
Chapter 11
Wishart Processes

The aim of this chapter is to introduce Wishart processes as tractable diffusions,
which can be used to better capture dependence structures associated with multidi-
mensional stochastic models. The focus of this chapter is on the tractability aspect.
We present illustrative examples, which show that we can move beyond the depen-
dence structures possible on the Euclidean state space. As discussed in Chap. 9, we
consider a model to be tractable if we have access to its affine transform. As demon-
strated in Bru (1991), Grasselli and Tebaldi (2008), Ahdida and Alfonsi (2010),
Benabid et al. (2010), Laplace transforms of the Wishart process are available in
closed-form and exponentially affine. The Wishart process is, in fact, an affine pro-
cess. We present results on affine transforms in Sect. 11.4.

Besides computing Laplace transforms, exact simulation schemes play an im-
portant role in finance, as they allow the pricing of e.g. path-dependent options,
see also Chap. 6. In Sect. 11.3, we will discuss simulation schemes for the Wishart
process, where we present the approaches from Benabid et al. (2010) and Ahdida
and Alfonsi (2010). The two approaches are different in nature, as they exploit dif-
ferent properties of Wishart processes. We hence present both approaches, as they
illustrate interesting properties of Wishart processes.

Subsequently, we present an extension of the model presented in Sect. 9.7 to the
case where positive factors are modeled via a Wishart process. This illustrates the
additional degrees of freedom given by employing the Wishart process. We begin
this chapter with a section which introduces Wishart processes and present existence
results. Subsequently, we study some special cases of the Wishart process in detail
to gain further insight. One of the special cases motivates immediately one of the
simulation schemes to be presented in Sect. 11.3.

11.1 Definition and Existence Results

Wishart processes were introduced in Bru (1991), as a matrix generalization of
squared Bessel processes. In her PhD thesis, Bru applied these processes to prob-

lems from biology. As we will show below, Wishart processes are S+
d or S+

d valued,
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262 11 Wishart Processes

i.e. they assume values as positive definite or positive semidefinite matrices. This
makes them natural candidates for the modeling of covariance matrices, as noted
in Gouriéroux and Sufana (2004a). Starting with Gouriéroux and Sufana (2004a,
2004b), there is now a substantial body of literature applying Wishart processes to
problems in finance, see Gouriéroux et al. (2007), Da Fonseca et al. (2007, 2008a,
2008b, 2008c), and Buraschi et al. (2008, 2010).

All of the above references study Wishart processes in a pure diffusive setting.
Recently, matrix valued processes incorporating jumps have been studied, see e.g.
Barndorff-Nielsen and Stelzer (2007), Leippold and Trojani (2008). These processes
are all contained in the affine framework introduced in Cuchiero et al. (2011), where
we direct the interested reader. Furthermore, we mention the recent paper Cuchiero
et al. (2011), which extends the results from Cuchiero et al. (2011) to symmetric
cones.

We introduce the Wishart process as in the work of Grasselli and collaborators.

For x ∈ S+
d , we introduce the S+

d valued Wishart process Xx = X = {Xt , t ≥ 0},
which satisfies

dXt = (αa�a + bXt + Xtb
�)dt + (√Xt dW ta + a� dW�

t

√
Xt

)
, (11.1.1)

where α ≥ 0, a,b ∈ Md and X0 = x ∈ Md . An obvious question to ask is whether
Eq. (11.1.1) admits a solution, and furthermore if such a solution is unique and
strong. For results on weak solutions, we refer the reader to Cuchiero et al. (2011),
and for results on strong solutions to Mayerhofer et al. (2011b). We now present a
summary of their results, see Corollary 3.2 in Mayerhofer et al. (2011b) and also
Theorem 1 in Ahdida and Alfonsi (2010).

Theorem 11.1.1 Assume that x ∈ S+
d , and α ≥ d − 1, then Eq. (11.1.1) admits a

unique weak solution. If x ∈ S+
d and α ≥ d + 1, then this solution is strong.

In this book, we are primarily interested in explaining the tractability of the pro-
cesses under consideration, where in this chapter, we focus on Wishart processes.
In particular, we present for the Wishart process Laplace transforms and an ex-
act simulation scheme. Weak solutions suffice for our purposes and we assume that
α ≥ d −1, so that the weak solution is also unique. As in Ahdida and Alfonsi (2010),
we use WISd(x, α,b,a) to denote a Wishart process and WISd(x, α,b,a; t) for the
value of the process at time point t .

11.2 Some Special Cases

In this section, we discuss some particular special cases of Wishart processes. Recall
that we defined a Wishart process WISd(x, α,b,a) to be

dXt = (αa�a + bXt + Xtb
�)dt +√Xt dW t a + a� dW�

t

√
Xt ,
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for a,b ∈ Md , and α ≥ d − 1. In Sect. 3.2, we had already introduced Wishart
processes. We recover the special case studied in Sect. 3.2 by setting a = I d , b = 0,
and α = d , to obtain

dXt = dI d dt +√Xt dW t + dW�
t

√
Xt . (11.2.2)

Recall that Eq. (11.2.2) is the analogue of Eq. (3.1.1), which introduces the squared
Bessel process as a sum of squared Brownian motions. In Eq. (11.2.2), d is also an
integer. Subsequently, in Sect. 3.1 we relaxed the assumption that d is an integer. We
now do the same for Wishart processes. However, in Bru (1991), the condition α ≥
d − 1 was used to establish the existence of a unique weak solution, see Theorem 2
in Bru (1991), i.e. she established the existence of a unique weak solution of a
WISd(x, d,0, I d) process.

So far, we introduced Wishart processes as squares of matrices of Brownian mo-
tions, i.e. the WISd(x, d,0, I d) case. However, as in Bru (1991), we can also estab-
lish a connection with squared matrix-valued Ornstein-Uhlenbeck processes. This
is an important observation, and will also motivate our first simulation scheme in
Sect. 11.3.

Let X = {Xt , t ≥ 0} be an n × d matrix diffusion solution of

dXt = γ dB t + βXt dt, (11.2.3)

where B = {B t , t ≥ 0} is an n × d Brownian motion, and x is an n × d matrix,
γ ∈ �, and β ∈ �−. We set St = X�

t Xt , s = x�x.

Lemma 11.2.1 Assume that Xt satisfies Eq. (11.2.3). Then St = X�
t Xt satisfies the

SDE

dSt = γ
(√

St dB t + dB�
t

√
St

)+ 2β
√

St dt + nγ 2I d dt,

S0 = s.
(11.2.4)

Proof The technique of the proof follows Theorem 4.19 in Pfaffel (2008), where
the result was shown for the more general case that corresponds to Lemma 11.2.2.
We define

St = X�
t Xt , t ≥ 0,

and

W t =
∫ t

0

√
S−1

u X�
u dBu ∈Md,

for all t ≥ 0. We first show that W = {W t , t ≥ 0} is a Brownian motion. We compute

E

(∫ t

0

(√
S−1

u X�
u

)�(√
S−1

u X�
u

)
du

)

= E

(∫ t

0
XuS

−1
u X�

u du

)

= tIp < ∞, a.s.,
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establishing that W is a local martingale. Also,

dWt,ij =
d∑

m=1

[√
S−1

u X�
u

]

i,m
dBt,mj .

Hence

d[W·,ijW·,kl]t

=
d∑

m=1

[√
S−1

t X�
t

]

i,m

[√
S−1

t X�
t

]

k,m
1j=l dt

=
[√

S−1
t X�

t Xt

√
S−1

t

]

i,k
1j=l dt

= I ik1j=l dt

= 1i=k1j=l dt,

where we used that

d[W·,nj ,W·,nl]t = dt ⇐⇒ j = l.

By Theorem 10.4.5, W is a Brownian motion. Finally, we compute

dSt = d
(
X�

t Xt

)= (dXt )
�Xt + X�

t dXt + d
[
X�,X

]M
t

= (βX�
t dt + dB�

t γ
)
Xt + X�

t (βXt dt + dB t γ ) + γ d
[
B�,B

]M
t

γ

= βSt dt + dB�
t γXt + βSt dt + X�

t dB t γ + γ 2nI d dt

= 2βSt dt + γ
√

St dW t + γ dW�
t

√
St + γ 2nI d dt,

which yields that St solves Eq. (11.2.4). �

The following time-change formula is reminiscent of Proposition 3.1.5, see
Eq. (5.3) in Bru (1991). If X = {Xt , t ≥ 0} is a solution of (11.2.3), then there
exists a Wishart process Σ = {Σ t , t ≥ 0} ∈ WISd(s, α,0, I d) such that

St = X�
t Xt = exp{2βt}Σ

γ 2 1−exp{−2βt}
2β

.

Using this time-change formula, Bru established that the Wishart process WISd(x, α,

b,a), where b = βI d , a = γ I d , β,γ ∈ �, α ≥ d − 1 and x ∈ S+
d , with distinct

eigenvalues, admits a unique weak solution, see Theorem 2′ in Bru (1991). Fi-
nally, she extended this result replacing γ and β by d × d matrices b and a, where
a ∈ GL(d). We consider the following SDE for X = {Xt , t ≥ 0},

dXt = dB ta + Xtb dt, (11.2.5)

where X0 = x, B = {B t , t ≥ 0} is a n × d matrix valued Brownian motion and Xt

is an n×d matrix. We set St = X�
t Xt , s = x�x ∈ S+

d , and in the next lemma derive
the SDE for St .
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Lemma 11.2.2 Assuming X = {Xt , t ≥ 0} satisfies Eq. (11.2.5), we obtain the fol-
lowing dynamics for St = X�

t Xt ,

dSt =√St dW t

√
a�a +

√
a�a dW�

t

√
St + (b�St + Stb

)
dt + na�a dt,

(11.2.6)

where S0 = s.

Proof The proof is completed in the same fashion as the proof of Lemma 11.2.1,
and is given in Pfaffel (2008). We firstly define

W t =
∫ t

0

√
S−1

u X�
u dBua

(√
a�a

)−1
du ∈Md .

Note that the matrix square-root is positive definite and hence invertible. We com-
pute

E

(∫ t

0

(√
S−1

u X�
u a
(√

a�a
)−1
)�(√

S−1
u X�

u a
(√

a�a
)−1
)

du

)

= E

(∫ t

0

(
a�a

)− 1
2 a�XuS

−1
u X�

u a
(
a�a

)− 1
2 du

)

=
∫ t

0

(
a�a

)− 1
2 a�a

(
a�a

)− 1
2 du

= tIp < ∞ a.s.

