
Chapter 5
Transition Densities via Lie Symmetry Methods

In this chapter, we discuss how to obtain explicit transition densities and Laplace
transforms of joint transition densities for various diffusions using Lie symmetry
methods. We begin with a motivating example, and subsequently present two cau-
tionary examples. The chapter continues with transition densities, which could have
useful applications in finance or other areas of application, but are new and have
therefore not received so far much attention in the literature. It is hoped that this
chapter encourages readers to construct their own examples and apply them to prob-
lems they encounter. Subsequently, we present Laplace transforms of joint transition
densities in Sect. 5.4. Section 5.5 illustrates how Lie symmetry methods can be pow-
erfully combined with probability theory to enlarge the scope of results that can be
obtained.

5.1 A Motivating Example

In this section, we firstly present an example, which exemplifies how explicit transi-
tion densities can be found via Lie symmetry methods. The squared Bessel process
sits at the heart of the developments in Chap. 3, and our motivating example is
also based on this process. Consequently, we consider a squared Bessel process of
dimension δ, δ ≥ 2,

dXt = δ dt + 2
√

Xt dWt,

where X0 = x > 0, whose transition density satisfies the Kolmogorov backward
equation

ut = 2xuxx + δux.

Hence in Eq. (4.4.1), we set σ = 2, f = δ, g = 0, and γ = 1, and in Eq. (4.4.34), we

set h = δ, A = 0, B = −2δ + δ2

2 . Now, we employ Theorem 4.4.3 with u(x, t) = 1
and F(x) = δ lnx to obtain

Uε(x, t) = exp

{
− 4εx

σ(1 + 4εt)

}
(1 + 4εt)−

δ
σ , (5.1.1)
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where σ = 2. Setting ε = σλ
4 in Eq. (5.1.1), we obtain the Laplace transform

Uλ(x, t) =
∫ ∞

0
exp{−λy}p(t, x, y) dy

= exp

{
− xλ

1 + 2λt

}
(1 + 2λt)−

δ
2 ,

which is easily inverted to yield

p(t, x, y) = 1

2t

(
x

y

) ν
2

Iν

(√
xy

t

)
exp

{
− (x + y)

2t

}
, (5.1.2)

where ν = δ
2 − 1 denotes the index of the squared Bessel process. Of course,

Eq. (5.1.2) shows the transition density of a squared Bessel process started at time 0
in x for being at time t in y. Recall that Iν denotes the modified Bessel function of
the first kind, and that we plotted this transition density in Fig. 3.1.1. We also show
it in Fig. 5.3.1.

5.2 Two Cautionary Examples

The previous example begs the question whether a fundamental solution is neces-
sarily a transition density. Fundamental solutions are known not to be unique, and
the following example, which is again based on a squared Bessel process and taken
from Craddock and Lennox (2009), shows that a fundamental solution is not neces-
sarily a transition density.

Example 5.2.1 Consider a squared Bessel process of dimension three, δ = 3, the
transition density of which satisfies the Kolmogorov backward equation

ut = 2xuxx + 3ux, (5.2.3)

a stationary solution of which is u1(x) = 1/
√

x. Again, we employ Theorem 4.4.3,
to obtain

∫ ∞

0

1√
y

exp{−λy}p(t, x, y) dy

= exp

{
− xλ

1 + 2λt

}
(1 + 2λt)−

3
2 u1

(
x

(1 + 2λt)2

)

= exp

{
− xλ

1 + 2λt

}
(1 + 2λt)−

3
2
(1 + 2λt)√

x

= exp

{
− xλ

1 + 2λt

}
(1 + 2λt)−

1
2

1√
x

,

so that we have

p(t, x, y) = exp{− y+x
2t

} cosh(
√

xy

t
)√

2tπx
.
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We note that
∫ ∞

0
p(t, x, y) dy =

√
2t√
πx

exp

{
− x

2t

}
+ erf

( √
x√
2t

)
.

This fundamental solution does not integrate to 1, and hence is not a transition
probability density.

We conclude that not all fundamental solutions are transition probability densi-
ties. From Example 5.2.1, it is tempting to deduce that fundamental solutions inte-
grating to 1 are transition probability densities. The next example, which stems from
Craddock (2009), see Proposition 2.10, shows that also this conjecture is false. As
the preceding two examples, it is again based on a squared Bessel process. The ex-
ample makes use of the following proposition, Proposition 2.4 in Craddock (2009),
which shows how to invert a Laplace transform when studying squared Bessel pro-
cesses.

