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Preface

Diffusion processes can be employed to model many phenomena arising in the nat-
ural and social sciences, such as biological and financial quantities. When modeling
these phenomena, it is often natural to employ a number of driving Wiener or Bessel
processes, placing us immediately in a multi- and often high-dimensional setting.
The key questions that then typically arise concern a range of functionals for such
models. The focus of this research monograph is, therefore, on tractable multidimen-
sional models with functionals that have explicit solutions. After transformations of
Brownian motion, as applied for the Black-Scholes model, it will be natural to con-
centrate in this book on models that are in some sense transformations of squares of
Brownian motions, such as Bessel processes, square root processes and affine pro-
cesses. Additionally, tractable diffusion processes will be studied which have been
recently discovered via Lie symmetry methods. Numerical methods will be pre-
sented that allow to evaluate efficiently and accurately a wide range of functionals
of multidimensional diffusions. The importance of these functionals and methods
will be demonstrated in applications to finance. However, the same functionals and
numerical methods can be of relevance in many other areas of application.

Given the ubiquitousness of multidimensional Wiener and Bessel processes, it is
obvious that particular functionals of Wiener and Bessel processes are of importance
in many different areas. However, the multidimensional nature of the processes,
especially if non-trivial dependence structures are modeled between their drivers,
often means that these functionals are difficult to compute. Especially closed-form
solutions are rarely available. Consequently, numerical methods have to be usually
employed to compute these important functionals.

The contribution of this monograph is fourfold: Firstly, it collects in a systematic
way existing results on functionals of tractable processes from the literature. These
results are mostly of closed form and so far often only more widely known for one-
dimensional processes or very special multidimensional processes exhibiting a triv-
ial dependence structure. Secondly, the book provides approaches which empower
the reader to obtain systematically closed form solutions for various problems of
interest. Thirdly, it recalls powerful numerical methods from the literature, and dis-
cusses how to apply these to the stochastic processes and functionals studied in this
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viii Preface

text. Finally, it suggests how to exploit the availability of closed form solutions in
finance for particular models when numerically solving more general models even
in high-dimensional situations.

Our systematic approach to developing closed form solutions proceeds around
the following ideas: In the one-dimensional setting, we recall mathematical meth-
ods developed by Craddock and collaborators, see Craddock (2009), Craddock and
Lennox (2007), Craddock and Lennox (2009), and Craddock and Platen (2004). In
particular, we employ Lie symmetry group methods to compute transition densities
of stochastic processes of interest. Furthermore, we study solvable affine models,
in the sense introduced by Grasselli and Tebaldi, see Grasselli and Tebaldi (2008),
which include a wide range of functionals of affine models for which explicit solu-
tions can be obtained.

As often as we have access to explicit transition densities, we employ Monte
Carlo and quadrature methods, which allow us to solve integration problems associ-
ated with functionals of interest. To quantify functionals rather generally, we remark
that explicit solutions derived in this text serve as a useful check for these methods
and allow us to tailor these methods.

Besides considering functionals of multidimensional Wiener and Bessel pro-
cesses, which can be applied in very different areas, we focus on functionals of
multidimensional Wiener and Bessel processes occurring in finance. We show how
methods developed in this text can be used to solve typical problems under the
benchmark approach. Within this book, we discuss several classes of tractable dif-
fusions, which do not satisfy the classical Lipschitz and linear growth conditions,
often assumed to be in force when studying diffusion models. The ability to compute
important functionals of these tractable diffusions allows us to access a rich model-
ing world. In fact, advanced realistic long-term financial modeling under classical
Lipschitz and linear growth conditions may potentially turn out to be not realistic
enough for typical risk management tasks.

The purpose of Chap. 1 is to demonstrate that the book can be used to solve prac-
tical problems arising in finance under the benchmark approach. Chapters 2 and 3
summarize the current literature in the area. Chapter 4 introduces Lie Symmetry
Group methods, an important tool that can be used to compute functionals of one-
and multidimensional diffusions. Chapter 5 builds on Chap. 4 and we show how to
compute explicitly important functionals of diffusions. In Sect. 5.5, we give a first
application of these results to problems in finance. Chapter 6 applies the results from
Chap. 5 to stochastic volatility models, where we present a simulation method based
on Lie Symmetry methods. We then continue our study of multidimensional diffu-
sions and turn to affine processes. We summarize the existing literature on affine
processes in Chaps. 7 and 8. Chapter 9 presents the novel approach to affine pro-
cesses due to Grasselli & Tebaldi. This approach analyzes when functionals of mul-
tidimensional affine processes can be computed analytically, and hence is of upmost
importance to the topic of this book. As this approach is recent, we illustrate it using
several examples in Sects. 9.4, 9.5, 9.6, and 9.7. Finally, we discuss a flexible class
of multidimensional affine processes, the Wishart processes. Unlike the classical
affine processes discussed in Chaps. 7, 8, and 9, Wishart processes do not assume
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values in the Euclidean space, but are matrix-valued. To fully appreciate the flexi-
bility of Wishart processes, we provide an introduction to matrix-valued processes
in Chap. 10. It seems that introductions to Lie symmetry methods for diffusions, to
matrix-valued processes, and to Wishart processes have not been discussed in such
a book form before. We hope that this monograph will be a valuable reference for
readers interested in these topics. Finally, Chap. 14 integrates the material covered
in the preceding chapters and demonstrates how it can be used to solve problems in
finance entailing credit risk.

The remaining chapters are supporting chapters. We survey numerical methods,
including Monte Carlo and quadrature methods and computational tools, which
complement the methods described in Chaps. 4 to 11. Chapters 15, 16 and 17 are
self-contained and aimed to summarize key results on stochastic processes, time-
homogeneous scalar diffusions, and the distinction between martingales and strict
local martingales. The material on stochastic processes is included to make this
book more self-contained and easily readable without forcing some readers to rely
on other sources. The material on time-homogeneous scalar diffusions is used in a
few places in this book. In those cases, the reader is simply referred to the corre-
sponding results in Chap. 16. Finally, Chap. 17 discusses when local martingales
are true martingales or strict local martingales, which is an important theme of this
book and relevant for the benchmark approach to finance.

The formulas in the book are numbered according to the chapter and section
where they appear. Assumptions, theorems, lemmas, definitions and corollaries are
numbered sequentially in each section. The most common notations are listed at the
beginning and an Index of Keywords is given at the end of the book. Some readers
may find the Author Index at the end of the book useful. Suggestions for the Reader
are given after the content to give a guidance to the use of the book for different
groups of readers. The basic notation used in the book is summarized after these
suggestions.

We conclude with the remark that the practical application and theoretical un-
derstanding of functionals of multidimensional diffusions are an area of ongoing
research. This book shall stimulate interest and further work on such methods and
their application.

We would like to thank several colleagues and friends for their collaboration
in related research and valuable suggestions on the manuscript, including Leung
Lung Chan, Mark Craddock, Ke Du, Kevin Fergusson, Martino Grasselli, Hardy
Hully, Katja Ignatieva, Monique Jeanblanc, Constantinos Kardaras, Renata Rendek,
Wolfgang Runggaldier, and Stefan Tappe. Particular thanks go to the late Katrin
Platen for her help and suggestions regarding the initial outlay of this book.

It is greatly appreciated if readers could forward any suggestions, errors, mis-
prints or suggested improvements to: JanBaldeaux@gmail.com. The interested
reader is likely to find in future updated information about functionals of multi-
dimensional diffusions via a link on Jan Baldeaux’s homepage.

Jan Baldeaux
Eckhard Platen

Sydney
February 2013



Suggestions for the Reader

The material of this book has been arranged in a way that should make it accessible
to as wide a readership as possible. Prospective readers will have different back-
grounds and objectives. The following four groups of suggestions are aimed to help
using the book efficiently.

(i) Let us begin with those readers who aim for a sufficient understanding to ap-
ply multidimensional diffusions in their field of application, which may not
necessarily be finance. Deeper mathematical issues are avoided in the follow-
ing suggested sequence of introductory reading, which provides a guide to the
book for those without a strong mathematical background.

§15.1 → §15.2 → §15.3 → §15.4 → §15.5 → §15.6 → §15.7
↓

§2.1 → §2.2
↓

§3.1 → §3.2
↓

§5.3 → §5.4
↓

§6.2
↓

§7.1
↓

§8.1
↓

§9.1 → §9.2
↓

Chapter 10
↓

§11.1 → §11.2 → §11.3 → §11.4

(ii) Engineers, quantitative analysts and others with a more technical background
in mathematical and quantitative methods who are interested in applying mul-
tidimensional diffusions, and in implementing functionals thereof or studying
novel diffusion processes could use the book according to the following
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suggested flowchart. Without too much emphasis on proofs the selected ma-
terial provides the underlying mathematics and core results.

Chapter 15
↓

§2.1 → §2.2
↓

§3.1 → §3.2
↓

Chapter 4
↓

§5.1 → §5.2 → §5.3 → §5.4
↓

§6.2
↓

§7.1
↓

§8.1
↓

§9.1 → §9.2 → §9.3
↓

Chapter 10
↓

§11.1 → §11.2 → §11.3 → §11.4
↓

Chapter 12
↓

Chapter 14

(iii) Readers with strong mathematical background and mathematicians most likely
omit the introductory Chap. 15. The following flowchart focuses on the theoret-
ical aspects of the computation of functionals of multidimensional diffusions
while avoiding well-known and more applied topics.

§2.1 → §2.2
↓

§3.1 → §3.2
↓

Chapter 4
↓

§5.1 → §5.2 → §5.3 → §5.4
↓

§6.2
↓

§7.1
↓

§8.1
↓

§9.1 → §9.2 → §9.3
↓

§11.1 → §11.2 → §11.3 → §11.4
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(iv) Financial engineers, quantitative analysts, risk managers, fund managers, in-
surance professionals and others who have no strong mathematical background
and are interested in finance, insurance and other areas of risk management will
find the following flowchart helpful. It suggests the reading for an introduction
into quantitative methods in finance and related areas with focus on in many
ways explicitly tractable models.

§15.1 → §15.2 → §15.3 → §15.4 → §15.5 → §15.6 → §15.7
↓

Chapter 1
↓

Chapter 2
↓

Chapter 3
↓

Chapter 4
↓

§6.1 → §6.3 → §6.4 → §6.5 → §6.6 → §6.7
↓

§7.2 → §7.3
↓

§8.2 → §8.3 → §8.4 → §8.5 → §8.6
↓

§9.1 → §9.2
↓

Chapter 10
↓

Chapter 11
↓

Chapter 12
↓

Chapter 13
↓

Chapter 14
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8.2.1 Vasiček Model . . . . . . . . . . . . . . . . . . . . . . . . 201
8.2.2 CIR Model . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8.3 Fourier Transform Approach . . . . . . . . . . . . . . . . . . . . 206



xviii Contents

8.3.1 Examples of Fourier Decompositions . . . . . . . . . . . . 207
8.4 A Special Class of Payoff Functions . . . . . . . . . . . . . . . . . 207
8.5 Pricing Using Benchmarked Laplace Transforms . . . . . . . . . . 208

8.5.1 Put Options Under the Stylized MMM . . . . . . . . . . . 208
8.5.2 Derivatives on Realized Variance Under the Stylized MMM 210

8.6 Pricing Under the Forward Measure Using the Benchmark
Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

9 Solvable Affine Processes on the Euclidean State Space . . . . . . . . 219
9.1 A Guided Tour to the Grasselli-Tebaldi Approach . . . . . . . . . 219
9.2 Solvable Affine Processes on the Duffie-Kan State Space . . . . . 223
9.3 Reducing Admissible Affine Processes to the Normal Form . . . . 225
9.4 A First Example: The Balduzzi, Das, Foresi and Sundaram Model . 228
9.5 A Second Example: The Heston Model . . . . . . . . . . . . . . . 231
9.6 A Quadratic Term Structure Model . . . . . . . . . . . . . . . . . 235
9.7 A Multifactor Heston Model . . . . . . . . . . . . . . . . . . . . . 239

10 An Introduction to Matrix Variate Stochastics . . . . . . . . . . . . . 243
10.1 Basic Definitions and Functions . . . . . . . . . . . . . . . . . . . 243
10.2 Integrals over Matrix Domains . . . . . . . . . . . . . . . . . . . 244
10.3 Matrix Valued Random Variables . . . . . . . . . . . . . . . . . . 247
10.4 Matrix Valued Stochastic Processes . . . . . . . . . . . . . . . . . 250
10.5 Matrix Valued Stochastic Differential Equations . . . . . . . . . . 253
10.6 Matrix Valued Ornstein-Uhlenbeck Processes . . . . . . . . . . . . 255
10.7 A Two-Dimensional Correlated Minimal Market Model . . . . . . 256

11 Wishart Processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
11.1 Definition and Existence Results . . . . . . . . . . . . . . . . . . 261
11.2 Some Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . 262
11.3 Exact and Almost Exact Simulation Schemes for Wishart Processes 269

11.3.1 Change of Measure Approach . . . . . . . . . . . . . . . . 269
11.3.2 An Exact Simulation Method . . . . . . . . . . . . . . . . 271
11.3.3 A Remarkable Splitting Property . . . . . . . . . . . . . . 275
11.3.4 Exact Simulation for Wishart Processes . . . . . . . . . . . 277

11.4 Affine Transforms of the Wishart Process . . . . . . . . . . . . . . 281
11.4.1 Linearization Applied to Wishart Processes . . . . . . . . . 283
11.4.2 Cameron-Martin Formula . . . . . . . . . . . . . . . . . . 286
11.4.3 A Comparison of the Two Approaches . . . . . . . . . . . 289

11.5 Two Heston Multifactor Volatility Models . . . . . . . . . . . . . 290
11.5.1 A Single Asset Heston Multifactor Volatility Model . . . . 290
11.5.2 A Heston Multi-asset Multifactor Volatility Model . . . . . 294

12 Monte Carlo and Quasi-Monte Carlo Methods . . . . . . . . . . . . 299
12.1 Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . . . . 299

12.1.1 Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . 300
12.1.2 Bias and Computational Complexity . . . . . . . . . . . . 301
12.1.3 Exact Simulation Methods for Diffusions . . . . . . . . . . 304



Contents xix

12.1.4 Multilevel Methods . . . . . . . . . . . . . . . . . . . . . 308
12.2 Quasi-Monte Carlo Methods . . . . . . . . . . . . . . . . . . . . . 311

12.2.1 The Digital Construction Scheme . . . . . . . . . . . . . . 311
12.2.2 Owen’s Scrambling Algorithm . . . . . . . . . . . . . . . 313
12.2.3 Numerical Integration Using Scrambled Digital Nets . . . . 313
12.2.4 Multilevel Quasi-Monte Carlo Methods . . . . . . . . . . . 314

12.3 Applications Under the Benchmark Approach . . . . . . . . . . . 314
12.4 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . 317

12.4.1 Almost Exact Simulation for Functionals of Realized
Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

12.4.2 Numerical Results for Put Options on Realized Variance . . 319
12.4.3 Numerical Results for Put Options on Volatility . . . . . . 321

13 Computational Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
13.1 Some Identities Related to the Non-central Chi-Squared

Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
13.2 Computing the Non-central Chi-Squared Distribution . . . . . . . 326
13.3 The Doubly Non-central Beta Distribution . . . . . . . . . . . . . 329
13.4 Computing the Doubly Non-central Beta Distribution . . . . . . . 334
13.5 Inverting Laplace Transforms . . . . . . . . . . . . . . . . . . . . 339

13.5.1 Recovering the Joint Distribution to Price Realized Variance 340

14 Credit Risk Under the Benchmark Approach . . . . . . . . . . . . . 343
14.1 An Affine Credit Risk Model . . . . . . . . . . . . . . . . . . . . 343
14.2 Pricing Credit Default Swaps Under the Benchmark Approach . . 350
14.3 Credit Valuation Adjustment Under the Benchmark Approach . . . 353
14.4 CVA for Commodities . . . . . . . . . . . . . . . . . . . . . . . . 357
14.5 A Reduced-Form Model . . . . . . . . . . . . . . . . . . . . . . . 359

15 Continuous Stochastic Processes . . . . . . . . . . . . . . . . . . . . 363
15.1 Stochastic Processes . . . . . . . . . . . . . . . . . . . . . . . . . 363

15.1.1 Stochastic Process . . . . . . . . . . . . . . . . . . . . . . 363
15.1.2 Filtration as Information Structure . . . . . . . . . . . . . 364
15.1.3 Conditional Expectations . . . . . . . . . . . . . . . . . . 364
15.1.4 Wiener Process . . . . . . . . . . . . . . . . . . . . . . . 366

15.2 Supermartingales and Martingales . . . . . . . . . . . . . . . . . . 367
15.2.1 Martingales . . . . . . . . . . . . . . . . . . . . . . . . . 367
15.2.2 Super- and Submartingales . . . . . . . . . . . . . . . . . 368
15.2.3 Stopping Times . . . . . . . . . . . . . . . . . . . . . . . 368

15.3 Quadratic Variation and Covariation . . . . . . . . . . . . . . . . . 370
15.3.1 Quadratic Variation . . . . . . . . . . . . . . . . . . . . . 370
15.3.2 Covariation . . . . . . . . . . . . . . . . . . . . . . . . . . 371
15.3.3 Local Martingales . . . . . . . . . . . . . . . . . . . . . . 371
15.3.4 Identification of Martingales as Wiener Processes . . . . . 372

15.4 Itô Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
15.4.1 Some Properties of Itô Integrals . . . . . . . . . . . . . . . 373

15.5 Itô Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375



xx Contents

15.5.1 One-Dimensional Continuous Itô Formula . . . . . . . . . 375
15.5.2 Multidimensional Continuous Itô Formula . . . . . . . . . 375

15.6 Stochastic Differential Equations . . . . . . . . . . . . . . . . . 376
15.6.1 Feedback in Stochastic Dynamics . . . . . . . . . . . . 376
15.6.2 Solution of Continuous SDEs . . . . . . . . . . . . . . . 377
15.6.3 Continuous Vector SDEs . . . . . . . . . . . . . . . . . 377

15.7 Existence and Uniqueness of Solutions of SDEs . . . . . . . . . 378
15.7.1 Strong Solution . . . . . . . . . . . . . . . . . . . . . . 378
15.7.2 Existence and Uniqueness Theorem . . . . . . . . . . . 379

15.8 Functionals of Solutions of SDEs . . . . . . . . . . . . . . . . . 380
15.8.1 SDE for Some Factor Process . . . . . . . . . . . . . . . 380
15.8.2 Terminal Payoff . . . . . . . . . . . . . . . . . . . . . . 381
15.8.3 Discounted Payoff . . . . . . . . . . . . . . . . . . . . . 381
15.8.4 Terminal Payoff and Payoff Rate . . . . . . . . . . . . . 382
15.8.5 Payoff with First Exit Time . . . . . . . . . . . . . . . . 382
15.8.6 Generalized Feynman-Kac Formula . . . . . . . . . . . 383
15.8.7 Kolmogorov Equations . . . . . . . . . . . . . . . . . . 385
15.8.8 Change of Probability Measure . . . . . . . . . . . . . . 386
15.8.9 Bayes Rule . . . . . . . . . . . . . . . . . . . . . . . . 386
15.8.10 Girsanov Transformation . . . . . . . . . . . . . . . . . 387

16 Time-Homogeneous Scalar Diffusions . . . . . . . . . . . . . . . . . 389
16.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 389
16.2 Boundary Classification . . . . . . . . . . . . . . . . . . . . . . 390
16.3 Laplace Transform Identities . . . . . . . . . . . . . . . . . . . . 391

17 Detecting Strict Local Martingales . . . . . . . . . . . . . . . . . . . 397
17.1 Sin’s Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
17.2 Multidimensional Extension . . . . . . . . . . . . . . . . . . . . 402

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 415

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421



Basic Notation

μX mean of X;
σ 2
X,Var(X) variance of X;

Cov(X,Y ) covariance of X and Y ;
inf{·} greatest lower bound;
sup{·} smallest upper bound;
max(a, b)= a ∨ b maximum of a and b;
min(a, b)= a ∧ b minimum of a and b;
(a)+ = max(a,0) maximum of a and 0;
x� transpose of a vector or matrix x;
x = (x1, x2, . . . , xd)� column vector x ∈ �d with ith component xi ;
|x| absolute value of x or Euclidean norm;
A = [ai,j ]k,di,j=1 (k × d)-matrix A with ij th component ai,j ;
det(A) determinant of a matrix A;
A−1 inverse of a matrix A;
(x,y) inner product of vectors x and y;
N = {1,2, . . .} set of natural numbers;
∞ infinity;
(a, b) open interval a < x < b in �;
[a, b] closed interval a ≤ x ≤ b in �;
�= (−∞,∞) set of real numbers;
�+ = [0,∞) set of nonnegative real numbers;
�d d-dimensional Euclidean space;
Ω sample space;
∅ empty set;
A∪B the union of sets A and B;
A∩B the intersection of sets A and B;
A\B the set A without the elements of B;
E =�\{0} � without origin;
[X,Y ]t covariation of processes X and Y at time t ;
[X]t quadratic variation of process X at time t ;
n! = 1 · 2 · . . . · n factorial of n;

xxi



xxii Basic Notation

[a] largest integer not exceeding a ∈ �;
i.i.d. independent identically distributed;
a.s. almost surely;
f ′ first derivative of f : �→�;
f ′′ second derivative of f : �→�;
f :Q1 →Q2 function f from Q1 into Q2;
∂u
∂xi

ith partial derivative of u : �d →�;
(
∂
∂xi

)k
u kth order partial derivative of u with respect

to xi ;
∃ there exists;
FX(·) distribution function of X;
fX(·) probability density function of X;
φX(·) characteristic function of X;
1A indicator function for event A to be true;
N(·) Gaussian distribution function;
Γ (·) gamma function;
Γ (·; ·) incomplete gamma function;
(mod c) modulo c;
A collection of events, sigma-algebra;
A filtration;
E(X) expectation of X;
E(X |A) conditional expectation of X under A;
P(A) probability of A;
P(A | B) probability of A conditioned on B;
∈ element of;
/∈ not element of;
�= not equal;
≈ approximately equal;
a� b a is significantly smaller than b;
limN→∞ limit as N tends to infinity;
lim infN→∞ lower limit as N tends to infinity;
lim supN→∞ upper limit as N tends to infinity;
ı square root of −1, imaginary unit;
δ(·) Dirac delta function at zero;
I unit matrix;
sgn(x) sign of x ∈ �;
L2
T space of square integrable, progressively

measurable functions on [0, T ] ×Ω ;
B(U) smallest sigma-algebra on U ;
ln(a) natural logarithm of a;
MM Merton model;
MMM minimal market model;
GIG generalized inverse Gaussian;
GH generalized hyperbolic;
VG variance gamma;



Basic Notation xxiii

GOP growth optimal portfolio;
NP numéraire portfolio;
EWI equi-value weighted index;
ODE ordinary differential equation;
SDE stochastic differential equation;
PDE partial differential equation;
PIDE partial integro differential equation;
Iν(·) modified Bessel function of the first kind with

index ν;
Kλ(·) modified Bessel function of the third kind with

index λ;

 time step size of a time discretization;(
i
l

)= i!
l!(i−l)! combinatorial coefficient;

Ck(Rd ,R) set of k times continuously differentiable
functions;

CkP (Rd ,R) set of k times continuously differentiable
functions which, together with their partial
derivatives of order up to k, have at most
polynomial growth;

L1(A,P ) set of A-measurable random variables with first
moments under P ;

Mm,n(�) set of all m× n matrices with entries in �;
Mn(�) set of all n× n matrices with entries in �;
GL(p) group of all invertible matrices of Mp(�);
Sp linear subspace of all symmetric matrices of

Mp(�);
S+
p set of all symmetric positive definite matrices of

Mp(�);
S−
p set of all symmetric negative definite matrices of

Mp(�);
S+
p closure of S+

p in Mp(�), that is the set of all
symmetric positive semidefinite matrices of
Mp(�);

K,K1, . . . , K̃ , C,C1, . . . , C̃, . . . letters such as these represent finite positive real
constants that can vary from line to line. All these
constants are assumed to be independent of the
time step size 
.



Chapter 1
A Benchmark Approach to Risk Management

To provide for this book a relevant field of application for functionals of multidimen-
sional diffusions, problems of pricing and hedging will be discussed in a general
financial modeling framework. This chapter introduces a unified continuous time
framework for financial and insurance modeling. It can be applied to portfolio opti-
mization, derivative pricing, financial modeling, actuarial pricing and risk measure-
ment. It is based on the benchmark approach presented in Platen and Heath (2010)
and the concept of benchmarked risk minimization, see Du and Platen (2012a). The
best performing, strictly positive portfolio is chosen as natural benchmark for asset
allocation and also as natural numéraire for pricing. This portfolio is the growth
optimal portfolio (GOP), which maximizes expected growth or log-utility. Further-
more, it is also the numéraire portfolio (NP) such that any nonnegative portfolio,
denominated in units of the NP turns out to be a supermartingale. This fundamental
property leads to a natural pricing rule under the real world probability measure,
which identifies the minimal replicating price. We alert the reader to an important
property of the benchmark approach, namely that an equivalent risk neutral prob-
ability measure need not exist. This provides the modeler with significant freedom
compared to the classical risk neutral approach. Not only models will be accom-
modated that are covered by most of the classical no-arbitrage pricing literature
in financial mathematics, including, for instance, Karatzas and Shreve (1998) and
Björk (1998), but also a much wider range of models will be allowed, which go be-
yond the classical risk neutral paradigm, see e.g. Loewenstein and Willard (2000),
Fernholz and Karatzas (2005), Platen (2002), Karatzas and Kardaras (2007), and
Galesso and Runggaldier (2010). The focus of this book will be on tractable mod-
els, which may go beyond the classical no-arbitrage world, and the computation of
their functionals.

1.1 A Continuous Market Model

Many applications we will discuss involve financial instruments in a continu-
ous market, where prices of traded securities do not exhibit jumps and their

J. Baldeaux, E. Platen, Functionals of Multidimensional Diffusions with Applications
to Finance, Bocconi & Springer Series 5, DOI 10.1007/978-3-319-00747-2_1,
© Springer International Publishing Switzerland 2013
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2 1 A Benchmark Approach to Risk Management

denomination is in units of domestic currency. We first consider such a market con-
taining d ∈N sources of continuous traded uncertainty. Later we will also consider
markets with jumps in price processes expressed in several currencies. Continu-
ous traded uncertainty is represented by d independent standard Wiener processes
Wk = {Wk

t , t ≥ 0}, k ∈ {1,2, . . . , d}. These are defined on a filtered probability
space (Ω,A,A,P ). The filtration A= (At )t≥0 is assumed to satisfy the usual con-
ditions and A0 is the trivial initial σ -algebra.

1.1.1 Primary Security Accounts

A primary security account is an investment account, consisting of only one kind of
security. It is used to model the evolution of wealth due to the ownership of primary
securities, with all dividends and income reinvested. We denote the time t value of
the j th risky primary security account by Sjt , for j ∈ {1,2, . . . , d} and t ≥ 0. The 0th
primary security account S0 = {S0

t , t ≥ 0} is the domestic locally riskless savings
account, which continuously accrues at the adapted short term interest rate process
r = {rt , t ≥ 0}.

To specify the dynamics of primary securities in the given financial market, we
assume without loss of generality that the j th primary security account value Sjt
satisfies the SDE

dS
j
t = Sjt

(

a
j
t dt +

d∑

k=1

b
j,k
t dWk

t

)

(1.1.1)

for t ≥ 0 with initial value Sj0 > 0 and j ∈ {1,2, . . . , d}. We assume that the ap-
preciation rate process aj and the generalized volatility processes bj,k take almost
surely finite values and are predictable, k, j ∈ {1,2, . . . , d}. We assume the models
to be such that a unique strong solution of the system of SDEs (1.1.1) exists, see
Chap. 15.7.

1.1.2 Market Price of Risk

To securitize the different sources of traded uncertainty properly, i.e. to avoid re-
dundant primary security accounts, we introduce the generalized volatility matrix
bt = [bj,kt ]dj,k=1 for all t ≥ 0 and make the following assumption:

Assumption 1.1.1 The volatility matrix bt is invertible for Lebesgue-almost-every
t ≥ 0.

Assumption 1.1.1 allows us to introduce the market price of risk vector

θ t =
(
θ1
t , . . . , θ

d
t

)� = b−1
t [at − rt 1] (1.1.2)
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for t ≥ 0. Here at = (a1
t , . . . , a

d
t )

� denotes the appreciation rate vector and 1 =
(1, . . . ,1)� the unit vector. Using (1.1.2), we can rewrite the SDE for the j th pri-
mary security account in the form

dS
j
t = Sjt

(

rt dt +
d∑

k=1

b
j,k
t

(
θkt dt + dWk

t

)
)

(1.1.3)

for t ≥ 0 and j ∈ {0,1, . . . , d}. We observe that θkt denotes the market price of risk
with respect to the kth Wiener processWk . For j = 0 in (1.1.3) we denote by S0

t the
savings account, which is locally riskless with b0,k

t = 0 for all k ∈ {1,2, . . . , d} and
t ≥ 0. The market price of risk plays a central role and determines the risk premium
that risky securities command from the perspective of the domestic currency.

1.1.3 Black-Scholes Model

The standard market model, which has served for several decades practitioners and
theoreticians, can be obtained by simply assuming the short rate process, the volatil-
ity processes and the market price of risk processes to represent deterministic func-
tions of time. The resulting Black-Scholes model, see Black and Scholes (1973), is
a highly tractable model, in particular, when the just mentioned deterministic func-
tions are constant. Unfortunately, the Black-Scholes model has many deficiencies.
This book will discuss other highly tractable models that reflect more realistically
the observed dynamics of financial markets.

1.1.4 Portfolios

The vector process S = {St = (S0
t , . . . , S

d
t )

�, t ≥ 0} characterizes the evolution of
all primary security accounts. We call a predictable stochastic process δ = {δt =
(δ0
t , . . . , δ

d
t )

�, t ≥ 0} a strategy if the Itô integral Iδ,S(t) =∑d
j=0

∫ t
0 δ
j
s dS

j
s of the

corresponding gains from trade exists, see Chap. 15.4. Here δjt denotes the number
of units of the j th primary security account held at time t ≥ 0 in the portfolio Sδt ,
j ∈ {0,1, . . . , d}, and we denote by

Sδt =
d∑

j=0

δ
j
t S
j
t (1.1.4)

the time t value of the portfolio process Sδ = {Sδt , t ≥ 0}. A strategy δ and the
corresponding portfolio process Sδ are called self-financing if

dSδt =
d∑

j=0

δ
j
t dS

j
t (1.1.5)
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for all t ≥ 0. This means that all changes in the portfolio value are due to gains or
losses from trading in primary security accounts. We remind the reader that δ is
assumed to be a predictable process. For simplicity, we consider only self-financing
portfolios when discussing the above continuous market model. When we will later
model price processes with jumps and perform benchmarked risk minimization, we
will also allow portfolios that may no longer be self-financing.

1.2 Best Performing Portfolio as Benchmark

For a given strategy δ with strictly positive self-financing portfolio process Sδ we
use πjδ,t to denote the fraction of wealth invested in the j th primary security account
at time t , that is

π
j
δ,t = δjt

S
j
t

Sδt
(1.2.6)

for t ≥ 0 and j ∈ {0,1, . . . , d}. We note that the fractions can be negative and always
sum to one, that is

d∑

j=0

π
j
δ,t = 1. (1.2.7)

In terms of the vector of fractions π δ,t = (π1
δ,t , . . . , π

d
δ,t )

� we obtain from (1.1.5),
(1.1.3) and (1.2.6) the SDE

dSδt = Sδt
{
rt dt + π�

δ,t bt (θ t dt + dW t )
}

(1.2.8)

for a strictly positive portfolio process Sδ , where t ≥ 0 and

dW t =
(
dW 1

t , . . . , dW
d
t

)�
.

We now use the Itô formula to obtain the SDE for the logarithm of the portfolio,

d ln
(
Sδt
)= gδt dt +

d∑

k=1

d∑

j=1

π
j
δ,t b

j,k
t dWk

t (1.2.9)

for t ≥ 0. The growth rate at time t for Sδt is then given by

gδt = rt +
d∑

k=1

[
d∑

j=1

π
j
δ,t b

j,k
t θkt −

1

2

(
d∑

j=1

π
j
δ,t b

j,k
t

)2]

(1.2.10)

for t ≥ 0.
We now define for t ≥ 0 the fractions

π δ∗,t =
(
π1
δ∗,t , . . . , π

d
δ∗,t
)� = (θ�t b−1

t

)� (1.2.11)
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of a particular strictly positive portfolio Sδ∗ , which we will identify below as the
growth optimal portfolio (GOP). By (1.2.8) and (1.2.11) it follows that Sδ∗t satisfies
the SDE

dS
δ∗
t = Sδ∗t

(
rt dt + θ�t (θ t dt + dW t )

)

= Sδ∗t
(

rt dt +
d∑

k=1

θkt
(
θkt dt + dWk

t

)
)

(1.2.12)

for t ≥ 0, with Sδ∗0 > 0. We now define the GOP in the given continuous financial
market.

Definition 1.2.1 A strictly positive portfolio process Sδ that maximizes the growth
rate gδt , see (1.2.10), of all strictly positive portfolio processes Sδ such that

gδt ≤ gδt (1.2.13)

almost surely for all t ≥ 0 is called a GOP.

The proof of the following result is given in Platen and Heath (2010).

Corollary 1.2.2 Under the Assumption 1.1.1 the portfolio process Sδ∗ = {Sδ∗t , t ≥ 0}
satisfying (1.2.13) is a GOP. Its value process is uniquely determined.

The GOP is in many ways the best performing portfolio of the given investment
universe. Let us briefly mention one of its most striking properties, which is given
by the fact that the path of the GOP outperforms in the long run the path of any other
strictly positive portfolio almost surely.

Theorem 1.2.3 The GOP Sδ∗ has almost surely the largest long term growth rate
in comparison with that of any other strictly positive portfolio Sδ in the sense that

lim sup
T→∞

1

T
ln

(
S
δ∗
T

S
δ∗
0

)

≥ lim sup
T→∞

1

T
ln

(
SδT

Sδ0

)

(1.2.14)

almost surely.

The proof of this result and further results on outstanding performance properties
of the GOP are given in Platen and Heath (2010). The GOP is also called Kelly
portfolio, see Kelly (1956) and MacLean et al. (2011).

Section 1.5 will describe a Diversification Theorem, which states that under gen-
eral assumptions, a sequence of well-diversified portfolios approximates the GOP.
Therefore, from a practical perspective one can say that a global well diversified
portfolio appears to be a good proxy for the GOP. For instance, the MSCI world ac-
cumulation index is such a tradable portfolio that one can use as a reasonable proxy
for the GOP for various purposes. An even better performing proxy of the GOP is
described in Platen and Rendek (2012), see Sect. 1.5.
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1.3 Supermartingale Property and Pricing

1.3.1 Benchmarked Portfolios

In the following, the “best” performing portfolio of our continuous financial market,
the GOP, will be employed as benchmark for various risk management tasks. For
portfolio investing, it can serve as a benchmark in the classical sense. Furthermore,
it can be used as numéraire for pricing in conjunction with the real world probability
measure. Finally, in the area of risk measurement the GOP is ideally suited to play
the role of the required broad based index or well diversified portfolio that should
be used when measuring general market risk in the regulatory sense, see Platen and
Stahl (2003). We call prices expressed in units of Sδ∗ benchmarked prices. It follows
from the Itô formula and relations (1.2.8) and (1.2.12) that a benchmarked portfolio
process Ŝδ = {Ŝδt , t ≥ 0}, with

Ŝδt =
Sδt

S
δ∗
t

(1.3.15)

for t ≥ 0, satisfies the SDE

dŜδt =
d∑

k=1

(
d∑

j=1

δ
j
t Ŝ
j
t b

j,k
t − Ŝδt θkt

)

dWk
t (1.3.16)

= Ŝδt
d∑

k=1

(
d∑

j=1

π
j
δ,t b

j,k
t − θkt

)

dWk
t

for t ≥ 0.
The SDE (1.3.16) describes the dynamics of a benchmarked portfolio. As an

example, the benchmarked savings account Ŝ0
t satisfies the SDE

dŜ0
t =−Ŝ0

t

d∑

k=1

θkt dW
k
t (1.3.17)

for t ≥ 0, since b0,k
t = 0, for all k ∈ {1,2, . . . , d}.

1.3.2 Supermartingale Property

We are now in a position to state the mathematically most important property of a
financial market model, namely its supermartingale property.

Theorem 1.3.1 Any nonnegative benchmarked portfolio process Ŝδ is an (A,P )-
supermartingale, that is,

Ŝδt ≥E
(
Ŝδτ

∣
∣At
)

(1.3.18)

for all bounded stopping times τ ∈ [0,∞) and t ∈ [0, τ ].
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A proof of this theorem can be found in Platen and Heath (2010). It has the im-
portant economical interpretation that the GOP is the “best” performing portfolio,
and any other portfolio denominated in units of the GOP can trend only downwards
or has at most no trend. The benchmark that satisfies the supermartingale property
(1.3.18) is also called the numéraire portfolio (NP), see Long (1990) and Becherer
(2001). We emphasize the fundamental fact that nonnegative benchmarked portfo-
lios are supermartingales, even in general semimartingale markets, as long as a finite
numéraire portfolio exists, see Platen (2004) and Karatzas and Kardaras (2007). We
will provide in Sect. 1.4 such a financial market modeling framework.

1.3.3 Strong Arbitrage

For several decades, pricing rules have been based on excluding some classical
form of arbitrage, which generally has been linked to the Fundamental Theorem
of Asset Pricing, see e.g. Ross (1976), Harrison and Kreps (1979), and Delbaen and
Schachermayer (2006). In the following, we will consider a notion of strong arbi-
trage and show that pricing based on excluding strong arbitrage makes sense in our
more general setting.

Definition 1.3.2 A nonnegative portfolio that starts at zero and reaches at some
later time a strictly positive value with strictly positive probability is called a strong
arbitrage.

From Theorem 1.3.1 it is known that all nonnegative benchmarked portfolios are
supermartingales. Since a nonnegative supermartingale, which starts at zero always
remains at zero, we obtain the following conclusion:

Corollary 1.3.3 There is no nonnegative portfolio that is a strong arbitrage.

Corollary 1.3.3 shows that pricing on the basis of excluding strong arbitrage
does not work in our general market since it is in any case excluded. By assum-
ing the existence of an NP we obtain a far richer modeling world than the classical
theory can provide without excluding anything what the classical approach can pro-
vide. Consequently, free lunches with vanishing risk in the sense of Delbaen and
Schachermayer (1998), see also Delbaen and Schachermayer (2006), can occur in
our general market. Also some other weak forms of classical arbitrage may arise, see
Loewenstein and Willard (2000). This does not create any problems from a practical
point of view. On the contrary, it enables us to better reflect real market behavior,
especially in the long run, by significantly extending the universe of potential mod-
els.
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1.3.4 Law of the Minimal Price

The previous subsection suggested that classical forms of arbitrage can be present
in our market, hence we cannot rely on the classical no-arbitrage pricing methodol-
ogy, mainly expressed via the risk neutral pricing formula, see Harrison and Kreps
(1979), Karatzas and Shreve (1998) or Björk (1998).

To present a more general pricing concept applicable in our general setting, we
firstly define a fair price process.

Definition 1.3.4 A security price process V = {Vt , t ∈ [0,∞)} is called fair if its
benchmarked value V̂t = Vt

S
δ∗
t

forms an (A,P )-martingale.

In a family of supermartingales sharing the same nonnegative value at some fu-
ture bounded stopping time, it is the martingale that attains the minimal possible
price, see Revuz and Yor (1999) or Platen and Heath (2010). This basic fact yields
naturally the Law of the Minimal Price:

Corollary 1.3.5 Consider a bounded stopping time τ ∈ (0,∞) and a given future
Aτ -measurable payoffH to be paid at time τ , whereE( H

S
δ∗
τ

|A0) <∞. If there exists

a fair nonnegative portfolio Sδ with Sδτ =H almost surely, then this is the minimal
possible nonnegative portfolio that replicates the payoff.

Clearly, a fair portfolio provides the least expensive possibility for an investor
to reach some future payoff H to be delivered at time τ . We alert the reader to the
fact that in our general setting there exist self-financing portfolios that are not fair.
This means that the classical Law of One Price needs to be abandoned and can be
substituted by the above Law of the Minimal Price.

1.3.5 Real World Pricing

Consider the payoff H payable at a bounded stopping time τ ∈ [0,∞), which is
assumed to be Aτ -measurable and to satisfy E( H

S
δ∗
τ

) <∞. We apply the Law of the

Minimal Price to the payoff H and conclude that its fair price, denoted by UH(t)
at time t ∈ [0, τ ], is then the minimal possible price and given by the real world
pricing formula

UH(t)= Sδ∗t E
(
H

S
δ∗
τ

∣
∣
∣
∣At
)

. (1.3.19)

We point out that this formula represents an absolute pricing rule. In our approach,
pricing is an investment decision. The payoff is valued relative to the “best” per-
forming portfolio under the real world expectation. We remind the reader that its
numéraire is the GOP, which is the numéraire portfolio, and in this sense the best
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performing portfolio. We price under the real world probability measure and not
under an assumed risk neutral probability measure, as is often the case in the lit-
erature. Due to the supermartingale property, any other self-financing replicating
portfolio process can only be more expensive than the above fair price process. We
conclude that in a competitive market the real world pricing formula provides the
economically correct price since it is the minimal possible price when replicating a
payoff.

1.3.6 Risk Neutral Pricing

It is well known, see Platen and Heath (2010), that real world pricing and risk neutral
pricing are equivalent as long as the candidate Radon-Nikodym derivative

Λθ(t)= S0
t

S
δ∗
t

S
δ∗
0

S0
0

(1.3.20)

for the putative risk neutral probability measure forms an (A,P )-martingale. An
application of the Bayes rule to the real world pricing formula (1.3.19) for maturity
date τ = T yields in this case the risk neutral pricing formula

UH(t)=E
(
Λθ(T )

Λθ(t)

S0
t

S0
T

H

∣
∣
∣
∣At
)

= S0
t Eθ

(
H

S0
T

∣
∣
∣
∣At
)

. (1.3.21)

Here Eθ denotes the expectation under the here assumed risk neutral probability
measure Pθ , with dPθ

dP
|AT

=Λθ(T ). This shows that classical risk neutral pricing is
under appropriate assumptions a special case of real world pricing.

