
Chapter 8
Pricing Using Affine Diffusions

The aim of this chapter is to illustrate how to price derivatives using affine diffu-
sions in the classical risk-neutral setting and under the benchmark approach. In the
classical risk-neutral setting, the affine transform plays a crucial role in the pricing
of derivatives. In particular, there are essentially two ways in which this transform
has been employed:

• the affine transform can be used to determine the law of the vector of random
variables under consideration, if necessary numerically;

• the affine transform can be employed together with the Fourier transform.

In this chapter, we first show how to use the affine transform to determine the law
of a vector of random variables. Later, we combine this with the Fourier transform.
We present the theory, mainly relying on Filipović and Mayerhofer (2009). Subse-
quently, we illustrate the theory by using two one-dimensional examples.

Under the benchmark approach, we can work under the real world probability
measure, using the Craddock-Lennox-Platen approach from Sect. 7.3.1, or bench-
marked Laplace transforms, or we can employ the forward measure from Sect. 7.3.3.
In Sect. 8.5, we illustrate the usage of benchmarked Laplace transforms, and in
Sect. 8.6, we work under the forward measure.

8.1 Theoretical Background

As in Chap. 7, we work on a filtered probability space (Ω,A,A,P ) and use X
to denote an affine process that assumes values in the canonical state space X =
(�+)m × �n. The dynamics of X are given by

dXt = b(Xt ) dt + ρ(Xt ) dW t , (8.1.1)

where X0 = x and

ρ(x)ρ(x)� = a(x).

Affine processes are frequently used in the context of short rate models, and we
restate Assumption 7.2.1, also to recall the notation used therein.
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Assumption 8.1.1 The process r = {rt , t ≥ 0} is an affine transform of X =
{Xt , t ≥ 0},

rt = c + γ �Xt ,

where X is an affine process on the canonical state space (�+)m × �n given by
Eq. (8.1.1) with admissible parameters a, αi , b, and β i , where i ∈ {1, . . . , d}, given
in Eq. (7.1.7), and c ∈ �, γ ∈ �d .

We are interested in computing conditional expectations of the form

π(t) = E

(
exp

{
−

∫ T

t

rs ds

}
f (XT )

∣∣∣∣At

)
(8.1.2)

and hence impose the integrability condition

E

(
exp

{
−

∫ T

0
rs ds

}∣∣f (XT )
∣∣) < ∞

for the remainder of this chapter. In Eq. (8.1.2), the expectation is taken with re-
spect to the measure P . This refers either to the case when P denotes some as-
sumed equivalent risk-neutral probability measure or the case when P denotes the
real world probability measure. In the remainder of the section, we discuss how to
compute such discounted Laplace transforms. We recall Theorem 7.2.2, where we
assume that the expectation is taken with respect to the measure P , irrespective of
whether this refers to an assumed risk-neutral measure or the real world probability
measure. We point out that if P corresponds to an assumed risk neutral probability
measure and if f is simply the constant one, then the computation of (8.1.2) yields
the price at time t of a zero coupon bond maturing at time T . For the remainder of
the section, we assume that the conditions of Theorem 7.2.2 are satisfied. We have
the following result, see Corollary 4.2 in Filipović and Mayerhofer (2009).

Theorem 8.1.2 Let τ > 0 and assume that the conditions of Theorem 7.2.2 are
satisfied. Then for any maturity T ≤ τ , the T -zero coupon bond price at t ≤ T is
given as

E

(
exp

{
−

∫ T

t

rs ds

} ∣∣∣∣At

)
= exp

{−A(T − t) − B(T − t)�Xt

}
(8.1.3)

where we denote

A(t) = −Φ(t,0), B(t) = −Ψ (t,0).

Moreover, for t ≤ T ≤ S ≤ τ , the At -conditional characteristic function of XT is
given by

E

(
exp

{
−

∫ S

t

rs ds + u�XT

} ∣∣∣∣At

)

= e−A(S−T )+Φ(T −t,u−B(S−T ))+Ψ (T −t,u−B(S−T ))�Xt (8.1.4)

for all u ∈ S(U + B(S − T )), where U is the neighborhood of 0 in �d from Theo-
rem 7.2.2.
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We remark that if P corresponds to the risk-neutral probability measure, then
equality (8.1.4) gives the law of XT under a forward measure P S , defined via the
Radon-Nikodym derivative

ΛF = dP S

dP
= 1

E((S0
S)−1)

1

S0
S

,

where S0
t = exp{∫ t

0 rs ds}. From Bayes’ Theorem, see Sect. 15.8,

EPS

(
exp

{
u�XT

} ∣∣At

) = E(exp{− ∫ S

t
rs ds + u�XT } | At )

E(exp{− ∫ S

t
rs ds} | At )

. (8.1.5)

The expression E(exp{− ∫ S

t
rs ds} | At ) was computed in (8.1.3) and

E

(
exp

{
−

∫ S

t

rs ds + u�XT

} ∣∣∣∣ At

)

in Eq. (8.1.4). One can now recognize the law of XT under PS , or compute it nu-
merically. Finally, we point out that computations using forward measures under the
benchmark approach will be performed in Sect. 8.6.

