
Chapter 6
Exact and Almost Exact Simulation

The aim of this chapter is to discuss the simulation of tractable models, illustrated
in the context of stochastic volatility models. For two popular stochastic volatility
models, the Heston model, see Heston (1993), and the 3/2 model, see Heston (1997)
and Lewis (2000), we present exact simulation algorithms, where we use results
from Sect. 5.4. These techniques are based on the inverse transform method, which
we firstly recall. Moving to higher dimensions, it seems more difficult to generalize
these techniques except for the trivial dependence structure, the independent case.
Consequently, we recall almost exact simulation schemes from Platen and Bruti-
Liberati (2010), which are applicable in the multidimensional case. Finally, we point
out that in Chap. 11 we will discuss advanced multidimensional stochastic volatility
models based on the Wishart process, which have been successfully applied to the
modeling of stochastic volatility.

We introduce these simulation methods in an equity context, in particular, we
concentrate on modeling stocks and stock indices. However, these methods are
also applicable in other areas, for example in interest rate modeling: the stochastic
volatility Brace-Ga̧tarek-Musiela model introduces stochastic volatility processes in
the context of the LIBOR market model. The techniques discussed in this chapter are
also applicable in such a context, see e.g. Chap. 16 in Brace (2008), in particular,
Sect. 16.4, which deals with simulation.

6.1 Sampling by Inverse Transform Methods

Conceptually, we simulate the given models, one- and multidimensional models, us-
ing the inverse transform method, which was discussed e.g. in Chap. 2 in Platen and
Bruti-Liberati (2010). The forthcoming brief description of the inverse transform
method follows this discussion closely.

The well-known inverse transform method can be applied for the generation of a
continuous random variable Y with given probability distribution function FY . From

J. Baldeaux, E. Platen, Functionals of Multidimensional Diffusions with Applications
to Finance, Bocconi & Springer Series 5, DOI 10.1007/978-3-319-00747-2_6,
© Springer International Publishing Switzerland 2013

161

http://dx.doi.org/10.1007/978-3-319-00747-2_6


162 6 Exact and Almost Exact Simulation

a uniformly distributed random variable 0 < U < 1, we obtain an FY distributed
random variable y(U) by realizing that

U = FY

(
y(U)

)
, (6.1.1)

so that

y(U) = F−1
Y (U). (6.1.2)

Here F−1
Y denotes the inverse function of FY . More generally, one can still set

y(U) = inf
{
y: U ≤ FY (y)

}
(6.1.3)

in the case when FY is no longer continuous, where inf{y: U ≤ FY (y)} denotes the
lower limit of the set {y: U ≤ FY (y)}. If U is a U(0,1) uniformly distributed ran-
dom variable, then the random variable y(U) in (6.1.2) will be FY -distributed. The
above calculation in (6.1.2) may need to apply a root finding method, for instance,
a Newton method, see Press et al. (2002). Obviously, given an explicit transition
distribution function for the solution of a one-dimensional SDE we can sample a
trajectory directly from this transition law at given time instants. One simply starts
with the initial value, generates the first increment and sequentially the subsequent
random increments of the simulated trajectory, using the inverse transform method
for the respective transition distributions that emerge.

Also in the case of a two-dimensional SDE we can simulate by sampling from
the bivariate transition distribution. We first identify the marginal transition dis-
tribution function FY1 of the first component. Then we use the inverse transform
method, as above, for the exact simulation of an outcome of the first component of
the two-dimensional random variable based on its marginal distribution function.
Afterwards, we exploit the conditional transition distribution function FY2|Y1 of the
second component Y2, given the simulated first component Y1, and use again the
inverse transform method to simulate also the second component of the considered
SDE. This simulation method is exact as long as the root finding procedure involved
can be interpreted as being exact. It exploits a well-known basic result on multivari-
ate distribution functions, see for instance Rao (1973).

It is obvious that this simulation technique can be generalized to the exact sim-
ulation of increments of solutions of some d-dimensional SDEs. Based on a given
d-variate transition distribution function one needs to find the marginal distribution
FY1 and the conditional distributions FY2|Y1 ,FY3|Y1,Y2 , . . . ,FYd |Y1,Y2,...,Yd−1 . Then the
inverse transform method can be applied to each conditional transition distribution
function one after the other. This also shows that it is sufficient to characterize ex-
plicitly in a model just the marginal and conditional transition distribution functions.

Note also that nonparametrically described transition distribution functions are
sufficient for application of the inverse transform method. Of course, explicitly
known parametric distributions are preferable for a number of practical reasons.
They certainly reduce the complexity of the problem itself by splitting it into a se-
quence of problems. Finally, we recall that explicit transition densities have already
been presented in Chaps. 2, 3, and 5.
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Regarding the simulation of stochastic volatility models describing the evolution
of a stock or index price, we proceed as follows, assuming a price process with
SDE

dSt = μSt dt + √
VtSt dWt ,

where V = {Vt , t ≥ 0} is a square-root process, see Sect. 3.1, if we deal with the
Heston model; or a 3/2 process, see Sect. 3.1, if we deal with the 3/2 model. For
both models, to obtain a realization of St , we firstly simulate Vt , subsequently we
simulate

∫ t

0 Vs ds conditional on Vt , and lastly St , which, conditional on Vt and∫ t

0 Vs ds, follows a conditional Gaussian distribution. As discussed in Chap. 3, the
distribution of Vt is known for the square-root and the 3/2 process, see Sect. 3.1.
Regarding the conditional distribution of

∫ t

0 Vs ds, we compute the Laplace trans-
form of

∫ t

0 Vs ds, conditional on Vt . Subsequently, the probability distribution is
easily recovered by an approach due to Feller, see Feller (1971). Having obtained
the conditional probability distribution, the inversion method is applicable. To com-
pute the Laplace transform of

∫ t

0 Vsds conditional on Vt , we rely on the results
from Sect. 5.4, especially the fundamental solutions. We compute the relevant con-
ditional Laplace transforms in Sect. 6.2, and also compute additional conditional
Laplace transforms, such as the Hartman-Watson law for squared Bessel processes.
Subsequently, in Sects. 6.3 and 6.4, we show how to apply the results from Sect. 6.2
to the Heston and the 3/2 model.

