
Chapter 10
An Introduction to Matrix Variate Stochastics

In this chapter, we introduce the reader to matrix variate stochastics. It is intended
to set the scene for Wishart processes, which will be covered in the next chapter. We
begin by recalling notation and introducing some basic functions used throughout
both chapters. This will bring us in a position to discuss matrix valued random vari-
ables, matrix valued stochastic processes, and matrix valued stochastic differential
equations. To illustrate these concepts, we apply them to the matrix valued version
of the Ornstein-Uhlenbeck process and a multidimensional version of the MMM.
The main references for this chapter are Gupta and Nagar (2000) and Pfaffel (2008).

10.1 Basic Definitions and Functions

In this section, we fix primarily notation.

Definition 10.1.1 We employ the following notation:

• we denote by Mm,n(�) the set of all m × n matrices with entries in �. If m = n,
we write Mn(�) instead;

• we write GL(p) for the group of all invertible matrices of Mp(�);
• let Sp denote the linear subspace of all symmetric matrices of Mp(�);
• let S+

p (S−
p ) denote the set of all symmetric positive (negative) definite matrices

of Mp(�);

• denote by S+
p the closure of S+

p in Mp(�), that is the set of all symmetric positive
semidefinite matrices of Mp(�).

The next definition provides a one-to-one relationship between vectors and ma-
trices.
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244 10 An Introduction to Matrix Variate Stochastics

Definition 10.1.2 Let A ∈ Mm,n(�) with columns ai ∈ �m, i = 1, . . . , n. Define
the function vec :Mm,n(�) → �mn via

vec(A) =
⎛
⎜⎝

a1
...

an

⎞
⎟⎠ .

Note that vec(A) is also an element of Mmn,1(�). The next lemma is derived in
Gupta and Nagar (2000).

Lemma 10.1.3 The following properties hold:

• for A,B ∈ Mm,n(�) it holds that tr(A�B) = vec(A)�vec(B);
• let A ∈Mp,m(�), B ∈Mm,n(�) and C ∈Mn,q(�). Then we have

vec(AXB) = (B� ⊗ A
)
vec(X).

We now recall from Gupta and Nagar (2000) how a symmetric matrix can be
mapped to a vector.

Definition 10.1.4 Let S ∈ Sp . Define the function vech : S0 → � p(p+1)
2 via

vech(S) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

S11
S12
S22
...

S1p

...

Spp

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

such that vech(S) is a vector consisting of the elements of S from above and includ-
ing the diagonal, taken componentwise.

We point out that the vector vech gives access to the p(p+1)
2 distinct values of a

symmetric p × p matrix.

10.2 Integrals over Matrix Domains

The aim of this section is to define integrals over matrix domains. These definitions
will be employed in the subsequent sections, e.g. when computing characteristic
functions and Laplace transforms of matrix valued random variables. Discussing
integration, we need a notion of measurability. The following definition is taken
from Pfaffel (2008), see also Jacod and Protter (2004).
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Definition 10.2.1 Let (X,T ) be a topological space. The Borel σ -algebra on X is
then given by the smallest σ -algebra that contains T and is denoted by B(X).

In this chapter and the following, we focus on �, �n, and Mm,n(�), and employ
the notation B for B(�), Bn for B(�n) and Bm,n for B(Mm,n(�)). We are now in
a position to define integrals over matrices, allowing for matrices of size m × n.

Definition 10.2.2 Let f : Mm,n(�) → � be a Bm,n − B-measurable function and
M ∈ Bm,n a measurable subset of Mm,n(�) and let λ denote the Lebesgue-measure
on (�mn, Bmn). The integral of f over M is then defined by∫

M

f (X) dX :=
∫

M

f (X) d(λ ◦ vec)(X) =
∫

vec(M)

f ◦ vec−1(x) dλ(x).

We call λ ◦ vec the Lebesgue-measure on (Mm,n(�),Bm,n).

As pointed out in Pfaffel (2008), Sp is isomorphic to � p(p+1)
2 , hence for p ≥ 2,

Sp is a real subspace of Mp(�), and, consequently, of Lebesgue-measure zero. As
this means that any integral over subsets of Sp is zero, we define another Lebesgue
measure on the subspace of symmetric matrices Sp:

Definition 10.2.3 Let f : Sp → � be a B(Sp)- B-measurable function and M ∈
B(Sp) a Borel-measurable subset of Sp and let λ denote the Lebesgue-measure on

(� p(p+1)
2 ,B

p(p+1)
2 ). The integral of f over M is then defined by∫

M

f (X) dX :=
∫

M

f (X) d(λ ◦ vech)(X) =
∫

vech(M)

f ◦ vech−1(x) dλ(x).