We now illustrate how to apply Theorem 8.1.2. Clearly, this requires the solution
of the system of Riccati equations (7.2.1). In some cases, such as the Vasiček and
the CIR model, explicit solutions can be found, and we now show how to obtain
them.

8.2 One-Dimensional Examples

In this section, we discuss two one-dimensional examples, which feature promi-
nently in the finance literature.

8.2.1 Vasiček Model

The state space of the Vasiček model, see Vasiček (1977), is �, and we set rt = Xt ,
so that we consider the one-dimensional affine process

drt = (b + βrt ) dt + σdWt, (8.2.6)

where σ ≥ 0, b,β ∈ �. Given this parametrization, the system of Riccati equations
(7.2.1) now reads

∂tΦ(t, u) = 1

2
Ψ 2(t, u)σ 2 + bΨ (t, u),

Φ(0, u) = 0,

∂tΨ (t, u) = βΨ (t, u) − 1,

Ψ (0, u) = u.

(8.2.7)
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This system is easily solved, in particular, we obtain

Ψ (t, u) = exp{βt}u − exp{βt} − 1

β

and

Φ(t,u) = 1

2
σ 2

[
u2

2β

(
exp{2βt} − 1

) + 1

2β3

(
exp{2βt} − 4 exp{βt} + 3 + 2βt

)

− u

β2

(
exp{2βt} − 2 exp{βt} + 1

)]

+ b

[
u

β

(
exp{βt} − 1

) − exp{βt} − 1 − tβ

β2

]
,

which holds for all u ∈ C, and hence (8.1.4) holds for all u ∈ C. This allows us, via
Theorem 8.1.2, to compute

E

(
exp

{
−

∫ T

t

rs ds

} ∣∣∣∣ At

)
= exp

{−A(T − t) − B(T − t)rt
}
,

where

A(t) = −Φ(t,0)

= − b

β2

(
1 − exp{βt} + βt

) − σ 2

4β3

(
3 − 4 exp{βt} + exp{2βt} + 2βt

)
,

and

B(t) = −Ψ (t,0) = exp{βt} − 1

β
.

Furthermore, we have, by invoking Eq. (8.1.5),

EPS

(
exp{urT } ∣∣At

)

= exp

{
u

(
exp

{
β(T − t)

}
rt − σ 2

2β2

(
2 − exp

{
β(S − T )

} + exp
{
β(S + T − 2t)

}

− 2 exp
{
β(T − t)

}) − b

β

(
1 − exp

{
β(T − t)

})

+ σ 2u

4β

(
exp

{
2β(T − t)

} − 1
))}

.

This means, we identify the distribution of rT under P S conditional on At as Gaus-
sian with mean

exp
{
β(T − t)

}
rt − σ 2

2β2

(
2 − exp

{
β(S − T )

}
+ exp

{
β(S + T − 2t)

} − 2 exp
{
β(T − t)

})
− b

β

(
1 − exp

{
β(T − t)

})
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and variance

σ 2β

2

(
exp

{
2β(T − t)

} − 1
)
. (8.2.8)

For the special case S = T , i.e. P T = P S , this distribution reduces to the well-
known law of a Gaussian random variable with mean

exp
{
β(T − t)

}
rt − σ 2

2β2

(
exp

{
2β(T − t)

} − exp
{
β(T − t)

})

−
(

b

β
+ σ 2

2β2

)(
1 − exp

{
β(T − t)

})

and variance (8.2.8). These results are in line with well-known results on pricing
under the Vasiček model, see e.g. Mamon (2004).

8.2.2 CIR Model

We now discuss the CIR model, see Cox et al. (1985), following the presentation in
Filipović and Mayerhofer (2009). In this case, the state space is �+. We set rt = Xt ,
and deal with the following model for the short rate

drt = (b + βrt ) dt + σ
√

rt dWt , (8.2.9)

where b,σ > 0 and β < 0. The system of Ricatti equations (7.2.1) now reads

∂tΦ(t, u) = bΨ (t, u),

Φ(0, u) = 0,

∂tΨ (t, u) = 1

2
σ 2Ψ 2(t, u) + βΨ (t, u) − 1,

Ψ (0, u) = u.

(8.2.10)

To solve system (8.2.10), we use the following lemma, which appeared as
Lemma 5.2 in Filipović and Mayerhofer (2009).

Lemma 8.2.1 Consider the Riccati differential equation

∂tG = AG2 + BG − C, G(0, u) = u, (8.2.11)

where A,B,C ∈ C and u ∈ C, with A 	= 0 and B2 + 4AC ∈ C \ �−. Let
√· denote

the analytic extension of the real square root to C\�−, and define λ = √
B2 + 4AC.

• The function

G(t,u) = −2C(exp{λt} − 1) − (λ(exp{λt} + 1) + B(exp{λt} − 1))u

λ(exp{λt} + 1) − B(exp{λt} − 1) − 2A(exp{λt} − 1)u

is the unique solution of (8.2.11) on its maximal interval of existence [0, t+(u)).
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Moreover,∫ t

0
G(s,u)ds

= 1

A
log

(
2λ exp{λ−B

2 t}
λ(exp{λt} + 1) − B(exp{λt} − 1) − 2A(exp{λt} − 1)u

)
.

