming see [17].

The proposed Bayesian inferential framework can be summarized as follows.
Thanks to the choice of the linear parametrization of the vector field f(φ|c) = �(φ)c ,
a log-likelihood quadratic function in respect of parameters has been obtained. The
choice of a multivariate normal distribution for the prior Pprior(c) leads to a posterior
which is still a multivariate normal distribution. Therefore, given a realization of X ,
with two input quantities, cpr and �pr, respectively the mean and the covariance of the
prior Ppr(c), the set of parameters that best describe the system, and their correlations,
are described by only two other quantities: cpost and �post, respectively the mean and
the covariance of the posterior Ppost(c). The posterior probability density is thus:

Ppost({c}) = 1

(2π)L/2|�post|−1/2
exp

[
−1

2
(c − cpost)

T�post(c − cpost)

]
. (3.17)

If then a new sequential data-block X (generated from the same dynamics) is given,
we can use the posterior information from the first data-block as the prior for the
second one. The latter procedure constitutes the information propagation process,
the utilization of which for time-varying dynamics will be discussed in the following
section.
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3.1.4 Time-varying Information Propagation

The multivariate probability Eq. (3.17) described by NX(c|c̄, �) for the given time
series X = {φn ≡ φ(tn)} explicitly defines the probability density of each parameter
set of the dynamical system. When the sequential data comes from a stream of
measurements providing multiple blocks of information, one applies (3.13–3.16) to
each block. Within the Bayesian theorem, the evaluation of the current distribution
relies on the evaluation of the previous block of data i.e. the current prior depends
on the previous posterior. Thus the inference defined in this way is not a simple
windowing, but each stationary posterior depends on the history of the evaluations
from previous blocks of data.

In classical Bayesian inference, if the system is known to be non-time-varying,
then the posterior density of each block is taken as the prior of the next one:�n+1

prior =
�n

post. This full propagation of the covariance matrix will allow good separation
of the noise and the uncertainties in the parameters steadily decrease with time as
more data are included. But if time-variability exists, this propagation will act as a
strong constraint on the inference and will fail to follow the time-variability of the
parameters. This situation is illustrated in Fig. 3.1a.1

On the other hand, if the noisy dynamical system has time-variability, one can
consider the processes between each block of data to be independent (i.e. to consider
them as Markovian processes). Then there can be no propagation between the blocks
of data and each inference starts from a flat distribution:�n+1

prior = 0. Now the inference
will follow more closely the time-variability of parameters, but the effect from the
noise and the uncertainty of the inference will be larger Fig. 3.1b.

If the system has time dependence, however, the method of propagating knowl-
edge about the state of parameters obviously has to be improved and refined. Our
framework prescribes the prior to be multinormal, so we synthesize our knowledge
into a squared symmetric positive definite matrix. We assume that the probability
of each parameter diffuses normally with a known diffusion matrix �diff. Thus, the
probability density of the parameters is the convolution of two normal multivariate
distributions, �post and �diff:

�n+1
prior = �n

post +�n
diff.

The particular form of �diff describes which part of the dynamical fields defining
the oscillators can change, and the size of the change. In general (�diff)i,j = ρijσiσ j ,
where σi is the standard deviation of the diffusion of ci in the time window tw, and
ρij is the correlation between the change in the parameters ci and c j :

1 Note that Fig. 3.1 shows inference of two coupled noisy Poincaré oscillators with time-varying
frequency of one oscillator—for clarity and compactness of presentation the details are not shown
here, but the reader can refer to the model and other details in Sect. 3.4.
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Fig. 3.1 Inference of steep time-varying coupling parameter from coupled noisy oscillators 3.22.
The gray line represents the intrinsic (as in the numerical simulation) parameter, while the black
line is for the inferred time-varying parameter, for: (a) full propagation: �n+1

prior = �n
post, (b) no

propagation: �n+1
prior = 0, and (c) propagation for time-varying processes: �n+1

prior = �n
post + �n

diff .
From [18], Copyright (2012) by the American Physical Society

�n
diff(i,j) =

⎡
⎢⎢⎢⎣

. . . · · · ρijσiσ j
... ρiiσiσi

...

· · · · · · . . .

⎤
⎥⎥⎥⎦ (3.18)

A particular example of �diff will be considered: it is assumed that there is no
change of correlation between parameters (ρij = δij) and that each standard deviation
σi from the main diagonal is a known fraction of the relevant parameter (or standard
deviation), σi = pwci , where pw indicates that the parameter p refers to a window
of length tw. It is important to note that this particular example is rather general
because it assumes that all of the parameters (from the �n

post diagonal) can have a
time-varying nature—which resembles inference of real (experimental) systems with
a priori unknown time-variability. The resulting inference on Fig. 3.1c demonstrates
that the time-variability is captured correctly and that the uncertainty is reduced with
time as more data are included.

If one knows beforehand that only one parameter is varying (or at most, a small
number of parameters), then �diff can be customized to allow tracking of time-
variability specifically on that parameter. This selective propagation can be achieved
if, for example, not all but only the selected correlation ρi i from the diagonal has non-
zero value. In the remaining presentation of the thesis, however, the general (with all
correlations from the diagonal) propagation for time-varying processes will be used.

3.2 Synchronization Detection

After performing the inference, one can use the reconstructed parameters, given
in a form of multivariate normal distribution NX(c|c̄, �), to study the interactions
between the oscillators under study. One of the major points of interest is to detect
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whether the dynamics described by the inferred parameters undergo synchronization
and if transitions exist between the qualitative states. The particular information
propagation for tracing time-varying parameters can allow the synchronization state
and its transitions to be observed in time.

It is important to notice that a non-zero noise can induce phase slips in a system
that would be synchronized in the noiseless limit. However, the currently proposed
methods for synchronization detection are based on the presence and statistics of
phase-slips, rather than on the nature of the phase-slip itself [19–21]. The novelty
embedded in this study is that it proposes evaluation of the probability that the
equations that drive the dynamics are intrinsically synchronized and if the possibly
observed phase-slips are dynamics-related or noise-induced.

Every parameter set can be distinguished depending on whether it belongs to
the Arnold tongue region i.e. whether it belongs to the synchronization parameter
space. For the inferred parameters one needs to find a criterium for determining if
the dynamics governed by the base phase function are in a synchronized state. This
binary property was called s(c(l)k ) = {1, 0}. Thus the posterior probability of the
system to be synchronized or not is obtained by evaluating the probability of s:

psync ≡ pX(s = 1) =
∫

s(c)NX(c|c̄, �) dc . (3.19)

In general, the border of the Arnold tongue might not have an analytic form, and,
even if it had, the integral has no analytic solution and must be evaluated numerically.
A practical way to proceed is to estimate numerically psync by sampling many real-

izations from the parameters space {c(l)k }m , where m labels each testing parameter
vector, and for every set of cm synchronization to be computed s(cm). The probability
sampling is discussed in more detail in Sect. 3.4.4.

But, how can one detect the binary property s(c) = {1, 0} describing if a single
set of parameters makes the phase dynamics synchronized or not? For the simple
form of the base function�l,k (e.g. the phase model Eq. (3.1) described in Sect. 3.5.1
there might exist an analytic solution—then s(c) is explicitly defined. But in order
to keep the generality of the method, there is a need for a technique that can detect
synchronization of phase dynamics described by any number and general form of
the base function �l,k defined.

3.2.1 Torus Dynamics and Map Representation

In this section a simple technique to recognize whether a phase oscillatory system
is synchronized or not is presented. The technique itself is a simple check through
numerical integration of an ordinary differential equation system (defined by Eq.(3.1)
without the inferred noise) through one cycle of the dynamics, and testing whether
the synchronization condition |ψ(t)| = |φ1(t)− φ2(t)| < K is always verified.
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=0

Fig. 3.2 Torus representation of the phase dynamics, given with toroidal coordinate ζ(φ1(t),φ2(t))
and polar coordinate ψ(φ1(t),φ2(t)). The white circle denotes the Poincaré cross section. From
[18], Copyright (2012) by the American Physical Society

Let us assume we are observing the motion on the torus T
2 defined by the toroidal

coordinate ζ(φ1(t),φ2(t)) = (φ1(t) + φ2(t))/2, and the polar coordinate ψ(t).
For determination of synchronization the phase difference ψ(t) will be defined as
ψ(φ1(t),φ2(t)) = φ1(t) − φ2(t). Schematic representation of the phase dynamics
on torus is shown in Fig. 3.2. Let us consider a Poincaré section defined by ζ = 0 and
assume that dζ(t)/dt |ζ=0 > 0 for any ψ. This means that the direction of motion
along the toroidal coordinate is the same for every point of the section. Ideally one
would follow the time-evolution of every point in the section and check if there is a
periodic orbit; if a periodic orbit exists and if its winding number is zero, then the
system is synchronized. If such a periodic orbit exist, then there is at least another
periodic orbit with one of them being stable and the other unstable.

The solution of the dynamical system over the torus induces a map M : [0, 2π] →
[0, 2π] that defines, for each ψn on the Poincaré section, the next phase ψn+1 after
one round of the toroidal coordinate: ψn+1 = M(ψn). The map M is continuous,
periodic, and has two fixed points (one stable and one unstable) if and only if there
is a pair of periodic orbits for the dynamical system, i.e. synchronization is verified

if ψe exists such that ψe = M(ψe) and
∣∣∣ d M(ψ)

dψ |ψe

∣∣∣ < 1.

3.2.2 Synchronization Discrimination

The procedure of synchronization detection between the two oscillators that generate
the phase time-series reduces to investigation of synchronization of the synthetic
phase model using the parameters returned from the Bayesian machine. To calculate
s(c) for any of the sampled parameter sets, one can proceed as follows:

(i) From an arbitrary fixed ζ, and for an arbitraryψ0 integrate numerically (with the
standard fourth order Runge–Kutta algorithm) the dynamical system prescribed
by the phase base function (Eq.(3.3) without the noise) for one cycle of the
toroidal coordinate, obtaining the mapped point M(ψ0);

(ii) The same integration is repeated for multiple ψi coordinates next to the initial
one, obtaining the map M(ψi );
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(iii) By finite difference evaluation of d M/dψ a modified version of the Newton’s
root finding method is employed in respect of the function M(ψ) − ψ. The
method is modified by calculating M at the next point ψn+1 such that

ψn+1 = ψn + 0.8 ∗ |(M(ψn)− ψn)/(M
′(ψn)− 1))|.

Note that in this version, Newton’s method can only test the function by moving
forward; in fact (a) the existence of the root is not guaranteed; (b) we are not
interested in the root itself but only in its existence;

(iv) If there is a root, s(c) = 1 is returned. If the root is not found, s(c) = 0 is
returned.

3.3 Interactions Description

On of the main goals of this work is to infer and describe the interactions between
oscillators in a dynamical environment subject to external deterministic and stochas-
tic influences. The interactions characterize the inner relationships between several
or large population of oscillators, and represent a base that defines phenomenologi-
cal states (such as synchronization) and the flow of information, i.e. structure of the
connectivity.

The nature of an interaction mainly depends on the physical properties of the oscil-
lating systems, their functionality and how they react to perturbations. The central
idea is to use the inferred parameters from NX(c, �) to describe the interacting prop-
erties. Because the dynamics are reconstructed separately as described by Eq. (3.1),
usage can be made only of those inferred parameters from the base functions which
are linked to the influences between the oscillators. The influence of one oscillator
on the other can either be direct through fi (φ j ), or can arise through the combined
interacting base functions gi (φi ,φ j ). In what follows, the base functions fi (φ j ) and
gi (φi ,φ j ) are described with a common notation qi (φi ,φ j ).

One can seek to determine the properties that characterize the interaction in terms
of a strength of coupling, predominant direction of coupling or even by inference
of a coupling function. As the use of information propagation allows inference of
time-varying dynamics, the interactions’ properties can be traced in time as well.
This is especially important for inference of open interacting oscillatory processes,
which are often found in nature, where the time-variability interactions can lead to
transitions between qualitative states, such as synchronization or oscillation death.

3.3.1 Directionality Estimation

The interaction strength or the coupling amplitude quantifies the net information flow
between the oscillators. It has been found useful in many investigations, including
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determination of causality relationships [22, 23] or reconstruction of structure of
networks [4, 8]. Several approaches have been proposed for quantification of the
couplings, including mutual theoretic information [24, 25], phase dynamics decom-
position [26, 27], wavelet bispectrum [28] and perturbation techniques [3, 8, 29].
However, these techniques did not inferred explicitly the noise dynamics nor the
parameters characterizing the noise, and not all of them were able to cope with the
time-variability of the intrinsic parameters.

The coupling amplitude quantifies the total influence between the oscillators in
some direction: for example how much the dynamics of the first oscillator affect the
dynamical behavior of the second oscillator (1 → 2). If the coupling is in only one or
in both directions, we speak of unidirectional or bidirectional coupling, respectively.
In the proposed inferential framework, the coupling amplitudes are evaluated as
normalized measures from the interacting parameters inferred from the coupling
base functions qi (φi ,φ j ). The quantification is calculated as a Euclidian norm:

ε21 = ‖q1(φ1,φ2)‖ ≡
√

c2
1 + c2

3 + . . .

ε12 = ‖q2(φ1,φ2)‖ ≡
√

c2
2 + c2

4 + . . ., (3.20)

where e.g. in the proposed implementation the odd inferred parameters were assigned
to base functions q1(φ1,φ2) for the coupling from the second oscillator on the first
(ε21 : 2 → 1), and the even parameters for the first on second oscillator (ε12 : 1 → 2).

The direction of coupling often gives useful information about the interactions
[26], and is defined as normalization about the predominant coupling amplitude:

D = ε12 − ε21

ε12 + ε21
. (3.21)

If D ∈ (0, 1] the first oscillator drives the second (1 → 2), or if D ∈ [−1, 0) the
second (2 → 1) drives the first. The quantified values of the coupling strengths εi
or the directionality D represent measures of combined relationships between the
oscillators. Thus, a non-zero value can be inferred even when there is no interactions.
The latter discrepancy can be overcome by careful surrogate testing [30, 31]—by
rejecting values below an acceptance surrogate threshold, which can be determined
as the mean plus two standard deviations of many realization of the measures.

3.3.2 Coupling Function Reconstruction

Beside the coupling strength and the directionality, one can also infer the function that
characterizes the interactions. This coupling function defines the law that describes
the functional relationships between the oscillators. Its characteristic form results
from the nature of the oscillators and how their dynamics react under perturbations.
The inference of an underlying phase model has formed the basis for techniques to
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(a) (b)

Fig. 3.3 Schematic representation of coupling function. The coupling as a function of the phase
difference ψ = φ2 − φ1 and its implications for synchronization transitions (a). The full line is for
unsynchronized while the dashed for the synchronized case—the white circle corresponds to stable
and black to unstable equilibrium solutions. (b) The coupling as a function of both phase variables

infer the coupling functions [4, 5, 7, 27]. However, these techniques did not inferred
the noise dynamics nor the parameters characterising it, and they did not treated
time-varying dynamics.

The coupling function is defined as the law through which the interactions undergo
transitions to synchronization i.e. transitions to stable states. This physical meaning
is illustrated schematically on Fig. 3.3a for the case of simple phase oscillators with
sine coupling function (following Kuramoto [2]). The black lines represent situations
where the oscillators are not synchronized and there are no stable solutions for the
phase difference. For certain parameters (frequency mismatch and coupling ampli-
tudes) the coupling function intersect the equilibrium axis (ψ̇ = 0), and two solutions
appear, one stable and one unstable, and the oscillators are synchronized. To deter-
mine synchronization, it is sufficient to analyze the coupling function through the
phase difference alone. In general, however, one can study the function with respect
to both phases Fig. 3.3b. Winfree [32] used a function that is defined by both phases,
rather than just the phase difference, while Daido and Crawford [33–35] used a more
general form where the function was expanded in its Fourier series.

The coupling function should be 2π-periodic. In the inferential framework under
study, the coupling functions was decomposed into finite number of Fourier com-
ponents. The function describing the interactions between the two oscillators was
decomposed by the odd parameters q1(φ1,φ2) ∈ {c1, c3, . . .} and the correspond-
ing base functions �n[q1(φ1,φ2)] ∈ {sin(φ1,φ2), cos(φ1,φ2)} up to order n of the
decomposition. The other function q2(φ1,φ2) ∈ {c2, c4, . . .} was similarly decom-
posed.

The propagation of time-variability allows the coupling function to be inferred
in time. This constitutes one of the novelties of the approach, because now one
can trace the time-evolution of this functional relationships. From Chap. 2 and Sect.
3.5.4 it is clear that the latter is very important, and can act as a reason for transitions
to synchronization. The importance for studying time-varying coupling functions is
even greater given that it is a property observed in real life oscillatory systems—such
as the cardiorespiratory system.

http://dx.doi.org/10.1007/978-3-319-00753-3_2
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3.4 Technical Aspects of the Bayesian Inference

Before applying the inference method, as presented theoretically in the previous
sections, some attention is spent on the technical properties, capabilities and limi-
tations of the technique. Understanding the technical aspects is crucially important
for appropriate and correct applications, especially because the final framework is
a combination of several concepts and their functioning together must be set up
correctly.

There are number of technical aspects characterizing the technique, which include
inference of stochastic dynamics and parameters with time-varying nature, where the
resulting measures are probabilistic distributions. For this reasons, we considered the
following: how the different number of base functions affects the inference, how does
the inference behave under different strengths of noise, what time-resolutions of the
time-varying parameters can be traced and how to sample the combined measures
of the resulting probability distributions. There exist many other technical aspects,
but the ones presented here are considered to be sufficient for proper understanding
of the particular (and similar) implementation of inferential technique.

3.4.1 Number of Base Functions

In this section, the discussion is focussed on the question of what is the optimal
number of base functions to be used. The problem is basically an interplay between
achieving the desired precision and computational speed. To infer the dynamics more
precisely, we need to use larger number of base functions. This is even more pro-
nounced when one tries to infer properties (like time-varying frequencies, coupling
functions, . . .) that have ‘non-sine’ steep form. Then, in order to trace the higher
harmonics, the inference needs to include expansion of the Fourier components up
to higher orders. On the other hand, having large number of base functions for
inference reduces the computational speed of the algorithm, and the functions that
are not part of the actual dynamics can infer (pick up) some components from the
noise. The base functions within the inferential framework are presented as multi-
variate Gaussian distribution in matrix form. Thus a large number of base functions
increases the parameter space vastly and the iterative calculations (especially the
evaluation of inverse of a matrix) slow down the speed of processing exponentially.
It is worth noting that, even though the Bayesian inference is popular for its real-time
applications, the proposed inference framework for general phase dynamics does not
allow (in computational speed sense) real-time applications.

In order to demonstrate the inference precision of time-varying parameters the
technique was applied on a numerically simulated signal. The simulation was per-
formed on a model of two coupled Poincaré oscillators subject to white noise:
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ẋ1 = −
(√

x2
1 + y2

1 − 1
)

x1 − ω1(t)y1 + ε21(t)(x2 − x1)+ ξ1(t)

ẏ1 = −
(√

x2
1 + y2

1 − 1
)

y1 + ω1(t)x1 + ε21(t)(y2 − y1)+ ξ1(t)

ẋ2 = −
(√

x2
2 + y2

2 − 1
)

x2 − ω2(t)y2 + ε12(t)(x1 − x2)+ ξ2(t)

ẏ2 = −
(√

x2
2 + y2

2 − 1
)

y2 + ω2(t)x2 + ε12(t)(y1 − y2)+ ξ2(t), (3.22)

where the frequency parameters ωi (t) and the coupling amplitudes εij(t) were
allowed to be time-varying. The same model will be used for the remaining dis-
cussion of this section. The coupling function is a linear state difference (x j − xi ,
y j − yi ) and at this point is considered to have constant (non time-varying) form.