We call λ ◦ vech the Lebesgue-measure on (Sp,B(Sp)).

As in Gupta and Nagar (2000) and Pfaffel (2008), we use the notation

etr(A) := exp
{
tr(A)

}
. (10.2.1)

This notation allows the formulation of the next definition.

Definition 10.2.4 The multivariate gamma function is defined as follows:

Γp(a) :=
∫
S+

p

etr(−A)det(A)a− 1
2 (p+1) dA ∀a >

p − 1

2
.

The next result from Gupta and Nagar (2000), shows that for a >
p−1

2 , the matrix
variate gamma function can be expressed as a finite product of ordinary gamma
functions.

Theorem 10.2.5 For a > 1
2 (p − 1),

Γp(a) = π
1
4 p(p−1)

p∏
i=1

Γ

(
a − 1

2
(i − 1)

)
.
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Next, we want to introduce hypergeometric functions of matrix arguments. This
requires the definition of zonal polynomials, which in turn requires the definition of
symmetric homogeneous polynomials. Starting with the latter, a symmetric homo-
geneous polynomial of degree k in y1, . . . , ym is a polynomial which is unchanged
by a permutation of the subscripts and such that every term in the polynomial has
degree k. The following example from Muirhead (1982) illustrates this: set m = 2,
k = 3, then

y3
1 + y3

2 + 10y2
1y2 + 10y1y

2
2

is a symmetric homogeneous polynomial of degree 3 in y1 and y2. Following Gupta
and Nagar (2000), we denote by Vk the vector space of symmetric homogeneous
polynomials that are of degree k in the 1

2p(p − 1) distinct elements of S ∈ S+
p . As

discussed in Gupta and Nagar (2000), the space Vk can be decomposed into a direct
sum of irreducible invariant subspaces Vκ , where κ denotes a partition of k, defined
as follows: by a partition of k, we mean the p-tuple κ = (k1, . . . , kp), where k1 ≥
· · · ≥ kp ≥ 0, and furthermore k1 + · · · + kp = k. Then the polynomial tr(S)k ∈ Vk

has the unique decomposition into polynomials Cκ(S) ∈ Vκ as

tr(S)k =
∑
κ

Cκ(S).

We now define zonal polynomials.

Definition 10.2.6 The zonal polynomial Cκ(S) is the component of tr(S)k in the
subspace Vκ .

The next definition from Gupta and Nagar (2000) introduces hypergeometric
functions of matrix arguments.

Definition 10.2.7 The hypergeometric function of matrix argument is defined by

mFn(a1, . . . , am;b1, . . . , bn;S) =
∞∑

k=0

∑
κ

(a1)κ . . . (am)κCκ(S)

(b1)κ . . . (bn)κk! , (10.2.2)

where ai , bj ∈ �, S is a symmetric p × p-matrix and
∑

κ the summation over
all partitions κ of k and (a)κ = ∏p

j=1(a − 1
2 (j − 1))kj

denotes the generalized
hypergeometric coefficient, with (x)kj

= x(x + 1) . . . (x + kj − 1).

The following remark provides some properties of hypergeometric functions of
matrix arguments.

Remark 10.2.8 Conditions for convergence of the infinite series in Eq. (10.2.2)
are of importance, see Gupta and Nagar (2000) for a discussion. The condition
m < n + 1 is sufficient. We also have the special case

nFn(a1, . . . , an;a1, . . . , an;S) =
∞∑

k=0

(tr(S))k

k! = etr(S).
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The next lemma will be subsequently employed when computing expectations of
functions of non-central Wishart distributed random variables.

Lemma 10.2.9 Let Z,T ∈ S+
p . Then

∫
S+

p

etr(−ZS)det(S)a− p+1
2 mFn(a1, . . . , am;b1, . . . , bn;ST ) dS

= Γp(a)det(Z)−a
m+1Fn

(
a1, . . . , am;b1, . . . , bn;Z−1T

)
,

∀a >
p−1

2 .

Proof The result is a special case of Theorem 1.6.2 in Gupta and Nagar (2000). �

10.3 Matrix Valued Random Variables

In this section, we discuss matrix valued random variables. First, we need to de-
fine what we mean by a matrix valued random variable, and consequently associate
with it the concepts well-known from the vector and scalar case, such as probability
density functions, characteristic functions, and Laplace transforms. We will discuss
two examples, first the normal distribution and second the Wishart distribution. The
main reference for this section is Gupta and Nagar (2000), see also Pfaffel (2008).
As before, we use (Ω,A,A,P ) to denote the filtered probability space.