(8.2.12)

• If, in addition, A > 0, B ∈ �, �(C) ≥ 0 and u ∈ C−, then t+(u) = ∞ and G(t,u)

is C−-valued.

Invoking Lemma 8.2.1, we conclude that A = 1
2σ 2, B = β , C = 1, λ =√

β2 + 2σ 2 and

Ψ (t, u) = −2(exp{λt} − 1) − (λ(exp{λt} + 1) + β(exp{λt} − 1))u

λ(exp{λt} + 1) − β(exp{λt} − 1) − σ 2(exp{λt} − 1)u

= −L1(t) − L2(t)u

L3(t) − L4(t)u
,

where

L1(t) = 2
(
exp{λt} − 1

)
L2(t) = λ

(
exp{λt} + 1

) + β
(
exp{λt} − 1

)
L3(t) = λ

(
exp{λt} + 1

) − β
(
exp{λt} − 1

)
L4(t) = σ 2(exp{λt} − 1

)
and

Φ(t,u) = 2b

σ 2
log

(
2λ exp{λ−β

2 t}
λ(exp{λt} + 1) − β(exp{λt} − 1) − σ 2(exp{λt} − 1)u

)

= 2b

σ 2
log

(
L5(t)

L3(t) − L4(t)u

)
,

i.e. we set

L5(t) = 2λ exp

{
λ − β

2
t

}
,

where (Φ(·, u),Ψ (·, u)) : �+ → C− × C− and (8.1.4) holds for all u ∈ C− and
t ≤ T . As an application of the above result, we can obtain from Theorem 8.1.2

E

(
exp

{
−

∫ T

t

rs ds

} ∣∣∣∣ At

)
= exp

{−A(T − t) − B(T − t)rt
}
,

where

A(t) = −Φ(t,0) = 2b

σ 2
log

(
L3(t)

L5(t)

)

and

B(t) = −Ψ (t,0) = L1(t)

L3(t)
,

which is the same result as the one derived in Sect. 5.5 using Lie symmetry methods.
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We can also compute the law of rT under P S , conditional on At . Applying
Eq. (8.1.5), this gives

EPS

(
exp{urT } ∣∣At

)
= exp{−A(S − T ) + Φ(T − t, u − B(S − T )) + Ψ (T − t, u − B(S − T ))rt }

PS(t)

= exp
{−A(S − T ) + Φ

(
T − t, u − B(S − T )

) + Ψ
(
T − t, u − B(S − T )

)
rt

+ A(S − t) + B(S − t)rt
}

=
(

L5(S − T )L5(T − t)L3(S − t)

L3(S − T )(L3(T − t) − L4(T − t)(u − B(S − T )))L5(S − t)

) 2b

σ2

× exp

{
rt

(
L1(S − t)

L3(S − t)
− L1(T − t) − L2(T − t)(u − B(S − T ))

L3(T − t) − L4(T − t)(u − B(S − T ))

)}
.

It can be confirmed that
L5(S − T )L5(T − t)L3(S − t)

L3(S − T )(L3(T − t) − L4(T − t)(u − B(S − T )))L5(S − t)
= 1

1 − C1(t, T , S)u

and also that

L1(S − t)

L3(S − t)
− L1(T − t) − L2(T − t)(u − B(S − T ))

L3(T − t) − L4(T − t)(u − B(S − T ))

= −C2(t, T , S) + C2(t, T , S)

1 − C1(t, T , S)u
,

where

C1(t, T , S) = L3(S − T )L4(T − t)

2λL3(S − t)
and

C2(t, T , S) = L2(T − t)

L4(T − t)
− L1(S − t)

L3(S − t)
.

To identify the distribution of rT under P S conditional on At , we recall the follow-
ing well-known result, which in this form appeared as Lemma 5.1 in Filipović and
Mayerhofer (2009), see also Sects. 3.1 and 13.1.

Lemma 8.2.2 The non-central χ2-distribution with δ > 0 degrees of freedom and
non-centrality parameter λ > 0 has the density function

p(x, δ, λ) = 1

2
exp

{
−x + λ

2

}(
x

λ

) δ
4 − 1

2

I δ
2 − 1

2
(
√

λx), x ≥ 0

and characteristic function
∫

�+
exp{ux}p(x, δ, λ) dx = exp{ λu

1−2u
}

(1 − 2u)
δ
2

, u ∈ C−.

Here Iν(x) = ∑
j≥0

1
j !Γ (j+ν+1)

( x
2 )2j+ν denotes the modified Bessel function of the

first kind of order ν > −1, see e.g. Abramowitz and Stegun (1972), Sect. 9.6.
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Using Lemma 8.2.2, we conclude that under P S , the random variable 2rT
C1(t,T ,S)

,

conditional on At , follows a non-central χ2-distribution with 4b

σ 2 degrees of freedom
and non-centrality parameter 2C2(t, T , S)rt . These results are consistent with well-
known pricing formulas under the CIR model.