We have that

dWt,ij =
n∑

u=1

d∑

v=1

[
a
(√

a�a
)−1]

v,j

[√
S−1

t X�
t

]

i,u
dB t,uv,

and we compute

d[W·,ij ,W·,kl]t

=
n∑

u=1

d∑

v=1

[√
S−1

t X�
t

]

i,u

[√
S−1

t X�
t

]

k,u

[
a
(√

a�a
)−1]

v,j

[
a
(√

a�a
)−1]

v,l

=
[√

S−1
t X�

t Xt

√
S−1

t

]

i,k

[(√
a�a

)−1
a�a

(√
a�a

)−1]
j,l

dt

= I d,ikI d,j l dt

= 1i=k1j=l dt.

By Theorem 10.4.5, W is a Brownian motion. Finally, we compute

dSt = d
(
X�

t Xt

)= (dXt )
�Xt + X�

t dXt + d
[
X�,X

]M
t

= (a� dB�
t + b�X�

t dt
)
Xt + X�

t (dB ta + Xtb) dt + a�d
[
B�,B

]M
t

a

= a� dB�
t Xt + b�X�

t Xt dt + X�
t dB ta + X�

t Xtb dt + a�andt

= a� dB�
t Xt + b�St dt + X�

t dB ta + Stb dt + na�a dt

= (b�St + Stb
)
dt +√St dW t

√
a�a +

√
a�a dW�

t

√
St + na�a dt,
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where we used that

d
[
B�· ,B ·

]M
t,ij

=
n∑

k=1

d〈B·,ki ,B·,kj 〉t = n1i=j dt,

which establishes that St solves Eq. (11.2.6). �

We now state Theorem 2′′ from Bru (1991).

Theorem 11.2.3 Let α ∈ {1, . . . , d − 1} ∪ (d − 1,∞), a ∈ GL(d), b ∈ S−
d , s ∈ S+

d

and all eigenvalues of s be distinct, and B t is a d × d matrix valued Brownian
motion, then on [0, τ ), where τ denotes the first time that the eigenvalues of St

collide, the stochastic differential equation

dSt =√St dW t

√
a�a +

√
a�a dW�

t

√
St + (bSt + Stb) dt + α

√
a�a dt,

where S0 = s has a unique weak solution if b and
√

a�a commute.

We remind the reader that the preceding examples were all studied in the original
paper on Wishart processes, Bru (1991).

Now, we turn again to the Wishart process as discussed in Sect. 11.1. We intro-
duce the process X = {Xt , t ≥ 0} ∈ WISd(x, α,b,a), given by

dXt = (αa�a + bXt + Xtb
�)dt + (√Xt dW ta + a� dW�

t

√
Xt

)
,

and we firstly investigate the following case, which was investigated in Benabid
et al. (2010). It shows how to link a Wishart process to a multidimensional square
root process, see also Sect. 6.7. We assume that a and b are diagonal matrices and
that the elements of a are positive, whereas the elements of b are negative. Then one
can show that the diagonal elements of Xt satisfy

dXt,ii = (αa2
i,i + 2bi,iXt,ii

)+ 2ai,i

d∑

k=1

[√Xt ]i,k dWt,ki .

Now we define for i ∈ {1, . . . , d},

Bt,i =
∫ t

0

√
Xt,ii

−1
d∑

k=1

[√Xs]k,i dWs,ki .

We have

E

(∫ t

0
(
√

Xs,ii)
−1

d∑

k=1

[√Xs]k,i[
√

Xs]k,i[
√

Xs,ii]−1 ds

)

= E

(∫ t

0
(
√

Xs,ii)
−1[√Xs

√
Xs]i,i (

√
Xs,ii)

−1 ds

)

= E

(∫ t

0
(
√

Xs,ii)
−1Xs,ii(

√
Xs,ii)

−1 ds

)

= t.
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Hence, B = (B1, . . . ,Bd) is a vector of d independent Brownian motions, and we
obtain

dXt,ii = (αa2
i,i + 2bi,iXt,ii

)
dt + 2ai,i

√
Xt,ii dBt,i .

Consequently, for diagonal matrices a and b, the diagonal elements of the Wishart
process are square-root processes.

We now discuss how to construct a matrix-valued Wishart process from vector-
valued Ornstein-Uhlenbeck processes. This construction will also motivate the first
simulation scheme in Sect. 11.3. In particular, we set

V t =
β∑

k=1

Xt,kX
�
t,k ∈Md , (11.2.7)

where

dXt,k = MXt,k dt + Q� dW t,k, k = 1, . . . , β, (11.2.8)

where M ∈ Md , Xt ∈ �d , Q ∈ Md , W k ∈ �d , so that V t ∈ Md , V 0 = v ∈ S+
d

and β ≥ d + 1. The following lemma gives the dynamics of V = {V t , t ≥ 0}.

Lemma 11.2.4 Assume that V t is given by Eq. (11.2.7), where Xt satisfies
Eq. (11.2.8). Then

dV t = (βQ�Q + MV t + V tM
�)dt +√V t dW tQ + Q� dW�

t

√
V t ,

where W = {W t , t ≥ 0} is a d × d matrix valued Brownian motion that is deter-
mined by

√
V t dW t =

β∑

k=1

Xt,k dW�
t,k.

Proof We compute

d
(
Xt,kX

�
t,k

)= (dXt,k)X
�
t,k + Xt,k(dXt,k)

� + d
[
Xk,X

�
k

]M
t

= (MXt,k + Q�dW t,k

)
X�

t,k

+ Xt,k

(
X�

t,kM
� dt + dW�

t,kQ
)

+ Q�d
[
W k,W

�
k

]M
t

Q

= MXt,kX
�
t,k dt + Q�dW t,kX

�
t,k + Xt,kX

�
t,kM

� dt

+ Xt,kdW�
t,kQ + Q�I dQdt,

where we used that

d
[
W ·,k,W�·,k

]M
t

= I d dt.
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Hence

dV t = M

β∑

k=1

Xt,kX
�
t,k dt + Q�

β∑

k=1

dW t,kX
�
t,k

+
β∑

k=1

Xt,kX
�
t,kM

� dt +
β∑

k=1

Xt,k dW�
t,kQ

+ βQ�Qdt

= MV t dt + V tM
� dt + Q� dW�

t

√
V t +√V t dW tQ + βQ�Qdt,

since

√
V t dW t =

β∑

k=1

Xt,k dW�
t,k.

To complete the proof, we need to show that W t is a Brownian motion. As before,
we use Theorem 10.4.5. We define

W t =
∫ t

0

√
V −1

u

β∑

k=1

Xt,k dW�
t,k

and it is easily seen that W is a local martingale. Furthermore,

dWt,ij =
d∑

m=1

[√
V −1

t

]

i,m

β∑

k=1

[Xt,k]m
[
dW�

t,k

]
j

=
β∑

k=1

d∑

m=1

[√
V −1

t

]

i,m
[Xt,k]m

[
dW�

t,k

]
j
.

Now we have

d[Wi,j ,Wk,l]t

=
β∑

k′=1

d∑

m′=1

[√
V −1

t

]

i,m′ [Xt,k′ ]m′
d∑

m′′=1

[√
V −1

t

]

k,m′′ [Xt,k′ ]m′′1j=l dt

=
β∑

k′=1

[√
V −1

t Xt,k′
]

i

[
X�

t,k′

√
V −1

t

]

k
1j=l dt

=
β∑

k′=1

[√
V −1

t Xt,k′X�
t,k′

√
V −1

t

]

i,k
1j=l dt

=
[√

V −1
t

β∑

k′=1

Xt,k′X�
t,k′

√
V −1

t

]

i,k

1j=l dt

= [I d ]i,k1j=l dt

= 1i=k1j=l dt. �
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11.3 Exact and Almost Exact Simulation Schemes for Wishart
Processes

In this section, we discuss two simulation schemes for Wishart processes. The first is
based on Benabid et al. (2010), Sect. 1.3, the second on Ahdida and Alfonsi (2010),
Sect. 2. We also alert the reader to Chap. 2 in Platen and Bruti-Liberati (2010),
where the simulation of the process WISd(x, d,0, I d) was discussed.

11.3.1 Change of Measure Approach

First we present the approach from Benabid et al. (2010). Recall that in Sect. 11.2,
we showed that if α assumes integer values, we can simulate a Wishart process
by simulating vectors of Ornstein-Uhlenbeck processes. The simulation of multi-
dimensional Ornstein-Uhlenbeck processes was discussed in Sects. 6.7 and 10.6.
Intuitively, the approach can be described as follows: starting under a probability
measure P , where the Wishart process is given by its general form in Eq. (11.1.1)
with α ≥ d +1, α ∈ �, we aim to find a change of probability measure, so that under
the new measure the corresponding value of α, say α̃, assumes integer values, i.e.
α̃ ∈ N and α̃ ≥ d + 1. Consequently, we can simulate the Wishart process under the
new measure by using Ornstein-Uhlenbeck processes, as explained in Sect. 11.2. In
particular, following Benabid et al. (2010), we represent α as follows,

α = K + 2ν,

where K = �α� ≥ d + 1, where �a� denotes the largest integer less than or equal
to a, and ν is a real number satisfying 0 ≤ ν ≤ 1

2 . The next result, Theorem 2 in
Benabid et al. (2010), shows how to introduce a new measure, say P ∗, under which
the Wishart process can be simulated via Ornstein-Uhlenbeck processes.

Theorem 11.3.1 Let q = K + ν − d − 1. If

ΛT = dP ∗

dP

∣∣∣∣
AT

defines the Radon-Nikodym derivative of dP ∗ with respect to dP , then

ΛT =
(

det(XT )

det(X0)

)− ν
2

exp
{
νT
(
Tr(b)

)}
exp

{
νq

2

∫ T

0
Tr
(
X−1

s a�a
)
ds

}
.

Proof The proof is given in Benabid et al. (2010), see Theorem 2. We present here
only the basic ideas of the proof. As in Definition 10.5.4 and Theorem 10.5.5, we
specify the new measure via

dP ∗

dP

∣∣
∣∣
AT

= exp

{
−ν

∫ T

0
Tr
(√

X−1
s dW sa

)
− ν2

2

∫ T

0
Tr
(
X−1

s a�a
)
ds

}
,
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where the Wishart process X ∈ WISd(x, α,b,a) satisfies under P

dXt = (αa�a + bXt + Xtb
�)dt +√Xt dW ta + a� dW�√Xt .