Definition 10.3.1 An m × n random matrix X is a measurable function

X : (Ω,F) → (
Mm,n(�),Bm,n

)
.

We now discuss probability density functions of random variables.

Definition 10.3.2 A nonnegative measurable function fX such that

P(X ∈ M) =
∫

M

fX(A) dA ∀M ∈ Bm×n

defines the probability density function of an m × n random matrix X.

We can now introduce expected values.

Definition 10.3.3 Let X be an m × n-random matrix. For every function h =
(hi,j )i,j : Mm,n(�) → Mr,s(�) with hi,j : Mm,n(�) → �, 1 ≤ i ≤ r , 1 ≤ j ≤ s,
the expected value E(h(X)) of h(X) is an element of Mr,s(�) with elements

E
(
h(X)

)
i,j

= E
(
hi,j (X)

)=
∫
Mm,n(�)

hi,j (A)P X(dA).
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We point out that if X has a probability density function fX , then we have

E
(
h(X)

)
i,j

=
∫
Mm,n(�)

hi,j (A)fX(A) dA.

The characteristic function or Fourier transform of matrix-valued random variables
is now defined.

Definition 10.3.4 The characteristic function of an m × n-random matrix X with
probability density function fX is defined as

E
(
etr
(
ıXZ�))=

∫
Mm,n(�)

etr
(
ıAZ�)fX(A) dA, (10.3.3)

for every Z ∈Mp(�).

Due to the fact that |exp(ıx)| = 1, ∀x ∈ �, the integral in (10.3.3) always exists.
Furthermore, (10.3.3) is the Fourier transform of the measure P X at point Z.

Definition 10.3.5 The Laplace transform of a p × p-random matrix X ∈ S+
p with

probability density function fX is defined as

E
(
etr(−UX)

)=
∫
S+

p

etr(−UA)fX(A) dA, (10.3.4)

for every U ∈ S+
p .

Remark 10.3.6 Recall that the Laplace transform of a positive scalar random
variable is always well-defined. For A,U ∈ S+

p , we have that tr(−UA) =
−tr(

√
UA

√
U) < 0, since

√
UA

√
U is positive definite, hence the integral in

Eq. (10.3.4) is well-defined, where X ∈ S+
p is the analogue of a positive random

variable.

Next, we introduce covariance matrices for matrix valued random variables.

Definition 10.3.7 Let X be an m × n random matrix and Y be a p × q random
matrix. Then the mn × pq covariance matrix is defined as

cov(X,Y ) = cov
(
vec
(
X�), vec

(
Y�))

= E
(
vec
(
X�)vec

(
Y�)�)− E

(
vec
(
X�))E(vec

(
Y�))�,

i.e. cov(X,Y ) is an m×p block matrix with blocks cov(x̃�
i , ỹ�

j ) ∈ Mn,q(�) where
x̃i (or ỹi respectively) denote the rows of X (respectively Y ).

Having these definitions at hand, we can now discuss some examples. We begin
with an example involving the normal distribution.
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Definition 10.3.8 A p × n random matrix is said to have a matrix variate normal
distribution with mean M ∈Mp,n(�) and covariance Σ ⊗ Ψ , where Σ ∈ S+

p , Ψ ∈
S+

n , if vec(X�) ∼ Npn(vec(M�),Σ ⊗ Ψ ), where Npn denotes the multivariate
normal distribution on �pn with mean vec(M�) and covariance Σ ⊗ Ψ . We will
use the notation X ∼Np,n(M,Σ ⊗ Ψ ).

We now recall a result from Gupta and Nagar (2000).

Theorem 10.3.9 If X ∼Np,n(M,Σ ⊗ Ψ ), then X� ∼Np,n(M
�,Ψ ⊗ Σ).

Proof The proof is given by the one of Theorem 2.3.1 in Gupta and Nagar (2000). �

The next result gives the characteristic function of the normal distribution.

Theorem 10.3.10 Let X ∼ Np,n(M,Σ ⊗ Ψ ). Then the characteristic function of
X is given by

E
(
etr
(
ıXZ�))= etr

(
ıZ�M − 1

2
Z�ΣZΨ

)
.

By employing Theorem 10.3.10 one proves the matrix analogue of the linear
transformation property of normal random variables, see Pfaffel (2008).

Theorem 10.3.11 Let X ∼ Np,n(M,Σ ⊗ Ψ ), A ∈ Mm,q(�), B ∈ Mm,p(�) and
C ∈ Mn,q(�). Then A + BXC ∼Nm,q(A + BMC, (BΣB�) ⊗ (C�Ψ C)).