8.3 Fourier Transform Approach

We recall that the methodology in the previous section relied on using the character-
istic function to identify the law of XT , either by inspection or numerical inversion.
The approach presented in the current section also uses the characteristic function,
but in a different manner. We follow the approach presented in Filipović (2009),
where the following economic interpretation was presented.

We start with the economic interpretation and later present the approach in a
rigorous fashion. Its applications to some examples will conclude the section. Es-
sentially, we express the payoff function f (x) as follows

f (x) =
∫

�q

exp
{
(v + ıLλ)�x

}
f̃ (λ) dλ, dx-a.s.,

where f̃ (λ) denotes an integrable function. Economically, this means that we set up
a static hedge using claims with complex payoffs exp{(v + ıLλ)�x}, each weighted
by f̃ (λ). The linearity of pricing rules ensures that the price of the claim with payoff
f (x) is given by the weighted average of the prices of the claims with payoffs
exp{(v+ ıLλ)�x}, each weighted by f̃ (λ). The following theorem, which appeared
as Theorem 10.5 in Filipović (2009), makes this argument rigorous.

Theorem 8.3.1 Suppose either condition (i) or (ii) of Theorem 7.2.2 is met for some
τ ≥ T , and let D�(T ) denote the maximal domain for the system of Riccati equa-
tions (7.2.1). Assume that f satisfies

f (x) =
∫

�q

exp
{
(v + ıLλ)�x

}
f̃ (λ) dλ, dx-a.s., (8.3.13)

for some v ∈D�(T ) and d ×q matrix L, and some integrable function f̃ : �q → C,
for some positive integer q ≤ d . Then the price (8.1.2) is well defined and given by
the formula

π(t) =
∫

�q

exp
{
Φ(T − t,v + ıLλ) + Ψ (T − t,v + ıLλ)�Xt

}
f̃ (λ) dλ. (8.3.14)

If f is continuous in x, then (8.3.13) holds for all x, which follows since the
right-hand side of (8.3.14) is continuous in x, by the Riemann-Lebesgue theorem.

Of course, the applicability of Theorem 8.3.1 depends on how easy it is to come
up with a representation of the form (8.3.13). Following Filipović (2009), we can
find some examples useful for finance. We refer also to Sect. 8.4 for a more con-
structive approach.
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8.3.1 Examples of Fourier Decompositions

Following Filipović (2009) and Hurst and Zhou (2010), we discuss European call
and put options, exchange options, and spread options. For the proofs of the follow-
ing results, we refer the reader to Filipović (2009).

Lemma 8.3.2 Let K > 0. For any y ∈ � the following identities hold:

1

2π

∫
�

exp
{
(w + ıλ)y

} K−(w−1+ıλ)

(w + ıλ)(w − 1 + ıλ)
dλ

=

⎧⎪⎨
⎪⎩

(K − ey)+ if w < 0

(ey − K)+ − ey if 0 < w < 1,

(ey − K)+ if w > 1.

Clearly, the case 0 < w < 1 also equals (K − ey)+ − K .

By setting K = ez in Lemma 8.3.2, we obtain the payoff of an exchange option.

Corollary 8.3.3 For any y, z ∈ � the following identities hold:

1

2π

∫
�

exp{(w + ıλ)y − (w − 1 + ıλ)z}
(w + ıλ)(w − 1 + ıλ)

dλ =
{

(ey − ez)+ if w > 1,

(ey − ez)+ − ey if 0 < w < 1.

Lastly, we discuss the payoff of a spread-option.

Lemma 8.3.4 Let w = (w1,w2)
� ∈ �2 be such that w2 < 0 and w1 +w2 > 1. Then

for any y = (y1, y2)
� ∈ �2 the following identity holds:

(
ey1 − ey2 − 1

)+
(2π)2 =

∫
�2

exp
{
(w + ıλ)�y

}

× Γ (w1 + w2 − 1 + ı(λ1 + λ2))Γ (−w2 − ıλ2)

Γ (w1 + 1 + ıλ1)
dλ1 dλ2,

where the gamma function Γ (z) = ∫ ∞
0 t−1+ze−t dt is defined for all complex z with

�(z) > 0.

8.4 A Special Class of Payoff Functions

Following Filipović (2009), we point out that for a special class of payoff functions,
we can apply both approaches, the one from Sect. 8.3 and the one from Sect. 8.1.
For particular payoff functions, we can compute f̃ , as needed for the Fourier trans-
form approach from Sect. 8.3, but one can also compute the relevant densities. The
following theorem is Theorem 10.6 in Filipović (2009).
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Theorem 8.4.1 Suppose either condition (i) or (ii) of Theorem 7.2.2 is met for some
τ ≥ T , and let D� denote the maximal domain for the system of Riccati equations
(7.2.1). Assume that f is of the form

f (x) = ev�xh
(
L�x

)
for some v ∈D�(T ) and d ×q-matrix L, and some integrable function h : �q → �,
for a positive integer q ≤ d . Define the bounded function

f̃ (λ) = 1

(2π)q

∫
�q

e−ıλ�yh(y) dy, λ ∈ �q .

• If f̃ is an integrable function in λ ∈ �q , then the assumptions of Theorem 8.3.1
are met.