Under the new measure P ∗,

W ∗
t = ν

∫ t

0

√
X−1

t a� dt + W t ,

is a Brownian motion, see Benabid et al. (2010). Consequently, the dynamics of Xt

are given by

dXt

= (αa�a + bXt + Xtb
�)dt +√Xt dW ta + a� dW�

t

√
Xt

= (Ka�a + bXt + Xtb
�)dt +√Xt dW ∗

t a + a�(dW ∗
t

)�√
Xt .

As shown in Benabid et al. (2010), Sect. 1.3.1, the dynamics of the determinant of
Xt satisfy

log

(
det(XT )

det(X0)

)

= 2T
(
Tr(b)

)+ (K − d − 1)

∫ T

0
Tr
(
X−1

t a�a
)
dt + 2

∫ T

0
Tr
(√

X−1
t dW ∗

t a
)
.

Substituting, we get

dP ∗

dP

∣∣
∣∣
AT

= exp

{
−ν

∫ T

0
Tr
(√

X−1
t dW ta

)
− ν2

2

∫ T

0
Tr
(
X−1

t a�a
)
dt

}

= exp

{
−ν

∫ T

0
Tr
(√

X−1
t dW ∗

t a
)

+ ν2

2

∫ T

0
Tr
(√

X−1
t a�a

)
dt

}

= exp

{
−ν

2

(
log

(
det(XT )

det(X0)

)
− 2T

(
Tr(b)

)− (K − d − 1)

∫ T

0
Tr
(
X−1

t a�a
)
dt

)

+ ν2

2

∫ T

0
Tr
(√

X−1
t a�a

)
dt

}

=
(

det(XT )

det(X0)

)− ν
2

exp

{
T νTr(b) + ν

2
(K − d − 1 + ν)

∫ T

0
Tr
(√

X−1
t a�a

)
dt

}
.

�

Consequently, if we are interested in computing

EP

(
f (XT )

)
,

for a suitable function f (·), we use Theorem 11.3.1 and obtain
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E
(
f (XT )

)

= exp
{−νT

(
Tr(b)

)}
EP ∗

((
det(XT )

det(X0)

) ν
2

× exp

{
−ν

2
(K + ν − d − 1)

∫ T

0
Tr
(
X−1

t a�a
)
dt

}
f (XT )

)
.

The simulation of the integral, which appears in the Radon-Nikodym derivative, can
be discretized and approximated as follows:

∫ t+�t

t

Tr
(
X−1

s a�a
)
ds ∼ 1

2
�tTr

((
X−1

t + X−1
t+�t

)
a�a

)
.

11.3.2 An Exact Simulation Method

We now discuss an exact simulation scheme for Wishart processes, which is based
on Ahdida and Alfonsi (2010). To produce the result, we firstly recall the char-
acteristic function associated with WISd(x, α,b,a). The result was presented in
Gouriéroux and Sufana (2004a), see also Gouriéroux and Sufana (2004b), and we
point out that this result led to the realization that there are affine processes that
do not assume values on the Euclidean state space. Furthermore, we point out that
additional Laplace transform identities are presented in Sect. 11.4. We now follow
the presentation in Ahdida and Alfonsi (2010).

Proposition 11.3.2 Let Xt ∼ WISd(x, α,b,a; t),

q t =
∫ t

0
exp(sb)a�a exp

(
sb�)ds

and mt = exp{tb}. The Laplace transform of Xt , for v ∈Db,a;t , is given by

E
(
exp
{
Tr(vXt )

})= exp{Tr(v(I d − 2q tv)−1mtxm�
t )}

det(I d − 2q tv)
α
2

, (11.3.9)

where Db,a;t = {v ∈ Sd ,E(exp{Tr(vXt )}) < ∞} is the set of convergence of the
Laplace transform, which is given explicitly by

Db,a;t = {v ∈ Sd, ∀s ∈ [0, t], I d − 2qsv ∈ GL(d)
}
.

We remark that for v = v� + ıvI , v� ∈ Db,a;t and vI ∈ Sd , the Laplace transform
in Eq. (11.3.9) is well-defined. For Xt ∼ WISd(x, α,0, In

d ; t), we have

E
(
exp
{
Tr(vXT )

})= exp{Tr(v(I d − 2tIn
dv)−1x)}

det(I d − 2tIn
dv)

α
2

.

For a proof of Proposition 11.3.2, we refer the reader to Gouriéroux and Sufana
(2004a), and also to Ahdida and Alfonsi (2010). We remark that in Lemma 11.4.3
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and Corollary 11.4.5, we will discuss the special cases vI = 0,b = 0, and a = I d

and a ∈ GL(d), respectively.
Regarding the exact simulation procedure, we need the following result from

linear algebra, which shows how to perform an extended Cholesky decomposition.

Lemma 11.3.3 Let q ∈ S+
d be a matrix with rank r . Then there is a permutation

matrix p, an invertible lower triangular matrix cr ∈ GL(r) and kr ∈ Md−r×r such
that

pqp� = cc�, c =
(

cr 0
kr 0

)
.

The triplet (cr ,kr ,p) is called extended Cholesky decomposition of q . Besides,

c̃ =
(

cr 0

kr I d−r

)

∈ GL(d),

and we have

q = (c̃�p
)�

I r
d c̃�p,

where I r
d = [1i=j≤r ]1≤i,j≤d and r ≤ d .

Proof The lemma appeared in this form in Ahdida and Alfonsi (2010), Lemma 33,
which refers to Golub and Van Loan (1996), Algorithm 4.2.4. �

We point out that a numerical procedure to obtain such a decomposition can be
found in Golub and Van Loan (1996), see Algorithm 4.2.4. When r = d , then we
can choose p = I d , and cr is the usual Cholesky decomposition.

The following proposition, which is Proposition 9 in Ahdida and Alfonsi (2010),
sits at the heart of the approach. Essentially, it shows that by rescaling, we can rep-
resent a general Wishart process WISd(x, α,b,a; t) as one which satisfies b = 0 and
a = In

d , where n = Rank(q t ). This is crucial, as the law of WISd(x, α,0, In
d ; t) can

be simulated exactly, as we demonstrate below. As in Ahdida and Alfonsi (2010),
we remark that one can exactly compute θ t , which appears in Proposition 11.3.4,
using Lemma 11.3.3.

Proposition 11.3.4 Let t > 0, a,b ∈Md , and α ≥ d − 1. Then mt = exp{tb}, q t =∫ t

0 exp{sb}a�a exp{sb�}ds and n = rank(q t ), and there is a θ t ∈ GL(d) such that

q t = tθ tI
n
dθ�

t ,

and we have

WISd(x, α,b,a; t) d= θ tWISd

(
θ−1

t mtxm�
t

(
θ−1

t

)�
, α,0, In

d; t)θ�
t .
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Proof We present the proof from Ahdida and Alfonsi (2010), due to the impor-

tance of the result. We apply Lemma 11.3.3 to q t /t ∈ S+
d and obtain the extended

Cholesky decomposition (cn,kn,p). Also, we obtain from Lemma 11.3.3 that

c̃ =
(

cn 0

kn I d−n

)

.

We define

θ t = p−1c̃,

which by Lemma 11.3.3 is invertible. We now get that

q t = tθ tI
n
dθ�

t .

Next, we recall that for a,b, c ∈Md , the following equalities hold

det(ab) = det(ba), Tr(ab) = Tr(ba),

and also

(abc)−1 = c−1b−1a−1,

assuming that a, b, and c are invertible. We hence obtain the following string of
equalities,

det(I d − 2ıq tv) = det
(
I d − 2ıtθ tI

n
dθ�

t v
)

= det
(
θ t

(
θ−1

t − 2ıtIn
dθ�

t v
))

= det
((

θ−1
t − 2ıtIn

dθ�
t v
)
θ t

)

= det
(
I d − 2ıtIn

dθ�
t vθ t

)
.

Furthermore,

Tr
(
ıv(I d − 2ıq tv)−1mtxm�

t

)

= Tr
(
ı
(
θ−1

t

)�
θ�

t v
(
θ tθ

−1
t − 2ıtθ tI

n
dθ�

t vθ tθ
−1
t

)−1
mtxm�

t

)

= Tr
(
ı
(
θ−1

t

)�
θ�

t v
(
θ t

(
I d − 2ıtIn

dθ�
t vθ t

)
θ−1

t

)−1
mtxm�

t

)

= Tr
(
ı
(
θ−1

t

)�
θ�

t vθ t

(
I d − 2ıtIn

dθ�
t vθ t

)−1
θ−1

t mtxm�
t

)

= Tr
(
ıθ�

t vθ t

(
I d − 2ıtIn

dθ�
t vθ t

)−1
θ−1

t mtxm�
t

(
θ−1

t

)�)
.

We now let Xt ∼ WISd(x, α,b,a; t) and X̃t ∼ WISd(θ−1
t mtxm�

t (θ−1
t )�, α,0,

In
d ; t) and apply Proposition 11.3.2 to obtain

E
(
exp
{
ıTr(vXt )

})

= exp{Tr(ıv(I d − 2q t ıv)−1mtxm�
t )}

det(I d − 2q t ıv)
α
2

= exp{Tr(ıθ�
t vθ t (I d − 2ıtIn

dθ�
t vθ t )

−1θ−1
t mtxm�

t (θ−1
t )�)}

det(I d − 2ıtIn
dθ�

t vθ t )
α
2
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= E
(
exp
{
Tr
(
ıθ�

t vθ tX̃t

)})

= E
(
exp
{
Tr
(
ıvθ tX̃tθ

�
t

)})

completing the proof. �

We remark that Lemma 11.3.3 generalizes the well-known one-dimensional link
between a square-root and a squared Bessel process. For d = 1, Lemma 11.3.3 gives

WIS1(x,α, b, a; t) = a2(exp{2b} − 1)

2bt
WIS1

(
2btx

a2(1 − exp{−2bt}) , α,0,1; t
)

.

(11.3.10)

This identity can easily be obtained from the results in Sect. 3.1. Let X = {Xt, t ≥ 0}
be a WIS1(x,α, b, a), then

dXt = (αa2 + 2bXt

)
dt + 2a

√
Xt dWt .

From Proposition 3.1.5, it follows that

Xt
d= exp{2bt}X̃c(t),

where

c(t) = a2(1 − exp{−2bt})
2b

and X̃ is a squared Bessel process, i.e. a WIS1(x,α,0,1) process. We hence have
established that

WIS1(x,α, b, a; t) d= exp{2bt}WIS1
(
x,α,0,1; c(t)).