We remark that when the benchmarked savings account is a strict supermartin-
gale, Λθ(t) does not form a martingale and risk neutral prices can be significantly
more expensive than fair prices, in particular, for long-dated securities. We refer to
Platen and Heath (2010) and Chap. 3 in Platen and Bruti-Liberati (2010) for exam-
ples and more details on this issue.

We conclude by noting that the actuarial pricing formula, see Bühlmann and
Platen (2003), arises from the real world pricing formula (1.3.21) as another special
case when for fixed maturity τ = T the random payoff H is independent of Sδ∗T ,
yielding

UH(t)= P(t, T )E(H |At ). (1.3.22)

Here P(t, T )= Sδ∗t E((Sδ∗T )−1 |At ) is the fair zero coupon bond, which represents
the discount factor. Thus, real world pricing unifies actuarial and classical risk neu-
tral pricing. More precisely, it makes pricing an investment decision. We will see in
the next section that the real world pricing formula is the natural pricing rule also
in the case of not fully replicable contingent claims. Throughout the book we will
price a wide range of payoffs under a number of tractable models by using the real
world pricing formula.
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1.4 Benchmarked Risk Minimization

In this section, we discuss the problem of hedging not perfectly replicable contin-
gent claims by using a benchmark, namely the numéraire portfolio, as numéraire.
Benchmarked risk minimizing (BRM) strategies, as introduced in Du and Platen
(2012a), are employed to solve this problem. The concept of benchmarked risk
minimization generalizes classical risk minimization, as pioneered in Föllmer and
Sondermann (1986), Föllmer and Schweizer (1991), and Schweizer (1995). Bench-
marked risk minimization employs the real world probability measure as pricing
measure and the numéraire portfolio as numéraire and benchmark to identify the
minimal possible price for a contingent claim. Furthermore, the resulting profit and
loss is only driven by uncertainty that is orthogonal to traded uncertainty, and forms
a local martingale that starts at zero. Consequently, benchmarked profit and losses,
when pooled and sufficiently different, can become in total asymptotically negligi-
ble through diversification. This property is highly desirable from a risk manage-
ment point of view. It makes benchmarked risk minimization the least expensive
method for pricing and hedging a diversified pool of not fully replicable bench-
marked contingent claims.

We present benchmarked risk minimization in a diffusion setting to illustrate the
approach. The general semimartingale case is covered in Du and Platen (2012a). We
consider a filtered probability space (Ω,A,A,P ) which carries an m′-dimensional
Brownian motion

W = {W t =
(
W 1
t ,W

2
t , . . . ,W

m
t ,W

m+1
t , . . . ,Wm′

t

)
, t ≥ 0

}
,

m ∈ {0,1, . . . ,m′ − 1}. We assume the existence of d primary securities, which
satisfy Eq. (1.1.3),

dS
j
t = Sjt

(

rt +
m∑

k=1

b
j,k
t

(
θkt dt + dWk

t

)
)

, (1.4.23)

for t ≥ 0 and j ∈ {0,1, . . . , d}. For j = 0, we again make the assumption that
b0,k = 0 for k ∈ {1, . . . ,m}, so S0 denotes the locally riskless savings account. Fur-
thermore, the dynamics of the GOP are given by Eq. (1.2.12),

dS
δ∗
t = Sδ∗t

(

rt dt +
m∑

k=1

θkt
(
θkt dt + dWk

t

)
)

, (1.4.24)

for t ≥ 0 with Sδ∗0 > 0. Hence the benchmarked security Ŝj = {Ŝjt = S
j
t

S
δ∗
t

, t ≥ 0}
satisfies the SDE

dŜ
j
t = Ŝjt

m∑

k=1

σ
j,k
t dWk

t ,

where σ j,kt = bj,kt − θkt , for t ≥ 0. Note that the Wiener processes Wm+1, . . . ,Wm′

do not drive traded benchmarked wealth. We recall the notion of a self-financing
portfolio from Eq. (1.1.5). Now, let us introduce a class of strategies that can form
non-self-financing portfolios.
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Definition 1.4.1 A dynamic trading strategy v, initiated at time t = 0, is an �d+1-
valued stochastic process v = {vt = (ηt , ϑ1

t , . . . , ϑ
d
t ), t ∈ [0,∞)}, where its sub-

vector process ϑ = {ϑ t = (ϑ1
t , . . . , ϑ

d
t ), t ∈ [0,∞)} describes the number of units

invested in the respective primary security accounts Ŝ1
t , . . . , Ŝ

d
t to form the bench-

marked self-financing part
∑d
k=1 ϑ

k
t Ŝ
k
t of a corresponding benchmarked price pro-

cess V̂ v = {V̂ v
t , t ∈ [0,∞)} with value

V̂ v
t =

d∑

k=1

ϑkt Ŝ
k
t + ηt (1.4.25)

of units at time t ∈ [0,∞). Here v is assumed to be an �d -valued, predictable pro-
cess such that

∫ t

0

d∑

k=1

d∑

j=1

ϑks ϑ
j
s d
[
Ŝk, Ŝj

]
s
<∞ P -a.s. (1.4.26)

for all t ≥ 0. The A-adapted, real valued process η= {ηt , t ∈ [0,∞)}, starting with
η0 = 0, monitors the benchmarked non-self-financing part of the continuous bench-
marked price process V̂ v, which then satisfies the equation

V̂ v
t = V̂ v

0 +
∫ t

0

d∑

k=1

ϑks dŜ
k
s + ηt (1.4.27)

for t ∈ [0,∞), where V̂ v is assumed to form an (A,P )-supermartingale and the Itô
integral exists as vector Itô integral.

We note, regarding Eq. (1.4.25), that we have

d
[
Ŝk, Ŝj

]
t
= Ŝjt Ŝkt

m∑

l=1

σ
k,l
t σ

j,l
t dt.

The benchmarked gains from trade during the time interval [0, t], t ∈ [0,∞), from
holding ϑjs units of the j th primary security account for j ∈ {1, . . . , d} at time s,
s ∈ [0, t], are given by the Itô integral

∫ t

0
ϑks dŜ

k
s . (1.4.28)

We emphasize that a dynamic trading strategy generates via its self-financing part
(1.4.28) benchmarked gains from trade in a manner that does not require outside
funds and also does not generate extra funds. However, in general, capital has to be
added or removed from a respective portfolio to match with its benchmarked value
over time the evolution of a given benchmarked price process V̂ v. We will see that
for risk management tasks it is enough to monitor the units of the NP that are added
or removed from the portfolio to match a desired price process without requiring
to hold physically these units. In particular, via the process η the investor monitors
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the adapted, cumulative “virtual” capital inflow and outflow from the respective
portfolio as it theoretically results from targeting a desired price process.

Note, when there is no inflow or outflow of capital in a dynamic trading strat-
egy, then one deals with a self-financing portfolio, as described in Eq. (1.1.5). More
generally, when allowing extra capital inflows and outflows, one obtains from Defi-
nition 1.4.1 the following result.

Corollary 1.4.2 For a dynamic trading strategy

v = {vt =
(
ηt ,ϑ

1
t , ϑ

2
t , . . . , ϑ

d
t

)
, t ∈ [0,∞)},

as introduced in Definition 1.4.1 with benchmarked price process V̂ v, the corre-
sponding benchmarked portfolio at time t is the sum

V̂ v
t = Ŝδt =

d∑

k=1

δkt Ŝ
k
t (1.4.29)

with

δkt = ϑkt + ηt δk∗,t . (1.4.30)

Here δk∗,t , k ∈ {1, . . . , d}, denotes at time t the number of units of the kth primary
security account needed to form the NP, that is, one has for the benchmarked NP

1 = Ŝδ∗t =
d∑

k=1

δk∗,t Ŝkt ,

for t ∈ [0,∞).
We now address claims which are not fully replicable in the sense that there may

not exist a self-financing strategy that delivers the claim P -a.s. In particular, we aim
to identify the least expensive way of delivering targeted contingent claims through
hedging while removing asymptotically the total hedge error in a large trading book.

Definition 1.4.3 For a dynamic trading strategy

v = {vt =
(
ηt ,ϑ

1
t , . . . , ϑ

d
t

)
, t ∈ [0,∞)},

as introduced in Definition 1.4.1, with corresponding benchmarked price V̂ v
t = Ŝδt =∑d

k=1 δ
k
t Ŝ
k
t at time t ∈ [0,∞) according to Eq. (1.4.29), the corresponding bench-

marked profit and loss (P&L) process

Ĉδ = {Ĉδ∗t , t ∈ [0,∞)}

is defined as the benchmarked price minus the benchmarked gains from trading
the self-financing part of the respective portfolio, see Eq. (1.4.28), minus the initial
benchmarked price, that is,

Ĉδt = Ŝδt −
d∑

k=1

∫ t

0
ϑku dŜ

k
u − Ŝδ0

for t ∈ [0,∞).
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From Definitions 1.4.1 and 1.4.3 one obtains directly the following statement.

Corollary 1.4.4 For a dynamic trading strategy

v = {vt =
(
ηt ,ϑ

1
t , . . . , ϑ

d
t

)
, t ∈ [0,∞)}

the corresponding benchmarked P&L process Ĉδ = {Ĉδt , t ∈ [0,∞)} coincides with
the adapted process η = {ηt , t ∈ [0,∞)} that monitors the cumulative inflow and
outflow of extra capital.

For simplicity, in the current chapter the hedging and, thus, the benchmarked
P&L process Ĉδ for a given benchmarked portfolio Ŝδ is assumed to start at the
initial time t = 0. Therefore, the benchmarked P&L has initial value Ĉδ0 = η0 = 0

and monitors at time t with Ĉδt = ηt the adapted accumulated benchmarked capital
that flew in or out of the benchmarked portfolio process V̂ v = Ŝδ until this time. In
other words, Ĉδt represents the benchmarked external costs incurred by the portfolio
Ŝδ over the time period [0, t] after the hedge was set up at the initial time zero.
Intuitively, the adapted process η can be interpreted as benchmarked hedge error.

Now assume for the moment that a financial institution holds a large number
of independent benchmarked P&Ls, which are independent, square-integrable mar-
tingales started at zero. By increasing the number of benchmarked P&Ls in such a
trading book, it follows by the Law of Large Numbers, which refers to the real world
probability measure, that the resulting total benchmarked P&L process will become
asymptotically negligible. In this manner, the benchmarked total P&L of the trad-
ing book can be asymptotically removed via diversification. The insight that such
removal is possible will be crucial for benchmarked risk minimization. Capturing
this observation is the aim of the following remark:

Remark 1.4.5 Benchmarked P&Ls should preferably be driftless, and, thus, local
martingales, starting at initiation with value zero.

According to Remark 1.4.5, a benchmarked P&L should be locally in the mean
self-financing. Mean-self-financing turns out to be an extremely useful notion,
which was introduced in Schweizer (1991).

Definition 1.4.6 A dynamic trading strategy

v = {vt =
(
ηt ,ϑ

1
t , . . . , ϑ

d
t

)
, t ∈ [0,∞)}

is called locally real world mean-self-financing if its adapted process η forms an
(A,P )-local martingale starting at zero.

Having introduced the concepts of P&L and mean-self-financing, we are now
in a position to discuss pricing and hedging. Recall from Definition 1.4.1 that dy-
namic trading strategies form benchmarked nonnegative price processes that are
consistent with the fact that the NP is the “best” performing portfolio in the sense
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that benchmarked price processes form supermartingales. Furthermore, note at this
stage that for a given benchmarked price process a corresponding dynamic trading
strategy remains potentially exposed to some ambiguity concerning what forms its
self-financing part and what constitutes its non-self-financing part, see Eq. (1.4.30).
This ambiguity will be removed by focusing below on benchmarked P&Ls with
fluctuations that are “orthogonal” to those of all self-financing benchmarked portfo-
lios, and thus, intuitively have no chance to be removed via hedging. To formalize
this idea we introduce the following notion.

Definition 1.4.7 A dynamic trading strategy

v = {vt =
(
ηt ,ϑ

1
t , . . . , ϑ

d
t

)
, t ∈ [0,∞)}

has an orthogonal benchmarked P&L η = {ηt , t ∈ [0,∞)} if η is orthogonal
to benchmarked traded wealth in the sense that ηt

∫ t
0

∑d
k=1 ϑ̄

k
s dŜ

k
s forms an

(A,P )-local martingale for every predictable self-financing strategy ϑ̄ = {ϑ̄ t =
(ϑ̄1
t , . . . , ϑ̄

d
t ), t ∈ [0,∞)} satisfying Eq. (1.4.26).

In some sense, all hedgeable uncertainty is removed from an orthogonal bench-
marked P&L. To fix the so far identified desirable properties of dynamic trading
strategies, let us define the following set.

Definition 1.4.8 Fix a maturity date T ∈ (0,∞). For a given benchmarked contin-
gent claim ĤT ∈ L1(AT ,P ), the set of AT -measurable random variables with finite
first moments, define the set V̂

ĤT
of locally real world mean-self-financing dynamic

trading strategies v, which deliver ĤT with orthogonal benchmarked P&L and cor-
responding benchmarked price V̂ v

t = Ŝδt for all t ∈ [0, T ], satisfying Eqs. (1.4.27),
(1.4.28), (1.4.29), and (1.4.30).

There may exist several nonnegative benchmarked hedge portfolios that could
deliver a given benchmarked contingent claim. The following concept of bench-
marked risk minimizing (BRM) strategies selects the most economical benchmarked
price process, which is the least expensive possible price process with the above
identified desirable properties.

Definition 1.4.9 For a given benchmarked contingent claim ĤT ∈ L1(AT ,P ) a
dynamic trading strategy ṽ = {ṽt = (η̃t , ϑ̃1

t , . . . , ϑ̃
d
t ), t ∈ [0, T ]} ∈ V̂

ĤT
with cor-

responding benchmarked price process V̂ ṽ = Ŝδ̃ is called benchmarked risk min-
imizing (BRM) if for all dynamic trading strategies v ∈ V̂

ĤT
, with Ŝδt satisfying

Eq. (1.4.29), the price Ŝδ̃t is minimal in the sense that

Ŝδ̃t ≤ Ŝδt (1.4.31)

P -a.s. for all t ∈ [0, T ].
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As required by Eq. (1.4.31) and similarly as in Corollary 1.3.5, we can exploit the
fact that the martingale among the nonnegative supermartingales contained in V̂

ĤT
yields the minimal possible benchmarked price process, see Revuz and Yor (1999).
Therefore, we have directly the following result:

Corollary 1.4.10 For a given benchmarked contingent claim ĤT ∈ L1(AT ,P ) a
BRM dynamic trading strategy v = {vt = (ηt , ϑ1

t , . . . , ϑ
d
t ), t ∈ [0, T ]} forms with

the corresponding benchmarked price process V̂ v an (A,P )-martingale, that is,

V̂ v
t = Ŝδt =E(ĤT |At )

P -a.s. for t ∈ [0, T ].

We now discuss the implementation of BRM strategies. In particular, it will be
extremely useful to have access to martingale representations. For the diffusion
based models discussed in this book, these are available for many standard claims.
Since a martingale representation of a benchmarked contingent claim, which sep-
arates the hedgeable and the orthogonal nonhedgeable part, is crucial for practical
hedging, we introduce the following notion:

Definition 1.4.11 A benchmarked contingent claim ĤT ∈ L1(AT ,P ) is called reg-
ular if it has for all t ∈ [0, T ] a martingale representation of the form

ĤT =E(ĤT |At )+
d∑

k=1

∫ T

t

ϑ
j

ĤT
(s) dŜ

j
s + ηĤT (T )− ηĤT (t) (1.4.32)

P -a.s. with some predictable vector process

ϑ
ĤT

= {ϑ
ĤT
(t)= (ϑ1

ĤT
(t), . . . , ϑd

ĤT
(t)
)
, t ∈ [0, T ]}

satisfying Eq. (1.4.26), and some local martingale

η
ĤT

= {η
ĤT
(t), t ∈ [0, T ]}

with

η
ĤT
(0)= 0.

Furthermore, for any predictable process ϑ = {ϑ t = (ϑ1
t , . . . , ϑ

d
t ), t ∈ [0, T ]}, sat-

isfying Eq. (1.4.26), the product process Zv,ĤT = {Zv,ĤT
t , t ∈ [0, T ]} with

Z
v,ĤT
t = η

ĤT
(t)

d∑

k=1

∫ t

0
ϑks dŜ

k
s ,

t ∈ [0, T ], forms an (A,P )-local martingale.

Combining Definition 1.4.9, Corollary 1.4.10, and Definition 1.4.11, the concept
of benchmarked risk minimization allows us to obtain in a straightforward manner
the following statement.
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Corollary 1.4.12 For a regular benchmarked contingent claim ĤT ∈ L1(AT ,P )
there exists a BRM strategy

v = {vt =
(
η
ĤT
(t),ϑ1

ĤT
(t), . . . , ϑd+1

ĤT
(t)
)
, t ∈ [0, T ]} ∈ V̂

ĤT

with corresponding benchmarked portfolio process

Ŝ
δ
ĤT

T = V̂ v
T = ĤT P -a.s.

The benchmarked price at time t ∈ [0, T ] is determined by the real world pricing
formula

Ŝ
δ
ĤT
t = V̂ v

t =E(ĤT |At ), (1.4.33)

yielding within the set of strategies V̂
ĤT

the minimal possible price process. The
resulting benchmarked P&L at time t ∈ [0, T ] is given by

Ĉ
δ
ĤT
t = η

ĤT
(t).

This process is orthogonal to benchmarked traded wealth in the sense that the prod-

uct Ĉ
δ
ĤT
t

∫ t
0

∑d
k=1 ϑ

k
s dŜ

k
s forms an (A,P )-local martingale for every predictable

self-financing strategy ϑ = {ϑ t = (ϑ1
t , . . . , ϑ

d
t ) t ∈ [0, T ]}, satisfying Eq. (1.4.26).

In terms of the martingale representation (1.4.32), the components of the strategy
v are obtained by the number η

ĤT
(t) of units of the NP to be monitored in the

nonhedgeable part of ĤT , and the number of units ϑj
ĤT
(t) of the primary secu-

rity account, j ∈ {1,2, . . . , d}, t ∈ [0, T ], to be held at time t in the self-financing
hedgeable part of ĤT .

The self-financing hedgeable part of the benchmarked price process Ŝ
δ
ĤT
t forms

a local martingale and has at time t ∈ [0, T ] the benchmarked value

E(ĤT |At )− ηĤT (t)=
d∑

k=1

∫ t

0
ϑk
ĤT
(s) dŜks .

The vector of units v
ĤT
(t)= (ϑ1

ĤT
(t), . . . , ϑd

ĤT
(t)) to be held in the primary secu-

rity accounts follows by making the benchmarked P&L orthogonal to benchmarked
traded wealth. Due to the possible presence of redundant primary security accounts,
the self-financing strategy ϑ

ĤT
may not be unique. We emphasize that BRM strate-

gies yield for not fully replicable contingent claims the real world pricing formula
(1.4.33), which for fully replicable claims was given in (1.3.19).

The above results demonstrate that based on the existence of a martingale repre-
sentation for a regular benchmarked contingent claim ĤT , one obtains via bench-
marked risk minimization a unique minimal price process together with a hedg-
ing strategy that makes its benchmarked price process an (A,P )-martingale. The
benchmarked P&L of a regular benchmarked contingent claim is a local martingale
and orthogonal to any benchmarked self-financing portfolio, in the sense that their
product becomes a local martingale.
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We conclude this section on BRM with an illustrative example. We consider
the NP given by Eq. (1.4.24), where we assume for simplicity that rt = 0, t ≥ 0.
Additionally, we consider a contingent claim HT with fixed maturity T ∈ [0,∞).
We assume HT depends on Wm+1

T , . . . ,Wm′
T , so that its conditional expectation

Ht =E(HT |At ), t ∈ [0, T ], is independent from Sδ . In its first step, a BRM strategy
requires to apply the real world pricing formula (1.4.33) to obtain the benchmarked

price process Ŝ
δ
ĤT
t of the benchmarked claim ĤT = HT Ŝ0

T = HT (Sδ∗T )−1 at time
t ∈ [0, T ], that is, we have by the assumed independence of HT and Ŝ0

T that

Ŝ
δ
ĤT
t =E(ĤT |At )=E(HT |At )E

(
Ŝ0
T

∣
∣At
)=HtP̂T (t). (1.4.34)

We point out that P̂T (t) = E(Ŝ0
T | At ) is the real world price at time t of a zero

coupon bond with maturity T , which satisfies

dP̂T (t)= ∂P̂T (t)

∂Ŝ0
dŜ0
t .

When denoting by ϑ0
ĤT
(t) the number of units of the savings account that the BRM

strategy holds at time t ∈ [0, T ], then the benchmarked P&L satisfies by Eq. (1.4.3)
and the product rule for HtP̂T (t) the SDE

dĈ
δ
ĤT
t = dŜδĤTt − ϑ1

ĤT
(t) dŜ0

t =
(

Ht
∂P̂T (t)

∂Ŝ0
− ϑ0

ĤT
(t)

)

dŜ0
t + P̂T (t) dHt .

Recall that the second step of benchmarked risk minimization requires that the
benchmarked P&L has to be orthogonal to the benchmarked traded wealth. A bench-
marked self-financing portfolio Ŝϑt , which invests at time t the number ϑ0

t of units
of the savings account and the remainder of its wealth in the NP, satisfies the SDE

dŜϑt = ϑ0
t dŜ

0
t .

Since the processes Ŝϑ , Ŝ0, and Ĉ
δ
ĤT are (A,P )-local martingales, the product

Ĉ
δ
ĤT Ŝϑ satisfies by the product rule in the given continuous market an SDE with

zero drift if the covariation of Ĉ
δ
ĤT and Ŝϑ vanishes for all t ∈ [0,∞), that is

[
Ŝϑ , Ĉ

δ
ĤT

]
t
=
∫ t

0

(

Hs
∂P̂T (s)

∂Ŝ0
− ϑ0

ĤT
(s)

)

ϑ0
ĤT
(s) d

[
Ŝ0, Ŝ0]

s
.

Therefore, the benchmarked P&L is orthogonal to traded wealth in the sense of
Definition 1.4.7 if

ϑ0
ĤT
(t)=Ht ∂P̂T (t)

∂Ŝ0
. (1.4.35)

Finally, we remark that the benchmarked P&L

η
ĤT
(t)= ĈδĤTt =

∫ t

0
P̂T (s) dHs (1.4.36)

is a local martingale that starts at zero, as required in Definition 1.4.11. Hence in
Eqs. (1.4.34), (1.4.35), and (1.4.36), we have identified the key quantities for the
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characterization of the martingale representation of a regular benchmarked contin-
gent claim ĤT , as required in Definition 1.4.11. Finally, we remark that ϑ0

t units of
the savings account are held at time t , and

ϑ1
ĤT
(t)= ŜδĤTt − η

ĤT
(t)− ϑ0

ĤT
(t)Ŝ0

t

units of the NP are held, see Corollary 1.4.12. Note that the hedging strategy with
ϑ0
ĤT
(t) given in (1.4.35) depends via Ht on the evolving information about the non-

hedgeable part of the claim. Classical risk minimization ignores such evolving in-
formation, see Du and Platen (2012a).

1.5 Diversification

This chapter has presented a consistent approach to asset pricing and risk manage-
ment. The approach is based on the existence of the NP or GOP. The purpose of
this section is to discuss the construction of a proxy of the NP, where we follow
Platen and Rendek (2012), see also Platen (2005) and Sect. 3.4 in Platen and Bruti-
Liberati (2010). In particular, we present the naive diversification theorem (NDT)
by Platen and Rendek (2012). Essentially, the theorem states that an equi-weighted
index (EWI) approximates the NP of a given set of stocks when the number of con-
stituents is large and the given investment universe is well securitized. This can be
interpreted as meaning that the risk factors driving the underlying risky securities are
sufficiently different. An important upshot of the approximation of the GOP using
an EWI is the following: when funds approximate the EWI, they stabilize the mar-
ket. Important liquidity is provided in case the market crashes. On the other hand,
popular assets would be sold when asset bubbles emerge. In both extreme cases,
an EWI can serve as a stabilizing factor in the financial market architecture since it
provides important liquidity.

We continue to rely on a filtered probability space (Ω,A,A,P ) and we represent
traded uncertainty using independent standard Wiener processes Wk = {Wk

t , t ∈[0,∞)}, where k ∈N . In what follows, we consider a sequence of markets indexed
by the number d of risky primary securities. To be precise, we write for the j th
primary security account in the d th market Sj

(d)
(t), which satisfies an SDE as given

in (1.1.1). The primary securities include a savings account S0
(d)
(t)= exp{∫ t0 rs ds}

for t ≥ 0. Here r = {rt , t ≥ 0} denotes an adapted short rate process, which we as-
sume for simplicity to be the same in each market. We include d nonnegative, risky
primary security account processes Sj(d) = {Sj(d)(t), t ≥ 0}, j ∈ {1,2, . . . , d}, in the

d th market, each of which is driven by the Wiener processes W 1,W 2, . . . ,Wd . In
the d th market a given strategy δ and the volatilities of market prices of risk depend
typically on d . For simplicity, we shall suppress these dependencies in our notation
and only mention it when required.

For the d th market, we assume that there exists a unique GOP Sδ∗(d) = {Sδ∗(d)(t),
t ≥ 0}, satisfying the SDE (1.2.12), where we fix Sδ∗(d)(0) = 1. We obtain the
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following dynamics for the j th benchmarked primary security in the d th market
at time t ,

dŜ
j

(d)(t)

Ŝ
j

(d)(t)
=

d∑

k=1

σ
j,k

(d) (t) dW
k
t , (1.5.37)

where

σ
j,k

(d) (t)= bj,k(d)(t)− θk(d)(t),
for t ≥ 0, d ∈N and j, k ∈ {1,2, . . . , d}. The benchmarked self-financing portfolio
process Ŝδ(d) = {Ŝδ∗(d)(t), t ≥ 0} with strategy

δ = {δt =
(
δ1
t , δ

2
t , . . . , δ

d
t

)
, t ≥ 0

}

is driven by the SDE

dŜδ(d)(t)=
d∑

j=1

δ
j
t dŜ

j

(d)(t),

which is driftless. If we introduce the fractions

π
j

δ,(d)
(t)= δ

j
t Ŝ
j

(d)(t)

Ŝ
δ∗
(d)(t)

,

where
∑d
j=1 π

j

δ,(d)(t)= 1, then

dŜδ(d)(t)

Ŝ
δ∗
(d)(t)

=
d∑

j=1

δ
j
t

dŜ
j

(d)(t)

Ŝδ
(d)
(t)

=
d∑

j=1

π
j

δ,(d)(t)

d∑

k=1

σ
j,k

(d) (t) dW
k
t .

The d th equi-weighted index (EWId) invests the fractions

π
j
δEWId,t

=
{

1
d

for j ∈ {1,2, . . . , d}
0 otherwise.

(1.5.38)

Since the benchmarked NP is a constant, we have

dŜ
δ∗
(d)(t)

Ŝ
δ∗
(d)(t)

=
d∑

k=1

d∑

j=1

π
j
δ∗,t σ

j,k

(d) (t) dW
k
t = 0. (1.5.39)

It is now the aim to construct sequences of portfolios that approximate the NP in
a mathematically precise and practically useful sense. The limits of the return pro-
cesses of such sequences of benchmarked portfolios should then be constant with
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value zero, due to (1.5.39). More precisely, the return process Q̂δ(d) = {Q̂δ(d)(t),
t ≥ 0} of a benchmarked portfolio Ŝδ(d), given by the SDE

dQ̂δ(d)(t)=
dŜδ(d)(t)

Ŝδ
(d)
(t)
, (1.5.40)

for t ≥ 0 with Q̂δ(d)(0)= 0, has to have small fluctuations to be a good proxy for the
NP.

Definition 1.5.1 A sequence (Ŝδ(d))d∈{1,2,...} of strictly positive benchmarked port-
folios is called a sequence of benchmarked approximate numéraire portfolios if for
each ε > 0 and t ≥ 0 one has

lim
d→∞P

(
d

dt

〈
Q̂δ(d)

〉
t
> ε

)

= 0.

The intuition here is that if one can construct a sequence of benchmarked port-
folios, where the quadratic variation of the return process vanishes asymptotically,
then the limit can only be represented by the constant one, that is, the benchmarked
NP.

It seems reasonable to say that the returns of a benchmarked primary security
account express its specific or idiosyncratic traded uncertainty against the market
as a whole. Due to the natural structure of the market with different types of eco-
nomic activity in different sectors of the economy, it is reasonable to assume that
a particular specific uncertainty drives only the returns of a restricted number of
benchmarked primary security accounts. If this is the case, then one could say that
the securitization of the market is sufficiently developed and a diversification effect
can be expected. To capture this property of a market in a mathematically precise
manner, one can introduce the following notion:

Definition 1.5.2 A financial market is well-securitized if there exists a real number
q > 0 and a stochastic process σ 2 = {σ 2

t , t ≥ 0} with finite mean such that for all
d, k ∈ {1,2, . . .}, and t ≥ 0, one has

1

d

∣
∣
∣
∣
∣

d∑

j=1

σ
j,k

(d)

∣
∣
∣
∣
∣

2

≤ 1

dq
σ 2
t . (1.5.41)

We point out that for the following naive diversification theorem (NDT) to hold,
we require a weaker assumption than Eq. (1.5.41), namely we require

lim
d→∞P

(
1

d2

d∑

j=1

d∑

k=1

(
σ
j,k

(d)
(t)
)2
> ε

)

= 0, (1.5.42)

for all ε > 0 and t ≥ 0. In fact, condition (1.5.42) is necessary and sufficient for
the sequences of EWIs with fractions given by Eq. (1.5.38) to be a sequence of
approximate numéraire portfolios.
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Theorem 1.5.3 (Naive Diversification Theorem) The sequence of EWIs, with frac-
tions given by Eq. (1.5.38), is a sequence of approximate numéraire portfolios if and
only if condition (1.5.42) holds. Furthermore, condition (1.5.41) is sufficient.

Proof To begin with, note that the return process of the d th benchmarked EWI has
at time t the value

Q̂
δEWId
(d) (t)=

d∑

j=1

1

d

d∑

k=1

∫ t

0
σ
j,k

(d) (s) dW
k
s .

The quadratic variation of this return process is then of the form

〈
Q̂
δEWId
(d)

〉
t
= 1

d2

∫ t

0

d∑

k=1

d∑

j=1

(
σ
j,k

(d) (s)
)2
ds.

Hence we have

lim
d→∞P

(
d

dt

〈
Q̂δEWId

〉
t
> ε

)

= lim
d→∞P

(
1

d2

d∑

j=1

d∑

k=1

(
σ
j,k

(d) (t)
)2
> ε

)

,

for all ε > 0, t ≥ 0, which completes the first part of the proof. Regarding the second
part, note that from Jensen’s inequality, we obtain

1

d2

d∑

k=1

d∑

j=1

(
σ
j,k

(d) (t)
)2 ≤ 1

d

d∑

k=1

∣
∣
∣
∣
∣

1√
d

d∑

j=1

σ
j,k

(d) (t)

∣
∣
∣
∣
∣

2

.

From condition (1.5.41) and the Markov inequality, we get for all ε > 0 and t ≥ 0,

lim
d→∞P

(
1

d

d∑

k=1

∣
∣
∣
∣
∣

1√
d

d∑

l=1

σ
j,k

(d) (t)

∣
∣
∣
∣
∣

2

> ε

)

≤ lim
d→∞P

(
1

dq
σ 2
t > ε

)

≤ lim
d→∞

1

dq

1

ε
E
(
σ 2
t

)= 0.

This completes the proof. �

One should emphasize that the statement of the NDT is quite robust. Under con-
dition (1.5.42), it covers a wide range of models. To some extend, the NDT is model
independent since no particular assumptions about the underlying market model
have been made. By imposing different assumptions, eventually similar to those
in Platen (2005), one can prove separately the convergence of sequences of more
general diversified portfolios towards the NP.



Chapter 2
Functionals of Wiener Processes

In this chapter, we discuss scalar- and multidimensional processes, which are based
on the Wiener process, and consequently apply them in the context of the benchmark
approach.

2.1 One-Dimensional Functionals of Wiener Processes

We summarize well-known SDEs and transition densities for models and processes
closely related to the Wiener process or Brownian motion, including:

• the Bachelier model;
• the Black-Scholes model;
• the Ornstein-Uhlenbeck-process;
• the geometric Ornstein-Uhlenbeck-process.

Also we collect results from the literature on functionals of Wiener processes and
add new results and presentations. We remark that parts of this section are based
on Borodin and Salminen (2002), Jeanblanc et al. (2009), Chap. 3, and Platen and
Heath (2010), Chap. 4.

2.1.1 Wiener Process

The Wiener process is a continuous Markov process and has the following transition
density:

p(s, x; t, y)= 1√
2π(t − s) exp

{

− (y − x)
2

2(t − s)
}

, (2.1.1)

for t ∈ [0,∞), s ∈ [0, t] and x, y ∈ �. For the purpose of illustration, we display
some transition densities in Fig. 2.1.1 as functions of time t and final value y, where
we set the initial time to s = 0 and the initial value to x = 0.

J. Baldeaux, E. Platen, Functionals of Multidimensional Diffusions with Applications
to Finance, Bocconi & Springer Series 5, DOI 10.1007/978-3-319-00747-2_2,
© Springer International Publishing Switzerland 2013
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Fig. 2.1.1 Probability
densities for the standard
Wiener process

The Wiener process enjoys the strong Markov property, which allows us to for-
mulate the following lemma:

Lemma 2.1.1 For a finite stopping time τ , the process W̃ = {W̃t , t ≥ 0}, where

W̃t =Wτ+t −Wτ , (2.1.2)

is a Wiener process with respect to its natural filtration.

We now introduce the following notation

Ta = inf{t ≥ 0: Wt = a}
Mt = sup

0≤s≤t
Ws

mt = inf
0≤s≤t Ws.

The following proposition, commonly referred to as reflection principle, employs
Lemma 2.1.1 and the symmetry of the Wiener process, see Lemma 15.1.3.

Proposition 2.1.2 Let y ≥ 0, x ≤ y, then one has

P(Wt ≤ x, Mt ≥ y)= P(Wt ≥ 2y − x). (2.1.3)

For a proof, see e.g. Jeanblanc et al. (2009), Proposition 3.1.1.1. Next, we discuss
the joint distribution of (Mt ,Wt), see Theorem 3.1.1.2 in Jeanblanc et al. (2009).

Proposition 2.1.3 For a Brownian motion Wt and its running maximum Mt , the
following formulas hold:

P(Wt ≤ x,Mt ≤ y)=N
(
x√
t

)

−N
(
x − 2y√

t

)

, y ≥ 0, x ≤ y,
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P(Wt ≤ x,Mt ≤ y)= P(Mt ≤ y)=N
(
y√
t

)

−N
(−y√

t

)

, y ≥ 0, x ≥ y,
P (Wt ≤ x,Mt ≤ y)= 0, y ≤ 0.

The distribution of (Wt ,Mt) is given by

P(Wt ∈ dx, Mt ∈ dy)= 1y≥01x≤y
2(2y − x)√

2πt3
exp

{

− (2y − x)
2

2t

}

dx dy.

The law of the maximum satisfies the following equality, see Proposition 3.1.3.1
in Jeanblanc et al. (2009),

P(Mt ≤ y)=N
(
y√
t

)

−N
(−y√

t

)

, y ≥ 0.

We remark that the law of the maximum of a process finds important applications
in derivative pricing, see Sect. 2.3.

Proposition 2.1.4 For a Brownian motion Wt and its running minimum mt , the
following formulas hold:

P(Wt ≥ x, mt ≥ y)=N
(−x√

t

)

−N
(

2y − x√
t

)

, y ≤ 0, x ≥ y

P (Wt ≥ x, mt ≥ y)=N
(−y√

t

)

−N
(
y√
t

)

, y ≤ 0, x ≤ y
P (Wt ≥ x, mt ≥ y)= 0, y ≥ 0.

The law of the minimum satisfies, for y ≤ 0,

P(mt ≥ y)=N
(−y√

t

)

−N
(
y√
t

)

.

Finally, we turn to hitting times, which are also used in derivative pricing, for exam-
ple when studying rebates, see Sect. 2.3.

Proposition 2.1.5 Let Ty be the first hitting time of y ∈ � for a standard Brownian
motion. Then for λ > 0,

E

(

exp

{

−λ
2

2
Ty

})

= exp
{−|y|λ}.

We can also compute the density

P(Ty ∈ dt)= x√
2πt3

exp

{

−x
2

2t

}

1t≥0 dt.

This section concludes with results on integrals of Brownian motion, taken from
Borodin and Salminen (2002). Such formulas are useful when studying Asian op-
tions and related contracts, such as Australian options, see Sect. 2.3:
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P

(∫ t

0
Ws ds ∈ dy

)

=
√

3√
2πt3

exp

{

−3y2

2t3

}

dy

P

(∫ t

0
Ws ds ∈ dy, Wt ∈ dz

)

=
√

3

πt2
exp

{

−z
2

2t
− 3(2y − zt)2

2t3

}

dy dz.

2.1.2 Bachelier Model

The results in the previous section can be extended to the case

Xt = νt +Wt, t ≥ 0,

a Brownian motion with drift. This process corresponds to the Bachelier model,
which models the stock price St via

St = S0 +μt + σWt, t ≥ 0,

see Bachelier (1900). Again, we employ the notation

Ta = inf{t ≥ 0: Xt = a}
Mt = sup

0≤s≤t
Xs

mt = inf
0≤s≤t Xs.

We start our discussion with the transition density of the process X,

p(s, x; t, y)= 1√
2π(t − s) exp

{

− (y − x − ν(t − s))
2

2(t − s)
}

, (2.1.4)

for t ∈ [0,∞), s ∈ [0, t] and x, y ∈ �. The following result corresponds to Proposi-
tion 2.1.3 and uses Proposition 3.2.1.1 and Corollary 3.2.1.2 from Jeanblanc et al.
(2009).

Proposition 2.1.6 For a Brownian motion with drift Xt and its running maximum
Mt , the following formulas hold:

P(Xt ≤ x,Mt ≤ y)=N
(
x − νt√

t

)

− exp{2νy}N
(
x − 2y − νt√

t

)

, y ≥ 0, x ≤ y.
The density of (Wt ,Mt) is given by

P(Xt ∈ dx, Mt ∈ dy)
= 1x<y10<y

2(2y − x)√
2πt3

exp

{

νx − 1

2
ν2t − (2y − x)2

2t

}

dx dy.

Furthermore, the law of the maximum satisfies

P(Mt ≤ y)=N
(
y − νt√

t

)

− exp{2νy}N
(−y − νt√

t

)

, y ≥ 0.

Next, we present results corresponding to Proposition 2.1.4.
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Proposition 2.1.7 For a Brownian motion with drift Xt and its running minimum
mt , the following formulas hold:

P(Xt ≥ x, mt ≥ y)=N
(−x + νt√

t

)

− exp{2νy}N
(−x + 2y + νt√

t

)

.

Furthermore, the law of the minimum is given by

P(mt ≥ y)=N
(−y + νt√

t

)

− exp{2νy}N
(
y + νt√

t

)

, y ≤ 0.

We now turn to hitting times, see Eq. (3.2.3) in Jeanblanc et al. (2009).

Proposition 2.1.8 Let Ty be the first hitting time of the level y for a Brownian mo-
tion with drift. Then

P(Ty ∈ dt)= |y|√
2πt3

exp

{

− 1

2t
(y − νt)2

}

1t≥0 dt.

Furthermore,

E

(

exp

{

−λ
2

2
Ty

})

= exp{νy} exp
{−|y|

√
ν2 + λ2

}
.

Results on integrals of Brownian motion with drift can be found in Borodin and
Salminen (2002), see Eqs. (1.8.4) and (1.8.8) in their Appendix 1,

P

(∫ t

0
Xs ds ∈ dy

)

=
√

3√
2πt3

exp

{

−3(y − νt2/2)2
2t3

}

dy

P

(∫ t

0
Xs ds ∈ dy,Xt ∈ dz

)

=
√

3

πt2
exp

{

− (z− νt)
2

2t
− 3(2y − zt)2

2t3

}

dy dz.

We now derive the transition density of a Brownian motion with drift killed at z ∈ �.
To do so, we firstly recall Lemma 2.1 from Hulley and Platen (2008), which re-
quires us to introduce the following notation: let Y = {Yt , t ≥ 0} be a regular one-
dimensional time-homogeneous diffusion process, whose state space is an interval
I ⊆�, which is typically �, [0,∞) or (0,∞) and which starts at x ∈ I . We shall de-
note the transition density of Y with respect to its speed measure by q(.,.,.), where
we omit the dependence on the initial time s = 0, so that

P(Yt ∈A)=
∫

A

q(t, x, y)m(y)dy,

for all t ≥ 0 and x ∈ I and for every Borel set A ∈ B(I ). Furthermore, for any z ∈ I ,
let

T Yz := inf{t > 0: Yt = z}
be the first-passage time of Y to z. We shall denote its density with respect to the
Lebesgue measure by pz(.,.), so that

P
(
T Yz ≤ t)=

∫ t

0
pz(x, s) ds.
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Furthermore, let q̃z(.,.,.) denote its transition density, with respect to the speed mea-
sure of Y killed at z, so that

P
(
Yt ∈A, T Yz > t

)=
∫

A

q̃z(t, x, y)m(y)dy,

for all A ∈ B(I ). We are now in a position to state Lemma 2.1 from Hulley and
Platen (2008):

Lemma 2.1.9 Let x, y, z ∈ I and suppose that t > 0. Then

q(t, x, y)= q̃z(t, x, y)+
∫ t

0
pz(x, s)q(t − s, z, y) ds. (2.1.5)

Intuitively speaking, the first term in (2.1.5) corresponds to those trajectories
which travel from x to y without visiting z, whereas the second includes those tra-
jectories which do visit z between 0 and t . We now use Lemma 2.1.9 to derive the
density of a Brownian motion with drift started at x killed at z. We remark that this
density will be employed in the pricing of Barrier options under the Black-Scholes
model in Sect. 2.3. From Borodin and Salminen (2002), we obtain for a Brownian
motion with drift

Xt = νt +Wt
started at x and

Ta = inf{t > 0: Xt = a}
that

q(t, x, y)= 1

2
√

2πt
exp

{

−μ(y + x)− μ2t

2
− (x − y)2

2t

}

(2.1.6)

and

pz(x, t)= |z− x|√
2πt3/2

exp

{

− (z− x −μt)
2

2t

}

(2.1.7)

and hence the following corollary:

Corollary 2.1.10 For a Brownian motion with drift X = {Xt, t ≥ 0} started at x,
we have

q̃z(t, x, y)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
2
√

2πt
exp
{−μ(x + y)− μ2t

2

}

× (exp
{− (x−y)2

2t

}− exp
{− (x+y−2z)2

2t

})
y, x > z

0 y < z≤ x
(2.1.8)
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and

q̃z(t, x, y)

=

⎧
⎪⎪⎨

⎪⎪⎩

0 y > z > x

1
2
√

2πt
exp
{−μ(x + y)− μ2t

2

}

× (exp
{− (x−y)2

2t

}− exp
{− (x+y−2z)2

2t

})
x, y < z.