• If v = Lw, for some w ∈ �q , and eΦ(T −t,v+ıLλ)+Ψ (T −t,v+ıLλ)�Xt is an inte-
grable function in λ ∈ �q , then the At -conditional distribution of the �q -valued
random variable Y = L�XT under the T -forward measure P T admits the con-
tinuous density function

q(t, T ,y) = 1

(2π)q

∫
�q

e−(w+ıλ)�y eΦ(T −t,v+ıLλ)+Ψ (T −t,v+ıLλ)�Xt

PT (t)
dλ.

In either case, the integral in (8.3.14) is well-defined and the pricing formula
(8.3.14) holds.

8.5 Pricing Using Benchmarked Laplace Transforms

In this section, we discuss pricing under the benchmark approach using bench-
marked Laplace transforms. We have two applications:

• a standard European put option;
• realized variance derivatives.

8.5.1 Put Options Under the Stylized MMM

In this subsection, we motivate how benchmarked Laplace transforms naturally arise
when pricing options. For simplicity, we place ourselves in the stylized MMM, see
Sect. 3.3, which we now briefly recall, as it is used in this and the next subsection,
and Sect. 8.6. The filtered probability space (Ω,A,A,P ), where the filtration A =
(At )t≥0 is assumed to satisfy the usual conditions, carries one source of uncertainty,
a standard Brownian motion W = {Wt, t ≥ 0}. As in Sect. 3.3, we assume a constant
short rate and model the savings account using the differential equation

dS0
t = rS0

t dt,
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for t ≥ 0 with S0
0 = 1. We recall that the GOP is modeled using the SDE

S
δ∗
t = S0

t S̄
δ∗
t = S0

t Yt α
δ∗
t , (8.5.15)

where Yt = S̄
δ∗
t

α
δ∗
t

is a square-root process of dimension four, satisfying the SDE

dYt = (1 − ηYt ) dt + √
Yt dWt , (8.5.16)

for t ≥ 0 with initial value Y0 > 0 and net growth rate η > 0. As before, α
δ∗
t is a

deterministic function of time, given by

α
δ∗
t = α0 exp{ηt},

with scaling parameter α0 > 0. The following lemma shows how benchmarked
Laplace transforms arise when pricing options.

Lemma 8.5.1 Let g denote a positive AT -measurable random variable, and define

h(K) := E

(
(K − g)+

YT

)
.

We have for λ > 0,∫ ∞

0
exp{−λK}h(K)dK = 1

λ2
E

(
exp{−λg}

YT

)
.

Proof By the Fubini theorem it follows
∫ ∞

0
exp{−λK}h(K)dK =

∫ ∞

0
exp{−λK}E

(
(K − g)+

YT

)
dK

= E

(∫ ∞

0
exp{−λK} (K − g)+

YT

dK

)
.

We obtain ∫ ∞

0
exp{−λK} (K − g)+

YT

dK

=
∫ ∞

g

exp{−λK} (K − g)

YT

dK

= 1

YT

∫ ∞

g

exp{−λK}K dK − g

YT

∫ ∞

g

exp{−λK}dK

= 1

YT

(
g exp{−λg}

λ
+ exp{−λg}

λ2

)
− g

YT

exp{−λg}
λ

= 1

λ2

exp{−λg}
YT

,

and the result follows. �
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Now, for a put option with strike K and maturity date T , we compute

pT,K(0) = S
δ∗
0 E

(
(K − S

δ∗
T )+

S
δ∗
T

)
= S

δ∗
0 E

(
(K̃ − YT )+

YT

)
,

where K̃ = K

S0
T α

δ∗
T

. We are interested in the Laplace transform with respect to the

modified strike K̃ , and obtain, for

h(K̃) = E

(
(K̃ − YT )+

YT

)

the following equality∫ ∞

0
exp{−λK̃}h(K̃) dK̃ = 1

λ2
E

(
exp{−λYT }

YT

)
.

We recall from Sect. 3.1, that Yt exp{ηt}/c(t) ∼ χ2
4 (α), where α = Y0

c(t)
, c(t) =

exp{ηt}−1
4η

, and χ2
ν (λ) denotes a non-central χ2-distributed random variable with ν

degrees of freedom and non-centrality parameter λ. Consequently,

E

(
exp{−μYT }

YT

)
= E

(
exp{−μ̃χ2

4 (α)}
χ2

4 (α)

)
exp{ηT }

c(T )

= exp{−α/2}(exp{ α
4μ̃+2 } − 1)

α

exp{ηT }
c(T )

, (8.5.17)

where μ̃ = μ
c(T )

exp{ηT } . Equality (8.5.17) is easily verified using the probability den-

sity function of χ2
4 (α). This illustrates how benchmarked Laplace transforms arise

naturally in the context of option pricing. Finally, we remark that using the tech-
niques from Sect. 13.5, options can now be priced.

8.5.2 Derivatives on Realized Variance Under the Stylized MMM

We remind the reader that in Sect. 3.3, we had already derived the price of a put
option under the stylized MMM, without using Laplace transforms. However, we
now discuss an example, where the availability of benchmarked Laplace transforms
is crucial. In particular, we discuss the pricing of derivatives on realized variance of
an index. We point out that derivatives on the realized variance of an index, such as
the VIX, and options on the VIX, as traded on the Chicago Board Options Exchange,
have become important risk management tools.