6.2 Computing Conditional Laplace Transforms

In this section, we discuss how Laplace transforms of the form

E

(
exp

{
−b2

2

∫ t

0
Xs ds − ν

∫ t

0

ds

Xs

} ∣∣∣∣ Xt

)
, (6.2.4)

where X = {Xt, t ≥ 0} is a one-dimensional diffusion process to be specified be-
low, can be computed using the results from Sect. 5.4. Such Laplace transforms turn
out to play important roles in the design of exact simulation methods for stochastic
volatility models, as we will show in Sects. 6.3 and 6.4. We point out when comput-
ing conditional Laplace transforms of the above form that Lie symmetry methods
turn out to be crucial.

Formally, we consider the computation of the functional

u(x, t) = E

(
exp

{
−λXt − b2

2

∫ t

0
Xs ds − ν

∫ t

0

ds

Xs

})
,

where X = {Xt, t ≥ 0} is such that its drift f satisfies one of the Ricatti equations
(4.4.34), (4.4.35), or (4.4.36), and X0 = x. We identify the corresponding PDE for
u and denote the fundamental solution by p(x, y, t).
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However,

u(x, t) = E

(
exp

{
−λXt − b2

2

∫ t

0
Xs ds − ν

∫ t

0

ds

Xs

})

=
∫ ∞

0
exp{−λy}E

(
exp

{
−b2

2

∫ t

0
Xs ds − ν

∫ t

0

ds

Xs

} ∣
∣∣∣ Xt = y

)

× q(x, y, t) dy,

where q(x, y, t) denotes the transition density of X = {Xt, t ≥ 0}. Since p(x, y, t)

is a fundamental solution of the associated PDE we immediately have

E

(
exp

{
−b2

2

∫ t

0
Xs ds − ν

∫ t

0

ds

Xs

} ∣
∣
∣
∣ Xt = y

)
= p(t, x, y)

q(t, x, y)
.

Assuming the fundamental solution p(x, y, t) and the transition density q(x, y, t)

are available in closed-form, the simple steps presented above outline a systematic
approach to computing conditional Laplace transforms. As an illustration, we com-
pute the Hartman-Watson law for squared Bessel processes, see also Jeanblanc et al.
(2009), Proposition 6.5.1.1.

Proposition 6.2.1 Assume that δ ≥ 2, and that X = {Xt, t ≥ 0} is given by the SDE

dXt = δ dt + 2
√

Xt dWt,

where X0 = x > 0. Then

E

(
exp

{
−b2

2

∫ t

0

ds

Xs

} ∣∣∣∣ Xt = y

)
=

I√
b2+ν2(

√
xy/t)

Iν(
√

xy/t)
,

where ν = δ/2 − 1.

Proof The proof follows immediately from Proposition 5.4.1, where the fundamen-
tal solution of the PDE

ut = 2xuxx + δux − b2

2

u

x

is given by

p(x, y, t) = 1

2t

(
x

y

)(1−δ/2)/2

I2d+ δ
2 −1

(√
xy

t

)
exp

{
− (x + y)

2t

}
,

where d = 1
4 (2 − δ + √

(δ − 2)2 + 4b2) and the transition density of the squared
Bessel process is of the form

q(x, y, t) = 1

2t

(
x

y

)(1−δ/2)/2

Iδ/2−1

(√
xy

t

)
exp

{
− (x + y)

2t

}
.

Lastly, note that

2d + n

2
− 1 =

√
b2 + ν2,
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where ν = δ
2 − 1 is the index of the squared Bessel process, which finishes the

proof. �

The next result is due to Pitman and Yor (1982). However, we present an alter-
native proof which employs Lie symmetry methods.

Proposition 6.2.2 Assume δ ≥ 2, and that X = {Xt, t ≥ 0} is given by

dXt = δ dt + 2
√

Xt dWt,

X0 = x > 0. Then

E

(
exp

{
−b2

2

∫ t

0
Xs ds

} ∣
∣
∣
∣ Xt = y

)

= bt

sinh(bt)
exp

{
x + y

2t

(
1 − bt coth(bt)

)
}

Iν(
b
√

xy

sinh(bt)
)

Iν(
√

xy

t
)

.

Proof The proof follows along the lines of the proof of Proposition 6.2.1. From
Proposition 5.4.2, we have that the fundamental solution of the PDE

ut = 2xuxx + δux − b2

2

u

x
,

is given by

p(x, y, t) = b

2 sinh(bt)

(
y

x

) δ/2−1
2

exp

{
− b(x + y)

2 tanh(bt)

}
I(δ−2)/2

(
b
√

xy

sinh(bt)

)
.

Recalling the transition density of the squared Bessel process, the result follows. �

Proposition 6.2.2 plays a crucial role in the Broadie-Kaya exact simulation
scheme for the Heston model, see Broadie and Kaya (2006). Consequently, the fun-
damental solutions presented in Chap. 5 can be used for this stochastic volatility
model.

Finally, the following result can be used in the design of an exact simulation
scheme for the 3/2 model, which is another stochastic volatility model.

Proposition 6.2.3 Let X = {Xt, t ≥ 0} be a squared Bessel process of dimension δ,
where δ ≥ 2. Then

E

(
exp

{
−b2

2

∫ t

0
Xs ds − μ

∫ t

0

ds

Xs

} ∣∣∣
∣ Xt = y

)

= bt

sinh(bt)
exp

{
(x + y)

2t

(
1 − tb coth(bt)

)}I√
ν2+2μ

(
b
√

xy

sinh(bt)
)

Iν(
√

xy

t
)

.
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Proof From Proposition 5.4.4, we have that the fundamental solution of

ut = 2xuxx + δux −
(

b2x

2
+ μ

x

)
u

is

p(x, y, t) = b

2 sinh(bt)
exp

{
− b(x + y)

2 tanh(bt)

}(
y

x

) δ−2
4

I√
ν2+2μ

(
b
√

xy

sinh(bt)

)
.