(2.1.9)

Proof Assume that x, y > z or x, y < z, then from Lemma 2.1.9, we need to com-
pute

∫ t

0
pz(x, s)q(t − s, z, y) ds

=
∫ t

0

|z− x|√
2πt3/2

exp

{

− (z− x −μs)
2

2s

}
1

2
√

2π(t − s)
× exp

{

−μ(y + x)− μ2(t − s)
2

− (z− y)2
2(t − s)

}

ds

= |z− x|
2(2π)

exp

{

−μ(x + y)− μ2t

2

}∫ t

0

exp{− (z−x)2
2s − (z−y)2

2(t−s) }
s3/2

√
t − s ds.

Noting that for y, x > z and x, y < z we have z−x
z−y > 0, we employ the following

change of variables

√
t/s − 1

√
z− x
z− y = ξ,

to obtain
∫ t

0
pz(x, s)q(t − s, z, y) ds

= |z− x|
2π

exp

{

−μ(x + y)− μ2t

2
− ((z− y)2 + (z− x)2)2

2t

}
1

t

√
z− y
z− x

×
∫ ∞

0
exp−1

2

(
1

ξ2
+ ξ2

)
(z− x)(z− y)

t
dξ

= |z− x|
2π

exp

{

−μ(x + y)− ((z− y)2 + (z− x)2)
2t

}
1

t

√
z− y
z− x

× exp

{

− (z− x)(z− y)
t

}√
π

2

√
t

(z− x)(z− y)
= 1

2
√

2πt
exp

{

−μ(x + y)− μ2t

2
− ((z− y)+ (z− x))2

2t

}

,

where we used MATHEMATICA to arrive at the second last equation. Consequently,

q̃z(t, x, y)= 1

2
√

2πt
exp

{

−μ(x + y)− μ2t

2

}
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×
(

exp

{

− (x − y)
2

2t

}

− exp

{

− (2z− x − y)
2

2t

})

for x, y > z and x, y < z. �

Now, we focus on occupation times, firstly deriving the result for standard Brow-
nian motion and subsequently for Brownian motion with drift. Occupation times
measure the amount of time a stochastic process spends above or below a particu-
lar level. They have important applications in finance, as there are products whose
pay-offs depend on the amount of time the asset price spends above or below a
particular barrier. We are particularly interested in obtaining the distribution of oc-
cupation times explicitly. The approach to obtain such distributions we present here
is based on Jeanblanc et al. (2009) and is motivated by the following result, see The-
orem 2.5.1.1 in Jeanblanc et al. (2009): for convenience, we use Ex to denote the
expectation with respect to the probability distribution of a Brownian motion started
at x.

Theorem 2.1.11 Let α ∈ �+ and let k : � → �+ and g : � → � be continuous
functions and let g be bounded. Then the function

f (x)=Ex
(∫ ∞

0
g(Wt) exp

{

−αt −
∫ t

0
k(Ws) ds

}

dt

)

(2.1.10)

is piecewise twice differentiable and satisfies the differential equation

(α + k)f = 1

2
f ′′ + g. (2.1.11)

We firstly consider A+
t := ∫ t0 1[0,∞)(Ws) ds, which measures the amount of time

the standard Brownian motionW = {Wt, t ∈ [0,∞)} spends above 0 during the time
interval [0, t]. Consider an exponentially distributed random variable τ , τ ∼ Exp(λ),
which is independent of W . Clearly,

Ex
(
exp
{−βA+

τ

})= λf (x),
where

f (x) :=Ex
(∫ ∞

0
exp

{

−αt − β
∫ t

0
1
¯ [0,∞)

(Ws) ds

}

dt

)

.

However, f (x) can be interpreted as a double Laplace transform of the density of
A+
τ , with respect to occupation time and the upper limit of the time interval. In-

version of the double Laplace transform will provide us with the desired density.
Theorem 2.1.11 provides us with a useful expression for f , which can be inverted,
if necessary numerically. To illustrate the technique used to obtain the distribution
of occupation times, we present below the proof of the next result, see also Propo-
sition 2.5.2.1 in Jeanblanc et al. (2009).

Proposition 2.1.12 The law of A+
t := ∫ t0 1[0,∞)(Ws) ds is given by

P
(
A+
t ∈ ds)= ds

π
√
s(t − s)10≤s<t .
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Proof We set k(x)= β1x≥0 and g(x)= 1 in Theorem 2.1.11. Then we obtain

f (x)=Ex
(∫ ∞

0
exp

{

−αt − β
∫ t

0
1[0,∞)(Ws) ds

}

dt

)

,

which solves
⎧
⎪⎨

⎪⎩

αf (x)= 1

2
f ′′(x)− βf (x)+ 1, x ≥ 0

αf (x)= 1

2
f ′′(x)+ 1, x ≥ 0.

In Jeanblanc et al. (2009), an explicit solution for f (x) is obtained. We are particu-
larly interested in the special case

f (0)=
∫ ∞

0
exp{−αt}E0

(
e−βA

+
t
)
dt = 1√

α(α + β) . (2.1.12)

However, we recall
∫ ∞

0
e−αt
(∫ ∞

0
du1s<t

exp{−βu}
π
√
u(t − u)

)

dt = 1√
α(α + β) ,

so we can explicitly invert the double Laplace transform (2.1.12) to complete the
proof. �

We remark that the same technique can be used to compute the corresponding
result for the occupation time of a Brownian motion with drift. Let Xt = νt +Wt ,
and consider the occupation time of this Brownian motion above the level L> 0

A
+,L,ν
t =

∫ t

0
1Xs>L ds,

and we define A−,L,ν
t analogously. Using the same idea as before, together with the

relevant Feynman-Kac result, we get

P
(
A
−,0,ν
t ∈ du)

=
(√

2

πu
exp

{

−ν
2

2
u

}

− 2νΘ(ν
√
u)

)

×
(

ν + 1√
2π(t − u) exp

{

−ν
2

2
(t − u)

}

− νΘ(ν√t − u)
)

, (2.1.13)

where Θ(x)= 1√
2π

∫∞
x

exp{− y2

2 }dy. Finally,

P
(
A
−,L,ν
t ≤ u)=

∫ u

0
ϕ(s,L;ν)P (A−,0,ν

t−s < u− s)ds,
where ϕ(s,L;ν) is the density P(TL ∈ ds)/ds, where TL denotes the first time the
Brownian motion with drift hits the level L, TL = inf{t : Xt = L}, and

ϕ(s,L;ν)= L√
2πs3

exp

{

− 1

2s
(y − νs)2

}

1s≥0.

Finally, the law of A+,L,ν
t follows from A

+,L,ν
t +A−,L,ν

t = t .
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Fig. 2.1.2 Transition density
for geometric Brownian
motion

2.1.3 Geometric Brownian Motion

Geometric Brownian motion is a process of significant importance in finance, as
the Black-Scholes model (BSM), Black and Scholes (1973), is based on it, see also
Sect. 2.3. We can describe geometric Brownian motion via the SDE

dXt =Xt
((

g + 1

2
b2
)

dt + b dWt
)

, (2.1.14)

subject to X0 > 0. Equation (2.1.14) can be explicitly solved to yield

Xt =X0 exp(gt + bWt).
Its transition density function satisfies

p(s, x; t, y)= 1√
2π(t − s)by exp

{

− (ln(y)− ln(x)− g(t − s))2
2b2(t − s)

}

, (2.1.15)

for t ∈ [0,∞), s ∈ [0, t] and x, y ∈ (0,∞). Figure 2.1.2 shows the transition density
for a geometric Brownian motion with growth rate g = 0.05, volatility b = 0.2 and
initial value x = 1 at time s = 0 for the period from 0.1 to 3 years.

The corresponding laws of first hitting times, maximum, and minimum follow
easily from the corresponding results for a Brownian motion with drift. Regarding
the integrals, we have the following result, see Yor (2001) and Pintoux and Privault
(2011):

P

(∫ t

0
exp
{
σWs − pσ 2s/2

}
ds ∈ du,Wt ∈ dy

)

= σ

2
exp
{−pσy/2 − p2σ 2t/8

}
exp

{

−2
1 + exp{σy}

σ 2u

}

× θ
(

4 exp{σy/2}
σ 2u

,
σ 2t

4

)
du

u
dy,
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Fig. 2.1.3 Transition density
of standard OU process
starting at (s, x)= (0,0)

where p =− 2g
b2 , u > 0, y ∈ � and

θ(v, t)

= v exp{π2

2t }√
2π3t

∫ ∞

0
exp

{

−ξ
2

2t
− v cosh(ξ)

}

sinh(ξ) sin

(
πξ

t

)

dξ, v > 0.

2.1.4 Ornstein-Uhlenbeck Process

The Ornstein-Uhlenbeck process is also a process of importance in finance and
forms the basis of the Vasiček model, see Vasiček (1977). We consider the standard
Ornstein-Uhlenbeck process,

dXt =−Xt dt +
√

2dWt,

where X0 = x ∈ �. Its transition density is Gaussian,

p(s, x; t, y)= 1
√

2π(1 − e−2(t−s))
exp

{

− (y − xe
−(t−s))2

2(1 − e−2(t−s))

}

, (2.1.16)

for t ∈ [0,∞), s ∈ [0, t] and x, y ∈ �, with mean x e−(t−s) and variance 1−e−2(t−s).
To illustrate the stochastic dynamics of this process we show in Fig. 2.1.3 the

transition density of a standard OU process for the period from 0.1 to 3 years with
initial value x = 0 at time s = 0. As can be seen from Fig. 2.1.3 the transition
densities for the standard OU process seem to stabilize after a period of about one
year. In fact, as can be seen from (2.1.16) these transition densities asymptotically
approach, as t→∞, a standard Gaussian density. This is in contrast, for example,
to transition densities for the Wiener process, which do not converge to a stationary
density, see (2.1.1) and Fig. 2.1.1. For illustration, we plot in Fig. 2.1.4 the transition
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Fig. 2.1.4 Transition density
of standard OU process
starting at (s, x)= (0,2)

Fig. 2.1.5 Path of a standard
Ornstein-Uhlenbeck process

density for a standard OU process that starts at the initial value x = 2 at time t = 0.
Note how the transition density evolves towards a median that is close to 0.

In Fig. 2.1.5 a path of a standard OU process is shown. It can be observed that this
trajectory fluctuates around some reference level. Indeed, as already indicated, the
standard OU process has a stationary density. This can be seen from (2.1.16) when
t→∞. Note also that the Gaussian property of the standard OU process means that
the process itself and even a scaled and shifted OU process may become negative.
We now recall Proposition 3.4.1.1 from Jeanblanc et al. (2009), which characterizes
the first hitting time of the level 0,

T0 = inf{t ≥ 0: Xt = 0}.

Proposition 2.1.13 The density function of T0 is given by

f (t)= x

2
√
π

exp

{
x2

4

}

exp

{
1

2

(

t − x2

2
coth(t)

)}(
1

sinh(t)

) 3
2

.
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Fig. 2.1.6 Transition density
of a geometric
Ornstein-Uhlenbeck process

Furthermore, integrals of the Ornstein-Uhlenbeck process are of importance in
finance, as they impact bond prices for example. Defining

n(t, T )= (1 − exp
{−(T − t)}),

we have that
∫ T

0
Xs ds ∼N

(

n(0, T )X0,2
∫ T

0
n2(u,T ) du

)

.

2.1.5 Geometric Ornstein-Uhlenbeck Process

Exponentiating an Ornstein-Uhlenbeck process, as discussed in the previous sub-
section, we obtain a geometric Ornstein-Uhlenbeck process. Its transition density is
lognormal satisfying

p(s, x; t, y)= 1

y
√

2π(1 − e−2(t−s))
exp

{

− (ln(y)− ln(x)e−(t−s))2

2(1 − e−2(t−s))

}

, (2.1.17)

for t ∈ [0,∞), s ∈ [0, t] and x, y ∈ (0,∞). In Fig. 2.1.6 we display the correspond-
ing probability densities for the time period from 0.1 to 3 years with initial value
x = 1 at the initial time s = 0. In this case the transition density converges over time
to a limiting lognormal density as stationary density, as can be seen from (2.1.17).
Figure 2.1.7 shows a trajectory for the geometric OU process. We note that it stays
positive and shows large fluctuations for large values. Since it is the exponential of
an Ornstein-Uhlenbeck process, one can use the result on the hitting time from the
previous subsection.
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Fig. 2.1.7 Path of a
geometric
Ornstein-Uhlenbeck process

2.2 Functionals of Multidimensional Wiener Processes

In this section, we discuss functionals of multidimensional Wiener processes or
Brownian motions, in particular their SDEs and transition densities. When mod-
eling complex systems, such as a financial market, it is often necessary to employ a
multidimensional stochastic process to model the uncertainty. It is crucial to under-
stand the dependence structure between the individual stochastic processes, hence
we briefly discuss copulas before discussing stochastic processes.

2.2.1 Copulas

Each multivariate distribution function has its, so called copula, which characterizes
the dependence structure between the components. Roughly speaking, the copula
is the joint density of the components when they are each transformed into uni-
formly U(0,1) distributed random variables. Essentially, every multivariate distri-
bution has a corresponding copula. Conversely, each copula can be used together
with some given marginal distributions to obtain a corresponding multivariate dis-
tribution function. This is a consequence of Sklar’s theorem, see for instance McNeil
et al. (2005).

If, for instance, Y ∼ Nd(μ,Ω) is a Gaussian random vector, then the copula of
Y is the same as the copula of X ∼ Nd(0,Ω), where 0 is the zero vector and Ω is
the correlation matrix of Y . By the definition of the d-dimensional Gaussian copula
we obtain

CGaΩ = P (N(X1)≤ u1, . . . ,N(Xd)≤ ud
)

=NΩ
(
N−1(u1), . . . ,N

−1(ud)
)
, (2.2.18)
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Fig. 2.2.8 Gaussian copula
with parameter �= 0.5

Fig. 2.2.9 Clayton copula
with parameter θ = 0.5

where N denotes the standard univariate normal distribution function and NΩ de-
notes the joint distribution function of X. Hence, in two dimensions we obtain

CGaΩ (u1, u2)=
∫ N−1(u1)

−∞

∫ N−1(u2)

−∞
1

2π(1 − �2)1/2

× exp

{−(s2
1 − 2�s1s2 + s2

2)

2(1 − �2)

}

ds1 ds2, (2.2.19)

where � ∈ [−1,1] is the correlation parameter in Ω . In Fig. 2.2.8, we simulate from
a Gaussian copula with parameter �= 0.5.

Another example of a copula is the Clayton copula. This copula can be expressed
in the d-dimensional case as

CClθ = (u−θ1 + · · · + u−θd − d + 1
)−1/θ

, θ ≥ 0, (2.2.20)

where the limiting case θ = 0 is the d-dimensional independence copula. For pur-
poses of comparison, in Fig. 2.2.9, we simulate from a Clayton copula with θ = 0.5.
It is evident from Figs. 2.2.8 and 2.2.9, that the Gaussian copula does not allow for
tail dependence, whereas the Clayton copula does.

Moreover, d-dimensional Archimedian copulas can be expressed in terms of
Laplace-Stieltjes transforms of distribution functions on �+. If F is a distribution
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Fig. 2.2.10 Student t copula
with four degrees of freedom
and ρ = 0.8

function on �+ satisfying F(0) = 0, then the Laplace-Stieltjes transform can be
expressed by

F̂ (t)=
∫ ∞

0
e−tx dF (x), t ≥ 0. (2.2.21)

Using the Laplace-Stieltjes transform the d-dimensional Archimedian copula has
the form

CAr(u1, . . . , ud)=E
(

exp

{

−V
d∑

i=1

F̂−1(ui)

})

(2.2.22)

for strictly positive random variables V with Laplace-Stieltjes transform F̂ . We
show in Fig. 2.2.10 the Student t copula for four degrees of freedom, which has been
shown in Ignatieva et al. (2011) to reflect extremely well the dependence of log-
returns of well-diversified indices in different currencies. Compared to Fig. 2.2.8,
we notice a marked difference in the tails of the distribution, the Student t copula
allows for higher dependence in the extreme values.

A simulation method follows directly from this representation, see Marshall and
Olkin (1988). More examples of multidimensional copulas can be found in McNeil
et al. (2005).

Note that each of the following transition densities relate to their own copulas.
We will list the transition densities for:

• Multidimensional Wiener processes;
• Multidimensional geometric Brownian motions;
• Multidimensional OU-processes;
• Multidimensional geometric OU-processes.

It is well-known that more analytical results are available for one-dimensional than
for multidimensional processes. Hence it is important to have access to the transition
densities, so that important functionals can be computed numerically, using e.g. the
techniques to be presented in Chap. 12.
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Fig. 2.2.11 Bivariate
transition density of the
two-dimensional Wiener
process for fixed time step

= 0.1, x1 = x2 = 0.1 and
�= 0.8

2.2.2 Multidimensional Wiener Process

As a first example of a continuous multidimensional stochastic process, whose tran-
sition density can be expressed explicitly, we focus on the d-dimensional Wiener
process. This fundamental stochastic process has a multivariate Gaussian transition
density of the form

p(s,x; t,y)= 1

(2π(t − s))d/2√detΣ
exp

{
(y − x)�Σ−1(y − x)

2(t − s)
}

, (2.2.23)

for t ∈ [0,∞), s ∈ [0, t] and x,y ∈ �d . Here Σ is a normalized covariance matrix.
Its copula is the Gaussian copula (2.2.18), which is simply derived from the cor-
responding multivariate Gaussian distribution function. In the bivariate case with
correlated Wiener processes this transition probability density simplifies to

p(s, x1, x2; t, y1, y2)

= 1

2π(t − s)√1 − �2

× exp

{

− (y1 − x1)
2 − 2(y1 − x1)(y2 − x2)�+ (y2 − x2)

2

2(t − s)(1 − �2)

}

,

(2.2.24)

for t ∈ [0,∞), s ∈ [0, t] and x1, x2, y1, y2 ∈ �. Here the correlation parameter �
varies in the interval [−1,1]. In the case of correlated Wiener processes one can
first simulate independent Wiener processes and then form from these, by linear
transforms, correlated ones.

In Fig. 2.2.11 we illustrate the bivariate transition density of the two-dimensional
Wiener process for the time increment 
= t − s = 0.1, initial values x1 = x2 = 0.1
and correlation � = 0.8. One can also generate dependent Wiener processes that
have a joint distribution with a given copula.
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2.2.3 Transition Density of a Multidimensional Geometric
Brownian Motion

The multidimensional geometric Brownian motion is a componentwise exponen-
tial of linearly transformed Wiener processes. Given a vector of correlated Wiener
processes W with the transition density (2.2.23) we consider the following transfor-
mation

St = S0 exp{at +BW t }, (2.2.25)

for t ∈ [0,∞), where the exponential is taken componentwise. Here a is a vector of
length d , while the elements of the matrix B are as follows

Bi,j =
{
bj for i = j
0 otherwise,

(2.2.26)

where i, j ∈ {1,2, . . . , d}. Then the transition density of the above defined geometric
Brownian motion has the following form

p(s,x; t,y)
= 1

(2π(t − s))d/2√detΣ
∏d
i=1 b

iyi

× exp

{

− (ln(y)− ln(x)− a(t − s))�B−1Σ−1B−1

2

× (ln(y)− ln(x)− a(t − s))
t − s

}

(2.2.27)

for t ∈ [0,∞), s ∈ [0, t] and x,y ∈ �d+. Here the logarithm is understood compo-
nentwise. In the bivariate case this transition density takes the particular form

p(s, x1, x2; t, y1, y2)

= 1

2π(t − s)√1 − �2b1b2y1y2

× exp

{

− (ln(y1)− ln(x1)− a1(t − s))2
2(b1)2(t − s)(1 − �2)

}

× exp

{

− (ln(y2)− ln(x2)− a2(t − s))2
2(b2)2(t − s)(1 − �2)

}

× exp

{
(ln(y1)− ln(x1)− a1(t − s))(ln(y2)− ln(x2)− a2(t − s))�

b1b2(t − s)(1 − �2)

}

,

for t ∈ [0,∞), s ∈ [0, t] and x1, x2, y1, y2 ∈ �+, where � ∈ [−1,1].
In Fig. 2.2.12 we illustrate the bivariate transition density of the two-dimensional

geometric Brownian motion for the time increment 
= t − s = 0.1, initial values
x1 = x2 = 0.1, correlation � = 0.8, volatilities b1 = b2 = 2 and growth parameters
a1 = a2 = 0.1.
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Fig. 2.2.12 Bivariate
transition density of the
two-dimensional geometric
Brownian motion for

= 0.1, x1 = x2 = 0.1,
�= 0.8, b1 = b2 = 2 and
a1 = a2 = 0.1

2.2.4 Transition Density of a Multidimensional OU-Process

Another example is the standard d-dimensional Ornstein-Uhlenbeck (OU)-process.
This process has a Gaussian transition density of the form

p(s,x; t,y)= 1

(2π(1 − e−2(t−s)))d/2
√

detΣ

× exp

{

− (y − xe−(t−s))�Σ−1(y − xe−(t−s))
2(1 − e−2(t−s))

}

, (2.2.28)

for t ∈ [0,∞), s ∈ [0, t] and x,y ∈ �d , with mean xe−(t−s) and covariance matrix
Σ(1 − e−2(t−s)), d ∈ {1,2, . . .}, see e.g. Platen and Bruti-Liberati (2010). In the
bivariate case the transition density of the standard OU-process is expressed by

p(s, x1, x2; t, y1, y2)= 1

2π(1 − e−2(t−s))
√

1 − �2

× exp

{

− (y1 − x1e
−(t−s))2 + (y2 − x2e

−(t−s))2

2(1 − e−2(t−s))(1 − �2)

}

× exp

{
(y1 − x1e

−(t−s))(y2 − x2e
−(t−s))�

(1 − e−2(t−s))(1 − �2)

}

, (2.2.29)

for t ∈ [0,∞), s ∈ [0, t] and x1, x2, y1, y2 ∈ �, where � ∈ [−1,1].

2.2.5 Transition Density of a Multidimensional Geometric
OU-Process

The transition density of a d-dimensional geometric OU-process can be obtained
from the transition density of the multidimensional OU-process by applying the
exponential transformation. Therefore, it can be expressed as
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Fig. 2.2.13 Bivariate
transition density of the
two-dimensional geometric
OU-process for 
= 0.1,
x1 = x2 = 0.1 and �= 0.8

p(s,x; t,y)= 1

(2π(1 − e−2(t−s)))d/2
√

detΣ
∏d
i=1 yi

× exp

{

− (ln(y)− ln(x)e−(t−s))�Σ−1(ln(y)− ln(x)e−(t−s))
2(1 − e−2(t−s))

}

,

(2.2.30)

for t ∈ [0,∞), s ∈ [0, t] and x,y ∈ �d+, d ∈ {1,2, . . .}. In the bivariate case the
transition density of the multidimensional geometric OU-process is of the form

p(s, x1, x2; t, y1, y2)

= 1

2π(1 − e−2(t−s))
√

1 − �2y1y2

× exp

{

− (ln(y1)− ln(x1)e
−(t−s))2 + (ln(y2)− ln(x2)e

−(t−s))2

2(1 − e−2(t−s))(1 − �2)

}

× exp

{
(ln(y1)− ln(x1)e

−(t−s))(ln(y2)− ln(x2)e
−(t−s))�

(1 − e−2(t−s))(1 − �2)

}

, (2.2.31)

for t ∈ [0,∞), s ∈ [0, t] and x1, x2, y1, y2 ∈ �+, where � ∈ [−1,1].
In Fig. 2.2.13 we illustrate the bivariate transition density of the two-dimensional

geometric OU-process for the time increment 
= t − s = 0.1, initial values x1 =
x2 = 0.1 and correlation � = 0.8. It is now obvious how to obtain the transition
density of the componentwise exponential of other Gaussian vector processes.

2.3 Real World Pricing Under the Black-Scholes Model

In this section, we continue to discuss a continuous financial market as introduced
in Chap. 1. We illustrate real world pricing under the benchmark approach using
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the Black-Scholes model (BSM), see Black and Scholes (1973) and Sect. 1.1. The
resulting explicit formulas are of importance not only for the BSM but also for
more general models when used in variance reduction techniques, see Platen and
Bruti-Liberati (2010). In addition, we illustrate that real world pricing does, in fact,
recover the well-known risk neutral pricing as special case and is hence consistent
with the classical approach. Finally, we remark that we could, of course, in the
case of the BSM perform the relevant change of measure to directly obtain the risk
neutral prices. However, this section aims to illustrate real world pricing, and hence
we proceed by computing the expected value in (1.3.19) directly in the case of the
BSM.

To alleviate notation we define the benchmarked volatility σ j,kt by setting

σ
0,k
t = θkt (2.3.32)

for j = 0 and k ∈ {1,2, . . . , d}, and

σ
j,k
t = θkt − bj,kt (2.3.33)

for k ∈ {1,2, . . . , d} and j ∈ {1,2, . . . , d}, t ≥ 0. Consequently, it follows from
(1.2.12) that the SDE governing the dynamics of the GOP becomes

dS
δ∗
t = Sδ∗t

(

rt dt +
d∑

k=1

σ
0,k
t

(
σ

0,k
t dt + dWk

t

)
)

, (2.3.34)

which can be solved explicitly to yield

S
δ∗
t = Sδ∗0 exp

{∫ t

0

(

rs + 1

2

d∑

k=1

(
σ 0,k
s

)2
)

ds +
d∑

k=1

∫ t

0
σ 0,k
s dWk

s

}

(2.3.35)

for all t ≥ 0. Furthermore, the j th benchmarked primary security account Ŝjt = S
j
t

S
δ∗
t

can be shown to satisfy

dŜ
j
t =−Ŝjt

d∑

k=1

σ
j,k
t dWk

t , (2.3.36)

for all j ∈ {0,1, . . . , d} and t ≥ 0, with Ŝj0 = Sj0 , which follows from (1.3.16) by
setting πiδ,t = 1 for i = j and πiδ,t = 0 otherwise. Consequently, we obtain the fol-
lowing explicit expression for the j th benchmarked primary security account

Ŝ
j
t = Ŝj0 exp

{

−1

2

∫ t

0

d∑

k=1

(
σ
j,k
s

)2
ds −

d∑

k=1

∫ t

0
σ
j,k
s dWk

s

}

(2.3.37)

for j ∈ {0,1, . . . , d} and t ≥ 0.
We now illustrate that under the benchmark approach, the benchmarked primary

security accounts Ŝjt , j ∈ {0,1, . . . , d} are the pivotal objects of study: in particular,
specifying the savings account S0

t and the benchmarked primary security accounts

suffices to determine the entire investment universe. The ratio Sδ∗t = S0
t

Ŝ0
t

, for all t ≥ 0,
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see (1.3.15), expresses the GOP and NP in terms of the savings account and the
benchmarked savings account. The product Sjt = Ŝjt Sδ∗t recovers each primary se-
curity account from the corresponding benchmarked primary security account and
the GOP for each j ∈ {1,2, . . . , d} and t ≥ 0.

Next, we introduce the processes |σ j | = {|σ jt |, t ≥ 0} for j ∈ {0,1, . . . , d}, by
setting

∣
∣σ jt
∣
∣=
√√
√
√

d∑

k=1

(
σ
j,k
t

)2
. (2.3.38)

These processes enable us to introduce the aggregate continuous noise processes
Ŵ j = {Ŵ j

t , t ∈ [0,∞)} for j ∈ {0,1, . . . , d}, defined by

Ŵ
j
t =

d∑

k=1

∫ t

0

σ
j,k
s

|σ js |
dWk

s . (2.3.39)

An application of Lévy’s Theorem for the characterization of the Wiener process,
see Chap. 15, Theorem 15.3.3, allows us to conclude that Ŵ j is a Wiener process for
each j ∈ {0,1, . . . , d}. We point out that the Wiener processes Ŵ 0, Ŵ 1, . . . , Ŵ d can
be correlated. Furthermore, we enforce Assumption 1.1.1, so that the volatility ma-
trix bt = [bj,kt ]dj,k=1 becomes invertible for all t ≥ 0. Note that so far in this section
the short rate and volatility processes are not specified and remain still general.

2.3.1 The Black-Scholes Model

The stylized Black-Scholes model (BSM) arises if we assume that all parameter pro-
cesses, that is, the short rate and the volatilities, are constant, i.e. if we set rt = r and
σ
j,k
t = σ j,k for each j ∈ {0,1, . . . , d}, k ∈ {1,2, . . . , d} and t ≥ 0. Consequently,

(2.3.34) and (2.3.36) become in this case

S
δ∗
t = Sδ∗0 exp

{

r t + t

2

∣
∣σ 0
∣
∣2 + ∣∣σ 0

∣
∣ Ŵ 0

t

}

(2.3.40)

and

Ŝ
j
t = Sj0 exp

{

− t
2

∣
∣σ j
∣
∣2 − ∣∣σ j ∣∣Ŵ j

t

}

(2.3.41)

for each j ∈ {0,1, . . . , d} and all t ≥ 0. From (2.3.41) it is clear that the bench-
marked primary security accounts Ŝjt , j ∈ {0,1, . . . , d}, are continuous martingales,
as they are driftless geometric Brownian motions. As this holds, in particular, for the

benchmarked savings account, the Radon-Nikodym derivative process Λθ(t) = Ŝ0
t

Ŝ0
0

in (1.3.20) is an (A,P )-martingale. We conclude that the standard risk neutral pric-
ing approach could, therefore, be used for derivative pricing under the BSM making
use of the risk neutral pricing formula (1.3.21). Finally, we emphasize that we do
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not advocate the BSM as a reasonably realistic description of observed market dy-
namics. However, given its familiarity, it is useful for illustrating real world pricing
under the benchmark approach for classical models, which produces the same an-
swers as risk neutral pricing. Furthermore, the fact that explicit formulas can be
obtained for many derivatives is extremely useful in practice. We will derive below
explicit formulas and descriptions of a range of derivative prices under the BSM by
using real world pricing.

2.3.2 Zero Coupon Bonds

We firstly demonstrate how to price a standard default-free zero coupon bond that
pays one unit of the domestic currency at its maturity date T ∈ [0,∞). It follows
from the real world pricing formula (1.3.19) that the value of the zero coupon bond
at time t is given by

PT (t)= Sδ∗t E
(

1

S
δ∗
T

∣
∣
∣
∣At
)

= 1

Ŝ0
t

E

(

exp

{

−
∫ T

t

rs ds

}

Ŝ0
T

∣
∣
∣
∣At
)

(2.3.42)

for all t ∈ [0, T ]. Since Ŝ0
t = S0

t

S
δ∗
t

is an (A,P )-martingale and rt = r is constant we

obtain

PT (t)= exp
{−r(T − t)} 1

Ŝ0
t

E
(
Ŝ0
T

∣
∣At
)= exp

{−r(T − t)} (2.3.43)

for all t ∈ [0, T ]. As expected, this is the usual bond pricing formula that is deter-
mined by the deterministic short rate r , which one can also obtain via risk neutral
pricing, see (1.3.20) and Harrison and Kreps (1979). As long as the benchmarked
savings account, and with this the Radon-Nikodym derivative of the risk neutral
measure, is a martingale one obtains this classical zero coupon bond price.

2.3.3 Forward Contracts

We now aim to price a forward contract with the delivery of one unit of the j th
primary security account at the maturity date T , which is written or initiated at time
t ∈ [0, T ] for j ∈ {0,1, . . . , d}. The value of the forward contract written at initiation
time t is zero by definition. The real world pricing formula (1.3.19) yields then the
following relation, which determines the forward price FjT (t) at time t ∈ [0, T ] via
the relation

S
δ∗
t E

(
F
j
T (t)− SjT
S
δ∗
T

∣
∣
∣
∣At
)

= 0. (2.3.44)
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By (2.3.42) and ŜjT = S
j
T

S
δ∗
T

, we obtain

F
j
T (t)=

S
δ∗
t E(Ŝ

j
T |At )

S
δ∗
t E(

1
S
δ∗
T

|At )
= S

j
t

PT (t)

1

Ŝ
j
t

E
(
Ŝ
j
T

∣
∣At
)

(2.3.45)

for a given t ∈ [0, T ]. Again, as the benchmarked primary security accounts are
(A,P )-martingales under classical models as the BSM, it follows using (2.3.43)
that

F
j
T (t)= Sjt exp

{
r(T − t)} (2.3.46)

for all t ∈ [0, T ]. This is then also the standard risk neutral formula for the forward
price, see for instance Musiela and Rutkowski (2005).

2.3.4 Asset-or-Nothing Binaries

Binary options can be considered to be building blocks for several more complex
derivatives. This is useful to know when it comes to the valuation and hedging of
various exotic options, see e.g. Ingersoll (2000), Buchen (2004), and Baldeaux and
Rutkowski (2010).

The derivative contract we consider in this subsection is an asset-or-nothing bi-
nary on a market index, which we interpret here as the GOP. At its maturity date T ,
this derivative pays its holder one unit of the market index if its value is greater than
the strike K , and nothing otherwise. Using the real world pricing formula (1.3.19)
and (2.3.40), we obtain under the BSM

AT,K(t)= Sδ∗t E
(

1{Sδ∗T ≥K}
S
δ∗
T

S
δ∗
T

∣
∣
∣
∣At
)

= Sδ∗t P
(
S
δ∗
T ≥K ∣∣At

)

= Sδ∗t P
(

S
δ∗
t exp

{(

r + 1

2

∣
∣σ 0
∣
∣2
)

(T − t)+ ∣∣σ 0
∣
∣
(
Ŵ 0
T − Ŵ 0

t

)
}

≥K
∣
∣
∣
∣At
)

= Sδ∗t N(d1) (2.3.47)

for all t ∈ [0, T ], where

d1 = ln( S
δ∗
t

K
)+ (r + 1

2 |σ 0|2)(T − t)
|σ 0|√T − t (2.3.48)

and N(·) denotes the Gaussian distribution function.
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2.3.5 Bond-or-Nothing Binaries

In this subsection, we consider pricing a bond-or-nothing binary, which pays the
strike K ∈ �+ at maturity T in the event that the market index at time T is not less
than K . As before, the market index is interpreted as the GOP.

BT,K(t)= Sδ∗t E
(

1{Sδ∗T ≥K}
K

S
δ∗
T

∣
∣
∣
∣At
)

= Sδ∗t E
(

1{Sδ∗T ≥K}K
Ŝ0
T

Ŝ0
0

Ŝ0
0

S0
T

∣
∣
∣
∣At
)

= Sδ∗t
Ŝ0

0

S0
T

E
(
1{Sδ∗T ≥K}KΛ|σ 0|(T )

∣
∣At
)
. (2.3.49)

Under the BSM, making use of Girsanov’s theorem and the Bayes rule facili-
tates pricing, in particular, we recall that the benchmarked savings account is an
(A,P )-martingale and one has the Radon-Nikodym derivative process Λ|σ 0| ={Λ|σ 0|(t), t ∈ [0, T ]}, where

Λ|σ 0|(t)=
Ŝ0
t

Ŝ0
0

= exp

{

− t
2

∣
∣σ 0
∣
∣2 − ∣∣σ 0

∣
∣Ŵ 0

t

}

. (2.3.50)

This process is used to define a measure P|σ 0| via

dP|σ 0|
dP

=Λ|σ 0|(T ), (2.3.51)

by setting

P|σ 0|(A)=E
(
Λ|σ 0|(T )1A

)=E|σ 0|(1A) (2.3.52)

for A ∈AT . We use E|σ 0| to denote the expectation with respect to P|σ 0|. By Gir-

sanov’s theorem, W |σ 0| = {W |σ 0|
t , t ∈ [0, T ]}, where

W
|σ 0|
t = Ŵ 0

t +
∣
∣σ 0
∣
∣t (2.3.53)

is a standard Brownian motion on the filtered probability space (Ω,A,A,P|σ 0|).
This yields for (2.3.49) the relations

BT,K(t)= Sδ∗t
Ŝ0

0

S0
T

KP|σ 0|
(
S
δ∗
T ≥K ∣∣At

)
E
(
Λ|σ 0|(T )

∣
∣At
)

= Sδ∗t
Ŝ0

0

S0
T

KP|σ 0|
(
S
δ∗
T ≥K ∣∣At

) Ŝ0
t

Ŝ0
0

=K exp
{−r(T − t)}

× P|σ 0|
(

W
|σ 0|
T−t ≥

ln( K
S
δ∗
t

)+ (r − 1
2 |σ 0|2)(T − t)

|σ 0|
∣
∣
∣
∣At
)

=K exp
{−r(T − t)}N(d2)
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for t ∈ [0, T ], where

d2 = ln( S
δ∗
t

K
)+ (r − 1

2 |σ 0|2)(T − t)
|σ 0|√T − t (2.3.54)

and N(·) is again the Gaussian distribution function.

2.3.6 European Options

We now focus on pricing a European call option with maturity T ∈ [0,∞) and strike
K ∈ �+ on a market index, which is again interpreted as the GOP. Invoking the real
world pricing formula (1.3.19), and recalling the previously obtained binaries, we
obtain the price of the European call option

cT ,K(t)= Sδ∗t E
(
(S
δ∗
T −K)+
S
δ∗
T

∣
∣
∣
∣At
)

= Sδ∗t E
(

1{Sδ∗T ≥K}
S
δ∗
T −K
S
δ∗
T

∣
∣
∣
∣At
)

=AT,K(t)−BT,K(t) (2.3.55)

for all t ∈ [0, T ]. Combining (2.3.47) and (2.3.54) gives

cT ,K(t)= Sδ∗t N(d1)−K exp
{−r(T − t)}N(d2) (2.3.56)

for all t ∈ [0, T ], where d1 and d2 are given by (2.3.48) and (2.3.54), respectively.
The above explicit formula corresponds to the original pricing formula for a Eu-

ropean call on a stock under the BSM, as given in Black and Scholes (1973). Simi-
larly, the price of a European put option is given by

pT,K(t)=K exp
{−r(T − t)}N(−d2)− Sδ∗t N(−d1),

for all t ∈ [0, T ].

2.3.7 Rebates

In this subsection, we consider the valuation of a rebate written on a market index,
which is again interpreted as the GOP. This claim pays one unit of the domestic
currency as soon as the index hits a certain level, assuming this occurs before a con-
tracted expiry date T > 0. Following Hulley and Platen (2008), the trigger level for
the rebate is a deterministic barrier Zt := z exp{rt}, for some z > 0. We mention the
fact that the deterministic barrier grows at the risk-free rate, which is economically
attractive, as it makes the price of the rebate dependent on the performance of the
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index relative to that of the savings account. We make use of the following stopping
times

σz,t := inf
{
u > 0: Sδ∗t+u = Zt+u

}
(2.3.57)

and

τz := inf{t > 0: Yt = z}, (2.3.58)

where Y = {Yt , t ≥ 0} satisfies

Yt = x exp

{
1

2

∣
∣σ 0
∣
∣2t + ∣∣σ 0

∣
∣Ŵ 0

t

}

(2.3.59)

and x := exp{−rt}Sδ∗t . Furthermore, we introduce the auxiliary process X =
{Xt, t ≥ 0}, where

Xt = νt + Ŵ 0
t , (2.3.60)

and ν = 1
2 |σ 0|. This means X is a Brownian motion with drift. Additionally, we

define

Ta := inf{t > 0: Xt = a}. (2.3.61)

It is easily seen that we have the following equality in distribution

σz,t
d= τz d= Tz̃ (2.3.62)

under P , where z̃ := ln( z
x
) 1
|σ 0| .

First, we consider the valuation of a perpetual rebate, for which T =∞. It fol-
lows by applying real world pricing that

R∞,z(t)= Sδ∗t E
(

1

S
δ∗
t+σz,t

∣
∣
∣
∣At
)

= S
δ∗
t

Zt
E
(
exp{−rσz,t }

∣
∣At
)

= S
δ∗
t

Zt
E
(
exp{−rτz}

∣
∣At
)
.

Making use of the known moment generating function of Tz̃, see Proposition 2.1.8,
we get

E
(
exp{−rTz̃}
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∣At
)=
(
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)1/2

exp

{

−
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∣
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∣

√
2r + ( |σ 0|

2 )
2

|σ 0|
}

(2.3.63)

and hence

R∞,z(t)=
(
S
δ∗
t

Zt

) 1
2

exp

{

−∣∣ln(Zt )− ln
(
S
δ∗
t

)∣
∣

√
2r + ( |σ 0|

2 )
2

|σ 0|
}

. (2.3.64)

Now we turn our attention to the rebate with finite maturity T <∞. Using the real
world pricing formula (1.3.19) we obtain
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RT,z(t)= Sδ∗t E
(

1t+σz,t≤T
S
δ∗
t+σz,t

∣
∣
∣
∣At
)

= S
δ∗
t

Zt
E
(
1σz,t≤T−t exp{−rσz,t }
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∣At
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= S
δ∗
t

Zt
E
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1Tz̃≤T−t exp{−rTz̃}

∣
∣At
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= S
δ∗
t

Zt

∫ T−t

0
exp{−ru} |z̃|√

2πu3/2
exp

{

− (z̃− νu)
2

2u

}

du,

where the last equality employs the distribution of Tz̃. Using the change of variables
l := u−1/2, we obtain

∫ T−t

0

exp{−ru− (z̃−νu)2
2u }

u3/2
du

= 2
∫ ∞

(T−t)−1/2
exp
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− (z̃)
2

2
l2 −

(

r + ν2

2
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l−2
}

dl

= 2
exp{−2

√
bc}√π(erfc(a

√
b−

√
c
a
)+ exp{4√bc}erfc(a

√
b+

√
c
a
))

4
√
b

,

(2.3.65)

where a := (T − t)−1/2, b := (z̃)2

2 and c := (r + ν2

2 ) and c is assumed to be positive.
Furthermore, erfc denotes the complement of the error function erf , i.e. erfc(z) =
1 − erf (z), where erf (z) = 2

π

∫ z
0 exp{−t2}dt . Finally, we remark that (2.3.65) can

also be easily confirmed using Mathematica.