In this subsection, we show how to price call and put options on realized variance,
variance swaps, and volatility swaps. The formulas derived in this subsection are in
the spirit of the pricing formulas presented in Sect. 3.3. However, the results needed
to price derivatives on realized variance, rely on the benchmarked Laplace trans-
form, see Proposition 7.3.8. Hence we discuss realized variance derivatives in this
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subsection. Furthermore, we remark that the results presented here have appeared in
Baldeaux et al. (2011a), Chan and Platen (2011), and Lennox (2011).

We place ourselves in the stylized MMM and model realized variance as the
quadratic variation of the logarithm of the index,[

ln
(
Sδ∗)]

T
,

which admits the following representation.

Lemma 8.5.2 The realized variance of the index is given by the integral

[
ln

(
Sδ∗)]

T
=

∫ T

0

dt

Yt

. (8.5.18)

Proof Clearly, [
ln

(
Sδ∗)]

T
= [

ln(Y )
]
T
,

as S0· and α
δ∗· are deterministic functions of time. Now one has by the Itô formula

d ln(Yt ) = dYt

Yt

− 1

2

d[Y ]t
Y 2

t

= 1

Yt

(1 − ηYt ) dt + dWt√
Yt

− 1

2

dt

Yt

= 1

Yt

(
1

2
− ηYt

)
dt + dWt√

Yt

,

which completes the proof. �

We now study call and put options on realized variance. In particular, we present
Laplace transforms of prices of options on realized variance and show how bench-
marked Laplace transforms naturally arise in this context. We will focus on put op-
tions, as prices of call options can be recovered from the following put-call parity.

Lemma 8.5.3 The following put-call parity relation holds for payoffs of options on
realized variance

E

(
( 1
T

∫ T

0
dt
Yt

− K)+

S
δ∗
T

)

= E

( 1
T

∫ T

0
dt
Yt

− K

S
δ∗
T

)
+ E

(
(K − 1

T

∫ T

0
dt
Yt

)+

S
δ∗
T

)
.

Note that the put-call parity involves the fair zero coupon bond and not the sav-
ings bond even when the short rate is constant.
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Fig. 8.5.1 Prices of put
options on realized variance
versus strike prices

We address the problem of pricing put options on realized variance, which by
Lemma 8.5.3 also covers the case of call options. For notational convenience, we
focus on the case t = 0, and are, therefore, interested in computing the expectation

h(K) := E

(
(K − 1

T

∫ T

0
dt
Yt

)+

YT

)
. (8.5.19)

Inspired by Carr et al. (2005), we first compute the Laplace transform of h(K) with
respect to the strike K , which we obtain from Lemma 8.5.1. Setting g = 1

T

∫ T

0
dt
Yt

,
we compute

∫ ∞

0
exp{−λK}h(K)dK = 1

λ2
E

(exp{− λ
T

∫ T

0
dt
Yt

}
YT

)
. (8.5.20)

The quantity

E

(exp{− λ
T

∫ T

0
dt
Yt

}
YT

)

is easily computed using Proposition 7.3.8. We can hence price put options on real-
ized variance by inverting the Laplace transform given in Eq. (8.5.20) and invoking
Proposition 7.3.8. To demonstrate that this methodology works reliably, Fig. 8.5.1
displays put option prices for different strikes, that have been confirmed to the shown
accuracy via numerical methods to be introduced in Sects. 12.2 and 13.5, where we
choose

Y0 = 1, T = 1, η = 0.052, r = 0.05.

In Sect. 13.5, we will discuss how to invert Laplace transforms, and also present
examples relevant to the pricing of realized variance derivatives.

We remark that the approach presented in this subsection cannot immediately
be extended to the pricing of call and put options on volatility. This is due to the
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fact that the approach presented in this subsection requires the computation of the
expectation

E

(exp{−λ

√∫ T

0
dt
Yt

}
YT

)
. (8.5.21)

However, there seems to exist no explicit formula for (8.5.21). This motivates us
to apply numerical methods to the problem, which we will develop in Sects. 12.2
and 13.5. In particular, we demonstrate how to recover the joint distribution of
(
∫ t

0
ds
Ys

, Yt ) by inverting the one-dimensional Laplace transform given in Eq. (5.4.16).
Subsequently, we can apply quadrature methods to compute prices, see Sect. 12.2.

We now discuss variance and volatility swaps. Again, the benchmarked Laplace
transforms are useful in this context. The payoff of a variance swap maturing at
T > 0 is given by

[
ln

(
Sδ∗)]

T
− K,

where K is a fixed swap rate, chosen in such a way that the time t = 0 value of the
variance swap is zero. Hence from the real world pricing formula (1.3.19), we need
to solve the following equation for K ,

S
δ∗
0 E

( [ln(Sδ∗)]T − K

S
δ∗
T

)
= 0,

which by Eq. (8.5.15) and Lemma 8.5.2 is equivalent to

S
δ∗
0

α
δ∗
T S0

T

E

(∫ T

0
ds
Ys

YT

)
− KPT (0) = 0,

where PT (t) denotes the time t price of a zero coupon bond maturing at T . Regard-
ing the computation of

E

(∫ T

0
ds
Ys

YT

)
,

we use the following proposition, see Lennox (2011), Proposition 2.0.41, and also
Chan and Platen (2011), Proposition 8.1. We present the result in generality. We
consider the square-root process

dXt = (a − bXt) dt + √
2σXt dWt , (8.5.22)

where X0 = x > 0, and remark that this proposition follows immediately from the
benchmarked Laplace transform given in Proposition 7.3.8.