Recalling the transition density of the squared Bessel process, the result follows. �

We remind the reader that the fundamental solutions obtained via Lie symmetry
methods sit at the heart of the computations of the results, not the Laplace transform
of the solutions.

These conditional Laplace transforms are now applied to two stochastic volatility
models, the Heston and the 3/2 model.

6.3 Exact Simulation of the Heston Model

In this section, we present the approach proposed by Broadie and Kaya (2006) to
simulate the stock price under the Heston model exactly. We recall that the dynamics
of the stock price and squared volatility under the Heston model satisfy the SDE,

dSt = μSt dt + ρ
√

VtSt dBt +
√

1 − ρ2
√

VtSt dWt , (6.3.5)

dVt = κ(θ − Vt ) dt + σ
√

Vt dBt , (6.3.6)

respectively, where W = {Wt, t ≥ 0} and B = {Bt , t ≥ 0} are independent Brown-
ian motions. Integrating the stock price, we have

St = S0 exp

{
μt − 1

2

∫ t

0
Vs ds + ρ

∫ t

0

√
Vs dBs +

√
1 − ρ2

∫ t

0

√
Vs dWs

}
.

We now integrate the squared volatility or the variance process

Vt = V0 + κθt − κ

∫ t

0
Vs ds + σ

∫ t

0

√
Vs dBs.

Hence one obtains
∫ t

0

√
Vs dBs = Vt − V0 − κθt + κ

∫ t

0 Vs ds

σ
. (6.3.7)

Consequently, it follows

St = S0 exp

{
μt − 1

2

∫ t

0
Vs ds + ρ

σ

(
Vt − V0 − κθt + κ

∫ t

0
Vs ds

)

+
√

1 − ρ2

∫ t

0

√
Vs dWs

}
.

We now present the exact simulation algorithm, and subsequently explain the indi-
vidual steps in detail.
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Algorithm 6.1 Exact simulation for the Heston model
1: Generate a sample of Vt given V0
2: Generate a sample of

∫ t

0 Vs ds given Vt

3: Compute
∫ t

0

√
Vs dBs from (6.3.7) given Vt and

∫ t

0 Vs ds

4: Generate a sample from St , given
∫ t

0

√
VsdBs and

∫ t

0 Vs ds

6.3.1 Simulating Vt

In Sect. 5.3, the transition density of the square-root process of dimension δ was
derived, see also Sect. 3.1, from which we can obtain the following equality in
distribution

Vt
d= σ 2(1 − exp{−κt})

4κ
χ2

δ

(
4κ exp{−κt}

σ 2(1 − exp{−κt})
)

,

where δ = 4θκ

σ 2 and χ2
δ (λ) denotes a non-central χ2 random variable with δ degrees

of freedom and non-centrality parameter λ. One way of sampling non-central χ2

random variables, which was also used in Broadie and Kaya (2006), proceeds as
follows: from Johnson et al. (1995), it is known that for δ > 1,

χ2
δ (λ) = χ2

1 (λ) + χ2
δ−1,

and hence

χ2
δ (λ) = (Z + √

λ)2 + χ2
δ−1,

where Z is a standard normal random variable independent of χ2
δ−1. Furthermore,

for δ > 0, we have the following equality in distribution:

χ2
δ (λ)

d= χ2
δ+2N,

where N is a Poisson random variable with mean λ
2 . Since a χ2-distributed ran-

dom variable is a special case of a gamma random variable, we can use algorithms
to sample from the gamma distribution. Lastly, we remark that in Sect. 13.2, we
will present an algorithm to compute the cumulative distribution function of a non-
central χ2 random variable with δ ≥ 0 degrees of freedom, and hence we can also
sample by inverting the cumulative distribution function as discussed in Sect. 6.1.

6.3.2 Simulating
∫ t

0 Vs ds Given Vt

We point out that the challenging step in Algorithm 6.1 is the simulation of the inte-
grated variance,

∫ t

0 Vs ds, conditional on the end point of the integral, Vt . This prob-
lem is solved by computing the Laplace transform of

∫ t

0 Vs ds, conditional on Vt , by
combining a probabilistic result with a result from Sect. 5.4.
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The method illustrates that results obtained via Lie symmetry analysis can be
powerfully combined with results from probability theory, see also Sect. 5.5 for
additional examples. Having obtained the Laplace transform, we use it to compute
the characteristic function, which in turn can be used to compute the probability
distribution function.

In fact, the approach is similar to the approach presented in Sect. 5.5. We in-
troduce a time-change, i.e. we set ρt = V 4t

σ2
to obtain the following SDE for

ρ = {ρt , t ≥ 0},
dρt = (2jρt + δ) dt + 2

√
ρt dB̃t , (6.3.8)

where B̃ = {B̃t , t ≥ 0} is a standard Brownian motion, j = − 2κ

σ 2 , and δ = 4κθ

σ 2 . We
now recall formula (6.d) from Pitman and Yor (1982), which reads

jP δ,t
ρ0→y = exp{− j2

2

∫ t

0 ρs ds}
P

δ,t
ρ0→y

P δ,t
ρ0→y, (6.3.9)

using jP
δ,t
ρ0→y to denote the bridge for {ρs, 0 ≤ s ≤ t} obtained by conditioning jP δ

ρ0

on ρt = y, where jP δ
ρ0

denotes the law of ρ = {ρt , t ≥ 0} started at ρ0. Equation
(6.3.9) is the analogue of Proposition 3.1.6, but for bridge constructions. We are
now in a position to prove the following theorem.

Theorem 6.3.1 Let V = {Vt , t ≥ 0} be given by Eq. (6.3.6). Then

E

(
exp

{
−a

∫ t

0
Vs ds

} ∣∣∣∣ Vt

)

= γ (a) exp{− (γ (a)−κ)t
2 }(1 − exp{−κt})

κ(1 − exp{−γ (a)t})
× exp

{
V0 + Vt

σ 2

(
κ(1 + exp{−κt})

1 − exp{−κt} − γ (a)(1 + exp{−γ (a)t})
1 − exp{−γ (a)t}

)}

×
I δ

2 −1

( 4γ (a)
√

V0Vt

σ 2
exp{− γ (a)t

2 }
(1−exp{−γ (a)t})

)

I δ
2 −1

( 4κ
√

V0Vt

σ 2
exp{− κt

2 }
(1−exp{−κt})

) ,

where γ (a) = √
κ2 + 2σ 2a.

