
Chapter 13
Computational Tools

It is the aim of this chapter to introduce computational tools, which can be used
to implement functionals presented in this book. In particular, we focus on the non-
central chi-squared distribution, which appeared in the context of the MMM and the
TCEV model, and the non-central beta distribution, which appeared in the context
of pricing exchange options. Lastly, we discuss the inversion of Laplace transforms,
which can be used to recover transition densities from the Laplace transforms.

13.1 Some Identities Related to the Non-central Chi-Squared
Distribution

The non-central chi-squared distribution featured prominently when pricing Euro-
pean call and put options under the MMM and TCEV model, see Sect. 3.3. In the
current section, we recall the distribution, and in Sect. 13.2 we will present an algo-
rithm showing how to implement the distribution, where we follow ideas presented
in Hulley (2009).

First, we recall the link between the squared Bessel process and the non-central
chi-squared distribution, which is given by
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where X = {Xt, t ≥ 0} denotes a squared Bessel process of dimension δ, and χ2
δ (λ)

denotes a non-central chi-squared random variable with δ degrees of freedom and
non-centrality parameter λ > 0. We recall from Lemma 8.2.2 that the non-central
χ2-distribution with δ > 0 degrees of freedom and non-centrality parameter λ > 0
has the density function
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Here Iν(x) = ∑
j≥0

1
j !Γ (j+ν+1)

( x
2 )2j+ν denotes the modified Bessel function of the

first kind of order ν > −1. The following equality is given in Hulley (2009), where
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for x ∈ (0,∞) and λ > 0, since the modified Bessel function of the first kind sat-
isfies I1 = I−1, see e.g. Abramowitz and Stegun (1972), Eq. (9.6.6). Clearly, this
equality entails the probability density function, of a non-central chi-squared ran-
dom variable of zero degrees of freedom, p(x,0, λ). Such a random variable is
comprised of a discrete part, as it places positive mass at zero, and a continuous part
assuming values in the interval (0,∞). We return to this issue when discussing this
type of probability distributions below. From Eq. (13.1.2), we immediately obtain
the following formula, which is employed frequently in the context of the MMM,
see Sect. 3.3:
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for an appropriately integrable function g(·). Next, we introduce the cumulative
distribution function of a non-central chi-squared random variable. The following
equality, see Eq. (29.3) in Johnson et al. (1995), introduces the non-central chi-
squared distribution as a weighted average of central chi-squared distributions, the
weights being Poisson weights:
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for all x ∈ (0,∞), δ > 0 and λ > 0, where χ2
δ denotes the central chi-squared ran-

dom variable. The distribution of the central chi-squared random variable admits
the following presentation in terms of the regularized incomplete gamma function
P(·,·), see Johnson et al. (1994), Eq. (18.3):
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for x ∈ (0,∞) and δ > 0, where

P(a, z) := 1

Γ (a)

∫ z

0
exp{−t}ta−1 dt, (13.1.6)

for z ∈ �+ and a > 0. We can obtain an expression similar to Eq. (13.1.4) for the
density of a non-central chi-squared random variable,

p(x, δ, λ) =
∞∑

j=0

exp{−λ/2}(λ/2)j

j ! p(x, δ + 2j),
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for x ∈ (0,∞), δ > 0 and λ > 0, and where p(x, δ) denotes the probability density
function of a chi-squared random variable with δ > 0 degrees of freedom. Finally,
we focus on the non-central chi-squared distribution with zero degrees of freedom,
which also featured in the context of the MMM in Sect. 3.3. From Eq. (13.1.4), we
get
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for x ≥ 0 and λ > 0. However, χ2
0 , a central chi-squared random variable of zero

degrees of freedom, is simply equal to zero, i.e.,
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for all x ≥ 0, hence
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where λ > 0. From Eq. (13.1.7) we get
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for x ≥ 0, λ > 0. We remark that a non-central chi-squared random variable of
0 degrees of freedom is not continuous, but places mass at the origin, and hence
p(x,0, λ) is not a probability density function. Nevertheless, it is obtained by for-
mally setting δ = 0 in Eq. (13.1.1).

We conclude this section with some useful identities pertaining to the non-central
chi-squared distribution. These equalities feature frequently in Sect. 3.3. We recall
that p(·, δ, λ) denotes the probability density of a χ2-distributed random variable,
and we use Ψ (·, δ, λ) to denote the distribution of a χ2-distributed random variable
with δ degrees of freedom and non-centrality parameter λ.