Now we apply the linear time-change, see Proposition 3.1.2,

WIS1

(
x,α,0,1; c(t)

t
t

)
d= c(t)

t
WIS1

(
xt

c(t)
, α,0,1; t

)
.

Hence

WIS1(x,α,0,1; t) = exp{2bt}WIS1
(
x,α,0,1; c(t))

= exp{2bt}c(t)
t

WIS1

(
xt

c(t)
, α,0,1; t

)
,

which is Eq. (11.3.10).
We now proceed as follows: from Proposition 11.3.4, it is clear that we can fo-

cus on the WISd(x, α,0, In
d) case. For the generator of WISd(x, α,0, In

d), we recall
a remarkable splitting property from Ahdida and Alfonsi (2010). Having split the
operator, we show that each of these operators correspond to an SDE which can be
solved explicitly.
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11.3.3 A Remarkable Splitting Property

The infinitesimal generator of the Wishart process, or rather the splitting property
thereof, plays an important role in the development of an exact simulation scheme.
We hence recall this generator, which is a special case e.g. of Corollary 4 in Ahdida
and Alfonsi (2010).

Lemma 11.3.5 On Md , we associate with WISd(x, α,b,a) the infinitesimal gen-
erator

L = Tr
([

αa�a + bx + xb�]D
)+ 2Tr

(
xDa�aD

)
,

where D = ( ∂
∂xi,j

), 1 ≤ i, j ≤ d .

The following result, which is Proposition 10 in Ahdida and Alfonsi (2010),
gives the splitting property of the operator L, for the special case WISd(x, α,0, In

d).
Recall that by Proposition 11.3.4, the study of the simulation of Wishart processes
can be reduced to this case. We use ei

d to denote the matrix

en
d = [1i=j=n]1≤i,j≤d .

We clearly have, In
d =∑n

i=1 ei
d .

Theorem 11.3.6 Let L be the generator associated with the Wishart process
WISd(x, α,0, In

d) and Li the generator associated with WISd(x, α,0, ei
d ) for i ∈

{1, . . . , d}. Then we have

L =
n∑

i=1

Li and ∀i, j ∈ {1, . . . , d}, LiLj = LjLi . (11.3.11)

Proof The first part of the proof follows immediately from Lemma 11.3.5, noting
that In

d =∑n
i=1 ei

d . The commutativity property is established in Appendix C.1 in
Ahdida and Alfonsi (2010). �

As stated in Ahdida and Alfonsi (2010), two features of Eq. (11.3.11) are impor-
tant:

• the operators Li and Lj are the same up to the exchange of coordinates i and j ;

• the processes WISd(x, α,0, ei
d ) and WISd(x, α,0, In

d) are well defined on S+
d

under the same hypothesis, namely that α ≥ d − 1 and x ∈ S+
d .

The latter property motivates the simulation scheme:

X1,x
t ∼ WISd

(
x, α,0, e1

d ; t)

X
2,X

1,x
t

t ∼ WISd

(
X1,x

t , α,0, e2
d; t)

...

Xn,...X
1,x
t

t ∼ WISd

(
Xn−1,...X

1,x
t

t , α,0, en
d; t).
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Thus, one samples Xi,... X
1,x
t

t according to the distribution at time t of a Wishart

process starting from Xi−1,...X
1,x
t

t and with parameters α, a = ei
d and b = 0.

Proposition 11.3.7 Let Xn,...X
1,x
t

t be defined as above. Then

Xn,...X
1,x
t

t ∼ WISd

(
x, α,0, In

d ; t).

Proof For a formal proof, we refer the reader to Ahdida and Alfonsi (2010), here

we just present the main ideas of the proof. Consider a smooth function f on S+
d .

Then by iterating Itô’s formula, one can establish that

E
(
f
(
Xx

t

))=
∞∑

k=0

tkLkf (x)/k!.

Next, we employ the tower property, to get

E
(
f
(
Xn,...X

1,x
t

t

))= E
(
E
(
f
(
Xn,... X

1,x
t

t

)|Xn−1,... X
1,x
t

t

))

=
∞∑

kn=0

tkn

kn!E
(
Lkn

n f
(
Xn−1,...X

1,x
t

t

))
.

Repeating this argument, we obtain

E
(
f
(
Xn,... X

1,x
t

t

))=
∞∑

k1,...,kn=0

t
∑n

i=1 ki

k1! . . . kn!L
k1
1 . . .Lkn

n f (x)

=
∞∑

k=0

tk

k! (L1 + · · · + Ln)
k = E

(
f
(
Xx

t

))
. (11.3.12)

Equality (11.3.12) relies on the identification of a Cauchy product and one uses the
fact that the operators commute. For example, for n = 2,

∞∑

k1,k2=0

tk1+k2

k1!k2!L
k1
1 L

k2
2 f (x) =

∞∑

k=0

ck,

where

ck =
k∑

l=0

albk−l

=
k∑

l=0

t l

l!
tk−l

(k − l)!L
l
1L

k−l
2

= tk

k!
k∑

l=0

k!
l!(k − l)!L

l
1L

k−l
2
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= tk

k!
k∑

l=0

(
k

l

)
Ll

1L
k−l
2

= tk

k! (L1 + L2)
k. �

Proposition 11.3.7 shows that if we can simulate WISd(x, α,0, ek
d; t), for k ∈

{1, . . . , d}, then we can simulate WISd(x, α,0, In
d ; t), which according to Proposi-

tion 11.3.4 means that we can simulate WISd(x, α,b,a; t). The next lemma shows
that we can simulate WISd(x, α,0, ei

d ; t) by simulating WISd(pkxpk, α,0, I 1
d; t),

and subsequently changing the first and the kth coordinates, where we use pk to de-
note the matrix which changes the first and the kth coordinate. The following lemma
formalizes this.

Lemma 11.3.8 Construct a matrix pk ∈ Sd , so that pk,1 = p1,k = pi,i = 1, for
i /∈ {1, k}, and pi,j = 0 otherwise. Let the law of Xt be given by WISd(pkxpk, α,0,

I 1
d ; t) and the law of X̃t by WISd(x, α,0, ek

d; t). Then

WISd

(
x, α,0, ek

d; t) d= pkWISd

(
pkxpk, α,0, I 1

d ; t)pk.

Proof This result is proven in the same way as Proposition 11.3.4. In particular, we
use the characteristic function given in Proposition 11.3.2 for the case b = 0 and
a = In

d . The proof is now easily completed by using the facts

pkI
1
dpk = ek

d and pkpk = I d ,

which then allows us to establish that

E
(
exp
{
ıTr(vpkXtpk)

})= E
(
exp
{
ıTr(vX̃t )

})
. �

11.3.4 Exact Simulation for Wishart Processes

In this subsection, we discuss how to simulate a WISd(x, α,0, I 1
d) process, with

α ≥ d − 1 and x ∈ S+
d . Due to Proposition 11.3.7 and Lemma 11.3.8, this allows us

to sample from the distribution of WISd(x, α,0, In
d ; t). As the presentation is easier,

we start with the case d = 2.
From Lemma 11.3.5, we obtain the following infinitesimal generator of

WIS2(x, α,0, I 1
2). For x ∈ S+

2 ,

Lf (x) = α∂1,1f (x) + 2x1,1∂
2
1,1f (x) + 2x1,2∂1,1∂1,2f (x) + x2,2

2
∂2

1,2f (x).

(11.3.13)

This generator is associated with an SDE that can be solved explicitly. As in Ah-
dida and Alfonsi (2010), we denote by Z1 = (Z1

t , t ≥ 0) and Z2 = {Z2
t , t ≥ 0}
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two independent standard Brownian motions. We distinguish the two cases when

x2,2 = 0 and x2,2 > 0. For x2,2 = 0, we have that x1,2 = 0, since x ∈ S+
2 . In fact,

one has

dXt,11 = α dt + 2
√

Xt,11dZ1
t , dXt,12 = 0, dXt,22 = 0, (11.3.14)

where X0 = x, has the infinitesimal generator given in Eq. (11.3.13). Clearly, Xt,11
is a squared Bessel process of dimension α, that can be sampled as discussed in
Sect. 3.1.

We now turn to the case where x2,2 > 0. The SDE

dXt,11 = α dt + 2

√

Xt,11 − X2
t,12

Xt,22
dZ1

t + 2
Xt,12

Xt,22
dZ2

t (11.3.15)

dXt,12 =√Xt,22 dZ2
t (11.3.16)

dXt,22 = 0, (11.3.17)

started at X0 = x has an infinitesimal generator as given in Eq. (11.3.13). This
system can be solved explicitly. We introduce auxiliary variables

Ut,11 = Xt,11 − (Xt,12)
2

Xt,22
, Ut,12 = Xt,12√

x2,2
, Ut,22 = x2,2,

(11.3.18)

where U0 = u. An application of the Itô formula confirms that

dUt,11 = (α − 1) dt + 2
√

Ut,11 dZ1
t , dUt,12 = dZ2

t , Ut,22 = 0.

Hence, Ut,11 is a squared Bessel process of dimension α−1, and Ut,12 is a Brownian
motion. Consequently, we simulate Xt,11, Xt,12 and Xt,22 by inverting Eq. (11.3.18)
to yield

Xt,11 = Ut,11 + (Ut,12)
2, Xt,12 = Ut,12

√
Ut,22, Xt,22 = Ut,22. (11.3.19)

The following proposition summarizes the discussion in this subsection.

Proposition 11.3.9 Let x ∈ S+
2 . Then the process defined by either Eq. (11.3.14)

or Eq. (11.3.16) when x2,2 = 0 or x2,2 > 0 respectively, has its infinitesimal gen-
erator given by (11.3.13). Moreover, the SDE given by Eq. (11.3.16) has a unique

strong solution that is given by Eq. (11.3.19) starting from u1,1 = x1,1 − x2
1,2

x2,2
≥ 0,

u1,2 = x1,2√
x2,2

, u2,2 = x2,2.

Proof This result is a special case of Theorem 13 in Ahdida and Alfonsi (2010). �

As noted in Ahdida and Alfonsi (2010), an interesting property of the result in
Proposition 11.3.9 is that the squared Bessel process is well-defined when its di-
mension α − 1 satisfies α − 1 ≥ 0, which is the same condition under which the
Wishart process WIS2(x, α,0, I 1

2) is well defined, α ≥ d − 1, since d = 2. Lastly,
we point out that the process U = {U t , t ≥ 0} has a squared Bessel process on its
diagonal and a Brownian motion on the off-diagonal.
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We now discuss how to sample from the distribution WISd(x, α,0, In
d; t), where

d ≥ 2. It is easy to check that for WISd(x, α,0, In
d), for x ∈ S+

d , the infinitesimal
generator is given by

Lf (x) = α∂1,1f (x) + 2x1,1∂
2
1,1f (x)

+ 2
∑

1≤m≤d
m �=1

x1,m∂1,m∂1,1f (x) + 1

2

∑

1≤m,l≤d
m �=1,l �=1

xm,l∂1,m∂1,lf (x).