Proof The steps of the proof are as follows: in fact, they are similar to the proof of
Theorem 5.5.1. We firstly change the volatility coefficient of Vt from σ to 2, using
the well-known time-change discussed above. Subsequently, we apply the bridge
construction from Eq. (6.3.9), which is analogous to Eq. (5.5.20), to reduce the
problem to the computation of conditional Laplace transforms involving a squared
Bessel process, which we derived in Sect. 6.2.

As in Sect. 5.5, we set ρt = V 4t

σ2
to obtain the SDE (6.3.8) for ρ = {ρt , t ≥ 0}.
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Recalling Eq. (6.3.9), we compute

E

(
exp

{
−a

∫ t

0
Vs ds

} ∣∣∣∣ Vt

)

= E

(
exp

{
−a

∫ t

0
ρσ2s

4
ds

} ∣∣∣∣ ρσ2 t
4

)

= E

(
exp

{
−4a

σ 2

∫ σ2 t
4

0
ρs ds

} ∣∣∣
∣ ρσ2 t

4

)

=
Ẽ

(
exp

{−(
j2

2 + 4a

σ 2 )
∫ σ2 t

4
0 ρs ds

} ∣
∣ ρσ2 t

4

)

Ẽ(exp
{− j2

2

∫ σ2 t
4

0 ρs ds
} ∣

∣ ρσ2 t
4

)

,

where we use E to denote the expectation with respect to jP
δ,t
ρ0→y , and Ẽ the expec-

tation with respect to P
δ,t
ρ0→y . Applying Proposition 6.2.2 to both, the numerator and

the denominator, and recalling that ρσ2 t
4

= Vt and j = − 2κ

σ 2 , the result follows. �

As described in Broadie and Kaya (2006), we now obtain the characteristic func-
tion Φ(b) by setting a = −ıb,

Φ(b) = E

(
exp

{
ıb

∫ t

0
Vs ds

} ∣∣∣∣ Vt

)
.

The probability distribution function can be obtained by Fourier inversion methods,
see Feller (1971):

P

(∫ t

0
Vs ds ≤ x

∣∣∣∣ Vt

)
= 1

π

∫ ∞

−∞
sin(ux)

u
Φ(u)du

= 2

π

∫ ∞

0

sin(ux)

u
�(

Φ(u)
)
du, (6.3.10)

where �(Φ(u)) denotes the real part of Φ(u).
The final integral in Eq. (6.3.10) can be computed numerically and one can then

sample by inversion.

6.3.3 Generating St

We recall that in Step 3 of Algorithm 6.1, we computed
∫ t

0

√
Vs dBs in terms of Vt

and
∫ t

0 Vs ds. Due to the independence of V = {Vt , t ≥ 0} and W = {Wt, t ≥ 0},
it is clear that

∫ t

0

√
Vs dWs given

∫ t

0 Vs ds follows a normal distribution with mean
0 and variance

∫ t

0 Vs ds. Hence log(St ) follows a conditionally normal distribution
with mean

log(S0) + μt − 1

2

∫ t

0
Vs ds + ρ

σ

(
Vt − V0 − κθt + κ

∫ t

0
Vs ds

)
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and random variance
(
1 − ρ2)

∫ t

0
Vs ds.

In this way, we can obtain samples of St satisfying the dynamics (6.3.5).

6.4 Exact Simulation of the 3/2 Model

It is very useful to have exact simulation algorithms for important models. In this
section, we closely follow the approach from Baldeaux (2012a) to simulate exactly
the stock price or index under the 3/2 model, see e.g. Carr and Sun (2007), Heston
(1997), Itkin and Carr (2010), and Lewis (2000). We remark that this approach is
similar to the approach from Broadie and Kaya (2006), which we discussed in the
previous section.

The dynamics of the stock price under the 3/2 model are described by the system
of SDEs,

dSt = μSt dt + ρ
√

VtSt dBt +
√

1 − ρ2
√

VtSt dWt , (6.4.11)

dVt = κVt (θ − Vt ) dt + σ(Vt )
3/2 dBt , (6.4.12)

where B = {Bt , t ≥ 0} and W = {Wt, t ≥ 0} are independent Brownian motions.
The key observation, as already discussed in Sects. 3.1 and 5.5, is that Vt is the
inverse of a square-root process. Defining Xt = 1

Vt
, we obtain

dXt = (
κ + σ 2 − κθXt

)
dt − σ

√
Xt dBt . (6.4.13)

Expressing the stock price in terms of the process X = {Xt, t ≥ 0}, we obtain

St = S0 exp

{
μt − 1

2

∫ t

0
(Xs)

−1 ds + ρ

∫ t

0
(
√

Xs)
−1 dBs

+
√

1 − ρ2

∫ t

0
(
√

Xs)
−1 dWs

}
. (6.4.14)

It is useful to study log(Xt ), for which we obtain the following SDE

d log(Xt ) =
(

κ + σ 2

2

Xt

− κθ

)
dt − σ(

√
Xt)

−1 dBt .