A particular case was considered, where the coupling amplitude from the first
oscillator was periodically time-varying: ε12(t) = ε12 + Ã sin(ω̃t). The parameters
were: ω1(t) ≡ ω1 = 2π1.1, ω2(t) ≡ ω2 = 2π2.77, ε21 = 0, ε12 = 1.7, ω̃ =
2π0.0025, Ã = 1.3 and noise strength E1 = E2 = 0.5 . Evaluation of the coupling
amplitude is done through calculation of the norm (Eq. 3.20) from the inferred
coupling parameters. Results of the ε12(t) inference from the same signal for three
cases with different number of base functions are presented in Fig. 3.4. From the
parameter estimations around the local maxima (also enlarged on the inset), one can
notice that the inference is not following the sine form promptly. This can be due to
particular effect of the noise, or if the two oscillators have become more coherent
around these parameter values. The figure demonstrates that the three cases were
different, and that the inference with larger numbers of base functions was getting
closer to the intrinsic parameter values.
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Fig. 3.4 Inference of time-varying coupling amplitude with different number of base functions,
applied on signal from numerical simulation of model (3.22); parameters are given in the text. The
particular number of base functions is shown on the legend. The difference of precision is mostly
observe around the local maxima—also enlarged on the inset
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3.4.2 Effect of Noise Intensity

The proposed technique tries to infer dynamics of coupled oscillators subject to noise.
One of the main tasks are to decompose what is considered to be intrinsic dynamics
from the effect of the noise. The question posed here is: how well can we infer the
parameters when the dynamics are subject to noise of different strengths. The answer
partially depends on how the propagation of information is achieved. The results
will be slightly better for full propagation and constant parameters, but because the
objective is inference of time-varying dynamics, the following investigation is done
for propagation that can trace time-varying parameters.

The same numerical example (3.22) is considered, but for constant parameters
and different noise strengths. The parameters were: ω1 = 2π1.1, ω2 = 2π1.77,
ε21 = 0.05, ε12 = 1.17 and E1 = E2 = E . The main idea is to investigate how
much will the parameters deviate from their intrinsic values. The frequency ω1 and
the coupling amplitude ε12 were followed from the same simulation performed for
each value of the noise intensities Ei . Fig. 3.5 shows the statistical properties in terms
of boxplots for different noise intensities. It is easy to notice that the inference of the
parameters is worse i.e. their values deviate more as the noise intensity E is increased.
Another feature is that the coupling amplitude ε12 has larger deviations than the
frequency ω1 parameter. This is probably because ε12 is the result of evaluation of
the norm as a combination of several inferred parameters, and the noise effect from
all of them contributes to the final deviation. Finally, it is worth pointing that in
experiments (cardiorespiratory and electronically simulated interactions), the noise
strength inferred was not usually very high (0.01 ≤ E ≤ 0.2).
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Fig. 3.5 Statistical properties of inferred parameters for different noise intensity E . The dotted
line shows the intrinsic values of the parameters presented with boxplots. The boxplots indicate:
median with black tick line, the lower and the upper quartile are shown within the gray box, while
the range (minimum, maximum) is denoted with the vertical dashed line. Outliers are not shown.
(a) The influence of noise on frequency, (b) on coupling parameters
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Fig. 3.6 Inference of a time-varying frequency (a) and coupling parameter (b) from model (3.22)
for four different lengths of the inference windows. The size of the windows is shown on the legend

3.4.3 Time Resolution

The main objective of this work is to infer time-varying dynamics. The issue
addressed here is: how fast/slow dynamics can be traced by the proposed technique
and what precision is achieved. The problem is related to the size of the sequential
windows i.e. the amount of information included within one block of data. The issue
is also implicitly dependent on a time-resolution (i.e. frequencies) of dynamics of
the interacting oscillators.

Using numerical model (3.22), the time-resolution was investigated for case where
the frequency ω1(t) = ω1 + Ã1 sin(ω̃t) and coupling amplitude ε12(t) = ε12 +
Ã1 sin(ω̃t) were varying periodically at the same time. The parameters were: ω1 =
2π1.1, ω2 = 2π2.77, ε21 = 0, ε12 = 1, ω̃ = 2π0.002, Ã1 = 0.1 Ã2 = 0.5
and noise strengths E1 = E2 = 0.15 . The parameters were reconstructed using
four different lengths of the inference windows. The results presented on Fig. 3.6
demonstrate that for small windows (0.5s) the parameters are sparse and sporadic,
while for very large windows (100s) the time-variability is faster than the size of the
window and there is cut-off on the form of the variability. A better suited window
size will be in between this two. Another interesting feature is that for the smallest
window (0.5s), the coupling amplitude is improved with information propagation as
time progresses, while the frequency inferred (as a constant component without base
function) is sparse throughout the whole time interval.

3.4.4 Probability Sampling

The final result of the inference is given with the set NX(c|c̄, �). Every inferred
parameter has the nature of a Gaussian distribution, and it is a part of a multivariate
Gaussian distribution for the whole parameter space given by the mean vector c̄ and
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the covariance matrix � . If one needs to infer a measure that is evaluated from the
combination of the inferred parameters then, in theory, one needs to evaluate the
probability of the measure from the multivariate Gaussian distribution NX(c|c̄, �).
Assume that a binary property of the measure m(c) = {1, 0} is given. For example,
m(c) can be the synchronization index s(c) = {1, 0} presented in Sect. 3.2.1, a
normalized evaluation of the directionality index, or some other. Then the posterior
probability of the measure can be evaluated as:

pm ≡ pX(m = 1) =
∫

m(c)NX(c|c̄, �) dc . (3.23)

This integral may not have an analytic solution, and in order to keep the generality
and practicality of the approach, one can try to solve it by numerical evaluation. Pro-
ceeding in a Monte Carlo manner, using the parameter space, one can sample many
realizations mk , where k labels each vector of testing parameter. Fig. 3.7 shows sev-
eral examples of sampling distributions from the inference of model (3.22). Fig. 3.7a
shows the Gaussian-like distribution of single frequency parameter after the sam-
pling of NX(c|c̄, �), while Fig. 3.7b, c demonstrate the distribution correlation of
two inferred parameters. The two latter bivariate distributions only tackle the com-
plexity of the full multivariate normal distribution NX(c|c̄, �), which can have many
more multivariate dimensions.

To find pm arbitrarily precisely it is enough to generate a number K of parameters
ck , with k = 1, . . . , K sampled fromNX(c|c̄, �), since pm = limK→∞ 1

K

∑K
k m(ck).

However, this high dimensional integration quickly becomes inefficient with an
increasing number of Fourier components. On the other hand, if the posterior proba-
bility pX is sharply peaked around the mean value c̄, then pm will be indistinguishable
from m(c̄), and evaluation of m(c̄) only, would suffice.

(a)

(b) (c)

Fig. 3.7 Probability distribution for the inferred parameters of model (3.22). (a) Gaussian-like
distribution of frequency ω1. Bi-variate distribution of two inferred, (b) coupling parameters, (c)
frequency parameters. Note the high (blade-like) correlation on (c). There was no time-variability,
and the parameters were ω1 = 1.27, ω2 = 0.67, ε21 = 0.05, ε12 = 0.25 and the rest same as on
Fig. 3.4
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3.5 Application Examples

After laying down the theoretical and technical aspects of the inferential framework,
here we proceed with application of the technique on several characteristic models.
This section demonstrates all the aspects, and shows how optimally one can exploit
and benefit from the method. It also reveals the novelties brought by this approach
in respect of application of earlier known methods.

The only requirements (inputs) for the method are phase time-series of interact-
ing oscillators. As long as they are properly defined and detected, the phases are not
model-dependent and they can come from any general form of oscillator. This con-
tributes to the generality of the method and its wide applicability. In the following,
different types of models are used to demonstrate particular features of the method.

3.5.1 Phase Oscillators model

In order to be systematic, and before going to more complicated realistic models, the
technique is applied on a simple phase oscillators model. This will give a sufficient
base model for synchronization description, which is analytically traceable at the
same time. Moreover, the base functions embedded in the inferential framework are
a perfect match for the inference of the interacting phase model.

The main objective in this section is to demonstrate how the synchronization
detection works, and to investigate the implications when applied to noisy time-
series. In this sense, the detection of synchronization means if the examination of
the constructed map M(ψ) (followed after Bayesian inference) can distinguish syn-
chronized (s(c) = 1) from unsynchronized dynamics (s(c) = 0), i.e. whether the
root M(ψe) = ψe exists or not. It is important to notice that a non-zero noise can
induce phase slips in a system that would be synchronized in the noiseless limit.
Therefore, a genuine inference should not only detect the presence of a phase-slips,
but also needs to describe the nature of the phase-slip itself: whether it is noise-
induced or dynamic-related. The latter means to describe the dynamics in parameter
space in relation to the inferred parameters, without the contribution of the noise.
The parameter space for synchronization phenomenon can effectively be described
by Arnold tongues [1]. Fig. 3.8a illustrates schematically a particular situation: in a
noiseless case the systems are synchronized (black circle inside the Arnold tongue)
and only because of the effect of the noise phase-slips occur (white circle outside the
Arnold tongue). Thus the main goal is to detect whether the systems are intrinsically
synchronized, and if the existence of phase slips is due to effect of the noise.

The model for generating a numerical phase signal for analysis is given by two
coupled phase oscillators subject to white noise:
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(a)
(b) (c) (d)

0

Fig. 3.8 Synchronization discrimination for the coupled phase oscillators (3.24). a Schematic
Arnold tongue to illustrate synchronization [1]. b Map of M(ψ) for ε12 = 0.25 demonstrating that
the oscillators are not synchronized. c Map of M(ψ) for (d) demonstrating that a root of M(ψ) = ψ
exists, i.e. that the state is, in fact, synchronized. d Phase difference, exhibiting two phase slips.
From [18], Copyright (2012) by the American Physical Society

φ̇1 =ω1 + ε21 sin(φ2 − φ1)+ ξ1(t) (3.24)
φ̇2 =ω2 + ε12 sin(φ1 − φ2)+ ξ2(t).

The parameters were ε21 = 0.1, ω1 = 1.2, ω2 = 0.8 and E1 = E2 = 2. Note that
there is no time-variability i.e. all of the parameters are constant in time. Thus the
discussion shall be focussed more on the effect of the noise, and the inference will
be applied to a single block of data.

The dynamics of the phase difference will be described as: ψ̇ = �ω− ε sin(ψ)+
ξ1(t) + ξ2(t), where �ω = ω2 − ω1 is the frequency mismatch and ε = ε21 + ε12
is the resultant coupling. In the noiseless case, the analytic condition for synchro-
nization i.e. the existence of stable equilibrium solution ψ̇ < 0 can be reduced to
�ω/ε < 1. Next, characteristic cases of numerically simulated signals from model
(3.24) were analyzed. For coupling amplitude of ε12 = 0.25 the reconstructed map
M(ψ) (Fig. 3.8b) shows that root M(ψe) = ψe does not exist and the oscillators are
not synchronized s(c) = 0. To demonstrate the novelty of our method, the para-
meters were such that the oscillators were only just inside the Arnold tongue. This
was achieved by enlarging the coupling amplitude to ε12 = 0.35—-then the analytic
condition for synchronization �ω/ε = 0.4/0.45 < 1 is fulfilled and the systems
should be synchronized. However, due to the effect of the moderate noise, phase-
slips occurred, see Fig. 3.8d. The application of earlier methods based on the statistics
of the phase difference [19–21] suggests that the oscillators are not synchronized.
In contrast, the proposed technique shows that the oscillators are intrinsically syn-
chronized as illustrated in Fig. 3.8c: the phase slips are attributable purely to noise
(the intensity of which is inferred in matrix Ei,j), and not to deterministic interac-
tions between the oscillators. The ability to identify noise-induced phase slip could
be important in a number of contexts, including both noise-induced synchronization
[36–38] and desynchronization [39].
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3.5.2 Limit-Cycle Oscillators Model

The proposed inferential framework offers a possibility of doing comprehensive
analysis within one sole formalism. The following discussion explores this and
investigates how the proposed method can trace time-varying parameters, coupling
functions, directionality and synchronization.

The model under consideration consisted of two coupled non-autonomous
Poincaré oscillators subject to white noise:

ẋ1 = −
(√

x2
1 + y2

1 − 1
)

x1 − ω1(t)y1 + ε1(t)q1(x1, x2, t)+ ξ1(t)

ẏ1 = −
(√

x2
1 + y2

1 − 1
)

y1 + ω1(t)x1 + ε1(t)q1(y1, y2, t)+ ξ1(t)
(3.25)

ẋ2 = −
(√

x2
2 + y2

2 − 1
)

x2 − ω2(t)y2 + ε2(t)q2(x1, x2, t)+ ξ2(t)

ẏ2 = −
(√

x2
2 + y2

2 − 1
)

y2 + ω2(t)x2 + ε2(t)q2(y1, y2, t)+ ξ2(t).

All of the parameters can be time-varying, and the coupling function can have
different forms with or without time variability.

First, we consider unidirectional coupling (1→2), where the natural frequency
of the first oscillator, and its coupling strength to the second one, vary periodically
at the same time: ω1(t) = ω1 + Ã1 sin(ω̃1t) and ε2(t) = ε2 + Ã2 sin(ω̃2t). The
other parameters were: ε2 = 0.1, ω1 = 2π1, ω2 = 2π1.14, Ã1 = 0.2, Ã2 = 0.13,
ω̃1 = 2π0.002, ω̃2 = 2π0.0014 and noise E11 = E22 = 0.1. The coupling func-
tion was simple linear difference in the state variables: qi (xi , x j , t) = xi − x j

and qi (yi , y j , t) = yi − y j . The phases were estimated as the angle variable
φi = arctan(yi/xi ). With ε1 = 0.1 there is no synchronization and the time-varying
parameters ( f1(t) and ε2(t)) are accurately traced: see full lines of Fig. 3.9a, b.
The form and the speed of the inferred parameters demonstrate the precision of the
method and the benefits of the time-varying information propagation. For a coupling
amplitude of ε1 = 0.3 the two oscillators will be synchronized for part of the time,
resulting in intermittent synchronization. The time-variability of the parameters in
the non-synchronized intervals is again determined correctly, while in the synchro-
nized intervals they differ from the values of the intrinsic parameters, Fig. 3.9a, b,
dashed lines. Within these synchronized intervals, all of the base functions are highly
correlated, with values lying within the Arnold tongue. The latter was detected as
synchronized (s(c) = 1) intervals, Fig. 3.9a, b, grey shaded regions.

The reconstructed sine-like functions q1(φ1,φ2) and q2(φ1,φ2) are shown in
Figs. 3.9c, d for the first and second oscillators, respectively. They describe the func-
tional form of the interactions between the two Poincaré systems (3.25). The applica-
tion of the proposed approach suggests that the form of the coupling functions does
not evolve with time—q1 and q2 evaluated for later time segments are presented on
Fig. 3.9e, f respectively. By comparison of Fig. 3.9c, e or of Fig. 3.9d, f, we see that
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(a)

(b) (d)

(c) (e)

(f)

Fig. 3.9 Extraction of time-varying parameters, synchronization and coupling functions from
numerical data created by (3.25). The frequency f1(t) (a) and coupling ε2(t) (b) are independently
varied. The dotted and full lines plot the parameters when the two oscillators are synchronized for
part of the time (ε1 = 0.3), and not synchronized at all (ε1 = 0.1), respectively. The regions of
synchronization, found by calculation of the synchronization index, are indicated by the gray shaded
regions. c–f Show the coupling functions q1(φ1,φ2) and q2(φ1,φ2) for time windows centered at
different times: (c, d) at t = 350s; (e, f) at t = 1000s. The window length tw = 50s, and coupling
strength ε12 = 0.1 in both cases. Note the similarity in forms of (c, e), and of (d, f)

the coupling functions are time invariant and they did not change qualitatively, even
though there were time-varying parameters and weak effects from the noise.

Next, the method was applied to detect the predominant direction of coupling pre-
sented through a quantitative measure evaluated as the norm of the inferred coupling
base parameters. To illustrate the detection and precision of directionality, the fre-
quencies now were considered to be constant, while both of the coupling strengths
to be discretely time-varying. The parameters were ω1 = 2π1.3, ω2 = 2π1.7,
E11 = E22 = 0.2, and the coupling function were as in the previous example:
qi (xi , x j , t) = xi −x j and qi (yi , y j , t) = yi −y j . Synchronization, however, was not
achieved for these parameters. The couplings alternate (in time intervals as depicted
on Fig. 3.10) from unidirectionally (1 → 2), to bidirectionally (1 → 2), then bidi-
rectionally (2 → 1), so as to finish with zero bidirectional couplings (1 = 2). The
detected directionality index was consistent with the hypothetical values. Note that
the value of unidirectionally coupling has not reached 1, due to the noise disturbance.

The oscillatory models used for studying interactions and synchronization, usually
are considered to have time-invariant coupling functions (for example the coupling
function on Fig. 3.9c–f) However, when the oscillators are open by nature, the func-
tions defining their interactions can also be time-varying processes by themselves.
Moreover, as discussed in the previous chapter, the variations of the form of a coupling
functions can be the reason alone for which synchronization transitions can occur.

To investigate the issue of time-varying coupling functions and the implications
when the inferential technique is applied, the same model (3.25) was used but now
the coupling functions were absolute values of the state difference on power of time-
varying parameter:
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Fig. 3.10 Directionality of coupling for discrete time-varying coupling strengths. Different unidi-
rectionally and bidirectionally cases are reached by different values of the coupling amplitudes ε1
and ε2—as indicated by the square insets. From [18], Copyright (2012) by the American Physical
Society

qi (xi , x j , t) = |(x j − xi )
ν(t)|; qi (yi , y j , t) = |(y j − yi )

ν(t)|, (3.26)

where i = j = {1, 2} and i 
= j . The exponent parameter varied linearly with
time ν(t) = {1 → 3}, and the rest of the parameters were constant: ω1 = 2π1,
ω2 = 2π2.14, ε1 = 0.2, ε2 = 0.3 and E11 = E22 = 0.05.

Following the Bayesian inference, the phase coupling functions qi (φ1,φ2) were
calculated from the base parameters for the interacting terms. The results for four
consecutive windows are presented on Fig. 3.11. Observing the inferred coupling
functions, it can be easily noticed that their complex form now is not constant, but
varies with time. Comparing them in neighboring (consecutive) pairs: (a) and (b),
then (b) and (c), then (c) and (d), one can actually follow the time-evolution of the
functions’ form. Even though we can follow the time-variability between them, the
two most distant functions Fig. 3.11a, d have substantially different forms. It can also
be noticed that beside the form, the functions’ norm i.e. coupling strength varies too
(compare e.g. the scale of maxima on Fig. 3.11a, d). This probably happens because
the coupling functions were varied in state space, and the way that the oscillators

(a) (c)(b) (d)

Fig. 3.11 Time-evolution of Coupling function from model (3.25) with exponentially varying
(3.26). a–d coupling function q2(φ1,φ2) from second oscillator for four consecutive time windows
(the window length was tw = 50s). For simplicity and clarity only function q2(φ1,φ2) is shown
(the behavior of q1(φ1,φ2) from the first oscillator was similar). From [18], Copyright (2012) by
the American Physical Society
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react on this perturbation affects the coupling strength. The latter can be even more
significant for inducing synchronization transition.

The proposed method for inference of phase dynamics enables the evolution of the
system under study to be tracked continuously. Unlike earlier methods that only detect
the occurrence of transitions to/from synchronization, the method reveals details of
the phase dynamics, thus describing the inherent nature of the transitions, and at the
same time deducing the characteristics of the noise responsible for stimulating them.
It can identify the time-varying nature of the functions that characterize interactions
between open oscillatory systems. It was shown that not only the parameters, but
also the functional relationships, can be time-varying, and the new technique can
effectively follow their evolution.

3.5.3 Analogue Simulations

In the previous sections the method was applied on signals generated by synthetic
numerical models. In the following, the attention will be concentrated more on appli-
cations on signals emanating from real oscillatory systems. In this way the noise
embedded in the signals has more realistic meaning, and usually it is attributed
to environmental disturbances or imperfections of some properties of the systems.
Additionally, during the process of data acquisition and discretization, some amount
of measurement noise can be introduced—a noise which has no links with the actual
dynamics of the interacting oscillators.