Proposition 8.5.4 Let X = {Xt, t ≥ 0} be given by (8.5.22), let β(μ) = 1 + m −
α + ν(μ)

2 , m = 1
2 ( a

σ
− 1), and ν(μ) = 1

σ

√
(a − σ)2 + 4μσ , and assume that 2a

σ
≥ 2.
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Then if m > α − 1,

E

(∫ t

0
ds
Xs

Xα
t

)

= −x−m exp

{
− bx

σ(ebt − 1)
+ bmt

}
d

dμ

((
bebt

(ebt − 1)σ

)−m+α− ν(μ)
2

×
(

b2x

4σ 2 sinh2( bt
2 )

)ν(μ)/2 Γ (1 + m − α + ν(μ)
2 )

(1 + ν(μ))

× 1F1

(
β(μ),1 + ν(μ),

bx

σ(ebt − 1)

))∣∣∣∣
μ=0

,

where 1F1 denotes the confluent hypergeometric function, see e.g. Chap. 13 in
Abramowitz and Stegun (1972).

To price variance swaps, we simply set a = 1, b = η, and σ = 1
2 in (8.5.22) and

note that

m = 1

2
> 0 = α − 1,

hence the result applies to the stylized MMM.
We now study volatility swaps. A volatility swap pays√[

ln
(
Sδ∗

)]
T

− K,

at maturity T > 0, where again K is chosen so that the initial value of the volatility
swap is zero. Hence we solve the following equation for K :

S
δ∗
0 E

(√[ln(Sδ∗)]T
S

δ∗
T

)
− E

(
S

δ∗
0

S
δ∗
T

)
K = 0,

where again E(
S

δ∗
0

S
δ∗
T

) is the time 0 price of a fair zero coupon bond maturing at T .

The following representation is useful, and is, for example, also used in Gatheral
(2006), Eq. (11.6):

√
x = 1

2π

∫ ∞

0

1 − exp{−ux}
u3/2

du, x ≥ 0. (8.5.23)

Hence by Eq. (8.5.15) and Lemma 8.5.2,

E

(√[ln(Sδ∗)]T
S

δ∗
T

)
= 1

α
δ∗
T S0

T

E

(√∫ T

0
ds
Ys

YT

)
,

and

E

(√∫ T

0
ds
Ys

YT

)
= 1

2π

∫ ∞

0

E( 1
YT

) − E(
exp{−u

∫ T
0

ds
Ys

}
YT

)

u3/2
du.
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We recall that E( 1
YT

) is easily computed using the transition density of Y , see
Eq. (3.1). Finally, we observe that

E

(exp{−u
∫ T

0
ds
Ys

}
YT

)

is again the benchmarked Laplace transform, which was computed in Proposi-
tion 7.3.8.

We conclude that when pricing derivatives under the benchmark approach,
benchmarked Laplace transforms feature prominently, but are easily computed via
Lie symmetry methods, for those tractable models we consider in this book under
the benchmark approach.

8.6 Pricing Under the Forward Measure Using the Benchmark
Approach

In this section, we illustrate how to combine the results from Sect. 8.3 with the
benchmark approach. For simplicity, we begin with the one-dimensional case, but
we consequently also discuss a two-dimensional example. Assume that the payoff
function f admits the representation

f (x) =
∫

�
exp

{
(w + ıλ)x

}
f̃ (λ) dλ, dx-a.s.

Also recall from Sect. 8.3.1, that f (·) is typically a function of the log-price ln(S
δ∗
T ).

Consequently, Proposition 7.3.10 yields the formula

PT (t)EPT

(
f

(
S

δ∗
T

) ∣∣At

)
= PT (t)

∫
�

EPT

(
exp

{
(w + ıλ) ln

(
S

δ∗
T

)} ∣∣ At

)
f̃ (λ) dλ

= PT (t)

∫
�

EPT

((
S

δ∗
T

)w+ıλ ∣∣At

)
f̃ (λ) dλ.

We have

EPT

((
S

δ∗
T

)w+ıλ ∣∣At

) = S
δ∗
t

PT (t)
E

((
S

δ∗
T

)w−1+ıλ ∣∣At

)
.