Hence

log(Xt ) = log(X0) +
(

κ + σ 2

2

)∫ t

0

ds

Xs

− κθt − σ

∫ t

0
(
√

Xs )−1 dBs,

or equivalently
∫ t

0
(
√

Xs )−1 dBs = 1

σ

(
log

(
X0

Xt

)
+

(
κ + σ 2

2

)∫ t

0

ds

Xs

− κθt

)
. (6.4.15)

Algorithm 6.2 describes how to simulate the stock price given by (6.4.11) exactly.
We now discuss the individual steps of the algorithm. Clearly, Steps (1), (3), and

(4) are very similar to steps (1), (3), and (4) of Algorithm 6.1.
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Algorithm 6.2 Exact simulation for the 3/2 model
1: Generate a sample of Xt given X0
2: Generate a sample of

∫ t

0
ds
Xs

given Xt

3: Compute
∫ t

0 (
√

Xs)
−1 dBs from (6.4.15) given Xt and

∫ t

0
ds
Xs

4: Generate a sample from St , given
∫ t

0 (
√

Xs)
−1 dBs and

∫ t

0 (Xs)
−1 ds

6.4.1 Simulating Xt

Since X = {Xt, t ≥ 0} is a square-root process, see Eq. (6.4.13), we can immedi-
ately apply the methodology from Sect. 6.3.

6.4.2 Simulating
∫ t

0
ds
Xs

Given Xt

We approach Step (2) of Algorithm 6.2 in the same manner as Step (2) of Algo-
rithm 6.1. However, we end up having to compute a different conditional Laplace
transform. Fortunately, the relevant Laplace transform can be computed as shown
in Sect. 6.2 using Lie symmetry methods. As before, we change the volatility coef-
ficient of X from σ to 2, using the standard time change, which was also used in
Sect. 6.3: we define ρt = X 4t

σ2
to obtain the SDE

dρt = (2jρt + δ) dt + 2
√

ρt dB̃t ,

where

δ = 4(κ + σ 2)

σ 2

and j = − 2κθ

σ 2 and B̃ = {B̃t , t ≥ 0} is a standard Brownian motion. Now we use for-
mula (6.3.9) again, but this time to obtain a different conditional Laplace transform
in the numerator.

E

(
exp

{
−a

∫ t

0

ds

Xs

} ∣∣∣∣ Xt

)

= E

(
exp

{
−a

∫ t

0

ds

ρσ2s
4

} ∣∣∣∣ ρσ2 t
4

)

= E

(
exp

{
−4a

σ 2

∫ σ2 t
4

0

ds

ρs

} ∣∣∣
∣ ρσ2 t

4

)

= Ẽ

(
exp

{
−4a

σ 2

∫ σ2 t
4

0

ds

ρs

− j2

2

∫ σ2 t
4

0
ρs ds

} ∣∣∣∣ ρσ2 t
4

)/

Ẽ

(
exp

{
−j2

2

∫ σ2 t
4

0
ρs ds

} ∣∣∣∣ ρσ2 t
4

)
, (6.4.16)
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where we use E to denote the expectation with respect to jP
δ,t
ρ0→y , and Ẽ denotes

the expectation with respect to P
δ,t
ρ0→y , see Eq. (6.3.9).

Computing the numerator in (6.4.16) using Proposition 6.2.3 and the denomina-
tor using Proposition 6.2.2 yields the following result.

Theorem 6.4.1 Let X be given by (6.4.13). Then

E

(
exp

{
−a

∫ t

0

ds

Xs

} ∣∣
∣
∣ Xt

)
=

I√
ν2+8a/σ 2

(− 2κθ
√

XtX0

σ 2 sinh(− κθt
2 )

)

Iν

(− 2κθ
√

XtX0

σ 2 sinh(− κθt
2 )

) ,

where δ = 4(κ+σ 2)

σ 2 and ν = δ
2 − 1.

Consequently, we can proceed as in Sect. 6.3: we compute the Laplace transform
using Theorem 6.4.1, compute the probability distribution of

∫ t

0
ds
Xs

conditional on
Xt , and sample by inversion.

6.4.3 Simulating St

As in Sect. 6.3, in Step 3) of Algorithm 6.2, we compute
∫ t

0 (
√

Xs)
−1 dBs in terms of

Xt and
∫ t

0
ds
Xs

. Due to the independence of X = {Xt, t ≥ 0} and W = {Wt, t ≥ 0}, it

follows that
∫ t

0 (
√

Xs )−1 dWs given
∫ t

0 (Xs)
−1 ds follows a normal distribution with

mean 0 and variance
∫ t

0 (Xs)
−1 ds. Hence log(St ) follows a normal distribution with

mean

log(S0) + μt − 1

2

∫ t

0
(Xs)

−1 ds + ρ

∫ t

0
(
√

Xs)
−1 dBs

and variance

(
1 − ρ2)

∫ t

0
(Xs)

−1 ds.

6.5 Stochastic Volatility Models with Jumps in the Stock Price

In this section, we extend the model to the case where the stock price process is
also subjected to jumps. We follow the presentation in Broadie and Kaya (2006),
see also Korn et al. (2010), Sect. 7.2.3, and deal with the Heston model. However,
the argument does not rely on the specification of the volatility process, but tells
us how to modify the approach from Sects. 6.3 and 6.4 to allow for jumps. Hence
the discussion presented in this section also applies to the 3/2 model. The following
model was presented in Bates (1996), we also refer the reader to Chap. 5 in Gatheral
(2006), where it is referred to as the SVJ model,
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dSt = St−
(
(r − λμ̄) dt + √

Vt

(
ρ dBt +

√
1 − ρ2 dWt

) + (Yt − 1) dNt

)
,

dVt = κ(θ − Vt) dt + σ
√

Vt dBt ,

(6.5.17)

where N = {Nt, t ≥ 0} is a Poisson process with constant intensity λ. The processes
B = {Bt , t ≥ 0} and W = {Wt, t ≥ 0} are independent Brownian motions and inde-
pendent of the Poisson process, and the jump variables Y = {Yt , t ≥ 0} are a family
of independent random variables all having the same lognormal distribution with
mean μs and variance σ 2

s . Furthermore,

E(Yt − 1) = μ̄,

and hence

μs = log(1 + μ̄) − 1

2
σ 2

s .