(11.3.20)

The next theorem, which is Theorem 13 in Ahdida and Alfonsi (2010), shows how
to construct an SDE with the same infinitesimal generator as Eq. (11.3.20) and that
it can be solved explicitly. Recall that for the case d = 2, we distinguished two cases
depending on whether x2,2 = 0 or x2,2 > 0. For the general case, the SDE depends
on the rank of the submatrix [xi,j ]2≤i,j≤d . We set

r = Rank
([xi,j ]2≤i,j≤d

) ∈ {0, . . . , d − 1}.
First we consider the case ∃cr ∈ Gr that is lower triangular, kr ∈Md−1−r×r , so that

[xi,j ]2≤i,j≤d =
(

cr 0

kr 0

)(
c�
r k�

r

v0 0

)

=: cc�. (11.3.21)

The following theorem formally applies to the case where X0 = x satisfies
(11.3.21). However, the subsequent Lemma 11.3.11 shows that such a decomposi-
tion can always be obtained by permuting the coordinates {2, . . . , d}. As in Ahdida
and Alfonsi (2010), we also abuse the notation as follows: when r = 0, we still as-
sume that Eq. (11.3.21) holds, in particular with c = 0. When r = d − 1, we recover
the usual Cholesky decomposition of [xi,j ]2≤i,j≤d .

Theorem 11.3.10 Let us consider x ∈ S+
d such that Eq. (11.3.21) holds. Let Z =

{Zt = (Z1
t ,Z

2
t , . . . ,Z

r+1
t ), t ≥ 0} be a vector valued standard Brownian motion.

Then the following SDE, where
∑r

k=1 = 0, for r = 0,

dXt,11 = α dt + 2

√√√√Xt,11 −
r∑

k=1

(
r∑

l=1

[
c−1
r

]
k,l

Xt,1(l+1)

)2

dZ1
t

+ 2
r∑

k=1

r∑

l=1

[
c−1
r

]
k,l

Xt,1(l+1) dZk+1
t

dXt,1i =
r∑

k=1

ci−1,kdZk+1
t , i = 2 . . . , d

dXt,lk = 0, k, l = 2, . . . , d,
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has a unique strong solution X = {Xt , t ≥ 0} starting from x. It assumes values

in S+
d and has the infinitesimal generator L given in Eq. (11.3.20). Moreover, the

explicit solution is given by

Xt = C

⎛

⎜
⎝

Ut,11 +∑r
k=1(Ut,1(k+1))

2 [Ut,1(l+1)]�1≤l≤r 0

[Ut,1(l+1)]1≤l≤r I r 0

0 0 0

⎞

⎟
⎠C�, (11.3.22)

where

dUt,11 = (α − r) dt + 2
√

Ut,11 dZ1
t , u1,1 = x1,1 −

r∑

k=1

u2
1,k+1 ≥ 0

dUt,1(l+1) = dZl+1
t , 1 ≤ l ≤ r, [u1,l+1]1≤l≤r = c−1

r [x1,l+1]1≤l≤r ,

and

C =
⎛

⎜
⎝

1 0 0

0 cr 0

0 kr I d−r−1

⎞

⎟
⎠ .

When r = 0, then Eq. (11.3.22) should simply be read as

Xt =
⎛

⎜
⎝

Ut,11 0 0

0 0 0

0 0 0

⎞

⎟
⎠ .

Regarding the matrix U t , we point out that the algorithm only accesses the first row
and column of this matrix. As in Ahdida and Alfonsi (2010), Xt can be seen as a
function of U t by setting

Ut,ij = ui,j = xi,j , i, j ≥ 2, Ut,1i = u1,i = 0, r + 1 ≤ i ≤ d.

For a proof of Theorem 11.3.10, we refer the reader to Ahdida and Alfonsi (2010).
We point out that sampling from the WISd(x, α,0, I 1

d ; t) distribution amounts to
sampling a non-central chi-squared random variable and a Gaussian random vari-
able. As for the d = 2 case, we note that the condition ensuring that the squared
Bessel process U1,1 is well-defined for all r ∈ {0, . . . , d − 1} is α − d − 1 ≥ 0,
the same as for the Wishart process. We now recall that the procedure in Theo-

rem 11.3.10 assumed that x ∈ S+
d satisfied Eq. (11.3.21). This assumption can be

relaxed using the extended Cholesky decomposition from Lemma 11.3.3.

Lemma 11.3.11 Let X = {Xt , t ≥ 0} be a WIS(x, α,0, I 1
d) process and (cr ,kr ,p)

be an extended Cholesky decomposition of [xi,j ]2≤i,j≤d obtained from
Lemma 11.3.3. Then

π =
(

1 0

0 p

)
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is a permutation matrix, and

X = {Xt , t ≥} d= π�WISd

(
πxπ�, α,0, I 1

d

)
π ,

and

[(
πxπ�)

i,j

]
2≤i,j≤d

=
(

cr 0

kr 0

)(
c�
r k�

r

0 0

)

satisfies (11.3.21).

Proof The first part of the proof can be completed in the same way as the proof
of Proposition 11.3.4, namely using characteristic functions. The second part of the
proof is an immediate consequence of Lemma 11.3.3. �

Hence, using Theorem 11.3.10 and Lemma 11.3.11, we have a simple way
of constructing an SDE that has the generator L from (11.3.13) for any initial

condition x ∈ S+
d . It means that we can sample exactly the Wishart distribution

WISd(x, α,0, I 1
d; t), which we summarize in Algorithm 11.1.

As discussed in Ahdida and Alfonsi (2010), the computational cost of Algo-
rithm 11.1 is O(d3), as this is the computational cost of performing the extended
Cholesky decomposition.

We recall that the splitting property established in Theorem 11.3.6 means
that if we can sample WISd(x, α,0, ei

d ; t), for i = 1, . . . , n, we can sample
WISd(x, α,0, In

d; t). However, Lemma 11.3.8 established that sampling WISd(x, α,

0, ei
d ; t) amounts to sampling WISd(x, α,0, I 1

d ; t), which we discussed in Theo-
rem 11.3.10 and Algorithm 11.1. This is illustrated in Algorithm 11.2.

Algorithm 11.2 performs Algorithm 11.1 n times, resulting in a computational
complexity of O(nd3), which is bounded by O(d4). Concluding this section, we
present Algorithm 11.3, which shows how to sample WISd(x, α,b,a; t), which
uses Proposition 11.3.4 to reformulate the problem into the one solved by Algo-
rithm 11.2. We remind the reader that this algorithm is applicable if α ≥ d − 1,
which is also the requirement for the existence of a unique weak solution of the
SDE (11.1.1) describing the Wishart process.

11.4 Affine Transforms of the Wishart Process

In this section, we discuss the explicit computation of affine transforms associated
with Wishart processes. These results are crucial, as they make Wishart processes
useful for practical applications. We present two approaches to this problem: the first
is based on the linearization procedure presented in Chap. 9. As discussed below, it
turns out that the Riccati equations associated with affine transforms of the Wishart
process can be linearized allowing us to compute the affine transform. Consequently,
we present an alternative approach, which generalizes a result from Bru (1991), and,
following Bru, we refer to it as Cameron-Martin formula. The section concludes
with a comparison of the two approaches.
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Algorithm 11.1 Exact Simulation for the operator L1

Require: x ∈ S+
d , α ≥ d − 1 and t > 0

1: Compute the extended Cholesky decomposition (cr ,kr ,p) of [xi,j ]2≤i,j≤d

given by Lemma 11.3.3, r ∈ {0, . . . , d − 1}
2: Set

π =
(

1 0
0 p

)
,

x̃ = πxπ�,

[u1,l+1]1≤l≤r = c−1
r [x̃1,l+1]1≤l≤r ,

u1,1 = x̃1,1 −
r∑

k=1

(u1,k+1)
2 ≥ 0.

3: Sample independently r normal variates G2, . . . ,Gr+1 ∼ N(0,1) and a non-
central chi-square random variate χ2

α−r (
u1,1
t

), i.e. a non-central chi-square dis-
tributed random variable with α − r degrees of freedom and non-centrality pa-
rameter u1,1

t
.

4: Set Ut,1(l+1) = u1,l+1 + √
tGl+1

5: Set Ut,11 = tχ2
α−r (

u1,1
t

)

6: return X =

π�C

⎛

⎜
⎝

Ut,11 +∑r
k=1(Ut,1(k+1))

2 [Ut,1(l+1)]�1≤l≤r 0

[Ut,1(l+1)]1≤l≤r I r 0

0 0 0

⎞

⎟
⎠C�π ,

where

C =
⎛

⎝
1 0 0
0 cr 0

0 kr I d−r−1

⎞

⎠ .

Algorithm 11.2 Exact Simulation for WISd(x, α,0, In
d ; t)

Require: x ∈ S+
d , n ≤ d , α ≥ d − 1 and t > 0

1: Set y = x.
2: for k = 1 to n do
3: Construct the permutation matrix p by setting pk,1 = p1,k = pi,i = 1 for

i /∈ {1, k}, and pi,j = 0 otherwise.
4: Set y = pYp, where Y is sampled according to WISd(pyp, α,0, I 1

d ; t) by
using Algorithm 11.1.

5: end for
6: return X = y.
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Algorithm 11.3 Exact Simulation for WISd(x, α,b,a; t)
Require: x ∈ S+

d , α ≥ d − 1, a,b ∈Md and t > 0
1: Calculate q t = ∫ t

0 exp{sb}a�a exp{sb�}ds and (cn,kn,p) an extended
Cholesky decomposition of q t /t .

2: Set

θ t = p−1

(
cn 0

kn I d−n

)

and mt = exp{tb}.
3: return X = θ tYθ�

t , where Y ∼ WISd(θ−1
t mtxm�

t (θ−1
t )�, α, θ , In

d; t) is sam-
pled by Algorithm 11.2.