For the stylized MMM, we use Eq. (8.5.15) to compute, for u ∈ C,

EPT

(
exp

{
u ln

(
S

δ∗
T

)} ∣∣ At

) = S
δ∗
t

PT (t)
E

(
exp{u ln(S

δ∗
T )}

S
δ∗
T

∣∣∣∣At

)

= E((S
δ∗
T )u−1 | At )

E((S
δ∗
T )−1 | At )

= (
α

δ∗
T S0

T

)u E(Yu−1
T | At )

E(Y−1
T | At )

.
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Recall that we use χ2
ν (λ) to denote a non-central χ2-distributed random variable

with ν degrees of freedom and non-centrality parameter λ. In Sect. 3.1 we estab-
lished that conditional on At ,

YT exp{η(T −t)}
c(T −t)

follows a non-central χ2-distribution

with 4 degrees of freedom and non-centrality parameter β = Yt

c(T −t)
, where c(t) =

(exp{ηt} − 1)/(4η). We hence obtain

EPT

(
exp

{
u ln

(
S

δ∗
T

)} ∣∣ At

)

= (
S0

T

(
ϕ(T ) − ϕ(t)

))u E((χ2
4 (β))u−1 | At )

E((χ2
4 (β))−1 |At )

, (8.6.24)

where

ϕ(t) = 1

4

∫ t

0
αδ∗

s ds.

Due to the tractability of the stylized MMM, we can compute explicitly

E
((

χ2
4 (β)

)u−1) = 2u−1Γ (1 + u) 1F1

(
−u + 1,2,−β

2

)
, (8.6.25)

for �(u) > −1, where 1F1 denotes the confluent hypergeometric function, see
Chap. 13 in Abramowitz and Stegun (1972). For u = 0, this evaluates to

E
((

χ2
4 (β)

)−1) = (1 − exp{−β/2})
β

. (8.6.26)

The forward measure can also be employed in a bivariate context. We consider the
GOP denominated in two currencies: Sa denotes the GOP denominated in the do-
mestic currency, and Sb denotes the GOP denominated in the foreign currency. As in
Sect. 3.3, we model both discounted GOPs as independent squared Bessel processes
of dimension four, i.e. we assume that

Sk
t = S

0,k
t αk

t Y
k
t , k ∈ {a, b},

where S
0,k
t = exp{rkt} denotes the savings account denominated in currency k,

αk
t = αk

0 exp
{
ηkt

}
,

and

dY k
t = (

1 − ηkY k
t

)
dt +

√
Y k

t dWk
t ,

where we assume that d〈Wa,Wb〉t = 0.
We consider an exchange option, i.e. the payoff is given by(

Sa
T − Sb

T

)+
.

Using the forward measure which employs the zero coupon bond in the domestic
currency, the real world pricing formula yields

Sa
t E

(
(Sa

T − Sb
T )+

Sa
T

∣∣∣∣At

)
= P a

T (t)EPT

((
Sa

T − Sb
T

)+ ∣∣At

)
,
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where P k
T (t) denotes the time t price of a zero coupon bond in currency k ∈ {a, b},

maturing at T . From Corollary 8.3.3, we get

P a
T (t)EPT

((
Sa

T − Sb
T

)+ ∣∣At

)

= P a
T (t)

2π

∫
�

EPT ((Sa
T )w+ıλ(Sb

T )−(w−1+ıλ) |At )

(w + ıλ)(w − 1 + ıλ)
dλ,

where w > 1. From the assumed independence of Sa and Sb ,

EPT

((
Sa

T

)w+ıλ(
Sb

T

)−(w−1+ıλ) ∣∣At

)
= EPT

((
Sa

T

)w+ıλ ∣∣At

)
EPT

((
Sb

T

)−(w−1+ıλ) ∣∣At

)
,

which can be computed as demonstrated above. This leads to the formula

Sa
t E

(
(Sa

T − Sb
T )+

Sa
T

∣∣∣∣At

)

= P a
T (t)

2π

∫
�

EPT ((Sa
T )w+ıλ | At )EPT ((Sb

T )−(w−1+ıλ) | At )

(w + ıλ)(w − 1 + ıλ)
dλ,

where w > 1. Furthermore, we compute using Eqs. (8.6.24), (8.6.25), and (8.6.26),

EPT

((
Sa

T

)ua
∣∣At

)

= βa(S
0,a
T (ϕa(T ) − ϕa(t)))ua 2ua−1Γ (1 + ua) 1F1(−ua + 1,2,−βa

2 )

(1 − exp{−βa/2}) ,

where ua = w − 1 + ıλ,

ϕk(t) = 1

4

∫ t

0
αk

s ds, k ∈ {a, b},

βk = Y k
t

ck(T − t)
, k ∈ {a, b},

ck(t) = (exp{ηkt} − 1)

4ηk
, k ∈ {a, b}.

We now turn to the computation of EPT ((Sb
T )ub | At ). Recall that we used the zero

coupon bond in the domestic currency to define the forward measure. It follows that

EPT

((
Sb

T

)ub
∣∣ At

) = Sa
t

P a
T (t)

E

(
(Sb

T )ub

(Sa
T )

∣∣∣∣At

)

= Sa
t

P a
T (t)

E

(
1

Sa
T

∣∣∣∣At

)
E

((
Sb

T

)ub
∣∣At

)

= E
((

Sb
T

)ub
∣∣At

)
.

As above, we compute

E
((

Sb
T

)ub
∣∣At

)

= (
S

0,b
T

(
ϕb(T ) − ϕb(t)

))ub2ubΓ (ub + 2) 1F1

(
−ub,2,−βb

2

)
.
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