2.3.8 Barrier Options

In this subsection we consider a barrier option on a market index, the GOP or NP.
As in the previous subsection, the payoff of this contingent claim is determined by
whether or not the index hits a certain level prior to its maturity T > 0. In particular,
we consider a European call with strike priceK > 0, that is knocked out if the index
breaches the same deterministic barrier Z as in the previous subsection, sometime
before expiry.

Using the real world pricing formula and the notation introduced in the previous
subsection, we obtain the following price for this claim

CuoT,K,z(t)= Sδ∗t E
(

1t+σz,t>T
(S
δ∗
T −K)+
S
δ∗
T

∣
∣
∣
∣At
)

= Sδ∗t E
(

1σz,t>T−t
(

1 − K

S
δ∗
T

)+ ∣∣
∣
∣At
)
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= Sδ∗t E
(

1τz>T−t
(

1 − K exp{−rT }
YT−t

)+ ∣∣
∣
∣At
)

= Sδ∗t E
(

1Tz̃>T−t
(

1 − k

x exp{σXT−t }
)+ ∣∣
∣
∣At
)

(2.3.66)

where, as in the previous subsection, ν := 1
2 |σ 0|, x := Sδ∗t exp{−rt}, k := K ×

exp{−rT }, z̃ := ln( z
x
) 1
|σ 0| , σ := |σ 0| and X = {Xt, t ≥ 0}, where Xt is given by

(2.3.60) and Ta denotes the first time the process X hits the level a. As X is a Brow-
nian motion with drift and Ta denotes the associated first hitting time of the level a,
we can apply Corollary 2.1.10 to obtain the price of the above Barrier option. We
remark that an alternative derivation of this formula, based on Girsanov’s theorem
and the Bayes’ rule, is presented in Musiela and Rutkowski (2005).

Following Hulley and Platen (2008), we find it convenient to distinguish the fol-
lowing two cases: firstly Sδ∗t ≤ Zt ⇔ x ≤ z, in which case we deal with an up-and-
out call and Sδ∗t ≥ Zt ⇔ x ≥ z, in which case we deal with a down-and-out call.
Regarding the up-and-out call, we remark that the Brownian motion with drift X
started at 0 killed at z̃ lives on the domain (−∞, z̃). Finally, setting a := ln( k

x
) 1
|σ 0| ,

we obtain from (1.3.19) the following pricing formula for an up-and-out call option:

CuoT,K,z(t)= Sδ∗t
∫ z̃

a

(

1 − k

x exp{σy}
)

q̃z̃(T − t,0, y)m(y)dy

= Sδ∗t
∫ z̃

a

(

1 − k

x exp{σy}
)

1√
2π(T − t) exp

{

νy − ν2(T − t)
2

}

×
(

exp

{

− y2

2(T − t)
}

− exp

{

− (y − 2z̃)2

2(T − t)
})

dy (2.3.67)

using the fact that the speed measure of a Brownian motion with drift is given by
m(y) = 2 exp{2νy}, see Borodin and Salminen (2002). Consequently, to compute
the price of a barrier option, we need to compute four integrals: firstly, we calculate

I1 = Sδ∗t
∫ z̃

a

1√
2π(T − t) exp

{

νy − ν2(T − t)
2

− y2

2(T − t)
}

dy

= Sδ∗t
(

N

(
z̃− ν(T − t)√

T − t
)

−N
(
a − ν(T − t)√

T − t
))

. (2.3.68)

The second integral is given by

I2 =−Sδ∗t
∫ z̃

a

1√
2π(T − t) exp

{

νy − ν2(T − t)
2

− (y − 2z̃)2

2(T − t)
}

dy

=−Sδ∗t exp{2z̃ν}
(

N

(−z̃− ν(T − t)√
T − t

)

−N
(
a − 2z̃− ν(T − t)√

T − t
))

=−Zt
(

N

(−z̃− ν(T − t)√
T − t

)

−N
(
a − 2z̃− ν(T − t)√

T − t
))

, (2.3.69)
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which is obtained by completing the square. Next the third integral can be computed
as follows:

I3 =−Sδ∗t
k

x

∫ z̃

a

exp{y(ν − σ)− ν2(T−t)
2 − y2

2(T−t) }√
2π(T − t) dy

=−Sδ∗t
k

x
exp

{
σ 2(T − t)

2
− νσ(T − t)

}(

N

(
z̃− (ν − σ)(T − t)√

T − t
)

−N
(
a − (ν − σ)(T − t)√

T − t
))

=−K exp
{−r(T − t)}

(

N

(
z̃− (ν − σ)(T − t)√

T − t
)

(2.3.70)

−N
(
a − (ν − σ)(T − t)√

T − t
))

, (2.3.71)

where we also completed the square. Finally, the fourth integral is given by

I4 = Sδ∗t
k

x

∫ z̃

a

1√
2π(T − t) exp

(

y(ν − σ)− ν2(T − t)
2

− (y − 2z̃)2

2(T − t)
)

dy

= Sδ∗t
k

x
exp

(

2z̃(ν − σ)− νσ(T − t)+ σ 2(T − t)
2

)

×
(

N

(−z̃− (ν − σ)(T − t)√
T − t

)

−N
(
a − 2z̃− (ν − σ)(T − t)√

T − t
))

= Sδ∗t
k

z

(

N

(−z̃− (ν − σ)(T − t)√
T − t

)

−N
(
a − 2z̃− (ν − σ)(T − t)√

T − t
))

.

(2.3.72)

Obviously, the price of the up-and-out call is given by the sum of the four terms in
(2.3.68), (2.3.69), (2.3.71), and (2.3.72). In summary, this yields the explicit formula

CuoT,K,z
(
t, S

δ∗
t

)= I1 + I2 + I3 + I4. (2.3.73)

We now turn our attention to the down-and-out call, i.e. the case St ≥ Zt ⇔ x ≥ z.
As for the up-and-out call, we remark that the Brownian motion with drift started at
0 killed at z̃ lives on the domain (z̃,∞). Recalling that a = ln( k

x
) 1
|σ 0| , we obtain the

following pricing formula for a down-and-out call option from (1.3.19),

CdoT,K,z(t)= Sδ∗t
∫ ∞

z̃∨a

(

1 − k

x exp{σy}
)

q̃z̃(T − t,0, y)m(y)dy

= Sδ∗t
∫ ∞

z̃∨a

(

1 − k

x exp{σy}
)

1√
2π(T − t) exp

{

νy − ν2(T − t)
2

}

×
(

exp

{

− y2

2(T − t)
}

− exp

{

− (y − 2z̃)2

2(T − t)
})

dy. (2.3.74)

As for the up-and-out call, the pricing of the down-and-out call entails the compu-
tation of the following four integrals
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Ī1 = Sδ∗t
∫ ∞

z̃∨a

exp{νy − ν2(T−t)
2 − y2

2(T−t) }√
2π(T − t) dy

= Sδ∗t N
(

− (z̃∨ a)+ ν(T − t)√
T − t

)

. (2.3.75)

The second integral is given by

Ī2 =−Sδ∗t
∫ ∞

z̃∨a
exp

{

νy − ν2(T − t)
2

− (y − 2z̃)2

2(T − t)
}

dy

=−Sδ∗t exp{2z̃ν}N
(

− (z̃∨ a)+ 2z̃+ ν(T − t)√
T − t

)

=−ZtN
(

− (z̃∨ a)+ 2z̃+ ν(T − t)√
T − t

)

. (2.3.76)

The third integral is given by

Ī3 =−Sδ∗t
k

x

∫ ∞

z̃∨a
exp

{

νy − σy − ν2(T − t)
2

− y2

2(T − t)
}

dy

=−Sδ∗t
k

x
exp

{
σ 2(T − t)

2
− νσ(T − t)

}

N

(

− (z̃∨ a)+ (ν − σ)(T − t)√
T − t

)

=−K exp
{−r(T − t)}N

(−(z̃∨ a)+ (ν − σ)(T − t)√
T − t

)

, (2.3.77)

and the last integral is given by

Ī4 = Sδ∗t
k

x
exp

{

2z̃(ν − σ)− νσ(T − t)+ σ 2(T − t)
2

}

×
∫ ∞

z̃∨a

exp{− (y−(2z̃+(ν−σ)(T−t)))2
2(T−t) }√

2π(T − t) dy

= Sδ∗t
k

x
exp

{

2z̃(ν − σ)− νσ(T − t)+ σ 2(T − t)
2

}

×N
(−(z̃∨ a)+ 2z̃+ (ν − σ)(T − t)√

T − t
)

= Sδ∗t
k

z
N

(−(z̃∨ a)+ 2z̃+ (ν − σ)(T − t)√
T − t

)

. (2.3.78)

It follows for the down-and-out call option the formula

CdoT,K,z
(
t, S

δ∗
t

)= Ī1 + Ī2 + Ī3 + Ī4.
By the same methodology one obtains also other barrier options.
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2.3.9 Lookback Options

In this subsection, we consider the valuation of a lookback option written on a mar-
ket index, which is again interpreted as the GOP. A standard lookback call option
pays

(
S
δ∗
T −mSδ∗T

)+ = Sδ∗T −mSδ∗T ,

where mS
δ∗
T = mint∈[0,T ] Sδ∗t . We remark that lookback options are always exer-

cised. In Musiela and Rutkowski (2005), the price of a lookback option is derived
via a measure change. In this subsection, we proceed by directly integrating the
relevant probability density function derived in Sect. 2.1. For ease of presentation,
we consider the pricing of a call option at time t = 0, but consequently present the
formulas for the general case. The real world pricing formula (1.3.19) gives the
following price LC(0) for a lookback call option

LC(0)= Sδ∗0 E

(
(S
δ∗
T −mSδ∗T )+

S
δ∗
T

)

= Sδ∗0 − Sδ∗0 E

(
mS

δ∗
T

S
δ∗
T

)

.

From (2.3.40),

mS
δ∗
T = Sδ∗0 min

t∈[0,T ] exp

{(

r + σ 2

2

)

t + σŴ 0
t

}

,

where σ := |σ 0| and hence

mS
δ∗
T

S
δ∗
T

= exp

{

min
t∈[0,T ]

((

r + σ 2

2

)

(t − T )+ σ (Ŵ 0
t − Ŵ 0

T

)
)}

.

From the time reversibility of Brownian motion, see Chap. 15, we have the following
equality in distribution,

min
t∈[0,T ]

((

r + σ 2

2

)

(t − T )+ σ (Ŵ 0
t − Ŵ 0

T

)
)
d= min
τ∈[0,T ]

(

−
(

r + σ 2

2

)

τ + σŴ 0
τ

)

.

We use the notation

Xt = νt + Ŵ 0
t ,

where ν = − (r+ σ2
2 )

σ
, and recall from Sect. 2.1, that the probability density of

mint∈[0,T ]Xt satisfies

P
(
mXT ∈ dy)=

(

φ

(−y + νT√
T

)
1√
T

+ 2ν exp{2νy}N
(
y + νT√

T

)

+ exp{2νy} 1√
T
φ

(
y + νT√

T

))

dy.
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Hence

E

(
mS

δ∗
T

S
δ∗
T

)

=E(exp
{
σmXT

})

=
∫ 0

−∞
exp{σy}φ

(−y + νT√
T

)
1√
T
dy

+
∫ 0

−∞
exp{σy}2ν exp{2νy}N

(
y + νT√

T

)

dy

+
∫ 0

−∞
exp{σy} exp{2νy} 1√

T
φ

(
y + νT√

T

)

dy.

We now compute these three integrals

I1 =
∫ 0

−∞
exp{σy}φ

(−y + νT√
T

)
1√
T
dy

=
∫ 0

−∞
exp{σy}

exp{− 1
2 (
y−νT√
T
)2}

√
2πT

dy

= exp

{
T

2

(
σ 2 + 2σν

)
}∫ −(ν+σ)√T

−∞
exp{− z2

2 }√
2π

dz

= exp{−rT }N(−(ν + σ)√T )

= exp{−rT }N(d − σ√T ),
where

d = (r + 1
2σ

2)
√
T

σ
. (2.3.79)

Regarding the second integral, we introduce

I2 =
∫ 0

−∞
exp{σy}2ν exp{2νy}N

(
y + νT√

T

)

dy.

Using integration by parts, we obtain
∫ 0

−∞
exp{σy}2ν exp{2νy}N

(
y + νT√

T

)

dy

= 2ν

(
N(ν

√
T )

2ν + σ −
∫ 0

−∞
exp{y(2ν + σ)}
(2ν + σ)

exp{− 1
2
(y+νT )2

T
}√

2πT
dy

)

= 2ν

2ν + σ
(
N(ν

√
T )− exp{−rT }N(−(ν + σ)√T ))

=N(−d)+ σ 2

2r
N(−d)− exp{−rT }N(d − σ√T )

− exp{−rT }σ 2

2r
N(d − σ√T ),
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where the quantity d is defined in (2.3.79). Finally, regarding the third integral, one
has

I3 =
∫ 0

−∞
exp{σy} exp{2νy} 1√

T
φ

(
y + νT√

T

)

dy

=
∫ 0

−∞
exp
{
y(2ν + σ)}exp{− 1

2T (y + νT )2}√
2πT

dy

=
∫ 0

−∞
exp{− (y−(ν+σ)T )2

2T }√
2πT

exp

{
T

2

(
2νσ + σ 2)

}

dy

= exp{−rT }N(d − σ√T ).
Hence, we obtain

E
(
exp
{
σmXT

})

= exp{−rT }N(d − σ√T )+N(−d)+ σ 2

2r
N(−d)− exp{−rT }N(d − σ√T )

− exp{−rT }σ
2

2r
N(d − σ√T )+ exp{−rT }N(d − σ√T )

=N(−d)+ σ 2

2r
N(−d)− exp{−rT }σ

2

2r
N(d − σ√T )

+ exp{−rT }N(d − σ√T )
= 1 −N(d)+ σ 2

2r
N(−d)− exp{−rT }σ

2

2r
N(d − σ√T )

+ exp{−rT }N(d − σ√T ).
The time 0 price of a lookback call option is then given by

LC(0)= Sδ∗0

(

N(d)− σ 2

2r
N(−d)− exp{−rT }N(d − σ√T )

+ exp{−rT }σ
2

2r
N(d − σ√T )

)

.

We now recall for a general t < T the following result from Musiela and Rutkowski
(2005), see their Proposition 6.7.1.

Proposition 2.3.1 Assume that r > 0. Then the price at time t < T of a European
lookback call option equals

LC(t)= Sδ∗t N
(

ln(Sδ∗t /m
Sδ∗
t )+ r1(T − t)
σ
√
T − t

)

−mSδ∗t N

( ln
( Sδ∗t
mS

δ∗
t

)+ r2(T − t)
σ
√
T − t

)
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− S
δ∗
t σ

2

2r
N

( ln
(mSδ∗t
S
δ∗
t

)− r1(T − t)
σ
√
T − t

)

+ exp
{−r(T − t)}S

δ∗
t σ

2

2r

(
mS

δ∗
t

S
δ∗
t

)2rσ−2

N

( ln
(mSδ∗t
S
δ∗
t

)+ r2(T − t)
σ
√
T

)

,

where r1,2 = r ± 1
2σ

2.

The payoff of a lookback put option is given by
(
MSδ∗
T − Sδ∗T

)+ =MSδ∗
T − Sδ∗T ,

where Mδ∗
T = maxt∈[0,T ] Sδ∗t .

Proposition 2.3.2 Assume that r > 0. The price of a European lookback put option
at time t < T equals

LP(t)=−Sδ∗t N
(

−
ln
( Sδ∗t
MSδ∗
t

)+ r1(T − t)
σ
√
T − t

)

+MSδ∗
t exp

{−r(T − t)}N
(

−
ln
( Sδ∗t
MSδ∗
t

)+ r2(T − t)
σ
√
T − t

)

+ S
δ∗
t σ

2

2r
N

( ln
( Sδ∗t
MSδ∗
t

)+ r1(T − t)
σ
√
T − t

)

− exp
{−r(T − t)}S

δ∗
t σ

2

2r

(
MSδ∗
t

S
δ∗
t

)2rσ−2

N

( ln
( Sδ∗t
MSδ∗
t

)− r2(T − t)
σ
√
T − t

)

,

where again r1,2 = r ± 1
2σ

2.

2.3.10 Asian Options

In this subsection, we consider Asian options on a market index, the GOP. Unlike
the derivatives presented in the previous subsections, the pay-off of Asian options is
based on average values of the market index. In particular, the pay-off of an Asian
call option is given by

(
1

T

∫ T

0
Sδ∗u du−K

)+

and
(

K − 1

T

∫ T

0
Sδ∗u du

)+
.
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We point out that closed-form solutions, as presented in the preceding subsections,
are not available for Asian options. However, using the explicitly derived joint den-
sity of (

∫ T
0 S

δ∗
u du,S

δ∗
T ) from Sect. 2.1, we can obtain an integral representation for

the price. In particular, using the notation

P

(∫ t

0
exp
{
σŴ 0

s − pσ 2s/2
}
ds ∈ du, Ŵ 0

t ∈ dy
)

= σ

2
exp
{−pσy/2 − p2σ 2t/8

}
exp

{

−2
1 + exp{σy}

σ 2u

}

× θ
(

4 exp{σy/2}
σ 2u

,
σ 2t

4

)
du

u
dy

= f (y,u)dy du,
where p =−(1 + 2r

|σ 0|2 ) and σ := |σ 0|, we obtain from the real-world pricing for-
mula (1.3.19) the following representation for the price of a call option at time 0,
struck at K with maturity T ,

CAT,K(0)= Sδ∗0 E

((
∫ T

0 S
δ∗
u du

T
−K)+

S
δ∗
T

)

= S
δ∗
0

T

∫ ∞

0

∫ ∞

0

(u− TK

S
δ∗
0

)+

exp{−pσ 2T/2 + σy}f (y,u)dy du. (2.3.80)

The above expression needs to be computed numerically, using e.g. the techniques
to be presented in Chap. 12. Finally, we alert the reader to a quasi-analytical re-
sult shown in Geman and Yor (1993). They computed the Laplace transform with
respect to time to maturity. We point out that the proof uses a connection between
geometric Brownian motion and time-changed Bessel processes, also referred to as
Lampert’s Theorem, see Theorem 6.2.4.1 in Jeanblanc et al. (2009). The following
result appeared as Proposition 6.8.1 in Musiela and Rutkowski (2005) and is based
on Eq. (3.10) in Geman and Yor (1993).

Proposition 2.3.3 The price of an Asian call option admits the representation

CAT,K(t)=
4 exp{−r(T − t)}Sδ∗t

σ 2T
Cw(h, q)

where

w = 2r

σ 2
− 1, h= σ 2

4
(T − t), q = σ 2

4Sδ∗t

(

KT −
∫ t

0
Sδ∗u du

)

.

Moreover, the Laplace transform of Cw(h,q) with respect to h is given by the for-
mula

∫ ∞

0
exp{−λh}Cw(h,q) dh=

∫ 1
2q

0

(
d exp{−x}xγ−2(1 − 2qx)γ+1)dx,

where μ=√
2λ+w2, γ = 1

2 (μ−w), and d = (λ(λ− 2 − 2ν)Γ (γ − 1))−1.
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We remark that the techniques to be presented in Sect. 13.5 can be used to invert
the above Laplace transform.

2.3.11 Australian Options

Australian options are closely related to Asian options. In this case the pay-off de-
pends on the quotient of the average of the market index over a specific time inter-

val and the market index at maturity, i.e. the quotient
∫ T

0 S
δ∗
u du

S
δ∗
T

, see Handley (2000),

Handley (2003), Moreno and Navas (2008), and Ewald et al. (2011). In the BSM
framework, a connection between Australian and Asian options is known to exist,
see Ewald et al. (2011). The real-world pricing formula (1.3.19) yields the following
expression for an Australian call option on the market index:

CAUT,K(t)= Sδ∗t E
((∫ T

0 S
δ∗
u du

T S
δ∗
T

−K
)+ 1

S
δ∗
T

∣
∣
∣
∣At
)

.

We now follow Ewald et al. (2011),

CAUT,K(t)= Sδ∗t E
(
(

∫ T
0 S

δ∗
u du

T
−KSδ∗T )+

(S
δ∗
T )

2

∣
∣
∣
∣At
)

.

Next we introduce the same auxiliary measure as for the bond-or-nothing binaries,
i.e. we recall the Radon-Nikodym derivative process from (2.3.50),

Λ|σ 0|(t)=
Ŝ0
t

Ŝ0
0

= exp

{

− t
2

∣
∣σ 0
∣
∣2 − ∣∣σ 0

∣
∣Ŵ 0

t

}

,

and define the measure P|σ 0| via

dP|σ 0|
dP

=Λ|σ 0|(T ),

by setting

P|σ 0|(A)=E
(
Λ|σ 0|(T )1A

)=E|σ 0|(1A)

for A ∈AT . We use E|σ 0| to denote the expectation with respect to P|σ 0|. By Gir-

sanov’s theorem, W |σ 0| = {W |σ 0|
t , t ∈ [0, T ]}, where

W
|σ 0|
t = Ŵ 0

t +
∣
∣σ 0
∣
∣t

is a standard Brownian motion on the filtered probability space (Ω,A,A,P|σ 0|).
Hence

CAUT,K(t)= exp
{−r(T − t)}E|σ 0|

((
∫ T

0 S
δ∗
u du

T
−KSδ∗T

)+

S
δ∗
T

∣
∣
∣
∣At
)

. (2.3.81)
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We remark that under P|σ 0|, the dynamics of Sδ∗ are given by

S
δ∗
t = Sδ∗0 exp

{
(
r − ∣∣σ 0

∣
∣2
)
t + t

2

∣
∣σ 0
∣
∣2 + ∣∣σ 0

∣
∣W |σ 0|

t

}

.

Hence, comparing (2.3.81) to (2.3.80), we point out that computing (2.3.81)
amounts to pricing an Asian option with variable strike, but at a different interest
rate, namely r − |σ 0|2. Clearly, this relation required the candidate measure P|σ 0|
to be equivalent to P . This does not hold for all models considered in this book,
see e.g. Chap. 3. However, assuming suitable integrability conditions are satisfied,
we can express the price of an Australian option as an integral over the relevant
probability density function and use the techniques from Chap. 12.

2.3.12 Exchange Options

In this subsection, we price exchange options on the market index, i.e. the option
to exchange the market index denominated in one currency for the market index
denominated in another currency. This is our first example of a derivative whose
payoff is a functional of two assets. We point out that in the classical literature, see
e.g. Margrabe (1978), such contracts are often priced by computing prices under an
appropriately chosen probability measure. This is not the case under the benchmark
approach, where we only need to compute prices under one measure, the real world
probability measure. In particular, we define the time t exchange price as

X
i,j
t = S

δ∗,i
t

S
δ∗,j
t

,

where Sδ∗,it denotes the GOP denominated in currency i, and Sδ∗,jt denotes the GOP
denominated in currency j . We assume that the dynamics of the GOP in currency k
are given by

dS
δ∗,k
t = Sδ∗,kt

((
rk + ∣∣σk∣∣2)dt + ∣∣σk∣∣dŴ k

t

)
, (2.3.82)

where k ∈ {i, j} and d[Ŵ i, Ŵ j ]t = ρ dt . The joint transition density of Sδ∗,i and
Sδ∗,j was derived in Sect. 2.2. For deriving the following result, we employ a change
of variables. This reduces the computation to one which involves the standard Gaus-
sian bivariate density. As with European call options on the GOP, we find it conve-
nient to firstly price asset binary options on an exchange price, and subsequently
bond binary options on an exchange price. We use the notation AiT,K(t) for an asset
binary option on an exchange price in the ith currency, which, based on the real
world pricing formula, satisfies

AiT,K(t)= Sδ∗,it E

(
S
δ∗,i
T

S
δ∗,j
T

1

S
δ∗,i
T

1
S
δ∗,i
T

S
δ∗,j
T

≥K

∣
∣
∣
∣At
)

.
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Using q(t, z
j
t , z

i
t , T , z

i
T , z

j
T ) to denote the joint density of (S

δ∗,j
t , S

δ∗,i
t ) to

(S
δ∗,j
T , S

δ∗,i
T ), we have

AiT,K(t)=E
(
S
δ∗,i
t

S
δ∗,i
T

X
i,j
T 1

X
i,j
T ≥K

∣
∣
∣
∣At
)

=Xi,jt E
(
S
δ∗,j
t

S
δ∗,j
T

1
S
δ∗,j
T ≤Sδ∗,iT /K

∣
∣
∣
∣At
)

=Xi,jt
∫ ∞

0

∫ zi
T
K

0

zit

ziT

q
(
t, z

j
t , z

i
t , T , z

j
T , z

i
T

)
dz
j
T dz

i
T .

We now use a change of variables to perform computations in terms of the bivariate
Gaussian density

ukT =
ln(

zkT
zkt
)− (rk + 1

2 |σk|2)(T − t)
|σk|√T − t , k ∈ {i, j}.

Hence we obtain

AiT,K(t)=Xi,jt
∫ ∞

−∞

∫ d̄1(X
i,j
t )

−∞
z
j
t

z
j
T

p
(
u
j
T ,u

i
T , ρ
)
du
j
T du

i
T ,

where

d̄1(x)= ln( x
K
)− (rj − ri + 1

2 (|σ j |2 − |σ i |2))(T − t)
|σ j |√T − t + uiT

|σ i |
|σ j | ,

and

p(z1, z2, ρ)= 1

2π
√

1 − ρ2
exp

{

− (z
2
1 − 2ρz1z2 + z2

2)

2(1 − ρ2)

}

denotes the density of two correlated standard Gaussian random variables. We now
set

ū
j
T = ujT + ∣∣σ j ∣∣√T − t,
ūiT = uiT + ρ∣∣σ j ∣∣√T − t,

which allows us to write

AiT,K(t)=Xi,jt exp
{−rj (T − t)}

∫ ∞

−∞

∫ d̃1(X
i,j
t )

−∞
p
(
ū
j
T , ū

i
T , ρ
)
dū
j
T dū

i
T , (2.3.83)

where

d̃1(x)= ln( x
K
)+ (ri − rj + 1

2 (|σ j |2 − 2ρ|σ j ||σ i | + |σ i |2))(T − t)
|σ j |√T − t + ūiT

|σ i |
|σ j |

= d̂(Xi,jt
)+ ūiT

|σ i |
|σ j | .
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The expression in equation (2.3.83) can be interpreted as the probability that a stan-
dard normal random variable Z1 is less than a constant d̂1(X

i,j
t ) plus another stan-

dard normal random variable Z2 multiplied by |σ i |
|σ j | , i.e.

P

(

Z1 < d̂1
(
X
i,j
t

)+ |σ i |
|σ j |Z

2
)

.

But since Z1 − |σ i |
|σ j |Z

2 is normal with mean zero and variance
σ 2
i,j

|σ j |2 , we obtain the
following result:

AiT,K(t)=Xi,jt exp
{−rj (T − t)}N(d1

(
X
i,j
t

))
,

where

d1
(
X
i,j
t

)= ln(X
i,j
t

K
)+ (ri − rj + 1

2σ
2
i,j )(T − t)

σi,j
√
T − t ,

σ 2
i,j =

∣
∣σ i
∣
∣2 − 2ρ

∣
∣σ i
∣
∣
∣
∣σ j
∣
∣+ ∣∣σ j ∣∣2.

Using similar calculations, we obtain the following result for a binary bond option
on the exchange price,

BiT,K(t)=E
(
S
δ∗,i
t

S
δ∗,i
T

1
X
i,j
T >K

∣
∣
∣
∣At
)

= exp
{−ri(T − t)}N(d2

(
X
i,j
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))
,

where
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(
X
i,j
t

)= ln(X
i,j
t

K
)+ (ri − rj − 1

2σ
2
i,j )(T − t)

σi,j
√
T − t .

Finally, we arrive at prices for call and put options in the ith currency on an exchange
price at time t with expiry T and strike price K ,

ciT ,K(t)=Xi,jt exp
{−rj (T − t)}N(d1

(
X
i,j
t

))

−K exp
{−ri(T − t)}N(d2

(
X
i,j
t

))
,

piT ,K(t)=−Xi,jt exp
{−rj (T − t)}N(−d1

(
X
i,j
t

))

+K exp
{−ri(T − t)}N(−d2

(
X
i,j
t

))
.

2.3.13 American Options

The derivative contracts discussed until now were all European style options, i.e.
could only be exercised at maturity. We now briefly discuss American style options,
which allow the holder to exercise the option at any time before maturity. This addi-
tional feature makes the pricing of American options more difficult than the pricing
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of European options. For more information on the mathematics of American option
pricing, we refer the reader to McKean (1965), van Moerbeke (1976), Bensoussan
(1984), Karatzas (1988), Karatzas (1989), and to Myneni (1992) for a survey. We
point out that closed-form solutions similar to the ones derived in the preceding
subsections are not available for American options, except for the perpetual case,
see for example the discussion in Musiela and Rutkowski (2005). However, we also
refer the reader to Zhu (2006).

Consequently, for results that provide almost closed-form solutions numerical
methods have to be employed to price American options. A popular method involves
restricting the dates at which the option can be exercised to a finite set, i.e. turning
the American option into a Bermudan option. Using dynamic programming, one can
compute prices via backward induction. This in turn can be done via Monte Carlo
simulation, see e.g. Broadie and Glasserman (1997). In this context, the transition
densities collected in this book are of importance, as they are used to perform the
simulation step. Furthermore, the Monte Carlo technique is of course general, one
only needs to have access to the relevant transition densities.

There exist more explicit formulas for derivatives under the BSM. It is mainly
its explicitly known transition density and the well researched area of functionals
of Brownian motions that give access to such a rich set of pricing formulas for
the standard market model. It is unfortunate that the BSM provides only a poor
reflection of the real market dynamics, in particular, over longer periods of time
and for extreme market movements. Therefore, it is essential to find more realistic
tractable market models with a similar set of explicit formulas.



Chapter 3
Functionals of Squared Bessel Processes

In this chapter, we discuss important classes of stochastic processes, namely squared
Bessel processes and their relatives. These processes turn out to have important ap-
plications in financial modeling, as we will demonstrate in Sect. 3.3. Fortunately,
these processes are susceptible to Lie symmetry methods, as will be demonstrated
in Chaps. 5 and 8, and are also solvable in the sense of Chap. 11. This is important,
as it allows us to formulate realistic financial models based on squared Bessel pro-
cesses and at the same time produce closed-form solutions for important financial
derivatives in this class of models.

In Sect. 3.1, we firstly recall results on the squared Bessel process, and subse-
quently for related processes, in particular:

• the Bessel process;
• the square-root process;
• the 3/2 process;
• the CEV process.

Most results presented in Sect. 3.1 have appeared in the literature before. However,
the aim of this chapter is to present the squared Bessel process as a central object
for modeling, which is tractable, and from which one can consequently derive other
tractable processes. Furthermore, we point out that several more complex function-
als, such as integrals of the processes discussed in this chapter, can be derived via
Lie symmetry methods, which will be discussed in Chap. 5.

3.1 One-Dimensional Functionals of Squared Bessel Processes

Let δ ∈N , x ≥ 0, and introduce δ independent Brownian motionsW 1,W 2, . . . ,Wδ ,
started at w1 ∈ �,w2 ∈ �, . . . ,wδ ∈ �, and set

x =
δ∑

k=1

(
wk
)2
.
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Now we set

Xt =
δ∑

k=1

(
Wk
t +wk

)2
, t ≥ 0. (3.1.1)

It follows from the Itô formula, that

dXt = δdt + 2
δ∑

k=1

(
Wk
t +wk

)
dWk

t ,

where X0 = x. We now set

dWt = 1√
Xt

δ∑

k=1

(
wk +WK

t

)
dWk

t ,

and find that

[W ]t = t,
hence W is a Brownian motion, by Lévy’s characterization theorem, see Theo-
rem 15.3.3. Consequently, X satisfies the SDE

dXt = δdt + 2
√
Xt dWt ,

where X0 = x, and we refer to X as a squared Bessel process of dimension δ. The
reason for the nomenclature is the fact that many quantities pertaining to the squared
Bessel process can be expressed in terms of Bessel functions. The above definition
can be extended to the case δ ≥ 0, and we recall Definition 6.1.2.1 from Jeanblanc
et al. (2009):

Definition 3.1.1 For every δ ≥ 0 and x ≥ 0, the unique strong solution to the equa-
tion

Xt = x + δt + 2
∫ t

0

√
Xs dWs, Xt ≥ 0,

is called a squared Bessel process with dimension δ started at x.

The dimension δ of the squared Bessel process plays a pivotal role when study-
ing its path properties, in particular its boundary behavior around 0. Table 3.1.1
summarizes the behavior at zero for a squared Bessel process. We refer the reader
to Sect. 6.1 in Jeanblanc et al. (2009) for a more detailed discussion, in particular
to Proposition 6.1.3.1. In this book, we adopt the convention from Revuz and Yor
(1999) and specify the boundary condition at 0 to be reflection. Of course, other
specifications such as absorption or killing are also possible, see e.g. Borodin and
Salminen (2002). Furthermore, we point out that for δ > 2, X is transient, i.e. Xt
goes to infinity as t goes to infinity. For δ = 2, the process never reaches zero, but
hits every ball centered around 0 after some time. The squared Bessel process en-
joys the following scaling property, see also Sect. 8.7 in Platen and Heath (2010),
Proposition 6.1.4.1 in Jeanblanc et al. (2009):
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Table 3.1.1 Path properties
of the squared Bessel process Dimension Property of the squared Bessel process X

δ ≥ 2 X does not reach 0

0< δ < 2 X reaches 0 and reflects

δ = 0 X reaches 0 and is absorbed

Proposition 3.1.2 If {Xt, t ≥ 0} is a squared Bessel process of dimension δ started
at x, then { 1

c
Xct , t ≥ 0} is a squared Bessel process of dimension δ started at x

c
.

Also, the sum of independent squared Bessel processes is a squared Bessel pro-
cess:

Proposition 3.1.3 If X = {Xt, t ≥ 0} is a squared Bessel process of dimension δ1
started at x1 and Y = {Yt , t ≥ 0} is a squared Bessel process of dimension δ2 started
at x2, where X and Y are independent, then Z = {Zt , t ≥ 0}, where Zt =Xt + Yt ,
is a squared Bessel process of dimension δ = δ1 + δ2 started at x = x1 + x2.

We now show the following relationship in law between squared Bessel processes
of different dimensions. We firstly have the following absolute continuity relation-
ship, see Proposition 6.1.5.1 in Jeanblanc et al. (2009). We use P δx to denote the law
of a squared Bessel process of dimension δ started at x. In the following, we also
use the index of the squared Bessel process, given by ν = δ

2 − 1,

P δx

∣
∣
At

=
(
Xt

x

) ν
2

exp

{

−ν
2

2

∫ t

0

ds

Xs

}

P 2
x

∣
∣
∣
∣
At

,

for δ ≥ 2. Similar relations also exist for processes which can hit zero. In particular,
we recall from Borodin and Salminen (2002) or Platen and Heath (2010) for δ > 2
the relation, where τ = inf{t ≥ 0: Xt = 0},

P 4−δ
x

∣
∣
At∩{t<τ }=

(
x

Xt

)ν
P δx

∣
∣
∣
∣
At

, (3.1.2)

for all t ∈ (0,∞). In principle, on the left hand side of the above relationship we
consider squared Bessel processes with absorption at zero, and on the right hand
side squared Bessel processes that never reach zero. The same relationship (3.1.2)
yields for δ < 2 the equation

P δx

∣
∣
At∩{t<τ }=

(
x

Xt

)−ν
P 4−δ
x

∣
∣
∣
∣
At

. (3.1.3)

We now turn to the transition density of the squared Bessel process. In particular,
we find it useful to recall the following equality in law, for ν >−1 or equivalently
δ > 0,

Xt

t

d= χ2
δ

(
x

t

)

,
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Fig. 3.1.1 Transition density
of squared Bessel process for
δ = 4

where χ2
δ (λ) denotes a non-central χ2 random variable with δ degrees of freedom

and non-centrality parameter λ, see e.g. Platen and Bruti-Liberati (2010). From this
equality, we obtain the transition density for a squared Bessel process X starting at
the time s ∈ [0,∞) in x being at time t ∈ (s,∞) in y as

pδ(s, x; t, y)= 1

2(t − s)
(
y

x

) ν
2

exp

{

− x + y
2(t − s)

}

Iν

(√
x y

t − s
)

, (3.1.4)

see Revuz and Yor (1999), where Ia is the modified Bessel function of the first kind
with index a, and we recall that ν = δ

2 − 1. In Fig. 3.1.1 we show the transition
density of a squared Bessel process of dimension four, δ = 4, which means index
ν = 1, starting at x = 100.

For δ = 0, in which case the squared Bessel process is absorbed at 0, one obtains
for x > 0 and t ∈ [0,∞)

p0(0, x; t, y)= 1

2 t

(
y

x

) ν
2

exp

{

−x + y
2 t

}

I1

(√
x y

t

)

. (3.1.5)

So far, we have focused on the case δ ≥ 0. However, we alert the reader to the
fact that squared Bessel processes can also be defined for δ < 0, see Sect. 6.2.6 in
Jeanblanc et al. (2009).

We conclude this section with a result on hitting times of squared Bessel pro-
cesses, where we assume that the process is started at a positive x, see Proposi-
tion 6.2.3.1 in Jeanblanc et al. (2009).

Proposition 3.1.4 Let λ > 0, b > 0, and Tb := inf{t ≥ 0: Xt = b}. Then

E
(
exp{−λTb}

)=
(
b

x

) ν
2 Kν(

√
2λx )

Kν(
√
b2λb )

, b ≤ x

E
(
exp{−λTb}

)=
(
b

x

) ν
2 Iν(

√
2xλ )

Iν(
√
b2λ)

, x ≤ b,
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where Kν and Iν are the modified Bessel functions of the second and first kind,
respectively.

3.1.1 Bessel Processes

We obtain the Bessel process R = {Rt, t ≥ 0} by taking the square root of the
squared Bessel process X = {Xt, t ≥ 0}. Properties such as scaling, relations be-
tween Bessel processes of different dimensions, and first hitting times, of course,
carry over in an obvious way from the squared Bessel process. For completeness,
we present the transition density of a Bessel process, which follows easily from
(3.1.4), (3.1.5) and the functional relationship between a squared Bessel process
and a Bessel process. We point out that the concept of a dimension δ and an in-
dex ν carries over in the obvious fashion from a squared Bessel process to a Bessel
process.

For ν > −1 or equivalently δ > 0, the transition density of a Bessel process is
given by

pδ(s, x; t, y)= y

(t − s)
(
y

x

)ν
exp

{

− x
2 + y2

2(t − s)
}

Iν

(
x y

t − s
)

,

and for ν =−1 or equivalently δ = 0, we have

p0(0, x; t, y)= x

t
exp

{

−x
2 + y2

2 t

}

I1

(
x y

t

)

.

3.1.2 Square-Root Processes

In this subsection, we study the square-root (SR) process, given by the SDE

drt = κ(θ − rt ) dt + σ√rt dWt , (3.1.6)

where r0 = x, and we assume that κθ > 0, which results in rt ≥ 0 for x ≥ 0. The
process (3.1.6) is employed in the area of interest rate modeling. For example, it
is used to model the short rate in the CIR model, see Cox et al. (1985). But also
in the area of equity modeling, it is used e.g. to model stochastic volatility in the
Heston model, see Heston (1993). The square-root process has been linked to the
squared Bessel process in two ways: firstly by transformation of space-time, and
secondly by a change of law, see Pitman and Yor (1982) for both approaches. The
following result is Proposition 6.3.1.1 from Jeanblanc et al. (2009) and illustrates
the transformation of space-time:

Proposition 3.1.5 The square-root process (3.1.6) is a squared Bessel process
transformed by the following space-time changes,

rt = exp{−κt}Xc(t),
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where c(t)= σ 2

4κ (exp{κt} − 1), and X = {Xt, t ≥ 0} is a squared Bessel process of

dimension δ = 4κθ
σ 2 .

Now, we discuss the change of law, for which we introduce the notation κP κθx to
denote the law of the square-root process that solves (3.1.6) for σ = 2. We point out
that by a simple change of time A(t) = 4t

σ 2 we can reduce (3.1.6) to a square-root
process for which σ = 2. Formally, setting Yt = rA(t), we obtain

dYt = κ ′(θ − Yt ) dt + 2
√
Yt dBt ,

where κ ′ = 4κ
σ 2 and B = {Bt , t ≥ 0} is a Wiener process.

Proposition 3.1.6 Let κP κθx denote the law of the square-root process that solves
(3.1.6) for σ = 2, then

κP κθx

∣
∣
At

= exp

{
κ

4
(x + κθt −Xt)− κ2

8

∫ t

0
Xs ds

}

Pκθx

∣
∣
∣
∣
At

.

As with the squared Bessel process, the distribution of the square-root process is
linked to the non-central χ2-distribution: let

c(t)= σ 2

4κ

(
exp{κt} − 1

)

and α = x
c(t)

, then rt exp{κt}
c(t)

∼ χ2
δ (α), where δ = 4κθ

σ 2 . We now present the transition
density of the square-root process,

pδ(s, x; t, y)= exp{κτ }
2c(τ )

(
y exp{κτ }

x

) ν
2

exp

{

−x + y exp{κτ }
2c(τ )

}

× Iν
(

1

c(τ )

√
xy exp{κt}

)

1y≥0,

where c(t)= σ 2

4κ (exp{κt} − 1), ν = δ
2 − 1, δ = 4κθ

σ 2 and τ = t − s.
Figure 3.1.2 shows the transition density of an SR process for the period from

0.1 to 3.0 years, with initial value r0 = 1.0, reference level θ = 1.0 and parameters
κ = 2 and σ =√

2. This means that we consider an SR process of dimension δ =
4×2×1

2 = 4. Figure 3.1.3 displays a sample path for the SR process.
We conclude this subsection by remarking that the speed of mean reversion κ

does not need to be a constant, but can be a function of time. This results in the
inhomogeneous square-root process, see Sect. 6.3.5 in Jeanblanc et al. (2009). In
particular, if r̃ = {r̃t , t ≥ 0} solves the SDE

dr̃t =
(
a − λ(t)r̃t

)
dt + σ

√
r̃t dWt ,

and r̃0 = x for a continuous function λ(t) and a > 0, then

{r̃t , t ≥ 0} d=
{

1

l(t)
Xc̃(t), t ≥ 0

}

,
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Fig. 3.1.2 Transition density
of a square root process

Fig. 3.1.3 Sample path of a
square root process of
dimension four

where l(t)= exp{∫ t0 λ(s) ds}, c̃(t)= σ 2

4

∫ t
0 l(s) ds and X = {Xt, t ≥ 0} is a squared

Bessel process of dimension 4a
σ 2 .

