
Chapter 17
Detecting Strict Local Martingales

In Sect. 3.3, we presented two models for the GOP, namely the MMM and the TCEV
model. For both models, we established the property that a risk-neutral measure
does not exist, because the Radon-Nikodym derivative of the putative risk-neutral
measure is a strict local martingale. Figure 3.3.6 seems to suggest that this is a
plausible feature of our financial market, in particular, when analyzing its history
over long periods of time and taking into account that investors request extra long
term growth in risky securities. We established the local martingale property by
making use of the explicitly available transition density of squared Bessel processes.
This highlights the usefulness of squared Bessel processes in finance, they produce
both tractability but also realistic models.

In this chapter, we propose another class of processes for modeling the GOP.
For this class one can easily establish whether the processes allow for a risk-neutral
measure or not. An argument due to Sin, see Sin (1998), allows us to determine
if a particular model for the GOP admits a risk-neutral measure by studying the
boundary behavior of a one-dimensional diffusion. The boundary behavior of one-
dimensional diffusions is well understood, we refer the reader e.g. to our Chap. 16.
As demonstrated in Chap. 16, in particular in Table 16.2.1, it simply amounts to con-
firming if certain integrals explode or not. Hence for the class of processes studied
in this chapter, we present simple tools that allow us to answer the crucial ques-
tion whether a particular local martingale is a martingale or a strict local martin-
gale.

We remark that the question whether a local martingale is a martingale or a strict
local martingale, has received much attention in the literature. In Kotani (2006), Hul-
ley and Platen (2011), necessary and sufficient conditions have been presented for
one-dimensional regular strong Markov continuous local martingales. Furthermore,
in Kallsen and Muhle-Karbe (2010), Kallsen and Shiryaev (2002), and Mayerhofer
et al. (2011a) an exponential semimartingale framework with focus on affine pro-
cesses is considered. For further background, the reader is referred to Mijatovic and
Urusov (2012). At the end of Sect. 17.1, we will present one of the main results
from Mijatovic and Urusov (2012).
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17.1 Sin’s Argument

In this section, we work on a filtered probability space (Ω,A,A,P ) carrying two
Brownian motions W 1 and W 2. We use the following dynamics for the GOP,

dS
δ∗
t = S

δ∗
t

(
(rt + Vt) dt + ρ

√
Vt dW 1

t + ρ⊥√
Vt dW 2

t

)
,

and

dVt = κ(θ − Vt) dt + σV
p
t dW 1

t , (17.1.1)

where S
δ∗
0 > 0 and V0 > 0. Here r = {rt , t ≥ 0} is an adapted short-rate process,

ρ ∈ [−1,1] denotes the correlation between the GOP and the variance process and
ρ⊥ = √

1 − ρ2. The parameters κ , θ , σ , and p are positive. We remark that this
model is based on Andersen and Piterbarg (2007). For p = 1

2 , we obtain the Heston
model, see also Sect. 6.3, for b = 1 we recover a GARCH model, and for b = 3

2
we recover a 3/2-model with linear drift. Next we define the savings account Bt =
exp{∫ t

0 rs ds}, for t ≥ 0, and the benchmarked savings account B̂t = Bt

S
δ∗
t

, t ≥ 0,

which satisfies the SDE

dB̂t = −B̂t

(
ρ
√

Vt dW 1
t + ρ⊥√

Vt dW 2
t

)
, (17.1.2)

for t ≥ 0. We recall the following properties of the process V from Andersen and
Piterbarg (2007), see Proposition 2.1.

Proposition 17.1.1 For the process V given by Eq. (17.1.1), the following proper-
ties hold:

• 0 is always an attainable boundary for 0 < p < 1
2 ;

• 0 is an attainable boundary for p = 1
2 , if 2κθ < σ 2;

• 0 is an unattainable boundary for p > 1
2 ;

• ∞ is an unattainable boundary for p > 0.

Proof The proof is easily completed using Table 16.2.1 in Chap. 16. Recall that the
speed measure is given by

m(dx) = m(x)dx

and the scale function by

s(x) =
∫ x

c

s′(y) dy,

where c ∈ [0,∞). Now,

m(x) = 2

a2(x)s′(x)
and s′(x) = exp

(
−

∫ x

c

2b(y)

a2(y)
dy

)
,

for x ∈ [0,∞), where

a(x) = σxp and b(x) = κ(θ − x). �



17.1 Sin’s Argument 399

For the remainder of this section, we assume that p ≥ 1
2 and 2κθ ≥ σ 2, so that

V cannot reach 0. From Eq. (17.1.2), it is clear that B̂ is a local martingale. As
discussed in Sect. 3.3, if B̂ is a martingale, a risk-neutral probability measure exists.
If B̂ is a strict local martingale, a risk-neutral measure does not exist. The following
proposition identifies when B̂ is a martingale. The proof is based on Lemma 2.3 in
Andersen and Piterbarg (2007), which uses techniques from the proof of Lemma 4.2
in Sin (1998).

