
Chapter 2
Functionals of Wiener Processes

In this chapter, we discuss scalar- and multidimensional processes, which are based
on the Wiener process, and consequently apply them in the context of the benchmark
approach.

2.1 One-Dimensional Functionals of Wiener Processes

We summarize well-known SDEs and transition densities for models and processes
closely related to the Wiener process or Brownian motion, including:

• the Bachelier model;
• the Black-Scholes model;
• the Ornstein-Uhlenbeck-process;
• the geometric Ornstein-Uhlenbeck-process.

Also we collect results from the literature on functionals of Wiener processes and
add new results and presentations. We remark that parts of this section are based
on Borodin and Salminen (2002), Jeanblanc et al. (2009), Chap. 3, and Platen and
Heath (2010), Chap. 4.

2.1.1 Wiener Process

The Wiener process is a continuous Markov process and has the following transition
density:

p(s, x; t, y) = 1√
2π(t − s)

exp

{
− (y − x)2

2(t − s)

}
, (2.1.1)

for t ∈ [0,∞), s ∈ [0, t] and x, y ∈ �. For the purpose of illustration, we display
some transition densities in Fig. 2.1.1 as functions of time t and final value y, where
we set the initial time to s = 0 and the initial value to x = 0.
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Fig. 2.1.1 Probability
densities for the standard
Wiener process

The Wiener process enjoys the strong Markov property, which allows us to for-
mulate the following lemma:

Lemma 2.1.1 For a finite stopping time τ , the process W̃ = {W̃t , t ≥ 0}, where

W̃t = Wτ+t − Wτ , (2.1.2)

is a Wiener process with respect to its natural filtration.

We now introduce the following notation

Ta = inf{t ≥ 0: Wt = a}
Mt = sup

0≤s≤t

Ws

mt = inf
0≤s≤t

Ws.

The following proposition, commonly referred to as reflection principle, employs
Lemma 2.1.1 and the symmetry of the Wiener process, see Lemma 15.1.3.

Proposition 2.1.2 Let y ≥ 0, x ≤ y, then one has

P(Wt ≤ x, Mt ≥ y) = P(Wt ≥ 2y − x). (2.1.3)

For a proof, see e.g. Jeanblanc et al. (2009), Proposition 3.1.1.1. Next, we discuss
the joint distribution of (Mt ,Wt), see Theorem 3.1.1.2 in Jeanblanc et al. (2009).

Proposition 2.1.3 For a Brownian motion Wt and its running maximum Mt , the
following formulas hold:

P(Wt ≤ x,Mt ≤ y) = N

(
x√
t

)
− N

(
x − 2y√

t

)
, y ≥ 0, x ≤ y,
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P(Wt ≤ x,Mt ≤ y) = P(Mt ≤ y) = N

(
y√
t

)
− N

(−y√
t

)
, y ≥ 0, x ≥ y,

P (Wt ≤ x,Mt ≤ y) = 0, y ≤ 0.

The distribution of (Wt ,Mt) is given by

P(Wt ∈ dx, Mt ∈ dy) = 1y≥01x≤y

2(2y − x)√
2πt3

exp

{
− (2y − x)2

2t

}
dx dy.

The law of the maximum satisfies the following equality, see Proposition 3.1.3.1
in Jeanblanc et al. (2009),

P(Mt ≤ y) = N

(
y√
t

)
− N

(−y√
t

)
, y ≥ 0.

We remark that the law of the maximum of a process finds important applications
in derivative pricing, see Sect. 2.3.

Proposition 2.1.4 For a Brownian motion Wt and its running minimum mt , the
following formulas hold:

P(Wt ≥ x, mt ≥ y) = N

(−x√
t

)
− N

(
2y − x√

t

)
, y ≤ 0, x ≥ y

P (Wt ≥ x, mt ≥ y) = N

(−y√
t

)
− N

(
y√
t

)
, y ≤ 0, x ≤ y

P (Wt ≥ x, mt ≥ y) = 0, y ≥ 0.

The law of the minimum satisfies, for y ≤ 0,

P(mt ≥ y) = N

(−y√
t

)
− N

(
y√
t

)
.

Finally, we turn to hitting times, which are also used in derivative pricing, for exam-
ple when studying rebates, see Sect. 2.3.

Proposition 2.1.5 Let Ty be the first hitting time of y ∈ � for a standard Brownian
motion. Then for λ > 0,

E

(
exp

{
−λ2

2
Ty

})
= exp

{−|y|λ}
.

We can also compute the density

P(Ty ∈ dt) = x√
2πt3

exp

{
−x2

2t

}
1t≥0 dt.

This section concludes with results on integrals of Brownian motion, taken from
Borodin and Salminen (2002). Such formulas are useful when studying Asian op-
tions and related contracts, such as Australian options, see Sect. 2.3:
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P

(∫ t

0
Ws ds ∈ dy

)
=

√
3√

2πt3
exp

{
−3y2

2t3

}
dy

P

(∫ t

0
Ws ds ∈ dy, Wt ∈ dz

)
=

√
3

πt2
exp

{
−z2

2t
− 3(2y − zt)2

2t3

}
dy dz.

2.1.2 Bachelier Model

The results in the previous section can be extended to the case

Xt = νt + Wt, t ≥ 0,

a Brownian motion with drift. This process corresponds to the Bachelier model,
which models the stock price St via

St = S0 + μt + σWt, t ≥ 0,

see Bachelier (1900). Again, we employ the notation

Ta = inf{t ≥ 0: Xt = a}
Mt = sup

0≤s≤t

Xs

mt = inf
0≤s≤t

Xs.

We start our discussion with the transition density of the process X,

p(s, x; t, y) = 1√
2π(t − s)

exp

{
− (y − x − ν(t − s))2

2(t − s)

}
, (2.1.4)

for t ∈ [0,∞), s ∈ [0, t] and x, y ∈ �. The following result corresponds to Proposi-
tion 2.1.3 and uses Proposition 3.2.1.1 and Corollary 3.2.1.2 from Jeanblanc et al.
(2009).

Proposition 2.1.6 For a Brownian motion with drift Xt and its running maximum
Mt , the following formulas hold:

P(Xt ≤ x,Mt ≤ y) = N

(
x − νt√

t

)
− exp{2νy}N

(
x − 2y − νt√

t

)
, y ≥ 0, x ≤ y.

The density of (Wt ,Mt) is given by

P(Xt ∈ dx, Mt ∈ dy)

= 1x<y10<y

2(2y − x)√
2πt3

exp

{
νx − 1

2
ν2t − (2y − x)2

2t

}
dx dy.

Furthermore, the law of the maximum satisfies

P(Mt ≤ y) = N

(
y − νt√

t

)
− exp{2νy}N

(−y − νt√
t

)
, y ≥ 0.

Next, we present results corresponding to Proposition 2.1.4.
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Proposition 2.1.7 For a Brownian motion with drift Xt and its running minimum
mt , the following formulas hold:

P(Xt ≥ x, mt ≥ y) = N

(−x + νt√
t

)
− exp{2νy}N

(−x + 2y + νt√
t

)
.

Furthermore, the law of the minimum is given by

P(mt ≥ y) = N

(−y + νt√
t

)
− exp{2νy}N

(
y + νt√

t

)
, y ≤ 0.

We now turn to hitting times, see Eq. (3.2.3) in Jeanblanc et al. (2009).

Proposition 2.1.8 Let Ty be the first hitting time of the level y for a Brownian mo-
tion with drift. Then

P(Ty ∈ dt) = |y|√
2πt3

exp

{
− 1

2t
(y − νt)2

}
1t≥0 dt.

Furthermore,

E

(
exp

{
−λ2

2
Ty

})
= exp{νy} exp

{−|y|
√

ν2 + λ2
}
.

Results on integrals of Brownian motion with drift can be found in Borodin and
Salminen (2002), see Eqs. (1.8.4) and (1.8.8) in their Appendix 1,

P

(∫ t

0
Xs ds ∈ dy

)
=

√
3√

2πt3
exp

{
−3(y − νt2/2)2

2t3

}
dy

P

(∫ t

0
Xs ds ∈ dy,Xt ∈ dz

)
=

√
3

πt2
exp

{
− (z − νt)2

2t
− 3(2y − zt)2

2t3

}
dy dz.

We now derive the transition density of a Brownian motion with drift killed at z ∈ �.
To do so, we firstly recall Lemma 2.1 from Hulley and Platen (2008), which re-
quires us to introduce the following notation: let Y = {Yt , t ≥ 0} be a regular one-
dimensional time-homogeneous diffusion process, whose state space is an interval
I ⊆ �, which is typically �, [0,∞) or (0,∞) and which starts at x ∈ I . We shall de-
note the transition density of Y with respect to its speed measure by q(.,.,.), where
we omit the dependence on the initial time s = 0, so that

P(Yt ∈ A) =
∫

A

q(t, x, y)m(y)dy,

for all t ≥ 0 and x ∈ I and for every Borel set A ∈ B(I ). Furthermore, for any z ∈ I ,
let

T Y
z := inf{t > 0: Yt = z}

be the first-passage time of Y to z. We shall denote its density with respect to the
Lebesgue measure by pz(.,.), so that

P
(
T Y

z ≤ t
) =

∫ t

0
pz(x, s) ds.
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Furthermore, let q̃z(.,.,.) denote its transition density, with respect to the speed mea-
sure of Y killed at z, so that

P
(
Yt ∈ A, T Y

z > t
) =

∫
A

q̃z(t, x, y)m(y)dy,

for all A ∈ B(I ). We are now in a position to state Lemma 2.1 from Hulley and
Platen (2008):

Lemma 2.1.9 Let x, y, z ∈ I and suppose that t > 0. Then

q(t, x, y) = q̃z(t, x, y) +
∫ t

0
pz(x, s)q(t − s, z, y) ds. (2.1.5)

Intuitively speaking, the first term in (2.1.5) corresponds to those trajectories
which travel from x to y without visiting z, whereas the second includes those tra-
jectories which do visit z between 0 and t . We now use Lemma 2.1.9 to derive the
density of a Brownian motion with drift started at x killed at z. We remark that this
density will be employed in the pricing of Barrier options under the Black-Scholes
model in Sect. 2.3. From Borodin and Salminen (2002), we obtain for a Brownian
motion with drift

Xt = νt + Wt

started at x and

Ta = inf{t > 0: Xt = a}
that

q(t, x, y) = 1

2
√

2πt
exp

{
−μ(y + x) − μ2t

2
− (x − y)2

2t

}
(2.1.6)

and

pz(x, t) = |z − x|√
2πt3/2

exp

{
− (z − x − μt)2

2t

}
(2.1.7)

and hence the following corollary:

Corollary 2.1.10 For a Brownian motion with drift X = {Xt, t ≥ 0} started at x,
we have

q̃z(t, x, y)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2
√

2πt
exp

{−μ(x + y) − μ2t
2

}

× (
exp

{− (x−y)2

2t

} − exp
{− (x+y−2z)2

2t

})
y, x > z

0 y < z ≤ x

(2.1.8)
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and

q̃z(t, x, y)

=

⎧⎪⎪⎨
⎪⎪⎩

0 y > z > x

1
2
√

2πt
exp

{−μ(x + y) − μ2t
2

}
× (

exp
{− (x−y)2

2t

} − exp
{− (x+y−2z)2

2t

})
x, y < z.