11.4.1 Linearization Applied to Wishart Processes

We assume the following dynamics for the Wishart process,

dXt = (αa�a + bXt + Xtb
�)dt + (√Xt dW ta + a� dW t

√
Xt

)
, (11.4.23)

and the infinitesimal generator is given by

L = Tr
([

αa�a + bx + xb�]D
)+ 2Tr

(
xDa�aD

)
,

see Lemma 11.3.5. As in Chap. 9, we study the discounted conditional characteristic
function,

ΨX(u,x, t, τ )

= E

(
exp

{
−
∫ T

t

(
η0 + Tr(ηXs)

)
ds

}
exp
{
Tr(ıuXT )

}|At

)

= exp
{
V 0(τ, ıu) − Tr

(
V(τ, ıu)Xt

)}
,

where τ = T − t . The Feynman-Kac argument now yields, where we use Ψ =
ΨX(u,x, t, τ ),

∂Ψ

∂τ
= LΨ − (η0 + Tr(ηx)

)

= Tr
((

αa�a + bx + xb�)DΨ + 2xDa�aDΨ
)

− (η0 + Tr(ηx)
)
.

On the other hand,

∂Ψ

∂τ
= d

dτ
V 0(τ ) − Tr

(
d

dτ
V(τ )x

)
,
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which yields

dV 0(τ )

dτ
− Tr

(
d

dτ
V(τ )x

)

= Tr
((

αaa� + bx + xb�)DΨ + 2xDa�aDΨ
)

− (η0 + Tr(ηx)
)

= Tr
((

αa�a + bx + xb� )(−V) + 2xVa�aV
)

− (η0 + Tr(ηx)
)
,

subject to the initial conditions

V 0(0) = 0, V(0) = −ıu.

By identifying the coefficients of x, we obtain the matrix Riccati ODE satisfied by
V(τ ):

− d

dτ
V(τ ) = −V(τ )b − b�V(τ ) + 2V(τ )a�aV(τ ) − η, (11.4.24)

and

dV 0(τ )

dτ
= Tr

(
αa�a

(−V(τ )
))− η0. (11.4.25)

From Eq. (11.4.24) we get

dV(τ )

dτ
= V(τ )b + b�V(τ ) − 2V(τ )a�aV(τ ) + η. (11.4.26)

We now employ the linearization idea from Chap. 9, and set

V(τ ) = F(τ )−1G(τ ),

where F(τ ) ∈ GL(d) and G(τ ) ∈Md . Now

d

dτ

(
F(τ )V(τ )

)−
(

d

dτ
F(τ )

)
V(τ ) = F(τ )

d

dτ
V(τ ),

and substituting (11.4.26), we get

d

dτ

(
F(τ )V(τ )

)− d

dτ
F(τ )V(τ ) = F(τ )V(τ )b + F(τ )b�V

− 2F(τ )V(τ )a�aV(τ ) + F(τ )η.

Matching coefficients, we obtain

d

dτ
G(τ ) = G(τ )b + F(τ )η

d

dτ
F(τ ) = −F(τ )b� + 2G(τ )a�a,

(11.4.27)

which can be written as

d

dτ

[
G(τ ) F(τ )

]= [G(τ ) F(τ )
]
[

b 2a�a

η −b�

]

.
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The solution is obtained through exponentiation,

[
G(τ ) F(τ )

]= [G(0) F(0)
]

exp

{

τ

[
b 2a�a

η −b�

]}

= [V(0) I d

]
exp

{

τ

[
b 2a�a

η −b�

]}

= [(V(0)A11(τ ) + A21(τ )
) (

V(0)A12(τ ) + A22(τ )
)]

,

where we use the notation
[

A11(τ ) A12(τ )

A21(τ ) A22(τ )

]

:= exp

{

τ

(
b 2a�a

η −b�

)}

for the matrix exponential. Hence

V(τ ) = [V(0)A12(τ ) + A22(τ )
]−1[V(0)A11(τ ) + A21(τ )

]

= [−ıuA12(τ ) + A22(τ )
]−1[−ıuA11(τ ) + A21(τ )

]
,

since V(0) = −ıu. As usual, a direct integration allows us to compute

d

dτ
V 0(τ ) = −Tr

(
αa�aV(τ )

)− η0, (11.4.28)

which implies that

V 0(τ ) = −
∫ τ

0
Tr
(
αa�aV(s)

)
ds − η0τ. (11.4.29)

Performing the integration in (11.4.29) can be cumbersome, hence we employ the
following technique from Da Fonseca et al. (2008c). Equation (11.4.27) can be
rewritten as

1

2

(
d

dτ
F(τ ) + F(τ )b�

)(
a�a

)−1 = G(τ )

and from

V(τ ) = F−1(τ )G(τ ),

we obtain

F(τ )V(τ ) = 1

2

(
d

dτ
F(τ ) + F(τ )b�

)(
a�a

)−1
,

which is equivalent to

V(τ ) = 1

2

(
F−1(τ )

d

dτ
F(τ ) + b�

)
(
a�a

)−1
,

which we substitute into (11.4.28) to obtain,
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d

dτ
V 0(τ ) = −Tr

(
αa�a

1

2

(
F−1(τ )

d

dτ
F(τ ) + b�

)(
a�a

)−1
)

− η0

= −α

2
Tr

(
F−1(τ )

d

dτ
F(τ ) + b�

)
− η0,

which gives

V 0(τ ) = −α

2
Tr
(
log
(
F(τ )

)+ b�τ
)− η0τ.

We conclude that the solution can be explicitly represented in terms of blocks of a
matrix exponential. Before discussing this solution further, we present a competing
method from Gnoatto and Grasselli (2011) and conclude this section with a com-
parison.

11.4.2 Cameron-Martin Formula

In this subsection, we present an alternative derivation of the Laplace transform.
The result is presented in Gnoatto and Grasselli (2011), and it generalizes a result
from Bru (1991), namely Eq. (4.7) in Bru (1991). We first state the result and then
compare it with the one from the preceding subsection.

Theorem 11.4.1 Let X ∈ WISd(X0, α,b,a), assume that a ∈ GL(d),

b�(a�a
)−1 = (a�a

)−1
b,

let α ≥ d + 1, and define the set of convergence of the Laplace transform

Dt =
{
w,v ∈ Sd : E

(
exp

{
−Tr

(
wXt +

∫ t

0
vXu du

)})
< ∞

}
.

Then for all w,v ∈ Dt the joint moment generating function of the process and its
integral is given by:

E

(
exp

{
−Tr

(
wXt +

∫ t

0
vXu du

)})

= det
(
exp{−bt}(cosh(

√
v̄t) + sinh(

√
v̄t)k

)) α
2

× exp

{
Tr

((
a−1

√
v̄k(a�)−1

2
− (a�a)−1b

2

)
X0

)}
,

where the matrices k, v̄, w̄ are given by

k = −(√v̄ cosh(
√

v̄t) + w̄ sinh(
√

v̄t)
)−1(√

v̄ sinh(
√

v̄t) + w̄ cosh(
√

v̄t)
)
,

v̄ = a
(
2v + b�a−1(a�)−1

b
)
a�,

w̄ = a
(
2w − (a�a

)−1
b
)
a�.
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The proof of Theorem 11.4.1 can be found in Gnoatto and Grasselli (2011), it
consists of three parts. The first establishes the result for WISd(X0, α,0, I d), and
consequently the conclusion of the first part is extended to WISd(X0, α,0,a). The
final part establishes the result for WISd(X0, α,b,a). Here, we present the first two
parts of the proof, for the third part, we refer the reader to Gnoatto and Grasselli
(2011). Before proceeding with the proof, we recall two results from Bru (1991).
The next result is Proposition 2 in Bru (1991).

Lemma 11.4.2 If Φ : �+ → S+
d is continuous, constant on [t,∞) and such that

its right derivative (in the distribution sense) Φ ′ : �+ → S−
d is continuous, with

Φ(0) = I d , and Φ ′(t) = 0, then for every Wishart process X ∈ WISd(x, α,0, In
d),

we have

E

(
exp

{
−1

2
Tr

(∫ t

0
Φ ′′(s)Φ−1(s)Xs ds

)})

= (det Φ(t)
) α

2 exp

{
1

2
Tr
(
X0Φ

+(0)
)
}
,

where

Φ+(0) = lim
t↘t

Φ ′(t).

Also, we recall Theorem 3 from Bru (1991), see also Proposition 11.3.2.

Lemma 11.4.3 Let X be a WISd(X0, α,0, I d) process, where α ≥ d + 1, and u ∈
S+

d , then

E
(
exp
{−Tr(uXt )

})= (det(I d + 2tu)
) α

2 exp
{−Tr

(
X0(I d + 2tu)−1u

)}
.

We now establish the result from Theorem 11.4.1 for a WISd(x, α,0, I d) process,
which is Proposition 2 in Gnoatto and Grasselli (2011).

Proposition 11.4.4 Let Σ ∈ WISd(x, α,0, I d), then

E

(
exp

{
−1

2
Tr

(
wΣ t +

∫ t

0
vΣ s ds

)})

= det
(
cosh(

√
vt) + sinh(

√
vt)k

) α
2 exp

{
1

2
Tr(Σ0

√
vk)

}
,

where k is given by

k = −(√v cosh(
√

vt) + w sinh(
√

vt)
)−1(√

v sinh(
√

vt) + w cosh(
√

vt)
)
.

(11.4.30)

Proof By Lemma 11.4.2, we have to solve the ODE:
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Φ ′′(s) = vΦ(s), s ∈ (0, t),

Φ
′−(t) = −wΦ(t), (11.4.31)

Φ(0) = I d .

The general solution of (11.4.31) is given by

Φ(s) = cosh(
√

vs)k1 + sinh(
√

vs)k.

From the condition Φ(0) = I d , we get k1 = I d . In order to determine k, we look at
the boundary condition at Φ

′−(t) and hence obtain
√

v sinh(
√

vt) + √
v cosh(

√
vt)k = −w

(
cosh(

√
vt) + sinh(

√
vt)k

)
.

This yields the value of k given in Eq. (11.4.30). Next, we compute the derivative
of Φ ,

Φ ′(s) = √
v sinh(

√
vs) + √

v cosh(
√

vs)k,

which yields

lim
s↘0

Φ ′(s) = √
vk.

Since Φ is constant on [t,∞), we obtain that Φ(∞) = Φ(t), which completes the
proof. �

Now we attend to the second part.

Corollary 11.4.5 Let X ∈ WISd(x, α,0,a), where α ≥ d + 1 and a ∈ GL(d), and

let u ∈ S+
d . Then

E
(
exp
{−Tr(uXt )

})

= (det
(
I d + 2ta�au

))− α
2 exp

{−Tr
(
u
(
I d + 2ta�au

)−1
x
)}

.