Lemma 13.1.1 The following useful properties hold:

(
λ

x

) ν−2
2

p(x, ν,λ) = p(λ, ν, x) (13.1.8)

∫ ∞

0
p(x, ν + 2, y) dy = Ψ (x, ν,0) (13.1.9)

∫ ∞

λ

p(x, ν + 2, y) dy = Ψ (x, ν,λ) (13.1.10)

∫ λ

0
p(x, ν + 2, y) dy = Ψ (x, ν,0) − Ψ (x, ν,λ). (13.1.11)



326 13 Computational Tools

13.2 Computing the Non-central Chi-Squared Distribution

The aim of this section is to introduce an algorithm allowing us to compute the non-
central chi-squared distribution. We recall from Sect. 3.3, that in order to price calls
and puts, we need to be able to evaluate this distribution function. Furthermore, we
point out that we need to be able to evaluate this distribution function for zero de-
grees of freedom and for a variety of non-centrality parameters. In particular, for
large maturities, the non-centrality parameter is small, whereas for small maturities,
the non-centrality parameter is large. This section follows Hulley (2009) closely. As
in this reference, we base our approach on an algorithm from Ding (1992), which
performs well for small values of the non-centrality parameter, but not for large val-
ues. For this reason, we employ an analytic approximation due to Sankaran (1963),
for large values. We introduce the non-central regularized incomplete gamma func-
tion, given by

P(a, b, z) :=
∞∑

j=0

exp{−b}bj

j ! P(a + j, z), (13.2.12)

for all z ∈ �+0 and a, b ≥ 0. Formally, we set P(0, z) := 1, as the regularized in-
complete gamma function from Eq. (13.1.6) is not well-defined in this case. We can
express the distribution function of the non-central chi-squared and the chi-squared
random variables in terms of the non-central regularized incomplete gamma func-
tion,
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where x ∈ (0,∞) and δ > 0, and

P
(
χ2

δ (λ) ≤ x
) =P

(
δ

2
,
λ

2
,
x

2

)
,

for x ∈ (0,∞) (respectively x ∈ �+), δ > 0, (respectively δ = 0) and λ > 0. We
assume for the remainder of this section that one of the following conditions is
satisfied:

• z ∈ (0,∞) and a, b > 0;
• z ∈ �+, a = 0 and b > 0,

which correspond to the cases δ > 0 and δ = 0, respectively.
In a first step, we rewrite the terms P(a + j, z) on the right-hand side of

Eq. (13.2.12) in terms of an infinite sum. Using integration by parts and the identity
Γ (a + j + 1) = (a + j)Γ (a + j), we obtain

P(a + j + 1, z) =P(a + j, z) − exp{−z}za+j

Γ (a + j + 1)
, (13.2.13)
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which also holds for a = j = 0, as by definition P(0, z) = 1. A recursive application
of Eq. (13.2.13) yields

P(a + j, z) = P(a + j + 1, z) + exp{−z}za+j

Γ (a + j + 1)
=

∞∑
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exp{−z}za+k

Γ (a + k + 1)
, (13.2.14)

for j ∈ {0, ,12, . . .}. Defining
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,

we have

P(a, b, z) =
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AkTk. (13.2.15)

The idea is to truncate the series in Eq. (13.2.15),
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bound

Ak =
k∑

j=0

exp{−b}bj

j ! <

∞∑
j=0

exp{−b}bj

j ! = 1,

and hence

εN =
∞∑

k=N

AkTk <

∞∑
k=N

Tk.

We note that the Tk , k ∈N , admit the following recursive formula:
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for N ∈ N and k ∈ {N,N + 1,N + 2, . . .}. This allows us to obtain the following
bound on εN :
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(13.2.17)

for each N ∈ {N∗,N∗ + 1,N∗ + 2, . . .}, where

N∗ := min
{
n ∈ {0,1,2, . . .} ∣∣ z < a + n

}
.

In Algorithm 13.1 below, we present pseudo-code for an algorithm which com-
putes the non-central chi-squared distribution. In words, the algorithm proceeds
as follows: we specify a desired level of accuracy, say ε ∈ (0,1). Next, we com-
pute N∗. Obtaining N∗ is crucial, as our error bound in Eq. (13.2.17) only applies
for N ≥ N∗. We then compute P̃N∗(a, b, z), and consequently check the trunca-
tion error incurred via Eq. (13.2.17). We then proceed to add further terms AkTk ,
where k ∈ {N∗,N∗ + 1,N∗ + 2, . . .}. As soon as the bound for the truncation er-
ror εN has fallen below ε, we truncate the loop and obtain a value P̃(a, b, z) ∈
(P(a, b, z) − ε,P(a, b, z)), where N ∈ {N∗,N∗ + 1,N∗ + 2, . . .}.

Finally, we discuss the implementation of the algorithm. Recall that the Tk can be
computed recursively using Eq. (13.2.16), with only one multiplication and division
required to compute the next term. Lastly, Ak admits the representation

Ak =
k∑

j=0

exp{−b}bj

j ! = Ak−1 + exp{−b}bk

k! = Ak−1 + Bk,

where

Bk = exp{−b}bk+1

k! = b

k
Bk−1.

Hence we can also obtain the Ak recursively, with one multiplication, division, and
addition required. This means that we can compute P̃N (a, b, z) in linear time, i.e.
using O(N) operations. In a detailed study, Dyrting (2004) discovered that the al-
gorithm outlined above performs well for small and moderate values of b. For large
values of b, the series in Eq. (13.2.12) converges slowly, meaning a large number
of terms have to be used to achieve a particular precision ε. Furthermore, underflow
problems can occur, as the individual terms in the series are small.