Next, we discuss an example involving the Wishart distribution.

Definition 10.3.12 A p × p-random matrix X in S+
p is said to have a non-central

Wishart distribution with parameters p ∈ N , n ≥ p, Σ ∈ S+
p and Θ ∈ Mp(�), if

its probability density function is of the form

fX(S) =
(

2
1
2 npΓp

(
n

2

)
det(Σ)

n
2

)−1

etr

(
−1

2

(
Θ + Σ−1S

))

× det(S)
1
2 (n−p−1)

0F1

(
n

2
; 1

4
ΘΣ−1S

)
,

where S ∈ S+
p and 0F1 is the hypergeometric function. We write

X ∼ Wp(n,Σ,Θ).

We remark that the requirement n ≥ p ensures that the matrix variate gamma
function is well-defined. If Θ = 0, X is said to follow the central Wishart distribu-
tion with parameters p,n and Σ ∈ S+

p , with probability density function
(

2
1
2 npΓp

(
n

2

)
det(Σ)

n
2

)−1

etr

(
−1

2
Σ−1S

)
det(S)

1
2 (n−p−1),
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where S ∈ S+
p and n ≥ p. Next we provide the Laplace transform of the non-central

Wishart distribution, see Pfaffel (2008).

Theorem 10.3.13 Let S ∼Wp(n,Σ,Θ). Then the Laplace transform of S is given
by

E
(
etr(−US)

)= det(Ip + 2ΣU)−
n
2 etr

(−Θ(Ip + 2ΣU)−1ΣU
)

with U ∈ S+
p .

Now, we list the characteristic function of the non-central Wishart distribution
according to Gupta and Nagar (2000).

Theorem 10.3.14 Let S ∼ Wp(n,Σ,Θ). Then the characteristic function of S is
given by

E
(
etr(ıZS)

)= det(Ip − 2ıΣZ)−
n
2 etr

(
ıΘ(Ip − 2ıΣZ)−1ΣZ

)
,

with Z ∈Mp(�).

The next result, which is Theorem 3.5.1 in Gupta and Nagar (2000), shows that
the Wishart distribution is the matrix analogue of the non-central χ2-distribution.

Theorem 10.3.15 Let X ∼ Np,n(M,Σ ⊗ In), n ∈ {p,p + 1, . . .}. Then XX� ∼
Wp(n,Σ,Σ−1MM�).

We remark that Σ can be interpreted as a scale parameter and Θ as a location
parameter for S. Consequently, a central Wishart distributed matrix is the square of
normally distributed matrix random variables with zero mean.

10.4 Matrix Valued Stochastic Processes

This section closely follows Sect. 3.3 in Pfaffel (2008). First, we define matrix val-
ued stochastic processes. Our first example will be matrix valued Brownian motion.
Later, we will introduce matrix valued local martingales and semimartingales, which
then allow us to formulate an Itô formula for matrix valued semimartingales. The
section concludes with an integration-by-parts formula, which is useful when apply-
ing the theory presented in this chapter to examples, such as the Ornstein-Uhlenbeck
process. We remind the reader that �+ refers to the interval of non-negative real
numbers [0,∞).

Definition 10.4.1 A measurable function X : �+ × Ω → Mm,n(�), (t,ω) �→
X(t,ω) = Xt (ω) is called a matrix valued stochastic process if X(t,ω) is a ran-

dom matrix for all t ∈ �+. Moreover, X is called a stochastic process in S+
p if

X : �+ × Ω → S+
P .
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As noticed in Pfaffel (2008), most definitions applicable to scalar processes can
be transferred to matrix valued processes by demanding that they apply to every
element of the matrix. The first example is Brownian motion.

Definition 10.4.2 A matrix valued Brownian motion W in Mn,p(�) is a matrix
consisting of independent one-dimensional Brownian motions, i.e. W = (Wi,j )i,j ,
where Wi,j are independent one-dimensional Brownian motions, 1 ≤ i ≤ n,
1 ≤ j ≤ p. We write W ∼ BMn,p and W ∼ BMn if p = n.

We now show the obvious distributional properties of Brownian motion.

Corollary 10.4.3 The following distributional properties regarding a matrix valued
Brownian motion W = {W t , t ≥ 0} hold:

• W t ∼Nn,p(0, tInp);
• W ∼ BMn,, A ∈ Mm,q(�), B ∈ Mm,n(�) and C ∈ Mp,q(�). Then A +

BW tC ∼Nm,q(A, t (BB�) ⊗ (C�C)).