Proposition 5.2.2 For a nonnegative integer n, the following equality holds,

L−1
y

(
λn exp

{
k

λ

})
=

n∑

l=0

kl

l! δ
n−l (y) +

(
k

y

) n+1
2

In+1(2
√

ky),

where Lλ is the Laplace transform, δ(y) is the Dirac delta function and In is a
modified Bessel function of the first kind with index n.

We now present the example.

Example 5.2.3 Consider a squared Bessel process of dimension 2δ. The transition
density satisfies the Kolmogorov backward equation

ut = 2xuxx + 2δux. (5.2.4)

It is easily verified that the stationary solutions u0(x) = 1 and u1(x) = x1−δ satisfy
(5.2.4). In Sect. 5.1, it was shown that the stationary solution u0(x) = 1 produces
the correct transition density. We will now investigate the fundamental solution pro-
duced by u1(x) = x1−δ . Applying Theorem 4.4.3 with A = 0, we obtain

Uλ(x, t) = x1−δ exp

{
− λx

(1 + 2λt)

}
(1 + 2λt)δ−2,

i.e.

Lλ =
∫ ∞

0
exp{−λy}u1(y)q(t, x, y) dy

= x1−δ exp

{
− λx

1 + 2λt

}
(1 + 2λt)δ−2.

We now invert the Laplace transform, which yields

u1(y)q(t, x, y) = x1−δ exp

{
−x + y

2t

}
(2t)δ−2L−1

y

(
λδ−2 exp

{
k

λ

})
,
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where k = x

(2t)2 . We now apply Proposition 5.2.2 to yield

q(t, x, y) = (2t)−1
(

y

x

) δ−1
2

exp

{
− (x + y)

2t

}
Iδ−1

(√
xy

t

)

+ (2t)δ−2
(

y

x

)δ−1

exp

{
− (x + y)

2t

} δ−2∑

l=0

kl

l! δ
δ−2−l (y).

We have
∫ ∞

0
(2t)δ−2

(
y

x

)δ−1

exp

{
−x + y

2t

} δ−2∑

l=0

xl

(2t)2l l!δ
(δ−2−l)(y) dy = 0,

since the Dirac delta function and their derivatives select the value of the test func-
tion yδ−1 and its derivatives at zero. Also, we recognize that

(2t)−1
(

y

x

) δ−1
2

exp

{
− (x + y)

2t

}
Iδ−1

(√
xy

t

)

is the transition density of a squared Bessel process of dimension 2δ, cf. (3.1.4), and
hence

∫ ∞

0
(2t)−1

(
y

x

) δ−1
2

exp

{
− (x + y)

2t

}
Iδ−1

(√
xy

t

)
dy = 1.

Finally, we observe that U0(x, t) = u1(x) and

Uλ(x, t) =
∫ ∞

0
exp{−λy}u1(y)q(t, x, y) dy,

which yields
∫ ∞

0
u1(y)q(t, x, y) dy = u1(x),

and hence q(t, x, y) is not the transition density.

However, in Craddock (2009), the following useful check for processes satisfying

Xt = X0 +
∫ t

0
f (Xs) ds +

∫ t

0

√
2σXs dWs

was presented, see Proposition 2.11 in Craddock (2009), which we now recall.

Proposition 5.2.4 Let X = {Xt, t ≥ 0} be an Itô diffusion which is the unique strong
solution of

Xt = X0 +
∫ t

0
f (Xs) ds +

∫ T

0

√
2σXs dWs,

where W = {Wt, t ≥ 0} is a standard Wiener process and X0 = x > 0. Suppose
further that f is measurable and there exist constants K > 0, a > 0 such that
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‖f (x)‖ ≤ K exp{ax} for all x. Then there exists a T > 0 such that u(x, t, λ) =
E(exp{−λXt }) is the unique strong solution of the first order PDE

∂u

∂t
+ λ2σ

∂u

∂λ
+ λE

(
f (Xt ) exp{−λXt }

) = 0, (5.2.5)

subject to u(x,0, λ) = exp{−λx}, for 0 ≤ t < T , λ > a.

Finally, we show that Proposition 5.2.4 can be used to confirm that the fundamen-
tal solution u0(x) = 1 produces the correct fundamental solution, see Example 2.3
in Craddock (2009).

Example 5.2.5 For the squared Bessel process X = {Xt, t ≥ 0} of dimension δ

given by the SDE

dXt = δ dt + 2
√

Xt dWt,

where X0 = x > 0, Eq. (5.2.5) yields that E(exp{−λXt }) is the unique solution of
the PDE

ut + 2λ2uλ + λδu = 0,

where u(x,0, λ) = exp{−λx}. It can be confirmed that

u(x, t, λ) = E
(
exp{−λXt }

) = 1

(1 + 2λt)
δ
2

exp

{
− λx

1 + 2λt

}
,

satisfies the PDE and boundary conditions, and coincides with the result produced
by the fundamental solution corresponding to u0(x) = 1 in Example 5.2.3.