To remedy this shortcoming, Hulley (2009) fixed a maximum number of terms
to be used in the summation. Once this limit is reached, an analytical approximation
to the non-central incomplete gamma function is used. For this there are numerous
possibilities, see Johnson et al. (1995), Sect. 29.8. We follow the advice of Schroder
(1989), who recommends the analytic approximation due to Sankaran (1963),

P(a, b, z) ≈ Φ(x),

where Φ denotes the standard normal cumulative distribution function and

x := −1 − hp
(
1 − h + (2−h)mp

2

) − (
z
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h
√

2p(1 + mp)
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with

h = 1 − 2

3

(a + b)(a + 3b)

(a + 2b)2
, p = 1

2

a + 2b

(a + b)2
, m = (h − 1)(1 − 3h).

This is a robust and efficient scheme, see Dyrting (2004). In addition, the approxi-
mation improves as the value of b increases. This fact is of particular relevance to
us, as the performance of our original scheme performs worse as b increases. We
present the pseudo-code of this algorithm in Algorithm 13.1 below.

13.3 The Doubly Non-central Beta Distribution

We firstly introduce the (central) beta random variable, after that the singly non-
central beta random variable and finally the doubly non-central beta random vari-
able, all with strictly positive shape parameters. However, in Sect. 3.3, we presented
formulas for exchange options in terms of the non-central beta distribution with one
shape parameter assuming the value zero, see Eq. (3.3.16). Hence in this section, we
follow Hulley (2009) and extend the doubly non-central beta distribution allowing
for one shape parameter assuming the value zero. In Sect. 13.4, we show how to
compute the doubly non-central beta distribution.

It is well-known that the (central) beta random variable with shape parameters
δ1/2 > 0 and δ2/2 > 0 admits the following representation in terms of chi-squared
random variables,

βδ1,δ2 := χ2
δ1

χ2
δ1

+ χ2
δ2

, (13.3.18)

see Johnson et al. (1995), Chap. 25. As chi-squared random variables are strictly
positive, βδ1,δ2 assumes values in (0,1). The distribution of βδ1,δ2 can be expressed
in terms of the regularized incomplete beta function,

P(βδ1,δ2 ≤ x) = Ix

(
δ1

2
,
δ2

2

)
, (13.3.19)

for x ∈ (0,1), where

Iz(a, b) := Γ (a + b)

Γ (a)Γ (b)

∫ z

0
ta−1(1 − t)b−1 dt, (13.3.20)

for all z ∈ [0,1] and a, b > 0. We now define the singly non-central beta distribution,
with shape parameters δ1/2 > 0 and δ2/2 > 0 and non-centrality parameter λ > 0,
which is given by

βδ1,δ2(λ,0) := χ2
δ1

(λ)

χ2
δ1

(λ) + χ2
δ2

. (13.3.21)

This distribution was introduced in Tang (1938) and Patnaik (1949), in connection
with the power function for the analysis of variance tests. We remark that (13.3.21)
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Algorithm 13.1 Non-central regularized incomplete gamma function

Require: a, b, z ∈ �+, ε ∈ (0,1) and maxiter ∈ N
1: errbnd ← 1
2: if z − a /∈ {0,1,2, . . .} then
3: N∗ ← �(z − a)+�
4: else
5: N∗ ← �z − a� + 1
6: end if
7: if N∗ − 1 ≤ maxiter then
8: A ← exp{−b}
9: B ← A

10: T ← exp{−z}za

Γ (a+1)
11: value ← A × T

12: k ← 1
13: while k ≤ N∗ − 1 do
14: B ← b

k
× B

15: A ← A + B

16: T ← z
a+k

× T

17: k ← k + 1
18: end while
19: errbnd ← z

a+k−z
× T

20: while errbnd ≥ ε and k ≤ maxiter do
21: B ← b

k
× B

22: A ← A + b

23: T ← z
a+k

× T

24: value ← value + A × T

25: k ← k + 1
26: errbnd ← z

a+k−z
× T

27: end while
28: end if
29: if errbnd ≥ ε then
30: h ← 1 − 2

3
(a+b)(a+3b)

(a+2b)2

31: p ← 1
2

a+2b

(a+b)2

32: m ← (h − 1)(1 − 3h)

33: x ← − 1−hp(1−h+ (2−h)mp
2 )−( z

a+b
)h

h
√

2p(1+mp)

34: value ← Φ(x)

35: end if
36: return value

is referred to as Type I non-central beta random variable in Chattamvelli (1995),
distinguishing it from a Type II non-central beta random variable, given by

βδ1,δ2(0, λ) := 1 − βδ1,δ2(λ,0) = χ2
δ2

χ2
δ1

(λ) + χ2
δ2

.
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The doubly non-central beta distribution, with shape parameters δ1/2 > 0, δ2 > 0
and non-centrality parameters λ1 > 0 and λ2 > 0 is given by

βδ1,δ2(λ1, λ2) := χ2
δ1

(λ1)

χ2
δ1

(λ1) + χ2
δ2

(λ2)
. (13.3.22)

We recall from Eq. (13.1.4) that the distribution of the non-central chi-squared dis-
tribution could be expressed as a Poisson weighted mixture of central chi-squared
distributions. Analogously, the distribution of the non-central beta distribution can
be expressed as a Poisson weighted mixture of central beta distributions