Proof For the first part, we need to show that vec(W�
t ) ∼ Nnp(0, tInp), which is

easily verified. The second part follows from Theorem 10.3.11 and the observation
that Inp = In ⊗ Ip . �

We now define a matrix valued local martingale.

Definition 10.4.4 A matrix valued stochastic process X is called a local martin-
gale, if each component of X is a local martingale, i.e. if there exists a sequence
of strictly monotonic increasing stopping times (Tn)n∈N , where Tn

a.s.→ ∞, such that
Xmin(t,Tn),ij forms a martingale for all i, j , t ≥ 0 and n ∈ {1,2, . . .}.

The next result is the analogue of Lévy’s theorem, which allows us to decide if a
given matrix valued continuous local martingale is a Brownian motion. This result
appeared in Pfaffel (2008).

Theorem 10.4.5 Let B be a p × p dimensional continuous local martingale such
that

[Bi,j ,Bk,l]t =
{

t if i = k and j = l

0 else
for all i, j, k ∈ {1, . . . , p}. Then B is a p × p-dimensional Brownian motion,
B ∼ BMp .

Given the definition of a local martingale, as in the scalar case, we can define
semimartingales.

Definition 10.4.6 A matrix valued stochastic process X is called a semimartingale
if X can be decomposed into X = X0 + M + A, where M is a local martingale and
A an adapted process of finite variation.
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We can now consider stochastic integrals. As in the scalar and vector case, we
focus on continuous semimartingales, and for an n × p-dimensional Brownian mo-
tion W ∼ BMn,p , stochastic processes X and Y in Mm,n(�) and Mp,q(�), re-
spectively, and a stopping time T , the matrix variate stochastic integral on [0, T ] is
a matrix with entries
(∫ T

0
Xt dW t Y t

)

i,j

=
n∑

k=1

p∑
l=1

∫ T

0
Xt,ikYt,lj dWt,kl, ∀1 ≤ i ≤ m, 1 ≤ j ≤ q.

We are now able to state an Itô formula for matrix-variate semimartingales, see
Pfaffel (2008).

Theorem 10.4.7 Let U ⊆ Mm,n(�) be open, X a continuous semimartingale with
values in U and let f : U → � be a twice continuously differentiable function. Then
f (X) is a continuous semimartingale and

f (Xt ) = f (X0) + tr

(∫ t

0
Df (Xs)

� dXs

)

+ 1

2

∫ t

0

n∑
j,l=1

n∑
i,k=1

∂2

∂Xi,j ∂Xk,l

f (Xs) d[Xi,j ,Xk,l]s (10.4.5)

with D = ( ∂
∂Xi,j

)i,j .

The next corollary is given in Pfaffel (2008).

Corollary 10.4.8 Let X be a continuous semimartingale on a stochastic inter-
val [0, T ] with T = inf{t : Xt /∈ U} > 0 for an open set U ⊆ Mm,n(�) and let
f : U → � be a twice continuously differentiable function. Then (f (Xt ))t∈[0,T ] is
a continuous semimartingale and (10.4.5) holds for t ∈ [0, T ).

In order to state a matrix valued integration by parts formula, we need the fol-
lowing definition of covariation for matrix valued stochastic processes.

Definition 10.4.9 For two semimartingales A ∈ Md,m(�), B ∈ Mm,n(�) the ma-
trix valued quadratic covariation is defined by

[A,B]Mt,ij =
m∑

k=1

[Ai,k,Bk,j ]t ∈Md,n(�).

The following integration-by-parts formula will be useful, see Pfaffel (2008).

Theorem 10.4.10 Let A ∈Md,m(�), B ∈Mm,n(�) be two semimartingales. Then
the matrix product AtB t ∈Md,n(�) is a semimartingale and

AtB t = A0B0 +
∫ t

0
As dBs +

∫ t

0
dAs Bs + [A,B]Mt .
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10.5 Matrix Valued Stochastic Differential Equations

In this section, we briefly discuss matrix valued SDEs. The aim is to be able to make
sense of the SDEs presented later describing Wishart processes. We follow Pfaffel
(2008) and Stelzer (2007), where additional material on matrix valued Markov pro-
cesses is presented.

As with scalar valued SDEs, we can distinguish between strong and weak solu-
tions. Recall that a strong solution can roughly be thought of as a function of a given
Brownian motion. The next definition can be found in Pfaffel (2008).

Definition 10.5.1 Let (Ω,A,A,P ) be a filtered probability space satisfying the
usual conditions and consider the stochastic differential equation

dXt = b(t,Xt ) dt + σ(t,Xt ) dW t , (10.5.1)

where X0 = x0, b : �+ × Mm,n(�) → Mm,n(�) and σ : �+ × Mm,n(�) →
Mm,p(�) are measurable functions, x0 ∈ Mm,n(�) and W is a p×n-matrix valued
Brownian motion.