Integrating the SDE for the stock price (6.5.17), we obtain

St = S̃t

Nt∏

j=1

Ỹj , (6.5.18)

where

S̃t = S0 exp

{
(r − λμ̄)t − 1

2

∫ t

0
Vs ds + ρ

∫ t

0

√
Vs dBs

+
√

1 − ρ2

∫ t

0

√
Vs dWs

}
,

and Ỹj , j = 1, . . . ,Nt , denotes the size of the j -th jump. As discussed in Broadie
and Kaya (2006), Korn et al. (2010), Eq. (6.5.18) motivates the simulation algo-
rithm for the SVJ model: we firstly simulate the diffusion part as in Sect. 6.3 and
consequently take care of the jump part,

∏Nt

j=1 Ỹj . Algorithm 6.3 is the analogue of
Algorithm 6.1 and also appeared in Broadie and Kaya (2006) and in similar form in
Korn et al. (2010).

Algorithm 6.3 Exact Simulation Algorithm for the SVJ model
1: Generate a sample of Vt given V0
2: Generate a sample from the distribution of

∫ t

0 Vs ds given Vt and V0

3: Recover
∫ t

0

√
Vs dBs from (6.3.6) given Vt , V0 and

∫ t

0 Vs ds

4: Generate S̃t

5: Generate Nt

6: Generate
∏Nt

j=1 Ỹj , given Nt
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Since the Ỹj , j = 1, . . . ,Nt , are mutually independent and each follows a log-
normal distribution with mean μs and variance σ 2

s , it is clear that

Nt∑

j=1

log(Ỹj )|Nt ∼ N
(
Ntμs,Ntσ

2
s

)
.

There are alternative approaches to simulating
∏Nt

j=1 Ỹj : in Sect. 3.5 in Glasserman
(2004), it was shown how to simulate Nt by simulating the jump times of the Poisson
process. Furthermore, as discussed in Broadie and Kaya (2006), given Nt , one can
simulate the jump sizes Ỹj , j = 1, . . . ,Nt , individually. However, Algorithm 6.3
results in a problem that is of fixed dimension. More precisely, the dimension of
the problem in Algorithm 6.3 is five, i.e. five random numbers are used to obtain
a realization of St . Having a problem of fixed dimensionality is important when
applying quasi-Monte Carlo methods, permitting an effective way of tackling mul-
tidimensional problems, see Chap. 12, hence we choose the formulation presented
in Algorithm 6.3.

6.6 Stochastic Volatility Models with Simultaneous Jumps in the
Volatility Process and the Stock Price

In this section, we briefly extend the SVJ model from Sect. 6.5 to allow for simulta-
neous jumps in the stock price and the volatility process, the SVCJ model. As argued
in Gatheral (2006), it is unrealistic to assume that the instantaneous volatility would
not jump if the stock price did. Hence the following model, introduced in Duffie
et al. (2000), allows for simultaneous jumps in the stock price and the volatility,

dSt = St−
(
(r − λμ̄) dt + √

Vt

(
ρ dBt +

√
1 − ρ2 dWt

) + (
Y s

t − 1
)
dNt

)
,

dVt = κ(θ − Vt) dt + σ
√

Vt dBt + YvdNt ,

where N = {Nt, t ≥ 0} is again a Poisson process with constant intensity λ, Y s =
{Y s

t , t ≥ 0} is the relative jump size of the stock price, and Yv = {Yv
t , t ≥ 0} is

the jump size of the variance. The magnitudes of the jumps in the stock price and
variance processes are dependent, via the parameter ρJ , in the following way: the
distribution of Yv

t is exponential with mean μv and given Yv , Y s is lognormally
distributed with mean μs + ρJ Y v and variance σ 2

s . The parameters μs and μ̄ are
related via

μs = log
(
(1 + μ̄)(1 − ρJ μv)

) − 1

2
σ 2

s ,

hence only one needs to be specified. Due to the occurrence of jumps in the volatil-
ity, we have to modify the previous procedure. Essentially, we simulate the variance
and the stock price process at each jump time. Algorithm 6.4 is the analogue of Al-
gorithms 6.1 and 6.3 and we point out that this algorithm also appeared in Broadie
and Kaya (2006), see Sect. 6.2.
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Algorithm 6.4 Exact Simulation Algorithm for the SVCJ model
1: Simulate the arrival time of the next jump, τj .
2: if τj > T then
3: Set τj → T

4: end if
5: Simulate Vτ−

j
and Sτ−

j
, using the time step �t → τj − t∗

6: if τj = T then
7: Go to Step 13
8: else
9: Generate Yv from an exponential distribution with mean μv and set

Vτj
→ Vτ−

j
+ Yv.

10: end if
11: Generate Y s by sampling from a lognormal distribution with mean (μs +ρJ Y s)

and variance σ 2
s . Set Sτj

→ Sτ−
j
Y s .

12: Set St∗ → Sτj
, Vt∗ → Vτj

, t∗ → τj and go to Step 1
13: Set ST → Sτ−

j

6.7 Multidimensional Stochastic Volatility Models

In this section, we discuss the extension of the methodology presented in Sects. 6.3
and 6.4 to the multidimensional case. We firstly explain why a generalization of
this methodology is not straightforward, which motivates us to consider almost ex-
act simulation schemes, see Platen and Bruti-Liberati (2010), Chap. 2, for more
information on this topic. Furthermore, in Chap. 11 we study advanced stochastic
volatility models based on Wishart processes.

Consider the following simple case, with SDEs

dS1
t = μ1S1

t dt +
√

V 1
t S1

t dW 1
t , (6.7.19)

dS2
t = μ2S2

t dt +
√

V 2
t S2

t dW 2
t , (6.7.20)

where the two Brownian motions W 1 = {W 1
t , t ≥ 0} and W 2 = {W 2

t , t ≥ 0} co-
vary, say d[W 1,W 2]t = ρ dt . The volatility processes, V 1 and V 2, which can be
square-root or 3/2 processes, see Sect. 3.1, are here driven by Brownian motions
independent of W 1 and W 2. Of course, S1 and S2 can be simulated as discussed
in Sects. 6.3 and 6.4, however, S1 and S2 are not independent. In particular, given
V

j
t ,

∫ t

0 V
j
s ds, j = 1,2, we have that, for j = 1,2,

log
(
S

j
t

) ∼ N
(
μj ,σ

2
j

)
,

with

μj = log
(
S

j

0

) − 1

2

∫ t

0
V

j
s ds
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and

σ 2
j =

∫ t

0
V

j
s ds.