Lemma 17.1.2 Let B̂ and V be given by Eqs. (17.1.1) and (17.1.2). Denote by τ̃∞
the explosion time for Ṽ ,

τ̃∞ = lim
n→∞ τ̃n, τ̃n = inf{t : Ṽt ≥ n}, (17.1.3)

P -almost surely. Here the dynamics of Ṽ under P are given by

dṼt = (
κ(θ − Vt) − ρσ Ṽ

p+ 1
2

t

)
dt + σ Ṽ

p
t dWt . (17.1.4)

Then

E(B̂T ) = B̂0P(τ̃∞ > T ).

Furthermore, when p = 1
2 or p > 3

2 , then B̂ is a martingale. When 1
2 < p < 3

2 , B̂ is

a martingale for ρ ≥ 0 and a strict local martingale for ρ < 0. For p = 3
2 , B̂ is a

martingale for ρ ≥ −σ
2 and a strict local martingale for ρ < −σ

2 .

Proof We follow the technique of the proof of Lemma 2.3 in Andersen and Piterbarg
(2007) and compute

E(B̂T ) = B̂0E

(
exp

{
−1

2

∫ T

0
Vs ds − ρ

∫ T

0

√
Vs dW 1

s − ρ⊥
∫ T

0

√
Vs dW 2

s

})

= B̂0E

(
exp

{
−1

2

∫ T

0
Vs ds − ρ

∫ T

0

√
Vs dW 1

s

}

× E

(
exp

{
−ρ⊥

∫ T

0

√
Vs dW 2

s

} ∣∣∣∣ σ
{
W 1

t , t ≤ T
}))

= B̂0E

(
exp

{
−ρ

∫ T

0

√
Vs dW 1

s − ρ2

2

∫ T

0
Vs ds

})
.

Next, introduce a sequence of stopping times

τn := inf

{
t :

∫ t

0
Vs ds ≥ n

}

and define the stochastic Doléan exponential

ξt = exp

{
−ρ

∫ t

0

√
Vs dW 1

s − ρ2

2

∫ t

0
Vs ds

}
.

Clearly, ξ = {ξt , t ≥ 0} is a local martingale. We now define

ξ
(n)
t = ξt∧τn ,
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which is a martingale and use it to define the auxiliary measure,

P̃ n(A) = E
(
1Aξ

(n)
T

)
,

for A ∈ AT . We now use the argument in Lemma 4.2 in Sin (1998) and compute

E(ξT 1τ>T ) = E
(
ξ

(n)
T 1τn>T

)

= E
P̃n(1τn>T )

= EP (1τ̃n>T ),

where we recall that τ̃n is defined in (17.1.3) and Ṽ in (17.1.4). To justify the last
equality, we note that by the Girsanov theorem, see Sect. 15.8, we obtain that the
process

W
(n)
t = Wt + ρ

∫ t

0
1u≤τn

√
Vu du

is a Brownian motion under P̃ n and W and V satisfy

dWt = dW
(n)
t − ρ1t≤τn

√
Vt dt,

dVt = σV
p
t dW

(n)
t + (

κ(θ − Vt) − ρ1t≤τnσV
p+ 1

2
t

)
dt.

Hence the stopped process Ṽt∧τ̃n
has the same law under P as the stopped process

Vt∧τn under P̃ n. Now by Proposition 17.1.1, we have that V does not reach ∞
under P , hence

E(ξT ) = lim
n→∞E(ξT 1

¯τn>T )

= lim
n→∞E(1τ̃n>T )

= P(τ̃∞ > T ).

The exchange of the limit and the expectation operator is justified by the monotone
convergence theorem. This completes the proof of the first part of the result.

The second part follows immediately from Proposition 2.5 in Andersen and Piter-
barg (2007). We replace the ρ in the statement of Proposition 2.5 in Andersen and
Piterbarg (2007) by −ρ, as we consider the benchmarked savings account, which is
essentially the inverse of the process considered in Andersen and Piterbarg (2007),
and we compare Eq. (17.1.4) and Eq. (2.5) in Andersen and Piterbarg (2007). �

We have the following corollary to Lemma 17.1.2.

Corollary 17.1.3 For important special cases, we obtain the following result:

• under the Heston model, which corresponds to p = 1
2 , the process B̂ =

{B̂t , t ≥ 0} follows a martingale;
• under the 3

2 model with linear drift, which corresponds to the case p = 3
2 ,

B̂ = {B̂t , t ≥ 0} follows a martingale for ρ ≥ 0 and otherwise a strict local mar-
tingale;
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• under a continuous limit of a GARCH model, which corresponds to p = 1, B̂ =
{B̂t , t ≥ 0} follows a martingale for ρ ≥ 0, otherwise a strict local martingale.