P
(
βδ1,δ2(λ,0) ≤ x

) =
∞∑

j=0

exp{−λ/2}(λ/2)j

j ! P(βδ1+2j,δ2 ≤ x), (13.3.23)

for all x ∈ (0,1), δ1, δ2 > 0 and λ > 0, and

P
(
βδ1,δ2(λ1, λ2) ≤ x

)

=
∞∑

j=0

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ2}(λ2/2)k

k! P(βδ1+2j,δ2+2k ≤ x),

for all x ∈ (0,1), δ1, δ2 > 0 and λ1, λ2 > 0.
Now, we discuss how to extend the singly and doubly non-central beta distri-

butions to the case where one of the shape parameters is zero. We remark that the
distributions in (13.3.23) and (13.3.24) do not allow for this, as the gamma function
is not defined at zero. We hence follow Hulley (2009), where techniques from Siegel
(1979) were used to extend the non-central chi-squared distribution to include the
case of zero degrees of freedom. As with the non-central chi-squared distribution,
the distribution of the non-central beta distribution with one shape parameter equal
to zero is no longer continuous, but comprised of a discrete part placing mass at the
end points of the interval [0,1], and a continuous part assuming values in (0,1).
Setting δ2 = 0 in Eq. (13.3.21), results in a random variable identically equal to one.
However, setting δ1 = 0 yields a non-trivial random variable assuming values in
[0,1). Similarly, setting δ1 = 0 in (13.3.22), results in a non-trivial random variable
assuming values in [0,1) and setting δ2 = 0 in Eq. (13.3.22) results in a non-trivial
random variable assuming values in (0,1]. For the remainder of this section, we set
δ1 = 0 in Eqs. (13.3.23) and (13.3.22) and set δ = δ2 > 0 and define

β0,δ(λ,0) := χ2
0 (λ)

χ2
0 (λ) + χ2

δ

, (13.3.24)

for all δ > 0 and λ > 0, and

β0,δ(λ1, λ2) := χ2
0 (λ1)

χ2
0 (λ1) + χ2

δ (λ2)
, (13.3.25)

for all δ > 0, and λ1, λ2 > 0. The following result from Hulley (2009) shows how to
extended the doubly non-central beta distribution to the case where one of the shape
parameters assumes the value zero.
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Proposition 13.3.1 Suppose x ∈ [0,1), δ > 0, and λ1, λ2 > 0. Then

P
(
β0,δ(λ1, λ2) ≤ x

) =
∞∑

j=0

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ2}(λ2/2)k

k!
× P(β2j,δ+2k ≤ x). (13.3.26)

Proof We employ Eqs. (13.3.25) and (13.1.4), (13.1.5), (13.1.6), (13.1.1), to obtain

P
(
β0,δ(λ1, λ2) ≤ x

)

= P

(
χ2

0 (λ1) ≤ x

1 − x
χ2

δ (λ2)

)

=
∫ ∞

0
P

(
χ2

0 (λ1) ≤ x

1 − x
ξ

)
p(ξ, δ, λ2) dξ

=
∞∑

j=0

exp{−λ1/2}(λ1/2)j

j !
∫ ∞

0
P

(
ξ2

2j ≤ x

1 − x
ξ

)

× 1

2
exp

{
−λ2 + ξ

2

}(
ξ

λ2

) δ−2
4

∞∑
k=0

(
√

λ2ξ/2)
δ−2

2 +2k

k!Γ (δ/2 + k)
dξ

=
∞∑

j=0

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ/2}
k!

1

2

(
2

λ2

) δ−2
2

×
∫ ∞

0

(λ2ξ/4)
δ−2

2 +k exp{−ξ/2}
Γ (δ/2 + k)

P

(
χ2

2j ≤ xξ

1 − x

)
dξ

= exp{−λ1/2} +
∞∑

j=1

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ2}(λ2/2)k

k!

× 1

2

∫ ∞

0

(ξ/2)
δ−2

2 +k exp{−ξ/2}
Γ (δ/2 + k)

P
(

j,
x

2(1 − x)
ξ

)
dξ

= exp{−λ1/2} +
∞∑

j=1

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ2/2}(λ2/2)k

k!

× 1

Γ (j)Γ (δ/2 + k)

∫ ∞

0
ζ δ/2+k−1 exp{−ζ }

∫ xζ
1−x

0
tj−1 exp{−t}dt dζ

= exp{−λ1/2} +
∞∑

j=1

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ2/2}(λ2/2)k

k!

× Γ (δ/2 + j + k)

Γ (j)Γ (δ/2 + k)

∫ x
1−x

0

uj−1

(1 + u)δ/2+j+k
du
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= exp{−λ1/2} +
∞∑

j=1

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ2/2}(λ2/2)k

k!