The following example analyzes data from experimental analogue simulation of
two coupled van der Pol oscillators. Details about the electronic implementation
and further analysis are presented in Chap. 5. The noise here is emanating from the
imperfections of the electronic elements (determined by their tolerance), from their
thermal heating due to inner-dissipation and partly because of measurement noise.

The phase portrait from the first oscillator, whose frequency is time-varying is
shown on Fig. 3.12a. The first oscillator is driving the second oscillator:

1

c2 ẍ1 − μ1(1 − x2
1 )

1

c
ẋ1 + [ω1 + ω̃1(t)]2x1 = 0,

(3.27)
1

c2 ẍ2 − μ2(1 − x2
2 )

1

c
ẋ2 + ω2

2 x2 + ε(x1 − x2) = 0,

where the periodic time-variability ω̃1(t) = Ã1 sin(ω̃t) (Fig. 3.12b) comes from an
external signal generator. The parameters were ε = 0.7,ω1 = 2π15.9,ω2 = 2π17.5,
Ã1 = 0.03, ω̃ = 2π0.2 and c is constant resulting from the analogue integration.
The phases were estimated as φi = arctan(ẋi/xi ).

The oscillators were synchronized for the given parameters and dynamical prop-
erties. Due to the effect of synchronization, the frequency of the second driven oscil-
lator changed from constant to time-varying (as discussed in Chap. 2). Applying

http://dx.doi.org/10.1007/978-3-319-00753-3_5
http://dx.doi.org/10.1007/978-3-319-00753-3_2
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Fig. 3.12 Analysis of signals from analogue simulation of system (5.1). a Phase portrait from the
oscilloscope; b Frequency ω̃1(t) from the external signal generator; c Detected frequency ω2(t) of
the second driven oscillator; d Fast Fourier Transform (FFT) of the detected frequency ω2(t). From
[18], Copyright (2012) by the American Physical Society

the inferential technique and investigating the detected synchronization showed that
the oscillators were synchronized (s(c) = 1) throughout the whole time period.
The frequency of the second driven oscillator was inferred as time-varying, as shown
in Fig. 3.12c. Performing simple FFT (Fig. 3.12d) showed that ω2(t) is periodic
with period 0.2H z (exactly as set on the signal generator). Therefore, the technique
revealed information regarding the nature and the dynamics of the time-variability
of the parameters.

3.5.4 Cardiorespiratory Interactions

Another interesting example, given its real-life nature, is the cardiorespiratory inter-
action. The analysis of physiological signals to detect and quantify cardiorespiratory
interactions have already been found to be useful in relation to several diseases and
physiological states (see [23] and references therein). Additionally, the transitions in
cardiorespiratory synchronization have been studied in relation to anaesthesia [40],
sleep cycles [41] and exercise [42].

It is well known that modulations and time-varying sources are present and can
affect the synchronization between biological oscillators [23, 43, 44]. For compre-
hensive and genuine analysis there is a need for technique that can not only identify
the time-varying information, but will allow the evaluation of the interacting mea-
sures (like synchronization and directionality) to be based solely on such inferred
information.

To demonstrate the method on real biological data, cardiorespiratory measure-
ments from human subject under anaesthesia were analyzed. During the experiment,
the breathing rate was paced constantly by a respirator which acted as an exter-

http://dx.doi.org/10.1007/978-3-319-00753-3_5
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Fig. 3.13 Synchronization and time-varying parameters in the cardiorespiratory interaction. a Stan-
dard 2:N synchrogram. b Synchronization index for ratios 2:8 and 2:9 as indicated. c Time-evolution
of the cardiac fh(t) and respiratory fr (t) frequency. Note the detected constant pacing of the breath-
ing frequency. From [18], Copyright (2012) by the American Physical Society

nal source of energy. In such systems the analytic model is not known (in contrast
to analogue and numerical examples), but the oscillatory nature of the signal is
easily observed. The instantaneous cardiac phase was estimated by wavelet syn-
chrosqueezed decomposition [45] of the ECG signal. Details about instantaneous
phase detection and the respective problems and advantages are discussed in Chap. 4.
Similarly, the respiratory phase was extracted from the respiration signal. The final
phase time-series were reached after protophase-phase transformation [6].

By applying the inferential technique one reconstructs the phase parameters that
govern the interacting dynamics. Figure 3.13c shows the time-evolution of the cardiac
and respiration frequencies. It is easy to notice that the (approximately) constant
pacing of the breathing is well inferred, and that the cardiac frequency i.e. heart rate
variability is increasing with time. The set of inferred parameters and how they are
correlated can be used to determine whether cardiorespiratory synchronization exists
and, if so, in what ratio. The synchronization evaluation Isync = s(c) ∈ {0, 1}, shown
on Fig. 3.13b reveals that several transitions exist between synchronized and non-
synchronized states, and transitions between different ratios: from 2:8 (i.e. 1:4) at the
beginning to 2:9 synchronization in the later intervals. Because the evaluation of the
synchronization state is based on all of the given details about the phase dynamics,
the proposed method not only detects the occurrence of transitions, but also describes
their inherent nature. The synchronization detection (Isync) was in good agreement
with the corresponding synchrogram shown on Fig. 3.13a.

http://dx.doi.org/10.1007/978-3-319-00753-3_4
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(a) (b) (c)

(d) (e) (f)

Fig. 3.14 Coupling functions in the cardiorespiratory interaction calculated at different times.
a–c coupling function q1(φ1,φ2) from first oscillator, d–f q2(φ1,φ2) from second oscillator. The
window time intervals were calculated at: t = 725s for (a, d); t = 1200s for (b, e); and at t = 1250s
for (c, f). The window length was tw = 50s. From [18], Copyright (2012) by the American Physical
Society

The cardiorespiratory coupling functions, evaluated for three different time
windows, are presented on Fig. 3.14. Figure 3.14a–c shows the coupling function
q1(φ1,φ2) from the first oscillator, and Fig. 3.14d–f shows q2(φ1,φ2) from the sec-
ond oscillator. Note that the interactions are now described by complex functions
whose form changes qualitatively over time—compare for example Fig. 3.14a with
b, c, or d with e, f. This implies that, in contrast to many systems with time-invariant
coupling functions, the functional relationships for the interactions of an open (bio-
logical) system can in itself be a time-varying process. By analyzing consecutive time
windows, we can even follow the time-evolution of the coupling functions—compare
the similarities i.e. evolution of Figs. 3.14b, c, or e, f.

Thus, the proposed method identified the time-varying nature of the functions
that characterize interactions between open oscillatory systems. The cardiorespira-
tory analysis demonstrated that not only the parameters, but also the functional rela-
tionships, can be time-varying, and the new technique can effectively follow their
evolution. This discovery immediately invites many new questions and points out
that in future studies and modeling of such open systems, the time-varying coupling
functions should be taken into account.

3.6 Generalization to Networks of Oscillators

A network of many complex dynamical systems can describe a large number of
processes and system in the nature—examples including chemical reactions, ecolog-
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ical systems, electrical power grid, populations of synchronized crickets, the internet,
and many others [46]. Especially important and relevant to this study are networks of
complex oscillatory systems. This type of networks often require reconstruction of
the coupling links i.e. structure of the network, or detection and study of qualitative
phenomena such as synchronization [47].

For the sake of simplicity and clarity, all of the demonstrations in the previous
sections were performed on systems of two interacting oscillatory processes. In fact,
the proposed inference procedure can be applied with only minimal modification to
any number N of interacting oscillators within the general coupled-network struc-
ture [18].

The general notation of Eq. (3.1) is readily generalized for the N oscillators, and
the inference procedure, is then applied to the corresponding N -dimensional phase
observable. For example, if one wants to include all k-tuple interactions with k ≤ 4,
then Eq. (3.1) would be generalized to

φ̇i =ωi + fi (φi )+
∑

j

g(2)i (φi ,φ j )+
∑

jk

g(3)ijk (φi ,φ j ,φk)

+
∑
jkl

g
(4)
i jkl(φi ,φ j ,φk,φl)+ ξi . (3.28)

Every function g(k) is periodic on the k-dimensional torus, and can be decomposed
in the sum of Fourier k-dimensional series of trigonometric functions. Although, this
decomposition is theoretically possible, it becomes less and less feasible in practice as
the number of oscillators and the number of k-tuples are increased. The computational
power required increases very fast with N , which makes the method unsuitable for the
inference of large-scale networks. As a general approach, one could limit the number
of base functions to the most significant Fourier terms per g(k) functions. Automatic
selection of the most important Fourier terms to be used as base functions is hard to
achieve on a network of more than just a few oscillators. Known information about
the system can be used to reduce the number of base functions such that only those
terms relevant to the N -oscillator dynamics are included. Other sub-procedures like
the time-varying propagation, and the noise inference, apply exactly as before.

The strength of the method is that it allows one to follow the time-variability
of the structural and functional connectivity within the network. This is especially
important when inferring the interactions of biological oscillators, for which it is
known that the dynamics is time-varying [48–50]. To illustrate the latter we infer the
following network of four phase oscillators subject to white Gaussian noise

φ̇1 = ω1 + a sin(φ1)+ ε13(t) sin(φ3)+ ε14(t) sin(φ4)+ ξ1(t)

φ̇2 = ω2 + a sin(φ2)+ ε21(t) sin(φ2 − φ1)+ ξ2(t) (3.29)
φ̇3 = ω3 + a sin(φ3)+ ε324(t) sin(φ2 − φ4)+ ξ3(t)

φ̇4 = ω4 + a sin(φ4)+ ε42(t) sin(φ2)+ ξ4(t).
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Note that, because the coupling strengths are functions of time, we were effec-
tively changing the structural connectivity of the network by varying their val-
ues. The parameter values for the simulations were: ω1 = 2π 1.11, ω2 = 2π 2.13,
ω3 = 2π 2.97, ω1 = 2π 0.8, a = 0.2, and noise strengths Ei = 0.1. The couplings
were varied discreetly in three time-segments, as follows. (i) For 0–500s: ε13 = 0.4,
ε14 = 0.0, ε324 = 0.4 and ε42 = 0.4. (ii) For 500–1000s: ε13 = 0, ε14 = 0.35,
ε324 = 0 and ε42 = 0.4. (iii) For 1000–1500: ε13 = 0.45, ε14 = 0.35, ε324 = 0 and
ε42 = 0. The coupling ε21 was continuously varied between 0.5 → 0.3. Note also
that in Eq. (3.29) the coupling functions are qualitatively different i.e. the arguments
in the sine functions are not the same for each oscillator. For example the coupling
functions for ε13, ε14 and ε42 have one phase argument, while the coupling functions
for ε21 and ε324 have the phase difference as their argument. The last two are addi-
tionally different because the coupling function with ε21 for the second oscillator
contains its own phase φ2 in the phase difference.

The results presented in Fig. 3.15 demonstrate that the method follows the time-
variability of the couplings effectively and precisely. The dynamical variations are
taking the network structure through various different connectivity states, and the
different topologies are detected reliably throughout their time-evolution.
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Fig. 3.15 Inference of time-varying coupling structure for the network (3.29). The color/grayscale
code for the couplings is presented in the box at the top, where ε21 is represented by a dotted line,
ε13 by a dashed line, ε14 by a dash-dotted line, ε324 by a bold full line and ε42 by a light full
line. The four couplings ε13, ε14, ε324 and ε42 were held constant at different values within three
time segments each of length 500 s. However, ε21 was varied continuously through the whole time
interval. For each segment the structure of the network is presented schematically on the diagrams
in the dashed grey boxes. The parameters are given in the text. From [18], Copyright (2012) by the
American Physical Society
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3.7 State Space Inference

In previous sections of this chapter, an inferential technique for reconstructions of
phase dynamics was presented. Starting from the phase time-series and using phase
base functions, the method inferred and described the interactions between the oscil-
lators. This section, on the other hand, presents the case of inference in the state
space, where the starting points are the state time-series and the base functions are
also in state domain. The objective is to describe the interacting oscillatory dynamics
by the inference of the state variables.

3.7.1 Main Concept

Given the state time-series xi (t), the estimation of instantaneous phases φi (t) is not
often a trivial task. Many procedures for phase extraction are problematic when the
state signals come from complex mixed-mode dynamics, or some information from
the measurements is not used (or is interpolated). When inferring from the state
signals, the technique exploits all of the measurement information. Moreover, if one
can effectively use the state variables, then there is no need for the phase extraction
and one step (subprocedure) of the inferential framework can be avoided.

The construction of the Bayesian technique now encloses a set of base functions
that describe the state dynamics � = {xi

n}. For example, the base functions can be
a finite number of polynomial functions. In general, the choice of the functions is
not unique, and usually is model-dependent. The biggest disadvantage comes from
not knowing the right number of dimensions, because often the only available input
is a one dimensional readout signal. One can choose, for example, a large set of
many combinations of base functions [51, 52], but this will incorporate a lot of
noise from the base functions which are not present in the actual dynamics, and the
computational expenses and parameter space will be unnecessarily increased.

On the other hand, if the model is known a priori, then fewer base functions will
be needed, the processing will be faster and more efficient, and the separation of the
noise will be more effective. The latter make sense because many of the processes in
nature can be described by models—examples include models in biology, chemistry
or climate science. Additionally, a lot of situations exist when the model is known
and the objective is to determine the dynamical states at any point in time. For
example, in interacting technical systems and communications [53], or in chemical
Belousov-Zhabotinsky oscillators [5].

The previously proposed Bayesian technique is one of the first to infer phase
oscillatory dynamics, while most of the known Bayesian techniques actually infer
in state space [9–11]. Especially relevant is the work by Smelyanskiy et al. [54]
where the authors have used Bayesian inference to reconstruct the cardiorespiratory
interactions in the state space. However, their analysis was performed on a single
stationary block of data where time-variability was not taken into account implicitly
and synchronization was not studied.
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The main idea for the following discussion is: starting from the state time-series
as inputs and given the model’s state base functions, to infer the multivariate state
dynamics of the interacting oscillators, using the same concepts for the Bayesian
framework as discussed in Sect. 3.1.3. The use of the particular information propa-
gation Sect. 3.1.4 can allow time-varying dynamics to be followed again. Defined in
such a way and assuming that the model is known, the technique will give explicit
inference information about the coupling strength and coupling functions. However,
the synchronization in the state domain, also known as generalized synchronization,
has not been studied in this manner and in the following section special attention
will be given to this issue.

3.7.2 Detection of Synchronization

When two oscillators synchronize, their behaviour can be easily explained in terms
of phase relationships: synchronization occurs if there exists a bounded phase shift
i.e. if the equilibrium solutions of the phase difference are stable [1]. But how is
synchronization reflected in the state dynamics of oscillators? Basically, when syn-
chronization is reached, the state trajectories become dependent on each other as a
result of the interactions. Thus by investigating the stability of individual oscilla-
tors in respect of the interactions, one can effectively determine the synchronization
entrainment.

At the beginning of the chaos synchronization era, the concept of identical syn-
chronization was one of the first established forms of state space synchronization.
It defines the two oscillators to be synchronized if certain states reach unity i.e.
if the Lissajou curves are a diagonal line [55]. Not long afterwards, a more gen-
eral description was given for the cases of state synchronization, called generalized
synchronization, where the trajectories do not necessarily reach unity [56]. A more
specific definition of generalized synchronization, in terms of asymptotic stability,
was also proposed [57].

Directional coupling has been studied in depth and can be viewed as a gen-
eralization of periodic or quasiperiodic driving which have been used in physics,
mathematics, and engineering for a long time. The unidirectionally coupled systems
can be represented with a skew product structure:

ẋ = f(x)

ẏ = g(y,u) = g(y,h(x)), (3.30)

where x ∈ Rn, y ∈ Rm, a subset B = Bx × By ⊂ Rn × Rm is given and the state
coupling functions are u(t) = (u1(t), . . . ,uk(t)) with u(t) = (u1(t), . . . ,uk(t)).
The first and second systems in 3.30 are referred to as a drive and driven oscillator,
respectively. The question of under what conditions does generalized synchroniza-
tion occur for a unidirectionally coupled system 3.30, is addressed in the following
theorem (see [57] for proof):
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Theorem: Generalized synchronization occurs in system 3.30, if given for all
(x0, y0) ∈ B the driven system ẏ = g(y,u) = g(y,h(x)) is asymptotically stable
[i.e. ∀y10, y20 ∈ By : limt→∞ ||y(t, x0, y10)− y(t, x0, y20)|| = 0].

The physical meaning of the theorem indicates that due to interactions the driven
oscillator changes its independent stability, for example, from marginally stable to
asymptotically stable, because of the entrainment to the drive oscillator. In fact,
the vector field ẏ = g(y,h(x)) is non-autonomous in respect of ẋ(t) to which is
entrained.

One of the basic techniques for proving asymptotic stability is through numerical
evaluation of conditional Lyapunov exponents of the driven oscillator. In this case,
generalized synchronization occurs if all of the Lyapunov exponents from the driven
oscillator are negative.

Several techniques have been proposed for detection of generalized synchroniza-
tion from time-series. The most popular are based on mutual false nearest neighbors
[56], mutual information [58, 59] or generalized angle [60]. These methods, how-
ever, are based on statistics and information flows and they do not take into account
the intrinsic dynamics of the systems, nor do they consider the noise embedded in
the interacting dynamics.

In the following, the discussion is focussed on generalized synchronization detec-
tion technique that uses the Bayesian framework to infer the interacting state dynam-
ics and the noise, and determines the existence of synchronization if the driven oscil-
lator is asymptotically stable i.e. if its largest Lyapunov exponent is negative.

Application Example

To demonstrate the main concept about the detection of generalized synchronization,
a model of two coupled van der Pol oscillators subject to weak noise is considered:

ẍ − μ1(1 − x2)ẋ + ω2
1 x + ε1(t)y + ξ1(t) = 0

ÿ − μ2(1 − y2)ẏ + ω2
2 y + ε2(t)x + ξ2(t) = 0, (3.31)

where the noise is assumed to be white Gaussian: 〈ξi (t)ξ j (τ )〉 = δ(t − τ )Eij.
In order to apply the inferential technique, one needs first to prescribe appropriate

base functions. Each oscillator can be described in two dimensions by a simple
variable change: x1 = x , x2 = ẋ and y1 = y, y2 = ẏ. Assuming the models are
known beforehand, the following base functions were chosen for reconstruction of
system (3.31):

� =

⎧⎪⎪⎨
⎪⎪⎩

x2

x1, x2, x2
1 x2, y1

y2

y1, y2, y2
1 y2, x1

⎫⎪⎪⎬
⎪⎪⎭
, (3.32)

where each row corresponds to the respective dimension of system (3.31).
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Table 3.1 Results from the inference of numerically simulated system (3.31)

Parameter Base function Intrinsic values Inferred mean values

dx x2 1 1.0051
ω2

1 x1 −1.21 −1.2099
μ1 x2 1 1.0110
μ1 x2

1 x2 −1 −0.9925
ε1 y1 0 −0.0116
dy y2 1 1.0036
ω2

2 y1 −0.81 −0.8144
μ2 y2 0.7 0.7104
μ2 y2

1 y2 −0.7 −0.6971
ε2 x1 −0.15 −0.1563

The first column describes the physical meaning of the parameters, the second column shows the
base functions used within the Bayesian inference, and the last two columns show the values of the
intrinsic parameters and their inferred mean values, respectively

The coupled system (3.31) was simulated numerically for a specific case—the
coupling was considered to be unidirectional (1 → 2) i.e. ε1(t) = 0 and the rest
of the parameters were set to: ω1 = 1.1, ω2 = 0.9, μ1 = 1, μ2 = 0.7 and the
noise strength E1 = E2 = 0.2. To demonstrate the properties and precision of the
inference in state space, first the coupling was set to a constant value ε2(t) = 0.15
(for which the oscillators were not synchronized). The Bayesian inferential technique
Sect. 3.1.3 exploiting the state base functions (3.32) was applied on the time-series of
the two noisy oscillators. The inferred parameters acting as coefficients of appropriate
base functions, are summarized together with the intrinsic parameters in Table 3.1.
Comparing the last two columns, one observes the validity and precision with which
the intrinsic parameters were inferred. The full and the inferred dynamics can be
visualized and compared on Fig. 3.16a, b. Fig. 3.14a shows the phase portrait of
the first oscillator from the numerical simulation of (3.31) affected by noise, while
Fig. 3.14b shows the phase portrait of the same system simulated with the inferred
parameters without the effect of noise.