(i) A pair (X,W ) of At -adapted continuous processes defined on (Ω,A,A,P ) is
called a solution of the SDE (10.5.1) on [0, T ), T > 0, if W is an A-Brownian
motion and

Xt = x0 +
∫ t

0
b(s,Xs) ds +

∫ t

0
σ(s,Xs) dW s ∀t ∈ [0, T ).

(ii) Moreover, the pair (X,W ) is said to be a strong solution of (10.5.1), if X is
adapted to the filtration (AW

t )t∈�+ , where GW
t = σc(Ws, s ≤ t) is the σ -algebra

generated by W s , s ≤ t , completed with all P -null sets from A.
(iii) A solution (X,W ) of the SDE (10.5.1), which is not a strong solution is termed

a weak solution of Eq. (10.5.1).

We now discuss the existence of a solution. As in the scalar case, the local Lips-
chitz condition turns out to suffice, see Stelzer (2007).

Definition 10.5.2 Let (U,‖ · ‖U), (V ,‖ · ‖V ) be two normed spaces and A ⊆ U be
open. Then a function f : A → V is called locally Lipschitz, if for every x ∈ A there
exists an open neighborhood U(x) ⊂ A and a constant C(x) ∈ �+ such that

∥∥f (z) − f (y)
∥∥

V
≤ C(x)‖z − y‖U ∀z,y ∈ U(x).

We term C(x) the local Lipschitz coefficient. If there is a K ∈ �+ such that
C(x) = K can be chosen for all x ∈ A, then f is called globally Lipschitz.

The next theorem states that a local Lipschitz condition is a sufficient condition.

Theorem 10.5.3 Let U be an open subset of Md,n(�) and (Un)n∈N a sequence
of convex closed sets such that Un ⊂ U , Un ⊆ Un+1 ∀n ∈ N and

⋃
n∈N Un = U .
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Assume that f : U → Md,m(�) is locally Lipschitz and Z in Mm,n(�) is a contin-
uous semimartingale. Then for each U -valued F0-measurable initial value X0 there
exists a stopping time T and a unique U -valued strong solution X to the stochastic
differential equation

dXt = f (Xt ) dZt (10.5.2)

up to the time T > 0 a.s., i.e. on the stochastic interval [0, T ). At T < ∞ we have
that either X hits the boundary ∂U of U at T , i.e. XT ∈ ∂U , or explodes, i.e.
lim supt→T ,t<T ‖Xt‖ = ∞. If f satisfies the linear growth condition

∥∥f (X)
∥∥2 ≤ K

(
1 + ‖X‖2)

with some constant K ∈ �+, then no explosion can occur.

We point out that by unique solution we mean that pathwise uniqueness holds for
(10.5.2). Two solutions on the same probability space, started from the same initial
value and driven by the same semimartingale are then indistinguishable.

We now present a matrix version of the Girsanov theorem for matrix valued
stochastic processes. To do so, we recall the notion of stochastic exponentials.

Definition 10.5.4 Let X be a stochastic process. The unique strong solution
Z = E(X) of the SDE

dZt = Zt dXt , Z0 = 1 (10.5.3)

is called stochastic exponential of X.

Theorem 10.5.3 allows us to conclude that the SDE (10.5.3) has a unique strong
solution. We now formulate the Girsanov theorem, which will be employed in the
next chapter.

Theorem 10.5.5 Let T > 0, W ∼ BMp and U be an adapted, continuous stochas-
tic process with values in Mp(�) such that

(
E
(

tr

(
−
∫ t

0
U�

s dW s

)))

t∈[0,T ]
(10.5.4)

is a martingale, or, which is a sufficient condition for (10.5.4), but not necessary,
that the Novikov condition is satisfied

E

(
etr

(
1

2

∫ T

0
U�

t U t dt

))
< ∞.

Then

Q̂ =
∫

E
(

tr

(
−
∫ T

0
U�

t dW t

))
dP

is an equivalent probability measure, and

Ŵ t =
∫ t

0
U s ds + W t

is a Q̂-Brownian motion on [0, T ).
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We point out that the Novikov condition presents a general sufficient condition
for (

E
(

tr

(
−
∫ t

0
U�

s dW s

)))

t∈[0,T ]
to be a martingale. Clearly, for a given matrix valued process U = {U t , t ∈ [0, T ]},
it can be possible to improve on this sufficient condition, see e.g. Theorem 4.1 and
Remark 4.2. in Mayerhofer (2012) for an example involving Wishart processes.