The above examples indicate that one has to be careful when deciding which
fundamental solution yields the desired transition probability density.

5.3 One-Dimensional Examples

In this section, we aim to illustrate how to derive one-dimensional transition den-
sities using the results from Chap. 4. We emphasize that the process of deriving
transition densities is mechanical and easily applied to the study of novel stochas-
tic processes. In this regard, we recall examples of transition densities studied in
Craddock and Platen (2004) and provide the reader with additional references. It is
intended that this section encourages readers to study stochastic processes that are
tractable and potentially more suitable to their applications than those processes that
have been employed in the past mainly because they were considered to be tractable
from a conventional perspective.

We illustrate the derivation of the transition density of the square-root process,
where we follow the presentation in Craddock (2009). In particular, we assume that

dXt = (a − bXt) dt + √
2σXt dWt , (5.3.6)

where X0 = x > 0 and a, b, and σ are assumed to be positive and a
σ

≥ 1.
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Proposition 5.3.1 The transition density of the process X as specified in the SDE
(5.3.6) started in x at time 0 being in y at time t is given by the explicit formula

p(x, t, y) = b exp{bt ( a
σ

+ 1)}
σ(exp{bt} − 1)

(
y

x

) ν
2

exp

{−b(x + exp{bt}y)

σ (exp{bt} − 1)

}

× Iν

(
b
√

xy

σ sinh( bt
2 )

)
, (5.3.7)

where ν = a
σ

− 1 ≥ 0.

Proof We note that the transition density of X satisfies the Kolmogorov backward
equation

ut = σxuxx + (a − bx)

and that Eq. (4.4.67) is satisfied with

h(x) = (a − bx), g = 0, γ = 1.

Hence we employ Theorem 4.4.5 with γ = 1, u0 = 1, A = b2, B = −ab, C =
1
2a2 − aσ , and F(x) = a ln(x) − bx to obtain

Uε(x, t) = exp

{−b2εx

σ

(
cosh(bt) + bε sinh(bt)

1 + 2bε sinh(bt) + 2b2ε2(cosh(bt) − 1)

)}

× exp

{
tab

2σ

}∣∣∣∣
cosh( bt

2 ) + (1 + 2bε) sinh( bt
2 )

cosh( bt
2 ) − (1 − 2bε) sinh( bt

2 )

∣∣∣∣

−ab
2σb

× exp

{
1

2σ
F

(
x

(1 + 2b2ε2(cosh(bt) − 1) + 2bε sinh(bt))

)
− F(x)

2σ

}

= exp

{
b(at − 2bεx) cosh

(
bt

2

)
+ at sinh

(
bt

2

)
+ 2abεt sinh

(
bt

2

)

+ 2bεx sinh

(
bt

2

)}(
cosh

(
bt

2

)
+ (1 + 2bε) sinh

(
bt

2

))− a
σ

,

where the last equality can be shown using MATHEMATICA. We have
(

cosh

(
bt

2

)
+ (1 + 2bε) sinh

(
bt

2

))− a
σ

= exp

{
bta

2σ

}(
exp{bt} + bε

(
exp{bt} − 1

))− a
σ .

Also, it follows that

exp

{
b(at − 2bεx) cosh

(
bt

2

)
+ at sinh

(
bt

2

)
+ 2abεt sinh

(
bt

2

)

+ 2bεx sinh

(
bt

2

)}

= exp

{
abt

2σ

}
exp

{
− b2εx

σ(exp{bt} + bε(exp{bt} − 1))

}
.



5.3 One-Dimensional Examples 147

Now, one obtains

Uε(x, t) = exp

{
abt

2σ

}(
exp{bt} + bε

(
exp{bt} − 1

))− a
σ

× exp

{
abt

2σ

}
exp

{
− b2εx

σ(exp{bt} + bε(exp{bt} − 1))

}

= exp

{
abt

σ

}(
exp{bt} + bε

(
exp{bt} − 1

))− a
σ

× exp

{
− b2εx

σ(exp{bt} + bε(exp{bt} − 1))

}
.

Substituting ε = λσ

b2 , we get

Uε(x, t) = Uλ(x, t)

=
∫ ∞

0
exp{−λy}p(t, x, y) dy

= exp

{
abt

σ

}(
b exp{bt} + λσ

(
exp{bt} − 1

))− a
σ b

a
σ

× exp

{
− bλx

(b exp{bt} + λσ(exp{bt} − 1))

}
.