(2.1.9)

Proof Assume that x, y > z or x, y < z, then from Lemma 2.1.9, we need to com-
pute

∫ t

0
pz(x, s)q(t − s, z, y) ds

=
∫ t

0

|z − x|√
2πt3/2

exp

{
− (z − x − μs)2

2s

}
1

2
√

2π(t − s)

× exp

{
−μ(y + x) − μ2(t − s)

2
− (z − y)2

2(t − s)

}
ds

= |z − x|
2(2π)

exp

{
−μ(x + y) − μ2t

2

}∫ t

0

exp{− (z−x)2

2s
− (z−y)2

2(t−s)
}

s3/2
√

t − s
ds.

Noting that for y, x > z and x, y < z we have z−x
z−y

> 0, we employ the following
change of variables

√
t/s − 1

√
z − x

z − y
= ξ,

to obtain∫ t

0
pz(x, s)q(t − s, z, y) ds

= |z − x|
2π

exp

{
−μ(x + y) − μ2t

2
− ((z − y)2 + (z − x)2)2

2t

}
1

t

√
z − y

z − x

×
∫ ∞

0
exp−1

2

(
1

ξ2
+ ξ2

)
(z − x)(z − y)

t
dξ

= |z − x|
2π

exp

{
−μ(x + y) − ((z − y)2 + (z − x)2)

2t

}
1

t

√
z − y

z − x

× exp

{
− (z − x)(z − y)

t

}√
π

2

√
t

(z − x)(z − y)

= 1

2
√

2πt
exp

{
−μ(x + y) − μ2t

2
− ((z − y) + (z − x))2

2t

}
,

where we used MATHEMATICA to arrive at the second last equation. Consequently,

q̃z(t, x, y) = 1

2
√

2πt
exp

{
−μ(x + y) − μ2t

2

}
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×
(

exp

{
− (x − y)2

2t

}
− exp

{
− (2z − x − y)2

2t

})

for x, y > z and x, y < z. �

Now, we focus on occupation times, firstly deriving the result for standard Brow-
nian motion and subsequently for Brownian motion with drift. Occupation times
measure the amount of time a stochastic process spends above or below a particu-
lar level. They have important applications in finance, as there are products whose
pay-offs depend on the amount of time the asset price spends above or below a
particular barrier. We are particularly interested in obtaining the distribution of oc-
cupation times explicitly. The approach to obtain such distributions we present here
is based on Jeanblanc et al. (2009) and is motivated by the following result, see The-
orem 2.5.1.1 in Jeanblanc et al. (2009): for convenience, we use Ex to denote the
expectation with respect to the probability distribution of a Brownian motion started
at x.

Theorem 2.1.11 Let α ∈ �+ and let k : � → �+ and g : � → � be continuous
functions and let g be bounded. Then the function

f (x) = Ex

(∫ ∞

0
g(Wt) exp

{
−αt −

∫ t

0
k(Ws) ds

}
dt

)
(2.1.10)

is piecewise twice differentiable and satisfies the differential equation

(α + k)f = 1

2
f ′′ + g. (2.1.11)

We firstly consider A+
t := ∫ t

0 1[0,∞)(Ws) ds, which measures the amount of time
the standard Brownian motion W = {Wt, t ∈ [0,∞)} spends above 0 during the time
interval [0, t]. Consider an exponentially distributed random variable τ , τ ∼ Exp(λ),
which is independent of W . Clearly,

Ex

(
exp

{−βA+
τ

}) = λf (x),

where

f (x) := Ex

(∫ ∞

0
exp

{
−αt − β

∫ t

0
1
¯ [0,∞)(Ws) ds

}
dt

)
.

However, f (x) can be interpreted as a double Laplace transform of the density of
A+

τ , with respect to occupation time and the upper limit of the time interval. In-
version of the double Laplace transform will provide us with the desired density.
Theorem 2.1.11 provides us with a useful expression for f , which can be inverted,
if necessary numerically. To illustrate the technique used to obtain the distribution
of occupation times, we present below the proof of the next result, see also Propo-
sition 2.5.2.1 in Jeanblanc et al. (2009).

Proposition 2.1.12 The law of A+
t := ∫ t

0 1[0,∞)(Ws) ds is given by

P
(
A+

t ∈ ds
) = ds

π
√

s(t − s)
10≤s<t .
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Proof We set k(x) = β1x≥0 and g(x) = 1 in Theorem 2.1.11. Then we obtain

f (x) = Ex

(∫ ∞

0
exp

{
−αt − β

∫ t

0
1[0,∞)(Ws) ds

}
dt

)
,

which solves ⎧⎪⎨
⎪⎩

αf (x) = 1

2
f ′′(x) − βf (x) + 1, x ≥ 0

αf (x) = 1

2
f ′′(x) + 1, x ≥ 0.

In Jeanblanc et al. (2009), an explicit solution for f (x) is obtained. We are particu-
larly interested in the special case

f (0) =
∫ ∞

0
exp{−αt}E0

(
e−βA+

t
)
dt = 1√

α(α + β)
. (2.1.12)

However, we recall∫ ∞

0
e−αt

(∫ ∞

0
du1s<t

exp{−βu}
π

√
u(t − u)

)
dt = 1√

α(α + β)
,

so we can explicitly invert the double Laplace transform (2.1.12) to complete the
proof. �

We remark that the same technique can be used to compute the corresponding
result for the occupation time of a Brownian motion with drift. Let Xt = νt + Wt ,
and consider the occupation time of this Brownian motion above the level L > 0

A
+,L,ν
t =

∫ t

0
1Xs>L ds,

and we define A
−,L,ν
t analogously. Using the same idea as before, together with the

relevant Feynman-Kac result, we get

P
(
A

−,0,ν
t ∈ du

)

=
(√

2

πu
exp

{
−ν2

2
u

}
− 2νΘ(ν

√
u)

)

×
(

ν + 1√
2π(t − u)

exp

{
−ν2

2
(t − u)

}
− νΘ(ν

√
t − u)

)
, (2.1.13)

where Θ(x) = 1√
2π

∫ ∞
x

exp{− y2

2 }dy. Finally,

P
(
A

−,L,ν
t ≤ u

) =
∫ u

0
ϕ(s,L;ν)P

(
A

−,0,ν
t−s < u − s

)
ds,

where ϕ(s,L;ν) is the density P(TL ∈ ds)/ds, where TL denotes the first time the
Brownian motion with drift hits the level L, TL = inf{t : Xt = L}, and

ϕ(s,L;ν) = L√
2πs3

exp

{
− 1

2s
(y − νs)2

}
1s≥0.

Finally, the law of A
+,L,ν
t follows from A

+,L,ν
t + A

−,L,ν
t = t .
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Fig. 2.1.2 Transition density
for geometric Brownian
motion

2.1.3 Geometric Brownian Motion

Geometric Brownian motion is a process of significant importance in finance, as
the Black-Scholes model (BSM), Black and Scholes (1973), is based on it, see also
Sect. 2.3. We can describe geometric Brownian motion via the SDE

dXt = Xt

((
g + 1

2
b2

)
dt + b dWt

)
, (2.1.14)

subject to X0 > 0. Equation (2.1.14) can be explicitly solved to yield

Xt = X0 exp(gt + bWt).

Its transition density function satisfies

p(s, x; t, y) = 1√
2π(t − s)by

exp

{
− (ln(y) − ln(x) − g(t − s))2

2b2(t − s)

}
, (2.1.15)

for t ∈ [0,∞), s ∈ [0, t] and x, y ∈ (0,∞). Figure 2.1.2 shows the transition density
for a geometric Brownian motion with growth rate g = 0.05, volatility b = 0.2 and
initial value x = 1 at time s = 0 for the period from 0.1 to 3 years.

The corresponding laws of first hitting times, maximum, and minimum follow
easily from the corresponding results for a Brownian motion with drift. Regarding
the integrals, we have the following result, see Yor (2001) and Pintoux and Privault
(2011):

P

(∫ t

0
exp

{
σWs − pσ 2s/2

}
ds ∈ du,Wt ∈ dy

)

= σ

2
exp

{−pσy/2 − p2σ 2t/8
}

exp

{
−2

1 + exp{σy}
σ 2u

}

× θ

(
4 exp{σy/2}

σ 2u
,
σ 2t

4

)
du

u
dy,
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Fig. 2.1.3 Transition density
of standard OU process
starting at (s, x) = (0,0)

where p = − 2g

b2 , u > 0, y ∈ � and

θ(v, t)

= v exp{π2

2t
}√

2π3t

∫ ∞

0
exp

{
−ξ2

2t
− v cosh(ξ)

}
sinh(ξ) sin

(
πξ

t

)
dξ, v > 0.

2.1.4 Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process is also a process of importance in finance and
forms the basis of the Vasiček model, see Vasiček (1977). We consider the standard
Ornstein-Uhlenbeck process,

dXt = −Xt dt + √
2dWt,

where X0 = x ∈ �. Its transition density is Gaussian,

p(s, x; t, y) = 1√
2π(1 − e−2(t−s))

exp

{
− (y − xe−(t−s))2

2(1 − e−2(t−s))

}
, (2.1.16)

for t ∈ [0,∞), s ∈ [0, t] and x, y ∈ �, with mean x e−(t−s) and variance 1−e−2(t−s).
To illustrate the stochastic dynamics of this process we show in Fig. 2.1.3 the

transition density of a standard OU process for the period from 0.1 to 3 years with
initial value x = 0 at time s = 0. As can be seen from Fig. 2.1.3 the transition
densities for the standard OU process seem to stabilize after a period of about one
year. In fact, as can be seen from (2.1.16) these transition densities asymptotically
approach, as t → ∞, a standard Gaussian density. This is in contrast, for example,
to transition densities for the Wiener process, which do not converge to a stationary
density, see (2.1.1) and Fig. 2.1.1. For illustration, we plot in Fig. 2.1.4 the transition
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Fig. 2.1.4 Transition density
of standard OU process
starting at (s, x) = (0,2)

Fig. 2.1.5 Path of a standard
Ornstein-Uhlenbeck process

density for a standard OU process that starts at the initial value x = 2 at time t = 0.
Note how the transition density evolves towards a median that is close to 0.