But how can one use the inferred parameters to determine if the two oscillators
are synchronized? Namely, the second driven oscillator y(t), when not synchronized,
has limit-cycle dynamics with marginal stability i.e. its largest Lyapunov exponent is
zero. According to the theorem for generalized synchronization, when synchroniza-
tion occurs the driven oscillator becomes asymptotically stable with negative largest
Lyapunov exponent. Thus, by following the Lyapunov exponents of the inferred
driven oscillator one can detect if synchronization exists. Moreover, using the dis-
cussed information propagation within the Bayesian framework, one can follow the
generalized synchronization in time.

To demonstrate the latter, system (3.31) was simulated for unidirectionally inter-
acting case where the coupling was non-autonomous function varying discretely
between two predefined values ε2(t) = ε = {0, 0.4} for which the two oscillators
were intermittently synchronized. The application of the technique and the detection
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Fig. 3.16 Inferred state dynamics and detection of intermittent generalized synchronization. a
Phase portrait from numerically simulated noisy van der Pol oscillator x(t). b Phase portrait of van
der Pol oscillator numerically simulated with the inferred parameters. c Largest Lyapunov exponent
λ indicating non-synchronized intervals for zero values and synchronized for negative. The coupling
amplitude ε was discretely varying on intermittent intervals as indicated on the top of the figure

of generalized synchronization are presented on Fig. 3.14c. It can be noticed that,
when the oscillators are not synchronized, the largest Lyapunov exponent [61] λ is
zero, and when synchronization occurs (for ε = 0.4) the driven oscillator becomes
asymptotically stable and λ becomes negative. Thus the largest Lyapunov exponent
λ can act as synchronization index for detection of generalized synchronization in
time.

Many of the concepts discussed above for the detection of phase synchronization
are valid and can be applied for the detection of state synchronization. The identi-
fication of synchronization from the inferred dynamics through Lyapunov exponent
λ can be seen as equivalent to the map reconstruction of torus phase dynamics.
Using the information propagation procedure, the generalized synchronization and
the respective transitions can be traced in time too. As the noise is decomposed
separately, if there exist noise-induced phase slips i.e. noise-induced transitions to
generalized non-synchronized states, the proposed method will be able to detect it.
Having said this, the inferential technique is anticipated to be a useful tool in describ-
ing the time-varying nature and transitions of state synchronization in the presence
of noise.
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Chapter 4
Application to Life Sciences

Life is when structure acts as a function—is one of the many answers given to the
everlasting question “What is life?”.

The evolution of such functions of living beings in nature constitutes a vast group
of complex dynamical systems. In order to maintain their functioning and activity,
many of the processes tend to reach a balance between energy inflow and dissipated
energy—forming a periodic i.e. oscillatory process.

But how well is the balance maintained throughout the system’s evolution? In
general, the biological systems are not isolated and often they are thermodynamically
open. This causes a different type of energy exchange, in addition to the dissipated
energy needed to maintained the basic functioning of the system. In other words,
the system dynamics are no longer autonomic, and other processes contribute to its
time-evolution. Within the same environment (for example—the human body) the
sources of external influence are often known and closely related processes—which
can be regarded as deterministic. The effect of the external dynamics can cause the
intrinsic parameters, the interactions, or even functional dependencies to vary with
time.

The following chapter focuses on the discussion on effects from external influ-
ences on human physiology. The underlying physiological systems are considered
to be oscillatory processes and their dynamical characterization is studied. One of
the main objectives was to investigate some of the physiological mechanisms with
respect to deterministic non-autonomous perturbations. The latter involved physio-
logical measurements while the respiration frequency was varied in time. Another
issue discussed is the dynamical characterization of blood flow oscillations and their
transient effect when subject to external perturbations. Several methodological issues
regarding the time-varying analysis and estimates are also discussed. By exploiting
the measured time-series, the analysis (i.e. the inverse problem approach) employs
many of the theoretical and methodological concepts discussed in the previous
chapters.
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4.1 A Short Physiological Background

This section lays down the necessary human physiological background that any
non-biological scientist can find useful for the remaining of the chapter. For a more
comprehensive physiological background one can refer to [1–4].

4.1.1 Cardiovascular System

The cardiovascular system forms a blood distribution network for transport of nutri-
ents, gases and wastes to and from cells. It consists of three principle components: the
heart, blood vessels and blood. According to cardiovascular functioning the system
can be divided into pulmonary and systemic (peripheral) circulation. The pulmonary
circulation connects the lungs where the blood is oxygenated, while the systemic
supplies the rest of the body with the oxygenated blood.

The heart is a muscular organ, which forms two separate (right and left) pumps,
each composed of atrium and ventricle chambers. The function of the right side is
to collect the de-oxygenated blood in the right atrium and to pump it through the
right ventricle to the lungs where it is oxygenated. The oxygenated blood is collected
in the left atrium and pumped through the left ventricle to the rest of the body. The
pumping action of the heart is based on a rhythmic oscillatory sequence of relaxation
(diastole) and contraction (systole) procedures. The heartbeat coordination is tightly
controlled by the sinoatrial node which acts as a pacemaker that determines the heart
rate. The cardiac output i.e. the amount of blood pumped for a resting human subject,
is about 5 l in 1 min.

Depending on the blood flow direction, two types of vessels exist: arteries and
veins. The arteries take the blood away from the heart, and veins bring the blood
back to the heart. Due to the high pressure, the arteries have strong vascular walls
and blood flows rapidly to the tissues. At the endings of the arterial system are
arterioles acting as control valves through which blood is released to the capillaries.
The capillaries then allow the actual exchange substances between the blood and the
surrounding tissue. The walls of both arteries and capillaries is lined by a thin layer of
endothelia cells which cause the smooth muscles to constrict or relax, contributing to
the regulation of the vascular tone. The veins transport the blood from the capillaries
(through venules) to the heart, and serve as a reservoir of blood. Due to the low
pressure, the venous walls are thin.

The blood is a special fluid with the main function of conveying substances within
the body, such as gases (oxygen, carbon-dioxide), hormones, vitamins and enzymes.
It is composed of a liquid, called blood plasma, and blood cells suspended within
the plasma. An average human subject has around 5 l of blood, which accounts for
about 6–8 % of their body weight.
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4.1.2 Respiratory System

The respiratory system introduces respiratory gases to the interior of the body and
performs gas exchange. It includes the airways, lungs, and the respiratory mus-
cles. Molecules of oxygen and carbon dioxide are passively exchanged by diffusion
between the gaseous external environment and the blood. This exchange process
occurs in the alveolar region of the lungs. The respiration process is an oscillatory
cycle composed of two sub-processes: inspiration and expiration. Expiration is the
movement of air out of the bronchial tubes, through the airways to the external envi-
ronment during breathing, while inspiration is the movement of air from the external
environment through the air ways, and into the alveoli. The way in which the res-
piratory system works closely in concert with a circulatory system to carry gases to
and from the tissues—means it is often considered to be part of the cardiovascular
system.

4.1.3 Sympathetic Nervous System

The sympathetic nervous system is a part of autonomic nervous system (along with
enteric and parasympathetic) which mainly controls involuntary internal processes.
The sympathetic nervous system prepares the body for responses to stressful chal-
lenges, allowing sudden strenuous exercise and increased vigilance. Stress is thought
to counteract the parasympathetic system, which generally works to promote main-
tenance of the body at rest.

The sympathetic nervous system is responsible for up- and down-regulating many
homeostatic mechanisms in living organisms. Fibers from the sympathetic system
innervate tissues in almost every organ system, providing at least some regulatory
function to things as diverse as blood flow control, thermoregulation, gut motility,
and urinary output. It is perhaps best known for mediating the neuronal and hormonal
stress response, commonly known as the fight-or-flight response. This acts primar-
ily on the cardiovascular system and is mediated directly via impulses transmitted
through the sympathetic nervous system and indirectly via catecholamines secreted
from the adrenal medulla.

Messages travel through the sympathetic nervous system in a bidirectional flow.
Efferent messages can trigger changes in different parts of the body simultaneously,
such as the acceleration of the heart rate; widening of the bronchial passages; reducing
the motility (movement) of the large intestine or the constriction of blood vessels.
Afferent messages carry sensations such as heat, cold, or pain.

4.1.4 Oscillatory Processes in the Cardiovascular System

The functioning of cardiovascular system is characterized by several oscillatory
processes [3–5]. They are responsible for many of the modulations observed in the
blood flow and the heart rate variability signals. Each of the oscillating processes has
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Table 4.1 The frequency
intervals for the distinctive
oscillatory processes
determined from human
blood flow, and their
physiological origin

Interval Frequency (Hz) Physiological origin

I 0.6–2 Cardiac
II 0.145–0.6 Respiratory
III 0.052–0.145 Myogenic
IV 0.021–0.052 Neurogenic
V 0.0095–0.021 Endothelial metabolic
VI 0.005–0.0095 Endothelial

a characteristic period and is well defined in a certain frequency interval (summa-
rized in Table 4.1). Each also has a physiological interpretation, which is described
in the following:

I The frequency interval around 1 Hz corresponds to cardiac oscillatory activity.
It describes the periodicity for the functioning (pumping) of the heart.

II The oscillatory component around 0.2 Hz describes the respiratory activity and
the periodicity associated with the breathing process that supplies the body with
oxygenated blood.

III Around 0.1 Hz, corresponds to myogenic activity. The vessels are able to help
control blood flow via a mechanism known as myogenic autoregulation. The
vascular smooth muscles contract in response to an increase of intravascular
pressure, and relax in response to a decrease of pressure.

IV The periodicity around 0.04 Hz originates from the activity of the autonomic
nervous system on the heart, lungs and vessels. The nerves cause the release of
substances that affect the activities of smooth muscles, leading in turn to changes
in the vessels’ radii and resistance, which allows vasoconstriction to take place.

V The oscillations around 0.01 Hz, correspond to nitric oxide (NO)-related endothe-
lial activity. The layer of endothelial cells serves as a barrier between the blood
and the tissues of vessels, allowing metabolic regulation and the control of con-
traction and relaxation of smooth muscle through the release of various sub-
stances.

VI The oscillations around 0.007 Hz, apparently corresponds to NO-independent
(probably prostaglandin-dependent) endothelial activity.

The differentiation of the oscillatory processes (as described above) will be exploited
greatly in the following discussion. For visual representation of the intervals, one can
refer to the analysis of blood flow signal presented on Figs. 4.14, 4.11a.
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4.2 The Effect of Time-Varying Respiration on Cardiovascular
System and Sympathetic Nerve Activity

4.2.1 Introduction

Time-variability and modulations are inherent part of the physiological oscillatory
dynamics. One of the most pronounced and early discovered modulation is the res-
piration sinus arrhythmia, which describes how the breathing patterns modulate the
heart rate [6, 7]. Modulations and time-variability investigated in different contexts
[8–10], have also shown that their study can be useful in understanding of many
physiological processes, their functioning and their existing relationships.

The objective of this investigation is to determine the effect of a deterministi-
cally varied respiration frequency on human oscillatory processes. The analysis will
attempt to uncover how these processes are coordinated and how they influence each
other. The time-variability of the respiration frequency is introduced externally, in a
predefined procedure known to the investigator—thus in this way deterministic non-
autonomous influences are introduced to the oscillatory dynamics. The controlled
variability of the respiration is performed in order to study specifically how the vary-
ing respiration affects other processes, but also to use the perturbation for identifying
existing relations and physiological mechanisms.

With its main function to provide oxygen, the respiration is one of the central
processes in the human body. As such, it has attracted a lot of attention in physiology
[11]. The relationship of respiration to heart rate variability has been identified as res-
piration sinus arrythmia [6]. Several studies have investigated how the sympathetic
nerve activity is affected by different modes of breathing [10, 12, 13]. Of special
interest is the study of low frequency components and sympathetic nerve activity [14],
which also has been analyzed previously in conjunction with blood flow measure-
ments [15]. Saul et al. have studied sympathetic nerve activity and haemodynamic
signals under randomly varied breathing processes [16]. However, they did not stud-
ied the time-variability, the low frequency components are also not well localized,
and the sympathetic nerve activity is not acquired by direct measurements of the
nerve activity.

The following reports wavelet phase coherence analysis and information-theoretic
approach for the detection of coupling between muscle sympathetic nerve activity and
haemodynamic signals under deterministic time-varying perturbation of the respira-
tion frequency. Wavelet phase coherence allows high resolution characterization of
coherence i.e. coordination of the oscillatory dynamics at both high and low frequen-
cies. The information-theoretic method quantifies the inter-oscillatory influences and
reveals existence of causal relationships. All of the proposed techniques were able to
trace (and to quantify statistically) the dynamical behavior and the time-variability,
and to assess the time-domain information in accordance with the time-varying ramp
perturbation. The main task was to investigate how the deterministic time-varying
respiration regulates the neural and haemodynamic processes, and how this affects
the causal inter-oscillatory relationships.
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4.2.2 Measurements, Subjects and Signals

The total number of subjects analyzed was thirteen, and none of which smoked, had
evidence of heart disease or took medication. The length of the recordings had mean
of 72.3 min and standard deviation of 11.5 min. The minimum length was 53.4 min.
There were two types of ramped paced breathing—first with gradually decreasing
frequency (fast-to-slow) and second with gradually increasing frequency (slow-to-
fast). Each recording contained several segments, with spontaneous breathing and
then followed by several ramp breathing segments—the order and duration of all
ramps is presented in Appendix D. The segments between the ramps were not ana-
lyzed because of the transient effect of the previous perturbation [17]. The mean
length of spontaneous breathing segments was 7.9 min, with standard deviation of
2.6 min and a minimum of 6 min (which allowed the wavelet analysis to trace low
frequencies down to 0.021 Hz). The ramps had lengths of approximately 9 min, with
mean 9.05 and standard deviation of only 0.14 min.

The subjects were asked to breath voluntarily in accordance to a sine wave signal
with time-varying frequency, which was shown on visual screen in front of them. In
this way, the frequency of their respiration was varied with time.

The recordings included: electrocardiogram (ECG), blood pressure (BP) and car-
bon dioxide (CO2) concentration signals. From the ECG signal a heart rate variability
(HRV) signal was derived through marking of the R-peaks and linear interpolation
between the consecutive time differences (for details see e.g. [3]). Similarly, the
diastolic and systolic blood pressures were derived from the blood pressure signal.
The recording also included the relatively rare and delicate measurement of muscle
sympathetic nerve activity (MSNA). A multifiber sympathetic efferent traffic was
measured invasively from the peroneal nerve muscle using microelectrodes with
uninsulated tip diameters of about 2 µm. The sampling frequency of the recordings
was 500 Hz.

4.2.3 Methods

This section briefly outlines the methods used for the analysis of the recordings.
Statistical tools that are needed for the group statistical analysis are presented as
well.

Wavelet Transform

The nature of the perturbation, where the frequency of the respiration was varied
with time, means that the wavelet transform and its ability to trace the time-frequency
dynamics was the optimal choice for analysis of the underlying oscillatory processes
[5]. The method based on the continuous wavelet transform projects the signal from
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time- to time-frequency domain with logarithmic frequency resolution [18]. Due to
the adjustable length of the mother wavelet, the wavelet transform provides good
frequency resolution, and by allowing time-localization, it improves upon Fourier
transforms, which are based on fixed window lengths.

The wavelet transform enables one to derive the frequency content continuously in
time by use of wavelets windows with variable length. A wavelet is shifted along the
signal and a coefficient is calculated representing the strength of correlation between
the signal and the wavelet. For the following analysis a Morlet mother wavelet was
used:

ν(u) = 1
4
√
π

e−i2π f0u · e−u2/2,

where the central frequency was set to be f0 = 1 Hz. To create various scales of
the wavelet comparable to the original signal, the mother wavelet is stretched and
compressed by scaling factor s:

�s,t (u) = |s|−1/2 · ν
(

u − t

s

)
. (4.1)

In order to reach logarithmic resolution for the frequency, the scale factor s is
increased exponentially. The transform itself is then a convolution of the wavelet and
the original signal:

W (s, t) =
∫ ∞

−∞
�̄s,t (u) · g(u)du, (4.2)

where the �̄ represents the complex conjugate of �. Thus any specific scale is
avoided and the analysis becomes scale-independent in terms of frequency. The
energy density in the time-scale domain is evaluated from the wavelet transform,
and the wavelet power within the f1: f2 frequency range can be calculated as:

ε( f1: f2) =
∫ 1/ f1

1/ f2

1

s2 |W (s, t)|2ds.

For the calculation of the transform the signals were re-sampled to 10 Hz, and
their spectra below the lowest frequency analyzed (0.021 Hz for the segments and
0.0095 Hz for the whole signals) were removed by moving average technique. Use
of longer wavelets for low frequency components, resulted in having higher wavelet
amplitudes for the low compared with high frequencies. Due to this effect the low
frequency oscillatory components are easily identified and traced. When one needs
to detect the actual strength of particular frequency component, the wavelet spectral
power is calculated.
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Wavelet Phase Coherence and Windowed Wavelet Phase Coherence

By investigating the phase relationships, the wavelet phase coherence can determine
the coordinating relationships between two signals. When inferring the relationships
between signals with different or very low powers, a big advantage of the wavelet
phase coherence is that it can detect significant coherence. This is particularly mean-
ingful for low-frequency components, which make important, but not necessarily
large contributions to total power.

The wavelet transform using Morlet wavelet is described as a complex function.
This allows for the instantaneous phases of the signals to be analyzed directly from the
transform. The latter was used for calculation of the respective phase difference and
thus for evaluation of the phase coherence. It gives normalized measure of coherence
ranging between 0 and 1.

Due to the complex nature of the Morlet wavelet, the wavelet transform for each
time tn and scale sk , consists also of complex values:

W (sk, tn) = Wk,n = ak,n + ibk,n .

From here the instantaneous phase can be determined as the angle variable φk,n =
arctan(bk,n/ak,n). To evaluate the wavelet phase coherence, the respective phase
difference �φk,n = φ2k,n − φ1k,n is calculated [19]. To get normalized measure of
coherence between 0 and 1, the sine and cosine of the phase difference are averaged
in time, yielding the phase coherence function:

Cφ( fk) =
√

〈cos(�φk,n)〉2 + 〈sin(�φk,n)〉2 .

In order to follow how the phase coherence is varying with time, a windowed
wavelet phase coherence can be calculated. A window is slide along the data in
time domain and the phase coherence is evaluated and plotted as function of both
frequency and time: CWφ( fk, tk)—with window of given size centered on a particular
time tk . The window size is varied for low to high frequencies in the same manner as
the wavelet transform was calculated. In this way the same logarithmic scale for the
frequency is preserved. On the end, each windowing is normalized by the particular
window size, so that the measure returns normalized phase coherence between 0 and
1. Due to the finite length of the windows on the end of the sliding—there is a cut-off
of information, and the corresponding plot has goblet-like shape. Detailed description
of the method and its significance for adaptive windows is discussed in [20].

Coupling Between Interacting Oscillators: An Information-Theoretic
Approach

An information-theoretic method proposed by Paluš & Stefanovska [21] was used
for analysis of directionality of couplings and influences between weakly coupled
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oscillatory processes. The method has prove to be useful in number of technical and
physiological studies [22–24].