× Γ (δ/2 + j + k)

Γ (j)Γ (δ/2 + k)

∫ x

0
vj−1(1 − v)δ/2+k−1 dv

= exp{−λ1/2}

+
∞∑

j=1

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ2}(λ2/2)k

k! Ix

(
j,

δ

2
+ k

)

= exp{−λ1/2}

+
∞∑

j=1

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ2}(λ2/2)k

k! P(β2j,δ+2k ≤ x),

(13.3.27)

where we used the transformations ξ/2 
→ ζ , t/ζ 
→ u, and u/(1+u) 
→ v, together
with Eq. (13.3.19). We note that since central chi-squared random variables with
zero degrees of freedom are equal to zero, the same applies to β0,δ+2k , for all k ∈
{0,1,2, . . .}, see Eq. (13.3.18). Hence we have

exp{−λ1/2} = exp{−λ1/2}
∞∑

k=0

exp{−λ2}(λ2/2)k

k! P(β0,δ+2k ≤ x),

which completes the proof. �

Inspecting Eq. (13.3.27), we remark that the first term can be interpreted as
P(β0,δ(λ1, λ2) = 0) and the double sum as the probability P(0 < β0,δ(λ1, λ2) ≤ x)

for all x ∈ (0,1), δ > 0 and λ1, λ2 > 0. Hence we can decompose the distribution of
β0,δ(λ1, λ2) into a discrete component placing mass exp{−λ1/2} at zero and a con-
tinuous component describing the distribution over (0,1). Finally, setting λ2 = 0 we
obtain the distribution of a singly non-central beta random variable

P
(
βδ,0(0, λ) ≤ x

) =
∞∑

j=0

exp{−λ/2}(λ/2)j

j ! P(βδ,2j ≤ x), (13.3.28)

for all x ∈ [0,1), δ > 0 and λ > 0. Finally, we present the extended versions of the
Type II beta random variables,

βδ,0(0, λ) := 1 − β0,δ(λ,0) = χ2
δ

χ2
0 (λ) + χ2

δ

, (13.3.29)

for all δ > 0 and λ > 0, and

βδ,0(λ2, λ1) := 1 − β0,δ(λ1, λ2) = χ2
δ (λ2)

χ2
0 (λ1) + χ2

δ (λ2)
, (13.3.30)

where δ > 0 and λ1, λ2 > 0, whose values lie in (0,1]. Equations (13.3.30),
(13.3.26), and (13.3.18) yield
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P
(
βδ,0(λ2, λ1)

)
= 1 − P

(
β0,δ(λ1, λ2) < 1 − x

)

= 1 −
∞∑

j=0

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ2/2}(λ2/2)k

k! P(β2j,δ+2k < 1 − x)

=
∞∑

j=0

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ2/2}(λ2/2)k

k!
(
1 − P(β2j,δ+2k < 1 − x)

)

=
∞∑

j=0

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ2/2}(λ2/2)k

k! P(βδ+2k,2j ≤ x),

for all x ∈ (0,1], δ > 0 and λ1, λ2 > 0. We note that βδ+2k,0 is identically equal to
one for all k ∈ {0,1,2, . . .}. Hence βδ,0(λ2, λ1) can be decomposed into a discrete
component that places mass exp{−λ1/2} at one and a continuous component taking
values in (0,1) for all δ > 0, λ1, λ2 > 0. Similarly, we obtain

P
(
βδ,0(0, λ) ≤ x

) =
∞∑

j=0

exp{−λ/2}(λ/2)j

j ! P(βδ,2j ≤ x),

for all x ∈ (0,1], δ > 0 and λ > 0. Again, βδ,0 is identically equal to one, hence
βδ,0(0, λ) can be decomposed into a discrete part placing mass exp{−λ} at one and
a continuous component assuming values in (0,1).

13.4 Computing the Doubly Non-central Beta Distribution

In this section, we present an algorithm, which shows how to implement the doubly
non-central beta distribution. The algorithm is based on Hulley (2009), where an
idea from Posten (1989, 1993) is used to enhance an algorithm presented by Seber
(1963) for computing the distribution function of standard singly non-central beta
random variables.

We define the doubly non-central regularized incomplete beta function

Iz(a, b, c, d) :=
∞∑

j=0

exp{−c}cj

j !
∞∑

k=0

exp{−d}dk

k! Iz(a + j, b + k), (13.4.31)

for all z ∈ [0,1] and a, b, c, d ≥ 0, such that either a > 0 or b > 0 and where Iz(a, b)

is given by Eq. (13.3.20). We formally set

Iz(0, b) := 1 and Iz(a,0) :=
{

0 if z < 1;
1 if z = 1,

(13.4.32)

for all z ∈ [0,1] and a, b > 0. This is necessary, as the gamma functions in
Eq. (13.3.20) are not well-defined at zero. We note that we can express the dis-
tribution functions of both the central and the non-central beta distributions in terms
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of the doubly non-central regularized incomplete beta function in Eq. (13.4.31). In
particular, we have

P(βδ1,δ2 ≤ x) = Ix

(
δ1

2
,
δ2

2
,0,0

)
,

for all x ∈ (0,1) and δ1, δ2 > 0. The distribution of the Type I singly non-central
beta distribution satisfies

P
(
βδ1,δ2(λ,0) ≤ x

) = Ix

(
δ1

2
,
δ2

2
,
λ

2
,0

)
,

for all x ∈ (0,1) (respectively x ∈ [0,1) ), δ1 > 0 (respectively δ1 = 0), δ2 > 0 and
λ > 0, while for the Type II singly non-central beta distribution we obtain