In Fig. 2.1.5 a path of a standard OU process is shown. It can be observed that this
trajectory fluctuates around some reference level. Indeed, as already indicated, the
standard OU process has a stationary density. This can be seen from (2.1.16) when
t → ∞. Note also that the Gaussian property of the standard OU process means that
the process itself and even a scaled and shifted OU process may become negative.
We now recall Proposition 3.4.1.1 from Jeanblanc et al. (2009), which characterizes
the first hitting time of the level 0,

T0 = inf{t ≥ 0: Xt = 0}.

Proposition 2.1.13 The density function of T0 is given by

f (t) = x

2
√

π
exp

{
x2

4

}
exp

{
1

2

(
t − x2

2
coth(t)

)}(
1

sinh(t)

) 3
2

.
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Fig. 2.1.6 Transition density
of a geometric
Ornstein-Uhlenbeck process

Furthermore, integrals of the Ornstein-Uhlenbeck process are of importance in
finance, as they impact bond prices for example. Defining

n(t, T ) = (
1 − exp

{−(T − t)
})

,

we have that ∫ T

0
Xs ds ∼ N

(
n(0, T )X0,2

∫ T

0
n2(u,T ) du

)
.

2.1.5 Geometric Ornstein-Uhlenbeck Process

Exponentiating an Ornstein-Uhlenbeck process, as discussed in the previous sub-
section, we obtain a geometric Ornstein-Uhlenbeck process. Its transition density is
lognormal satisfying

p(s, x; t, y) = 1

y
√

2π(1 − e−2(t−s))
exp

{
− (ln(y) − ln(x)e−(t−s))2

2(1 − e−2(t−s))

}
, (2.1.17)

for t ∈ [0,∞), s ∈ [0, t] and x, y ∈ (0,∞). In Fig. 2.1.6 we display the correspond-
ing probability densities for the time period from 0.1 to 3 years with initial value
x = 1 at the initial time s = 0. In this case the transition density converges over time
to a limiting lognormal density as stationary density, as can be seen from (2.1.17).
Figure 2.1.7 shows a trajectory for the geometric OU process. We note that it stays
positive and shows large fluctuations for large values. Since it is the exponential of
an Ornstein-Uhlenbeck process, one can use the result on the hitting time from the
previous subsection.
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Fig. 2.1.7 Path of a
geometric
Ornstein-Uhlenbeck process

2.2 Functionals of Multidimensional Wiener Processes

In this section, we discuss functionals of multidimensional Wiener processes or
Brownian motions, in particular their SDEs and transition densities. When mod-
eling complex systems, such as a financial market, it is often necessary to employ a
multidimensional stochastic process to model the uncertainty. It is crucial to under-
stand the dependence structure between the individual stochastic processes, hence
we briefly discuss copulas before discussing stochastic processes.

2.2.1 Copulas

Each multivariate distribution function has its, so called copula, which characterizes
the dependence structure between the components. Roughly speaking, the copula
is the joint density of the components when they are each transformed into uni-
formly U(0,1) distributed random variables. Essentially, every multivariate distri-
bution has a corresponding copula. Conversely, each copula can be used together
with some given marginal distributions to obtain a corresponding multivariate dis-
tribution function. This is a consequence of Sklar’s theorem, see for instance McNeil
et al. (2005).

If, for instance, Y ∼ Nd(μ,Ω) is a Gaussian random vector, then the copula of
Y is the same as the copula of X ∼ Nd(0,Ω), where 0 is the zero vector and Ω is
the correlation matrix of Y . By the definition of the d-dimensional Gaussian copula
we obtain

CGa
Ω = P

(
N(X1) ≤ u1, . . . ,N(Xd) ≤ ud

)
= NΩ

(
N−1(u1), . . . ,N

−1(ud)
)
, (2.2.18)
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Fig. 2.2.8 Gaussian copula
with parameter � = 0.5

Fig. 2.2.9 Clayton copula
with parameter θ = 0.5

where N denotes the standard univariate normal distribution function and NΩ de-
notes the joint distribution function of X. Hence, in two dimensions we obtain

CGa
Ω (u1, u2) =

∫ N−1(u1)

−∞

∫ N−1(u2)

−∞
1

2π(1 − �2)1/2

× exp

{−(s2
1 − 2�s1s2 + s2

2)

2(1 − �2)

}
ds1 ds2, (2.2.19)

where � ∈ [−1,1] is the correlation parameter in Ω . In Fig. 2.2.8, we simulate from
a Gaussian copula with parameter � = 0.5.

Another example of a copula is the Clayton copula. This copula can be expressed
in the d-dimensional case as

CCl
θ = (

u−θ
1 + · · · + u−θ

d − d + 1
)−1/θ

, θ ≥ 0, (2.2.20)

where the limiting case θ = 0 is the d-dimensional independence copula. For pur-
poses of comparison, in Fig. 2.2.9, we simulate from a Clayton copula with θ = 0.5.
It is evident from Figs. 2.2.8 and 2.2.9, that the Gaussian copula does not allow for
tail dependence, whereas the Clayton copula does.

Moreover, d-dimensional Archimedian copulas can be expressed in terms of
Laplace-Stieltjes transforms of distribution functions on �+. If F is a distribution
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Fig. 2.2.10 Student t copula
with four degrees of freedom
and ρ = 0.8

function on �+ satisfying F(0) = 0, then the Laplace-Stieltjes transform can be
expressed by

F̂ (t) =
∫ ∞

0
e−tx dF (x), t ≥ 0. (2.2.21)

Using the Laplace-Stieltjes transform the d-dimensional Archimedian copula has
the form

CAr(u1, . . . , ud) = E

(
exp

{
−V

d∑
i=1

F̂−1(ui)

})
(2.2.22)

for strictly positive random variables V with Laplace-Stieltjes transform F̂ . We
show in Fig. 2.2.10 the Student t copula for four degrees of freedom, which has been
shown in Ignatieva et al. (2011) to reflect extremely well the dependence of log-
returns of well-diversified indices in different currencies. Compared to Fig. 2.2.8,
we notice a marked difference in the tails of the distribution, the Student t copula
allows for higher dependence in the extreme values.

A simulation method follows directly from this representation, see Marshall and
Olkin (1988). More examples of multidimensional copulas can be found in McNeil
et al. (2005).

Note that each of the following transition densities relate to their own copulas.
We will list the transition densities for:

• Multidimensional Wiener processes;
• Multidimensional geometric Brownian motions;
• Multidimensional OU-processes;
• Multidimensional geometric OU-processes.

It is well-known that more analytical results are available for one-dimensional than
for multidimensional processes. Hence it is important to have access to the transition
densities, so that important functionals can be computed numerically, using e.g. the
techniques to be presented in Chap. 12.
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Fig. 2.2.11 Bivariate
transition density of the
two-dimensional Wiener
process for fixed time step
� = 0.1, x1 = x2 = 0.1 and
� = 0.8

2.2.2 Multidimensional Wiener Process

As a first example of a continuous multidimensional stochastic process, whose tran-
sition density can be expressed explicitly, we focus on the d-dimensional Wiener
process. This fundamental stochastic process has a multivariate Gaussian transition
density of the form

p(s,x; t,y) = 1

(2π(t − s))d/2
√

detΣ
exp

{
(y − x)�Σ−1(y − x)

2(t − s)

}
, (2.2.23)

for t ∈ [0,∞), s ∈ [0, t] and x,y ∈ �d . Here Σ is a normalized covariance matrix.
Its copula is the Gaussian copula (2.2.18), which is simply derived from the cor-
responding multivariate Gaussian distribution function. In the bivariate case with
correlated Wiener processes this transition probability density simplifies to

p(s, x1, x2; t, y1, y2)

= 1

2π(t − s)
√

1 − �2

× exp

{
− (y1 − x1)

2 − 2(y1 − x1)(y2 − x2)� + (y2 − x2)
2

2(t − s)(1 − �2)

}
,

(2.2.24)

for t ∈ [0,∞), s ∈ [0, t] and x1, x2, y1, y2 ∈ �. Here the correlation parameter �

varies in the interval [−1,1]. In the case of correlated Wiener processes one can
first simulate independent Wiener processes and then form from these, by linear
transforms, correlated ones.

In Fig. 2.2.11 we illustrate the bivariate transition density of the two-dimensional
Wiener process for the time increment � = t − s = 0.1, initial values x1 = x2 = 0.1
and correlation � = 0.8. One can also generate dependent Wiener processes that
have a joint distribution with a given copula.
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2.2.3 Transition Density of a Multidimensional Geometric
Brownian Motion

The multidimensional geometric Brownian motion is a componentwise exponen-
tial of linearly transformed Wiener processes. Given a vector of correlated Wiener
processes W with the transition density (2.2.23) we consider the following transfor-
mation

St = S0 exp{at + BW t }, (2.2.25)

for t ∈ [0,∞), where the exponential is taken componentwise. Here a is a vector of
length d , while the elements of the matrix B are as follows

Bi,j =
{

bj for i = j

0 otherwise,
(2.2.26)

where i, j ∈ {1,2, . . . , d}. Then the transition density of the above defined geometric
Brownian motion has the following form

p(s,x; t,y)

= 1

(2π(t − s))d/2
√

detΣ
∏d

i=1 biyi

× exp

{
− (ln(y) − ln(x) − a(t − s))�B−1Σ−1B−1

2

× (ln(y) − ln(x) − a(t − s))

t − s

}
(2.2.27)

for t ∈ [0,∞), s ∈ [0, t] and x,y ∈ �d+. Here the logarithm is understood compo-
nentwise. In the bivariate case this transition density takes the particular form

p(s, x1, x2; t, y1, y2)

= 1

2π(t − s)
√

1 − �2b1b2y1y2

× exp

{
− (ln(y1) − ln(x1) − a1(t − s))2

2(b1)2(t − s)(1 − �2)

}

× exp

{
− (ln(y2) − ln(x2) − a2(t − s))2

2(b2)2(t − s)(1 − �2)

}

× exp

{
(ln(y1) − ln(x1) − a1(t − s))(ln(y2) − ln(x2) − a2(t − s))�

b1b2(t − s)(1 − �2)