Proof Firstly, we note that since a ∈ GL(d), a�a ∈ S+
d , and since u ∈ S+

d , we
have that I d + 2ta�au ∈ S+

d . Furthermore, as demonstrated in Sect. 11.2, for
Σ ∈ WISd(x, α,0, I d), we can set

Xt = a�Σ ta, t ≥ 0

to obtain

dXt =√Xt dW̃ ta + a�dW̃
�
t

√
Xt + αa�a dt,

where dW̃ t = √
X

−1
t Q�√

Σ t dW t is a Brownian motion, and W denotes the
Brownian motion driving Σ . We apply Lemma 11.4.3 and use the fact that Σ0 =
(a�)−1X0a

−1 to obtain
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E
(
exp
{−Tr(uXt )

})= E
(
exp
{−Tr

(
u
(
a�Σ ta

))})

= (det
(
I d + 2taua�))− α

2

× exp
{−Tr

((
a�)−1

X0a
−1(I d + 2taua�)−1

aua�)}

= (det
(
I d + 2taua�))− α

2

× exp
{−Tr

(
X0a

−1(I d + 2taua�)−1
au
)}

.

We now use Sylvester’s determinant theorem,

det(I d + AB) = det(I d + BA),

to obtain

det
(
I d + 2taua�)= det

(
I d + 2ta�au

)
.

Since

a−1(I d + 2taua�)−1
au = u

(
I d + 2ta�au

)−1
,

we compute

E
(
exp
{−Tr(uXt )

})

= (det
(
I d + 2ta�au

))− α
2 exp

{−Tr
(
X0u

(
I d + 2ta�au

)−1)}

= (det
(
I d + 2ta�au

))− α
2 exp

{−Tr
(
u
(
I d + 2ta�au

)−1
X0
)}

. �

We remark that Corollary 11.4.5 is a special case of Proposition 11.3.2. The third
step, where one incorporates the drift in Eq. (11.4.23), is completed by employing
the Girsanov theorem, we refer the reader to Gnoatto and Grasselli (2011).

11.4.3 A Comparison of the Two Approaches

In this subsection, we recall the discussion in Sect. 3.4 of Gnoatto and Grasselli
(2011), which compares the linearization approach to the Cameron-Martin formula.
First, in terms of precision and execution speed, the two methods produce identical
results. However, the disadvantage of the linearization method is that the functions
F (τ ) and G(τ ) are expressed in terms of matrix exponentials, and the matrix ex-
ponential depends on the parameters a and b of the Wishart process. Furthermore,
to obtain the function V 0(τ ), one multiplies the remaining parameter α by the log-
arithm of F (τ ), and F (τ ) depends on the matrix exponential. As the matrix expo-
nential is a symbolic expression, it means that the linearization method might be
less useful if we want to understand the implications of the various model param-
eters, which is particularly important in applications. The result in Theorem 11.4.1
is strictly explicit, and furthermore it involves exponentials of d × d matrices, as
opposed to the linearization method, which doubles the dimensionality of the prob-
lem, resulting in a 2d × 2d matrix. Also, the Cameron-Martin formula does not
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require the computation of the matrix logarithm. Finally, with regards to the com-
putation of sensitivities, which play an important role in finance, we can expect the
Cameron-Martin formula to be more useful.

11.5 Two Heston Multifactor Volatility Models

In this section, we discuss two Heston multifactor volatility models, firstly a single-
asset and secondly a multi-asset model, which were presented in Da Fonseca et al.
(2007) and Da Fonseca et al. (2008c), respectively. The aim of this section is to
illustrate how to exploit the tractability of the Wishart process. For each of the
two models, we firstly discuss how to correlate the Brownian motion driving the
asset, or assets respectively, and the Brownian motion driving the Wishart pro-
cess, to retain the affinity of the model. Finally, we find that once we have an
explicit representation of the infinitesimal generator, we can immediately employ
the approach from Sect. 11.4 to compute the characteristic function. We remark
that we employ linearization, as it follows easily from the presentation. However,
instead the Cameron-Martin formula could have been used, see Gnoatto and Gras-
selli (2011), where the two models were studied using the Cameron-Martin for-
mula.

11.5.1 A Single Asset Heston Multifactor Volatility Model

In this subsection, we present a single-asset model, in which we describe the
stochastic volatility via a Wishart process. This model can be considered to be the
natural extension of the Heston model, as discussed in Sect. 9.5. Following Da Fon-
seca et al. (2008c), we model the risky asset under an assumed risk-neutral measure
via the SDE,

dSt

St

= r dt + Tr(
√

Xt dZt ), (11.5.32)

where r denotes the risk-free interest rate which, for ease of presentation, is assumed
to be constant. The process Z = {Zt , t ≥ 0} is a matrix-valued Brownian motion,
X = {Xt , t ≥ 0} is a WISd(x, α,b,a) process, given by

dXt = (αa�a + bXt + b�Xt

)
dt + (√Xt dW ta + a� dW�

t

√
Xt

)
, (11.5.33)

where α ≥ d − 1, b ∈Md , and a ∈ GL(d). Following Da Fonseca et al. (2008c), we

assume b ∈ S−
d , to obtain the mean-reverting behavior of X. We now turn to the cor-

relation structure of the Brownian motions Z and W . In particular, Da Fonseca et al.
(2008c) introduce a correlation matrix R ∈ Md to obtain the following correlation
structure,

Zt = W tR
� + B t

√
I − RR�, t ≥ 0, (11.5.34)
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where B = {B t , t ≥ 0} is a Brownian motion independent of W . The next proposi-
tion establishes that Z is a Brownian motion.

Proposition 11.5.1 The process Z = {Zt , t ≥ 0} defined in Eq. (11.5.34) is a Brow-
nian motion.

Proof We use Theorem 10.4.5 to obtain the proof. Clearly, the process Z is a local
martingale. Furthermore,

dZt,ij =
d∑

k=1

dWt,ik Rj,k +
d∑

k=1

dBt,ik

(√
I − RR�)

k,j
.

Hence we have

d[Z·,ij ,Z·,kl]t

=
(

d∑

m=1

Rj,mRl,m + (
√

I − RR�)
m,j

(√
I − RR�)

m,l

)

1i=k dt

= I j,l1i=k dt

= 1i=k1j=l dt,

which completes the proof. �

The next result discusses the correlation structure of Zt and W t .

Proposition 11.5.2 The covariance of Zt and W t is given by

Cov(Zt , W t ) = tI d ⊗ R. (11.5.35)

Proof From Definition 10.3.7, we have

Cov(Zt ,W t ) = E
(
vec
(
Z�

t

)
vec
(
W�

t

)�)− E
(
vec
(
Z�

t

))
E
(
vec
(
W�

t

))�

= E
(
vec
(
RW�

t

)
vec
(
W�

t

)�)
.

We find it convenient to denote the i-th row of W t by wi , and regarding the matrix
RW�

t , we denote its j -th column by rj , so that

rj =

⎡

⎢⎢⎢
⎢⎢
⎢
⎣

∑d
k=1 R1,kWj,k

∑d
k=1 R2,kWj,k

...
∑d

k=1 Rd,kWj,k

⎤

⎥⎥
⎥
⎥
⎥⎥
⎦

.
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Hence

E
(
vec
(
RW�

t

)
vec
(
W�

t

)�)= E

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣

r1

...

rd

⎤

⎥⎥
⎦ [w1 · · ·wd ]

⎞

⎟⎟
⎠

= E

⎛

⎜⎜
⎝

⎡

⎢⎢
⎣

r1w1 · · · r1wd

...
. . .

...

rdw1 · · · rdwd

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

=

⎡

⎢
⎢
⎣

tI1,1R · · · tI1,dR

...
. . .

...

tId,1R · · · td,dR

⎤

⎥
⎥
⎦ (11.5.36)

= tI d ⊗ R.

To see equality (11.5.36), we consider an element of the matrix r lwm, say the ele-
ment [r lwm]i,j , where i, j, l,m ∈ {1, . . . , d}. This element admits the representation

d∑

k=1

Ri,kWt,lkWt,mj .

Consequently,

E

(
d∑

k=1

Ri,kWt,lkWt,mj

)

=
{

0 for l �= m

tRi,j for l = m. �

Hence, R, which is a d × d matrix, summarizes the covariance structure, which
is, in principle, a matrix of size d2 × d2. We choose to summarize the covariance
structure by R, as it preserves the affine structure of the model, which is crucial for
analytical tractability.

We now turn to option pricing. It is convenient to work with the logarithm of the
stock price, i.e. Yt = log(St ), which satisfies the SDE

dYt =
(

r − 1

2
Tr(Xt )

)
dt + Tr

(√
Xt

(
dW t R

� + dB t

√
I d − RR�)).

As in Da Fonseca et al. (2008c), we work with the infinitesimal generator of the
process, which then allows us to employ linearization to compute the Laplace trans-
form. Alternatively, the Cameron-Martin formula could have been employed, we
refer the reader to Gnoatto and Grasselli (2011) for this approach. Recall that the
Laplace transform is given by

Ψγ,t (τ ) = E
(
exp{γ Yt+τ }

)

= exp
{
Tr
(
A(τ )Xt

)+ b(τ)Yt + c(τ )
}
, (11.5.37)

where γ ∈ �, A(τ ) ∈ Md , b(τ) ∈ � and c(τ ) ∈ �. We use LX to denote the in-
finitesimal generator of X, and LY,X to denote the infinitesimal generator of (Y,X).
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Recall from Lemma 11.3.5 that the infinitesimal generator of X is given by

LX = Tr
([

αa�a + bx + xb�]D + 2xDa�aD
)
,

where D is a matrix differential operator with Di,j = ( ∂
∂xi,j

), and from Da Fonseca
et al. (2008c), Proposition 3.1, we obtain the infinitesimal generator of (Yt ,Xt ),
which is given by

LY,X =
(

r − 1

2
Tr(x)

)
∂

∂y
+ 1

2
Tr(x)

∂2

∂y2

+ Tr
((

αa�a + bx + xb�)D + 2xDa�aD
)

+ 2Tr(xRQD)
∂

∂y
. (11.5.38)

Using the Feynman-Kac argument, we have

∂Ψγ,t

∂τ
= LY,XΨγ,t

and

Ψγ,t (0) = exp{γ Yt }.
Using Eq. (11.5.38), we obtain that

∂Ψγ,t

∂τ
=
(

r − 1

2
Tr(x)

)
∂Ψγ,t

∂y
+ 1

2
Tr(x)

∂2Ψγ,t

∂y2

+ Tr
((

αa�a + bx + xb�)DΨγ,t

+ 2
(
xDa�aD

)
Ψγ,t

)

+ 2Tr(xRaD)
∂Ψγ,t

∂τ
,

subject to A(0) = 0, b(0) = γ , and c(0) = 0. From Eq. (11.5.37), we obtain that

∂Ψγ,t

∂τ
= Tr

(
d

dτ
A(τ )x

)
+ d

dτ
b(τ)y + d

dτ
c(τ ).