This Laplace transform can be easily inverted to yield (5.3.7). It can be confirmed
via Proposition 5.2.4 that the density in (5.3.7) is the correct transition probability
density. �

In Fig. 3.1.2, a plot of the transition density of a square-root process was shown.
We now recall some results from Craddock and Platen (2004). In particular, we
study generalizations of the squared Bessel process. We focus on the process X =
{Xt, t ≥ 0}, given by the SDE

dXt = a(Xt ) dt + √
2Xt dWt , (5.3.8)

for t ≥ 0 with X0 > 0. Then, following Craddock and Platen (2004), Platen and
Heath (2010), and Platen and Bruti-Liberati (2010), by applying the results of
Chap. 4, we distinguish ten cases:

(i) for the constant drift function

a(x) = α > 0,

we recover the squared Bessel process of dimension δ = 2α with transition
density

p(0, x; t, y) = 1

t

(
x

y

) 1−α
2

Iα−1

(
2
√

x y

t

)
exp

{
− (x + y)

t

}
.

Here Iα−1 is again the modified Bessel function of the first kind with index
α − 1, see also Eq. (3.1.4) and Fig. 3.1.1
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Fig. 5.3.1 Transition density
for a squared Bessel process,
case (i)

Fig. 5.3.2 Transition density
for case (ii)

(ii) setting the drift function to

a(x) = μx

1 + μ
2 x

for μ > 0, we obtain the transition density

p(0, x; t, y) = exp{− (x+y)
t

}
(1 + μ

2 x)t

[(√
x

y
+ μ

√
x y

2

)
I1

(
2
√

x y

t

)
+ t δ(y)

]

with δ(·) denoting the Dirac delta function. For y = 0 one can interpret
exp{− x

t
}

(1+ μ
2 x)

as the probability of absorption at zero. In Fig. 5.3.2 we show the

above transition density for x = 1 and μ = 1
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Fig. 5.3.3 Transition density
for case (iii)

(iii) the drift function

a(x) = 1 + 3
√

x

2 (1 + √
x)

,

results in the transition density

p(0, x; t, y) = cosh(
2
√

x y

t
)√

πyt(1 + √
x)

(
1 + √

y tanh

(
2
√

x y

t

))

× exp

{
− (x + y)

t

}
.

In Fig. 5.3.3 we display the corresponding transition density for x = 1
(iv) studying the drift function

a(x) = 1 + μ tanh

(
μ + 1

2
μ ln(x)

)

for μ = 1
2

√
5
2 , we obtain the transition density

p(0, x; t, y) =
(

x

y

)μ
2
[
I−μ

(
2
√

x y

t

)
+ e2μyμIμ

(
2
√

x y

t

)]

× exp{− x+y
t

}
(1 + exp{2μ}xμ) t

. (5.3.9)

The shape of the density (5.3.9) for x = 1 looks quite similar to that in
Fig. 5.3.3

(v) given the drift function

a(x) = 1

2
+ √

x,
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we obtain the transition density

p(0, x; t, y) = cosh

(
(t + 2

√
x)

√
y

t

)
exp{−√

x}√
π y t

× exp

{
− (x + y)

t
− t

4

}
. (5.3.10)

Also the transition density (5.3.10) for x = 1 shows a lot of similarity with
that in Fig. 5.3.3

(vi) the drift function

a(x) = 1

2
+ √

x tanh(
√

x),

results in the transition density

p(0, x; t, y) = cosh(
2
√

xy

t
)√

πyt

cosh(
√

y)

cosh(
√

x)
exp

{
− (x + y)

t
− t

4

}
. (5.3.11)

The above transition density (5.3.11) for x = 1 has also a similar shape as that
in Fig. 5.3.3

(vii) when the drift function satisfies

a(x) = 1

2
+ √

x coth(
√

x)

the process has the transition density

p(0, x; t, y) = sinh(
2
√

x y

t
)√

π y t

sinh(
√

y)

sinh(
√

x)
exp

{
− (x + y)

t
− t

4

}
.