For completeness, we present a general version of the result, which stems from
Mijatovic and Urusov (2012). Consider the state space J = (l, r), −∞ ≤ l < r ≤ ∞
and a J -valued diffusion Y = {Yt , t ≥ 0} on (Ω,A,A,P ) given by the SDE

dYt = μ(Yt ) dt + σ(Yt ) dWt , (17.1.5)

where Y0 ∈ J , W is a A-Brownian motion and μ,σ : J → � are Borel functions
satisfying the Engelbert-Schmidt conditions,

σ(x) �= 0 ∀x ∈ J ; 1

σ 2
,

μ

σ 2
∈ L1

loc(J ), (17.1.6)

where L1
loc(J ) denotes the class of locally integrable functions, i.e. mappings from

J to � that are integrable on compact subsets of J . The SDE (17.1.5) admits a
unique in law weak solution that possibly exits its state space J at the exit time ζ .
Following Mijatovic and Urusov (2012), we specify that if Y can exit its state space,
i.e. P(ζ < ∞) > 0, then Y stays at the boundary point of J at which it exits after
the time ζ , so the boundary is absorbing. We introduce the stochastic exponential

ξt = exp

{∫ t∧ζ

0
b(Yu) dWu − 1

2

∫ t∧ζ

0
b2(Yu) du

}
,

t ≥ 0, and set ξt := 0 for t ≥ ζ on the set {ζ < ∞,
∫ ζ

0 b2(Yu) du = ∞}. Also we
assume that

b2

σ 2
∈ L1

loc(J ). (17.1.7)

Remark 17.1.4 In order to connect this discussion to the results in Proposi-
tion 17.1.1 and Lemma 17.1.2, set Y = V and b(x) = −ρ

√
x.

We now consider an auxiliary J -valued diffusion Ỹ , where

dỸt = μ(Ỹt ) dt + b(Ỹt )σ (Ỹt ) dt + σ(Ỹt ) dWt .

Then Ỹ admits a unique weak solution that possibly exits its state space at ζ̃ . Before
we present Corollary 2.2 from Mijatovic and Urusov (2012), recall from Proposi-
tion 17.1.1 that V cannot reach infinity under P , and Lemma 17.1.2 states that B̂ is
a martingale if Ṽ cannot reach infinity under P , i.e. B̂ is martingale if the boundary
behavior of V and Ṽ coincides. Corollary 2.2 from Mijatovic and Urusov (2012)
extends this to the general case.

Corollary 17.1.5 Assume that Y does not exit its state space and assume that μ,σ

and b satisfy the assumptions (17.1.6) and (17.1.7). Then ξ is a martingale if and
only if Ỹ does not exit its state space.

For a more general result, see Theorem 2.1 in Mijatovic and Urusov (2012).
Finally, we recall an important remark from Mijatovic and Urusov (2012).
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Remark 17.1.6 The conditions in Lemma 17.1.2 (resp. Corollary 17.1.5) are neces-
sary and sufficient conditions for B̂ (resp. ξ ) to be a martingale on the time interval
(0,∞). Furthermore, they are necessary and sufficient conditions for B̂ (resp. ξ ) to
be a martingale on the time interval [0, T ] for any fixed T ∈ (0,∞).

Remark 17.1.6 can intuitively be explained as follows: the process B̂ (resp. ξ ) is a
time-homogeneous diffusion process, hence the process cannot loose its martingale
property over time, but would have to lose it immediately.

17.2 Multidimensional Extension

This section briefly illustrates how to extend the results from the previous section to
a multidimensional setting. Assume that the dynamics of the benchmarked savings
account are given by

dB̂t = −B̂t

d∑

k=1

√
V k

t

(
ρk dWk

t + (
ρk

)⊥
dWd+k

t

)
, (17.2.8)

where W = {W t = (W 1
t ,W 2

t , . . . ,W 2d
t ), t ≥ 0} is a vector Brownian motion and

dV k
t = κk

(
θk − V k

t

)
dt + σk

(
V k

t

)pk

dWk
t . (17.2.9)

Here V k
0 , κk , θk , σk , pk are positive parameters, −1 ≤ ρk ≤ 1, and

(
ρk

)⊥ =
√

1 − (
ρk

)2
.

Proposition 17.2.1 Let B̂ and V k , for k = 1, . . . , d , be given by Eqs. (17.2.8) and
(17.2.9). Denote by τ̃ k∞ the explosion time for Ṽ k ,

τ̃ k∞ = lim
n→∞ τ̃ k

n , τ̃ k
n = inf

{
t : Ṽ k

t ≥ n
}
,

where the dynamics of Ṽ k are given by

dṼ k
t = (

κk
(
θk − Ṽ k

t

) − ρkσ k
(
Ṽ k

t

)pk+ 1
2
)
dt + σk

(
Ṽ k

t

)pk

dWk
t . (17.2.10)

Then

E(B̂T ) = B̂0

d∏

k=1

P
(
τ̃ k∞ > T

)
.

Furthermore, B̂ is a martingale if and only if for all k ∈ {1, . . . , d}, one of the fol-
lowing conditions holds:

• pk = 1
2 or pk > 3

2 ;
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• 1
2 < pk < 3

2 and ρk ≥ 0;
• pk = 3

2 and ρk ≥ −σk

2 .

As in Sect. 17.1, the conditions presented in Proposition 17.2.1 are necessary
and sufficient for B̂ to be a martingale on the time interval [0, T ] for any fixed
T ∈ (0,∞).
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