For inferring causality relationships i.e. directionality between two oscillatory
processes, it estimates the ‘net’ information about certain time units in the future
of the first process contained in the second process itself, by using an information-
theoretic tool known as conditional mutual information. The two resultant conditional
mutual information quantify the significant influence from the first to the second, and
from the second to the first oscillatory signal. The influence that has the larger strength
determines the predominant direction of coupling.

The information-theoretic method for quantification of couplings is based on
conditional mutual information between the first X1(t) and the second X2(t) signal.
The conditional mutual information is estimated as net information about the τ time
units in future of the first signal X1(t) contained in the second signal X2(t) itself.
First the τ increments are defined:

�τ X1 = X1(t + τ )− X1(t).

Then the conditional mutual information i.e. the coupling of the first to second
signal is defined as:

I21 = I (X2,�τ X1|X1) = H(X2|X1)+ H(�τ X1|X1)− H(X2,�τ X1|X1),

where H(x |y) and H(x, y|z) are the conditional entropies defined in usual Shannon-
ian sense. Similarly the coupling I12 from the first to the second signal is defined. The
conditional mutual information I12 and I21 can be calculated by simple box-counting
algorithm based on equiquantal marginal bins.

By applying the method one can infer the causality relationships between the
signals, quantifying both the total influences and their time-variability by window-
ing the measure. Thermodynamically open systems and interacting physiological
processes often can be mutually (bi-directionally) coupled, therefore it made sense to
analyze not only the dominant direction, but also the two separate influences and their
time-variations. The number of equiquantal bins used was N = 4, time shifts were
taken from 5:50 and re-sampled signals to 10 Hz in normalized state space were used.

Statistical Analysis

Many data sets were not distributed normally (Kolmogorov-Smirnov test), so only
medians, individual values and ranges were analyzed. A non-parametric statistical
test was used, together with these quantities, to identify significant coherence, cou-
plings and changes due to the time-varying ramped breathing.

The evaluation of the wavelet transform using different window lengths decom-
posed the signal into independent observations of particular frequency oscilla-
tions. The logarithmic scale for the spontaneous and ramped breathing segments
(0.021–2 Hz) was divided into 95 independent segments for statistical analysis.
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For the statistical investigation of changes in the wavelet power introduced by the
ramped breathing, a non-parametric rank sum test on the individual wavelet powers
was conducted. The significant segments were denoted as red vertical lines plotted
between the two medians. Wherever a contiguous range of frequencies show a sig-
nificant effect these lines are confluent, forming red areas. Additionally, the fixed
frequency ranges for the oscillatory intervals (as described in Sect. 4.1.4) were tested
for significance. Their significance was plotted with red asterisks.

When analyzing relationships between oscillatory processes in terms of wavelet
phase coherence and coupling directionality, special care is needed. Namely, there
can exist small non-zero values of the measures, even when in reality there are no real
relationships. To overcome this discrepancy and to determine the statistical signif-
icance, a surrogate statistical analysis was performed. Amplitude-Adjusted Fourier
transform (AAFT) surrogate signals were generated by shuffling the phases of the
original time series to create new time series with the same means, variances, autocor-
relation functions (and therefore, the same power spectra) as the original sequences,
but without their phase relations [25, 26]. The average was calculated for 100 mea-
sures (phase coherence or couplings) calculated from 100 surrogate realizations of
the signals. The phase coherence and coupling direction were considered to be sta-
tistically significant if their values were above the surrogate threshold, which was
determined as the mean plus two standard deviations of the surrogate realizations.

When evaluating the wavelet phase coherence, the low-frequencies are repre-
sented with fewer periods than the high-frequency components. Consequentially,
less variation of phase differences occurs at low-frequencies, and this is reflected in
higher coherence values for low than high frequencies. The significant coherence of
separate frequency segment was denoted with red area, and the significant ranges
with red asterisks. A paired signed rank test was used for comparison of the mea-
sures with the surrogate threshold values. For visual inspection of the time-varying
couplings only the values above the surrogate threshold were considered as signif-
icant. For quantification, the paired signed rank test was performed on the whole
segment (spontaneous and ramp breathing) length. In all statistical tests, P < 0.05
was considered significant.

4.2.4 Results: Wavelet and Information-Theoretic Based Analysis

The main results of the individual and group analysis are presented in this section.
Three subsections encapsulate the results in conceptual groups.

Oscillatory Dynamics

Figure 4.1 shows recordings made from one subject during spontaneous breathing
at the beginning and the following ramp breathing. The carbon dioxide concentra-
tion recording presents the gradual frequency decrease of the breathing oscillatory
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Fig. 4.1 Recording during spontaneous and first ramped breathing from Subject 9. During the first
6 min the subject breathed spontaneously, while in the following 9 min the breathing was gradually
decreasing from fast to slow

process. The respiratory imprints are easily noticeable on the R-R interval and the
diastolic pressure signal. Low frequency oscillations are also present in these signals.
Muscle sympathetic nerve activity occur as groups of narrow bursts, which seem to
appear in coordination with carbon dioxide cycles and are the most conspicuous for
the slow breaths within the ramp segment. The enlarged time segments within one
cycle of the carbon dioxide are presented on the right of the figure.

Figure 4.2 shows a wavelet transform of carbon dioxide concentration signal from
one subject. With the ability to trace the time-frequency domain, the wavelet trans-
form clearly demonstrates the time-varying nature of the ramp perturbation (note
that the lines parallel to the ramped breathing are only their higher harmonics). Dur-
ing spontaneous segments the subject breathed freely and the wavelet amplitude is
represented over a wide range of frequencies. The controlled ramp breathing sharply
confined the wavelet amplitude around the time-varying frequency bands introduced
deterministically by the perturbation.

The wavelet transform of muscle sympathetic nerve activity and its corresponding
wavelet power from one subject are shown on Fig. 4.3. The influence of the respi-
ration on the muscle sympathetic nerve activity is revealed by the presence of the
ramp frequency content (compare the frequency components and the time-variability
during spontaneous and ramp segments). The wavelet power demonstrates that the
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Fig. 4.2 Wavelet transform of carbon dioxide from Subject 4. The contour plot shows the wavelet
transform for the whole duration of measurements. It is easy to notice the spontaneous breathing and
the four (9 min) epochs of ramp breathing, which intermittently change from slow-to-fast to fast-to-
slow. The wavelet amplitude during the spontaneous breathing is spread across various frequency
bands, while during the ramped breathing the amplitudes are more concentrated around the ramping
frequency

Fig. 4.3 Wavelet transform for muscle sympathetic nerve activity from Subject 5. The left contour
plot shows the wavelet transform for the spontaneous breathing (8.5 min) and the slow-to-fast
ramped breathing (9 min). The wavelet amplitudes on lower frequency (around and below 0.1 Hz)
during the spontaneous breathing are changed due to the ramped breathing, making them dense
around the controlled breathing frequency. The time-averaged wavelet power, plotted on the right,
demonstrates that the strength of the higher frequency (around 1 Hz) is the highest, while the low
frequencies are spread over the ramping bands
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(a) (c)

(b) (d)

Fig. 4.4 Median wavelet power spectra of spontaneous (black) and ramped (grey) breathing seg-
ments. The figure shows how the time-varying breathing affected (a) the wavelet power spectra of
carbon dioxide (a), R-R interval (b), muscle sympathetic nerve activity (c) and diastolic pressure
(d). The red areas indicate significant change of individual wavelet powers, while the red asterisks
show the significant range change. The perturbation that changed significantly the carbon dioxide,
also significantly affected the R-R interval and the diastolic pressure at ramp and lower than ramp
frequencies. The muscle sympathetic nerve activity power was not affected greatly

predominant periodic oscillations are around 1 Hz, while the lower frequency com-
ponents that have less power are spread around the ramp breathing frequencies.

Figure 4.4 compares the median wavelet powers for all subjects and segments
during spontaneous (black lines) and ramped (grey lines) breathing. Red shaded
areas indicate specific frequencies at which the effect from the ramped breathing
is significant (as indicated, a non-parametric rank sum test was applied to wavelet
powers at each of the 95 frequencies). The red asterisks indicate the significance of
the ramp effect within frequency ranges. The large significant difference in wavelet
powers of spontaneous and ramped carbon dioxide shown on Fig. 4.4a demonstrates
the nature and the effect of the ramp perturbation. The wavelet powers for R-R
interval (Fig. 4.4b) and diastolic pressure (Fig. 4.4d), show that besides the significant
effect on the ramp frequencies (around intervals II and III), there is also a significant
difference on very low-frequency bands (interval IV), which are outside the initial
frequency range from the ramp perturbation. The ramp breathing had little effect
on the wavelet power of muscle sympathetic nerve activity (Fig. 4.4c), which was
significant only within the ramp frequencies.

Coordination and Phase Coherence

Wavelet phase coherence was used to identify and quantify how the oscillatory signals
interact i.e. if they are coordinated on some frequency ranges. Figure 4.5a–d shows the
time-averaged coherence for spontaneous breathing while Fig. 4.5i–l shows ramped
breathing coherence. The red shaded area represents statistically significant phase
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Fig. 4.5 Wavelet phase coherence and windowed wavelet phase coherence from Subject 9. The four
contour (goblet-like) plots (e)–(h) show the windowed phase coherence for the first 15 (spontaneous
6 + ramp 9) min. One can easily notice the time-variability of the coherence from spontaneous to
gradually changing during the ramp breathing. The plots (a)–(d) are for spontaneous, while (i)–
(l) are for ramped breathing. The red shaded area represents the significant coherence above the
surrogate threshold (mean plus two standard deviations), which is indicated by the gray dashed
line. The implications of the coherence between the signals (as given on the left vertical axis-label)
are discussed in more detail in the main text

coherence. Due to the time-varying nature of the ramp perturbation, windowed
wavelet phase coherence was used to trace the time-variability of the coherence
among ramp frequencies—Fig. 4.5e–h. The phase coherence shown on Fig. 4.5a, e, i,
indicates that carbon dioxide and systolic pressure are highly and significantly coher-
ent on breathing frequencies. The coherence was varying during the ramp breathing,
following the frequencies introduced by the deterministic perturbation. Figure 4.5b,
f, j represents the coherence between carbon dioxide and electrocardiogram (ECG)
signal. The ECG signal was analyzed because it contains the 1 Hz oscillatory com-
ponent of the heart activity. The relationship showed significant coherence only on
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the breathing frequencies, which were affected during the ramp segment. The win-
dowed wavelet phase coherence between muscle sympathetic nerve activity and car-
bon dioxide (shown on Fig. 4.5g) was not very high, and mostly it was concentrated
around the breathing frequencies. During the ramp segment, this phase coherence
was affected and spread across the ramp breathing frequencies. The latter resulted
in lower and insignificant time-averaged coherence (Fig. 4.5k)—as opposed to the
significant coherence during spontaneous breathing shown on Fig. 4.5c. Unlike the
previous three relationships, the phase coherence between muscle sympathetic nerve
activity and diastolic pressure was not qualitatively affected by the ramped breathing,
and was relatively high at low frequencies. This was evident both from the windowed
phase coherence Fig. 4.5h, and from the comparison of significant phase coherence
in (Fig. 4.5d, cf. Fig. 4.5). The median phase coherence relationships were consistent
with the individual presented on Fig. 4.5.

The effect from the ramp breathing on the relationships not directly connected with
breathing, is presented on Fig. 4.6. Breathing does not affect the strong phase coher-
ence that exists between diastolic pressure and muscle sympathetic nerve, and systolic
pressure and R-R interval oscillations in low- and very low-frequency ranges (Pan-
els A and B). However, breathing substantially augments phase coherence between
systolic pressure and R-R interval oscillations at usual breathing frequencies (Panel
B, red shading).

Couplings and Causal Relationships

Figure 4.7 shows the time evolution of carbon dioxide (grey) and muscle sympathetic
nerve activity (black), and their respective coupling intensities (in both directions)
from one subject. The red shaded areas indicate significant coupling above the sur-
rogates threshold. The coupling intensities are an information-theoretic measure that
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Fig. 4.6 Median phase coherence and the effect from the ramped breathing. Although neither
breathing mode affected coherence between breathing and muscle sympathetic nerve oscillations
(Panel (a)), breathing significantly increased phase coherence between systolic pressure and R-R
interval oscillations in a limited range within the usual breathing frequency (Panel (b), red shading)
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(a)

(b)

(c)

(d)

Fig. 4.7 Carbon dioxide and muscle sympathetic nerve activity, and their coupling during one fast-
to-slow ramp from Subject 13. The three plots (a)–(c) show the time evolution of CO2 (gray) and
MSNA (black)—(b) continues after (a), and (c) after (b). The nerve bursts appear more coordinated
with the high value of CO2 as the ramp progress. d Shows the CO2-to-MSNA coupling (thick black)
and MSNA-to-CO2 coupling (thick gray), and their surrogate thresholds with dashed black and grey
lines, respectively. The red shaded areas represent the significant influences of the two directions.
One can notice that the CO2 influenced the MSNA more strongly and this coupling is increased as
the ramped breathing progresses

quantifies the inter-oscillatory influences between carbon dioxide and muscle sym-
pathetic nerve activity. The time-evolution of the signals during a ramp breathing
shown on Fig. 4.7a–c demonstrate that muscle sympathetic nerve activity occurs as
valleys of bursts appearing mostly during the inspiration cycle. As the ramp breath-
ing progressed, the bursts appeared more frequently and in good coordination with
the carbon dioxide cycles. The cause of the latter phenomenon is due to the coupling
from carbon dioxide to muscle sympathetic nerve activity—as indicated on Fig. 4.7d.
Namely, the intensities of the inter-oscillatory influences (shown on Fig. 4.7d) suggest
that CO2 to MSNA is the dominant direction, and its intensity becomes significant
and increased as the ramp breathing progresses. The specific time-variability verifies
the tight relationship between the influence of CO2 on MSNA and the deterministic
ramp perturbation.

Figure 4.8 presents the median and individual couplings between carbon diox-
ide and R-R interval, including the spontaneous (a and b), fast-to-slow (c and d)
and slow-to-fast (e and f) ramp breathing segments. On the left plots (a, c and
e) are the CO2 to R-R interval, while on the right (b, d and f) the R-R interval
to CO2 couplings. The dashed black lines denote the surrogates’ threshold. The
P-value on each plot is evaluated within the whole segment between individuals, and
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(a)

(c) (d)

(e) (f)

(b)

Fig. 4.8 Median (red) and individual (grey) couplings between carbon dioxide and R-R interval. On
(a), (c) and (e) the CO2 to R-R interval couplings are presented, while (b), (d) and (f) are showing the
R-R interval to CO2 couplings. The top two plots are for spontaneous, while the middle and bottom
are for fast-to-slow and slow-to-fast ramped breathing. The dashed lines are the surrogate threshold
(mean plus two standard deviations). During spontaneous breathing the couplings have almost
constant values. The ramped breathing introduced time-variability and increased the influences
towards low-frequencies. Overall the CO2 to R-R interval couplings were more dominant

indicates if the coupling is significantly higher than the surrogates’ threshold. During
spontaneous breathing the couplings had almost constant values. The influence from
CO2 to R-R interval was the dominant direction. The ramped breathing enhanced
the intensities of the couplings, and this effect was larger for low frequencies.
The latter resulted in very clear time-varying imprint of the ramp perturbation (see
e.g. Fig. 4.8c). These couplings had relatively large intensities, with CO2 to R-R
interval coupling having greater intensity and being the predominant direction.
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4.2.5 Discussion

Simultaneous recordings from carbon dioxide concentration, muscle sympathetic
nerve activity and haemodynamic signals were analyzed. The primary goal was
to investigate how a deterministic time-varying respiration regulates and affects the
oscillatory processes in cardiovascular and sympathetic neural system. Because their
dynamics usually involve influence from several processes with diverse time-scales,
which can be also time-varying, the time domain methods (such as time averages) are
not appropriate for their analysis. Dynamical characterization (e.g. through wavelet
based methods) on the other hand, offered better insight into the dynamics of the
oscillators and the existing phenomena.

The advantage of measuring human subjects who can regulate the speed of their
breathing voluntarily was used to introduce linearly increasing (decreasing) time-
variability in the oscillators’ dynamic. The wavelet analysis from CO2 concentration
(Fig. 4.2) showed how the perturbation confined the originally wide frequency range
around the ramp frequency, and that the averaged wavelet power was significantly
altered on all frequency intervals (Fig. 4.4a). The time-frequency representation
demonstrated that at any frequency and time, the ramp perturbation can be deter-
mined consistently with the externally predefined variations.

The strong relationships between the respiration and heart activity, was observed
in almost all of the performed analysis. The ramp breathing significantly altered not
only the wavelet power at frequencies corresponding to the perturbation, but also
the very low-frequencies [7], which were below the actual ramp breading frequen-
cies (Fig. 4.4b). Figure 4.5 reveals that CO2 and ECG are significantly coherent at
breathing frequencies, probably due to the respiration sinus arrythmia modulation
[6]. This phase coherence was following the specific time-varying breathing, and
was enhanced for the lower frequencies of the ramping. The high intensities of inter-
oscillatory couplings (Fig. 4.8) imply that there is high information flow between CO2
and RR-interval signals. The results (Fig. 4.8) confirm and support the notion that
respiration has a greater influence on the heart [21, 27, 28]. The ramp time-variability
of the inter-oscillatory couplings pointed out that these causal relationships are more
pronounced on lower breathing frequencies (see e.g. Fig. 4.8c, e).

The analysis of MSNA oscillatory [29] time-frequency content (Fig. 4.3) showed
traces of the specific ramp breathing pattern, which at the same time did not exert a
large effect on the averaged wavelet power (Fig. 4.4c). The phase coherence between
MSNA and CO2 was mostly concentrated around the breathing frequencies and
during the ramp intervention it was significantly affected and spread around the ramp
breathing frequencies Fig. 4.5. A simple time-domain observation (Fig. 4.7a–c) also
suggests that MSNA appears as volleys of bursts within the CO2 cycles [10, 11].
The cause of this phenomenon might be due to the coupling from CO2 to MSNA,
which was present throughout the ramp breathing and was significantly increased at
low frequencies (in the same way as the bursts Fig. 4.7d).

The time-varying breathing also affected the diastolic and systolic blood pres-
sure. The low frequency wavelet power of diastolic pressure was reduced outside the
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ramped frequencies (Fig. 4.4d). The high phase coherence followed the respiration
variations (Fig. 4.5). Interestingly, the phase coherence between sympathetic activity
and diastolic pressure, and systolic pressure and R-R interval oscillations was high at
low-frequencies, and was unaffected by the pattern of breathing (Fig. 4.6a, b). Con-
trariwise, phase coherence between systolic pressure and R-R interval oscillations
(Fig. 4.6b) is augmented by spontaneous breathing, within a narrow portion of the
usual breathing frequency range.

In summary, the time-varying breathing process significantly affected the func-
tioning and regulation of several mechanisms in cardiovascular and sympathetic
neural systems. In general, the gradually slower breathing provoked more ‘informa-
tion’ flow, altered the coordination and increased the influences between the oscil-
latory processes. The manifestations and effects on this multi-coupled oscillatory
system had the imprint of the particular form of the externally induced deterministic
time-variation. The proposed analysis was able to detect, follow and statistically to
quantify these features and phenomena.

4.3 Cardiorespiratory Interactions

In the previous section the effects from time-varying respiration were analyzed and
statistically quantified on the whole group of measurements. The following discus-
sion, first investigates more closely how the respiration with deterministic varying
frequencies can affect the cardiorespiratory interactions i.e. how the ramped breath-
ing affects the inherent dynamics and transitions between oscillatory processes of
the heart and respiration. The cardiorespiratory interactions in relation to ageing are
outlined shortly too. The Bayesian inferential technique (discussed previously in
Chap. 3) is employed for the reconstruction of the interacting phase dynamics, and
for evaluation of the qualitative states and transitions.