3.1.3 3/2 Processes

We now turn to the 3/2 process, which is another tractable process. Its SDE is given
by

dvt = κvt (θ − vt ) dt + σv3/2
t dWt ,

where v0 = v > 0. The 3/2 process has been used to model short-rates, see e.g. Ahn
and Gao (1999), Platen (1999), but also to model equities, in particular it is used
to model stochastic volatility in the 3/2 model, see e.g. Carr and Sun (2007), Itkin
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and Carr (2010), Lewis (2000). The 3/2 model turns out to be a functional of the
square-root process. Defining rt = 1

vt
, we obtain

drt =
(
κ + σ 2 − κθrt

)
dt − σ√rt dWt ,

where r0 = 1
v

. This relationship is useful and allows us to transfer results obtained
for the square-root process to the 3/2 model. In particular, we obtain its transition
density

pδ(s, x; t, y)= y2 exp{κ̃τ }
2c̃(τ )

(
x exp{κ̃τ }

y

) ν
2

exp

{

−x
−1 + y−1 exp{κ̃τ }

2c̃(τ )

}

× Iν
(

1

c̃(τ )

√
(xy)−1 exp{κ̃ t}

)

1y>0,

where κ̃ = κθ , θ̃ = κ+σ 2

κθ
, c̃(t) = σ 2

4κ̃ (exp{κ̃ t} − 1) and τ = t − s. Furthermore, it
is clear that the dimension of the square-root process r = {rt , t ≥ 0} is given by
δ = 4 + 4κ

σ 2 . We point out that if the process r can reach zero, then the process v
explodes, and that this is determined by the dimension of the process r .

We alert the reader to the fact that the link between a square-root process and
the 3/2 process can also be used for more advanced functionals: for example, the
Broadie-Kaya algorithm, which is used to simulate integrals of the square-root pro-
cess, see Chap. 6, can be modified to handle the 3/2 model, which entails simulating
integrals of the 3/2 process.

3.1.4 Constant Elasticity of Variance Processes

In this subsection, we study the constant elasticity of variance (CEV) process, where
we again follow the presentation in Jeanblanc et al. (2009), and write

dZt = Zt
(
μdt + σZβt dWt

)
,

Z0 = z > 0. This process was studied e.g. in Cox (1996) for β < 0, in Engel and
MacBeth (1982) for β > 0 and in Delbaen and Shirakawa (2002) for −1< β < 0.
We point out that for β =− 1

2 we recover the square-root process and for β = 0 the
geometric Brownian motion. As we have already studied these processes in detail,
we focus on the following three cases:

• β <− 1
2 ;

• − 1
2 < β < 0;

• β > 0.

The reason for this distinction is given in Table 3.1.2, which summarizes Lem-
ma 6.4.4.1 in Jeanblanc et al. (2009). The result is obtained by relating the CEV
process to the squared Bessel process, which for negative dimensions is stopped
at 0. We now recall Lemma 6.4.3.1 from Jeanblanc et al. (2009), which links the
CEV process to the squared Bessel process.
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Table 3.1.2 Path properties
of the CEV process Value of β Property of the CEV process Z

β > 0 Z does not reach 0

β < 0 Z reaches 0 almost surely

− 1
2 < β < 0 Z reaches 0 and is absorbed

β <− 1
2 Z reaches 0 and reflects

Proposition 3.1.7 For β > 0, or β < − 1
2 , a CEV process is a deterministic time-

change of a power of a squared Bessel process,

St = exp{μt}(Xc(t))−
1

2β ,

where X = {Xt, t ≥ 0} is a squared Bessel process of dimension δ = 2 + 1
β

and

c(t)= βσ 2

2μ (exp{2μβt} − 1). If − 1
2 < β < 0, then

St = exp{μt}(Xc(t))−
1

2β , t ≤ T0,

where T0 denotes the first time that the squared Bessel process hits 0.

We now give the transition density of the CEV process, for any β and y > 0:

p(s, x; t, y)= |β|
c(τ )

exp

{

μτ

(

2β + 1

2

)}

y−
3
2−2βx

1
2

× exp

{

− 1

2c(τ )

(
x−2β + y−2β exp{2μβτ })

}

× x 1
2 y−2β− 3

2 I|ν|
(
y−β exp{βμτ }x−β

c(τ )

)

,

where τ = t − s and c(t) is defined as in Proposition 3.1.7.
We point out that in Sect. 3.3, we will introduce the transformed constant elas-

ticity of variance process, and apply it to finance. Also for the transformed constant
elasticity of variance process, the link with the squared Bessel process can be estab-
lished and turns out to be crucial in deriving explicit pricing formulas.

3.2 Functionals of Multidimensional Squared Bessel Processes

The squared Bessel process sits at the heart of the developments in Sect. 3.1, in
fact, all other processes in this section can be related to it. Consequently, when con-
sidering multidimensional processes, we need to find a suitable multidimensional
generalization of this process.

The Wishart process introduced in Bru (1991), turns out to be a suitable general-
ization: recall that we introduced the squared Bessel process as the sum of squared
Wiener processes, see (3.1.1). In this section, we introduce the Wishart process as
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a matrix product of Wiener processes, which generalizes the idea of summing up
squared Wiener processes to obtain a squared Bessel process.

In particular, consider for two integers n,p ≥ 1, the n×p matrix W t , whose ele-
ments are independent scalar valued Brownian motions. Also, assume that W 0 = C

is the initial state matrix. Now, define a Wishart process S = {St , t ≥ 0} of dimen-
sion p, index n and initial state S0, which we denote by WISp(C�C, n,0, I ), see
Sect. 11.2, where

St = W�
t W t , S0 = C�C.

We point out that St satisfies the SDE

dSt = nI dt + dW�
t

√
St +

√
St dW t . (3.2.7)

Hence, for a given t , St follows the non-central Wishart distribution, see Def-
inition 10.3.12, Wp(n, tIp, t

−1S0), which can be easily proven using Theo-
rem 10.3.15. For a definition of this distribution we refer the reader to Chap. 10,
Definition 10.3.12, in particular since the definition involves matrix valued special
functions, which are defined in Chap. 10.

As the non-central Wishart distribution is the natural generalization of the non-
central χ2 distribution, the Wishart process appears as the natural candidate to gen-
eralize the squared Bessel process. The above discussion can be extended, but we
defer such a discussion to Chaps. 10 and 11. In Chap. 10, we will recall some basics
of matrix valued statistics and matrix valued stochastic processes, which will give
us a better understanding of the Wishart process. Furthermore, the Wishart process
will turn out to be solvable, in the sense of Chap. 9, hence we firstly develop these
powerful techniques and subsequently apply them to the Wishart process.

We conclude this section by recalling the additivity property for Wishart pro-
cesses, which is analogous to Proposition 3.1.3. Further properties known to hold
for squared Bessel processes can be extended to Wishart processes, but such a dis-
cussion is deferred to Chap. 11.

Proposition 3.2.1 If S = {St , t ≥ 0} and U = {U t , t ≥ 0} are two independent
Wishart processes WISp(S0, n,0, I ) and WISp(U0,m,0, I ), respectively, then the
sum S +U = {St +U t , t ≥ 0} is a Wishart process WISp(S0 +U0, n+m,0, I ).

The proof is presented in Sect. 2.5 of Bru (1991).

3.3 Selected Applications to Finance

The aim of this section is to introduce two models: the stylized minimal market
model (MMM) and the transformed constant elasticity of variance (TCEV) model.
Both models we consider to be potential models for the GOP. In addition to provid-
ing realistic dynamics for the GOP, these models also turn out to be highly tractable.
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Fig. 3.3.4 Discounted S&P
500

This book focuses on the tractability aspect of models. In particular, we aim to il-
lustrate that for many functionals relevant to finance, the underlying stochastic pro-
cesses, when they are related to the squared Bessel process, provide models with
closed-form solutions.

For an economic justification of these rather realistic models, we refer the reader
to Platen and Heath (2010), and also to Baldeaux et al. (2011c). Here, we only
recall two pivotal characteristics of these models, which contribute to their realistic
representation of the real world dynamics of the GOP:

• volatility should be modeled via a mean-reverting process, which is negatively
correlated with the GOP;

• the benchmarked savings account should be modeled as a strict local martingale.

Both points are easily illustrated pictorially: we use the discounted S&P 500 total
return index (S&P 500) observed in US dollars from 1926 until 2004 as a proxy for
the GOP. This index starts at S̄δ∗0 = 2.3 in January 1926 and has been reconstructed
from monthly data provided by Global Financial Data, see Fig. 3.3.4. In Fig. 3.3.5,
we show the volatility of this index, which clearly fluctuates around a long-run aver-
age. Furthermore, the so-called leverage effect, see Black (1976), which expresses
a negative correlation between an index and its volatility is a recognized and ac-
cepted phenomenon. The two models presented in this section both accommodate a
mean-reverting volatility process and the leverage effect.

Secondly, by discussing the two models we challenge the risk-neutral approach to
finance by questioning the suitability of the assumption on the existence of an equiv-
alent risk neutral probability measure. In Fig. 3.3.6, we show the candidate Radon-
Nikodym derivative for the putative risk neutral measure, which is the benchmarked
savings account or the inverse of the discounted index shown in Fig. 3.3.4 if the in-
dex is interpreted as the GOP. Clearly, this index appears to trend downwards. This
observation conflicts with the classical requirement for the existence of a risk neutral
probability measure, where this process should be a martingale. Consequently, we
focus on models for which an equivalent risk neutral probability measure does not
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Fig. 3.3.5 Volatility of the
S&P 500 under the MMM

Fig. 3.3.6 Candidate
Radon-Nikodym derivative
for the putative risk neutral
probability measure

exist. The risk neutral approach breaks down in this context, however, the bench-
mark approach can still be applied and results in tractable expressions for realistic
financial models as will be discussed in this book. It is the aim of this section to
point out that even though risk neutral pricing is not applicable, realistic models
can still be designed which yield similarly tractable expressions as, for instance, the
Black-Scholes model.

3.3.1 Stylized Minimal Market Model

In this subsection, we recall the stylized minimal market model (MMM) and demon-
strate that it can be used to obtain tractable expressions for some important deriva-
tives. For more information on the stylized MMM, we refer the reader to Platen and
Heath (2010).
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Fig. 3.3.7 Logarithm of
discounted S&P 500 and
trend line

Under the stylized MMM, we model the discounted GOP S̄δ∗ = {S̄δ∗t , t ≥ 0} as
follows:

dS̄
δ∗
t = αδ∗t dt +

√
S̄
δ∗
t α

δ∗
t dWt , t ≥ 0.

Using the relation

Xϕ(t) = S̄δ∗t ,
we find that the discounted GOP is a squared Bessel process of dimension four,

dXϕ(t) = 4dϕ(t)+ 2
√
Xϕ(t) dWϕ(t),

where

dWϕ(t) =
√
α
δ∗
t

4
dWt .

The drift αδ∗t of the discounted GOP is modeled as an exponential function of time,

α
δ∗
t = α0 exp{ηt}.

Such a choice seems reasonable. In Fig. 3.3.7 we show the natural logarithm of
the discounted S&P 500 index, which is approximately linear. To emphasize this
observation we include also the trend line.

The transformed time ϕ(t) is given by the integral of αδ∗t , i.e.

ϕ(t)= 1

4

∫ t

0
αδ∗s ds =

α0

4η

(
exp{ηt} − 1

)
.

It is clear that once α0 and η are known, the MMM is fully parameterized. From the
Itô formula it follows immediately that the quadratic variation of the square-root of
the discounted GOP satisfies

[√
S̄δ∗
]
t
= 1

4

∫ t

0
αδ∗s ds = ϕ(t)− ϕ(0). (3.3.8)
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Fig. 3.3.8 Empirical
quadratic variation of the
square root of the discounted
S& P 500

Fig. 3.3.9 Fitted and
observed transformed time

The expression (3.3.8) is very useful, as it allows for an easy estimation of α0 and η.
In particular, we show in Fig. 3.3.8 the empirical quadratic variation of the square-
root of the discounted GOP. In Fig. 3.3.9, we show the empirical quadratic variation
of the square-root of the discounted GOP and the fitted transformed time ϕ(t). We
point out that the chosen parameters seem to provide a good fit.

The normalized GOP process Y = {Yt , t ≥ 0} is defined via the ratio

Yt = S̄
δ∗
t

α
δ∗
t

, (3.3.9)

for t ≥ 0, which by an application of the Itô formula yields,

dYt = (1 − ηYt ) dt +
√
Yt dWt ,

for t ≥ 0 with

Y0 = S̄
δ∗
0

α
δ∗
0

,
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Fig. 3.3.10 Normalized GOP

a square-root process of dimension four. This is a consequence of Proposition 3.1.5,
the time-change relationship between a square-root process and a squared Bessel
process. We plot the normalized GOP corresponding to the S&P 500 index in
Fig. 3.3.10.

The normalized GOP is directly related to the volatility of the GOP: under the
MMM, volatility is given by

|θt | = 1√
Yt
.

The squared volatility can be shown to satisfy the SDE

d|θt |2 = d
(

1

Yt

)

= |θt |2η dt −
(|θt |2

) 3
2 dWt,

where t ≥ 0. The diffusion coefficient has the power 3/2, i.e. we recover the 3/2
process, see Sect. 3.1. Such a model was suggested in Platen (1997) for modeling
the squared volatility of a market index. Furthermore, under the MMM the squared
volatility satisfies

|θt |2 = 1

Yt
,

and hence has an inverse gamma density as its stationary density.

3.3.2 Standard European Options on the Index Under the MMM

Having investigated the MMM, we now turn to pricing. The conventional approach
entails changing from the real-world probability measure to an equivalent martin-
gale measure and consequently to value derivatives. However, an equivalent mar-
tingale measure does not exist under the MMM. It turns out that investigating the
existence of an equivalent martingale measure is equivalent to pricing a zero coupon
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using the real world pricing formula (1.3.19). From the real world pricing formula,
it is clear that even when assuming a constant short rate, a zero coupon bond is still
an index derivative and under the MMM a stochastic quantity. To emphasize this,
we assume that the short rate process r = {rt , t ≥ 0} is constant, i.e. we set rt = r
and note that

S
δ∗
t = S̄δ∗t S0

t ,

where S0
t = exp{rt}. From the real world pricing formula, we obtain the following

price for a zero coupon bond at time t , which matures at T > t ,

PT (t)= Sδ∗t E
(

1

S
δ∗
T

∣
∣
∣
∣At
)

= exp
{−r(T − t)}E

(
S̄
δ∗
t

S̄
δ∗
T

∣
∣
∣
∣At
)

. (3.3.10)

Since the discounted GOP is modeled via a time transformed squared Bessel process
of dimension δ = 4, computing (3.3.10) amounts to a computation involving the
non-central χ2 distribution. In Sect. 13.1, we will summarize useful properties of
this distribution, which facilitate the computations in this section. We introduce the
following notation, which will be used throughout this subsection

Ψ (x;ν,λ) := P (χ2
ν (λ)≤ x

)
,

where χ2
ν (λ) denotes a non-central χ2 random variable with ν degrees of freedom

and non-centrality λ. Furthermore, we set

λ(t, S̄) := S̄


ϕ(t)
, x(t) := K/S0

T


ϕ(t)
,

with


ϕ(t) := ϕ(T )− ϕ(t).
The next computation relies on (13.1.3), and we point out that this particular identity
is important in the derivation of derivative prices under the MMM. The following
presentation follows Hulley and Platen (2012) closely:

E

(
S̄
δ∗
t

S̄
δ∗
T

∣
∣
∣
∣At
)

=E
(
S̄
δ∗
t /
ϕ(t)

S̄
δ∗
T /
ϕ(t)

∣
∣
∣
∣At
)

=E
(

λ(t, S̄
δ∗
t )

χ2
4 (λ(t, S̄

δ∗
t ))

∣
∣
∣
∣At
)

= 1 − exp

{

−λ(t, S̄
δ∗
t )

2

}

.

The candidate Radon-Nikodym derivative process Λ= {Λt, t ≥ 0} is given by

Λt = S̄
δ∗
0

S̄
δ∗
t

.
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Hence

E(ΛT |A0)=E
(
S̄
δ∗
0

S̄
δ∗
T

∣
∣
∣
∣A0

)

= 1 − exp

{

−λ(t, S̄
δ∗
0 )

2

}

< 1,

and we conclude that an equivalent martingale measure does not exist. Conse-
quently, risk neutral pricing is not applicable, but real world pricing is.

Now, we turn to call options. In particular, we recall that

S
δ∗
T = S0

T S̄
δ∗
T = S0

T Xϕ(T ).

We employ the real world pricing formula to obtain

CT,K(t) := Sδ∗t E
(
(S
δ∗
T −K)+
S
δ∗
T

∣
∣
∣
∣At
)

.

As in Sect. 2.3, we find it convenient to split the problem of pricing a call option
into the computation of an asset-or-nothing binary and a bond-or-nothing binary.
We firstly compute the asset-or-nothing binary:

AT,K(t)= Sδ∗t E
(
S
δ∗
T

S
δ∗
T

1
S
δ∗
T >K

∣
∣
∣
∣At
)

= Sδ∗t E(1S0
T Xϕ(T )>K

|At )

= Sδ∗t E(1χ2
4 (λ(t,S̄

δ∗
t ))>x(t)

|At )

= Sδ∗t P
(
χ2

4

(
λ
(
t, S̄

δ∗
t

))
> x(t)

∣
∣At
)

= Sδ∗t
(
1 −Ψ (x(t);4, λ

(
t, S̄

δ∗
t

)))
.

Similarly, we compute the bond-or-nothing binary:

BT,K(t)= Sδ∗t E
(
K

S
δ∗
T

1
S
δ∗
T >K

∣
∣
∣
∣At
)

=KE
(
S
δ∗
t

S
δ∗
T

1
S
δ∗
T >K

∣
∣
∣
∣At
)

=K exp
{−r(T − t)}E

(
S̄
δ∗
t

S̄
δ∗
T

1
S̄
δ∗
T >K/S

0
T

∣
∣
∣
∣At
)

=K exp
{−r(T − t)}E

(
λ(t, S̄

δ∗
t )

χ2
4 (λ(t, S̄

δ∗
t ))

1
χ2

4 (λ(t,S̄
δ∗
t ))>x(t)

∣
∣
∣
∣At
)

=K exp
{−r(T − t)}P (χ2

0

(
λ
(
t, S̄

δ∗
t

))
> x(t)

)

=K exp
{−r(T − t)}(1 −Ψ (x(t);0, λ

(
t, S̄

δ∗
t

)))
,
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Fig. 3.3.11 Implied
volatilities for fair European
call prices under the MMM

where we used (13.1.2). Combining the asset-or-nothing binary and the bond-or-
nothing binary, we arrive at the price of a European call option:

cT ,K(t)= Sδ∗t
(
1 −Ψ (x(t);4, λ

(
t, S̄

δ∗
t

)))

−K exp
{−r(T − t)}(1 −Ψ (x(t);0, λ

(
t, S̄

δ∗
t

)))
.

In Fig. 3.3.11, we show an implied volatility surface for European call options on
the GOP under the MMM. Note that the short rate has here to be adjusted for the
given maturity according to the fair zero coupon bond price, see e.g. Platen and
Heath (2010).

Using the same technique, we arrive at the price of a European put option,

pT,K(t)= Sδ∗t E
(
(K − Sδ∗T )+

S
δ∗
T

∣
∣
∣
∣At
)

=K exp
{−r(T − t)}

(

Ψ
(
x(t);0, λ

(
t, S̄

δ∗
t

))− exp

{

−1

2
λ
(
t, S̄

δ∗
t

)
})

− Sδ∗t Ψ
(
x(t);4, λ

(
t, S̄

δ∗
t

))
.

It is easily checked that the European call price, the European put price and the zero
coupon bond satisfy the well-known put-call parity,

pT,K(t)= cT ,K(t)− Sδ∗t +KPT (t).
Note that in this put-call parity relation we use the fair zero coupon bond.

We now focus on binary options on an index, i.e. derivatives which pay off a
fixed amount in the event that the index exceeds a particular level K at maturity.
The real world pricing formula (1.3.19) yields the following formula for the price
of a binary European call option, which recovers the result from Proposition 5.16
in Hulley (2009):
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BCT,K(t)= Sδ∗t E
(

1
S
δ∗
T >K

1

S
δ∗
T

∣
∣
∣
∣At
)

= Sδ∗t E
(

1S0
T Xϕ(T )>K

1

S0
T Xϕ(T )

∣
∣
∣
∣At
)

= exp
{−r(T − t)}E

(

1
χ2

4 (λ(t,S̄
δ∗
t ))>x(t)

λ(t, S̄
δ∗
t )

χ2
4 (λ(t, S̄

δ∗
t ))

∣
∣
∣
∣At
)

= exp
{−r(T − t)}(1 −Ψ (x(t),0, λ(t, S̄δ∗t

)))
.

Similarly, we can obtain the price of a binary European put option, which recovers
the result from Proposition 5.17 in Hulley (2009):

BPT,K(t)= Sδ∗t E
(

1
S
δ∗
T ≤K

1

S
δ∗
T

∣
∣
∣
∣At
)

= exp
{−r(T − t)}

(

Ψ
(
x(t);0, λ

(
t, S̄

δ∗
t

))− exp

{

−1

2
λ
(
t, S̄

δ∗
t

)
})

.

Finally, we remark that the binary European call and the binary European put option
sum up to a zero coupon bond:

BCT,K(t)+BPT,K(t)= PT (t).

3.3.3 Rebates and Barrier Options Under the MMM

We now discuss the pricing of some path-dependent options, in particular rebates
and barrier options. The presentation is based on Hulley (2009), see also Hulley and
Platen (2008). It uses the theory of time-homogeneous scalar diffusions, which can
be found e.g. in Borodin and Salminen (2002), Chap. 2, and Rogers et al. (2000),
Sect. V.7. The techniques differ from the ones previously discussed in this book.
Hence we focus on presenting the results in this subsection and present a brief in-
troduction to this theory in Chap. 16. We remark though that when dealing with
one-dimensional diffusions, this theory is powerful and can generate tractable solu-
tions to problems arising in finance and elsewhere, as we now demonstrate.

As in Sect. 2.3, we study a rebate written on a market index, again interpreted as
the GOP. We recall that a rebate pays one unit of the domestic currency as soon as the
index hits a certain level, should this occur before a contracted expiry date, T > 0.
Again the trigger level is assumed to be a deterministic barrier, Zt := z exp{rt}, for
some z > 0. As demonstrated in Sect. 2.3, the valuation of rebates is a study of
suitable hitting times, which we now define:

σz,t := inf
{
u > 0: Sδ∗t+u = Zt+u

}

and

τz := inf{u > 0: Xu = z},
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where Sδ∗ denotes the GOP and X the squared Bessel process of dimension four.
For rebates and barrier options, we find it convenient to let X be a squared Bessel
process of dimension four, started at exp{−rt}Sδ∗t . Consequently,

S̄
δ∗
t+u

d=Xϕt (u),
for u≥ 0, and we have

σz,t = inf{u > 0: Xϕt (u) = z},
where we use the notation

ϕt (u)= ϕ(u+ t)− ϕ(t)= α

4η
exp{ηt}(exp{ηu} − 1

)
.

This allows us to realize the following equality in distribution

σz,t = inf{u > 0: Xϕt (u) = z} d= ϕ−1
t (τz)=

1

η
ln

(

1 + 4η

α
exp{−ηt}τz

)

.

We can now easily compute the price of a rebate under the MMM. From the real
world pricing formula, (1.3.19), we obtain,

R∞,z(t)= Sδ∗t E
(

1

S
δ∗
t+σz,t

∣
∣
∣
∣At
)

= exp{−rt}Sδ∗t
z

E
(
exp{−rσz,t }

∣
∣At
)

= exp{−rt}Sδ∗t
z

E
(
exp
{−rϕ−1

t (τz)
} ∣
∣At
)

= exp{−rt}Sδ∗t
z

E

((

1 + 4η

α
exp{−ηt}τz

)−r/η)

=

⎧
⎪⎨

⎪⎩

x
z

1
Γ (r/η)

∫∞
0 e−ssr/η−1 ψ4η/αe−ηt s (x)

ψ4η/αe−ηt s (z)
ds for x ≤ z

x
z

1
Γ (r/η)

∫∞
0 e−ssr/η−1 φ4η/αe−ηt s (x)

φ4η/αe−ηt s (z)
ds for x ≥ z,

for all t ≥ 0, where we used Proposition 16.3.3 and x = exp{−rt}Sδ∗t . The formula
employs the functions ψ and φ, which are given by

ψα(x)= x 2−δ
4 I δ−2

2
(
√

2αx ), (3.3.11)

where δ refers to the dimension of the squared Bessel process under consideration,
in this case δ = 4. Also, we have

φα(x)= x 2−δ
4 Kδ−2

2
(
√

2αx ), (3.3.12)

where α > 0, x ≥ 0, and Iν(·) and Kν(·) denote the modified Bessel functions of
the first and second kind, respectively. The functions ψα(·) and φα(·) arise naturally
when studying one-dimensional diffusions, they are related to the Laplace trans-
form of the transition density of the diffusion under consideration, in this case the
squared Bessel process of dimension four. Clearly, pricing a rebate with T = ∞
necessarily involves a one-dimensional integration, which can be performed using
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the techniques to be described in Chap. 12. The change of variables exp{−s} �→ u

turns this expression into an integral over a bounded interval, which can facilitate
the computation from a numerical point of view,

R∞,z(t)=

⎧
⎪⎨

⎪⎩

x
z

1
Γ (r/η)

∫ 1
0 (− lnu)r/η−1 ψ−4η/αe−ηt lnu(x)

ψ−4η/αe−ηt lnu(z)
du for x ≤ z

x
z

1
Γ (r/η)

∫ 1
0 (− lnu)r/η−1 φ−4η/αe−ηt lnu(x)

φ−4η/αe−ηt lnu(z)
du for x ≥ z,

where x = exp{−rt}Sδ∗t .
We now turn to a rebate with finite maturity T <∞. Computing this expression,

the Laplace transform in Eq. (16.3.11) in Chap. 16 is used:

RT,z(t)= Sδ∗t E
(

1t+σz,t≤T
S
δ∗
t+σz,t

∣
∣
∣
∣At
)

= e−rtSδ∗t
z

E
(
1σz,t≤T−t e−rσz,t

∣
∣At
)

= e−rtSδ∗t
z

E
(
1
ϕ−1
t (τz)≤T−t e

−rϕ−1
t (τz)

∣
∣At
)

= e−rtSδ∗t
z

E

(

1τz≤ϕ(T−t)
(

1 + 4η

α
exp{−ηt}τz

)−r/η ∣∣
∣
∣At
)

.

We now compute the Laplace transform of the price of the rebate with respect to the
transformed time to maturity

Lβ
(
RT,z(t)

)=

⎧
⎪⎨

⎪⎩

x
z

1
βΓ (r/η)

∫∞
0 e−ssr/η−1 ψβ+4η/αe−ηt s (x)

ψβ+4η/αe−ηt s (z)
ds for x ≤ z

x
z

1
βΓ (r/η)

∫∞
0 e−ssr/η−1 φβ+4η/αe−ηt s (x)

φβ+4η/αe−ηt s (z)
ds for x ≥ z

(3.3.13)

for all β > 0, where we used Proposition 16.3.3 and x = e−rtSδ∗t . Recall thatψα was
defined in (3.3.11) and φα in (3.3.12). Pricing a finite maturity rebate involves two
numerical procedures: the integral needs to be evaluated, e.g. using the techniques
from Chap. 12, and consequently the Laplace transform needs to be inverted, e.g.
using the methodology from Sect. 13.5. For the numerical integration, performing a
change of variables, e−s �→ u allows us to write

Lβ
(
RT,z(t)

)=

⎧
⎪⎨

⎪⎩

x
z

1
βΓ (r/η)

∫ 1
0 (− lnu)r/η−1 −ψβ+4η/αe−ηt lnu(x)

−ψβ+4η/αe−ηt lnu(z)
du for x ≤ z

x
z

1
βΓ (r/η)

∫ 1
0 (− lnu)r/η−1 −φβ+4η/αe−ηt lnu(x)

−φβ+4η/αe−ηt lnu(z)
du for x ≥ z.

In Fig. 3.3.12 we show the surface of the pricing function R10,50(·) for a rebate with
maturity T = 10 years and reference level z= 50, α = 1, η= 0.05 and r = 0.04, as
a function of t and Sδ∗t .

We take the same approach to a barrier option as in Sect. 2.3 and recall
Lemma 2.1.9, which allows us to compute q̃z(·, ·, ·), the transition density of X
killed at z with respect to the speed measure. For barrier options under the MMM,
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Fig. 3.3.12 The rebate
pricing function R10,50(·) as a
function of t and Sδ∗t

we find it useful to work with the Laplace transform G̃zα(x, y), the Laplace trans-
form of q̃z(t, x, y) with respect to time,

G̃zα(x, y) :=
∫ ∞

0
e−αt q̃z(t, x, y) dt.

We point out that in Chap. 16, we provide explicit formulas for G̃α(x, y), which we
employ here, see Eq. (16.3.6) in Chap. 16. In particular, we focus on a European
call with strike K on an index, which is knocked out if the index breaches the same
deterministic barrier that was considered in the context of rebates.

CoutT ,K(t)= Sδ∗t E
(

1t+σz,t>T
(S
δ∗
T −K)+
S
δ∗
T

∣
∣
∣
∣At
)

= Sδ∗t E
(

1σz,t>T−t
(

1 − K

S
δ∗
T

)+ ∣∣
∣
∣At
)

= Sδ∗t E
(

1τz>ϕt (T−t)
(

1 − exp{−rT }K
Xϕt (T−t)

)+ ∣∣
∣
∣At
)

= Sδ∗t
∫ ∞

e−rT K

(

1 − e−rT K
y

)

q̃z
(
ϕt (T − t), e−rtSδ∗t , y

)
m(y)dy

= S
δ∗
t

2

∫ ∞

κ

(y − κ)q̃z
(
ϕt (T − t), x, y)dy,

where we used x = exp{−rt}Sδ∗t , κ = exp{−rT }K . In this computation, we used
the fact that the speed measure of a squared Bessel process of dimension four sat-
isfies m(y)= y

2 . We now compute the Laplace transform with respect to the trans-
formed time to maturity, which yields,
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Lβ
(
Cout
T ,K(t)

)=
∫ ∞

0
e−βu

(
S
δ∗
t

2

∫ ∞

κ

(y − κ)q̃z(u, x, y) dy
)

du (3.3.14)

= S
δ∗
t

2

∫ ∞

κ

(y − κ)Lβ
(
q̃z(u, x, y)

)
dy

= S
δ∗
t

2

∫ ∞

κ

(y − κ)G̃zβ(x, y) dy, (3.3.15)

for all β > 0. As in Sect. 2.3, we find it convenient to analyze two cases separately:
the up-and-out call, where Sδ∗t ≤ Zt ⇐⇒ x ≤ z and the down-and-out call, for
which Sδ∗t ≥ Zt ⇐⇒ x ≥ z. It is clear from Eq. (16.3.6) in Chap. 16, that x ≤ z
implies that G̃zβ(x, y)= 0 for all y ≥ z. Hence Eq. (3.3.14) yields

Lβ
(
CoutT ,K(t)

)= Sδ∗t
∫ κ∨x

κ

(y − κ)ψβ(y)
(

φβ(x)− φβ(z)

ψβ(z)
ψβ(x)

)

dy

+ Sδ∗t
∫ κ∨z

κ∨x
(y − κ)ψβ(x)

(

φβ(y)− φβ(z)

ψβ(z)
ψβ(y)

)

dy,

if x ≤ z. We point out that since wβ = 1/2 for the squared Bessel process of di-
mension four, the factor 1/2 from (3.3.14) has disappeared. We now focus on the
down-and-out call,

Lβ
(
CoutT ,K(t)

)= Sδ∗t
∫ κ∨x

κ∨z
(y − κ)

(

ψβ(y)− ψβ(z)

φβ(z)
φβ(y)

)

φβ(x) dy

+ Sδ∗t
∫ ∞

κ∨x
(y − κ)

(

ψβ(x)− ψβ(z)

φβ(z)
φβ(x)

)

φβ(y) dy,

for x ≥ z. Again, the factor 1
2 disappears, due to the fact that wβ = 1

2 for squared
Bessel processes of dimension four.

Finally, we point out that pricing the barrier option again involves two numer-
ical procedures: firstly, the integrals need to be computed numerically, e.g. using
the techniques from Chap. 12, and subsequently the Laplace transform needs to be
inverted, e.g. using the methods from Sect. 13.5.

3.3.4 Exchange Options

We now turn to exchange options, which entitle the owner to exchange one asset
for another. In particular, we extend the financial market discussed in this section,
which so far consists of the numéraire portfolio and the savings account, by adding
two risky securities, whose price processes are denoted by Sa and Sb . This problem
is interesting for two reasons: firstly because the dimensionality of the problem is
two and not one, as for the other contracts considered in this section, and secondly,
because the closed-form solution is expressed in terms of the so-called extended
doubly non-central beta distribution, see Sect. 13.3 in Chap. 13. Random variables
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following the doubly non-central beta distribution arise when one considers ratios
of two non-central χ2-distributed random variables. Moreover, in Hulley (2009)
the doubly non-central beta distribution was extended to also allow for one of the
non-central χ2-distributed random variables to have zero degrees of freedom. This
extension is an important contribution, since non-central χ2-random variables with
zero degrees of freedom naturally arise in the context of the MMM.

In particular, for ν > 0 and λ1, λ2 > 0, we define

β0,ν(λ1, λ2) := χ2
0 (λ1)

χ2
0 (λ1)+ χ2

ν (λ2)
, (3.3.16)

where β0,ν(λ1, λ2) is an extended non-central beta distributed random variable with
degrees of freedom 0 and ν and non-centrality parameters λ1 and λ2. Furthermore,
χ2
ν (λ) denotes a non-central χ2-distributed random variable with ν ≥ 0 degrees of

freedom and non-centrality parameter λ. An algorithm to compute the extended non-
central beta distribution was presented in Hulley (2009) and is recalled in Sect. 13.4.

We now discuss the financial market in more detail. Having introduced the addi-
tional risky securities Sa and Sb , we recall that the market index is the numéraire
portfolio under the assumptions of the MMM. Hence the benchmarked prices
Ŝa := Sa/Sδ∗ and Ŝb := Sb/Sδ∗ of the two additional securities must be super-
martingales. From the pricing of the zero coupon bond performed in this section,
it is known that an inverted squared Bessel process of dimension four is a super-
martingale, hence we may model the benchmarked securities as follows:

Ŝa := 1

Xaϕa
, and Ŝb := 1

Xb
ϕb

,

where Xa and Xb are independent squared Bessel processes of dimension four,
which we assume to be given. We use deterministic time-transforms ϕa , ϕb , which,
as in Hulley (2009), we do not specify further, and we refer to Platen and Heath
(2010), Sect. 14.4 for this approach to modeling the prices of two risky assets Sa

and Sb .
The payoff of the exchange option is given by (SaT − SbT )+. Consequently, the

real world pricing formula yields

M(t)= Sδ∗t E
(
(SaT − SbT )+

S
δ∗
T

∣
∣
∣
∣At
)

.

We introduce some auxiliary notation,

λa
(
t, S

δ∗
t , S

a
t

) := S
δ∗
t /S

a
t


ϕa(t)
,

λb
(
t, S

δ∗
t , S

b
t

) := S
δ∗
t /S

b
t


ϕb(t)
,

where as before


ϕa(t) := ϕa(T )− ϕa(t),

ϕb(t) := ϕb(T )− ϕb(t).
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We recall that χ2
ν (λ) denotes a non-central χ2-distributed random variable with ν

degrees of freedom and non-centrality parameter λ and we use p(·, ν, λ) to de-
note the corresponding probability density function, and β0,ν(λ1, λ2) denotes the
extended doubly non-central beta distributed random variable with degrees of free-
dom 0 and ν and non-centrality parameters λ1 and λ2. Now we price the exchange
option, where we closely follow Proposition 5.18 in Hulley (2009):

M(t)= Sδ∗t E
(
(SaT − SbT )+

S
δ∗
T

∣
∣
∣
∣At
)

= Sδ∗t E
(
1SaT≥SbT Ŝ

a
T

∣
∣At
)

− Sδ∗t E
(
1SaT≥SbT Ŝ

b
T

∣
∣At
)

= Sat E
(

1
ŜaT≥ŜbT

ŜaT

Ŝat

∣
∣
∣
∣At
)

− Sbt E
(

1
ŜaT≥ŜbT

ŜbT

Ŝbt

∣
∣
∣
∣At
)

= Sat E
(

1Xa
ϕa(T )

≤Xb
ϕb(T )

S
δ∗
t /S

a
t

Xaϕa(T )

∣
∣
∣
∣At
)

− Sbt E
(

1Xa
ϕa(T )

≤Xb
ϕb(T )

S
δ∗
t /S

b
t

Xb
ϕb(T )

∣
∣
∣
∣At
)

= Sat E
(

1

ϕa(t)χ

2
4 (λ(t,S

δ∗
t ,S

a
t ))≤
ϕb(t)χ2

4 (λb(t,S
δ∗
t ,S

b
t ))

λa(t, S
δ∗
t , S

a
t )

χ2
4 (λa(t, S

δ∗
t , S

a
t ))

∣
∣
∣
∣At
)

− Sbt
×E
(

1

ϕa(t)χ2

a (λa(t,S
δ∗
t ,S

a
t ))≤
ϕb(t)χ2

4 (λb(t,S
δ∗
t ,S

b
t ))

λb(t, S
δ∗
t , S

b
t )

χ2
4 (λb(t, S

δ∗
t , S

b
t ))

∣
∣
∣
∣At
)

= Sat
∫ ∞

0
p
(
ζ,4, λb

(
t, S

δ∗
t , S

b
t

))

×
∫ 
ϕb(t)


ϕa(t)
ζ

0

λa(t, S
δ∗
t , S

a
t )

ξ
p
(
ξ,4, λa

(
t, S

δ∗
t , S

a
t

))
dξ dζ

− Sbt
∫ ∞

0

λb(t, S
δ∗
t , S

b
t )

ζ
p
(
ζ,4, λb

(
t, S

δ∗
t , S

b
t

))

×
∫ 
ϕb(t)


ϕa(t)
ζ

0
p
(
ξ,4, λa

(
t, S

δ∗
t , S

a
t

))
dξ dζ.

We now use (13.1.2) to obtain

M(t)= Sat
∫ ∞

0
p
(
ζ,4, λb

(
t, S

δ∗
t , S

b
t

))
∫ 
ϕb(t)


ϕa(t)
ζ

0
p(ξ,0, λa

(
t, S

δ∗
t , S

a
t

)
dξ dζ
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− Sbt
∫ ∞

0
p
(
ζ,0, λb

(
t, S

δ∗
t , S

b
t

))
∫ 
ϕb(t)


ϕa(t)
ζ

0
p
(
ξ,4, λa

(
t, S

δ∗
t , S

a
t

))
dξ dζ

= Sat P
(

0< χ2
0

(
λa
(
t, S

δ∗
t , S

a
t

))≤ 
ϕb(t)


ϕa(t)
χ2

4

(
λb
(
t, S

δ∗
t , S

b
t

))
)

− Sbt P
(

χ2
4

(
λa
(
t, S

δ∗
t , S

a
t

))≤ 
ϕb(t)


ϕa(t)
χ2

0

(
λb
(
t, S

δ∗
t , S

b
t

))
)

= Sat P
(

0< β0,4
(
λa
(
t, S

δ∗
t , S

a
t

)
, λb
(
t, S

δ∗
t , S

b
t

))≤ 
ϕb(t)


ϕa(t)+
ϕb(t)
)

− Sbt P
(

β0,4
(
λb
(
t, S

δ∗
t , S

b
t

)
, λa
(
t, S

δ∗
t , S

a
t

))
>


ϕa(t)


ϕa(t)+
ϕb(t)
)

.

3.3.5 Transformed Constant Elasticity of Variance Model

In this subsection, we discuss the transformed constant elasticity of variance
(TCEV) model, which was introduced in Baldeaux et al. (2011c) as a generaliza-
tion of the MMM. The TCEV was motivated by the modified constant elasticity of
variance model, see Chap. 12 in Platen and Heath (2010), Heath and Platen (2002),
and also Cox (1996). In particular, on a filtered probability space (Ω,A,A,P ) with
the filtration A= (At )t≥0 satisfying the usual conditions, see Karatzas and Shreve
(1991), we introduce a Brownian motion W = {Wt, t ≥ 0}. The savings account
discounted GOP S̄δ∗t satisfies the following SDE:

dS̄
δ∗
t = (αδ∗t

)2−2a(
S̄
δ∗
t

)2a−1
dt + (αδ∗t

)1−a(
S̄
δ∗
t

)a
dWt , (3.3.17)

where S̄δ∗0 > 0 is the initial value, and as for the MMM, αδ∗t satisfies

α
δ∗
t = αδ∗0 exp{ηt},

where αδ∗0 > 0 and η > 0. We observe the following:

• for a = 1, we recover geometric Brownian motion;
• for a = 1

2 , we recover the MMM.

The second observation motivates us to look for a connection between the TCEV
model and the squared Bessel process, which was also observed in Sect. 3.1 for the
CEV process. The advantage of such a link is that we can exploit the tractability of
the squared Bessel process. In the following, we focus on the case a ∈ (0,1), and
recall Proposition 8.1 from Baldeaux et al. (2011c).

Proposition 3.3.1 The process S̄δ∗ = {S̄δ∗t , t ≥ 0} satisfies the following equality in
distribution:

S̄
δ∗
t

d=X
1

2−2a
ϕ(t)

,
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where X is a squared Bessel process of dimension ν = 3−2a
1−a and

ϕ(t)= (1 − a)(αδ∗0 )
2−2ac2(exp{2(1 − a)ηt} − 1)

2η
.