Here the conditional covariance is given by

ρ

∫ t

0

√
V 1

s

√
V 2

s ds, (6.7.21)

where we recall that ρ denotes the correlation between W 1 and W 2. The computa-
tion of the integral in Eq. (6.7.21) does not follow immediately from the methods
discussed in Sect. 5.4. We hence recall the almost exact simulation methodology
from Platen and Bruti-Liberati (2010).

6.7.1 Matrix Square-Root Processes via Time-Changed Wishart
Processes

In this subsection, we briefly recall from Platen and Bruti-Liberati (2010) how to
obtain a matrix square-root process from a time-changed Wishart process. The di-
agonal elements of this process will play the role of V 1 and V 2 in Eqs. (6.7.19) and
(6.7.20). We point out that this discussion is based on the simple Wishart process
from Sect. 3.2. Once we fully develop the theory of Wishart processes in Chap. 11,
we can employ more advanced stochastic volatility models, as in Da Fonseca et al.
(2008c).

Recall from Sect. 3.2 that square-root processes can be obtained by time-
changing a squared Bessel process. As in Platen and Bruti-Liberati (2010), we con-
sider the function

st = s0 exp{ct},
where s0 > 0 and consider the transformed time

ϕ(t) = ϕ(0) + 1

4

∫ t

0

b2

su
du,

and compute

ϕ(t) = ϕ(0) + b2

4cs0

(
1 − exp{−ct}).

Let X = {Xt, t ≥ 0} denote a squared Bessel process of dimension δ > 0, then
we obtain a square-root process Y = {Yt , t ≥ 0} of the same dimension δ > 0 as
follows: setting

Yt = stXϕ(t),

we obtain the following dynamics for Y ,

dYt =
(

δ

2
b2 + cYt

)
dt + b

√
Yt dUt ,
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where

dUt =
√

4st

b2
dWϕ(t),

and since

[U ]t =
∫ t

0

4sz

b2
dϕ(z) = t,

U = {Ut, t ≥ 0} is a Brownian motion, by Levy’s characterization theorem, see
Sect. 15.3. This procedure is easily generalized. Recall the Wishart process from
Sect. 3.2, so W t is an n × p matrix, whose elements are independent scalar Brown-
ian motions and W 0 = C is the initial state matrix. We set

Xt = W

t W t , X0 = C
C,

so X = {Xt , t ≥ 0} is a Wishart process WISp(X0, n,0, Ip). Following Platen and
Bruti-Liberati (2010), we generalize the idea of time-changing a squared Bessel
process to time-changing a Wishart process and set

Σ t = stXϕ(t),

to obtain the SDE

dΣ t =
(

δ

4
b2I + cΣ t

)
dt + b

2

(√
Σ t dU t + dU


t

√
Σ t

)
, (6.7.22)

for t ≥ 0, Σ0 = s0Xϕ(0), and dU t =
√

4st
b2
t

dWϕ(t) is the differential of a matrix

Wiener process.

6.7.2 Multidimensional Heston Model with Independent Prices

We firstly focus on the case where the volatility process and the Brownian motion
driving the stock price are independent. We study the following model

dSt = At (r dt + √
B t dW t ),

where S = {St = (S1
t , S2

t , . . . , Sd
t )
, t ≥ 0} is a vector process and A = {At =

[Ai,j
t ]di,j=1, t ≥ 0} is a diagonal matrix process with elements

A
i,j
t =

{
Si

t for i = j

0 otherwise.
(6.7.23)

Additionally, r = (r1, r2, . . . , rd)
 is a d-dimensional vector and W = {W t =
(W 1

t ,W 2
t , . . . ,Wd

t )
, t ≥ 0} is a d-dimensional vector of correlated Wiener pro-

cesses. Moreover, B = {B t = [Bi,j
t ]di,j=1, t ≥ 0} is a matrix process with elements

B
i,j
t =

{
Σ

i,i
t for i = j

0 otherwise.
(6.7.24)
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Note that B is the generalization of V in the one-dimensional case. Here, the matrix
process Σ = {Σ t = [Σi,j

t ]di,j=1, t ≥ 0} is a matrix square-root process given by
the SDE (6.7.22). Therefore, B t can be constructed from the diagonal elements of
Σ t . Recall that these elements Σ

1,1
t ,Σ

2,2
t , . . . ,Σ

d,d
t form square-root processes and

that, for simplicity, we assumed that B is independent of W .
We illustrate the simulation in a two-dimensional example. The corresponding

two-dimensional SDE for the two prices can be represented as

dS1
t = S1

t r1 dt + S1
t

√
Σ

1,1
t dW̃ 1

t ,

dS2
t = S2

t r2 dt + S2
t

√
Σ

2,2
t

[
� dW̃ 1

t +
√

1 − �2 dW̃ 2
t

]
,

where t ≥ 0. Here, Σ1,1 and Σ2,2 are diagonal elements of the 2 × 2 matrix given
by (6.7.22) and W̃ 1 and W̃ 2 are independent Wiener processes. The logarithmic
transformation Xt = log(St ) yields the following SDE

dX1
t =

(
r1 − 1

2
Σ

1,1
t

)
dt +

√
Σ

1,1
t dW 1

t ,

dX2
t =

(
r2 − 1

2
Σ

2,2
t

)
dt +

√
Σ

2,2
t

[
� dW̃ 1

t +
√

1 − �2 dW̃ 2
t

]
,

for t ≥ 0. This results in the following representations:

X1
ti+1

= X1
ti

+ r1(ti+1 − ti ) − 1

2

∫ ti+1

ti

Σ1,1
u du +

∫ ti+1

ti

√
Σ

1,1
u dW̃ 1

u ,

X2
ti+1

= X2
ti

+ r2(ti+1 − ti ) − 1

2

∫ ti+1

ti

Σ2,2
u du + �

∫ ti+1

ti

√
Σ

2,2
u dW̃ 1

u

+
√

1 − �2

∫ ti+1

ti

√
Σ

2,2
u dW̃ 2

u .