Before presenting the actual analysis, an important technical preprocessing issue
is addressed. Namely, in order to infer the phase dynamics, one needs to have good
estimate of the phases from the observable time-series. This is even more important
when the oscillatory dynamics are time-varying and the analysis requires instanta-
neous phases. Potential difficulties for the phase estimation occur when the signals
emanate from complex and/or mixed-mode oscillatory dynamics. Therefore, atten-
tion will first be spent on addressing some of the known methods for phase detection
and the problems they hold, and an alternative approach for overcoming these issues
will be proposed.

http://dx.doi.org/10.1007/978-3-319-00753-3_3


94 4 Application to Life Sciences

4.3.1 Instantaneous Phase Detection: Methods and Problems

The problem faced is to detect the phase at every moment in time from time-series
containing oscillatory characteristics.1 There exist two widely accepted methods for
phase detection, which are used differently depending on the form of the signal.

The first method considers the interval between two well-defined events as a
cycle, and that the phase increment between the events is exactly 2π. The procedure
is similar to having a Poincaré cross section on the phase portrait of the attractor [30].
A cycle is described by only one information point while the intermediate points are
linearly interpolated i.e. assigning the values of phase φ(tk) = 2πk to the times tk ,
and for arbitrary instant of time tk < t < tk+1 the phase is defined as:

φm(t) = 2πk + 2π
t − tk

tk+1 − tk
. (4.3)

A detection of phase from an ECG signal (which has complex form), was used to
present how the methods work. Figure 4.9a shows the ECG signal and the marked
maxima tk events. The instantaneous phase (Fig. 4.9 (b)). was estimated from the
marked points and using Eq. (4.3).

The second method involves construction of the complex analytic signal ζ(t) [31]
from a scalar experimental time series s(t) via the Hilbert transform:
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Fig. 4.9 Phase detection with marked-events and Hilbert transform methods. a ECG signal and
marked maxima R-peaks. b The phase estimated as (4.3) using the peaks from (a). c The two-
dimensional embedding using Hilbert transform of the same signal as a. d The spuriously detected
phase using Hilbert transform (4.4)

1 Note that instantaneous or ‘every instant of time’ in this context is finite and defined by the
sampling frequency of the time-series.
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ζ(t) = s(t)+ isH (t) = A(t)eiφH (t), sH (t) = π−1 P.V .
∫ +∞

−∞
s(τ )

t − τ
dτ , (4.4)

where sH (t) is the Hilbert transform of signal s(t). Hence, the angle variable φH (t)
from the complex signal ζ(t) describes the required instantaneous phase. This
approach is parameter free, very convenient for implementation, and if the signal
is well defined and has narrow band spectra it gives phase information in every point
of the time. However, if the two-dimensional embedding has loops or intersections
this method will fail. In fact, due to its complex form with (P and Q) minor peaks
between the maxima R-peak, the ECG signal is one such example. This is illus-
trated on Fig. 4.9c where the Hilbert transform embedding show clear folding and
intersection. Thus the detected instantaneousness phase will be spurious Fig. 4.9d.

In studies of cardiorespiratory interactions, the phases from the respiration sig-
nal usually are estimated with Hilbert transform, while the ECG phase is detected
through the marked events technique [3, 32]. This approach works well enough for
observing dynamical behaviour which is longer than several oscillatory cycles, and
where having only few phase information is enough (for example phase synchroniza-
tion with synchrograms). But if one tries to infer the inherent oscillatory dynamics
from complex signals, such as the coupling function and intrinsic time-varying para-
meters, then there is a need for instantaneous phase that contains more information
of the cycle. For example, for cardiorespiratory interactions the ECG phase from
the marked-events method contains only one information event per cycle, while the
rest is simple interpolation. Alternatively, the Hilbert phase is not correctly detected
either. Hence, there is a need for a phase estimate from complex signals that describes
the phase (time-variability) at every instant in time.

Additionally, care must be taken when the signals contain parts and modula-
tions from other (oscillatory) processes. In such cases, a preprocessing in terms of
de-trending, filtering or decomposing is required. This will allow for interactions
to be studied on self-sustained oscillatory processes with their own fundamental
frequency. For example, the respiration signal might contain components from the
heart activity, and if they are not taken into account, one might end up investigating
synchronization between the heart and the influence from the heart on respiration
[33, 34]. This is clearly wrong since the components are artifacts from the measuring
procedure rather than the oscillatory dynamics of respiration, and the dynamics are
coming from the same (cardiac) oscillator.

4.3.2 Instantaneous Phase Detection from Complex
Mixed-Mode Signals

Recent development of techniques for decomposition of mix-mode signals has lead
to the synchrosqueezed wavelet transform [35]. This method aims to decompose the
signal into intrinsic mode components which can have time-varying spectrum. The
transform is a combination of the wavelet transform and a special case of reallocation
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method which tries to “sharpen” the time-frequency component R(t,ω) by allocating
its value to a different point (t ′,ω′) in the time-frequency plane, determined by the
local behavior of R(t,ω) around (t,ω). It is based on wavelet transform W (s, t), as
described previously by Eqs. (4.1) and (4.2), which gives a time-scale representation
of the frequency content that is spread out in s, but its oscillatory behavior in t are
located around the original frequency ω, regardless of the value of s.

The synchrosqueezed transform aims to ‘squeeze’ the wavelet around the intrin-
sic frequency in order to provide better frequency localization. For any (s, t) for
which W (s, t) �= 0, a candidate instantaneous frequency for the signal g can be
calculated as:

ωg(s, t) = −i
∂
∂t Wg(s, t)

Wg(s, t)
. (4.5)

The information from the time-scale plane is transferred to the time-frequency
plane, according to a map (s, t) → (ωg(s, t), t), in an operation called syn-
chrosqueezing. The synchrosqueezed wavelet transform is then expressed as:

Tg(w, t) =
∫

A(t)
Wg(s, t)s−3/2δ(ω(s, t)− ω)ds, (4.6)

where A(t) = {a; Wg(s, t) �= 0}, and ω(s, t) is as defined in (4.5) above, for (s, t)
such that s ∈ A(t). Defined in this way, the transform is invertible and the signal can
be reconstructed after the synchrosqueezing:

g(t) = 
e

[
C−1
ψ

∫ ∞

0
Wg(s, t)s−3/2ds

]
, (4.7)

where C−1
ψ has a constant value which is calculated from the mother wavelet C−1

ψ =
1
2

∫ ∞
0 �(ξ) dξ

ξ . For practical reasons, when dealing with time series the frequency
variableω and the scale variable s can be “binned”, i.e. Wg(s, t) can be computed only
at discrete values sk , with sk − sk−1 = (�s)k , and the synchrosqueezed transform
Tg(ω, t) can be likewise determined only at the centers ωl of the successive bins
[ωl − 1

2�ω,ωl + 1
2�ω], with ωl −ωl−1 = �ω. The integral is written in this discrete

form as the summation of different contributions, and Eq. (4.7) becomes:

g(t) = 
e

[
C−1
ψ

∑
k

Wg(sk, t)s−3/2
k (�s)k

]
= 
e

[
C−1
ψ

∑
k

Tg(ωl , t)(�ω)

]
.

(4.8)
Due to the good frequency localizations and invertibility, the synchrosqueezed

wavelet transform can be used as an appropriate tool for identification and extraction
of intrinsic oscillatory modes in time domain [35]. Moreover, the complex nature
of the synchrosqueezed transform allows one to extract the phase of non-harmonic
signals, or of some of their modes. The instantaneous phase can be calculated as the
angle of the synchrosqueezed wavelet transform:
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Fig. 4.10 Instantaneous phase detection from ECG signal, using the synchrosqueezed wavelet
transform. The ECG signal is shown with grey line, and the phase φc(t) with black

φl(t) = ∠
[∑

k

Tg(ωl , t)(�ω)

]
. (4.9)

The transform’s great potential lies in its ability to determine instantaneous charac-
teristics from signals with non-harmonic waveform [36]. The robust implementation
and the visual time-frequency representation offer a convenient way for identification
and analysis of mixed-mode oscillatory dynamics [37].

Figure 4.10 presents a specific application of the technique as a response to the
originally posed question of how to detect reliably the instantaneous phase from
ECG signal. One can notice that the phase was detected correctly in respect of
the 2π cycles defined by the R-peaks, and that time-variability within the cycle is
traced appropriately. It is worth noting that the ECG phase detected in this way
(with instantaneous values) can be used appropriately by the Bayesian technique for
inference of properties like coupling functions.

Exploiting the decomposition property of the transform, the phase can be detected
only for certain specific oscillatory modes. For example the cardiac phase can be
detected only from the intrinsic mode within the cardiac interval (Table 4.1), thus at
the same time, a preprocessing procedure for removal of undesired modulations will
be performed.

On the other hand, there exist cases where the modulations and external oscilla-
tory premises can actually be used for further analysis. The latter can be even more
important if the oscillatory mode is not directly measurable. For example, the blood
flow signal measured with laser Doppler flowmetry (LDF), contains information
about the blood propagations which are modulated by several oscillatory compo-
nents. The activity within these frequency intervals, as elaborated in Table 4.1, can
be decomposed and used for other analysis. Figure 4.11a shows the synchrosqueezed
wavelet transform from human blood flow signal (also given by the wavelet transform
and time-averaged wavelet power on Fig. 4.14). It is easy to notice the oscillatory
modes in the corresponding frequency intervals (separated by dashed lines). This
subject had very low respiratory influence on the blood flow processes. By applying
the proposed technique, the oscillating processes were decomposed Fig. 4.11b–g and
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Fig. 4.11 Synchrosqueezed wavelet transform (a) from human blood flow signal. The oscillatory
components as explained by Table 4.1 are separated by black dashed lines. The decomposed time-
evolution (b)–(g) and their instantaneous phases (h)–(m), of the respective oscillatory component
as shown on the left in (a). For example (d) shows the myogenic signals and (j) its phase

their instantaneous phases were detected directly Fig. 4.11h–m. Within each interval,
the modes were selected as the maximal energy components, preserving their fre-
quency and amplitude time-variations. This novel facility gives the opportunity for
further analysis to be performed—including, for example, inter-oscillatory interac-
tions in terms of synchronization and directionality. These results will be even more
important because not all of the underlaying oscillatory processes can be measured
directly. The inter-oscillatory analysis can give deeper insight into the cardiovascular
mechanisms and causal relationships, and are certainly worth pursuing in the future.

4.3.3 Cardiorespiratory Interactions and the Effect
from Time-Varying Respiration

The cardiac and respiratory activity can be seen as two self-sustained oscillatory
processes that interact with each other. This sections investigates the cardiorespira-
tory interactions under conditions when the breathing pace is perturbed deterministi-
cally in a linear (ramp) manner—as explained in Sect. 4.2. The instantaneous cardiac
phase was estimated from the ECG signal by synchrosqueezed wavelet transform
described by Eq. (4.9). Similarly the respiratory phase was extracted from the CO2
concentration signal. In order to avoid the potential phase disturbances introduced by
the synchrosqueezed transform, the two phases were processed in a protophase-phase
[38].

The Bayesian framework for inference of phase dynamics (Chap. 3) was applied on
a segment with fast-to-slow ramp breathing. The results are summarized in Fig. 4.12.

http://dx.doi.org/10.1007/978-3-319-00753-3_3
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Fig. 4.12 Synchronization, directionality and coupling functions in the cardiorespiratory interac-
tion. a Standard 1:N synchrogram. b Synchronization index for ratios 1:4, 1:5 and 1:6, as indicated.
The dashed line represents the mean (dotted) +2 SD of synchronization indices from 100 surrogate
[25] realizations. c The time-varying respiration frequency (note the downward ramp due to pacing).
The gray areas on c represent ±2 SD from the mean value. d Directionality index: the dashed lines
represent the mean (dotted) +2 SD of directionality indices from 100 surrogate realizations. e–g
Coupling functions q1(φ1,φ2) calculated at different times, as indicated by the grey arrows. From
[41] © (2012) by the American Physical Society

The inferred respiratory frequency shown on Fig. 4.12c demonstrates the ramped
breathing variability. The secondary purpose for presenting the ramp is to follow the
changes of other measures with respect to the perturbation applied. By normalizing
the inferred coupling parameters, one can determine the net directionality of the inter-
actions. Figure 4.12d suggests that the degree of directionality is time-varying, but
confirms that respiration-to-heart is dominant [3, 28, 39, 40]. To determine whether
cardiorespiratory synchronization exists in certain ratios, the set of inferred coupling
parameters was used to reconstruct the torus map and for investigating whether the
root M(ψe) = ψe exists or not. Figure 4.12b shows the detection of transitions from
the non-synchronized to the synchronized state, which in turn change in different
ratios: 1:4 to 1:5 to 1:6, as the ramp progressed. The synchronization detection and
the respective transitions were consistent with the respective synchrogram Fig. 4.12a.
The surrogate testing on (b) and (d) was performed in order to refute the hypothesis
that the measures happen by chance, and to determine the significance threshold.



100 4 Application to Life Sciences

The cardiorespiratory coupling function, evaluated for three different time win-
dows indicated by the arrows, is presented on Fig. 4.12e–g. For simplicity and clar-
ity only q1 is shown (the qualitative behavior of q2 was similar). The interactions
are described by complex functions whose form changes qualitatively over time—
cf. Fig. 4.12e with (f) and (g). The latter implies that the functional relation for the
cardiorespiratory interactions is not a time-invariant function, but is in fact a time-
varying process for itself. The time-evolution of the coupling functions is evident by
analyzing consecutive time windows—cf. the similarities i.e. evolution of Fig. 4.12f,
g. It is important to note that this variability is not caused by the ramp time-varying
respiration frequency (which is decomposed separately), and that the phenomenon
of time-evolving coupling functions was observed also on spontaneously breathing
subjects.

The ramped breathing showed that the cardiorespiratory coordination depends
and is regulated to a great extent by the respiration dynamics. The analysis indicated
that the Bayesian technique detected the occurrence of transitions to/from synchro-
nization and revealed details of the phase dynamics, thus describing the inherent
nature of this transitions. It was found that the externally induced varying respiration
acts as a cause for these qualitative transitions. Additional complexity for the inter-
actions and their analysis was encountered by the coupling functions which were
also time-varying processes.

4.3.4 Cardiorespiratory Interactions and Ageing

The Bayesian inference (presented in Chap. 3) can be quite useful in treating real-life
problems. Its application for reconstruction of cardiorespiratory interactions can be
used to study and quantify certain physiological states and diseases. This was already
proven useful in a study about the evolution of human cardiorespiratory interactions
in relation to ageing [41]. In the following, the main results are shortly reported
and reviewed. The study describes an analysis of cardiac and respiratory time series
recorded from 189 subjects of both genders, with age ranging from 16 to 90 years.

The phases were estimated using the wavelet synchrosqueeze decomposition from
the ECG and the respiration signal. The Bayesian inference is applied to decompose
the deterministic phase dynamics and the noise. After the time-varying parameters are
decomposed, synchronization, directionality and coupling functions are studied and
statistically assessed in relation to different age groups. The heart and respiratory cou-
pling functions are further divided into three parts, representing: coupling-induced
self-interaction; direct driving by the other system; and indirect interactions.

It was found that there is no significant correlation of the overall synchronization
duration with age. It seems also that certain synchronization ratios may be characteris-
tic of particular ages and genders. The commonest cardiorespiratory synchronization
ratio was found to be 4:1. The overall influence of respiration on the heart decreases
with age, while influence in the opposite direction stays constant, leading to a net
decrease of coupling directionality with age.

http://dx.doi.org/10.1007/978-3-319-00753-3_3
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Fig. 4.13 Typical time-averaged coupling functions for a young (left) and an old (right) male sub-
jects, aged 21 and 71 years respectively. The coupling function qh(φh,φr ) represents the influence
from respiration to heart, while qr (φh,φr ) the influence from heart to respiration. From [42] ©
(2013) The Royal Society

To gain further insight into the nature of the cardiorespiratory interaction, the
overall form of the reconstructed coupling functions is analyzed. Figure 4.13 shows
the time-averaged versions of the coupling functions qh,r typical of a younger and
an older subject. Decrease of the respiration sinus arrythmia amplitude with age can
be seen by comparing Fig. 4.13a and b. The respiratory coupling qr shown in (c),
(d) seems to be quite irregular and not age dependent. Underlying all these separate
effects, the heart coupling function qh changes markedly with age, both in its average
form and in its time-variability, whereas the respiratory coupling function seems to
be irregular and unaffected by age.

4.4 Reproducibility of LDF Blood Flow Measurements:
Dynamical Characterization Versus Averaging

In experimental analysis it is crucially important to have precise and reliable measure-
ments. One of the tests for precision is reproducibility, which is the degree of agree-
ment between measurements conducted on replicate conditions in different locations
by different people. Recently, a question about the reproducibility of Laser Doppler
Flowmetry (LDF) measure of blood flow was raised [42]. By means of determining
cutaneous vascular conductance (CVC), the authors seek to evaluate reproducibil-
ity by averaging relatively short time segments of data during or immediately after
some perturbation. They concluded that the reproducibility of measurements on the
forearm is limited by spatial variability in the microvasculature.

This naturally raised the discussion if the analyzing methods used were appro-
priate for analysis of LDF blood flow signals, which have a mixed mode oscillatory
nature. Another important issue raised was how to assess external (non-autonomous)
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Fig. 4.14 Wavelet transform of LDF variability (top left), plotted above the raw signal in standard
perfusion units (bottom) and the averaged wavelet power spectrum (right). The six frequency inter-
vals as presented in Table 4.1 are indicated by horizontal lines and correspond (from the top) to:
cardiac activity; respiration; myogenic oscillations; neurogenic; NO-related endothelial processes;
and non-NO-related endothelial processes. From [17] © (2011) Elsevier

perturbations, the kind of discrepancy that can occur and how to analyze them prop-
erly. These two issues are presented in more detail below [17].

4.4.1 Blood Flow Analysis

The reproducibility of forearm LDF measurements was investigated in earlier work
[43] by means of dynamical characterization of the oscillatory signals. It was estab-
lished that the issue of spatial variability could be mitigated by careful placement of
the sensors: good reproducibility was obtained by avoiding proximity to the larger
vessels, hairs, and blemishes. It was found that this is true both for spatial repro-
ducibility, with simultaneous measurements at different positions on the same arm,
and for temporal reproducibility, with sequential measurements at the same position.

Time-averages measures are a standard tool for analysis in physiology. But the
question raised is whether time-averaging provides a satisfactory method for char-
acterising blood flow, developing LDF criteria, or testing LDF reproducibility. Since
blood flow is inherently oscillatory in nature [4], averaging will inevitably produce
variable results depending on how the window is positioned relative to the phase of
an oscillation unless, of course, the window is very much longer than the oscillation
period. In reality, the situation is even more complex because there is not just one
oscillatory process in blood flow, but at least six [44]. Figure 4.14 shows a wavelet
transform of typical LDF blood flow data. The slower of the two endothelial-related
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(a)

(b)

(c)

(d)

(e)

Fig. 4.15 The raw LDF blood flow signal from Fig. 4.14 averaged over successively larger window
sizes, as indicated by the numbers in each box. From [17] © (2012) Elsevier

oscillations has a period of about 0.007 Hz, so that the averaging window would need
to be much longer than 2.4 min in order to avoid irreproducibility from this source.
One can in principle always achieve reproducibility of an LDF average by using a
long enough averaging interval, or by averaging over a large enough spatial area but,
in doing so, one inevitably throws away a lot of potentially useful information.

The dynamical characterization, on the other hand, prescribes that it is better
to accept that blood flow is inherently oscillatory, and to frame the criteria for LDF
reproducibility on that basis. Thus, rather than asking whether the average blood flow
has changed over time or in spatial position, it will be better and more rewarding to
ask whether the characteristics of the oscillations have changed, for example: their
amplitudes and frequencies, which are already known to be reproducible in time
and space; or the extent to which the different oscillations mutually interact and
perhaps synchronize with each other. Changes in these quantities have been related
successfully to several different pathological conditions e.g. congestive heart failure,
hypertension and diabetes as well as to other states of the body like e.g. exercise and
anaesthesia [44]. Even if averages could be measured reproducibly, they would do
little to characterize or help diagnose these conditions.