This transition density has for x = 1 some similarity with that shown in
Fig. 5.3.1

(viii) using the drift function

a(x) = 1 + cot
(
ln(

√
x)

)

for x ∈ (exp{−2π},1), then we obtain the real valued transition density

p(0, x; t, y) = exp{− (x+y)
t

}
2ıt sin(ln(

√
x))

(
y

ı
2 Iı

(
2
√

x y

t

)
− y− ı

2 I−ı

(
2
√

x y

t

))
,

(5.3.12)

where ı denotes the imaginary unit. We plot in Fig. 5.3.4 the transition density
(5.3.12) for x = 1

2 . Note that the process X lives on the bounded interval
(exp{−2π},1)

(ix) choosing the drift function

a(x) = x coth

(
x

2

)
,
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Fig. 5.3.4 Transition density
for case (viii)

Fig. 5.3.5 Transition density
for case (x)

then we obtain the transition density

p(0, x; t, y) = sinh(
y
2 )

sinh( x
2 )

exp

{
− (x + y)

2 tanh( t
2 )

}

×
[

exp{ t
2 }

exp{t} − 1

√
x

y
I1

( √
x y

sinh( t
2 )

)
+ δ(y)

]
,

where δ(·) is again the Dirac delta function. Figure 5.3.1 displayed a transition
density of similar shape

(x) lastly, setting the drift function to

a(x) = x tanh

(
x

2

)
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we obtain the transition density

p(0, x; t, y) = cosh(
y
2 )

cosh( x
2 )

exp

{
− (x + y)

2 tanh( t
2 )

}

×
[

exp{ t
2 }

exp{t} − 1

√
x

y
I1

( √
x y

sinh( t
2 )

)
+ δ(y)

]
.

We plot in Fig. 5.3.5 the transition density for x = 1.

Many of the above diffusion processes are very recent in the literature and essen-
tially discovered in Craddock and Platen (2004). They offer new dynamics ready to
be employed in modeling, for instance, in finance.

5.4 Laplace Transforms of Joint Transition Densities

In this section, we present Laplace transforms of the type

E

(
exp

{
−λXt − μ

∫ t

0
Xs ds − γ

∫ t

0

ds

Xs

})
, (5.4.13)

for suitable stochastic processes X = {Xt, t ≥ 0}. These Laplace transforms have
important applications. For example, if X is the independent short rate process and
λ = γ = 0 and μ = 1, then Eq. (5.4.13) contributes to the price of a zero coupon
bond, see also Sect. 5.5. However, there are many applications beyond interest rate
modeling. For instance, in Chap. 6 we will design exact Monte Carlo schemes for
stochastic volatility models based on results from this section. In Sect. 8.5.2, we will
focus on exact and quasi-Monte Carlo methods for realized variance derivatives, to
illustrate further possible applications of the results presented in this section. At the
heart of such applications sits the observation that for some tasks, the fundamental
solution is sometimes more interesting than its Laplace transform, see Sect. 8.5.2
and Chap. 6. Hence even though we might not always be able to integrate the fun-
damental solution to calculate the Laplace transform, we may be nevertheless able
to calculate and subsequently use the fundamental solution.

We illustrate this type of technique in the following result, see Craddock and
Lennox (2009).

Proposition 5.4.1 Let X = {Xt, t ≥ 0} be a squared Bessel process,

dXt = δ dt + 2
√

Xt dWt,

where δ ≥ 2 and X0 = x > 0. Then the function u(x, t) given by

u(x, t) = E

(
exp

{
−λXt − μ

∫ t

0

ds

Xs

})

= exp{−x/2t}
(

x

2t

)d
Γ (α)1F1(α,β, x/(2t + 4t2λ))

Γ (β)(1 + 2λt)α
,
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where 1F1(a, b, z) is Kummer’s confluent hypergeometric function, satisfies the
PDE

ut = 2xuxx + δux − μ

x
u,

whose fundamental solution is given by

p(t, x, y) = 1

2t

(
x

y

)(1−δ/2)/2

I2d+δ/2−1

(√
xy

t

)
exp

{
− (x + y)

2t

}
, (5.4.14)

where d = 1
4 (2 − δ + √

(δ − 2)2 + 8μ), α = d + δ
2 , and β = 2d + δ

2 .

Proof The drift function f (x) = δ satisfies the first Ricatti equation (4.4.34), where
σ = 2, γ = 1, g(x) = μ

x
, and A = 0. Choosing the stationary solution u0(x) = xd ,

where d = 1
4 (2 − δ + √

(δ − 2)2 + 8μ), we obtain from Theorem 4.4.3

Uε(x, t) = exp

{
− 4εx

2(1 + 4εt)

}
xd

(1 + 4εt)2d+ δ
2

.

Next, we set ε = σλ
4 = λ

2 to obtain

Uε(x, t) = Uλ(x, t) =
∫ ∞

0
ydp(t, x, y) exp{−λy}dy

= xd

(1 + 2λt)
δ
2 +2d

exp

{
− λx

(1 + 2λt)

}
.

Inverting this Laplace transform, we obtain the fundamental solution

p(t, x, y) = 1

2t
exp

{
−x + y

2t

}(
x

y

) 1−δ/2
2

I δ
2 +2d−1

(√
xy

t

)
.