}
,

for t ∈ [0,∞), s ∈ [0, t] and x1, x2, y1, y2 ∈ �+, where � ∈ [−1,1].
In Fig. 2.2.12 we illustrate the bivariate transition density of the two-dimensional

geometric Brownian motion for the time increment � = t − s = 0.1, initial values
x1 = x2 = 0.1, correlation � = 0.8, volatilities b1 = b2 = 2 and growth parameters
a1 = a2 = 0.1.
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Fig. 2.2.12 Bivariate
transition density of the
two-dimensional geometric
Brownian motion for
� = 0.1, x1 = x2 = 0.1,
� = 0.8, b1 = b2 = 2 and
a1 = a2 = 0.1

2.2.4 Transition Density of a Multidimensional OU-Process

Another example is the standard d-dimensional Ornstein-Uhlenbeck (OU)-process.
This process has a Gaussian transition density of the form

p(s,x; t,y) = 1

(2π(1 − e−2(t−s)))d/2
√

detΣ

× exp

{
− (y − xe−(t−s))�Σ−1(y − xe−(t−s))

2(1 − e−2(t−s))

}
, (2.2.28)

for t ∈ [0,∞), s ∈ [0, t] and x,y ∈ �d , with mean xe−(t−s) and covariance matrix
Σ(1 − e−2(t−s)), d ∈ {1,2, . . .}, see e.g. Platen and Bruti-Liberati (2010). In the
bivariate case the transition density of the standard OU-process is expressed by

p(s, x1, x2; t, y1, y2) = 1

2π(1 − e−2(t−s))
√

1 − �2

× exp

{
− (y1 − x1e

−(t−s))2 + (y2 − x2e
−(t−s))2

2(1 − e−2(t−s))(1 − �2)

}

× exp

{
(y1 − x1e

−(t−s))(y2 − x2e
−(t−s))�

(1 − e−2(t−s))(1 − �2)

}
, (2.2.29)

for t ∈ [0,∞), s ∈ [0, t] and x1, x2, y1, y2 ∈ �, where � ∈ [−1,1].

2.2.5 Transition Density of a Multidimensional Geometric
OU-Process

The transition density of a d-dimensional geometric OU-process can be obtained
from the transition density of the multidimensional OU-process by applying the
exponential transformation. Therefore, it can be expressed as
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Fig. 2.2.13 Bivariate
transition density of the
two-dimensional geometric
OU-process for � = 0.1,
x1 = x2 = 0.1 and � = 0.8

p(s,x; t,y) = 1

(2π(1 − e−2(t−s)))d/2
√

detΣ
∏d

i=1 yi

× exp

{
− (ln(y) − ln(x)e−(t−s))�Σ−1(ln(y) − ln(x)e−(t−s))

2(1 − e−2(t−s))

}
,

(2.2.30)

for t ∈ [0,∞), s ∈ [0, t] and x,y ∈ �d+, d ∈ {1,2, . . .}. In the bivariate case the
transition density of the multidimensional geometric OU-process is of the form

p(s, x1, x2; t, y1, y2)

= 1

2π(1 − e−2(t−s))
√

1 − �2y1y2

× exp

{
− (ln(y1) − ln(x1)e

−(t−s))2 + (ln(y2) − ln(x2)e
−(t−s))2

2(1 − e−2(t−s))(1 − �2)

}

× exp

{
(ln(y1) − ln(x1)e

−(t−s))(ln(y2) − ln(x2)e
−(t−s))�

(1 − e−2(t−s))(1 − �2)

}
, (2.2.31)

for t ∈ [0,∞), s ∈ [0, t] and x1, x2, y1, y2 ∈ �+, where � ∈ [−1,1].
In Fig. 2.2.13 we illustrate the bivariate transition density of the two-dimensional

geometric OU-process for the time increment � = t − s = 0.1, initial values x1 =
x2 = 0.1 and correlation � = 0.8. It is now obvious how to obtain the transition
density of the componentwise exponential of other Gaussian vector processes.

2.3 Real World Pricing Under the Black-Scholes Model

In this section, we continue to discuss a continuous financial market as introduced
in Chap. 1. We illustrate real world pricing under the benchmark approach using
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the Black-Scholes model (BSM), see Black and Scholes (1973) and Sect. 1.1. The
resulting explicit formulas are of importance not only for the BSM but also for
more general models when used in variance reduction techniques, see Platen and
Bruti-Liberati (2010). In addition, we illustrate that real world pricing does, in fact,
recover the well-known risk neutral pricing as special case and is hence consistent
with the classical approach. Finally, we remark that we could, of course, in the
case of the BSM perform the relevant change of measure to directly obtain the risk
neutral prices. However, this section aims to illustrate real world pricing, and hence
we proceed by computing the expected value in (1.3.19) directly in the case of the
BSM.

To alleviate notation we define the benchmarked volatility σ
j,k
t by setting

σ
0,k
t = θk

t (2.3.32)

for j = 0 and k ∈ {1,2, . . . , d}, and

σ
j,k
t = θk

t − b
j,k
t (2.3.33)

for k ∈ {1,2, . . . , d} and j ∈ {1,2, . . . , d}, t ≥ 0. Consequently, it follows from
(1.2.12) that the SDE governing the dynamics of the GOP becomes

dS
δ∗
t = S

δ∗
t

(
rt dt +

d∑
k=1

σ
0,k
t

(
σ

0,k
t dt + dWk

t

))
, (2.3.34)

which can be solved explicitly to yield

S
δ∗
t = S

δ∗
0 exp

{∫ t

0

(
rs + 1

2

d∑
k=1

(
σ 0,k

s

)2

)
ds +

d∑
k=1

∫ t

0
σ 0,k

s dWk
s

}
(2.3.35)

for all t ≥ 0. Furthermore, the j th benchmarked primary security account Ŝ
j
t = S

j
t

S
δ∗
t

can be shown to satisfy

dŜ
j
t = −Ŝ

j
t

d∑
k=1

σ
j,k
t dWk

t , (2.3.36)

for all j ∈ {0,1, . . . , d} and t ≥ 0, with Ŝ
j

0 = S
j

0 , which follows from (1.3.16) by
setting πi

δ,t = 1 for i = j and πi
δ,t = 0 otherwise. Consequently, we obtain the fol-

lowing explicit expression for the j th benchmarked primary security account

Ŝ
j
t = Ŝ

j

0 exp

{
−1

2

∫ t

0

d∑
k=1

(
σ

j,k
s

)2
ds −

d∑
k=1

∫ t

0
σ

j,k
s dWk

s

}
(2.3.37)

for j ∈ {0,1, . . . , d} and t ≥ 0.
We now illustrate that under the benchmark approach, the benchmarked primary

security accounts Ŝ
j
t , j ∈ {0,1, . . . , d} are the pivotal objects of study: in particular,

specifying the savings account S0
t and the benchmarked primary security accounts

suffices to determine the entire investment universe. The ratio S
δ∗
t = S0

t

Ŝ0
t

, for all t ≥ 0,
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see (1.3.15), expresses the GOP and NP in terms of the savings account and the
benchmarked savings account. The product S

j
t = Ŝ

j
t S

δ∗
t recovers each primary se-

curity account from the corresponding benchmarked primary security account and
the GOP for each j ∈ {1,2, . . . , d} and t ≥ 0.

Next, we introduce the processes |σ j | = {|σ j
t |, t ≥ 0} for j ∈ {0,1, . . . , d}, by

setting

∣∣σ j
t

∣∣ =
√√√√ d∑

k=1

(
σ

j,k
t

)2
. (2.3.38)

These processes enable us to introduce the aggregate continuous noise processes
Ŵ j = {Ŵ j

t , t ∈ [0,∞)} for j ∈ {0,1, . . . , d}, defined by

Ŵ
j
t =

d∑
k=1

∫ t

0

σ
j,k
s

|σ j
s |

dWk
s . (2.3.39)

An application of Lévy’s Theorem for the characterization of the Wiener process,
see Chap. 15, Theorem 15.3.3, allows us to conclude that Ŵ j is a Wiener process for
each j ∈ {0,1, . . . , d}. We point out that the Wiener processes Ŵ 0, Ŵ 1, . . . , Ŵ d can
be correlated. Furthermore, we enforce Assumption 1.1.1, so that the volatility ma-
trix bt = [bj,k

t ]dj,k=1 becomes invertible for all t ≥ 0. Note that so far in this section
the short rate and volatility processes are not specified and remain still general.

2.3.1 The Black-Scholes Model

The stylized Black-Scholes model (BSM) arises if we assume that all parameter pro-
cesses, that is, the short rate and the volatilities, are constant, i.e. if we set rt = r and
σ

j,k
t = σ j,k for each j ∈ {0,1, . . . , d}, k ∈ {1,2, . . . , d} and t ≥ 0. Consequently,

(2.3.34) and (2.3.36) become in this case

S
δ∗
t = S

δ∗
0 exp

{
r t + t

2

∣∣σ 0
∣∣2 + ∣∣σ 0

∣∣ Ŵ 0
t

}
(2.3.40)

and

Ŝ
j
t = S

j

0 exp

{
− t

2

∣∣σ j
∣∣2 − ∣∣σ j

∣∣Ŵ j
t

}
(2.3.41)

for each j ∈ {0,1, . . . , d} and all t ≥ 0. From (2.3.41) it is clear that the bench-
marked primary security accounts Ŝ

j
t , j ∈ {0,1, . . . , d}, are continuous martingales,

as they are driftless geometric Brownian motions. As this holds, in particular, for the

benchmarked savings account, the Radon-Nikodym derivative process Λθ(t) = Ŝ0
t

Ŝ0
0

in (1.3.20) is an (A,P )-martingale. We conclude that the standard risk neutral pric-
ing approach could, therefore, be used for derivative pricing under the BSM making
use of the risk neutral pricing formula (1.3.21). Finally, we emphasize that we do
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not advocate the BSM as a reasonably realistic description of observed market dy-
namics. However, given its familiarity, it is useful for illustrating real world pricing
under the benchmark approach for classical models, which produces the same an-
swers as risk neutral pricing. Furthermore, the fact that explicit formulas can be
obtained for many derivatives is extremely useful in practice. We will derive below
explicit formulas and descriptions of a range of derivative prices under the BSM by
using real world pricing.