10.6 Matrix Valued Ornstein-Uhlenbeck Processes

As an example, we discuss the matrix valued OU-process, see Pfaffel (2008), where
we direct the reader for additional results.

Definition 10.6.1 Let A,B ∈Mp(�), x0 ∈ Mn,p(�) a.s. and W ∼ BMn,p . A so-
lution X of the SDE

dXt = XtB dt + dW t A, X0 = x0, (10.6.5)

is called an n × p-dimensional Ornstein-Uhlenbeck process. We write X ∼
OUPn,p(A,B,x0) for its probability law.

Since the coefficients X �→ XB and X �→ A are globally Lipschitz and satisfy
the linear growth condition presented in Theorem 10.5.3, we are assured that the
SDE (10.6.5) has a unique strong solution on the interval [0,∞). We can even go
further and solve the SDE explicitly.

Theorem 10.6.2 For a Brownian motion W ∼ BMn,p , the unique strong solution
of (10.6.5) is given by

Xt = x0 exp{Bt} +
(∫ t

0
dW s A exp{−Bs}

)
exp{Bt}. (10.6.6)

Proof The proof is completed by verifying that (10.6.6) solves (10.6.5). In this re-
gard, the integration-by-parts formula, presented in Theorem 10.4.10, is crucial. We
compute

dXt = d
(
x0 exp{Bt})+ d

((∫ t

0
dW s A exp{−Bs}

)
exp{Bt}

)

= x0 exp{Bt}B dt + dW t A exp{−Bt} exp{Bt}
+
(∫ t

0
dW sA exp{−Bs}

)
exp{Bt}B dt

+ d

[∫ ·

0
dW s A exp{−Bs}, exp{B·}

]M

t
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=
(

x0 exp{Bt} +
(∫ t

0
dW s A exp{−Bs}

)
exp{Bt}

)
B dt + dW t A

= XtB dt + dW t A.

Finally, we note that (10.6.6) is by construction a strong solution. �

We state the following lemma, which is Lemma 3.48 from Pfaffel (2008).

Lemma 10.6.3 Let W ∼ BMn,p and X : �+ → Mp,m(�), t �→ Xt be a square
integrable, deterministic function. Then

∫ t

0
dW s Xs ∼Nn,m

(
0, In ⊗

∫ t

0
X�

s Xs ds

)
.

We conclude this section with a result giving the distribution of the matrix val-
ued Ornstein-Uhlenbeck process, see also Theorem 3.49 in Pfaffel (2008) for an
alternative presentation.

Theorem 10.6.4 Let X ∼ OUPn,p(A,B,x0), then the distribution of X is given
by

Xt |x0 ∼Nn,p

(
μ,σ 2),

where

μ = x0 exp{Bt},
σ 2 = In ⊗ exp

{
B�t

}∫ t

0
exp
{−B�s

}
A�A exp{−Bs}ds exp{Bt}.

Proof The proof follows immediately from Lemma 10.6.3, Theorem 10.6.2, and
Theorem 10.3.11. �

Finally, we remark that the stationary distribution of the matrix valued Ornstein-
Uhlenbeck process can also be computed, see Pfaffel (2008), which is Gaussian.

10.7 A Two-Dimensional Correlated Minimal Market Model

In this section, we discuss how to extend the model for the GOP when denominated
in two currencies, as discussed in Sect. 3.3, to allow for a more complex dependence
structure. In particular, we introduce a model which allows us to use our knowledge
of the Wishart distribution, see Definition 10.3.12. We denote the GOP denominated
in the domestic currency by Sa , and the GOP denominated in the foreign currency
by Sb . As discussed e.g. in Heath and Platen (2005), an exchange rate at time t can
be expressed in terms of the ratio of the two GOPs, see also Sect. 9.7. Assuming

the domestic currency is a, then one would pay, at time t , Sa
t

Sb
t

units of currency a to
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obtain one unit of the foreign currency b. As the domestic currency is a, the price
of e.g. a call option on the exchange rate can be expressed as:

Sa
0 E

( (
Sa

T

Sb
T

− K)+

Sa
T

)
. (10.7.7)

We now discuss an extension of the model, which is tractable, as we can employ the
non-central Wishart distribution to compute (10.7.7). For k ∈ {a, b}, we set

Sk
t = S

0,k
t S̄k

t ,

where S
0,k
t = exp{rkt}, S

0,k
0 = 1. So S0,k denotes the savings account in currency

k, which for simplicity is assumed to be a deterministic function of time. As for the
stylized MMM, we model S̄k as a time-changed squared Bessel process of dimen-
sion four. We introduce the 2 × 4 matrix process X = {Xt , t ≥ 0} via