We obtain
∫ ∞

0
e−λyp(t, x, y) dy = Γ (α)

Γ (β)

(
x

2t

)d

e− x
2t 1F1

(
α,β,

x

2t + 4t2λ

)
(1 + 2λt)−α,

by integrating the modified Bessel function of the first kind term-by-term. �

We now recall results from Craddock and Lennox (2009), where Eq. (4.4.35)
was handled via group invariant solutions. In particular, this approach produced
Whittaker transforms of fundamental solutions. Although such integral transforms
have known inversion integrals, explicit inversion is usually not possible, as few of
these transforms have been computed and tabulated. However, in Craddock (2009),
Eqs. (4.4.35) and (4.4.36) were handled via symmetry methods, namely by using
the full group of symmetries, see also the proof of Theorem 4.4.5. This approach
produces generalized Laplace transforms of the fundamental solutions.

As fundamental solutions will play an important role in Chap. 6, we present both,
Laplace transforms and fundamental solutions themselves.
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Theorem 5.4.2 Let X = {Xt, t ≥ 0} be a squared Bessel process where

dXt = δ dt + 2
√

Xt dWt,

for δ ≥ 2 and X0 = x > 0. Then the function u(x, t) given by

u(x, t) = E

(
exp

{
−λXt − b2

2

∫ t

0
Xs ds

})

= exp{−(xb/2)(1 + 2λb−1 coth(bt))/(coth(bt) + 2λb−1)}
(cosh(bt) + 2λb−1 sinh(bt))δ/2

.

satisfies the PDE

ut = 2xuxx + δux − b2

2
xu,

whose fundamental solution is given by

p(t, x, y) = b

2 sinh(bt)

(
y

x

)δ/4−1/2

exp

{
− b(x + y)

2 tanh(bt)

}
I(δ−2)/2

(
b
√

xy

sinh(bt)

)
.

We have the following result pertaining to square-root processes satisfying the
SDE,

dXt = (a − bXt) dt + √
2σXt dWt , (5.4.15)

where X0 = x > 0.

Proposition 5.4.3 Let X = {Xt, t ≥ 0} be a square-root process of dimension
δ = 4a

2σ
≥ 2, whose dynamics satisfy the SDE (5.4.15). Then the function u(x, t)

is given by

u(x, t) = E

(
exp

{
−λXt − μ

∫ t

0

ds

Xs

})

= Γ (k + ν/2 + 1/2)

Γ (ν + 1)
βx−k exp

{
b

2σ

(
at + x − x

tanh(bt/2)

)}

× eβ2/(2α)

βαk
M−k,ν/2

(
β2

α

)
,

where ν = 1
σ

√
(a − σ)2 + 4μσ , k = a

2σ
, α = b

2σ
(1 + coth( bt

2 )) + λ, β = b
√

x

2σ sinh( bt
2 )

,

and Ms,r(z) denotes the Whittaker function of the first kind. Furthermore, u(x, t)

satisfies the PDE

ut = σxuxx + (a − bx)ux − μ

x
u,

whose fundamental solution is given by

p(t, x, y) = b

2σ sinh(bt/2)

(
y

x

)a/(2σ)−1/2

exp

{
b

2σ

(
at + (x − y) − x + y

tanh(bt/2)

)}

× Iν

(
b
√

xy

σ sinh(bt/2)

)
. (5.4.16)



5.5 Bond Pricing in Quadratic Models 155

Finally, we present the Laplace transform of the joint density for
(

Xt,

∫ t

0
Xs ds,

∫ t

0

ds

Xs

)
.

In particular, we consider the function

u(x, t) = E

(
exp

{
−λXt − (

b2/2
)∫ t

0
Xs ds − ν

∫ t

0

ds

Xs

})
,

where X0 > 0. We have the following result.

Proposition 5.4.4 Let X = {Xt, t ≥ 0} be a squared Bessel process of dimension
δ ≥ 2. Then

u(x, t) = E

(
exp

{
−λXt − (

b2/2
)∫ t

0
Xs ds − ν

∫ t

0

ds

Xs

})

= exp
{−bx/

(
2 tanh(bt)

)}Γ (α)

Γ (β)

ba/2(x exp{bt})γ (exp{2bt} − 1)−γ

(cosh(bt) + (2λ/b) sinh(bt))δ

× 1F1

(
α,β,

b2x csch(bt)

2b cosh(bt) + 4λ sinh(bt)

)
,

where a = √
(δ − 2)2 + 8ν, δ = 1

4 (2 + a + δ), γ = 1
4 (2 + a − δ), α = 1

4 (a + δ + 2),
β = a+2

2 , and 1F1(a, b, z) is Kummer’s confluent hypergeometric function and csch

denotes the hyperbolic cosecant, csch(x) = 2 exp{x}
exp{2x}−1 . Furthermore, u(x, t) satisfies

the PDE

ut = 2xuxx + δux − b2

2
xu − ν

u

x
,

whose fundamental solution is given by

p(t, x, y) = b

2 sinh(bt)
exp

(−b(x + y)/
(
2 tanh(bt)

))(y

x

)(δ−2)/4

× I√
(δ−2)2+8ν/2

(
b
√

xy

sinh(bt)

)
.