We approximate the integral
∫ ti+1
ti

Σ
j,j
u du, j = 1,2, using e.g. the trapezoidal rule.

Consequently, we can simulate the model, noting that conditional on
∫ ti+1
ti

Σ
j,j
u du

and X
j
ti

, j = 1,2, we obtain that X
j
ti+1

follows a normal distribution with mean

X
j
ti

+ rj (ti+1 − ti ) − 1

2

∫ ti+1

ti

Σ
j,j
u du, j = 1,2,

and variance
∫ ti+1

ti

Σ
j,j
u du.

Furthermore, X1
ti+1

and X2
ti+1

have the conditional covariance

�

∫ ti+1

ti

√
Σ

1,1
u

√
Σ

2,2
u du,

which we approximate, for example, using the trapezoidal rule and the trajectories
of Σ1,1 and Σ2,2.
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6.7.3 Multidimensional Heston Model with Correlated Prices

We now consider a multidimensional version of the Heston model, which allows
for correlation of the volatility vector Σ with the vector asset price process S. We
define the generalization by the system of SDEs

dSt = At

(
r dt + √

B t

(
C dW 1

t + D dW 2
t

))
,

dΣ t = (a − EΣ t ) dt + F
√

B t dW 1
t ,

for t ≥ 0. Here, S = {St = (S1
t , S2

t , . . . , Sd
t )
, t ≥ 0} and r = (r1, r2, . . . , rd)
. The

matrix At = [Ai,j
t ]di,j=1 is given by (6.7.23) and B t = [Bi,j

t ]di,j=1 is a matrix with

elements as in (6.7.24). Additionally, C = [Ci,j ]di,j=1 is a diagonal matrix with ele-
ments

Ci,j =
{

�i for i = j

0 otherwise,

and D = [Di,j ]di,j=1 is a diagonal matrix with elements

Di,j =
{√

1 − �2
i for i = j

0 otherwise,

where �i ∈ [−1,1], i ∈ {1,2, . . . , d}. Moreover, Σ = {Σ t = (Σ
1,1
t ,Σ

2,2
t , . . . ,

Σ
d,d
t )
, t ∈ [0,∞)} and a = (a1, a2, . . . , ad)
. The matrix E = [Ei,j ]di,j=1 is a

diagonal matrix with elements

Ei,j =
{

bi for i = j

0 otherwise,

and F = [F i,j ]di,j=1 is a diagonal matrix with elements

F i,j =
{

σi for i = j

0 otherwise.

Furthermore, W 1 = {W 1
t = (W

1,1
t ,W

1,2
t , . . . ,W

1,d
t )
, t ≥ 0} is a vector of inde-

pendent Wiener processes and W 2 = {W 2
t = (W

2,1
t ,W

2,2
t , . . . ,W

2,d
t )
, t ≥ 0} is a

vector of correlated Wiener processes which are independent of W 1. In two dimen-
sions, the model looks as follows:

dΣ
1,1
t = (

a1 − b1Σ
1,1
t

)
dt + σ1

√
Σ

1,1
t dW

1,1
t ,

dΣ
2,2
t = (

a2 − b2Σ
2,2
t

)
dt + σ2

√
Σ

2,2
t dW

1,2
t ,

for t ≥ 0. The two-dimensional asset price process is given by

dS1
t = r1S

1
t dt + S1

t

√
Σ

1,1
t

(
�1 dW

1,1
t +

√
1 − �2

1 dW
2,1
t

)
,

dS2
t = r2S

2
t dt + S2

t

√
Σ

2,2
t

(
�2 dW

1,2
t +

√
1 − �2

2 dW
2,2
t

)
,
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for t ≥ 0. Hence we can simulate Σ1,1 and Σ2,2 via the non-central χ2-distribution,
see Sect. 3.1, or the elements of a matrix square-root process. We can now generate
samples of the logarithm of the stock price, Xt = log(St ), using the representation

X1
ti+1

= X1
ti

+ r1(ti+1 − ti ) + �1

σ1

(
Σ

1,1
ti+1

− Σ
1,1
ti

− a1(ti+1 − ti )
)

+
(

�1b1

σ1
− 1

2

)∫ ti+1

ti

Σ1,1
u du +

√
1 − �2

1

∫ ti+1

ti

√
Σ

1,1
u dW 2,1

u ,

X2
ti+1

= X2
ti

+ r2(ti+1 − ti ) + �2

σ2

(
Σ

2,2
ti+1

− Σ
2,2
ti

− a2(ti+1 − ti )
)

+
(

�2b2

σ2
− 1

2

)∫ ti+1

ti

Σ2,2
u du +

√
1 − �2

2

∫ ti+1

ti

√
Σ

2,2
u dW 2,2

u .

Hence we approximate
∫ ti+1
ti

Σ
j,j
u du, j = 1,2, using e.g. the trapezoidal rule. We

recall that given

Σ
j,j
ti+1

,Σ
j,j
ti

,

∫ ti+1

ti

Σ
j,j
u du,X

j
ti
, j = 1,2,

the random variables X
j
ti+1

, j = 1,2, are conditionally Gaussian with mean

X
j
ti

+ rj (ti+1 − ti ) + �j

σj

(
Σ

j,j
ti+1

− Σ
j,j
ti

− aj (ti+1 − ti )
)

+
(

�jbj

σj

− 1

2

)∫ ti+1

ti

Σ
j,j
u du

and variance

(
1 − �2

j

)∫ ti+1

ti

Σ
j,j
u du.

Lastly, if d[W 2,1,W 2,2]t = ρ dt , then the covariance between X1
ti+1

and X2
ti+1

, con-

ditional on Σ
j,j
ti+1

,Σ
j,j
ti

,
∫ ti+1
ti

Σ
j,j
u du, X

j
ti

, j = 1,2, is

ρ

√
1 − �2

1

√
1 − �2

2

∫ ti+1

ti

√
Σ

1,1
u

√
Σ

2,2
u du.

Concluding the chapter we mention that in Chap. 11 we will introduce another He-
ston model based on the Wishart process.
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