Identifying the coefficients of y, we obtain

d

dτ
b(τ) = 0,

hence b(τ) = γ , for τ ≥ 0. The remaining part of the argument is identical to the lin-
earization procedure employed in Sect. 11.4. We obtain the following matrix Riccati
ODE satisfied by A(τ ),

d

dτ
A(τ ) = A(τ )b + (b� + 2γRa

)
A(τ ) + 2A(τ )a�aA(τ ) + γ (γ − 1)

2
I d,

subject to the condition A(0) = 0. Again, we compute c(τ ) by direct integration,

d

dτ
c(τ ) = Tr

(
αa�aA(τ )

)+ γ r,
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subject to c(0) = 0. As in Sect. 11.4, we double the dimension of the problem, by
setting

A(τ ) = F−1(τ )G(τ ),

where F(τ ) ∈ GL(d), G(τ ) ∈Md . Hence we conclude that
[
G(τ ) F(τ )

]= [(A(0)A11(τ ) + A21(τ )
) (

A(0)A12(τ ) + A22(τ )
)]

,

where
[

A11(τ ) A12(τ )

A21(τ ) A22(τ )

]

:= exp

{

τ

(
b −2a�a

γ (γ−1)
2 I d −(b� + 2γRa)

)}

.

We conclude that

A(τ ) = (A(0)A12(τ ) + A22(τ )
)−1(A(0)A11(τ ) + A21(τ )

)

= (A22(τ )
)−1A21(τ ),

since A(0) = 0. Lastly, we conclude that

c(τ ) = −α

2
Tr
(
log
(
F(τ )

)+ (b� + 2γRa
)
τ
)+ γ rτ,

which, as in Sect. 11.4, avoids a numerical integration to compute c(τ ).

11.5.2 A Heston Multi-asset Multifactor Volatility Model

We now discuss Wishart processes in a multi-asset framework. The model presented
in this subsection first appeared in Da Fonseca et al. (2007) and extends the models
presented in Sect. 6.7. Under an assumed risk-neutral measure, we use the following
model for the vector of risky assets,

dSt = Diag(St )(r1dt +√Xt dZt ), (11.5.39)

where 1 = (1, . . . ,1)�, and Z = {Zt , t ≥ 0} ∈ �d is a vector-valued Brownian mo-
tion. The process X = {Xt , t ≥ 0} is a WISd(x, α,b,a) process with dynamics

dXt = (αa�a + bXt + Xtb
�)dt +√Xt dW ta + a� dW�

t

√
Xt ,

where α ≥ d −1, b ∈Md and a ∈ GL(d). We now make the following assumptions,
cf. Da Fonseca et al. (2007):

Assumption 11.5.3 The following assumptions are in force in this subsection:

1. the continuous-time diffusion model for S is a linear-affine stochastic factor
model with respect to the log-returns and variance-covariance factors X·,kl ;

2. the stochastic covariance matrix is given by the Wishart process X;
3. the Brownian motion driving the assets’ returns and those driving the instanta-

neous covariance matrix are linearly correlated.

Now we discuss how the Brownian motions Z = {Zt , t ≥ 0} and W = {W t ,

t ≥ 0} can be correlated in order to satisfy Assumptions 1–3 above.
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First we introduce d real-valued matrices Rk ∈Md , k = 1, . . . , d , so that

dZk
t =

√
1 − Tr

(
RkR

�
k

)
dBk

t + Tr
(
Rk dW�

t

)
, k = 1, . . . , d,

where the vector Brownian motion B = (B1, . . . ,Bd) is independent of W . We
point out that for a generic choice of Rk the model in Eq. (11.5.39) need not remain
affine. Instead, we show the following result from Da Fonseca et al. (2007), which
explains how the Brownian motions can be correlated. For a proof, we refer to Da
Fonseca et al. (2007).

Proposition 11.5.4 Assumptions 1 and 2 imply that for k = 1, . . . , d , the correla-
tion matrix Rk is given by

Rk =
⎛

⎝
0 0 0

ρ1 · · · ρd

0 0 0

⎞

⎠← k-th row, (11.5.40)

where ρi ∈ [−1,1], i = 1, . . . , d and ρ�ρ ≤ 1.

Equation (11.5.40) implies that the Brownian motion driving the asset vector has
to satisfy

dZt =
√

1 − ρ�ρ dB t + dW t ρ.

In particular, for d = 2, this means that

dZt,1 =
√

1 − (ρ2
1 + ρ2

2

)
dBt,1 + (dWt,11 ρ1 + dWt,12 ρ2)

dZt,2 =
√

1 − (ρ2
1 + ρ2

2

)
dBt,2 + (dWt,21ρ1 + dWt,22 ρ2).

So all elements of the correlation vector ρ = (ρ1, ρ2) feature in both Brownian
motions, Z1 and Z2.

We now turn to derivative pricing. Recall from Lemma 11.3.5 that the infinitesi-
mal generator of the Wishart process X is given by

LX = Tr
([

αa�a + bx + xb�]D + 2xDa�aD
)
,

and furthermore, the infinitesimal generator of the asset returns, Y t = log(St ), is
given by

LY = ∇y

(
r1 − 1

2
Vec(xii)

)
+ 1

2
∇yx∇�

y

=
d∑

i=1

(
r − 1

2
xii

)
∂

∂yi

+ 1

2

d∑

i,j=1

xij

∂2

∂yi∂yj

,

where ∇y denotes the gradient operator, ∇y = ( ∂
∂y1

, . . . , ∂
∂yd

). Lastly, from Proposi-
tion 4 in Da Fonseca et al. (2007), we have
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LY ,X = Tr
((

αa�a + bx + xb�)D + 2xDa�aD
)

+ ∇y

(
r1 − 1

2
Vec(xii)

)
+ 1

2
∇yx∇�

y

+ 2Tr
(
Da�ρ∇yx

)
,

where D is a matrix differential operator with elements

Di,j =
(

∂

∂xi,j

)
,

and Vec(xii) is the vector comprised of the elements xii , i = 1, . . . , d . We now attend
to the computation of the affine transform of the log-returns under the assumed risk-
neutral measure,

Ψγ ,t = E
(
exp
{〈γ ,Y t+τ 〉

}|At

)
.

As before, we apply the Feynman-Kac argument,

∂Ψγ ,t

∂τ
= LY ,XΨγ ,t . (11.5.41)

We guess that Ψγ ,t is exponentially affine in Xt and Y t , so we assume that

Ψγ ,t = exp
{
Tr
(
A(τ )Xt

)+ β�(τ )Y t + c(τ )
}
, (11.5.42)

where A(τ ) ∈Md , β(τ ) ∈ �d , and c(τ ) ∈ �. From Eq. (11.5.41), we compute

∂Ψγ ,t

∂τ
= Tr

((
αa�a + bx + xb�)D + 2xDa�aD

)
Ψγ ,t

+ ∇y

(
r1 − 1

2
Vec
(
Tr(eiix)

))
Ψγ ,t

+1

2
∇yx∇�

y Ψγ ,t

+ 2Tr
(
Da�ρ∇yx

)
Ψγ ,t ,

where eii = (δi,j,k)j,k=1,...,d denotes the canonical basis of Md . Replacing ∂Ψγ ,t

∂τ
,

we get

0 = −Tr

(
d

dτ
A(τ )x

)
− d

dτ
β�(τ )y − d

dτ
c(τ )

+ β�(τ )

(
r1 − 1

2
Vec
(
Tr(eiix)

))+ 1

2
β�(τ )xβ(τ )

+ Tr
((

αa�a + bx + xb�)A(τ ) + 2xA(τ )a�aA(τ )
)

+ 2Tr
(
A(τ )a�ρβ�(τ )x

)
,
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that is

0 = −Tr

(
d

dτ
A(τ )x + ∂

∂τ
β(τ )y�

)
− ∂

∂τ
c(τ )

+ Tr

(

r1β�(τ ) − 1

2

d∑

i=1

β i (τ )eiix + 1

2
β(τ )β�(τ )x

)

+ Tr
((

αa�a + bx + xb�)A(τ ) + 2xA(τ )a�aA(τ ) + 2A(τ )a�ρβ�(τ )x
)
,

subject to the boundary conditions

A(0) = 0, β(0) = γ , c(0) = 0.

Identifying the coefficients of y we deduce

d

dτ
β(τ ) = 0,

hence β(τ ) = γ , for τ ≥ 0. As in Sect. 11.4, by identifying the coefficients of X,
we obtain the matrix Riccati ODE satisfied by A(τ ),

d

dτ
A(τ ) = A(τ )b + b�A(τ ) − 1

2

d∑

i=1

γ ieii + 2A(τ )a�aA(τ ) + 1

2
γ γ �

+ A(τ )a�ργ � + γ ρ�aA(τ )

= A(τ )
(
b + a�ργ �)+ (b� + γ ρ�a

)
A(τ ) + 2A(τ )a�aA(τ )

− 1

2

d∑

i=1

γ ieii + 1

2
γ γ �,

subject to A(τ ) = 0. Doubling the dimension of the problem, as in Sect. 11.4, we
obtain

A(τ ) = (A(0)A12(τ ) + A22(τ )
)−1(

A(0)A11(τ ) + A21(τ )
)
,

where
[

A11(τ ) A12(τ )

A21(τ ) A22(τ )

]

:= exp

{

τ

(
b + a�ργ � −2a�a

1
2 (γ γ � −∑d

i=1 γ ieii ) −(b� + γ ρ�a)

)}

.

For the function c(τ ), we have

d

dτ
c(τ ) = Tr

(
r1γ � + αa�aA(τ )

)
,

subject to the initial condition c(0) = 0. We can solve the above equation to yield

c(τ ) = −α

2
Tr
(
log
(
A22(τ )

)+ τb� + τγ ρ�a
)+ τrγ �1.

Consequently, we price derivatives as discussed in Chap. 8.
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