P
(
βδ2,δ1(0, λ) ≤ x

) = Ix

(
δ2

2
,
δ1

2
,0,

λ

2

)

for all x ∈ (0,1) ( respectively x ∈ (0,1]), δ1 > 0 (respectively δ1 = 0), δ2 > 0 and
λ > 0. Lastly, the distribution function of the doubly non-central beta distribution
satisfies the equality

P
(
βδ1,δ2(λ1, λ2) ≤ x

) = Ix

(
δ1

2
,
δ2

2
,
λ1

2
,
λ2

2

)
,

for all x ∈ (0,1) (respectively x ∈ [0,1); x ∈ (0,1]), δ1, δ2 > 0 (respectively δ1 =
0, δ2 > 0; δ1 > 0, δ2 = 0) and λ1, λ2 > 0. We assume that one of the following
parameter combinations is in force:

(i) z ∈ (0,1), a, b ∈N , c, d > 0;
(ii) z ∈ [0,1), a = 0, b ∈N , c, d > 0;

(iii) z ∈ (0,1], a ∈N , b = 0, c, d > 0.

Assuming condition (i) is in force, we obtain from Seber (1963)

Iz(a, b, c, d) = exp
{−c(1 − z)

}
za

∞∑
k=0

exp{−d}dk

k!
b+k−1∑
n=0

(1 − z)nL(a−1)
n (−cz)

= exp
{−c(1 − z)

}
za

∞∑
k=0

PkTk, (13.4.33)

where we have defined the Poisson weights

Pk := exp{−d}dk

k! , k ∈ {0,1,2, . . .},
and

Tk :=
b+k−1∑
n=0

(1 − z)nL(a−1)
n (−cz), k ∈ {0,1,2, . . .}.

When condition (ii) is satisfied with z = 0, the problem is trivial, I0(0, b, c, d) =
exp{−c}. But for condition (ii) and z ∈ (0,1), Eqs. (13.3.20) and (13.4.32) yield
Iz(j, b + k) = 1 − I1−z(b + k, j), for each j, k ∈ {0,1,2, . . .}, and hence
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Iz(0, b, c, d) =
∞∑

j=0

exp{−c}cj

j !
∞∑

k=0

exp{−d}dk

k!
(
1 − I1−z(b + k, j)

)

= 1 −
∞∑

j=1

exp{−c}cj

j !
∞∑

k=0

exp{−d}dk

k! I1−z(b + k, j)

= 1 − exp{−dz}(1 − z)b
∞∑

j=1

exp{−c}cj

j !
j−1∑
n=0

znL(b−1)
n

(−d(1 − z)
)

= 1 − exp{−dz}(1 − z)b
∞∑

j=1

Pj

j−1∑
n=0

Tj , (13.4.34)

from (13.4.32) and Seber (1963). Finally, if the arguments satisfy condition (iii)
with z = 1, then the problem is again trivial since I1(a,0, c, d) = 1. On the other
hand, if the arguments satisfy condition (iii) with z ∈ (0,1), then applying (13.4.32)
and Seber (1963) yields

Iz(a,0, c, d) =
∞∑

j=0

exp{−c}cj

j !
∞∑

k=1

exp{−d}dk

k! IZ(a + j, k)

= exp
{−c(1 − z)

}
za

∞∑
k=1

exp{−d}dk

k!
k−1∑
n=0

(1 − z)nL(a−1)
n (−cz)

= exp
{−c(1 − z)

}
za

∞∑
k=1

Pk

k−1∑
n=0

Tk. (13.4.35)

We remark that by L
(α)
n we denote the Laguerre polynomials, which are defined for

n ∈ {0,1,2, . . .} , α ∈ � \ {−1,−2, . . .}. However, for α ∈ {0,1,2, . . .} we have

L(α)
n (ζ ) =

n∑
m=0

(
n + α

n − m

)
ζm

m! , (13.4.36)

for all ζ ∈ � and each n ∈ {0,1,2, . . .}. Equation (13.4.36) implies the following
recurrence relation, see also Abramowitz and Stegun (1972), Chap. 22,

L
(α)
0 (ζ ) = 1,

L
(α)
1 (ζ ) = α − 1 + ζ,

nL(α)
n (ζ ) = (2n + α − 1 − ζ )L

(α)
n−1(ζ ) − (n + α − 1)L

(α)
n−2(ζ ),

(13.4.37)

for all ζ ∈ �, and for all α ∈ {0,1,2, . . .} and n ∈ {2,3, . . .}. Comparing
Eqs. (13.4.33), (13.4.34), and (13.4.35), we note that it suffices to focus on condition
(i), as conditions (ii) and (iii) can be covered using the same algorithm. Regarding
the outer, infinite sum, we employ an idea from Posten (1989, 1993), and sum the
terms in decreasing order of the Poisson weights. The maximal Poisson weight is
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approximately attained by the index value k∗ = �d�, hence we truncate the outer
sum to the range of index values (k∗ − Nε)

+, . . . , k∗ + Nε , where Nε is given by

Nε := min

{
N ∈ {0,1,2, . . .} ∣∣ k∗+N∑

k=(k∗−N)+
Pk > 1 − ε

}
, (13.4.38)

i.e. we approximate Iz(a, b, c, d) using Ĩz(a, b, c, d), which is given by

ĨNε,z(a, b, c, d) := exp
{−c(1 − z)