2.3.2 Zero Coupon Bonds

We firstly demonstrate how to price a standard default-free zero coupon bond that
pays one unit of the domestic currency at its maturity date T ∈ [0,∞). It follows
from the real world pricing formula (1.3.19) that the value of the zero coupon bond
at time t is given by

PT (t) = S
δ∗
t E

(
1

S
δ∗
T

∣∣∣∣At

)
= 1

Ŝ0
t

E

(
exp

{
−

∫ T

t

rs ds

}
Ŝ0

T

∣∣∣∣At

)
(2.3.42)

for all t ∈ [0, T ]. Since Ŝ0
t = S0

t

S
δ∗
t

is an (A,P )-martingale and rt = r is constant we

obtain

PT (t) = exp
{−r(T − t)

} 1

Ŝ0
t

E
(
Ŝ0

T

∣∣At

) = exp
{−r(T − t)

}
(2.3.43)

for all t ∈ [0, T ]. As expected, this is the usual bond pricing formula that is deter-
mined by the deterministic short rate r , which one can also obtain via risk neutral
pricing, see (1.3.20) and Harrison and Kreps (1979). As long as the benchmarked
savings account, and with this the Radon-Nikodym derivative of the risk neutral
measure, is a martingale one obtains this classical zero coupon bond price.

2.3.3 Forward Contracts

We now aim to price a forward contract with the delivery of one unit of the j th
primary security account at the maturity date T , which is written or initiated at time
t ∈ [0, T ] for j ∈ {0,1, . . . , d}. The value of the forward contract written at initiation
time t is zero by definition. The real world pricing formula (1.3.19) yields then the
following relation, which determines the forward price F

j
T (t) at time t ∈ [0, T ] via

the relation

S
δ∗
t E

(
F

j
T (t) − S

j
T

S
δ∗
T

∣∣∣∣ At

)
= 0. (2.3.44)
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By (2.3.42) and Ŝ
j
T = S

j
T

S
δ∗
T

, we obtain

F
j
T (t) = S

δ∗
t E(Ŝ

j
T |At )

S
δ∗
t E( 1

S
δ∗
T

| At )
= S

j
t

PT (t)

1

Ŝ
j
t

E
(
Ŝ

j
T

∣∣ At

)
(2.3.45)

for a given t ∈ [0, T ]. Again, as the benchmarked primary security accounts are
(A,P )-martingales under classical models as the BSM, it follows using (2.3.43)
that

F
j
T (t) = S

j
t exp

{
r(T − t)

}
(2.3.46)

for all t ∈ [0, T ]. This is then also the standard risk neutral formula for the forward
price, see for instance Musiela and Rutkowski (2005).

2.3.4 Asset-or-Nothing Binaries

Binary options can be considered to be building blocks for several more complex
derivatives. This is useful to know when it comes to the valuation and hedging of
various exotic options, see e.g. Ingersoll (2000), Buchen (2004), and Baldeaux and
Rutkowski (2010).

The derivative contract we consider in this subsection is an asset-or-nothing bi-
nary on a market index, which we interpret here as the GOP. At its maturity date T ,
this derivative pays its holder one unit of the market index if its value is greater than
the strike K , and nothing otherwise. Using the real world pricing formula (1.3.19)
and (2.3.40), we obtain under the BSM

AT,K(t) = S
δ∗
t E

(
1{Sδ∗

T ≥K}
S

δ∗
T

S
δ∗
T

∣∣∣∣At

)

= S
δ∗
t P

(
S

δ∗
T ≥ K

∣∣At

)

= S
δ∗
t P

(
S

δ∗
t exp

{(
r + 1

2

∣∣σ 0
∣∣2

)
(T − t) + ∣∣σ 0

∣∣(Ŵ 0
T − Ŵ 0

t

)} ≥ K

∣∣∣∣At

)

= S
δ∗
t N(d1) (2.3.47)

for all t ∈ [0, T ], where

d1 = ln(
S

δ∗
t

K
) + (r + 1

2 |σ 0|2)(T − t)

|σ 0|√T − t
(2.3.48)

and N(·) denotes the Gaussian distribution function.
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2.3.5 Bond-or-Nothing Binaries

In this subsection, we consider pricing a bond-or-nothing binary, which pays the
strike K ∈ �+ at maturity T in the event that the market index at time T is not less
than K . As before, the market index is interpreted as the GOP.

BT,K(t) = S
δ∗
t E

(
1{Sδ∗

T ≥K}
K

S
δ∗
T

∣∣∣∣At

)

= S
δ∗
t E

(
1{Sδ∗

T ≥K}K
Ŝ0

T

Ŝ0
0

Ŝ0
0

S0
T

∣∣∣∣At

)

= S
δ∗
t

Ŝ0
0

S0
T

E
(
1{Sδ∗

T ≥K}KΛ|σ 0|(T )
∣∣At

)
. (2.3.49)

Under the BSM, making use of Girsanov’s theorem and the Bayes rule facili-
tates pricing, in particular, we recall that the benchmarked savings account is an
(A,P )-martingale and one has the Radon-Nikodym derivative process Λ|σ 0| =
{Λ|σ 0|(t), t ∈ [0, T ]}, where

Λ|σ 0|(t) = Ŝ0
t

Ŝ0
0

= exp

{
− t

2

∣∣σ 0
∣∣2 − ∣∣σ 0

∣∣Ŵ 0
t

}
. (2.3.50)

This process is used to define a measure P|σ 0| via

dP|σ 0|
dP

= Λ|σ 0|(T ), (2.3.51)

by setting

P|σ 0|(A) = E
(
Λ|σ 0|(T )1A

) = E|σ 0|(1A) (2.3.52)

for A ∈ AT . We use E|σ 0| to denote the expectation with respect to P|σ 0|. By Gir-

sanov’s theorem, W |σ 0| = {W |σ 0|
t , t ∈ [0, T ]}, where

W
|σ 0|
t = Ŵ 0

t + ∣∣σ 0
∣∣t (2.3.53)

is a standard Brownian motion on the filtered probability space (Ω,A,A,P|σ 0|).
This yields for (2.3.49) the relations

BT,K(t) = S
δ∗
t

Ŝ0
0

S0
T

KP|σ 0|
(
S

δ∗
T ≥ K

∣∣At

)
E

(
Λ|σ 0|(T )

∣∣At

)

= S
δ∗
t

Ŝ0
0

S0
T

KP|σ 0|
(
S

δ∗
T ≥ K

∣∣At

) Ŝ0
t

Ŝ0
0

= K exp
{−r(T − t)

}

× P|σ 0|
(

W
|σ 0|
T −t ≥

ln( K

S
δ∗
t

) + (r − 1
2 |σ 0|2)(T − t)

|σ 0|
∣∣∣∣At

)

= K exp
{−r(T − t)

}
N(d2)
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for t ∈ [0, T ], where

d2 = ln(
S

δ∗
t

K
) + (r − 1

2 |σ 0|2)(T − t)

|σ 0|√T − t
(2.3.54)

and N(·) is again the Gaussian distribution function.

2.3.6 European Options

We now focus on pricing a European call option with maturity T ∈ [0,∞) and strike
K ∈ �+ on a market index, which is again interpreted as the GOP. Invoking the real
world pricing formula (1.3.19), and recalling the previously obtained binaries, we
obtain the price of the European call option

cT ,K(t) = S
δ∗
t E

(
(S

δ∗
T − K)+

S
δ∗
T

∣∣∣∣ At

)

= S
δ∗
t E

(
1{Sδ∗

T ≥K}
S

δ∗
T − K

S
δ∗
T

∣∣∣∣At

)

= AT,K(t) − BT,K(t) (2.3.55)

for all t ∈ [0, T ]. Combining (2.3.47) and (2.3.54) gives

cT ,K(t) = S
δ∗
t N(d1) − K exp

{−r(T − t)
}
N(d2) (2.3.56)

for all t ∈ [0, T ], where d1 and d2 are given by (2.3.48) and (2.3.54), respectively.
The above explicit formula corresponds to the original pricing formula for a Eu-

ropean call on a stock under the BSM, as given in Black and Scholes (1973). Simi-
larly, the price of a European put option is given by

pT,K(t) = K exp
{−r(T − t)

}
N(−d2) − S

δ∗
t N(−d1),

for all t ∈ [0, T ].

2.3.7 Rebates

In this subsection, we consider the valuation of a rebate written on a market index,
which is again interpreted as the GOP. This claim pays one unit of the domestic
currency as soon as the index hits a certain level, assuming this occurs before a con-
tracted expiry date T > 0. Following Hulley and Platen (2008), the trigger level for
the rebate is a deterministic barrier Zt := z exp{rt}, for some z > 0. We mention the
fact that the deterministic barrier grows at the risk-free rate, which is economically
attractive, as it makes the price of the rebate dependent on the performance of the
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index relative to that of the savings account. We make use of the following stopping
times

σz,t := inf
{
u > 0: S

δ∗
t+u = Zt+u

}
(2.3.57)

and

τz := inf{t > 0: Yt = z}, (2.3.58)

where Y = {Yt , t ≥ 0} satisfies

Yt = x exp

{
1

2

∣∣σ 0
∣∣2

t + ∣∣σ 0
∣∣Ŵ 0

t

}
(2.3.59)

and x := exp{−rt}Sδ∗
t . Furthermore, we introduce the auxiliary process X =

{Xt, t ≥ 0}, where

Xt = νt + Ŵ 0
t , (2.3.60)

and ν = 1
2 |σ 0|. This means X is a Brownian motion with drift. Additionally, we

define

Ta := inf{t > 0: Xt = a}. (2.3.61)

It is easily seen that we have the following equality in distribution

σz,t
d= τz

d= Tz̃ (2.3.62)

under P , where z̃ := ln( z
x
) 1
|σ 0| .

First, we consider the valuation of a perpetual rebate, for which T = ∞. It fol-
lows by applying real world pricing that

R∞,z(t) = S
δ∗
t E

(
1

S
δ∗
t+σz,t

∣∣∣∣At

)

= S
δ∗
t

Zt

E
(
exp{−rσz,t }

∣∣At

)

= S
δ∗
t

Zt

E
(
exp{−rτz}

∣∣At

)
.