In Baldeaux et al. (2011c), this model was parameterized via non-parametric
kernel based estimation techniques, see e.g. Florens-Zmirou (1993), Jacod (2000),
Soulier (1998). We now turn to derivatives pricing.

3.3.6 Standard European Options on the Index Under the TCEV
Model

In this subsection, we follow Baldeaux et al. (2011c) and price standard derivatives
on a market index, which we interpret as the GOP. As in the previous subsection,
we point out that even using a constant short rate process r = {rt , t ≥ 0}, where
rt = r0, t ≥ 0, and r0 is a fixed constant, zero coupon bonds are index derivatives
under the benchmark approach and typically stochastic. Furthermore, the price of a
zero coupon bond can be used to confirm if an equivalent martingale measure ex-
ists or not. Using a constant short rate, and setting S0

t = exp{rt}, we now compute
the price of a zero coupon bond. We alert the reader to Lemma 13.1.1, where use-
ful identities pertaining to the χ2-distribution are presented. Using these relations,
tractable expressions for standard derivatives under the TCEV model are easily de-
rived, where we employ the notation


ϕ(t)= ϕ(T )− ϕ(t), λ
(
t, S̄

δ∗
t

)= (S̄
δ∗
t )

2(1−a)


ϕ(t)
,

x(t)= (K/S0
t )

2(1−a)


ϕ(t)
,

and use p(·, ν, λ) to denote the probability density function of a non-central χ2-
distributed random variable with ν degrees of freedom and non-centrality param-
eter λ and Ψ (·, ν, λ) denotes the corresponding probability distribution function.
From the real world pricing formula (1.3.19), we have, where δ = 3−2a

1−a denotes the
dimensionality of the squared Bessel process,

PT (t)= Sδ∗t E
(

1

S
δ∗
T

∣
∣
∣
∣At
)

= S0
t S̄
δ∗
t

S0
T

E

(
1

X
1

2−2a
ϕ(T )

∣
∣
∣
∣At
)

= S0
t S̄
δ∗
t

S0
T

∫ ∞

0

1

(
ϕ(t)y)
1

2−2a

p
(
y, ν,λ

(
t, S̄

δ∗
t

))
dy

= S0
t

S0
T

∫ ∞

0

(
λ(t, S̄

δ∗
t )

y

) 1
2−2a

p
(
y, ν,λ

(
t, S̄

δ∗
t

))
dy.
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We now use (13.1.8) to conclude,

PT (t)= S0
t

S0
T

∫ ∞

0
p
(
λ
(
t, S̄

δ∗
t

)
, ν, y

)
dy

= S0
t

S0
T

Ψ

(

λ
(
t, S̄

δ∗
t

)
,

1

1 − a ,0
)

,

where the last equality used (13.1.9). As in the previous subsection discussing the
MMM, the above calculation allows us to confirm that an equivalent martingale
measure does not exist for the TCEV model. The candidate Radon-Nikodym deriva-
tive process Λ= {Λt, t ≥ 0} is again given by

Λt = S̄
δ∗
0

S̄
δ∗
t

and we compute

E(ΛT |A0)=E
(
S̄
δ∗
0

S̄
δ∗
T

∣
∣
∣
∣A0

)

= Ψ
(

λ
(
t, S̄

δ∗
t

)
,

1

1 − a ,0
)

< 1.

This calculation allows us to conclude that an equivalent martingale measure does
not exist and that risk neutral pricing is not applicable. We hence continue to employ
real world pricing, now turning to call options.

The real world pricing formula (1.3.19) yields the following price for a call op-
tion:

cT ,K(t)= Sδ∗t E
(
(S
δ∗
T −K)+
S
δ∗
T

∣
∣
∣
∣At
)

= Sδ∗t E
((

1 − K

S
δ∗
T

)+ ∣∣
∣
∣At
)

= Sδ∗t
∫ ∞

x(t)

(

1 −
(
x(t)

y

) 1
2−2a
)

p
(
y, ν,λ

(
t, S̄

δ∗
t

))
dy

= Sδ∗t
(
1 −Ψ (x(t), ν, λ(t, S̄δ∗t

)))

− Sδ∗t
∫ ∞

x(t)

(
x(t)

y

) 1
2−2a

p
(
y, ν,λ

(
t, S̄

δ∗
t

))
dy.

We now compute,

S
δ∗
t

∫ ∞

x(t)

(
x(t)

y

) 1
2−2a

p
(
y, ν,λ

(
t, S̄

δ∗
t

))
dy

= KBt

BT

∫ ∞

x(t)

(
λ(t, S̄

δ∗
t )

y

) 1
2−2a

p
(
y, ν,λ

(
t, S̄

δ∗
t

))
dy

= KBt

BT
Ψ

(

λ
(
t, S̄

δ∗
t

)
,

1

1 − a , x(t)
)

,
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where we used (13.1.8) and (13.1.10). Hence we arrive at

cT ,K(t)= Sδ∗t
(
1 −Ψ (x(t), ν, λ(t, S̄δ∗t

)))− KS0
t

S0
T

Ψ

(

λ
(
t, S̄

δ∗
t

)
,

1

1 − a , x(t)
)

.

We now price put options:

pT,K(t)= Sδ∗t E
(
(K − Sδ∗T )+

S
δ∗
T

∣
∣
∣
∣At
)

= Sδ∗t E
((

K

S
δ∗
T

− 1

)+ ∣∣
∣
∣At
)

= Sδ∗t
∫ x(t)

0

(
x(t)

y

) 1
2−2a

p
(
y, ν,λ

(
t, S̄

δ∗
t

))
dy

− Sδ∗t
∫ x(t)

0
p
(
y, ν,λ

(
t, S̄

δ∗
t

))
dy

= Sδ∗t
(

x(t)

λ(t, S̄
δ∗
t )

) 1
2−2a
∫ x(t)

0

(
λ(t, S̄

δ∗
t )

y

) 1
2−2a

p
(
y, ν,λ

(
t, S̄

δ∗
t

))
dy

− Sδ∗t
∫ x(t)

0
p
(
y, ν,λ

(
t, S̄

δ∗
t

))
dy

= KS0
t

S0
T

(

Ψ

(

λ
(
t, S̄

δ∗
t

)
,

1

1 − a ,0
)

−Ψ
(

λ
(
t, S̄

δ∗
t

)
,

1

1 − a , x(t)
))

− Sδ∗t Ψ
(
x(t), ν, λ

(
t, S̄

δ∗
t

))
.

The computed prices of the zero coupon bond, the call option and the put option
satisfy the put-call parity,

pT,K(t)= cT ,K(t)− Sδ∗t +KPT (t).
We also look at binary call and put options. From the real world pricing formula
(1.3.19), we obtain the following price for a binary call option

BCT ,K(t)= Sδ∗t E
(

1
S
δ∗
T >K

1

S
δ∗
T

∣
∣
∣
∣At
)

= S0
t

S0
T

E

(

1
X

1
2−2a
ϕ(T )

>K/S0
T

X
1

2−2a
ϕ(t)

X
1

2−2a
ϕ(T )

∣
∣
∣
∣At
)

= S0
t

S0
T

∫ ∞

x(t)

(
λ(t, S̄

δ∗
t )

y

) 1
2−2a

p
(
y, ν,λ

(
t, S̄

δ∗
t

))
dy

= S0
t

S0
T

∫ ∞

x(t)

p
(
λ
(
t, S̄

δ∗
t

)
, ν, y

)
dy

= exp
{−r(T − t)}Ψ

(

λ
(
t, S̄

δ∗
t

)
,

1

1 − a , x(t)
)

,
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where we used (13.1.8) and (13.1.10). Regarding binary put options, we compute

BPT ,K(t)= Sδ∗t E
(

1
S
δ∗
T ≤K

1

S
δ∗
T

∣
∣
∣
∣At
)

= S0
t

S0
T

E

(

1
X

1
2−2a
ϕ(T )

≤K/S0
T

X
1

2−2a
ϕ(t)

X
1

2−2a
ϕ(T )

∣
∣
∣
∣At
)

= S0
t

S0
T

∫ x(t)

0

(
λ(t, S̄

δ∗
t )

y

) 1
2−2a

p
(
y, ν,λ

(
t, S̄

δ∗
t

))
dy

= S0
t

S0
T

∫ x(t)

0
p
(
λ
(
t, S̄

δ∗
t

)
, ν, y

)
dy

= S0
t

S0
T

(

Ψ

(

λ
(
t, S̄

δ∗
t

)
,

1

1 − a ,0
)

−Ψ
(

λ
(
t, S̄

δ∗
t

)
,

1

1 − a , x(t)
))

.

We again confirm that

BCT,K(t)+BPT,K(t)= PT (t),
as should be expected.

3.3.7 Rebates and Barrier Options Under the TCEV Model

We now consider path-dependent options under the TCEV model, namely rebates
and barrier options. The aim of this subsection is to show that the link with the
squared Bessel process can again be exploited to price these options.

As in the preceding subsection, we recall that a rebate on a market index, inter-
preted as the GOP, pays one unit of the domestic currency as soon as the index hits
a certain level, should this occur before T > 0. The trigger is, as before, assumed to
be a deterministic barrier, Zt := z exp{rt}, z > 0. We, therefore, define two hitting
times:

σz,t = inf
{
u > 0: Sδ∗t+u = Zt+u

}

and

τz = inf{u > 0: Xu = z},
where Sδ∗ denotes the GOP and X is a squared Bessel process of dimension δ =
3−2a
1−a . As for the MMM, we find it convenient to introduce X as a squared Bessel

process of dimension δ, started at x̃ = x2−2a , where x = exp{−rt}Sδ∗t . Since

S̄
δ∗
t+u

d=X
1

2−2a
ϕt (u)

,
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we have

σz,t = inf
{
u > 0: Sδ∗t+u = Zt+u

}

= inf{Xϕt (u) = z̃},
where z̃= z2−2a and

ϕt (u)= ϕ(u+ t)− ϕ(t)
= (1 − a)(αδ∗0 )

2−2ac2

2η
exp
{
2(1 − a)ηt}(exp

{
2(1 − a)ηu}− 1

)

= α̃0

4η
exp{η̃t}(exp{η̃u} − 1

)
,

where α̃0 and η̃ are defined in the last equality and introduced for convenience. We
hence obtain

σz,t = inf{u > 0: Xϕt (u) = z̃} d= ϕ−1
t (τz̃)=

1

η̃
ln

(
4η

α̃0
exp{−η̃t}τz̃ + 1

)

.

The real world pricing formula (1.3.19) yields

R∞,z(t)= Sδ∗t E
(

1

S
δ∗
t+σz,t

∣
∣
∣
∣At
)

= Sδ∗t E
(

1

Zt+σz,t

∣
∣
∣
∣At
)

= S
δ∗
t exp{−rt}

z
E
(
exp{−rσz,t }

∣
∣At
)

= x

z
E
(
exp
{−rϕ−1

t (τz̃)
} ∣
∣At
)

= x

z
E

((
4η

α̃0
exp{−η̃t}τz̃ + 1

)−r/η̃ ∣∣
∣
∣At
)

=

⎧
⎪⎨

⎪⎩

x
zΓ ( r

η̃
)

∫∞
0 exp{−s}sr/η̃−1 ψ4η/α̃0 exp{−η̃t}s (x̃)

ψ4η/α̃0 exp{−η̃t}s (z̃) ds for x̃ ≤ z̃
x

zΓ ( r
η̃
)

∫∞
0 exp{−s}sr/η̃−1 φ4η/α̃0 exp{−η̃t}s (x̃)

φ4η/α̃0 exp{−η̃t}s (z̃) ds for x̃ ≥ z̃,

where we used Proposition 16.3.3, x = Sδ∗t exp{−rt}, x̃ = x2−2a = X0, and z̃ =
z2−2a .

We now study finite maturity rebates. From the real world pricing formula
(1.3.19) it follows

RT,z(t)= Sδ∗t E
(

1t+σz,t≤T
S
δ∗
t+σz,t

∣
∣
∣
∣At
)

= Sδ∗t E
(

1σz,t≤T−t
Zt+σz,t

∣
∣
∣
∣At
)

= x

z
E
(
1σz,t≤T−t exp{−rσz,t }

∣
∣At
)
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= x

z
E
(
1
ϕ−1
t (τz̃)≤T−t exp

{−rϕ−1
t (τz̃)

} ∣∣At
)

= x

z
E

(

1τz̃≤ϕt (T−t)
(

1 + 4η

α̃0
exp{−η̃t}τz̃

)−r/η̃ ∣∣
∣
∣At
)

.

We now compute the Laplace transform of the price, with respect to the transformed
time to maturity, where we employ (16.3.11) from Chap. 16:

Lβ
(
RT,z(t)

)

=

⎧
⎪⎨

⎪⎩

x
zβΓ (r/η̃)

∫∞
0 exp{−s}sr/η̃−1 ψβ+4η/α̃0 exp{−η̃t}s (x̃)

ψβ+4η/α̃0 exp{−η̃t}s (z̃) ds for x̃ ≤ z̃
x

zβΓ (r/η̃)

∫∞
0 exp{−s}sr/η̃−1 φβ+4η/α̃0 exp{−η̃t}s (x̃)

φβ+4η/α̃0 exp{−η̃t}s (z̃) ds for x̃ ≥ z̃,
where x = exp{−rt}Sδ∗t and x̃ = x2−2a =Xϕ(t).

Now we consider barrier options and recall that q̃z(·, ·, ·) denotes the transition
density of X killed at z with respect to the speed measure. The Laplace transform
of q̃z(t, x, y), with respect to t , is denoted by

G̃zα(x, y)=
∫ ∞

0
exp{−αt}q̃z(t, x, y) dt.

We recall that explicit formulas for G̃zα(x, y) are given in Chap. 16, see (16.3.6).

Recalling that x(t)= (K/S0
t )

2(1−a)
ϕt (T−t) , where ϕt (T − t)= ϕ(T )− ϕ(t), we have

CoutT ,K(t)= Sδ∗t E
(

1t+σz,t>T
(S
δ∗
T −K)+
S
δ∗
T

∣
∣
∣
∣At
)

= Sδ∗t E
(

1σz,t>T−t
(

1 − K

S
δ∗
T

)+ ∣∣
∣
∣At
)

= Sδ∗t E
(

1τz̃>ϕt (T−t)
(

1 − K/S0
T

X
1

2−2a
ϕt (T−t)

)+ ∣∣
∣
∣At
)

= Sδ∗t
∫ ∞

x(t)

(

1 −
(
x(t)

y

) 1
2−2a
)+
q̃z̃
(
ϕt (T − t), x̃, y)m(y)dy,

where m(·) denotes the speed measure of X. For a squared Bessel process with
index ν = δ

2 − 1 �= 0, m(y)= yν/(2|ν|). Hence, one has

Cout
T ,K(t)= Sδ∗t

∫ ∞

x(t)

(
y

1
2−2a − (x(t)) 1

2−2a
) q̃z̃(ϕt (T − t), x̃, y)

2|ν| dy.

As before, we now compute the Laplace transform with respect to the transformed
time to maturity, which yields:

Lβ
(
CoutT ,K(t)

)

=
∫ ∞

0
exp{−βu}

(
S
δ∗
t

2|ν|
∫ ∞

x(t)

(
y

1
2−2a − x 1

2−2a (t)
)
q̃z̃(u, x̃, y) dy

)

du
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= S
δ∗
t

2|ν|
∫ ∞

x(t)

(
y

1
2−2a − x 1

2−2a (t)
)
Lβ
(
q̃z̃(u, x̃, y)

)
dy

= S
δ∗
t

2|ν|
∫ ∞

x(t)

(
y

1
2−2a − x 1

2−2a (t)
)
G̃z̃β(x̃, y) dy, (3.3.18)

for all β > 0. Again, we focus separately on up-and-out calls, where Sδ∗t ≤Zt ⇐⇒
x ≤ z ⇐⇒ x̃ ≤ z̃ and down-and-out calls, where Sδ∗t ≥ Zt ⇐⇒ x ≥ z ⇐⇒
x̃ ≥ z̃. It is clear from Eq. (16.3.6) in Chap. 16, that x̃ ≤ z̃ implies that G̃z̃β(x̃, y)= 0
for y ≥ z̃. Hence

Lβ
(
CoutT ,K(t)

)

= Sδ∗t
∫ x(t)∨x̃

x(t)

(
y

1
2−2a − x 1

2−2a (t)
)
ψβ(y)

(

φβ(x̃)− φβ(z̃)

ψβ(z̃)
ψβ(x̃)

)

dy

+ Sδ∗t
∫ x(t)∨z̃

x(t)∨x̃
(
y

1
2−2a − x 1

2−2a (t)
)
ψβ(x̃)

(

φβ(y)− φβ(z̃)

ψβ(z̃)
ψβ(y)

)

dy

if x ≤ z. We note that wβ = 1/2|ν| for the squared Bessel process of index ν =
δ
2 − 1 �= 0. Hence the factor 1/2|ν| from (3.3.18) disappeared. For the down-and-
out call, one has

Lβ
(
CoutT ,K(t)

)

= Sδ∗t
∫ x(t)∨x̃

x(t)∨z̃
(
y

1
2−2a − x 1

2−2a (t)
)
(

ψβ(y)− ψβ(z̃)

φβ(z̃)
φβ(y)

)

φβ(x̃) dy

+ Sδ∗t
∫ ∞

x(t)∨x̃
(
y

1
2−2a − x 1

2−2a (t)
)
(

ψβ(x̃)− ψβ(z̃)

φβ(z̃)
φβ(x̃)

)

φβ(y) dy,

if x ≥ z. Again, the factor 1/2|ν| from (3.3.18) disappears, since wβ = 1/2|ν| for
the squared Bessel process of index ν = δ

2 − 1 �= 0.

3.3.8 Exchange Options

In this subsection, we study exchange options, which entitle the owner to exchange
one asset for another. As before, we add to the financial market two risky securities,
whose price processes are denoted by Sa and Sb . We recall that the benchmarked
price processes Ŝa := Sa/Sδ∗ and Ŝb := Sb/Sδ∗ must be supermartingales. As dis-
cussed above, in the TCEV model, if Xaϕa is a squared Bessel process of dimension

δ1 = 3−2c1
1−c1

, and Xbϕb is a squared Bessel process of dimension δ2 = 3−2c2
1−c2

, then

Ŝa := 1

(Xaϕa )
1

2−2c1

and Ŝb := 1

(Xbϕb )
1

2−2c2
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are supermartingales, where c1 ∈ (0,1) and c2 ∈ (0,1). Again, ϕa and ϕb denote
deterministic time transforms, which we do not need to specify further, see Hulley
(2009).

The payoff of the exchange option is, as before, given by (SaT − SbT )+, and the
real world pricing formula (1.3.19) yields:

M(t)= Sδ∗t E
(
(SaT − SbT )+

S
δ∗
T

∣
∣
∣
∣At
)

.

We use the notation

λa := λa
(
t, S

δ∗
t , S

a
t

)= (S
δ∗
t /S

a
t )

2−2c1


ϕa(t)
,

λb := λb
(
t, S

δ∗
t , S

b
t

)= (S
δ∗
t /S

b
t )

2−2c2


ϕb(t)
,

where 
ϕk(t) = ϕk(T ) − ϕk(t), k ∈ {a, b}, and we recall that χ2
ν (λ) denotes a

non-central χ2-distributed random variable with ν degrees of freedom and non-
centrality parameter λ and Ψ (·, ν, λ) the corresponding probability distribution
function. Hence

S
δ∗
t E

(
(SaT − SbT )+

S
δ∗
T

∣
∣
∣
∣At
)

= Sδ∗t E
(

1

(Xaϕa(T )
)

1
2−2c1

1SaT≥SbT

∣
∣
∣
∣At
)

− Sδ∗t E
(

1

(Xb
ϕb(T )

)
1

2−2c2

∣
∣
∣
∣At
)

= Sat E
(

1
ŜaT≥ŜbT

(
λa

χ2
δ1
(λa)

) 1
2−2c1

∣
∣
∣
∣At
)

− Sbt E
(

1
ŜaT≥ŜbT

(
λb

χ2
δ2
(λb)

) 1
2−2c2

∣
∣
∣
∣At
)

= Sat E
(

1

ϕa(t)χ

2
δ1
(λa)≤(
ϕb(t)χ2

δ2
(λb))

2−2c1
2−2c2

(
λa

χ2
δ1
(λa)

) 1
2−2c1

∣
∣
∣
∣At
)

− Sbt E
(

1

ϕa(t)χ

2
δ1
(λa)≤(
ϕb(t)χ2

δ2
(λb))

2−2c1
2−2c2

(
λb

χ2
δ2
(λb)

) 1
2−2c2

∣
∣
∣
∣At
)

= Sat
∫ ∞

0
p(ζ, δ2, λb)

∫ (
ϕb(t)ζ )

2−2c1
2−2c2


ϕa(t)

0
p(ξ, δ1, λa)

(
λa

ξ

) 1
2−2c1

dξ dζ

− Sbt
∫ ∞

0
p(ζ, δ2, λb)

(
λb

ζ

) 1
2−2c2

∫ (
ϕb(t)ζ )

2−2c1
2−2c2


ϕa(t)

0
p(ξ, δ1, λa) dξ dζ.
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Regarding the first term, we have

Sat

∫ ∞

0
p(ζ, δ2, λb)

∫ (
ϕb(t)ζ )

2−2c1
2−2c2


ϕa(t)

0
p(ξ, δ1, λa)

(
λa

ξ

) 1
2−2c1

dξ dζ

= Sat
∫ ∞

0
p(ζ, δ2, λb)

∫ (
ϕb(t)ζ )

2−2c1
2−2c2


ϕa(t)

0
p(λa, δ1, ξ) dξ dζ

= Sat
∫ ∞

0
p(ζ, δ2, λb)

(

Ψ (λa, δ1 − 2,0)−Ψ
(

λa, δ1 − 2,
(
ϕb(t)ζ )

2−2c1
2−2c2


ϕa(t)

))

dζ

= Sat
(

Ψ (λa, δ1 − 2,0)− P
(

χ2
δ1−2

(
(
ϕb(t)χ

2
δ2
(λb))

2−2c1
2−2c2


ϕa(t)

)

≤ λa
))

.

Regarding the second term, it follows using (13.1.8) and (13.1.10) that

Sbt

∫ ∞

0
p(ζ, δ2, λb)

(
λb

ζ

) 1
2−2c2

∫ (
ϕb(t)ζ )

2−2c1
2−2c2


ϕa(t)

0
p(ξ, δ1, λa) dξ dζ

= Sbt
∫ ∞

0
p(λb, δ2, ζ )

∫ (
ϕb(t)ζ )

2−2c1
2−2c2


ϕa(t)

0
p(ξ, δ1, λa) dξ dζ

= Sbt
∫ ∞

0
p(ξ, δ1, λa)

∫ ∞
(
ϕa(t)ξ)

2−2c2
2−2c1


ϕb(t)

p(λb, δ2, ζ ) dζ dξ

= Sbt
∫ ∞

0
p(ξ, δ1, λa)Ψ

(

λb, δ2 − 2,
(
ϕa(t)ξ)

2−2c2
2−2c1


ϕb(t)

)

dξ

= Sbt P
(

χ2
δ2−2

(
(
ϕa(t)χ

2
δ1
(λa))

2−2c2
2−2c1


ϕb(t)

)

≤ λb
)

.

Finally, we get

M(t)

= Sat
(

Ψ (λa, δ1 − 2,0)− P
(

χ2
δ1−2

(
(
ϕb(t)χ

2
δ2
(λb))

2−2c1
2−2c2


ϕa(t)

)

≤ λa
))

− Sbt P
(

χ2
δ2−2

(
(
ϕa(t)χ

2
δ1
(λa))

2−2c2
2−2c1


ϕb(t)

)

≤ λb
)

.



Chapter 4
Lie Symmetry Group Methods

A basis for the availability of explicit formulas for derivative prices under the Black-
Scholes Model (BSM) and the quadratic models, which we discussed in the previous
sections, is the explicitly available transition density for these models. Therefore, it
is important to find systematically further diffusion dynamics with explicit transi-
tion densities. In this chapter, we show how to obtain transforms, usually Laplace
and Fourier transforms, of transition densities of various diffusions beyond the ones
we have already studied. Our approach is based on Lie symmetry methods, and has
been developed by Craddock and collaborators, see Craddock and Platen (2004),
Craddock and Lennox (2007, 2009), Craddock (2009), and Craddock and Dooley
(2010). The following motivation follows closely Sect. 2 in Craddock and Lennox
(2007). All concepts referred to in this motivation are explained in Sect. 4.2 in more
detail. Readers interested in the technical details of Lie symmetry analysis are re-
ferred to Bluman and Kumei (1989), and Olver (1993).

4.1 Motivation for Lie Symmetry Methods for Diffusions

We consider the following partial differential equation (PDE), which for our pur-
poses will typically be the Kolmogorov forward or backward equation for a diffu-
sion, or a PDE resulting from the Feynman-Kac formula, see Sect. 15.8 in Chap. 15:

ut = P
(
x,u(n)

)
x ∈Ω ⊆�. (4.1.1)

Here P(·,·) is a differential operator, x and t are independent variables, and u is
the dependent variable, and n denotes the number of derivatives u(1), u(2), . . . , u(n)

in x, we typically have n= 2. Lie’s method, see e.g. Olver (1993), allows us to find
vector fields

v = ξ(x, t, u)∂x + τ(x, t, u)∂t + φ(x, t, u)∂u,
which generate one parameter Lie groups that preserve solutions of (4.1.1). It is
common in the area to denote the action of v on solutions u(x, t) of (4.1.1) by

ρ
(
exp{εv})u(x, t)= σ(x, t; ε)u(a1(x, t; ε), a2(x, t; ε)

)
(4.1.2)
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for some functions σ , a1, and a2, where ε is the parameter of the group, σ is referred
to as the multiplier, and a1 and a2 are changes of variables of the symmetry. For the
applications we have in mind, ε and σ are of crucial importance, ε will play the role
of the transform parameter of the Fourier or Laplace transform and σ will usually be
the Fourier or Laplace transform of the transition density. Following Craddock and
Lennox (2007) or Craddock et al. (2009), we assume that (4.1.1) has a fundamental
solution p(x, y, t). For this book, it suffices to recall that we can express a solution
u(x, t) of the PDE (4.1.1), subject to the initial condition u(x,0) = f (x), in the
form

u(x, t)=
∫

Ω

f (y)p(x, y, t) dy, (4.1.3)

where p(x, y, t) is a fundamental solution of (4.1.1). The key idea of the transform
method is to connect (4.1.2) and (4.1.3). Now consider a stationary, i.e. a time-
independent solution, say u0(x). Of course, (4.1.2) yields

ρ
(
exp{εv})u0(x)= σ(x, t; ε)u0

(
a1(x, t; ε)

)
,

which also solves the initial value problem. We now set t = 0 and use (4.1.2) and
(4.1.3) to obtain
∫

Ω

σ(y,0; ε)u0
(
a1(y,0; ε)

)
p(x, y, t)dy = σ(x, t; ε)u0

(
a1(x, t; ε)

)
. (4.1.4)

Since σ , u0, and a1 are known functions, we have a family of integral equations for
p(x, y, t). In Sect. 4.3, we will discuss as an example the one-dimensional Black-
Scholes PDE, which can be reduced to the one-dimensional heat equation

ut = 1

2
σ 2uxx. (4.1.5)

We will show that if u(x, t) solves (4.1.5), then for ε sufficiently small, so does

ũ(z, t)= exp

{
εt2

2σ 2
− zε

σ 2

}

u(z− tε, t).
Taking u0 = 1, (4.1.4) gives

∫ ∞

−∞
exp

{

−yε
σ 2

}

p(x, y, t) dy = exp

{
ε2t

2σ 2
− xε

σ 2

}

.

Setting a =− ε

σ 2 , we get
∫ ∞

−∞
exp{ay}p(x, y, t) dy = exp

{
a2σ 2t

2
+ ax

}

. (4.1.6)

We recognize that (4.1.6) is the moment generating function of the Gaussian distri-
bution. So p(x, y, t) is the Gaussian density with mean x and variance σ 2t . We alert
the reader to the fact that ε plays the role of the transform parameter and σ(·, · ;·)
corresponds to the moment generating function. Finally, we recall a remark from
Craddock (2009), namely the fact that Laplace and Fourier transforms can be read-
ily obtained through Lie algebra computations, seems to suggest a relationship be-
tween Lie symmetry analysis and harmonic analysis. We refer the reader to Olver
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(1993), where this relationship is explored in more detail. It allows one to find tran-
sition densities for several other diffusions beyond those previously mentioned in
this book.

We now recall some concepts of Lie symmetry analysis, which shall allow the
reader to appreciate some of the ideas behind the results subsequently presented.
This listing of facts is not aimed at being a rigorous introduction to the topic. The
reader interested in studying this method in more detail is referred to Bluman and
Kumei (1989), and Olver (1993).

4.2 Some Basic Facts of Lie Symmetry Analysis

The structure of this section is as follows: in Sect. 4.2.1, we introduce symmetry
groups of PDEs, and in Sect. 4.2.2 we discuss Lie groups, their associated Lie al-
gebras, vector fields and finally Lie algebras of vector fields. Finally, in Sect. 4.2.3,
we discuss prolongations, which allow us to link the two concepts, i.e. they allow us
to determine when the Lie group generated by a particular vector field is the sym-
metry group of a PDE. This crucial link was originally established by Lie, see Lie
(1881). Finally, we point out that this section follows closely Chap. 1 of the book
manuscript (Craddock 2013).

4.2.1 Symmetry Groups of PDEs

In this chapter, we consider single differential equations of order n in m variables
on a simply connected subset Ω ⊆ �m. We denote the PDE, as is common in the
literature on Lie symmetry analysis, by

P
(
x,Dαu

)= 0,

where P is a differential operator on Ω ×�,

Dαu= ∂ |α|u
∂x
α1
1 . . . ∂x

∂m
m

,

α = (α1, . . . , αm), is a multi-index, αi ∈N , i ∈ {1, . . . ,m} and |α| = α1 +· · ·+αm.

Definition 4.2.1 A symmetry group of a differential equation is a group of trans-
formations acting on the independent and dependent variables of the system such
that it maps solutions of the equation to other solutions. To be more precise, let HP
denote the space of all solutions of the PDE

P
(
x,Dαu

)= 0.

A symmetry S is a mapping of HP into itself, i.e. S :HP →HP . Thus if u ∈HP ,
then we must have Su ∈HP .
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To give the reader a feel for symmetries, we present a trivial example.

Example 4.2.2 For the one-dimensional heat equation,

ut = uxx, (4.2.7)

it is well-known, that for an ε sufficiently small, u(x + ε, t) and u(x, t + ε)

are also solutions of (4.2.7). Hence the mappings ρ(ε)u(x, t) = u(x + ε, t) and
π(ε)u(x, t)= u(x, t + ε) are symmetries.

The reason for introducing symmetry analysis is that some symmetry groups can
map trivial solutions, in some cases u= 1, to interesting solutions, such as the tran-
sition density of a Brownian motion with drift, as we will illustrate in Sect. 4.3. How
does one come up with these interesting symmetry groups? The answer will be given
in Sect. 4.2.3, where we present theorems due to Lie and Olver, which essentially
give us a mechanical procedure for calculating symmetry groups mapping trivial
solutions to interesting ones. The key observation, due to Lie, is that under certain
conditions, which he showed to be necessary and sufficient, see Theorem 4.2.11, an
analytical problem can be reduced to an algebraic problem. Calculation of symme-
try groups can be reduced to the problem of computing vector fields, see Sect. 4.2.3.
By exponentiating this vector field, see Sect. 4.3 for an illustration, one can com-
pute the symmetry groups of the PDE under consideration, as it is generated by the
given vector field. Next, we introduce Lie groups, Lie algebras, vector fields and Lie
algebras of vector fields, see Hall (2003).

4.2.2 Lie Groups

Many Lie groups, though not all, can be realized as matrix groups, which are closed
subgroups of the general linear group. We need the definition of matrix Lie groups
when introducing Lie algebras.

Definition 4.2.3 The general linear group GL(n,�) is the group of all n×n invert-
ible matrices with entries in �, and GL(n,C) is the group of all n × n invertible
matrices with entries in C.

We can now define a matrix Lie group. In the next definition, convergence of
matrices is understood componentwise, i.e. {An}∞n=1 converges to A, if each entry
in An converges to the corresponding entry of A, where convergence is understood
in the sense of convergence of sequences in � or C.

Definition 4.2.4 A matrix Lie group of dimension n is a closed subgroup of the
general linear group GL(n,�) or GL(n,C).
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In this book, we restrict ourselves to matrix Lie groups. Next, we introduce Lie
algebras. In Definition 4.2.5, we will show how to associate a Lie algebra with a
given matrix Lie group. Consequently, analytical problems on the matrix Lie group
amount to algebraic problems on the associated Lie algebra. For the purpose of
this chapter, it is important to realize that when computing the symmetry group
of a PDE, we actually compute its Lie algebra. The latter can be achieved using a
mechanical procedure, due to Lie. We illustrate this in Sect. 4.3, but it should suffice
as a motivation for introducing Lie algebras. We now introduce Lie algebras and Lie
brackets.

Definition 4.2.5 For a given matrix Lie group G of dimension n, the Lie algebra of
G consists of the vector space of n×nmatrices A, for which the matrix exponential

exp{A} = I +A+ A2

2
+ · · · =

∞∑

k=0

Ak

k! ∈G. (4.2.8)

In other words, the Lie algebra of G is defined to be

g := {A ∈Mn: exp{A} ∈G},
recalling that Mn is the space of n× n matrices. For A,B ∈ g, the Lie bracket is
[A,B] := AB −BA.

The commutator

[A,B] = AB −BA

of two square matrices A, B is known as the Lie bracket of A and B and plays a
central role in the theory of Lie algebras. For a proof of the following theorem we
refer to Hall (2003).

Theorem 4.2.6 The Lie algebra of a matrix Lie group is a vector space which is
closed under Lie brackets.

Every finite dimensional Lie algebra can be realized in terms of first order dif-
ferential operators. So far, we have considered Lie algebras which are vector spaces
of matrices. However, equivalently, one can also introduce Lie algebras as vector
spaces of first order differential operators,

v(f )=
m∑

k=1

ξk(x, u)∂xk + φ(x, u)∂u, (4.2.9)

where ∂x denotes the partial derivative with respect to x. We now define a Lie alge-
bra of vector fields. We also include the closure under the Lie bracket as part of the
definition.

Definition 4.2.7 Consider a collection of n linearly independent vector fields V =
{v1, . . . ,vn}. Define the Lie bracket of vi and vk by

[vi ,vk]f = vi (vkf )− vk(vif ).
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Suppose further that for any vectors vi , vj , 1 ≤ i ≤ j ≤ n, we have

[vi ,vj ] =
n∑

k=1

cki,jvk,

for some constants cki,j . Denote the linear span of V by G. Then G is an n-

dimensional Lie algebra, with basis vectors {v1, . . . ,vn}. The numbers cki,j are
known as the structure constants of the Lie algebra. The Lie bracket of v and w
satisfies

[v, aw + bz] = a[v,w] + b[v,z]
[av + bw,z] = a[v,z] + b[w,z]
[v,w] = −[w,v]
[
v, [w,z]]+ [z, [v,w]]+ [w, [z,v]]= 0.

The last identity is referred to as Jacobi’s identity.

We mentioned earlier that instead of dealing with analytical problems on the Lie
group, we instead choose to deal with algebraic problems on the Lie algebra. Lie
algebras generate Lie groups via the exponential map. For the matrix Lie groups
we previously discussed, this exponential map is simply the matrix exponential, see
(4.2.8). For Lie algebras of vector fields, this exponential map is the Lie series,
which we now introduce.

Every vector field v, see (4.2.9), whose coefficients ξ , φ are sufficiently well-
behaved, generates a one-parameter Lie group. The local Lie group will be called
the flow of v, denoted exp{εv}, where ε is the notation for the parameter of the
group. The notation exp{εv} is motivated by noting that the action generated by v
can be obtained by summing the so-called Lie series,

f
(
exp{εv}x)= f (x)+ εv(f )+ ε2

2! v
2(f )+ · · · =

∞∑

n=0

εn

n! v
n(f ), (4.2.10)

where v is tangent to a manifold M and f ∈ C∞(M). Compared with the matrix
exponential, the map sending v to exp{v} can be understood as the exponential map
for vector fields. Of course, the issue of convergence of the series in (4.2.10) needs
to be addressed. In this chapter, we simply assume that it converges, at least for ε
sufficiently small.

In principle, we could use the Lie series to determine how the group generated
by v acts on the function u. However, the Lie series does not turn out to be a useful
computational tool. Instead, we will use the following theorem, which appeared in
Olver (1993), Chap. 1, to determine how the group generated by v acts on u and the
independent variables x.

Theorem 4.2.8 Suppose that the vector field v is tangent to the smooth manifold
X×U ⊆�m ×� and takes the form (4.2.9). Let the group of transformations gen-
erated by v act on the point (x, u) ∈X×U . If we denote the transformed variables
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by (x̃, ũ), then the new variables satisfy the following system of ordinary differential
equations

dx̃k

dε
= ξk(x̃, ũ), k = 1, . . . ,m

dũ

dε
= φ(x̃, ũ),

with the initial data x̃k(0)= xk , k = 1, . . . ,m, and ũ(0)= u.

Intuitively, one can think of the group generated by v as acting on the graph
of u, denoted by (x, u), transforming it in some manner. The transformed graph is
obtained from Theorem 4.2.8, and hence we write

exp{εv}(x, u)= (x̃, ũ). (4.2.11)

Equation (4.2.11) describes how the one-parameter group generated by v acts on
solutions of the PDE. However, we are primarily interested in knowing when the
group generated by v is a symmetry group, i.e. when does it map solutions of (4.1.1)
to solutions of (4.1.1).

This question will be answered in the next subsection, the crucial ingredient be-
ing prolongations.

4.2.3 Lie’s Prolongation Algorithm

We remark that a detailed discussion of Lie symmetries requires substantial tech-
nical tools from areas such as differential geometry and the theory of jet bundles.
On the other hand, the computation of Lie symmetries is a mechanical procedure,
thanks to Theorem 4.2.11 presented in this subsection. Deliberately, we present the
computation of Lie symmetries as early as possible. Readers interested in the tech-
nical background are referred to Olver (1993).

Firstly, we need to understand how a symmetry group acts on the independent
variables x, the solution u, and the derivatives of u, since we deal with a PDE. For
concreteness, let X ⊆�m and U ⊆� be smooth manifolds and consider a PDE

P
(
x,Dαu

)= 0, (4.2.12)

where x ∈X and u ∈U . For a solution u of (4.2.12), we denote its graph by

Γu =
{(

x, u(x)
)
: x ∈X},

which is obtained from u as x takes values in X. We find it convenient to abbreviate
(x, u(x)) by (x, u). Clearly, when a symmetry group G of (4.2.12) acts on u, we
obtain a new solution ũ(x̃), the graph of which we denote by Γũ. However, we also
need to understand how a symmetry group G affects the distribution of u. This is
where prolongations come into play: the n-th prolongation of G, prn G, extends the
action of G to (x, u) and also all derivatives of u, up to order n, as the following
definition formally states.
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Definition 4.2.9 To determine prn G, let Dn be the mapping

Dn : (x, u)→ (x, u,ux1 , . . . , uxm,...xm)=
(
x, u(n)

)
.

Then the n-th prolongation must satisfy

Dn ◦G= prn G ◦Dn.

Intuitively speaking, Definition 4.2.9 says that applying the symmetry group G
to (x, u) and subsequently differentiating has the same effect as differentiating first
and acting on the derivatives with the prolongation of G. Finally, the n-th prolonga-
tion of the symmetry group G has an infinitesimal generator, prn v. A geometrical
interpretation of prn v can be found in Olver (1993). We are now in a position to
introduce the n-th prolongation of a vector field.

Definition 4.2.10 Given a vector field v with corresponding one-parameter group
exp{εv}, we define the n-th prolongation of v, prn v, to be the infinitesimal generator
of the corresponding one-parameter group prn[exp{εv}],

prn v
∣
∣
(x,u(n))

= d

dε

∣
∣
∣
∣
ε=0

prn
[
exp{εv}](x, u(n)).

The next result tells us when a one-parameter Lie group generated by v is a
symmetry group of a PDE, which is the central result of Lie symmetry analysis.

Theorem 4.2.11 (Lie) Let

P
(
x,Dαu

)= 0, (4.2.13)

be an n-th order partial differential equation. Let v be a vector field of the form

v =
p∑

i=1

ξ i(x, u)∂xi + φ(x, u)∂u.

Then v generates a one parameter group of symmetries of (4.2.13) if and only if

prn v
[
P
(
x,Dαu

)]= 0 (4.2.14)

whenever P(x,Dαu)= 0.

Next, we give an explicit formula for prn v, which is due to Olver (1993).

Theorem 4.2.12 (Olver) Let

v =
p∑

i=1

ξ i(x, u)∂xi + φ(x, u)∂u

be a vector field defined on an open subsetM ⊂X×U . The n-th prolongation of v
is the vector field

prn v = v +
∑

J

φJ
(
x, u(n)

)
∂uJ
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defined on the corresponding jet spaceM(n) ⊂X×U(n), the second summation be-
ing over all (unordered) multi-indices J = (j1, . . . , jk), with 1 ≤ jk ≤ p, 1 ≤ k ≤ n.
The coefficient functions φJ of prn v are given by the following formula:

φJ
(
x, u(n)

)=DJ

(

φ −
p∑

i=1

ξ iui

)

+
p∑

i=1

ξ iuJ ,i ,

where ui = ∂u
∂xi

, and uJ ,i = ∂uJ

∂xi
, and DJ is the total differentiation operator.

We remark that vector fields satisfying (4.2.14) are referred to as infinitesimal
symmetries. The next theorem states that the set of all infinitesimal symmetries of a
PDE forms a Lie algebra.

Theorem 4.2.13 Let

P
(
x,Dαu

)= 0, (4.2.15)

be an n-th order partial differential equation. Let the set of all infinitesimal genera-
tors of symmetries of (4.2.15) be g. Then g is a Lie algebra.