}
za

k∗+Nε∑
k=(k∗−Nε)+

PkTk. (13.4.39)

We now aim to produce a good bound on the approximation error

Iz(a, b, c, d) − ĨNε,z(a, b, c, d). (13.4.40)

From Seber (1963) we have

exp
{−c(1 − z)

}
zaTk = Iz(a, b + k, c,0) ∈ (0,1), (13.4.41)

hence

Iz(a, b, c, d) − ĨNε,z(a, b, c, d)

= exp
{−c(1 − z)

}
za

(
(k∗−Nε)

+−1∑
k=0

PkTk +
∞∑

k=k∗+Nε+1

PkTk

)

≤
(k∗−Nε)

+−1∑
k=0

Pk +
∞∑

k=k∗+Nε+1

Pk = 1 −
k∗+Nε∑

k=(k∗−Nε)

Pk < ε,

where we used the fact that the Poisson weights sum to one and the last inequality
follows from the definition of Nε . Hence we have

ĨNε,z(a, b, c, d) ∈ (
Iz(a, b, c, d) − ε, Iz(a, b, c, d)

)
,

so the truncation error is bounded by ε. Clearly, the value of Nε cannot be de-
termined explicitly in advance, but can only be determined by iteratively adding
Poisson weights until their sum exceeds 1 − ε. The Pk satisfy

Pk = Pk−1
d

k
,

for each k ∈ N , which allows for a rapid computation of these weights. Finally, we
attend to the inner sum in Eq. (13.4.33). In Algorithm 13.2 below, we make use
of a list, which stores the values of the Laguerre polynomials, which are used to
compute the Tk . Firstly, we calculate the Laguerre polynomials needed to compute
Tk∗ , and store them in a list. Thereafter, we use the following iterative scheme, based
on (13.4.37) to compute Tk∗+1, Tk∗−1, Tk∗+2, Tk∗−2, . . .:
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Algorithm 13.2 Doubly non-central regularized incomplete beta function
Require: a, b ∈ N , c, d ∈ (0,∞), z ∈ (0,1) and ε ∈ (0,1) or

a = 0, b ∈ N , c, d ∈ (0,∞), z ∈ [0,1) and ε ∈ (0,1) or
a ∈N , b = 0, c, d ∈ (0,∞), z ∈ (0,1] and ε ∈ (0,1)

1: switch (z)
2: case z = 0:
3: value ← exp{−c}
4: case z = 1:
5: value ← 1
6: otherwise:
7: if a = 0 then
8: a ↔ b
9: c ↔ d

10: z ↔ 1 − z
11: swapflag ← true
12: else
13: swapflag ← false
14: end if
15: kmin ← kmax ← �d� ∨ 2

16: cumPoiss ← exp{−d}dkmax

kmax!
17: for n = 0 : b + kmax − 1 do
18: switch (n)
19: case n = 0:
20: Laglist ← 〈1〉
21: case n = 1:
22: Laglist ← Laglist � a + cz
23: otherwise:
24: Laglist ← Laglist � (2n+a−2+cz)×Laglist〈〈end〉〉−(n+a−2)×Laglist〈〈end−1〉〉

n
25: end switch
26: Tmax ← Tmax + (1 − z)n × Laglist〈〈end〉〉
27: end for
28: Tmin ← Tmax
29: value ← Pmax × Tmax
30: if b = 0 then
31: errthrshld ← 1 − exp{−d} − ε
32: else
33: errthrshld ← 1 − ε
34: end if
35: while cumPoiss ≤ errthrshld do
36: kmax ← kmax + 1
37: Pmax ← Pmax × d

kmax

38: Laglist ← Laglist � (a+2b+2kmax−4+cz)×Laglist〈〈end〉〉−(a+b+kmax−3)×Laglist〈〈end−2〉〉
b+kmax−1

39: Tmax ← Tmax + (1 − z)b+kmax−1 × Laglist〈〈end〉〉
40: value ← value + Pmax × Tmax
41: cumPoiss ← cumPoiss + Pmax
42: if kmin ≥ 2 or kmin ≥ 1 and b > 0 then
43: Pmin ← Pmin × kmin

d

44: Tmin ← Tmin − (1 − z)b+kmin−1 × Laglist〈〈b + kmin〉〉
45: value ← value + Pmin × Tmin
46: cumPoiss ← cumPoiss + Pmin
47: kmin ← kmin − 1
48: end if
49: end while
50: if swapflag then
51: value ← 1 − exp{−c(1 − z)}za × value
52: else
53: value ← exp{−c(1 − z)}za × value
54: end if
55: end switch
56: return value
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Tk = Tk−1 + L
(a−1)
b+k−1(−cz)

=

⎧⎪⎨
⎪⎩

Tk−1 + 1 if k = 1 − b

Tk−1 + (1 − z)(a − 2 − cz) if k = 2 − b

Tk−1 + (1−z)b+k−1

b+k−1 (AkL
(a−1)
b+k−2(−cz) − BkL

(a−1)
b+k−3(−cz)) if k ≥ 3 − b,

for each k ∈ N , where Ak := a + 2b + 2k − 4 + cz and Bk := a + b + l − 3.
We present in Algorithm 13.2 below the algorithm, which shows how to compute
the doubly non-central regularized incomplete gamma function, which is given in
Hulley (2009). The term Laglist denotes the list of Laguerre polynomials, and
list 〈〈i〉〉 references element i of list, and by the symbol list � x we mean that

the value x is appended to list.