Making use of the known moment generating function of Tz̃, see Proposition 2.1.8,
we get

E
(
exp{−rTz̃}

∣∣At

) =
(

z

x

)1/2

exp

{
−

∣∣∣∣ln
(

z

x

)∣∣∣∣
√

2r + (
|σ 0|

2 )2

|σ 0|
}

(2.3.63)

and hence

R∞,z(t) =
(

S
δ∗
t

Zt

) 1
2

exp

{
−∣∣ln(Zt ) − ln

(
S

δ∗
t

)∣∣
√

2r + (
|σ 0|

2 )2

|σ 0|
}
. (2.3.64)

Now we turn our attention to the rebate with finite maturity T < ∞. Using the real
world pricing formula (1.3.19) we obtain
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RT,z(t) = S
δ∗
t E

(
1t+σz,t≤T

S
δ∗
t+σz,t

∣∣∣∣ At

)

= S
δ∗
t

Zt

E
(
1σz,t≤T −t exp{−rσz,t }

∣∣At

)

= S
δ∗
t

Zt

E
(
1Tz̃≤T −t exp{−rTz̃}

∣∣At

)

= S
δ∗
t

Zt

∫ T −t

0
exp{−ru} |z̃|√

2πu3/2
exp

{
− (z̃ − νu)2

2u

}
du,

where the last equality employs the distribution of Tz̃. Using the change of variables
l := u−1/2, we obtain

∫ T −t

0

exp{−ru − (z̃−νu)2

2u
}

u3/2
du

= 2
∫ ∞

(T −t)−1/2
exp

{
− (z̃)2

2
l2 −

(
r + ν2

2

)
l−2

}
dl

= 2
exp{−2

√
bc}√π(erfc(a

√
b −

√
c

a
) + exp{4√

bc}erfc(a
√

b +
√

c
a

))

4
√

b
,

(2.3.65)

where a := (T − t)−1/2, b := (z̃)2

2 and c := (r + ν2

2 ) and c is assumed to be positive.
Furthermore, erfc denotes the complement of the error function erf , i.e. erfc(z) =
1 − erf (z), where erf (z) = 2

π

∫ z

0 exp{−t2}dt . Finally, we remark that (2.3.65) can
also be easily confirmed using Mathematica.

2.3.8 Barrier Options

In this subsection we consider a barrier option on a market index, the GOP or NP.
As in the previous subsection, the payoff of this contingent claim is determined by
whether or not the index hits a certain level prior to its maturity T > 0. In particular,
we consider a European call with strike price K > 0, that is knocked out if the index
breaches the same deterministic barrier Z as in the previous subsection, sometime
before expiry.

Using the real world pricing formula and the notation introduced in the previous
subsection, we obtain the following price for this claim

Cuo
T,K,z(t) = S

δ∗
t E

(
1t+σz,t>T

(S
δ∗
T − K)+

S
δ∗
T

∣∣∣∣At

)

= S
δ∗
t E

(
1σz,t>T −t

(
1 − K

S
δ∗
T

)+ ∣∣∣∣ At

)
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= S
δ∗
t E

(
1τz>T −t

(
1 − K exp{−rT }

YT −t

)+ ∣∣∣∣At

)

= S
δ∗
t E

(
1Tz̃>T −t

(
1 − k

x exp{σXT −t }
)+ ∣∣∣∣At

)
(2.3.66)

where, as in the previous subsection, ν := 1
2 |σ 0|, x := S

δ∗
t exp{−rt}, k := K ×

exp{−rT }, z̃ := ln( z
x
) 1
|σ 0| , σ := |σ 0| and X = {Xt, t ≥ 0}, where Xt is given by

(2.3.60) and Ta denotes the first time the process X hits the level a. As X is a Brow-
nian motion with drift and Ta denotes the associated first hitting time of the level a,
we can apply Corollary 2.1.10 to obtain the price of the above Barrier option. We
remark that an alternative derivation of this formula, based on Girsanov’s theorem
and the Bayes’ rule, is presented in Musiela and Rutkowski (2005).

Following Hulley and Platen (2008), we find it convenient to distinguish the fol-
lowing two cases: firstly S

δ∗
t ≤ Zt ⇔ x ≤ z, in which case we deal with an up-and-

out call and S
δ∗
t ≥ Zt ⇔ x ≥ z, in which case we deal with a down-and-out call.

Regarding the up-and-out call, we remark that the Brownian motion with drift X

started at 0 killed at z̃ lives on the domain (−∞, z̃). Finally, setting a := ln( k
x
) 1
|σ 0| ,

we obtain from (1.3.19) the following pricing formula for an up-and-out call option:

Cuo
T,K,z(t) = S

δ∗
t

∫ z̃

a

(
1 − k

x exp{σy}
)

q̃z̃(T − t,0, y)m(y)dy

= S
δ∗
t

∫ z̃

a

(
1 − k

x exp{σy}
)

1√
2π(T − t)

exp

{
νy − ν2(T − t)

2

}

×
(

exp

{
− y2

2(T − t)

}
− exp

{
− (y − 2z̃)2

2(T − t)

})
dy (2.3.67)

using the fact that the speed measure of a Brownian motion with drift is given by
m(y) = 2 exp{2νy}, see Borodin and Salminen (2002). Consequently, to compute
the price of a barrier option, we need to compute four integrals: firstly, we calculate

I1 = S
δ∗
t

∫ z̃

a

1√
2π(T − t)

exp

{
νy − ν2(T − t)

2
− y2

2(T − t)

}
dy

= S
δ∗
t

(
N

(
z̃ − ν(T − t)√

T − t

)
− N

(
a − ν(T − t)√

T − t

))
. (2.3.68)

The second integral is given by

I2 = −S
δ∗
t

∫ z̃

a

1√
2π(T − t)

exp

{
νy − ν2(T − t)

2
− (y − 2z̃)2

2(T − t)

}
dy

= −S
δ∗
t exp{2z̃ν}

(
N

(−z̃ − ν(T − t)√
T − t

)
− N

(
a − 2z̃ − ν(T − t)√

T − t

))

= −Zt

(
N

(−z̃ − ν(T − t)√
T − t

)
− N

(
a − 2z̃ − ν(T − t)√

T − t

))
, (2.3.69)
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which is obtained by completing the square. Next the third integral can be computed
as follows:

I3 = −S
δ∗
t

k

x

∫ z̃

a

exp{y(ν − σ) − ν2(T −t)
2 − y2

2(T −t)
}√

2π(T − t)
dy

= −S
δ∗
t

k

x
exp

{
σ 2(T − t)

2
− νσ(T − t)

}(
N

(
z̃ − (ν − σ)(T − t)√

T − t

)

− N

(
a − (ν − σ)(T − t)√

T − t

))

= −K exp
{−r(T − t)

}(
N

(
z̃ − (ν − σ)(T − t)√

T − t

)
(2.3.70)

− N

(
a − (ν − σ)(T − t)√

T − t

))
, (2.3.71)

where we also completed the square. Finally, the fourth integral is given by

I4 = S
δ∗
t

k

x

∫ z̃

a

1√
2π(T − t)

exp

(
y(ν − σ) − ν2(T − t)

2
− (y − 2z̃)2

2(T − t)

)
dy

= S
δ∗
t

k

x
exp

(
2z̃(ν − σ) − νσ(T − t) + σ 2(T − t)

2

)

×
(

N

(−z̃ − (ν − σ)(T − t)√
T − t

)
− N

(
a − 2z̃ − (ν − σ)(T − t)√

T − t

))

= S
δ∗
t

k

z

(
N

(−z̃ − (ν − σ)(T − t)√
T − t

)
− N

(
a − 2z̃ − (ν − σ)(T − t)√

T − t

))
.

(2.3.72)

Obviously, the price of the up-and-out call is given by the sum of the four terms in
(2.3.68), (2.3.69), (2.3.71), and (2.3.72). In summary, this yields the explicit formula

Cuo
T,K,z

(
t, S

δ∗
t

) = I1 + I2 + I3 + I4. (2.3.73)

We now turn our attention to the down-and-out call, i.e. the case St ≥ Zt ⇔ x ≥ z.
As for the up-and-out call, we remark that the Brownian motion with drift started at
0 killed at z̃ lives on the domain (z̃,∞). Recalling that a = ln( k

x
) 1
|σ 0| , we obtain the

following pricing formula for a down-and-out call option from (1.3.19),

Cdo
T,K,z(t) = S

δ∗
t

∫ ∞

z̃∨a

(
1 − k

x exp{σy}
)

q̃z̃(T − t,0, y)m(y)dy

= S
δ∗
t

∫ ∞

z̃∨a

(
1 − k

x exp{σy}
)

1√
2π(T − t)

exp

{
νy − ν2(T − t)

2

}

×
(

exp

{
− y2

2(T − t)

}
− exp

{
− (y − 2z̃)2

2(T − t)

})
dy. (2.3.74)

As for the up-and-out call, the pricing of the down-and-out call entails the compu-
tation of the following four integrals
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Ī1 = S
δ∗
t

∫ ∞

z̃∨a

exp{νy − ν2(T −t)
2 − y2

2(T −t)
}√

2π(T − t)
dy

= S
δ∗
t N

(
− (z̃ ∨ a) + ν(T − t)√

T − t

)
. (2.3.75)

The second integral is given by

Ī2 = −S
δ∗
t

∫ ∞

z̃∨a

exp

{
νy − ν2(T − t)

2
− (y − 2z̃)2

2(T − t)

}
dy

= −S
δ∗
t exp{2z̃ν}N

(
− (z̃ ∨ a) + 2z̃ + ν(T − t)√

T − t

)

= −ZtN

(
− (z̃ ∨ a) + 2z̃ + ν(T − t)√

T − t

)
. (2.3.76)

The third integral is given by

Ī3 = −S
δ∗
t

k

x

∫ ∞

z̃∨a

exp

{
νy − σy − ν2(T − t)

2
− y2

2(T − t)

}
dy

= −S
δ∗
t

k

x
exp

{
σ 2(T − t)

2
− νσ(T − t)

}
N

(
− (z̃ ∨ a) + (ν − σ)(T − t)√

T − t

)

= −K exp
{−r(T − t)

}
N

(−(z̃ ∨ a) + (ν − σ)(T − t)√
T − t

)
, (2.3.77)

and the last integral is given by

Ī4 = S
δ∗
t

k

x
exp

{
2z̃(ν − σ) − νσ(T − t) + σ 2(T − t)

2

}

×
∫ ∞

z̃∨a

exp{− (y−(2z̃+(ν−σ)(T −t)))2

2(T −t)
}√

2π(T − t)
dy

= S
δ∗
t

k

x
exp

{
2z̃(ν − σ) − νσ(T − t) + σ 2(T − t)

2

}

× N

(−(z̃ ∨ a) + 2z̃ + (ν − σ)(T − t)√
T − t

)

= S
δ∗
t

k

z
N

(−(z̃ ∨ a) + 2z̃ + (ν − σ)(T − t)√
T − t

)
. (2.3.78)

It follows for the down-and-out call option the formula

Cdo
T,K,z

(
t, S

δ∗
t

) = Ī1 + Ī2 + Ī3 + Ī4.