From a practical point of view, as we will illustrate in Sect. 4.3, we apply Theo-
rem 4.2.11 to a given PDE, utilizing the formula for prn v given in Theorem 4.2.12.
The result is a set of determining equations for the coefficients ξ and φ in (4.2.9).
These can often be solved by inspection. However, we also recall at this point our
earlier remark that the process of computing the infinitesimal symmetries is me-
chanical. This begs the question if software packages exist, which allow the user to
perform these calculations. This is in fact the case, and we refer the reader to Bau-
mann (1998) and Cantwell (2002). These packages could be, for instance, employed
to verify the results we present in the next section.

4.3 An Example: The One-Dimensional Black-Scholes PDE

In this section, we illustrate the computation of Lie symmetry groups using the
Black-Scholes PDE. However, we remark that via a well-known change of variables,
we essentially reduce the problem to the computation of symmetries of the heat
equation, the canonical example of Lie symmetry analysis, assuming the underlying
asset follows geometric Brownian motion.

It is well-known, see e.g. Black and Scholes (1973), Merton (1973), that for a
suitable payoff function H(.), the option pricing formula V (.,.) satisfies the Black-
Scholes PDE

∂V (t, S)

∂t
+ rS ∂V (t, S)

∂S
+ 1

2
σ 2S2 ∂

2V (t, S)

∂S2
− rV (t, S)= 0, (4.3.16)
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for t ∈ [0, T ) and S ∈ (0,∞), with terminal condition V (T ,S)=H(S). We perform
the following change of variables: τ = T − t , and obtain the PDE

−∂V
∂τ

+ 1

2
σ 2S2 ∂

2V

∂S2
+ rS ∂V

∂S
− rV = 0,

where, for convenience, we drop the explicit dependence of V on τ and S. Conse-
quently, we set u= V exp(rτ ), which yields the PDE

−∂u
∂τ

+ 1

2
σ 2S2 ∂

2u

∂S2
+ rS ∂u

∂S
= 0

and finally, we set

z= lnS +
(

r − σ 2

2

)

τ,

to yield

−∂u
∂τ

+ 1

2
σ 2 ∂

2u

∂z2
= 0. (4.3.17)

Equation (4.3.17) is of second order. Therefore, we employ the second prolonga-
tion, and we have p = 2, i.e. we deal with two independent parameters, z and τ .
Theorem 4.2.11 yields that v generates symmetries of (4.3.17), if and only if

pr2 v

[
1

2
σ 2uzz − uτ

]

= 0

whenever uτ = 1
2σ

2uzz, where

v = ξ1 ∂

∂z
+ ξ2 ∂

∂τ
+ φ ∂

∂u
.

From Theorem 4.2.12 we obtain the second prolongation

pr2 v = v + φz∂uz + φτ ∂uτ + φzz∂uzz + φzτ ∂uzτ + φτ ∂uττ ,
and apply it to Eq. (4.3.17) to obtain

pr2 v

[
1

2
σ 2uzz − uτ

]

=−φτ + 1

2
σ 2φzz. (4.3.18)

Consequently, we need to compute φτ and φzz. From Theorem 4.2.12 we obtain

φτ =Dτ
(
φ − ξ1uz − ξ2uτ

)+ ξ1uzτ + ξ2uττ

= φτ + φuuτ − ξ1
τ uz − ξ1

uuzuτ − ξ2
τ uτ − ξ2

u (uτ )
2,

and

φzz =Dzz
(
φ − ξ1uz − ξ2uτ

)+ ξ1uzzz + ξ2ξzzτ .
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Table 4.3.1 Coefficients for
the constant, u, and the
derivatives of u

Term LHS RHS

1 φτ
1
2σ

2φzz

uz −ξ1
τ (σ 2φzu − 1

2σ
2ξ1
zz)

uτ (φu − ξ2
τ ) (φu − 2ξ1

z )− 1
2σ

2ξ2
zz

uzuτ −ξ1
u −3ξ1

u − σ 2ξ2
zu

u2
τ −ξ2

u −ξ2
u

u2
z 0 1

2σ
2(φuu − 2ξ1

zu)

uzτ 0 −σ 2ξ2
z

uzuzτ 0 −σ 2ξ2
u

u3
z 0 − 1

2σ
2ξ1
uu

u2
zuτ 0 − 1

2σ
2ξ2
uu

It can be shown that this equals

φzz = φzz +
(
2φzu − ξ1

zz

)
uz +

(
φuu − 2ξ1

zu

)
(uz)

2

+ (φu − 2ξ1
z

)
uzz − 3ξ1

uuzuzz − 2ξ2
zuuzuτ

− 2ξ2
z uzτ − 2ξ2

uuzuzτ − ξ1
uuu

3
z − ξ2

zzuτ − ξ2
uu(uz)

2uτ

− ξ2
uuzzuτ .

Equality (4.3.18) and replacing

uzz = 2

σ 2
uτ ,

yields

φτ + φuuτ − ξ1
τ uz − ξ1

uuzuτ − ξ2
τ uτ − ξ2

u(uτ )
2

= 1

2
σ 2
[

φzz +
(
2φzu − ξ1

zz

)
uz +

(
φuu − 2ξ1

zu

)
(uz)

2

+ (φu − 2ξ1
z

)
(

2uτ
σ 2

)

− 3ξ1
uuz

(
2uτ
σ 2

)

− 2ξ2
zuuzuτ − 2ξ2

z uzτ

− 2ξ2
uuzuzτ − ξ1

uuu
3
z − ξ2

zzuτ − ξ2
uu(uz)

2uτ − ξ2
u

2

σ 2
(uτ )

2
]

.

Solving for ξ1, ξ2, φ, we equate coefficients of the partial derivatives of u, which
results in the following table, where the coefficients of the terms in the first column
are shown in columns two and three, depending on whether they appear on the left
or right hand side of the equation.

As mentioned in Sect. 4.2.3, we now use Table 4.3.1 to obtain equations for the
coefficient functions ξ1, ξ2 and φ. From the terms uzτ and uzuzτ , we note that ξ2

only depends on τ , i.e. ξ2 = ξ2(τ ). Consequently, ξ2
zu = 0, and the term uzuτ yields

ξ1
u = 0, hence ξ1 is a function of z and τ , i.e. ξ1 = ξ1(z, τ ) and hence ξ1

zu = 0. We
make use of this conclusion when considering the coefficient of u2

z , which gives
φuu = 0, hence

φ(z, τ,u)= α(z, τ )u+ β(z, τ ),
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where α(z, τ ) and β(z, τ ) are functions of z and τ only, and we obtain

φz = αzu+ βz
φzz = αzzu+ βzz
φzu = αz
φτ = ατu+ βτ
φτu = ατ .

From the uz term, we obtain

ξ1
τ =

1

2
σ 2ξ1

zz − σ 2φzu (4.3.19)

and the uτ term yields

ξ1
z =

1

2
ξ2
τ , (4.3.20)

as ξ2
zz = 0. We hence have

ξ1 = 1

2
ξ2
τ z+A(τ), (4.3.21)

where A is a function of τ . We now use (4.3.19) to get

1

2
zξ2
ττ +Aτ = ξ1

τ =
1

2
σ 2ξ1

zz − σ 2αz =−σ 2αz,

as ξ1
zz = 0, from (4.3.20). Hence, one has

αz = − 1

2σ 2
zξ2
ττ −

1

σ 2
Aτ ,

αzz = − 1

2σ 2
ξ2
ττ

(4.3.22)

and

α =− 1

4σ 2
z2ξ2

ττ −
1

σ 2
zAτ +B(τ),

where B is a function of τ , and

ατ =− z2

4σ 2
ξ2
τττ −

z

σ 2
Aττ +Bτ . (4.3.23)

Regarding the constant term 1,

φτ = 1

2
σ 2φzz

yields

ατu+ βτ = 1

2
σ 2(αzzu+ βzz)
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and hence

ατ = 1

2
σ 2αzz,

βτ = 1

2
σ 2βzz.

(4.3.24)

Using (4.3.22), (4.3.23), and (4.3.24), we have

− 1

4σ 2
z2ξ2

τττ −
1

σ 2
zAττ +Bτ = 1

2
σ 2
(

− 1

2σ 2
ξ2
ττ

)

=−1

4
ξ2
ττ .

Comparing the coefficients of the function u and its derivatives, we obtain the fol-
lowing system of equations

ξ2
τττ = 0

Aττ = 0

Bτ =−1

4
ξ2
ττ .

We now introduce the notation

ξ2
ττ = C1,

ξ2
τ = C1τ +C2,

ξ2 = 1

2
C1τ

2 +C2τ +C3,

where C1, C2, and C3 are constants. Similarly,

Aττ = 0,

and

A(τ)= C4τ +C5,

where C4 and C5 are constants. Using

Bτ =−1

4
ξ2
ττ =−1

4
C1,

we get

B(τ)=−1

4
C1τ +C6,

where C6 is a constant. Recall that one has

ξ1 = z

2
ξ2
τ +A(τ),

and hence

ξ1(z, τ )= 1

2
C1zτ + 1

2
C2z+C4τ +C5.
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Also, we have

φ = αu+ β
=
(

− z2

4σ 2
ξ2
ττ −

zAτ

σ 2
+B(τ)

)

u+ β

=
(

C1

(

− z2

4σ 2
− τ

4

)

− C4z

σ 2
+C6

)

u+ β.

Lastly, we get

ξ2(τ )= 1

2
C1τ

2 +C2τ +C3.

Finally, we can obtain our vector fields from

v = ξ1∂z + ξ2∂τ + φ∂u
=
(

1

2
C1zτ + 1

2
C2z+C4τ +C5

)

∂z

+
(

1

2
C1τ

2 +C2τ +C3

)

∂τ

+
[(

C1

(

− z2

4σ 2
− τ

4

)

+C4

(

− z

σ 2

)

+C6

)

u+ β
]

∂u

= C1

(
1

2
zτ∂z + 1

2
τ 2∂τ +

(

− z2

4σ 2
− τ

4

)

u∂u

)

+C2

(
1

2
z∂z + τ∂τ

)

+C3∂τ +C4

(

τ∂z − zu

σ 2
∂u

)

+C5∂z +C6u∂u + β∂u.
Consequently, the resulting Lie algebra is spanned by the six vector fields:

v1 = ∂z
v2 = ∂τ
v3 = u∂u
v4 = 1

2
z∂z + τ∂τ

v5 = τ∂z − zu

σ 2
∂u

v6 = 1

2
zτ∂z + 1

2
τ 2∂τ −

(
z2

4σ 2
+ τ

4

)

u∂u

with

vβ = β∂u,
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where vβ is an infinite-dimensional sub-algebra. We now exponentiate vector field
v5. In particular, from Theorem 4.2.8, we need to solve the following system of
ODEs

dz̃

dε
= τ̃ , z̃(0)= z,

dτ̃

dε
= 0, τ̃ (0)= τ,

dũ

dε
=− z̃ũ

σ 2
, ũ(0)= u,

hence

τ̃ = τ,
z̃= τε + z,
ũ= u exp

{

− τε
2

2σ 2
− zε

σ 2

}

,

so that

ũ= exp

{
τ̃ ε2

2σ 2
− z̃ε

σ 2

}

u(z̃− τ̃ ε, τ̃ ). (4.3.25)

Recall that we write ρ(exp{εv})u(x, t) for the action of the symmetry group gener-
ated by v on a solution u. For example, for v5, we have

ρ
(
exp{εv5}

)= exp

{
τε2

2σ 2
− zε

σ 2

}

u(z− τε, τ ). (4.3.26)

The interpretation, as mentioned before, is that if u(x, t) solves (4.3.17), then so
does

ũ(x̃, t̃ )= ρ(exp{εv5}
)
,

at least for sufficiently small ε.
We now illustrate how to obtain transforms of fundamental solutions for the case

of the Black-Scholes PDE. This approach was first introduced in Craddock and
Platen (2004), and subsequently developed in Craddock and Lennox (2007), Crad-
dock and Lennox (2009), and Craddock (2009). In general, we have

ρ
(
exp{εv})u(z, τ )= σ(z, τ ; ε)u(a1(z, τ ; ε), a2(z, τ ; ε)

)
, (4.3.27)

for a multiplier σ(·, · ;·), where a1(·, · ;·) and a2(·, · ;·) are the changes of vari-
ables of the symmetry. Suppose a fundamental solution p(z, y, τ ) has been obtained.
Clearly,

u(z, τ )=
∫

�
f (y)p(z, y, τ ) dy (4.3.28)

solves the initial value problem with

u(z,0)= f (z).
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Following the transform approach, we aim to connect (4.3.27) and (4.3.28). Con-
sider a stationary solution u= u0(z), then

ρ
(
exp{εv})u0(z)= σ(z, τ ; ε)u0

(
a1(z, τ ; ε)

)
,

which also solves the initial value problem. Set τ = 0 and use Eq. (4.3.28) to obtain
∫

�
σ(y,0; ε)u0

(
a1(y,0; ε)

)
p(z, y, τ ) dy = σ(z, τ ; ε)u0

(
a1(z, τ ; ε)

)
. (4.3.29)

Consider (4.3.27) again, from Eq. (4.3.26) we consequently have

σ(z, τ ; ε)= exp

{
τε2

2σ 2
− zε

σ 2

}

a1(z, τ ; ε)= z− τε.
Clearly, u= 1 solves the PDE (4.3.17), so we have from Eq. (4.3.29)

∫

�
exp

{

−yε
σ 2

}

p(z, y, τ ) dy = exp

{
τε2

2σ 2
− zε

σ 2

}

.

Setting b=− ε

σ 2 , we get

∫

�
exp{yb}p(z, y, τ ) dy = exp

{
τb2σ 2

2
+ zb

}

. (4.3.30)

But (4.3.30) is clearly the moment generating function of a normal random variable
with mean z and variance σ 2τ , so it follows that

p(z, y, τ )= 1√
2πσ 2τ

exp

{

− 1

2σ 2τ
(y − z)2

}

.

Now changing variables back to Black-Scholes model parameters,

τ = T − t,
z= lnS +

(

r − 1

2
σ 2
)

τ,

we get

p(t, S;T ,y)= 1
√

2πσ 2(T − t) exp

{

− (y − (lnS + (r −
1
2σ

2)(T − t)))2
2σ 2(T − t)

}

.

Transforming variables y = lnx we obtain

p(t, S;T ,x)= 1

x
√

2πσ 2(T − t) exp

{

− (lnx − (lnS + (r −
1
2σ

2)(T − t)))2
2σ 2(T − t)

}

,

which is the probability density function of a lognormal random variable.
To conclude the illustration, we price a call option, for which the payoff is

V (T ,S)=H(S)= (S −K)+,
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for K > 0. Recall that we set u= V exp{rτ }, hence we have

V (t, S)= u(S, t) exp
{
r(T − t)}

=
∫

�+
exp
{−r(T − t)}(x −K)+p(t, S;T ,x) dx

= SN(d1)−K exp
{−r(T − t)}N(d2),

where

d1 = ln( S
K
)+ (r + 1

2σ)(T − t)
σ
√
T − t ,

and

d2 = d1 − σ
√
T − t,

which is the standard Black-Scholes option pricing formula.
Finally, we remark that from a financial modeling point of view, integrating the

payoff function against the probability density, the fundamental solution yields the
price of the option as expected. The above approach is very useful for financial ap-
plications, as for any payoff function, given the probability density, we have to solve
an integration problem. In this case, the transform was the moment generating func-
tion. We will subsequently also recover other transforms, however, if we can invert
the transform, if necessary numerically, we only have a one-dimensional integra-
tion problem to solve, which can be accomplished using methods to be presented in
Chap. 13. For additional examples demonstrating how Lie symmetry methods can
be used to solve option pricing problems, we also alert the reader to Caister et al.
(2010) and the references therein.

4.4 Results on Transforms of Fundamental Solutions

In this section, we discuss how to obtain transforms of fundamental solutions of the
equation

ut = σxγ uxx + f (x)ux − g(x)u, x ≥ 0. (4.4.31)

We point out that the equation

ut = σuxx + f (x)ux − g(x)u, x ∈ �, (4.4.32)

is studied in Craddock and Lennox (2009), where we direct the interested reader.
It is straightforward to motivate the study of (4.4.31). For example, setting γ = 1,

then

u(x, t)=E
(

exp

{

−
∫ t

0
g(Xs) ds

}

ϕ(Xt)

)

,

where u(x,0)= ϕ(x) and

dXt = f (Xt ) dt +
√

2σXt dWt ,
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by the Feynman-Kac formula, see Sect. 15.8 in Chap. 15. Consequently, obtaining
the fundamental solution of (4.4.31) means that we can compute important func-
tionals of corresponding diffusions.

We remark that the PDE (4.4.31), for γ = 1, g(x) = 0, was studied in Crad-
dock and Platen (2004), with emphasis on obtaining transition densities of im-
portant stochastic processes, but also discovering transition densities of stochas-
tic processes that had not been studied before. In Craddock and Lennox (2007),
the case g(x) = μxr and an arbitrary γ was considered. Furthermore, besides ob-
taining explicit transition densities, the authors also explicitly connected the funda-
mental solutions obtained to other important functionals, such as bond prices, see
also Sect. 5.5. This is interesting, as it means that integrals of fundamental solutions
have important applications, and not only the fundamental solutions when integrated
against a probability density. This line of research was continued in Craddock and
Lennox (2009), where Laplace transforms of joint densities of important functionals
of diffusions were obtained from (4.4.31). Finally, Craddock improved on the results
from Craddock and Lennox (2009) and also studied the PDE (4.4.32). In particular,
it has been shown how to obtain generalized Laplace transforms of the fundamen-
tal solutions of (4.4.31) and how to obtain Fourier transforms of the fundamental
solutions of (4.4.32).

The structure of the remainder of this chapter and the next chapter is as follows:
in Sect. 4.4.1, we collect theorems from Craddock (2009), giving the opportunity
to compute transforms of fundamental solutions. We illustrate the procedure via
examples in Chap. 5. The examples are grouped based on applications. In particular,
transition densities are derived, where we follow Craddock and Platen (2004), and
Laplace transforms of transition densities are obtained. For the convenience of the
reader, the results presented in this section, and additional results which can be
obtained via the same method are collected systematically in Sects. 5.3 and 5.4.

4.4.1 Transforms of One-Dimensional Solutions

In this subsection, we show how to obtain transforms of fundamental solutions of
Eq. (4.4.31).

As illustrated in Sect. 4.3, it is possible to construct fundamental solutions from
trivial solutions. In particular, these trivial solutions will typically be independent of
time, whereas fundamental solutions are not. Hence symmetries resulting in trivial
transformations in t are not sufficient. Other trivial symmetries include scalings, i.e.
for a constant c, if u(x, t) solves (4.4.31), so does cu(x, t).

The next theorem, which is Proposition 2.1 in Craddock and Lennox (2009),
produces conditions on the drift f , under which (4.4.31) has nontrivial symmetries.
The result was, in slightly simpler form, established in Craddock and Platen (2004),
and our proof follows Craddock and Platen (2004).

Theorem 4.4.1 If γ �= 2, the PDE

ut = σxγ uxx + f (x)ux − g(x)u, x ≥ 0, σ > 0 (4.4.33)
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has a nontrivial Lie symmetry group if and only if h, which is given by h(x) =
x1−γ f (x), satisfies one of the following families of drift equations

σxh′ − σh+ 1

2
h2 + 2σx2−γ g(x)= 2σAx2−γ +B, (4.4.34)

σxh′ − σh+ 1

2
h2 + 2σx2−γ g(x)= Ax4−2γ

2(2 − γ )2 + Bx2−γ

2 − γ +C, (4.4.35)

σxh′ − σh+ 1

2
h2 + 2σx2−γ g(x)= Ax4−2γ

2(2 − γ )2 + Bx3− 3
2 γ

3 − 3
2γ

+ Cx2−γ

2 − γ − κ,
(4.4.36)

with κ = γ
8 (γ − 4)σ 2.

Proof 1. Since the PDE (4.4.33) is of second order, we use the second prolongation
of v,

pr2 v = v + φx ∂

∂ux
+ φt ∂

∂ut
+ φxx ∂

∂uxx
+ φxt ∂

∂uxt
+ φtt ∂

∂utt
.

Applying the second prolongation of v to (4.4.33), we obtain

pr2 v
[
ut − σxγ uxx − f ux + gu

]

= ξ1(−σγ xγ−1uxx − fxux + gxu
)+ φg − φxf + φt − φxxσxγ .

Hence Theorem 4.2.11 yields that whenever u satisfies (4.4.33), we have

φt = ξ1(σγ xγ−1uxx + fxux − gxu
)− φg + φxf + φxxσxγ . (4.4.37)

We now compute φt , φx and φxx using Theorem 4.2.12, where we note that ξ1 and
ξ2 must be independent of u, ξ2 must, furthermore, be independent of x, and φ must
be linear in u, see also the proof of Proposition 2.1 in Craddock and Lennox (2009).
Taking these considerations into account, we obtain

φt = φt + φuut − ξ1
t ux − ξ2

t ut ,

and

φx = φx + φuux − ξ1
x ux

and finally

φxx = φxx + 2φxuux + φuuxx − 2ξ1
x uxx − ξ1

xxux.

Substituting the formulas for φt , φx , φxx into (4.4.37), we obtain

φt + φuut − ξ1
t ux − ξ2

t ut

= ξ1(σγ xγ−1uxx + fxux − gxu
)

− φg + (φx + φuux − ξ1
x ux
)
f

+ (φxx +
(
2φxu − ξ1

xx

)
ux +

(
φu − 2ξ1

x

)
uxx
)
σxγ ,
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Table 4.4.2 Coefficients for the constant, u, and the derivatives of u

Term LHS RHS

1 φt −φg + φxxσxγ + φxf
u −(φu − ξ2

t )g −ξ1gx

ux −ξ1
t + (φu − ξ2

t )f ξ1fx + (φu − ξ1
x )f + (2φxu − ξ1

xx)σx
γ

uxx (φu − ξ2
t )σx

γ ξ1σγ xγ−1 + (φu − 2ξ1
x )σx

γ

and replacing

ut = σxγ uxx + f (x)ux − g(x)u,
we get

φt +
(
φu − ξ2

t

)(
σxγ uxx + f ux − gu

)− ξ1
t ux

= ξ1(σγ xγ−1uxx + fxux − gxu
)

− φg + (φx + φuux − ξ1
x ux
)
f + φxxσxγ

+ (2φxu − ξ1
xx

)
σxγ ux +

(
φu − 2ξ1

x

)
uxxσx

γ .

2. As in Sect. 4.3, we use Table 4.4.2 to obtain determining equations for ξ1, ξ2

and φ, which will be in terms of f and g.
The equation resulting from uxx yields the following ODE for ξ1:

−ξ2
t σ x

γ = ξ1σγ xγ−1 − 2ξ1
x σx

γ ,

from which we obtain

ξ1 = ξ2
t x

2 − γ + ρ(t)xγ/2, (4.4.38)

where ρ(t) is a function of t only. Consequently, one has

ξ1
t =

ξ2
t t x

2 − γ + ρtxγ/2 (4.4.39)

ξ1
x =

ξ2
t

2 − γ + γ

2
xγ/2−1ρ, (4.4.40)

ξ1
xx =

γ

2

(
γ

2
− 1

)

ρxγ/2−2. (4.4.41)

Recalling that φ is linear in u, we obtain

φ = α(x, t)u+ β(x, t), (4.4.42)

where α and β are functions of x and t only, and hence

φt = αtu+ βt (4.4.43)

φx = αxu+ βx (4.4.44)

φxx = αxxu+ βxx (4.4.45)

φu = α.
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We can now use the equation resulting from u to obtain

−αg =−ξ1gx − ξ2
t g, (4.4.46)

and from the equation resulting from the constant term 1 we obtain, substituting
(4.4.43), (4.4.42), (4.4.45), and (4.4.44),

αtu+ βt =−(αu+ β)g + (αxxu+ βxx)σxγ + (αxu+ βx)f.
Equating the coefficients of the constant and u, we obtain

αt =−αg+ αxxσxγ + αxf (4.4.47)

and

βt =−βg + βxxσxγ + βxf. (4.4.48)

Regarding β , we can only say that it is an arbitrary solution of (4.4.33). Now, we
use the equation resulting from ux ,

−ξ1
t − ξ2

t f = ξ1fx − ξ1
x f + (2αx − ξ1

xx

)
σxγ ,

which yields, substituting (4.4.39), (4.4.40), and (4.4.41),

αx =− ξ2
t t x

1−γ

2σ(2 − γ ) −
ρtx

−γ /2

2σ
− ξ2

t

2σ(2 − γ )
d

dx

(
f x1−γ )

− ρ

2σ

d

dx

(
f x−γ /2

)+ γ

4
ρ(γ /2 − 1)xγ/2−2, (4.4.49)

and the second derivative with respect to x,

αxx =−ξ
2
t t (1 − γ )x−γ
2σ(2 − γ ) − ρt (−γ /2)x−γ /2−1

2σ
− ξ2

t

2σ(2 − γ )
d2

dx2

(
f x1−γ )

− ρ

2σ

d2

dx2

(
f x−γ /2

)+ γ

4
ρ(γ /2 − 1)(γ /2 − 2)xγ/2−3, (4.4.50)

and also

α =− ξ2
t t x

2−γ

2σ(2 − γ )2 − ρtx
1−γ /2

σ(2 − γ ) −
ξ2
t

2σ(2 − γ )
(
f x1−γ )

− ρ

2σ

(
f x−γ /2

)+ γ

4
ρxγ/2−1 + η(t), (4.4.51)

where η(t) is a function only depending on t and lastly

αt =− ξ2
t t t x

2−γ

2σ(2 − γ )2 − ρttx
1−γ /2

σ(2 − γ ) −
ξ2
t t

2σ(2 − γ )
(
f x1−γ )

− ρt

2σ

(
f x−γ /2

)+ γ

4
ρtx

γ/2−1 + ηt . (4.4.52)

3. We now use (4.4.46), substitute (4.4.52), (4.4.50), and (4.4.49), and perform
the obvious cancellations to obtain
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− ξ2
t t t x

2−γ

2σ(2 − γ )2 − ρttx
1−γ /2

σ(2 − γ ) + ηt

=−
(
ξ2
t x

2 − γ + ρxγ/2
)

gx − ξ2
t g −

ξ2
t t (1 − γ )
2(2 − γ )

− ξ2
t x
γ

2(2 − γ )
d2

dx2

(
f x1−γ )− ρ

2
xγ
d2

dx2

(
f x−γ /2

)

− ξ2
t

2σ(2 − γ )
d

dx

(
f x1−γ )f − ρ

2σ

d

dx

(
f x−γ /2

)
f + γ

4
ρ(γ /2 − 1)xγ/2−2f

+ γ σ

4
ρ(γ /2 − 1)(γ /2 − 2)x3γ /2−3.

Setting

Lf = σxγ
(
x1−γ f (x)
2σ(2 − γ )

)′′
+ f (x)

(
x1−γ f (x)
2σ(2 − γ )

)′
+ g(x)+ xg′(x)

2 − γ ,
and

Kf = σxγ
(
γ

4
xγ/2−1 − x−γ /2

2σ
f (x)

)′′
+ f
(
γ

4
xγ/2−1 − x−γ /2

2σ
f

)′
− xγ/2gx,

we obtain

− ξ2
t t t x

2−γ

2σ(2 − γ )2 − ρttx
1−γ /2

σ(2 − γ ) + ηt =− (1 − γ )
2(2 − γ )ξ

2
t t −Lf ξ2

t +Kfρ. (4.4.53)

4. We now proceed as follows: making an assumption on Lf , which will be
(4.4.34), (4.4.35), or (4.4.36), we deduce properties of Kf . Subsequently, as in
Sect. 4.3, we solve for ξ1, ξ2, and φ, and confirm that we obtain nontrivial sym-
metries. We start with (4.4.34) and (4.4.35):

Lf =Ax2−γ +B,
to facilitate the analysis, we employ the notation h(x) = x1−γ f (x), and conse-
quently obtain

Lf = σxγ h′′

2σ(2 − γ ) +
hxγ−1h′

2σ(2 − γ ) + g+
g′x

2 − γ =Ax2−γ +B. (4.4.54)

Hence, we obtain

σxh′′

2σ(2 − γ ) +
hh′

2σ(2 − γ ) + gx
1−γ + g′x2−γ

2 − γ =Ax3−2γ +Bx1−γ

and using integration by parts yields

σxh′ − σh+ h2

2
+ gx2−γ 2σ =Ax4−2γ σ + 2σBx2−γ +C.

Using h(x)= x1−γ f (x), we also obtain

Kf = σxγ
(
γ

4
xγ/2−1 − hx

γ/2−1

2σ

)′′
+ hxγ−1

(
γ

4
xγ/2−1 − hxγ/2−1

2σ

)′
− xγ/2gx,
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which yields

Kf = σγ

4
(γ /2 − 1)(γ /2 − 2)x3γ /2−3

− h′′x3γ /2−1

2
− h′(γ /2 − 1)x3γ /2−2

− h(γ /2 − 1)(γ /2 − 2)

2
x3γ /2−3 + γ

4
(γ /2 − 1)hx3γ /2−3

− h′hx3γ /2−2

2σ
− h2(γ /2 − 1)x3γ /2−3

2σ
− xγ/2gx.

Linking Lf to Kf , we notice that

−h
′′x3γ /2−1

2
− h′hx3γ /2−2

2σ

=
(

xh′′

2(2 − γ ) +
hh′

2σ(2 − γ )
)

(−1)(2 − γ )x3γ /2−2,

and also

−h′(γ /2 − 1)x3γ /2−2 + h(γ /2 − 1)x3γ /2−3

− h2 (γ /2 − 1)x3γ /2−3

2σ

=
(

σxh′ − σh+ h2

2

)
(−1)x3γ /2−3(γ /2 − 1)

σ

and lastly

−xγ/2gx =
(

gx1−γ + g′x2−γ

2 − γ
)

(−1)(2 − γ )x3γ /2−2

+ (gx2−γ 2σ
) (−1)

σ
x3γ /2−3(γ /2 − 1).

Consequently, one has

Kf = σγ

4
(γ /2 − 1)(γ /2 − 2)x3γ /2−3

+ (Ax3−2γ +Bx1−γ )(−1)(2 − γ )x3γ /2−2

+ (Ax4−2γ σ + 2σBx2−γ +C) (−1)

σ
x3γ /2−3(γ /2 − 1)

= (γ /2 − 1)

(
σγ

4
(γ /2 − 2)− C

σ

)

x3γ /2−3 +A(γ/2 − 1)x1−γ /2.

(4.4.55)
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Table 4.4.3 Coefficients for
the constant, x, and powers
of x

Term LHS RHS

1 ηt − (1−γ )
2(2−γ ) ξ

2
t t −Bξ2

t

x1−γ /2 − ρtt
σ (2−γ ) 0

x2−γ − ξ2
t t t

2σ(2−γ )2 0

x3γ /2−3 0 ρ(
σγ
4 (

γ
2 − 1)( γ2 − 2)−C (

γ
2 −1)
σ
)

We now substitute (4.4.54) and (4.4.55) into (4.4.53) to obtain

− x2−γ

2σ(2 − γ )2 ξ
2
t t t −

x1−γ /2

σ(2 − γ )ρtt + ηt
=− (1 − γ )

2(2 − γ )ξ
2
t t − ξ2

t

(
Ax2−γ +B)

+ ρ
(
σγ

4
(γ /2 − 1)(γ /2 − 2)−C (γ/2 − 1)

σ

)

x3γ /2−3

+A
(
γ

2
− 1

)

x1−γ /2ρ. (4.4.56)

5. As mentioned in Craddock and Platen (2004) and Craddock and Lennox
(2009), the cases A = 0 and A �= 0 should be treated separately, as they result in
different Lie algebras. We also alert the reader to the observation that A = 0 cor-
responds to the first Riccati equation (4.4.34), whereas A �= 0 corresponds to the
second Riccati equation, (4.4.35). We firstly consider the case A= 0, in which case
(4.4.56) collapses to

− x2−γ

2σ(2 − γ )2 ξ
2
t t t −

x1− γ
2 ρtt

σ (2 − γ ) + ηt

=− (1 − γ )
2(2 − γ )ξ

2
t t −Bξ2

t

+ ρ
(
σγ

4
(γ /2 − 1)(γ /2 − 2)−C (γ/2 − 1)

σ

)

x3γ /2−3.

Also, recall that κ = γ
8 (γ −4)σ 2. Hence, if C = κ , the coefficient of ρ is 0 for all ρ.

For now we consider the case C �= κ and discuss the case C = κ below. We compare
coefficients of the powers of x and Table 4.4.3 produces the determining equations
for ξ1, ξ2, and φ.

From the x3γ /2−3 term, we obtain ρ = 0. Using the x2−γ term, we get that ξ2 is
a quadratic function in t , hence

ξ2 = 1

2
C1t

2 +C2t +C3. (4.4.57)

Consequently, from the constant term 1, we obtain

η=−1

2
C1Bt

2 +
(

− (1 − γ )C1

2(2 − γ ) −C2B

)

t +C4. (4.4.58)
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Substituting (4.4.57) and (4.4.58) into (4.4.51) , we get

α =− C1x
2−γ

2σ(2 − γ )2 − x1−γ

2σ(2 − γ )f (C1t +C2)

+
(

−1

2
C1Bt

2 +
(

− (1 − γ )C1

2(2 − γ ) −C2B

)

t +C4

)

.

Lastly, one obtains from Eq. (4.4.38)

ξ1 = C1xt

2 − γ + C2x

2 − γ .

We now recall that we are looking for vector fields of the form

v = ξ1 ∂

∂x
+ ξ2 ∂

∂t
+ φ ∂

∂u
,

which upon substitution yields

v =
(
C1xt

2 − γ + C2x

2 − γ
)
∂

∂x
+
(

1

2
C1t

2 +C2t +C3

)
∂

∂t

+
(

C1

(

− x2−γ

2σ(2 − γ )2 − x1−γ

2σ(2 − γ ) tf
)

−C2
x1−γ f

2σ(2 − γ )
− 1

2
C1Bt

2 +
(

− 1 − γ
2(2 − γ )C1 −C2B

)

t +C4

)

u
∂

∂u

+ β ∂
∂u
.

Hence a basis for the Lie algebra is

v1 = xt

2 − γ
∂

∂x
+ 1

2
t2
∂

∂t

+
(

− x2−γ

2σ(2 − γ )2 − x1−γ tf
2σ(2 − γ ) −

Bt2

2
− (1 − γ )t

2(2 − γ )
)

u
∂

∂u

v2 = x

2 − γ
∂

∂x
+ t ∂
∂t

−
(
x1−γ f

2σ(2 − γ ) +Bt
)

u
∂

∂u

v3 = ∂

∂t

v4 = u ∂
∂u
.

6. There are also vector fields of the form vβ = β ∂
∂u

, β being an arbitrary solu-
tion of (4.4.48), so the Lie algebra is infinite-dimensional. However, it is clear that
symmetries exist which transform solutions which are constant in t to those that are
nonconstant in t . The case where A = 0, C = κ , can be handled similarly to the
previous case.
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In particular, it can be checked that

ξ2 = 1

2
C1t

2 +C2t +C3,

η=− (1 − γ )
2(2 − γ )C1t − C1Bt

2

2
−C2Bt +C4

ρ = C5t +C6,

as we deduce from the x1−γ /2 term that ρ can be at most linear in t . Furthermore,

ξ1 = C1xt

2 − γ + C2x

2 − γ +C5x
γ/2t +C6x

γ/2,

and

α =− C1x
2−γ

2σ(2 − γ )2 − C5x
1−γ /2

σ(2 − γ )
+
(
γ

4
xγ/2−1 − x−γ /2f

2σ

)

(C5t +C6)

− x1−γ

2σ(2 − γ )f (C1t +C2)− (1 − γ )C1t

2(2 − γ )
− C1Bt

2

2
−C2Bt +C4.

In this case, the vector field

v = ξ1 ∂

∂x
+ ξ2 ∂

∂t
+ φ ∂

∂u

becomes

v =
(
C1xt

2 − γ + C2x

2 − γ +C5x
γ/2t +C6x

γ/2
)
∂

∂x

+
(

1

2
C1t

2 +C2t +C3

)
∂

∂t

+
(

− C1x
2−γ

2σ(2 − γ )2 − C5x
1−γ /2

σ(2 − γ )
+
(
γ

4
xγ/2−1 − x−γ /2f

2σ

)

(C5t +C6)

− C1x
1−γ

2σ(2 − γ ) tf − C2x
1−γ

2σ(2 − γ )f

− (1 − γ )C1t

2(2 − γ ) − C1Bt
2

2

−C2Bt +C4

)

u
∂

∂u

+ β ∂
∂u
.
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Table 4.4.4 Coefficients for
the constant, x and powers
of x

Term LHS RHS

1 ηt − (1−γ )
2(2−γ ) ξ

2
t t − B

2σ(2−γ ) ξ
2
t

x1−γ /2 − ρtt
σ (2−γ )

A(
γ
2 −1)

2(2−γ )2σ ρ

x2−γ − ξ2
t t t

2σ(2−γ )2 − A
2σ(2−γ )2 ξ

2
t

x3γ /2−3 0 ρ(
σγ
4 (

γ
2 − 1)( γ2 − 2)−C (

γ
2 −1)
σ
)

This means that we obtain the infinitesimal symmetries

v1 = xt

2 − γ
∂

∂x
+ 1

2
t2
∂

∂t

−
(

x2−γ

2σ(2 − γ )2 + x1−γ tf
2σ(2 − γ ) +

(1 − γ )t
2(2 − γ ) +

Bt2

2

)

u
∂

∂u

v2 = x

2 − γ
∂

∂x
+ t ∂
∂t

−
(
x1−γ f

2σ(2 − γ ) +Bt
)

u
∂

∂u

v3 = ∂

∂t

v4 = u ∂
∂u

v5 = xγ/2t ∂
∂x

−
(
x1−γ /2

σ(2 − γ ) −
(
γ xγ/2−1

4
− x−γ /2f

2σ

)

t

)

u
∂

∂u

v6 = xγ/2 ∂
∂x

+
(
γ xγ/2−1

4
− x−γ /2f

2σ

)

u
∂

∂u
, (4.4.59)

and there is an infinitesimal symmetry vβ = β ∂
∂u

, making the Lie algebra infinite-
dimensional.

7. We now consider the case A �= 0, which corresponds to the second Riccati
equation, (4.4.35). For convenience, compare (4.4.34) and (4.4.35), we relabel the
constants, σA→ A

2(2−γ )2 , 2σB→ B
(2−γ ) , which results in Table 4.4.4.

Now we assume that C = κ , which is the more involved case, however, we re-
cover the C �= κ result by setting C5 = C6 = 0 in the following. We obtain from the
x2−γ term

ξ2 = C1 exp{√At}√
A

− C2 exp{−√
At}√

A
+C3

ξ2
t = C1 exp{√At} +C2 exp{−√

At}
ξ2
t t = C1

√
A exp{√At} −C2

√
A exp{−√

At}
η= C1

(

− (1 − γ )
2(2 − γ ) −

B√
A2σ(2 − γ )

)

exp{√At}

+C2

(
B√

A2σ(2 − γ ) −
(1 − γ )

2(2 − γ )
)

exp{−√
At} +C4
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ρ = C5 exp

{√
A

2
t

}

+C6 exp

{

−
√
A

2
t

}

ξ1 = x

2 − γ
(
C1 exp{√At} +C2 exp{−√

At})

+ xγ/2
(

C5 exp

{√
A

2
t

}

+C6 exp

{

−
√
A

2
t

})

and

α =− x2−γ

2σ(2 − γ )2
(
C1

√
A exp{√At} −C2

√
A exp{−√

At})

− x1−γ /2

σ(2 − γ )
(

C5

√
A

2
exp

{√
A

2
t

}

+C6

(

−
√
A

2

)

exp

{

−
√
A

2
t

})

+
(
γ

4
xγ/2−1 − x−γ /2f

2σ

)(

C5 exp

{√
A

2
t

}

+C6 exp

{

−
√
A

2
t

})

− x1−γ

2σ(2 − γ )f
(
C1 exp{√At} +C2 exp{−√

At})

+C1

(

− (1 − γ )
2(2 − γ ) −

B√
A2σ(2 − γ )

)

exp{√At}

+C2

(
B√

A2σ(2 − γ ) −
(1 − γ )
2(2 − γ )

)

exp{−√
At} +C4.

Finally, we look for symmetries of the form

v = ξ1 ∂

∂x
+ ξ2 ∂

∂t
+ φ ∂

∂u
,

and obtain the following basis for the infinite-dimensional Lie algebra,

v1 = x

2 − γ exp{√At} ∂
∂x

+ exp{√At}√
A

∂

∂t

−
(

x2−γ

2σ(2 − γ )2
√
A+ x1−γ

2σ(2 − γ )f

+ B√
A2σ(2 − γ ) +

(1 − γ )
2(2 − γ )

)

exp{√At}u ∂
∂u

v2 = x

2 − γ exp{−√
At} ∂

∂x
− exp{−√

At}√
A

∂

∂t

+
( √

Ax2−γ

2σ(2 − γ )2 − x1−γ

2σ(2 − γ )f

+ B√
A2σ(2 − γ ) −

(1 − γ )
2(2 − γ )

)

exp{−√
At}u ∂

∂u

v3 = ∂

∂t
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v4 = u ∂
∂u

v5 = xγ/2 exp

{√
A

2
t

}
∂

∂x

+
(

−x
1−γ /2√A

2σ(2 − γ ) +
γ xγ/2−1

4
− x−γ /2f

2σ

)

exp

{√
A

2
t

}

u
∂

∂u

v6 = exp

{

−
√
A

2
t

}

xγ/2
∂

∂x

+
(
x1−γ /2√A
2σ(2 − γ ) +

γ xγ/2−1

4
− x−γ /2f

2σ

)

exp

{

−
√
A

2
t

}

u
∂

∂u

and, of course, vβ = β ∂
∂u

, where β is an arbitrary function satisfying (4.4.48).
For the (4.4.36) case, we refer the reader to Craddock and Lennox (2009), Propo-

sition 2.1.
Finally, we consider the case where Lf satisfies neither (4.4.34), (4.4.35), nor

(4.4.36). In that case, it is clear from Eq. (4.4.53) that ξ2
t = 0, hence ξ2 is a constant

function and we do not obtain a symmetry group transforming solutions which are
constant in time to solutions which are not. �

We now present symmetries for the Riccati equations (4.4.34), (4.4.35), and
(4.4.36). All of these symmetries will be generalized Laplace transforms. We need
the following lemma, which appeared as Lemma 1.1 in Craddock (2009).