To illustrate these points, Fig. 4.15 shows the same LDF segment as Fig. 4.14 and a
series of time-averaged flux values made with different window sizes. If a short time
is taken to “read” the value, the difference between readings can be as high as 60 %
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of the baseline value. The longer the window is, the less variable the average value
becomes. However, as shown in Fig. 4.14 there are distinct patterns in the variability
that are missed if only the average is taken into account. Moreover, the patterns are
visible on several different time-scales so that a relatively long recording time is
needed to capture the dynamical properties of the blood perfusion signal. Thus, for
analysis of LDF measurements, the dynamical description in terms of the parameter
values characterizing the oscillations, can be more appropriate. In their response
[45], the authors also add that both approaches: the time-averaging and dynamical
characterizations are of interest, being different but complementary.

4.4.2 Numerical Study of Transient Effect on Interacting
Oscillators Subject to Non-Autonomous Perturbations

In physiology, one of the standard procedures for investigating the mechanisms and
existing relationships is to subject the systems to external perturbations. In this way
the examiners can follow how the system reacts to this influence, and if there are
some interactions with other systems which are affected by this perturbation. Obvi-
ous examples include the ramp breathing discussed in Sect. 4.2, local heating or
post-occlusive reactive hyperaemia. Often several perturbations are performed con-
secutively, and in this particular case special care must be taken. When the systems
are oscillatory processes, the transient response from the perturbations (if not treated
well) can have an effect on the analysis and their reproducibility.

In a complex dynamical system such as the skin microvasculature, any pertur-
bation is likely to involve nonlinear hysteresis effects. Figure 4.16 shows the results
of a numerical simulation of just two coupled oscillatory processes subjected to
repeated external perturbation. The model consists of bi-directionally-coupled limit-
cycle oscillators (based on Poincaré oscillators), subject to external perturbations
and weak noise:

ẋ1 = −α1(r1 − a1)x1 − ω1(y1 − β1r1)+ ε1x2 + ξ1(t) (4.10)

ẏ1 = −α1(r1 − a1)y1 + ω1(x1 − β1r1)+ ε1 y2 + ξ1(t)− s1(t)− s2(t),

ẋ2 = −α2(r2 − a2)x2 − ω2(y2 − β2r2)+ ε2x1 + ξ2(t)

ẏ2 = −α2(r2 − a2)y2 + ω2(x2 − β2r2)+ ε2 y1 + ξ2(t)− s2(t), (4.11)

ri =
√

x2
i + y2

i ; i = {1, 2}.

The parameters were set to values mimicking the frequency spectra: cycle radii
a1 = a2 = 1; frequencies ω1 = 2π0.1, ω2 = 2π0.011; couplings ε1 = 0.01,
ε1 = 0.001; parameters for speed of convergence α1 = 0.001,α2 = 0.1 and
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4.16 The effect of repeated perturbations on the two-oscillator model described by Eqs. (4.10)
and (4.11), showing the resultant changes in the mean value and transient effects as they are observed
using different window sizes. From [17] © (2011) Elsevier

parameters for the center of rotation β1 = 0.4 and β2 = 0.01. The noise is white
Gaussian, with zero mean 〈ξi (t)〉 = 0 and correlation 〈ξi (t)ξi (s)〉 = Dδ(t − s),
where D is the noise strength (D1 = D2 = 0.003). A long initial transient time
(1000 s) was discarded and the stationary state was analyzed. The non-autonomous
perturbations s1(t), s2(t) are simple step signals, each with length t = 200 s and
amplitudes s1H = s2H = 0.2, as presented on Fig. 4.16a.

For the first 200 s, the first oscillator is unperturbed and its time-averages are
around the baseline (except for small deviations due to weak noise and coupling).
During the high value of s1(t) (t = 200–400 s) the first oscillator is perturbed and
its time-averages are affected accordingly. It is evident that x1 is then subject to the
gradually decreasing after effect of the perturbation. This transient period (t = 400–
700 s) appears because the oscillator needs a certain time to converge to its limit
cycle. The length of the transient depends on the characteristics and the parameters
of the oscillator. The associated time-averages are affected and the values are far
from the baseline. A second perturbation (t = 700–900 s) involves perturbing both
of the oscillators by s2(t). Note that, during this period, the first oscillator is subject
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to the additional and indirect influence of the second oscillator, resulting in higher
time-averages. After the second perturbation s2(t) finishes, the first oscillator is again
left in perturbed state and only gradually returns towards its baseline value.

It is evident that transients in the oscillatory behaviour may persist for much longer
than the timescale of the perturbation itself. Due to the coupled nature of the oscilla-
tory processes, perturbing either oscillator results in the transient behaviour of both
oscillators, leading to changes in the time-averaged values (which obscure the oscil-
lations themselves). Repeated perturbations result in overlapping transient responses.
Hence, when subjecting the microvasculature to a perturbation, care should be taken
to understand the role of oscillatory processes: short-time average values may capture
only a part of the transient physiological response.
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43. M. Bračič, A. Stefanovska, Wavelet based analysis of human blood flow dynamics. Bull. Math.
Biol. 60(5), 919–935 (1998)

44. A. Stefanovska, Coupled oscillators: complex but not complicated cardiovascular and brain
interactions. IEEE Eng. Med. Biol. Mag. 26(6), 25–29 (2007)

45. J. Cracowski, M. Roustit, Reproducibility of LDF blood flow measurements: dynamical char-
acterization versus averaging. A response to the letter from Stefanovska. Microvasc. Res. 82,
274–276 (2012)



Chapter 5
Analogue Simulation and Synchronization
Analysis of Non-Autonomous Oscillators

Synchronization is the ‘language’ used to describe the interactions among
oscillatory processes or in some cases (like in networks of oscillators) the reason
for the emergence of spontaneous order [1]. It is defined as an adjustment of fre-
quencies due to weak interactions between oscillatory processes [2]. Very often in
nature, the oscillatory systems (when not coupled) have basic frequencies that vary
with time. Such systems are usually observed in biology, including examples like the
cardiorespiratory system [3–5] and the brain [6]. In general, not only the oscillating
frequencies but also other interacting parameters and functional relationships can be
time-varying.

Whilst the previous discussion outlined the theoretical background and proposed
methods for treatment of synchronization between oscillators that are subject to
external influences, this section concentrates on the application and analysis of signals
obtained from experimental oscillatory systems. To observe the behaviour of these
systems, an analogue simulation of two coupled non-autonomous oscillators was
performed.

Analogue experiments have been used widely for studying the dynamics of nonlin-
ear systems [7–14]. They provide a convenient way to study the continuous dynamics
and interactions between oscillatory systems and stochastic processes in real time.
The electronic implementation and the real experimental environment, can allow the
synchronization phenomenon to be simulated in a way that is closer to the reality
present in the nature. The uncertainty in the system, arising due to the noise embedded
in the signals, has more realistic meaning, usually being attributed to environmental
disturbances or imperfections of some electronic properties of the systems. During
the process of data acquisition and discretization, some additional amount of mea-
surement noise is introduced, which has no links with the actual dynamics of the
oscillators. In analogue simulation the dynamics of the systems are truly continuous,
unlike numerical simulation where the continuous dynamics are only approximate
due to finite integration step.

The synchronization phenomenon can be studied, among other methods, through
phase and generalized synchronization analysis. The former studies the behavior of
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the phase difference of the oscillatory systems [15]. The generalized synchronization
analyzes the stability of the response system with regard to the coupling amplitude
in the state space [16]. Both of the definitions are widely used for chaotic systems,
but they are equally applicable to the class of limit-cycle oscillators. The comparison
and connection between phase and generalized synchronization has been discussed
in [17]. The central issue to be addressed here is how to treat the synchronization
phenomenon of time-varying oscillators, both from phase and state variables, in
experimental conditions. This leads to a common framework within which both
types of synchronization can be detected.

5.1 The Model

The specific model under investigation includes oscillators whose basic frequencies,
as their most essential characteristic, are not constant but time-varying. The motiva-
tion for studying this case is the presence of various modulations in biological oscil-
lators [4, 18, 19], which can affect qualitatively their interactions. The dynamics of
such non-autonomous oscillators are explicit functions of time: dx/dt = f (x(t), t),
and the synchronization phenomenon is implicitly dependent on the time-varying
sources.

Under these constrains, the system to be investigated consists of two coupled van
der Pol oscillators, in the following form:

1

c2 ẍ1 − μ1(1 − x2
1 )

1

c
ẋ1 + [ω1 + Ã sin(ω̃t)]2x1 = 0,

1

c2 ẍ2 − μ2(1 − x2
2 )

1

c
ẋ2 + ω2

2 x2 + ε(x1 − x2) = 0, (5.1)

where i = 1, 2 and xi are the state variables that describe the dynamics of each sub-
system,μi are the shape parameters that define the relaxation of each of the oscillator,
and ε is the coupling amplitude. When the shape parameters are small (μ → 0), ωi

are the oscillating frequencies parameters. The constant parameter c appears from
each integration procedure and is introduced for electrical stability. The first oscilla-
tor has a non-autonomous term (defined with Ã and ω̃) in its frequency, that forces
it to oscillate with time-varying frequency. The two oscillators are unidirectionally
coupled, where the first is driving the second oscillator.

The motivation for using van der Pol oscillators is due to the fact that, when
they have curtain relaxation (for μ > 0) the limit cycle is not perfectly circular,
as is the case with most of the limit cycle oscillatory processes in nature. In the
frequency domain this corresponds to the case when the oscillators have high har-
monics. Although the van der Pol oscillator is frequently used and is a popular limit
cycle oscillator, it is still not explicitly analytically solvable for the coupled dynam-
ics. Therefore one way of analyzing and studying the two interacting van der Pol
oscillators is through numerical and analogue simulation.
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5.2 Analogue Simulation

By conducting analogue simulation one can investigate the nonlinear dynamical
behavior of real experimental systems which can also encounter weak noise, possi-
bly both additive and multiplicative, arising from the imperfection of the electronic
components. The conceptual and technical aspects of the analogue implementation
followed the discussion in [7].

The block-diagram of the analogue electronic implementation of the system under
investigation (5.1), is given in Fig. 5.1. All the operational amplifiers are MC1458N
type, while the four-quadrant analogue multipliers are of AD534LD type. The output
of each multiplier is divided by a factor of 10, thus after each multiplier there is ampli-
fier with magnification Am = 10—not shown on the block diagram for compact and
clear presentation. From the specific construction in Fig. 5.1 one can determine the
values of the parameters of the system (5.1). The shape parameters are both set to
unity μ1 = μ2 = 1 and the basic frequencies are ω1 = 1 and ω2 = 1.1. The non-
autonomoucity is introduced additively in the frequency of the first oscillator through
sine wave signal from an analogue signal generator. The control parameters of the
non-autonomous term are set to be Ã = 0.03 and ω̃ = 0.2. The constant c = 100 is
introduced in the circuit integrators for electronic stability. Thus, the true oscillating
frequencies are f1 = ω1100/2π = 15.92H z and f2 = ω2100/2π = 17.51H z.
By varying the resistor value on the potentiometer Rp one can change the coupling
strength ε = 0 → 1—resulting in a change from zero coupling to moderate cou-
pling between the two interacting oscillators. In this way, the investigator is able to
observe and follow the time-evolution of the dynamics and synchronization transi-
tions in real time.

First, the oscillator with the non-autonomous term in its frequency was analyzed.
Its dynamics are such that it oscillates with constant amplitude (the envelope of x1(t)),

Fig. 5.1 A schematic block diagram of the analogue electronic circuit implementation of two uni-
directionally coupled van der Pol non-autonomous oscillators. The standard notations are used:
triangles correspond to amplifiers, while the rectangles correspond to the multipliers. For the resis-
tors R = 1 kΩ , C = 1µF and the resistor potentiometer Rp = 1 → 10 kΩ
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Fig. 5.2 The phase portrait
(a), the signal (b), and the
time-frequency wavelet analy-
sis (c) from the first (x1(t))
van der Pol oscillator. b and c
are calculated after analogue-
to-digital conversion with
1000 H z sampling frequency

(a) (b)

(c)

while its frequency is varying with time. The phase portrait from the oscilloscope is
shown on Fig. 5.2a. The constant amplitude and the signal form in the time domain
are presented in Fig. 5.2b. The time variability of the frequency, as the most signifi-
cant characteristic of this oscillator, can be studied by the means of wavelet transform
analysis. The specific implementation with the use of Morlet mother wavelet is as
discussed in Chap. 4. From the time-frequency representation of the signal x1(t) in
Fig. 5.2c one can clearly see that the frequency of the first oscillator is varying over
time, and that the form of the variation is as imposed by the non-autonomous sine
term.

While the amplitude of the signal x1(t) is constant over time, the amplitude of
the first derivative ẋ1(t) is varying due to the variations of the oscillating frequency.
Therefore, the phase portrait (Fig. 5.2a) shows that the limit cycle is varying slowly
in time, in a bounded region around the mean limit cycle curve. The numerical
analysis of the Lyapunov exponents [20] shows that the non-autonomous van der Pol
oscillator has zero largest Lyapunov exponent, pointing out that the oscillator is still
in its quasiperiodic state and that its attractivity did not change qualitatively. If the
non-autonomous perturbations, imposed by Ã, are much larger than those used in
this study, then the oscillator can turn from quasiperiodic into chaotic with positive
largest Lyapunov exponent, its stability can be lost, or its oscillations can reduce to
zero (oscillation death). These outcomes are not relevant to this study.

The second oscillator is autonomous by itself and its frequency is constant
over time, as shown on the time-frequency representation on Fig. 5.3b. If the non-
autonomous term is very small, i.e. ideally zero ( Ã = 0), then the frequencies of both
the oscillators are constant over time (like the one shown in Fig. 5.3b). For sufficiently

http://dx.doi.org/10.1007/978-3-319-00753-3_4
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(a) (b)

(d)(c)

Fig. 5.3 Lissajous curves and wavelet transform of synchronization in autonomous case (a, b) and in
non-autonomous (c, d) case. a Lissajous curves of synchronization for both autonomous oscillators
(when Ã = 0). b Time-frequency wavelet representation of x2(t) for autonomous synchronization.
c Lissajous curve for non-autonomous case of synchronization and d the corresponding wavelet
representation of x2(t) during this case. Compare differences on (a) with (c), and (b) with (d)

large coupling, e.g. ε = 0.4, the two oscillators can synchronize. The Lissajous curve
of this classical case of synchronization is presented in Fig. 5.3a. The curve is stable
without phase slips and has constant form over time. Next, the oscillators are kept
synchronized and non-autonomoucity is introduced by increasing the amplitude to
Ã = 0.03. The Lissajous curve will again be stable without phase slips, but its
form will slowly vary with time as shown in Fig. 5.3c, in a bounded region around
the autonomous Lissajous curve (compare Fig. 5.3a and c). Observing the wavelet
analysis of the second van der Pol oscillator shown in Fig. 5.3d, a variation in fre-
quency can be seen due to synchronization with the first non-autonomous oscillator.
The time variability of the frequency is also followed by amplitude time variations
of the second oscillator, in order for it to stay in the entrainment and to follow the
frequency variations of the first oscillator.

5.3 Detecting Synchronization from Experiments:
Comparative Analysis

Detection in this sense means to investigate if synchronization exists between the
two oscillators, by analyzing the dynamics described by time-series measured as
electronic voltage signals for the states of the oscillators. As with other experimental
measurements, the detections should be able to confirm the underlying synchro-
nization even though the signals can have a damaging amount of noise. Of special
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interest for this study is the ability to follow the detection in time, because the non-
autonomous influences can introduce time-variability and intermittent transitions of
the synchronization state.

The time series to be analyzed can represent the state variables (x1(t) and x2(t))
or the phases (φ1(t) and φ2(t)) extracted from the same signals. In doing so, one will
be detecting generalized or phase synchronization, respectively. In the following
discussion, the proposed method, based on Bayesian inference, will be employed
for the detection of both phase and generalized synchronization (discussed in more
detail in Chap. 3). Thus, even though the two types of synchronization are defined
differently, the methods for detection will have the same inferential base, uniting
them together to detect what constitutes the same phenomenon – synchronization.
Due to the particular information propagation, the methods are able to follow the
time-variation of the frequencies. The evaluation of the synchronization state will be
based on the inferred intrinsic parameters, and the separate inference of the noise,
which can allow the synchronization state to be determined without the effect from
the noise.

5.3.1 Phase Synchronization Detection

The objective in this section is not only to detect the existence of synchronization
state, but also to detect the time-variability and the transitions due to the effect of
the external influences. For this reason the parameters for the non-autonomous peri-
odic force were changed i.e. the amplitude was increased to Ã = 0.06, for which
synchronization transitions appeared. Due to the periodicity of the external signal,
the synchronized and non-synchronized intervals appeared intermittently. By look-
ing at the Lissajous curves on the oscilloscope one could observe this dynamical
behaviour in real time. After digitalizing, the state time-series were obtained. The
amplitude of the second driven oscillator was affected due to the synchronization
and the non-autonomous influences—(Fig. 5.4a). During the synchronization inter-
vals the amplitude varies in accordance with the periodic force, while for the n
on-synchronized interval the envelope returns to its free oscillation modes. The inset
shows the specific form of the signal.

Before the synchronization detections, the phases needed to be estimated from
the digitalized signals. Because the form of the signals was not complex and narrow-
banded, the Hilbert transform (see Chap. 4) was appropriate for estimating the phase
variables.

The method based on the Bayesian inference is applied on the phase signals. After
the reconstruction of the phase dynamics through the Fourier base functions, the
intrinsic parameters and the noise are acquired. Due to the relatively high frequency
of the oscillators, small windows tw = 0.5s were used for the inference. The inferred
parameters were used for reconstruction of the phase torus and the corresponding
map M(ψ), from which the synchronization can be determined. The intervals where
the root M(ψ) = ψe existed were judged as synchronized, while the absence of the
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Fig. 5.4 The signal from the second driven oscillator and the phase synchronization detection. The
signal from the second response oscillator shows amplitude (see the envelope) variations in periodic
intervals as imposed by the external source (a). The inset presents enlarged section of the signal.
The synchronization index from the detection (b). Note the detected intermittent synchronization
transitions

root indicated non-synchronized dynamics. Figure 5.4b shows the resultant detected
synchronization. It can be seen clearly that the synchronization and the corresponding
intermittent transitions were detected successfully. The detection was accurate and
in agreement with the amplitude variations imposed by the non-autonomous source.

5.3.2 Generalized Synchronization Detection

For determination of the generalized synchronization [21] the states of the interact-
ing system are required. In this case, the digitalized voltages of the two oscillators
represent the state variables. The two van der Pol oscillators are unidirectionally
coupled, where the first has an external source acting on its frequency. The definition
of generalized synchronization prescribes that the oscillators are synchronized if the
response oscillator is asymptomatically stable [16]. By evaluating the largest Lya-
punov exponents, one can determine if the response oscillator is asymptomatically
stable and if synchronization exists (detailed discussion can be found in Chap. 3).

The signals from the model (5.1) (using direct coupling) are processed through the
Bayesian inferential technique. The inference relies on the state base functions for
this particular model which were already described in Chap. 3. The inference returns
the intrinsic parameters about the bi-variate dynamics and the noise. The numerical
evaluation [20] of the largest Lyapunov exponents λ can reveal the synchronization
state. If λ is zero, there is no synchronization and the response oscillates following
its own dynamics. Synchronization occurs if λ has negative values, and the response
oscillators are asymptomatically stable.