Xt =
⎡
⎣ (W

1,1
ϕ1(t)

+ w1,1) (W
2,1
ϕ1(t)

+ w2,1) (W
3,1
ϕ1(t)

+ w3,1) (W
4,1
ϕ1(t)

+ w4,1)

(W
1,2
ϕ2(t)

+ w1,2) (W
2,2
ϕ2(t)

+ w2,2) (W
3,2
ϕ2(t)

+ w3,2) (W
4,2
ϕ2(t)

+ w4,2)

⎤
⎦ .

The processes W
i,1
ϕ1 , i = 1, . . . ,4, denote independent Brownian motions, subjected

to a deterministic time-change

ϕ1(t) = α1
0

4η1

(
exp
{
η1t
}− 1

)= 1

4

∫ t

0
α1

s ds,

cf. Sect. 3.3, and W
i,2
ϕ2 , i = 1, . . . ,4, denote independent Brownian motions, sub-

jected to the deterministic time change

ϕ2(t) = α2
0

4η2

(
exp
{
η2t
}− 1

)= 1

4

∫ t

0
α2

s ds.

Now consider the process Y = {Y t , t ≥ 0}, which assumes values in S+
2 , and is

given by

Y t := XtX
�
t , t ≥ 0,

which yields

Y t =
⎡
⎣

∑4
i=1(W

i,1
ϕ1(t)

+ wi,1)2 ∑4
i=1
∑2

j=1(W
i,j

ϕj (t)
+ wi,j )

∑4
i=1
∑2

j=1(W
i,j

ϕj (t)
+ wi,j )

∑4
i=1(W

i,2
ϕ2(t)

+ wi,2)2

⎤
⎦ .

We set

S̄a
t = Y

1,1
t ,

and

S̄b
t = Y

2,2
t .
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We use the diagonal elements of Y t to model the GOP in different currency de-
nominations. Next, we introduce the following dependence structure: the Brownian
motions Wi,1 and Wi,2, i = 1, . . . ,4, covary as follows,

[
W

i,1
ϕ1(·),W

i,2
ϕ2(·)

]
t
= �

4

∫ t

0

√
α1

s α
2
0 ds, i = 1, . . . ,4, (10.7.8)

where −1 < � < 1. The specification (10.7.8) allows us to employ the non-central
Wishart distribution. We work through this example in detail, as it illustrates how to
extend the stylized MMM to allow for a non-trivial dependence structure, but still
exploit the tractability of the Wishart distribution. As discussed in Sect. 10.3, matrix
valued normal random variables are studied by interpreting the matrix as a vector,
cf. Definition 10.3.12. We recall that vec(X�

T ) stacks the two columns of X�
T , hence

vec
(
X�

T

)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(W
1,1
ϕ1(T )

+ w1,1)

...

(W
4,1
ϕ1(T )

+ w4,1)

(W
1,2
ϕ2(T )

+ w1,2)

...

(W
4,2
ϕ2(T )

+ w4,2)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is easily seen that the mean matrix M satisfies

vec
(
M�)=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

w1,1

...

w4,1

w1,2

...

w4,2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10.7.9)

and the covariance matrix of vec(X�
T ) is given by

Σ ⊗ I 4 =
[

Σ1,1I 4 Σ1,2I 4

Σ2,1I 4 Σ2,2I 4

]
, (10.7.10)

where Σ is a 2 × 2 matrix with Σ1,1 = ϕ1(T ), Σ2,2 = ϕ2(T ), and Σ1,2 = Σ2,1 =
�
4

∫ t

0

√
α1

s α
2
s ds. We remark that assuming −1 < � < 1 results in Σ being positive

definite. It now immediately follows from Theorem 10.3.15 that

XT X�
T ∼ W2

(
4,Σ,Σ−1MM�),

where M and Σ are given in Eqs. (10.7.9) and (10.7.10) respectively.
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Recall that we set

Y t = XtX
�
t ,

S̄a
t = Y

1,1
t ,

S̄b
t = Y

2,2
t .

Hence we can compute (10.7.7) using

E
(
f (Y T )

)
,

where f : S+
2 → � is given by

f (M) =
( exp{r1T }M1,1

exp{r2T }M2,2 − K
)+

exp{r1T }M1,1
,

for M ∈ S+
2 , and Mi,i , i = 1,2, are the diagonal elements of M . The probability

density function of Y T is given in Definition 10.3.12.
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