By the same methodology one obtains also other barrier options.
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2.3.9 Lookback Options

In this subsection, we consider the valuation of a lookback option written on a mar-
ket index, which is again interpreted as the GOP. A standard lookback call option
pays

(
S

δ∗
T − mSδ∗

T

)+ = S
δ∗
T − mSδ∗

T ,

where mSδ∗
T = mint∈[0,T ] Sδ∗

t . We remark that lookback options are always exer-
cised. In Musiela and Rutkowski (2005), the price of a lookback option is derived
via a measure change. In this subsection, we proceed by directly integrating the
relevant probability density function derived in Sect. 2.1. For ease of presentation,
we consider the pricing of a call option at time t = 0, but consequently present the
formulas for the general case. The real world pricing formula (1.3.19) gives the
following price LC(0) for a lookback call option

LC(0) = S
δ∗
0 E

(
(S

δ∗
T − mSδ∗

T )+

S
δ∗
T

)
= S

δ∗
0 − S

δ∗
0 E

(
mSδ∗

T

S
δ∗
T

)
.

From (2.3.40),

mSδ∗
T = S

δ∗
0 min

t∈[0,T ] exp

{(
r + σ 2

2

)
t + σŴ 0

t

}
,

where σ := |σ 0| and hence

mSδ∗
T

S
δ∗
T

= exp

{
min

t∈[0,T ]

((
r + σ 2

2

)
(t − T ) + σ

(
Ŵ 0

t − Ŵ 0
T

))}
.

From the time reversibility of Brownian motion, see Chap. 15, we have the following
equality in distribution,

min
t∈[0,T ]

((
r + σ 2

2

)
(t − T ) + σ

(
Ŵ 0

t − Ŵ 0
T

)) d= min
τ∈[0,T ]

(
−

(
r + σ 2

2

)
τ + σŴ 0

τ

)
.

We use the notation

Xt = νt + Ŵ 0
t ,

where ν = − (r+ σ2
2 )

σ
, and recall from Sect. 2.1, that the probability density of

mint∈[0,T ] Xt satisfies

P
(
mX

T ∈ dy
) =

(
φ

(−y + νT√
T

)
1√
T

+ 2ν exp{2νy}N
(

y + νT√
T

)

+ exp{2νy} 1√
T

φ

(
y + νT√

T

))
dy.



2.3 Real World Pricing Under the Black-Scholes Model 55

Hence

E

(
mSδ∗

T

S
δ∗
T

)
= E

(
exp

{
σmX

T

})

=
∫ 0

−∞
exp{σy}φ

(−y + νT√
T

)
1√
T

dy

+
∫ 0

−∞
exp{σy}2ν exp{2νy}N

(
y + νT√

T

)
dy

+
∫ 0

−∞
exp{σy} exp{2νy} 1√

T
φ

(
y + νT√

T

)
dy.

We now compute these three integrals

I1 =
∫ 0

−∞
exp{σy}φ

(−y + νT√
T

)
1√
T

dy

=
∫ 0

−∞
exp{σy}

exp{− 1
2 (

y−νT√
T

)2}
√

2πT
dy

= exp

{
T

2

(
σ 2 + 2σν

)}∫ −(ν+σ)
√

T

−∞
exp{− z2

2 }√
2π
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= exp{−rT }N(−(ν + σ)
√

T
)

= exp{−rT }N(d − σ
√

T ),

where

d = (r + 1
2σ 2)

√
T

σ
. (2.3.79)

Regarding the second integral, we introduce

I2 =
∫ 0

−∞
exp{σy}2ν exp{2νy}N

(
y + νT√

T

)
dy.

Using integration by parts, we obtain
∫ 0

−∞
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= 2ν

(
N(ν

√
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2
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T
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2πT
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)
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(
N(ν

√
T ) − exp{−rT }N(−(ν + σ)

√
T
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= N(−d) + σ 2

2r
N(−d) − exp{−rT }N(d − σ

√
T )

− exp{−rT }σ 2

2r
N(d − σ

√
T ),
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where the quantity d is defined in (2.3.79). Finally, regarding the third integral, one
has

I3 =
∫ 0

−∞
exp{σy} exp{2νy} 1√

T
φ

(
y + νT√

T

)
dy

=
∫ 0

−∞
exp

{
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}exp{− 1
2T

(y + νT )2}√
2πT

dy

=
∫ 0

−∞
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2T
}√

2πT
exp

{
T

2

(
2νσ + σ 2)}dy

= exp{−rT }N(d − σ
√

T ).

Hence, we obtain

E
(
exp

{
σmX

T

})

= exp{−rT }N(d − σ
√

T ) + N(−d) + σ 2

2r
N(−d) − exp{−rT }N(d − σ

√
T )

− exp{−rT }σ
2

2r
N(d − σ

√
T ) + exp{−rT }N(d − σ

√
T )

= N(−d) + σ 2

2r
N(−d) − exp{−rT }σ

2

2r
N(d − σ

√
T )

+ exp{−rT }N(d − σ
√

T )

= 1 − N(d) + σ 2

2r
N(−d) − exp{−rT }σ

2

2r
N(d − σ

√
T )

+ exp{−rT }N(d − σ
√

T ).

The time 0 price of a lookback call option is then given by

LC(0) = S
δ∗
0

(
N(d) − σ 2

2r
N(−d) − exp{−rT }N(d − σ

√
T )

+ exp{−rT }σ
2

2r
N(d − σ

√
T )

)
.

We now recall for a general t < T the following result from Musiela and Rutkowski
(2005), see their Proposition 6.7.1.

Proposition 2.3.1 Assume that r > 0. Then the price at time t < T of a European
lookback call option equals

LC(t) = S
δ∗
t N

(
ln(S

δ∗
t /mSδ∗

t ) + r1(T − t)

σ
√

T − t

)

− mSδ∗
t N

( ln
( S

δ∗
t

mSδ∗
t

) + r2(T − t)

σ
√

T − t

)
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− S
δ∗
t σ 2

2r
N

( ln
(mSδ∗

t

S
δ∗
t

) − r1(T − t)

σ
√

T − t

)

+ exp
{−r(T − t)

}S
δ∗
t σ 2

2r

(
mSδ∗

t

S
δ∗
t

)2rσ−2

N

( ln
(mSδ∗

t

S
δ∗
t

) + r2(T − t)

σ
√

T

)
,

where r1,2 = r ± 1
2σ 2.

The payoff of a lookback put option is given by(
MSδ∗

T − S
δ∗
T

)+ = MSδ∗
T − S

δ∗
T ,

where M
δ∗
T = maxt∈[0,T ] Sδ∗

t .

Proposition 2.3.2 Assume that r > 0. The price of a European lookback put option
at time t < T equals

LP(t) = −S
δ∗
t N

(
−

ln
( S

δ∗
t

MSδ∗
t

) + r1(T − t)

σ
√

T − t

)

+ MSδ∗
t exp

{−r(T − t)
}
N

(
−

ln
( S

δ∗
t

MSδ∗
t

) + r2(T − t)

σ
√

T − t

)

+ S
δ∗
t σ 2

2r
N

( ln
( S

δ∗
t

MSδ∗
t

) + r1(T − t)

σ
√

T − t

)

− exp
{−r(T − t)

}S
δ∗
t σ 2

2r

(
MSδ∗

t

S
δ∗
t

)2rσ−2

N

( ln
( S

δ∗
t

MSδ∗
t

) − r2(T − t)

σ
√

T − t

)
,

where again r1,2 = r ± 1
2σ 2.

2.3.10 Asian Options

In this subsection, we consider Asian options on a market index, the GOP. Unlike
the derivatives presented in the previous subsections, the pay-off of Asian options is
based on average values of the market index. In particular, the pay-off of an Asian
call option is given by (

1

T

∫ T

0
Sδ∗

u du − K

)+

and (
K − 1

T

∫ T

0
Sδ∗

u du

)+
.
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We point out that closed-form solutions, as presented in the preceding subsections,
are not available for Asian options. However, using the explicitly derived joint den-
sity of (

∫ T

0 S
δ∗
u du,S

δ∗
T ) from Sect. 2.1, we can obtain an integral representation for

the price. In particular, using the notation

P

(∫ t

0
exp

{
σŴ 0

s − pσ 2s/2
}
ds ∈ du, Ŵ 0

t ∈ dy

)

= σ

2
exp

{−pσy/2 − p2σ 2t/8
}

exp

{
−2

1 + exp{σy}
σ 2u

}

× θ

(
4 exp{σy/2}

σ 2u
,
σ 2t

4

)
du

u
dy

= f (y,u)dy du,

where p = −(1 + 2r

|σ 0|2 ) and σ := |σ 0|, we obtain from the real-world pricing for-
mula (1.3.19) the following representation for the price of a call option at time 0,
struck at K with maturity T ,

CA
T,K(0) = S

δ∗
0 E

((∫ T
0 S

δ∗
u du

T
− K

)+

S
δ∗
T

)

= S
δ∗
0

T

∫ ∞

0

∫ ∞

0

(u − T K

S
δ∗
0

)+

exp{−pσ 2T/2 + σy}f (y,u)dy du. (2.3.80)

The above expression needs to be computed numerically, using e.g. the techniques
to be presented in Chap. 12. Finally, we alert the reader to a quasi-analytical re-
sult shown in Geman and Yor (1993). They computed the Laplace transform with
respect to time to maturity. We point out that the proof uses a connection between
geometric Brownian motion and time-changed Bessel processes, also referred to as
Lampert’s Theorem, see Theorem 6.2.4.1 in Jeanblanc et al. (2009). The following
result appeared as Proposition 6.8.1 in Musiela and Rutkowski (2005) and is based
on Eq. (3.10) in Geman and Yor (1993).

Proposition 2.3.3 The price of an Asian call option admits the representation

CA
T,K(t) = 4 exp{−r(T − t)}Sδ∗

t

σ 2T
Cw(h,q)

where

w = 2r

σ 2
− 1, h = σ 2

4
(T − t), q = σ 2

4S
δ∗
t

(
KT −

∫ t

0
Sδ∗

u du

)
.

Moreover, the Laplace transform of Cw(h,q) with respect to h is given by the for-
mula ∫ ∞

0
exp{−λh}Cw(h,q) dh =

∫ 1
2q

0

(
d exp{−x}xγ−2(1 − 2qx)γ+1)dx,

where μ = √
2λ + w2, γ = 1

2 (μ − w), and d = (λ(λ − 2 − 2ν)Γ (γ − 1))−1.
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We remark that the techniques to be presented in Sect. 13.5 can be used to invert
the above Laplace transform.

2.3.11 Australian Options

Australian options are closely related to Asian options. In this case the pay-off de-
pends on the quotient of the average of the market index over a specific time inter-

val and the market index at maturity, i.e. the quotient
∫ T

0 S
δ∗
u du

S
δ∗
T

, see Handley (2000),

Handley (2003), Moreno and Navas (2008), and Ewald et al. (2011). In the BSM
framework, a connection between Australian and Asian options is known to exist,
see Ewald et al. (2011). The real-world pricing formula (1.3.19) yields the following
expression for an Australian call option on the market index:

CAU
T,K(t) = S

δ∗
t E

((∫ T

0 S
δ∗
u du

T S
δ∗
T

− K

)+ 1

S
δ∗
T

∣∣∣∣At

)
.