In order to take advantage of the time-varying propagation process, the analysis
is performed on intermittent case of synchronization. Similarly as in the previous

http://dx.doi.org/10.1007/978-3-319-00753-3_3
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Fig. 5.5 Detected generalized synchronization from system (5.1), expressed through the largest
Lyapunov exponent λ. Negative values indicate asymptomatic stability of the response oscillator,
and occurrence of synchronization. Note the detected intermittent periodic transitions from in and
out of synchronization

section, the variations introduced in the frequency of the first oscillator are relatively
high ( Ã = 0.06) and synchronization transitions occur in periodic order. Figure 5.5
illustrates the evaluated largest Lyapunov exponent λ i.e. the detected generalized
synchronization. The proposed method determined the qualitative state of synchro-
nization successfully, which appears as negative Lyapunov exponent λ. Around the
transitions the exponent is positive, which indicates that the response oscillator goes
through marginally stable into unstable transition, before it reaches the synchronized
stable state.

5.4 Discussion

Starting from different variables (phase and states), the two types of phase and gen-
eralized synchronization, exploit different characteristics in order to determined the
synchronization state. Although defined in different ways, both of the approaches
inherently describe phenomenon with same nature. This was demonstrated with the
use of the proposed detection methods, based on the same concept of Bayesian
inference and applied on dynamics emanating from the same system.

The two methods detected synchronization phenomenon successfully and were
able to followed the intermittent transitions. The generalized synchronization
approach was more convenient in the respect that it was applied directly on the
signals, and did not require the prior phase extractions. But the generalized method
relies on inference represented with base functions of specific model. The phase
synchronization was more resistant to noise, having less variations, and was able to
follow the transition more precisely.
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Chapter 6
Conclusion

6.1 Summary

This work studies the effect of external dynamical sources on interacting self-
sustained oscillators. It outlines the theoretical constraints needed for appropriate
understanding of the dynamics and the phenomena that occur as a consequence of
non-autonomous influences. An inference technique is proposed for detection of
time-evolving dynamics in interacting oscillatory systems in the presence of noise.
The method enables synchronization and the respective transitions to be detected
and the interactions to be described in terms of time-varying coupling function and
directionality. The entire study is motivated by interacting biological oscillators. Of
main concern were the oscillatory processes from the cardiovascular system and sym-
pathetic nerve activity, which were analyzed under conditions where the breathing
frequency was externally varied in a predefined deterministic way. Several oscil-
latory models (Poincarè, van der Pol, phase oscillators) were used for theoretical,
numerical and analogue analysis. However, these models were not intended to model
all aspects of fully functioning complex biological systems (e.g. like the heart), but
only to capture sufficient dynamical characteristics which effectively describe the
interacting oscillatory nature. This indirectly implies that the developed detection
techniques need to be equally applicable to time-series obtained from biological
systems and from the model oscillators.

As theoretical background, a framework for analysis of interactions between non-
autonomous oscillating systems was presented. Multiple-scale analysis was applied
on a phase oscillators model with slowly varying frequency. It revealed the analytic
form of the synchronization behaviour with respect to slow and fast time-variations.
The investigation of limit-cycle oscillators showed that synchronous transition occurs
when the equilibrium solution for the phase difference and amplitudes loses its sta-
bility through a Hopf bifurcation. Bifurcation diagrams as functions of coupling
parameters were constructed for identification of parameter ranges of synchroniza-
tion, intermittent synchronization and non-synchronization. From the viewpoint of
the time series analyst, synchronization between non-autonomous oscillators appears
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substantially different from the classical autonomous case and several distinct char-
acteristics exist. The phase difference is dynamically varying, the lag synchronization
is not possible because of the non-constant time-varying phase shift and the external
source can be the cause for synchronization transitions between different synchro-
nization orders. The time-variation of the form of the coupling function, even when
the parameters (frequency, coupling amplitude) are constant, can act as a cause for
synchronization transitions.

Many practical situations exist where the investigator needs to determine and
quantify the interacting dynamics, and if (and how) they are time-varying. For these
reasons, a technique was introduced for analysis of the interactions between time-
dependent coupled oscillators, based on the signals they generate. At the core of the
method lies the Bayesian inference, which relies on either phase or state base func-
tions. Arguably, the representation of the phase dynamics with finite Fourier base
functions offers more general applicability than the state dynamics reconstruction,
which is model-dependent. The sequential information propagation was customized
in order to follow the time-variability of the oscillatory dynamics. Because syn-
chronization was evaluated from the inferred parameters separated from the noise,
the method was able to distinguish unsynchronized dynamics from noise-induced
phase slips, which could be important in a number of contexts, including both noise-
induced synchronization and desynchronization. Several important technical aspects
were elaborated on, and the method was applied to reveal and quantify the time-
varying nature of numerical, analogue and cardiorespiratory oscillatory systems.

It was demonstrated that the inference enables the evolution of the system under
study to be tracked continuously. Unlike earlier methods that only detect the occur-
rence of transitions to/from synchronization, the new method reveals details of the
dynamics, thus describing the inherent nature of the transitions, and at the same
time deducing the characteristics of the noise responsible for stimulating them. The
time-varying nature of the functions that characterize interactions between open
oscillatory systems was identified. The cardiorespiratory analysis demonstrated that
not only the parameters, but also the functional relationships, can be time-varying,
and the new technique can effectively follow their evolution. The variability of the
function has an important impact on the nature of the interactions, and can lead to
qualitative synchronization transitions. Because the only requirements are the time
series, the technique promises wide and general applicability.

The proposed theory and methods were applied for the analysis of biological oscil-
latory systems affected by external dynamical fields. The analyses were performed
on measurements taken under conditions where the respiration was varied linearly
in a deterministic way, which introduced non-autonomous time-variability into the
oscillating system. The measurements of ECG, CO2 concentration, blood pressure
and muscle sympathetic nerve activity, were analyzed by methods that were able
to track their time-variability. Statistical analyses were performed in order to iden-
tify significant relationships. It was found that the time-varying breathing process
significantly affects the functioning and regulation of several mechanisms in cardio-
vascular and sympathetic neural systems. In general, the low breathing frequencies
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provoked more information flow, altering the coordination and increasing the cou-
pling influences between the oscillatory processes. The manifestations and effects
on this multi-coupled oscillatory system had the imprint of the particular form of the
externally induced deterministic time-variation.

The benefits of using the proposed Bayesian inferential method were demonstrated
on the ramp cardiorespiratory analysis. The technique successfully identified that
the cardiorespiratory coordination depends on, and is regulated to a great extent
by, the respiration dynamics. The synchronization analysis showed occurrence of
consecutive transitions between different orders. It was found that the externally
induced varying respiration acts as a cause for these qualitative transitions. The
cardiorespiratory coupling function was found again to be a time-varying process,
which introduced additional complexity for the interactions and their analysis. The
benefits of using the inference method were also briefly demonstrated for a study of
the human cardiorespiratory interactions in relation to ageing.

An alternative method for phase detection, based on wavelet synchrosqueezed
transform, showed how the instantaneous phase can be extracted from complex time-
varying signals, such as the ECG signal. It was demonstrated that this approach
can be very useful in phase extraction from signals with mixed-mode oscillatory
components. This opened the door for future in depth analysis of the inter-oscillatory
interactions in blood flow signals.

The dynamical characterization for the reproducibility of LDF blood flow was
shown to be more appropriate than the time-averaged analysis, and that care must be
taken when non-autonomous perturbations are made consecutively.

The analogue simulation presented another model of interacting non-autonomous
oscillators which encountered real experimental noise. Two van der Pol oscillators
were unidirectionally coupled, where the frequency of the first oscillator was exter-
nally and periodically perturbed. The intermittent synchronization was detected both
through phase and generalized synchronization, based on common inferential basis.

In summary, this thesis demonstrates how one can study and detect the effects
from external fields on interacting oscillators. It lays down the theoretical background
and inference tools that can serve as a conceptual basis for appropriate analysis of
such oscillatory systems, particularly of those which are biological in nature.

6.2 Future Perspectives

During the discovery and development of these methods, theories and their applica-
tions, several new perspectives emerged. Some of them could lead to new insights
into oscillatory interactions, and deserve to be addressed in the near future. The
following outlines some of the aspects that could define the future directions and
development of the work proposed in this thesis.

The phase dynamics inferential technique can be applied on oscillatory inter-
actions of different origins. Thus, its exploitation for electro-chemical, mechanical
and meteorological oscillatory systems could be potentially useful. The application
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on cardiorespiratory interactions has already proven to be beneficial in relation to
ageing. The cardiorespiratory interactions can be further investigated, including dif-
ferent states or diseases. Example of this kind is an ongoing study about human brain
and cardiorespiratory interactions, involving analysis with the Bayesian inferential
technique.

The detection of generalized synchronization can be further investigated for its
applicability and technical aspects. One direction could be to study the detection
of time-varying generalized synchronization between chaotic oscillators. The deter-
mination of the asymptotic stability implies that in this case the largest Lyapunov
exponents would change from positive to negative due to synchronization. Thus, a
better discrimination could be achieved.

The instantaneous phase detection based on wavelet synchrosqueeze transform
offers the possibility for the phases to be decomposed from mixed-mode signals. This
procedure was demonstrated for one human blood flow signal in this thesis. In future,
a more in depth investigation can be conducted, analyzing more subjects in order to
infer the inner-interactions between the six oscillatory processes. The application of
the inferential method in this way will be generalized for a network of six oscillators,
which could analyze the time-evolving synchronization, directionality and coupling
functions.

The application of the inferential method identified the time-varying nature of
coupling functions. The presence of time-varying coupling functions in open car-
diorespiratory systems points to the importance of this thesis. The current litera-
ture has not paid much attention to this issue and it requires further exploration and
research, which could lead to discoveries of new important insights and mechanisms.



Appendix A
Glossary

Anaesthesia: is a pharmacologically induced and reversible condition of having
sensation (including the feeling of pain) blocked or temporarily taken away.
Arnold tongue: in general, is defined as a resonance zone emanating out from rational
numbers in a two-dimensional parameter space of variables. For synchronization it
defines the entrainment region in coupling and frequency mismatch parameter space.
Blood flow (BF): is the continuous running of blood in the cardiovascular system.
Blood pressure (BP): is the pressure exerted by circulating blood upon the walls of
blood vessels.
Cardiovascular system (CVS): consists of the heart and blood vessels, and is respon-
sible for circulation of the blood.
Diastolic blood pressure (DIA): the minimum level of blood pressure measured dur-
ing the relaxation phase of the cardiac cycle when the heart dilates and its chambers
fill with blood.
Dynamical system: a mathematical means of describing how one state develops into
another state over the course of time.
Electrocardiogram (ECG): a noninvasive measurement of the electrical activity of
the heart using electrodes placed on the body.
Endothelium: the thin layer of cells lining the interior surfaces of all blood vessels.
It forms an interface between the circulating blood and the rest of the vessel wall.
Generalized synchronization: occurs in unidirectionally coupled systems, if the
driven system is asymptotically stable.
Heart rate variability (HRV): is the continuous variations with time in the heart
rate of a healthy human, even in repose.
Lag synchronization: is synchronous regime where the states of two oscillators are
nearly identical, but one system lags in time to the other.
Laser Doppler flowmetry (LDF): is a noninvasive method for measuring the con-
tinuous circulation of blood flow on a microscopic level.
Lyapunov exponent (LE): of a dynamical system is a quantity that characterizes
the rate of separation of infinitesimally close trajectories.
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Multiple scale analysis: comprises techniques used to construct uniformly valid
approximations to the solutions of perturbation problems, both for small as well as
large values of the independent variables.
Muscle sympathetic nervous activity (MSNA): is the activity of SNS (q.v.), often
measured invasively from the efferent traffic of the peroneal muscle nerve.
Myogenic: contraction is an inherent property of smooth muscle. It occurs rhythmi-
cally with a period of around 10 s, without any external stimulus.
Non-autonomous system: is a system of ordinary differential equations which
explicitly depends on the independent variable. From dynamical point of view, non-
autonomous system includes an explicit time-dependance.
Non-isochronous oscillator: is one which rotation frequency is amplitude depen-
dent. Its definition includes amplitude terms that reflect the non-isochronicity or
shear of phase flow around the limit cycle.
Phase oscillator: is an approximative notation of phase dynamics of weakly inter-
acting oscillators.
Phase synchronization: is an adjustment of rhythms of oscillating objects due to
their weak interaction.
Respiration: is defined as the transport of oxygen from the outside air to the cells
within tissues, and the transport of carbon dioxide in the opposite direction.
Respiratory sinus arrhythmia (RSA): is a natural variation in the heart rate that
occurs during breathing. Heart rate increases during inspiration and decreases during
expiration.
Self-sustained oscillator: is the oscillator that exhibits stable limit cycles in the
absence of external contribution.
Sinus node: is the impulse-generating (pacemaker) tissue located in the right atrium
of the heart, and thus the generator of the sinus rhythm.
Sympathetic nervous system (SNS): is a part of autonomic nervous system which
mainly controls involuntary internal processes. It prepares the body for responses to
stressful challenges, allowing sudden strenuous exercise and increased vigilance.
Systolic blood pressure (SYS): is the maximum level of blood pressure measured
during the contraction phase of the cardiac cycle when blood is driven into the aorta
and pulmonary artery.



Appendix B
Detailed Analytic Manipulations
for the Coupled Limit-Cycle
Oscillators Model

This appendix shows the relatively straight forward algebraic steps through which
the main analytical results were derived.

The Poincarè oscillator can be written as follows in either cylindrical

ṙ = αr(a − r)

φ̇ = −ω (B.1)

or Euclidean coordinates

ẋ = ωy − x α

(√
x2 + y2 − a

)

ẏ = −ωx − y α

(√
x2 + y2 − a

)
. (B.2)

Now consider a pair of such coupled oscillators:

ẋ1 = −q1x1 − ω1(t)y1 + ε1(t)g11(x1, x2)

ẏ1 = −q1 y1 + ω1(t)x1 + ε1(t)g12(y1, y2)

ẋ2 = −q2x2 − ω2(t)y2 + ε2(t)g21(x1, x2)

ẏ2 = −q2 y2 + ω2(t)x2 + ε2(t)g22(y1, y2)

qi = αi

(√
x2

i + y2
i − ai

)
.

Writing explicitly the velocities of the phases φ̇i = d
dt arctan yi

xi
and of the ampli-

tudes ṙi = d
dt

√
(x2

i + y2
i ) one obtains:

T. Stankovski, Tackling the Inverse Problem for Non-Autonomous Systems, 125
Springer Theses, DOI: 10.1007/978-3-319-00753-3,
© Springer International Publishing Switzerland 2014



126 Appendix B: Detailed Analytic Manipulations for the Coupled Limit-Cycle

φ̇1 = −ω̃1 + cosφ1

r1
ε̃1g2(x1, x2)− sin φ1

r1
ε̃1g1(x1, x2)

φ̇2 = −ω̃2 + cosφ2

r2
ε̃2g4(x1, x2)− sin φ2

r2
ε̃2g3(x1, x2)

ṙ1 = α1r1(a1 − r1)+ cosφ1ε̃1g1(x1, x2)+ sin φ1ε̃1g2(x1, x2)

ṙ2 = α2r2(a2 − r2)+ cosφ2ε̃2g3(x1, x2)+ sin φ2ε̃2g4(x1, x2)

For convenience the time-variability has been denoted with a tilde (∼) overscript:
for example w̃1 ≡ w1(t).

The coupling function is general, and an explicit form must be chosen. If

g1(x1, x2) = x2 − x1; g2(y1, y2) = y2 − y1;
g3(x1, x2) = x1 − x2; g4(y1, y2) = y1 − y2; (B.3)

the derivative of the phase difference is expressed as:

ψ̇ ≡ φ̇2 − φ̇1 = −ω̃2 + ε̃2
r1

r2
cosφ2 sin φ1

− ε̃2 cosφ2 sin φ2 − ε̃2
r1

r2
sin φ2 cosφ1 − ε̃2 sin φ2 cosφ2

+ ω̃1 − ε̃1
r2

r1
cosφ1 sin φ2 + ε̃1 cosφ1 sin φ1

+ ε̃1
r2

r1
sin φ1 cosφ2 − ε̃1 sin φ1 cosφ1 (B.4)

If the dynamics of the variables ψ , r1 and r2 is slow relative to the fast variables
φi , one can consider the velocity of the phase difference as being averaged over a
period of (let us say) φ1 by integrating over one period. Thus, φ2 was substituted
with ψ + φ1 and next integral was evaluated:

1

2π

∫ 2π

0
ψ̇ dφ1 � ψ̇ = 1

2π

∫ 2π

0

[
− ω̃2 + ω̃1

+ ε̃2
r1

r2
(cosψ cosφ1 − sinψ sin φ1) sin φ1

− ε̃2(cosψ cosφ1 − sinψ sin φ1)(sinψ cosφ1

+ cosψ sin φ1)− ε̃2
r1

r2
(sinψ cosφ1 + cosψ sin φ1) cosφ1

(B.5)

− ε̃2(sinψ cosφ1 + cosψ sin φ1)(cosψ cosφ1

− sinψ sin φ1)− ε̃1
r2

r1
cosφ1(sinψ cosφ1 + cosψ sin φ1)

+ ε̃1
r2

r1
sin φ1(cosψ cosφ1 − sinψ sin φ1)

]
dφ1
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which yields the result:

ψ̇ = ω̃1 − ω̃2 − ε̃2
r1

r2
sinψ − ε̃1

r2

r1
sinψ.

Integrating also ṙi over φ1 gives:

〈ṙ1〉 = 1

2π

∫ 2π

0
ṙ1 dφ1 = a1r1α1 − r1

2α1 − ε̃1(r1 − r2 cosψ)

〈ṙ2〉 = 1

2π

∫ 2π

0
ṙ2 dφ1 = a2r2α2 − r2

2α2 − ε̃2(r2 + r1 cosψ).

Then the resulting system is expressed as:

⎧⎪⎨
⎪⎩
ψ̇ = 0 = ω̃1 − ω̃2 + (− r2 ε̃1

r1
− r1 ε̃2

r2
) sinψ

ṙ1 = 0 = a1r1α1 − r1
2α1 − r1ε̃1 + r2ε̃1 cosψ

ṙ2 = 0 = a2r2α2 − r2
2α2 − r2ε̃2 + r1ε̃2 cosψ

(B.6)

Equation (B.6) might or might not admit a solution, depending on the numerical
values of the parameters.



Appendix C
Synchrogram

Synchrograms can be used to obtain visual and qualitative measures of synchroniza-
tion at different frequency ratios.1 They are constructed by plotting the normalized
relative phase of one oscillator within m cycles of the other oscillator, according to

�m(tk) = 1

2π
φ(tk) mod 2πm

where tk is the time of the k-th marked event of the first oscillator, φ(tk) is the instan-
taneous phase of the second oscillator at time tk , and mod is the modulo operation
function. In the case of autonomous oscillators, perfect synchronization corresponds
to horizontal stripes on the synchrogram. When studying synchronization of non-
autonomous oscillators, synchrograms enable one to follow qualitatively the time
variations of the relative phase difference.

1 See for example Pikovski et al. “Synchronization: A Universal Concept in Nonlinear Sciences”,
Cambridge, 2003.
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Appendix D
Order, Type and Duration of the Ramp
Breathing Segments for Each Subject

Each of the subjects was measured having paced respiration intervals with linear
“ramp” variations. In respect of the change of the breathing frequency, there were
two types of ramps: fast-to-slow and slow-to-fast. The order of the ramps was not
strictly defined, and in some subjects there was only one type of ramp breathing,
while in other the two types were changing intermittently. However, the length of
the ramps and the frequency band within which the respiration was varied, were
(approximately: mean 9.05 and standard deviation of 0.14 min) constant for all of
the subjects and segments. The following Fig. (D.1) summarizes the order and the
duration of the ramp breathing segments and the respective spontaneous segments in
between, for each subject. For example, subject 4 had four ramp segments, two fast-
to-slow and two slow to fast, which changed intermittently. Compared this notation
and the respective wavelet transform illustration on Fig. 4.2 for the same subject 4.
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Fig. D.1 Order and duration of segments for each subject. The segments can be: spontaneous
breathing denoted as “-”, and two types of ramps fast-to-slow denoted as “\”, and slow-to-fast ramp
denoted with “/”. The numerical values represent the duration of each segment in minutes
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