This result provides important access to functionals of squared Bessel processes
that have explicit formulas. We point out that Proposition 5.4.4 will be applied in
Sects. 5.5, 6.3, and 6.4.

5.5 Bond Pricing in Quadratic Models

So far in this chapter, we have illustrated how Lie symmetry methods can be used to
obtain transition densities and Laplace transforms of joint transition densities. This
section illustrates that by combining results obtained via Lie symmetry methods
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with probability theory, the scope of results that can be obtained is increased. We
illustrate this using two examples. Firstly, we use Proposition 5.4.4, which provides
the Laplace transform of joint transition densities of the squared Bessel process with
the change of law result from Pitman and Yor (1982), see Proposition 3.1.6, which
connects squared Bessel and square-root processes, to price zero coupon bonds in
the Cox, Ingersoll, Ross (CIR) model introduced in Cox et al. (1985). Secondly, we
recall from Sect. 3.1, that a 3/2 process is simply the inverse of a squared Bessel
process, and use this observation and Proposition 5.4.3, which deals with square-
root processes, to price zero coupon bonds under a 3/2 process for the short-rate.

We begin with the pricing of a zero coupon bond in the CIR model. Recall that
in the CIR model, the short rate is modeled using a square-root process,

drt = k(θ − rt ) dt + σ
√

rt dWt , (5.5.17)

where r0 ≥ 0 and 4kθ

σ 2 ≥ 2. Consequently, we are interested in computing

E

(
exp

{
−

∫ T

t

rs ds

} ∣∣∣∣At

)
, (5.5.18)

where we use At to denote At = σ {rs, s ≤ t}. We find it convenient to reduce the
pricing problem to the study of Laplace transforms of squared Bessel processes. As
discussed in Sect. 3.1, we recall that there are at least two methods for reducing the
study of square-root processes to the study of squared Bessel processes. These are
transformation of space-time and the change of law, see Propositions 3.1.5 and 3.1.6.
As discussed in Sect. 3.1, using the standard change of time technique, we transform
(5.5.17) into a square-root process with volatility coefficient 2: we introduce the
process ρ = {ρt , t ≥ 0} via ρt = r 4t

σ2
, and obtain the following SDE for ρt :

dρt = (2jρt + δ) dt + 2
√

ρt dW̃t , (5.5.19)

where W̃ = {W̃t , t ≥ 0} is a standard Brownian motion, j = − 2k

σ 2 , and δ = 4kθ

σ 2 . We

use jP n
ρ0

to denote the law of ρ, and set Ft = σ {ρs, s ≤ t}. Due to the functional de-
pendence of r and ρ, we have A 4t

σ2
=Ft , t ≥ 0. By Proposition 3.1.6, the following

absolute continuity relationship between square-root and squared Bessel processes
holds:

jP δ
ρ0

∣∣
Ft

= exp

{
j

2
(ρt − ρ0 − δt) − j2

2

∫ t

0
ρs ds

}
P δ

ρ0

∣∣∣∣
Ft

. (5.5.20)

We now use Eq. (5.5.20) to change the pricing problem (5.5.18) into one that can
be solved using the Laplace transforms of densities of squared Bessel processes
from Sect. 5.4. We point out that this technique will also be used in Chap. 6. The
next theorem shows how to derive the well-known bond pricing formula in the CIR
model by combining the results from Sect. 5.4, in particular Proposition 5.4.4, with
the change of law formula from Pitman and Yor (1982).
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Theorem 5.5.1 Assume that the dynamics of rt are given by (5.5.17) and 4kθ

σ 2 ≥ 2.
Then we have the following formula for a zero coupon price at time t with maturity
date T > t :

E

(
exp

{
−

∫ T

t

rs ds

} ∣∣∣∣At

)
= A(t, T ) exp

{−B(t, T )rt
}
,

where

A(t, T ) =
(

2h exp((k + h)(T − t)/2)

2h + (k + h)(exp(h(T − t)) − 1)

) 2kθ

σ2

B(t, T ) = 2(exp((T − t)h) − 1)

2h + (k + h)(exp((T − t)h) − 1)

h =
√

k2 + 2σ 2.