13.5 Inverting Laplace Transforms

In this section, we discuss how to compute values of a function f : �+ → � from
its Laplace transform

f̂ (s) =
∫ ∞

0
exp{−st}f (t) dt,

where s is a complex variable with a nonnegative real part. We present the Euler
method from Abate and Whitt (1995), which is based on the Bromwich contour
inversion integral. We let this contour be any vertical line s = a so that f̂ (s) has no
singularities on or to the right of it, and hence obtain, as in Abate and Whitt (1995),

f (t) = 2 exp{at}
π

∫ ∞

0
Re

(
f̂ (a + ıu)

)
cos(ut) du.

The integral is evaluated numerically using the trapezoidal rule. Specifying the step
size as h gives

f (t) ≈ fh(t) := h exp{at}
π

Re
(
f̂ (a)

) + 2h exp{at}
π

∞∑
k=1

Re
(
f̂ (a + ıkh)

)
cos(kht).

Setting h = π
2t

and a = A
2t

, one arrives at the nearly alternating series

fh(t) = exp{A/2}
2t

Re

(
f̂

(
A

2t

))
+ exp{A/2}

t

∞∑
k=1

(−1)kRe

(
f̂

(
A + 2kπı

2t

))
.

(13.5.42)

Regarding the parameters, we need to know how to choose A: In Abate and Whitt
(1995) it is shown that to achieve a discretization error 10−γ , we should set A =
γ log 10. Consequently, truncating the series after n terms, we have

sn(t) = exp{A/2}
2t

Re

(
f̂

(
A

2t

))
+ exp{A/2}

t

n∑
k=1

(−1)kak(t), (13.5.43)
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where

ak(t) = Re

(
f̂

(
A + 2kπı

2t

))
.

Lastly, we apply the Euler summation, which explains the name of the algorithm.
In particular, we apply the Euler summation to m terms after the initial n terms, so
that the Euler summation, which approximates (13.5.42), is given by

E(m,n, t) =
m∑

k=0

(
m

k

)
2−msn+k(t), (13.5.44)

where sn(t) is given by (13.5.43).We note that E(m,n, t) is the weighted average
of the last m partial sums by a binomial probability distribution characterized by
parameters m and p = 1

2 . In Abate and Whitt (1995), the parameters m = 11 and
n = 15 are used, and it is suggested to increase n as necessary. In the following
subsection, we illustrate how to use this algorithm to recover a bivariate probability
density function. Using Lie symmetry methods, the first inversion can be performed
analytically, for the second we use the Euler method presented in this section given
by (13.5.44).

13.5.1 Recovering the Joint Distribution to Price Realized Variance

In this subsection, we apply the methodology discussed in this section to the pricing
of realized variance derivatives, in particular, options on volatility, see Sect. 8.5.2.
To price such products, we need to recover the joint distribution of (YT ,

∫ T

0
1
Yt

dt).
At first sight, obtaining the joint distribution should entail the inversion of a double
Laplace transform. However, since Lie symmetry methods provide us with funda-
mental solutions, we already have the inversion with respect to one of the variables.
Consequently, one only needs to invert a one-dimensional Laplace transform nu-
merically, to obtain the joint density over �+ × �+. We subsequently map the joint
density into [0,1]2, following the discussion in Kuo et al. (2008), and hence can
employ a randomized quasi-Monte Carlo point set to compute prices. Assuming
that the one-dimensional Laplace transform can be inverted at a constant computa-
tional complexity, the resulting computational complexity is O(N), where N is the
number of two-dimensional quasi-Monte Carlo points employed.

We numerically invert the one-dimensional Laplace transform given in (5.4.16)
using the Euler method from Abate and Whitt (1995), which was also employed
in Hulley and Platen (2008), see also Craddock et al. (2000). We display the joint
density in Fig. 13.5.1.

Inverting the Laplace transform produces the joint density of (YT ,
∫ T

0
1
Yt

dt) over
�+ × �+. One could now employ a product rule, such as the tensor product of two
one-dimensional trapezoidal rules, using N points for each co-ordinate, and perform
the numerical integration using N2 points, at a computational complexity of O(N2),
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Fig. 13.5.1 Joint density of
(YT ,

∫ T

0
1
Yt

dt) for Y0 = 1,
η = 0.052, T = 1

assuming the Laplace inversion can be performed in constant time. However, instead
we map the joint distribution into the unit square, and employ an N point quasi-
Monte Carlo rule to obtain a quadrature rule whose computational complexity is
only O(N), see Sect. 12.2.


	Chapter 13: Computational Tools
	13.1 Some Identities Related to the Non-central Chi-Squared Distribution
	13.2 Computing the Non-central Chi-Squared Distribution
	13.3 The Doubly Non-central Beta Distribution
	13.4 Computing the Doubly Non-central Beta Distribution
	13.5 Inverting Laplace Transforms
	13.5.1 Recovering the Joint Distribution to Price Realized Variance