We now follow Ewald et al. (2011),

CAU
T,K(t) = S

δ∗
t E

(
(

∫ T
0 S

δ∗
u du

T
− KS

δ∗
T )+

(S
δ∗
T )2

∣∣∣∣At

)
.

Next we introduce the same auxiliary measure as for the bond-or-nothing binaries,
i.e. we recall the Radon-Nikodym derivative process from (2.3.50),

Λ|σ 0|(t) = Ŝ0
t

Ŝ0
0

= exp

{
− t

2

∣∣σ 0
∣∣2 − ∣∣σ 0

∣∣Ŵ 0
t

}
,

and define the measure P|σ 0| via

dP|σ 0|
dP

= Λ|σ 0|(T ),

by setting

P|σ 0|(A) = E
(
Λ|σ 0|(T )1A

) = E|σ 0|(1A)

for A ∈ AT . We use E|σ 0| to denote the expectation with respect to P|σ 0|. By Gir-

sanov’s theorem, W |σ 0| = {W |σ 0|
t , t ∈ [0, T ]}, where

W
|σ 0|
t = Ŵ 0

t + ∣∣σ 0
∣∣t

is a standard Brownian motion on the filtered probability space (Ω,A,A,P|σ 0|).
Hence

CAU
T,K(t) = exp

{−r(T − t)
}
E|σ 0|

((∫ T
0 S

δ∗
u du

T
− KS

δ∗
T

)+

S
δ∗
T

∣∣∣∣At

)
. (2.3.81)
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We remark that under P|σ 0|, the dynamics of Sδ∗ are given by

S
δ∗
t = S

δ∗
0 exp

{(
r − ∣∣σ 0

∣∣2)
t + t

2

∣∣σ 0
∣∣2 + ∣∣σ 0

∣∣W |σ 0|
t

}
.

Hence, comparing (2.3.81) to (2.3.80), we point out that computing (2.3.81)
amounts to pricing an Asian option with variable strike, but at a different interest
rate, namely r − |σ 0|2. Clearly, this relation required the candidate measure P|σ 0|
to be equivalent to P . This does not hold for all models considered in this book,
see e.g. Chap. 3. However, assuming suitable integrability conditions are satisfied,
we can express the price of an Australian option as an integral over the relevant
probability density function and use the techniques from Chap. 12.

2.3.12 Exchange Options

In this subsection, we price exchange options on the market index, i.e. the option
to exchange the market index denominated in one currency for the market index
denominated in another currency. This is our first example of a derivative whose
payoff is a functional of two assets. We point out that in the classical literature, see
e.g. Margrabe (1978), such contracts are often priced by computing prices under an
appropriately chosen probability measure. This is not the case under the benchmark
approach, where we only need to compute prices under one measure, the real world
probability measure. In particular, we define the time t exchange price as

X
i,j
t = S

δ∗,i
t

S
δ∗,j
t

,

where S
δ∗,i
t denotes the GOP denominated in currency i, and S

δ∗,j
t denotes the GOP

denominated in currency j . We assume that the dynamics of the GOP in currency k

are given by

dS
δ∗,k
t = S

δ∗,k
t

((
rk + ∣∣σk

∣∣2)
dt + ∣∣σk

∣∣dŴ k
t

)
, (2.3.82)

where k ∈ {i, j} and d[Ŵ i, Ŵ j ]t = ρ dt . The joint transition density of Sδ∗,i and
Sδ∗,j was derived in Sect. 2.2. For deriving the following result, we employ a change
of variables. This reduces the computation to one which involves the standard Gaus-
sian bivariate density. As with European call options on the GOP, we find it conve-
nient to firstly price asset binary options on an exchange price, and subsequently
bond binary options on an exchange price. We use the notation Ai

T,K(t) for an asset
binary option on an exchange price in the ith currency, which, based on the real
world pricing formula, satisfies

Ai
T,K(t) = S

δ∗,i
t E

(
S

δ∗,i
T

S
δ∗,j
T

1

S
δ∗,i
T

1
S
δ∗,i
T

S
δ∗,j
T

≥K

∣∣∣∣At

)
.
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Using q(t, z
j
t , z

i
t , T , zi

T , z
j
T ) to denote the joint density of (S

δ∗,j
t , S

δ∗,i
t ) to

(S
δ∗,j
T , S

δ∗,i
T ), we have

Ai
T,K(t) = E

(
S

δ∗,i
t

S
δ∗,i
T

X
i,j
T 1

X
i,j
T ≥K

∣∣∣∣At

)

= X
i,j
t E

(
S

δ∗,j
t

S
δ∗,j
T

1
S

δ∗,j
T ≤S

δ∗,i
T /K

∣∣∣∣At

)

= X
i,j
t

∫ ∞

0

∫ zi
T
K

0

zi
t

zi
T

q
(
t, z

j
t , z

i
t , T , z

j
T , zi

T

)
dz

j
T dzi

T .

We now use a change of variables to perform computations in terms of the bivariate
Gaussian density

uk
T =

ln(
zk
T

zk
t

) − (rk + 1
2 |σk|2)(T − t)

|σk|√T − t
, k ∈ {i, j}.

Hence we obtain

Ai
T,K(t) = X

i,j
t

∫ ∞

−∞

∫ d̄1(X
i,j
t )

−∞
z
j
t

z
j
T

p
(
u

j
T ,ui

T , ρ
)
du

j
T dui

T ,

where

d̄1(x) = ln( x
K

) − (rj − ri + 1
2 (|σ j |2 − |σ i |2))(T − t)

|σ j |√T − t
+ ui

T

|σ i |
|σ j | ,

and

p(z1, z2, ρ) = 1

2π
√

1 − ρ2
exp

{
− (z2

1 − 2ρz1z2 + z2
2)

2(1 − ρ2)

}

denotes the density of two correlated standard Gaussian random variables. We now
set

ū
j
T = u

j
T + ∣∣σ j

∣∣√T − t,

ūi
T = ui

T + ρ
∣∣σ j

∣∣√T − t,

which allows us to write

Ai
T,K(t) = X

i,j
t exp

{−rj (T − t)
}∫ ∞

−∞

∫ d̃1(X
i,j
t )

−∞
p
(
ū

j
T , ūi

T , ρ
)
dū

j
T dūi

T , (2.3.83)

where

d̃1(x) = ln( x
K

) + (ri − rj + 1
2 (|σ j |2 − 2ρ|σ j ||σ i | + |σ i |2))(T − t)

|σ j |√T − t
+ ūi

T

|σ i |
|σ j |

= d̂
(
X

i,j
t

) + ūi
T

|σ i |
|σ j | .
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The expression in equation (2.3.83) can be interpreted as the probability that a stan-
dard normal random variable Z1 is less than a constant d̂1(X

i,j
t ) plus another stan-

dard normal random variable Z2 multiplied by |σ i |
|σ j | , i.e.

P

(
Z1 < d̂1

(
X

i,j
t

) + |σ i |
|σ j |Z

2
)

.

But since Z1 − |σ i |
|σ j |Z

2 is normal with mean zero and variance
σ 2

i,j

|σ j |2 , we obtain the
following result:

Ai
T,K(t) = X

i,j
t exp

{−rj (T − t)
}
N

(
d1

(
X

i,j
t

))
,

where

d1
(
X

i,j
t

) = ln(
X

i,j
t

K
) + (ri − rj + 1

2σ 2
i,j )(T − t)

σi,j

√
T − t

,

σ 2
i,j = ∣∣σ i

∣∣2 − 2ρ
∣∣σ i

∣∣∣∣σ j
∣∣ + ∣∣σ j

∣∣2
.

Using similar calculations, we obtain the following result for a binary bond option
on the exchange price,

Bi
T,K(t) = E

(
S

δ∗,i
t

S
δ∗,i
T

1
X

i,j
T >K

∣∣∣∣At

)
= exp

{−ri(T − t)
}
N

(
d2

(
X

i,j
t
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,

where

d2
(
X

i,j
t

) = ln(
X

i,j
t

K
) + (ri − rj − 1

2σ 2
i,j )(T − t)

σi,j

√
T − t

.

Finally, we arrive at prices for call and put options in the ith currency on an exchange
price at time t with expiry T and strike price K ,

ci
T ,K(t) = X

i,j
t exp

{−rj (T − t)
}
N

(
d1

(
X

i,j
t

))
− K exp

{−ri(T − t)
}
N

(
d2

(
X

i,j
t

))
,

pi
T ,K(t) = −X

i,j
t exp

{−rj (T − t)
}
N

(−d1
(
X

i,j
t

))
+ K exp

{−ri(T − t)
}
N

(−d2
(
X

i,j
t

))
.

2.3.13 American Options

The derivative contracts discussed until now were all European style options, i.e.
could only be exercised at maturity. We now briefly discuss American style options,
which allow the holder to exercise the option at any time before maturity. This addi-
tional feature makes the pricing of American options more difficult than the pricing
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of European options. For more information on the mathematics of American option
pricing, we refer the reader to McKean (1965), van Moerbeke (1976), Bensoussan
(1984), Karatzas (1988), Karatzas (1989), and to Myneni (1992) for a survey. We
point out that closed-form solutions similar to the ones derived in the preceding
subsections are not available for American options, except for the perpetual case,
see for example the discussion in Musiela and Rutkowski (2005). However, we also
refer the reader to Zhu (2006).

Consequently, for results that provide almost closed-form solutions numerical
methods have to be employed to price American options. A popular method involves
restricting the dates at which the option can be exercised to a finite set, i.e. turning
the American option into a Bermudan option. Using dynamic programming, one can
compute prices via backward induction. This in turn can be done via Monte Carlo
simulation, see e.g. Broadie and Glasserman (1997). In this context, the transition
densities collected in this book are of importance, as they are used to perform the
simulation step. Furthermore, the Monte Carlo technique is of course general, one
only needs to have access to the relevant transition densities.

There exist more explicit formulas for derivatives under the BSM. It is mainly
its explicitly known transition density and the well researched area of functionals
of Brownian motions that give access to such a rich set of pricing formulas for
the standard market model. It is unfortunate that the BSM provides only a poor
reflection of the real market dynamics, in particular, over longer periods of time
and for extreme market movements. Therefore, it is essential to find more realistic
tractable market models with a similar set of explicit formulas.
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