Proof Setting t̃ := tσ 2

4 and T̃ := T σ 2

4 , we employ Eq. (5.5.20) to obtain

E

(
exp

{
−

∫ T

t

rs ds

} ∣∣∣∣At

)

= E

(
exp

{
−

∫ T

t

ρ sσ2
4

ds

} ∣∣∣∣F tσ2
4

)

= E

(
exp

{
− 4

σ 2

∫ T̃

t̃

ρs̃ ds̃

} ∣∣∣∣Ft̃

)

= Ẽ

(
exp

{
j

2
ρ

T̃
− j

2
ρt̃ − jδ(T̃ − t̃ )

2
−

(
j2

2
+ 4

σ 2

)∫ T̃

t̃

ρs̃ ds̃

} ∣∣∣∣Ft̃

)
,

where we use E to denote the expectation with respect to jP δ
ρ0

and Ẽ to denote the

expectation with respect to P δ
ρ0

. Also, we recall that δ = 4kθ

σ 2 and j = − 2k

σ 2 . Now we
define

b2

2
= j2

2
+ 4

σ 2

to obtain

b = 2

σ 2

√
k2 + 2σ 2 = 2

σ 2
h

and we also set λ = − j
2 . It now follows from Theorem 5.4.2 that

Ẽ

(
exp

{
j

2
ρ

T̃
− j

2
ρt̃ − jδ(T̃ − t̃ )

2
−

(
j2

2
+ 4

σ 2

)∫ T̃

t̃

ρs̃ ds̃

} ∣∣∣∣Ft̃

)

= exp

{
k2θ(T − t)

σ 2
+ rt

k

σ 2

}
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×

exp

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−rt

h(1+2λ
coth(b(T̃ −t̃ ))σ2

2
√

k2+2σ2
)

σ2(coth(b(T̃ −t̃ ))+2 λσ2

2
√

k2+2σ2
)

coth(b(T̃ −t̃ ))+2λ σ2

2
√

k2+2σ2

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(cosh(b(T̃ − t̃ )) + 2λb−1 sinh(b(T̃ − t̃ )))δ/2
.

It can be checked that

exp{ k2θ(T −t)

σ 2 }
(cosh(b(T̃ − t̃ )) + 2λb−1 sinh(b(T̃ − t̃ )))δ/2

= A(t, T ).

Finally,

exp

{
−rt

(
h

σ 2

(
1 + k

h
coth(b(T̃ − t̃ ))

coth(b(T̃ − t̃ )) + k
h

)
− k

σ 2

)}
= exp

{−rtB(t, T )
}
,

is completing the proof. �

Next, we discuss zero coupon bond pricing in the 3/2 model. However, we point
out that these techniques are also useful when studying volatility derivatives, see
e.g. Carr and Sun (2007). We recall the 3/2 process from Sect. 3.1, which is given
by

drt = κrt (θ − rt ) dt + σr
3/2
t dWt ,

where r0 > 0. Consequently, we are interested in computing

E

(
exp

{
−

∫ T

t

rs ds

} ∣∣∣∣At

)
,

where At = σ {rs, s ≤ t}. Now, we define vt = 1
rt

, and obtain by Itô’s formula

dvt = (
κ + σ 2 − κθvt

)
dt − σ

√
vt dWt .

Since vt = 1
rt

, we have

E

(
exp

{
−

∫ T

t

rs ds

} ∣∣∣∣At

)
= E

(
exp

{
−

∫ T

t

ds

vs

} ∣∣∣∣At

)
.

We now simply use Proposition 5.4.3 to yield

E

(
exp

{
−

∫ T

t

rs ds

} ∣∣∣∣At

)

= Γ (k + ν
2 + 1

2 )

Γ (ν + 1)
βrk

t exp

{
b

σ 2

(
aτ + r−1

t − r−1
t

tanh(bτ/2)

)}

× exp{β2/(2α)}
βαk

M−k,ν/2

(
β2

α

)
,
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where ν = 2
σ 2

√
(κ + σ 2 − σ 2

2 )2 + 2σ 2, k = κ+σ 2

σ 2 , α = κθ

σ 2 (1 + coth( κθτ
2 )), β =

κθv
− 1

2
t

σ 2 sinh( κθτ
2 )

, a = κ + σ 2, and b = κθ . This result can be shown to match Theorem 3

in Carr and Sun (2007).
Note that similar calculations yield corresponding results for other diffusion pro-

cesses captured in Chap. 4.
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