Lemma 4.4.2 Suppose we have a linear PDE

P
(
x,Dα

)
u=

∑

|α|≤n
aα(x)D

αu, x ∈Ω ⊆�m, (4.4.60)

where α = (α1, . . . , αm, ), αi ∈ N , |α| = α1 + · · · + αm and Dα = ∂ |α|
∂
α1
x1 ...∂

αm
xm

. For

a continuous one parameter family of solutions Uε(x) of (4.4.60), for ε ∈ I ⊆ �,
where I is an interval containing 0, we have that for a function ϕ : I → � with
sufficiently rapid decay,

u(x)=
∫

I

ϕ(ε)Uε(x) dε

solves (4.4.60). If the PDE is time dependent and Uε(x, t) is the family of symmetry
solutions, then

u(x, t)=
∫

I

ϕ(ε)Uε(x, t) dε

and u(x,0) = ∫
I
ϕ(ε)Uε(x,0) dε solve (4.4.60) and so does dnUε(x)

dεn
, for all

n= 0,1,2, . . . .

We now prove the following result, see Theorem 3.1 in Craddock and Lennox
(2009).
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Theorem 4.4.3 Suppose γ �= 2 and h(x) = x1−γ f (x) is a solution of the Riccati
equation

σxh′ − σh+ 1

2
h2 + 2σx2−γ g(x)= 2σAx2−γ +B.

Then the PDE (4.4.31) has a symmetry of the form

Uε(x, t)= 1

(1 + 4εt)
1−γ
2−γ

exp

{−4ε(x2−γ +Aσ(2 − γ )2t2)
σ (2 − γ )2(1 + 4εt)

}

× exp

{
1

2σ

(

F

(
x

(1 + 4εt)
2

2−γ

)

− F(x)
)}

× u
(

x

(1 + 4εt)
2

2−γ
,

t

1 + 4εt

)

, (4.4.61)

where F ′(x) = f (x)/xγ and u is a solution of the PDE (4.4.31). That is, for ε
sufficiently small, Uε is a solution of (4.4.31) whenever u is. If u(x, t)= u0(x) with
u0 an analytic, stationary solution, then there is a fundamental solution p(x, y, t)
of (4.4.31) such that

∫ ∞

0
exp
{−λy2−γ }u0(y)p(x, y, t) dy =Uλ(x, t).

Here Uλ(x, t)=U 1
4σ(2−γ )2λ(x, t). Further, if u0 = 1, then

∫∞
0 p(x, y, t) dy = 1.

Proof 1. We recall from the proof of Theorem 4.4.1, that there is a symmetry v,
obtained by multiplying the right hand side of Eq. (4.4.59) by 8,

v = 8xt

2 − γ
∂

∂x
+ 4t2

∂

∂t

−
(

4x2−γ

σ (2 − γ )2 + 4x1−γ tf
σ (2 − γ ) + βt + 4At2

)

u
∂

∂u
,

where we set β = 4(1−γ )
2−γ . Exponentiating the symmetry we obtain

dx̃

dε
= 8x̃ t̃

2 − γ , x̃(0)= x,
dt̃

dε
= 4t̃ 2, t̃(0)= t,

dũ

dε
=−
(

4x̃2−γ

σ (2 − γ )2 + 4x̃1−γ t̃f (x̃)
σ (2 − γ ) + βt̃ + 4At̃ 2

)

ũ, ũ(0)= u.

(4.4.62)

From this system of equations, we obtain

t̃ = t

1 − 4εt
,

t = t̃

1 + 4εt̃
,

(4.4.63)
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and

x̃ = x(1 − 4εt)−
2

2−γ

x = x̃(1 − 4εt)
2

2−γ .
(4.4.64)

Substituting (4.4.63) and (4.4.64) into (4.4.62), we obtain

dũ

ũ
=−
(

4x2−γ (1 − 4εt)−2

σ(2 − γ )2

+ 4x1−γ (1 − 4εt)
−4+3γ

2−γ tf (x(1 − 4εt)
−2

2−γ )

σ (2 − γ )
+ βt(1 − 4εt)−1 + 4At2(1 − 4εt)−2

)

dε,

and hence

ln ũ=−x
2−γ (1 − 4εt)−1

σ(2 − γ )2t
− 4

σ(2 − γ )
∫
x1−γ (1 − 4εt)

−4+3γ
2−γ tf

(
x(1 − 4εt)−

2
2−γ
)
dε

+ βt ln(1 − 4εt)

4t
−At2 (1 − 4εt)−1

t
+C.

Regarding the integral

− 4

σ(2 − γ )
∫
x1−γ (1 − 4εt)

−4+3γ
2−γ tf

(
x(1 − 4εt)−

2
2−γ
)
dε,

we use the change of variables, z= x(1 − 4εt)
−2

2−γ , to obtain

4

σ(2 − γ )
∫
x1−γ (1 − 4εt)

−4+3γ
2−γ tf

(
x(1 − 4εt)−

2
2−γ
)
dε

= 1

2σ

∫
z−γ f (z) dz

= 1

2σ
F(z),

where we recalled that F ′(z)= f (z)
zγ

. Consequently,

ũ= exp

{

− x2−γ

σ (2 − γ )2t (1 − 4εt)

}

× exp

{

− 1

2σ
F
(
x(1 − 4εt)

−2
2−γ
)
}

× (1 − 4εt)β/4 exp

{

− At

1 − 4εt

}

exp{C}.
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Also, setting ε = 0 we have

u= exp

{

− x2−γ

σ (2 − γ )2t
}

exp

{

− 1

2σ
F(x)

}

exp{−At} exp{C},
which yields

ũ= u exp

{

−x
2−γ ((1 − 4εt)−1 − 1)

σ (2 − γ )2t
}

× exp

{

− (F (x(1 − 4εt)
−2

2−γ )− F(x))
2σ

}

× exp
{−At((1 − 4εt)−1 − 1

)}
(1 − 4εt)β/4.

Finally, changing back to the new parameters x̃, t̃ , we obtain

ũ= u exp

{

− x̃
2−γ (1 + 4εt̃)−14ε

σ (2 − γ )2
}

× exp

{
1

2σ

(

F

(
x̃

(1 + 4εt̃)2/(2−γ )

)

− F(x̃)
)}

× exp

{

− 4Aεt̃ 2

1 + 4εt̃

}

(1 + 4εt̃)−β/4,

and, recalling β = 4(1−γ )
2−γ , yields

ũ(x̃, t̃ )= u
(

x̃

(1 + 4εt̃)
2

2−γ
,

t̃

1 + 4εt̃

)
1

(1 + 4εt̃)
1−γ
2−γ

× exp

{ −4ε

σ (2 − γ )2(1 + 4εt̃)

(
x̃2−γ +At̃ 2σ(2 − γ )2)

}

× exp

{
1

2σ

(

F

(
x̃

(1 + 4εt̃)2/(2−γ )

)

− F(x̃)
)}

.

Of course, the distinction between old and new parameters now becomes redundant,
and so we have

Uε(x, t)= 1

(1 + 4εt)(1−γ )/(2−γ )

× exp

{ −4ε

σ (2 − γ )2(1 + 4εt)

(
x2−γ +At2σ(2 − γ )2)

}

× exp

{
1

2σ

(

F

(
x

(1 + 4εt)2/(2−γ )

)

− F(x)
)}

× u
(

x

(1 + 4εt)
2

2−γ
,

t

1 + 4εt

)

.

We now use the notation

Uλ(x, t)=U(1/4)σ (2−γ )2λ(x, t).
This completes the first part of the proof.
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2. We now prove that if u(x, t)= u0(x) with u0 an analytic, stationary solution,
then there is a fundamental solution p(x, y, t) of (4.4.31) so that

∫ ∞

0
exp
{−λy2−γ }u0(y)p(x, y, t) dy =Uλ(x, t),

recalling that Uλ(x, t) = U(1/4)σ (2−γ )2λ(x, t). If p is a fundamental solution of
(4.4.31), then we have

Uλ(x, t)=
∫ ∞

0
Uλ(y,0)p(x, y, t) dy.

However, from (4.4.61), we have

Uλ(x,0)= exp
{−λx2−γ }u(x,0),

hence

Uλ(x, t)=
∫ ∞

0
exp
{−λy2−γ }u0(y)p(x, y, t) dy,

for a stationary solution u0(y). Changing variables, i.e. setting z= y2−γ , we obtain

Uλ(x, t)=
∫ ∞

0
exp{−λz}u0

(
z

1
2−γ
)
p
(
x, z

1
2−γ , t

)
z

1
2−γ −1 1

2 − γ dz, (4.4.65)

and hence it is shown that Uλ(x, t) should be the Laplace transform of the distribu-
tion given in (4.4.65). This follows from the forthcoming Proposition 4.4.4. We now
show that p is a fundamental solution. We note that if Uλ is a solution of (4.4.31),
then, by Lemma 4.4.2, so is

u(x, t)=
∫ ∞

0
Uλ(x, t)ϕ(λ)dλ,

provided that the test function ϕ decays sufficiently rapidly against Uλ. Setting
t = 0,

u(x,0)=
∫ ∞

0
Uλ(x,0)ϕ(λ)dλ

=
∫ ∞

0
exp
{−λx2−γ }u0(x)ϕ(λ)dλ

= u0(x)

∫ ∞

0
exp
{−λx2−γ }ϕ(λ)dλ

= u0(x)Φ(x),

where Φ(x) denotes the generalized Laplace transform of ϕ. We now integrate
u0(y)Φ(y) against p(x, y, t) to confirm that p(x, y, t) is a fundamental solution.
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In particular, it follows from Fubini’s theorem that
∫ ∞

0
u0(y)Φ(y)p(x, y, t) dy =

∫ ∞

0
u0(y)

∫ ∞

0
exp
{−λy2−γ }ϕ(λ)dλp(x, y, t) dy

=
∫ ∞

0

∫ ∞

0
u0(y) exp

{−λy2−γ }ϕ(λ)p(x, y, t) dy dλ

=
∫ ∞

0
ϕ(λ)

∫ ∞

0
u0(y) exp

{−λy2−γ }p(x, y, t) dy dλ

=
∫ ∞

0
ϕ(λ)Uλ(x, t) dλ

= u(x, t).
But u(x, t) solves Eq. (4.4.31), hence we have shown that integrating initial data
u0(y)Φ(y) against p(x, y, t) produces a solution of the PDE, with initial data
u0(y)Φ(y). This establishes that p is a fundamental solution of (4.4.31), completing
the second part of the proof.

Regarding the final part of the proof, if u0(x)= 1, then

U0(x, t)= 1,

but

U0(x, t)=
∫ ∞

0
p(x, y, t) dy,

which completes the third part of the proof. �

Finally, we present the following proposition, which was employed in the proof
of Theorem 4.4.3, see Proposition 3.2 in Craddock and Lennox (2009).

Proposition 4.4.4 The solution Uλ(x, t) in Theorem 4.4.3 is the Laplace transform
of a distribution.

The symmetries of the Riccati equations (4.4.35) and (4.4.36) can be obtained
using similar arguments. We present the following result, which corresponds to
(4.4.35). For the case of (4.4.36), we refer the reader to Theorem 2.8 in Craddock
(2009).

Theorem 4.4.5 Consider the PDE

ut = σxγ uxx + f (x)ux − g(x)u, γ �= 2, x ≥ 0 (4.4.66)

and suppose that g and h(x)= x1−γ f (x) satisfy

σxh′ − σh+ 1

2
h2 + 2σx2−γ g(x)= A

2(2 − γ )2 x
4−2γ + B

2 − γ x
2−γ +C,

(4.4.67)

where A > 0, B and C are arbitrary constants. Let u0 be a stationary, analytic
solution of (4.4.66).
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Then (4.4.66) has a solution of the form

Uε(x, t)

= u
(

x

(1 + 2
√
Aε sinh(

√
At)+ 2Aε2(cosh(

√
At)− 1))

1
2−γ

)

× exp

{−Aεx2−γ

σ (2 − γ )2
(

cosh(
√
At)+√

Aε sinh(
√
At)

1 + 2
√
Aε sinh(

√
At)+ 2Aε2(cosh(

√
At)− 1)

)}

× exp

{

− Bt

2σ(2 − γ )
}∣
∣
∣
∣
cosh(

√
At
2 )+ (1 + 2

√
Aε) sinh(

√
At
2 )

cosh(
√
At
2 )− (1 − 2

√
Aε) sinh(

√
At
2 )

∣
∣
∣
∣

B

2σ
√
A(2−γ )

× exp

{
1

2σ
F

(
x

(1 + 2Aε2(cosh(
√
At)− 1)+ 2

√
Aε sinh(

√
At))

1
2−γ

)

− F(x)

2σ

}
(
1 + 2

√
Aε sinh(

√
At)+ 2Aε2(cosh(

√
At)− 1

))− c
2 , (4.4.68)

where F ′(x) = f (x)
xγ

and c = (1−γ )
2−γ . Furthermore, there exists a fundamental solu-

tion p(x, y, t) of (4.4.66) such that
∫ ∞

0
exp
{−λy2−γ }u0(y)p(x, y, t) dy =Uλ(x, t), (4.4.69)

where Uλ(x, t)=U σ(2−γ )2λ
A

(x, t).

Proof 1. The proof follows that of Theorem 2.5 in Craddock (2009). In the proof of
Theorem 4.4.1, we found the following infinitesimal symmetries

v1 =
√
Ax

2 − γ exp{√At}∂x + exp{√At}∂t

−
(

Ax2−γ

2σ(2 − γ )2 +
√
Ax1−γ

2σ(2 − γ )f (x)+ α
)

exp{√At}u∂u

v2 = −√
Ax

2 − γ exp{−√
At}∂x + exp{−√

At}∂t

−
(

Ax2−γ

2σ(2 − γ )2 −
√
Ax1−γ

2σ(2 − γ )f (x)+ β
)

exp{−√
At}u∂u

v3 = ∂t
v4 = u∂u,

where α = 1−γ
2(2−γ )

√
A + B

2σ(2−γ ) , β = − 1−γ
2(2−γ )

√
A + B

2σ(2−γ ) . We now combine
these symmetries as follows

v = v1 + v2 − 2v3 + B

(2 − γ )σ v4,
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which yields

v = 2
√
Ax

2 − γ sinh(
√
At)∂x + 2

(
cosh(

√
At)− 1

)
∂t

−
(
Ax2−γ

σ (2 − γ )2 cosh(
√
At)+

√
Ax1−γ f
σ (2 − γ ) sinh(

√
At)+√

Ac sinh(
√
At)

+ B

σ(2 − γ )
(
cosh(

√
At)− 1

)
)

u∂u

= 2
√
Ax

2 − γ sinh(
√
At)∂x + 2

(
cosh(

√
At)− 1

)
∂t − g̃

σ
u∂u,

where

g̃(x, t)= Ax2−γ

(2 − γ )2 cosh(
√
At)+

√
Ax1−γ f (x)
(2 − γ ) sinh(

√
At)+√

Acσ sinh(
√
At)

+ B

(2 − γ )
(
cosh(

√
At)− 1

)

and c= 1−γ
2−γ .

2. We solve the following ODEs

dx̃

dε
= 2

√
Ax̃

2 − γ sinh(
√
At̃), x̃(0)= x

dt̃

dε
= 2
(
cosh(

√
At̃)− 1

)
, t̃(0)= t

dũ

dε
=− g̃(x̃, t̃ )

σ
ũ, ũ(0)= u.

First, we solve the ODE

dt̃

dε
= 2
(
cosh(

√
At̃)− 1

)
, t̃(0)= t,

to yield

t̃ = 1√
A

log

(√
Aε −√

Aεe
√
At + e

√
At

1 +√
Aε −√

Aεe
√
At

)

. (4.4.70)

Consequently, we solve

dx̃

dε
= 2

√
Ax̃

2 − γ sinh(
√
At̃), x̃(0)= x,

to yield

x̃ = x(√Ae
√
Atε(−1 +√

Aε)+√
Aεe−

√
At (1 +√

Aε)+ (1 − 2Aε2))− 1
2−γ .

(4.4.71)
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Finally, we solve

dũ

ũ
= a1x̃

2−γ cosh(
√
At̃) dε + a2

(
cosh(

√
At̃)− 1

)
dε

+ a3 sinh(
√
At̃)x̃1−γ f (x̃) dε + a4 sinh(

√
At̃) dε, ũ(0)= u,

(4.4.72)

where

a1 =− A

σ(2 − γ )2 , a2 =− B

σ(2 − γ ) ,

a3 =−
√
A

σ(2 − γ ) , a4 =−√
Ac.

We integrate the expression on the right hand side of Eq. (4.4.72) term-by-term to
yield

a1

∫
x̃2−γ cosh(

√
At̃) dε

= a1e
√
At (1 + 2

√
Aε + e

√
At − 2

√
Aεe

√
At )x2−γ

2
√
A(−1 + e

√
At )(−1 −√

Aε +√
Aεe

√
At )(−√

Aε − e
√
At +√

Aεe
√
At )
,

also

a2

∫
(
cosh(

√
At̃)− 1

)
dε = a2

2
t̃

= a2

2
√
A

log

(√
Aε −√

Aεe
√
At + e

√
At

1 +√
Aε −√

Aεe
√
At

)

,

regarding the third term

a3

∫
sinh(

√
At̃)x̃1−γ f (x̃) dε = a3

(2 − γ )
2
√
A
F(x̃)

and lastly

a4

∫
sinh(

√
At̃) dε

= a4

2
√
A
(2 − γ )

(

log(x)+
√
At

2 − γ
)

− a4

2
√
A

log
(√
Aε +Aε2 + e

√
At − 2Aε2e

√
At −√

Aεe2
√
At +Aε2e2

√
At
)

and hence

log(ũ)

= C + a1

× e
√
At (1 + 2

√
Aε + e

√
At − 2

√
Aεe

√
At )x2−γ

2
√
A(−1 + e

√
At )(−1 −√

Aε +√
Aεe

√
At )(−√

Aε − e
√
At +√

Aεe
√
At )
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+ a2

2
√
A

log

(√
Aε −√

Aεe
√
At + e

√
At

1 +√
Aε −√

Aεe
√
At

)

+ a3
(2 − γ )

2
√
A
F(x̃)

− a4
log(

√
Aε +Aε2 + e

√
At − 2Aε2e

√
At −√

Aεe2
√
At +Aε2e2

√
At )

2
√
A

.

From the initial condition, we get

log(u)= C + a1(1 + e
√
At )x2−γ

2
√
A(−1 + e√At )

+ a2

2
√
A

log
(
e
√
At
)+ a3

(2 − γ )
2
√
A
F(x)− a4

2

log(e
√
At )√
A

.

Consequently, we obtain the following solution for ũ,

log(ũ)

= log(u)+ a1x
2−γ

2
√
A

×
(

e
√
At (1 + 2

√
Aε + e

√
At − 2

√
Aεe

√
At )

(−1 + e√At )(−1 −√
Aε +√

Aεe
√
At )(−√

Aε − e√At +√
Aεe

√
At )

− (1 + e
√
At )

(−1 + e
√
At )

)

+ a2

2

( log(
√
Aε−√

Aεe
√
At+e

√
At

1+√
Aε−√

Aεe
√
At
)

√
A

− t
)

+ a3(2 − γ )
2
√
A

(
F(x̃)− F(x))+ a4

2

×
(

− log(
√
Aε +Aε2 + e

√
At − 2Aε2e

√
At −√

Aεe2
√
At +Aε2e2

√
At )√

A
+ t
)

.

3. We now express t and x in terms of the new parameters t̃ and x̃,

t = 1√
A

log

(√
Aε − (1 +√

Aε)e
√
At̃

−√
Aεe

√
At̃ +√

Aε − 1

)

,

also

x = x̃

(1 + 2
√
Aε sinh(

√
At̃)+ 2Aε2(cosh(

√
At̃)− 1))

1
2−γ
.

Substituting, we get for the first term

a1

2
εx̃2−γ (1 + e2

√
At̃ +√

Aε(−1 + e2
√
At̃ ))

(1 +√
Aε(−1 + e√At̃ ))(e√At̃ −√

Aε +√
Aεe

√
At̃ )

= a1εx̃
2−γ cosh(

√
At̃)+√

Aε sinh(
√
At̃)

1 + 2
√
Aε sinh(

√
At̃)+ 2Aε2(cosh(

√
At̃)− 1)

,
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for the second term

a2

2
√
A

(√
At̃ − log

(−e
√
At̃ −√

Aε(−1 + e
√
At̃ )

−1 −√
Aε(−1 + e

√
At̃ )

))

= a2 t̃

2
− a2

2
√
A

log

(
cosh(

√
At̃
2 )+ (1 + 2

√
Aε) sinh(

√
At̃
2 )

cosh(
√
At̃
2 )− (1 − 2

√
Aε) sinh(

√
At̃
2 )

)

,

for the third term

a3(2 − γ )
2
√
A

(

F(x̃)− F
(

x̃

(1 + 2
√
Aε sinh(

√
At̃)+ 2Aε2(cosh(

√
At̃)− 1))

1
2−γ

))

,

and for the fourth term
a4

2
√
A

log
(
e−

√
At̃
(
1 +√

Aε
(−1 + e

√
At̃
))(
e
√
At̃ +√

Aε
(−1 + e

√
At̃
)))

= a4

2
√
A

log
(
1 + 2

√
Aε sinh(

√
At̃)+ 2Aε2(cosh(

√
At̃)− 1

))
.

Hence, substituting a1, a2, a3, and a4, and no longer emphasizing the difference
between new and old variables, one has

Uε(x, t)

= u
(

x

(1 + 2
√
Aε sinh(

√
At)+ 2Aε2(cosh(

√
At)− 1))

1
2−γ

)

× exp

{

− Aεx2−γ

σ (2 − γ )2
(

cosh(
√
At)+√

Aε sinh(
√
At)

1 + 2
√
Aε sinh(

√
At)+ 2Aε2(cosh(

√
At)− 1)

)}

× exp

{

− Bt

2σ(2 − γ )
}∣
∣
∣
∣
cosh(

√
At
2 )+ (1 + 2

√
Aε) sinh(

√
At
2 )

cosh(
√
At
2 )− (1 − 2

√
Aε) sinh(

√
At
2 )

∣
∣
∣
∣

B

2σ(2−γ )√A

× exp

{
1

2σ

(

F

(
x

(1 + 2
√
Aε sinh(

√
At)+ 2Aε2(cosh(

√
At)− 1))

1
2−γ

)

− F(x)
)}
(
1 + 2

√
Aε sinh(

√
At)+ 2Aε2(cosh(

√
At)− 1

))− c
2 .

We change parameters, setting ε→ σ(2−γ )2λ
A

and set

Uλ(x, t)=U σ(2−γ )2λ
A

(x, t),

and find that, for a stationary, analytic solution, say u0(x),

Uλ(x,0)= u0(x)e
− Aεx2−γ
σ(2−γ )2 = u0(x)e

−λx2−γ
.

Similar to the proof of Theorem 4.4.3, we have
∫ ∞

0
e−λy2−γ

u0(y)p(x, y, t) dy =Uλ(x, t),
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for a fundamental solution p, so Uλ(x, t) is the generalized Laplace transform of
u0p. For the proof of this fact, we refer to the proof of Theorem 2.5 in Craddock
(2009). �

We now recall Corollary 2.6 from Craddock (2009).

Corollary 4.4.6 Under the assumptions of Theorem 4.4.5, suppose that we have
a stationary solution u0(x) = 1. Then the resulting fundamental solution has the
property that

∫ ∞

0
p(x, y, t) dy = 1.

Proof From Theorem 4.4.5, we have that

Uλ(x, t)=
∫ ∞

0
e−λy2−γ

p(x, y, t) dy.

But

U0(x, t)=
∣
∣
∣
∣
cosh(

√
At
2 )+ sinh(

√
At
2 )

cosh(
√
At
2 )− sinh(

√
At
2 )

∣
∣
∣
∣

B

2σ
√
A(2−γ )

e
− Bt

2σ(2−γ ) = 1,

which concludes the proof. �

For the case A< 0, we direct the reader to Craddock (2009), see Remark 2.7.
Concluding this chapter, we remark that in Sects. 5.3 and 5.4 the results presented

in this section, and additional results which can be obtained via the same method,
are collected.



Chapter 5
Transition Densities via Lie Symmetry Methods

In this chapter, we discuss how to obtain explicit transition densities and Laplace
transforms of joint transition densities for various diffusions using Lie symmetry
methods. We begin with a motivating example, and subsequently present two cau-
tionary examples. The chapter continues with transition densities, which could have
useful applications in finance or other areas of application, but are new and have
therefore not received so far much attention in the literature. It is hoped that this
chapter encourages readers to construct their own examples and apply them to prob-
lems they encounter. Subsequently, we present Laplace transforms of joint transition
densities in Sect. 5.4. Section 5.5 illustrates how Lie symmetry methods can be pow-
erfully combined with probability theory to enlarge the scope of results that can be
obtained.

5.1 A Motivating Example

In this section, we firstly present an example, which exemplifies how explicit transi-
tion densities can be found via Lie symmetry methods. The squared Bessel process
sits at the heart of the developments in Chap. 3, and our motivating example is
also based on this process. Consequently, we consider a squared Bessel process of
dimension δ, δ ≥ 2,

dXt = δ dt + 2
√
Xt dWt,

where X0 = x > 0, whose transition density satisfies the Kolmogorov backward
equation

ut = 2xuxx + δux.
Hence in Eq. (4.4.1), we set σ = 2, f = δ, g = 0, and γ = 1, and in Eq. (4.4.34), we

set h= δ, A= 0, B =−2δ + δ2

2 . Now, we employ Theorem 4.4.3 with u(x, t)= 1
and F(x)= δ lnx to obtain

Uε(x, t)= exp

{

− 4εx

σ(1 + 4εt)

}

(1 + 4εt)−
δ
σ , (5.1.1)

J. Baldeaux, E. Platen, Functionals of Multidimensional Diffusions with Applications
to Finance, Bocconi & Springer Series 5, DOI 10.1007/978-3-319-00747-2_5,
© Springer International Publishing Switzerland 2013
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where σ = 2. Setting ε = σλ
4 in Eq. (5.1.1), we obtain the Laplace transform

Uλ(x, t)=
∫ ∞

0
exp{−λy}p(t, x, y) dy

= exp

{

− xλ

1 + 2λt

}

(1 + 2λt)−
δ
2 ,

which is easily inverted to yield

p(t, x, y)= 1

2t

(
x

y

) ν
2

Iν

(√
xy

t

)

exp

{

− (x + y)
2t

}

, (5.1.2)

where ν = δ
2 − 1 denotes the index of the squared Bessel process. Of course,

Eq. (5.1.2) shows the transition density of a squared Bessel process started at time 0
in x for being at time t in y. Recall that Iν denotes the modified Bessel function of
the first kind, and that we plotted this transition density in Fig. 3.1.1. We also show
it in Fig. 5.3.1.

5.2 Two Cautionary Examples

The previous example begs the question whether a fundamental solution is neces-
sarily a transition density. Fundamental solutions are known not to be unique, and
the following example, which is again based on a squared Bessel process and taken
from Craddock and Lennox (2009), shows that a fundamental solution is not neces-
sarily a transition density.

Example 5.2.1 Consider a squared Bessel process of dimension three, δ = 3, the
transition density of which satisfies the Kolmogorov backward equation

ut = 2xuxx + 3ux, (5.2.3)

a stationary solution of which is u1(x)= 1/
√
x. Again, we employ Theorem 4.4.3,

to obtain
∫ ∞

0

1√
y

exp{−λy}p(t, x, y) dy

= exp

{

− xλ

1 + 2λt

}

(1 + 2λt)−
3
2 u1

(
x

(1 + 2λt)2

)

= exp

{

− xλ

1 + 2λt

}

(1 + 2λt)−
3
2
(1 + 2λt)√

x

= exp

{

− xλ

1 + 2λt

}

(1 + 2λt)−
1
2

1√
x
,

so that we have

p(t, x, y)= exp{− y+x
2t } cosh(

√
xy

t
)√

2tπx
.
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We note that
∫ ∞

0
p(t, x, y) dy =

√
2t√
πx

exp

{

− x
2t

}

+ erf

( √
x√
2t

)

.

This fundamental solution does not integrate to 1, and hence is not a transition
probability density.

We conclude that not all fundamental solutions are transition probability densi-
ties. From Example 5.2.1, it is tempting to deduce that fundamental solutions inte-
grating to 1 are transition probability densities. The next example, which stems from
Craddock (2009), see Proposition 2.10, shows that also this conjecture is false. As
the preceding two examples, it is again based on a squared Bessel process. The ex-
ample makes use of the following proposition, Proposition 2.4 in Craddock (2009),
which shows how to invert a Laplace transform when studying squared Bessel pro-
cesses.

Proposition 5.2.2 For a nonnegative integer n, the following equality holds,

L−1
y

(

λn exp

{
k

λ

})

=
n∑

l=0

kl

l! δ
n−l (y)+

(
k

y

) n+1
2

In+1(2
√
ky),

where Lλ is the Laplace transform, δ(y) is the Dirac delta function and In is a
modified Bessel function of the first kind with index n.

We now present the example.

Example 5.2.3 Consider a squared Bessel process of dimension 2δ. The transition
density satisfies the Kolmogorov backward equation

ut = 2xuxx + 2δux. (5.2.4)

It is easily verified that the stationary solutions u0(x)= 1 and u1(x)= x1−δ satisfy
(5.2.4). In Sect. 5.1, it was shown that the stationary solution u0(x) = 1 produces
the correct transition density. We will now investigate the fundamental solution pro-
duced by u1(x)= x1−δ . Applying Theorem 4.4.3 with A= 0, we obtain

Uλ(x, t)= x1−δ exp

{

− λx

(1 + 2λt)

}

(1 + 2λt)δ−2,

i.e.

Lλ =
∫ ∞

0
exp{−λy}u1(y)q(t, x, y) dy

= x1−δ exp

{

− λx

1 + 2λt

}

(1 + 2λt)δ−2.

We now invert the Laplace transform, which yields

u1(y)q(t, x, y)= x1−δ exp

{

−x + y
2t

}

(2t)δ−2L−1
y

(

λδ−2 exp

{
k

λ

})

,
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where k = x

(2t)2
. We now apply Proposition 5.2.2 to yield

q(t, x, y)= (2t)−1
(
y

x

) δ−1
2

exp

{

− (x + y)
2t

}

Iδ−1

(√
xy

t

)

+ (2t)δ−2
(
y

x

)δ−1

exp

{

− (x + y)
2t

} δ−2∑

l=0

kl

l! δ
δ−2−l (y).

We have
∫ ∞

0
(2t)δ−2

(
y

x

)δ−1

exp

{

−x + y
2t

} δ−2∑

l=0

xl

(2t)2l l!δ
(δ−2−l)(y) dy = 0,

since the Dirac delta function and their derivatives select the value of the test func-
tion yδ−1 and its derivatives at zero. Also, we recognize that

(2t)−1
(
y

x

) δ−1
2

exp

{

− (x + y)
2t

}

Iδ−1

(√
xy

t

)

is the transition density of a squared Bessel process of dimension 2δ, cf. (3.1.4), and
hence

∫ ∞

0
(2t)−1

(
y

x

) δ−1
2

exp

{

− (x + y)
2t

}

Iδ−1

(√
xy

t

)

dy = 1.

Finally, we observe that U0(x, t)= u1(x) and

Uλ(x, t)=
∫ ∞

0
exp{−λy}u1(y)q(t, x, y) dy,

which yields
∫ ∞

0
u1(y)q(t, x, y) dy = u1(x),

and hence q(t, x, y) is not the transition density.

However, in Craddock (2009), the following useful check for processes satisfying

Xt =X0 +
∫ t

0
f (Xs) ds +

∫ t

0

√
2σXs dWs

was presented, see Proposition 2.11 in Craddock (2009), which we now recall.

Proposition 5.2.4 LetX = {Xt, t ≥ 0} be an Itô diffusion which is the unique strong
solution of

Xt =X0 +
∫ t

0
f (Xs) ds +

∫ T

0

√
2σXs dWs,

where W = {Wt, t ≥ 0} is a standard Wiener process and X0 = x > 0. Suppose
further that f is measurable and there exist constants K > 0, a > 0 such that
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‖f (x)‖ ≤ K exp{ax} for all x. Then there exists a T > 0 such that u(x, t, λ) =
E(exp{−λXt }) is the unique strong solution of the first order PDE

∂u

∂t
+ λ2σ

∂u

∂λ
+ λE(f (Xt ) exp{−λXt }

)= 0, (5.2.5)

subject to u(x,0, λ)= exp{−λx}, for 0 ≤ t < T , λ > a.

Finally, we show that Proposition 5.2.4 can be used to confirm that the fundamen-
tal solution u0(x)= 1 produces the correct fundamental solution, see Example 2.3
in Craddock (2009).

Example 5.2.5 For the squared Bessel process X = {Xt, t ≥ 0} of dimension δ
given by the SDE

dXt = δ dt + 2
√
Xt dWt,

where X0 = x > 0, Eq. (5.2.5) yields that E(exp{−λXt }) is the unique solution of
the PDE

ut + 2λ2uλ + λδu= 0,

where u(x,0, λ)= exp{−λx}. It can be confirmed that

u(x, t, λ)=E(exp{−λXt }
)= 1

(1 + 2λt)
δ
2

exp

{

− λx

1 + 2λt

}

,

satisfies the PDE and boundary conditions, and coincides with the result produced
by the fundamental solution corresponding to u0(x)= 1 in Example 5.2.3.

The above examples indicate that one has to be careful when deciding which
fundamental solution yields the desired transition probability density.

5.3 One-Dimensional Examples

In this section, we aim to illustrate how to derive one-dimensional transition den-
sities using the results from Chap. 4. We emphasize that the process of deriving
transition densities is mechanical and easily applied to the study of novel stochas-
tic processes. In this regard, we recall examples of transition densities studied in
Craddock and Platen (2004) and provide the reader with additional references. It is
intended that this section encourages readers to study stochastic processes that are
tractable and potentially more suitable to their applications than those processes that
have been employed in the past mainly because they were considered to be tractable
from a conventional perspective.

We illustrate the derivation of the transition density of the square-root process,
where we follow the presentation in Craddock (2009). In particular, we assume that

dXt = (a − bXt) dt +
√

2σXt dWt , (5.3.6)

where X0 = x > 0 and a, b, and σ are assumed to be positive and a
σ
≥ 1.
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Proposition 5.3.1 The transition density of the process X as specified in the SDE
(5.3.6) started in x at time 0 being in y at time t is given by the explicit formula

p(x, t, y)= b exp{bt ( a
σ
+ 1)}

σ(exp{bt} − 1)

(
y

x

) ν
2

exp

{−b(x + exp{bt}y)
σ (exp{bt} − 1)

}

× Iν
(

b
√
xy

σ sinh( bt2 )

)

, (5.3.7)

where ν = a
σ
− 1 ≥ 0.

Proof We note that the transition density of X satisfies the Kolmogorov backward
equation

ut = σxuxx + (a − bx)
and that Eq. (4.4.67) is satisfied with

h(x)= (a − bx), g = 0, γ = 1.

Hence we employ Theorem 4.4.5 with γ = 1, u0 = 1, A = b2, B = −ab, C =
1
2a

2 − aσ , and F(x)= a ln(x)− bx to obtain

Uε(x, t)= exp

{−b2εx

σ

(
cosh(bt)+ bε sinh(bt)

1 + 2bε sinh(bt)+ 2b2ε2(cosh(bt)− 1)

)}

× exp

{
tab

2σ

}∣
∣
∣
∣
cosh( bt2 )+ (1 + 2bε) sinh( bt2 )

cosh( bt2 )− (1 − 2bε) sinh( bt2 )

∣
∣
∣
∣

−ab
2σb

× exp

{
1

2σ
F

(
x

(1 + 2b2ε2(cosh(bt)− 1)+ 2bε sinh(bt))

)

− F(x)

2σ

}

= exp

{

b(at − 2bεx) cosh

(
bt

2

)

+ at sinh

(
bt

2

)

+ 2abεt sinh

(
bt

2

)

+ 2bεx sinh

(
bt

2

)}(

cosh

(
bt

2

)

+ (1 + 2bε) sinh

(
bt

2

))− a
σ

,

where the last equality can be shown using MATHEMATICA. We have
(

cosh

(
bt

2

)

+ (1 + 2bε) sinh

(
bt

2

))− a
σ

= exp

{
bta

2σ

}
(
exp{bt} + bε(exp{bt} − 1

))− a
σ .

Also, it follows that

exp

{

b(at − 2bεx) cosh

(
bt

2

)

+ at sinh

(
bt

2

)

+ 2abεt sinh

(
bt

2

)

+ 2bεx sinh

(
bt

2

)}

= exp

{
abt

2σ

}

exp

{

− b2εx

σ(exp{bt} + bε(exp{bt} − 1))

}

.
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Now, one obtains

Uε(x, t)= exp

{
abt

2σ

}
(
exp{bt} + bε(exp{bt} − 1

))− a
σ

× exp

{
abt

2σ

}

exp

{

− b2εx

σ(exp{bt} + bε(exp{bt} − 1))

}

= exp

{
abt

σ

}
(
exp{bt} + bε(exp{bt} − 1

))− a
σ

× exp

{

− b2εx

σ(exp{bt} + bε(exp{bt} − 1))

}

.

Substituting ε = λσ

b2 , we get

Uε(x, t)=Uλ(x, t)
=
∫ ∞

0
exp{−λy}p(t, x, y) dy

= exp

{
abt

σ

}
(
b exp{bt} + λσ (exp{bt} − 1

))− a
σ b

a
σ

× exp

{

− bλx

(b exp{bt} + λσ(exp{bt} − 1))

}

.

This Laplace transform can be easily inverted to yield (5.3.7). It can be confirmed
via Proposition 5.2.4 that the density in (5.3.7) is the correct transition probability
density. �

In Fig. 3.1.2, a plot of the transition density of a square-root process was shown.
We now recall some results from Craddock and Platen (2004). In particular, we
study generalizations of the squared Bessel process. We focus on the process X =
{Xt, t ≥ 0}, given by the SDE

dXt = a(Xt ) dt +
√

2Xt dWt , (5.3.8)

for t ≥ 0 with X0 > 0. Then, following Craddock and Platen (2004), Platen and
Heath (2010), and Platen and Bruti-Liberati (2010), by applying the results of
Chap. 4, we distinguish ten cases:

(i) for the constant drift function

a(x)= α > 0,

we recover the squared Bessel process of dimension δ = 2α with transition
density

p(0, x; t, y)= 1

t

(
x

y

) 1−α
2

Iα−1

(
2
√
x y

t

)

exp

{

− (x + y)
t

}

.

Here Iα−1 is again the modified Bessel function of the first kind with index
α − 1, see also Eq. (3.1.4) and Fig. 3.1.1
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Fig. 5.3.1 Transition density
for a squared Bessel process,
case (i)

Fig. 5.3.2 Transition density
for case (ii)

(ii) setting the drift function to

a(x)= μx

1 + μ
2 x

for μ> 0, we obtain the transition density

p(0, x; t, y)= exp{− (x+y)
t

}
(1 + μ

2 x)t

[(√
x

y
+ μ

√
x y

2

)

I1

(
2
√
x y

t

)

+ t δ(y)
]

with δ(·) denoting the Dirac delta function. For y = 0 one can interpret
exp{− x

t
}

(1+μ
2 x)

as the probability of absorption at zero. In Fig. 5.3.2 we show the

above transition density for x = 1 and μ= 1
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Fig. 5.3.3 Transition density
for case (iii)

(iii) the drift function

a(x)= 1 + 3
√
x

2 (1 +√
x)
,

results in the transition density

p(0, x; t, y)= cosh(
2
√
x y

t
)√

πyt(1 +√
x)

(

1 +√
y tanh

(
2
√
x y

t

))

× exp

{

− (x + y)
t

}

.

In Fig. 5.3.3 we display the corresponding transition density for x = 1
(iv) studying the drift function

a(x)= 1 +μ tanh

(

μ+ 1

2
μ ln(x)

)

for μ= 1
2

√
5
2 , we obtain the transition density

p(0, x; t, y)=
(
x

y

)μ
2
[

I−μ
(

2
√
x y

t

)

+ e2μyμIμ

(
2
√
x y

t

)]

× exp{− x+y
t
}

(1 + exp{2μ}xμ) t . (5.3.9)

The shape of the density (5.3.9) for x = 1 looks quite similar to that in
Fig. 5.3.3

(v) given the drift function

a(x)= 1

2
+√

x,
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we obtain the transition density

p(0, x; t, y)= cosh

(
(t + 2

√
x)

√
y

t

)
exp{−√

x}√
π y t

× exp

{

− (x + y)
t

− t

4

}

. (5.3.10)

Also the transition density (5.3.10) for x = 1 shows a lot of similarity with
that in Fig. 5.3.3

(vi) the drift function

a(x)= 1

2
+√

x tanh(
√
x),

results in the transition density

p(0, x; t, y)= cosh(
2
√
xy

t
)√

πyt

cosh(
√
y)

cosh(
√
x)

exp

{

− (x + y)
t

− t

4

}

. (5.3.11)

The above transition density (5.3.11) for x = 1 has also a similar shape as that
in Fig. 5.3.3

(vii) when the drift function satisfies

a(x)= 1

2
+√

x coth(
√
x)

the process has the transition density

p(0, x; t, y)= sinh(
2
√
x y

t
)√

π y t

sinh(
√
y)

sinh(
√
x)

exp

{

− (x + y)
t

− t

4

}

.

This transition density has for x = 1 some similarity with that shown in
Fig. 5.3.1

(viii) using the drift function

a(x)= 1 + cot
(
ln(

√
x)
)

for x ∈ (exp{−2π},1), then we obtain the real valued transition density

p(0, x; t, y)= exp{− (x+y)
t

}
2ıt sin(ln(

√
x))

(

y
ı
2 Iı

(
2
√
x y

t

)

− y− ı
2 I−ı

(
2
√
x y

t

))

,

(5.3.12)

where ı denotes the imaginary unit. We plot in Fig. 5.3.4 the transition density
(5.3.12) for x = 1

2 . Note that the process X lives on the bounded interval
(exp{−2π},1)

(ix) choosing the drift function

a(x)= x coth

(
x

2

)

,



5.3 One-Dimensional Examples 151

Fig. 5.3.4 Transition density
for case (viii)

Fig. 5.3.5 Transition density
for case (x)

then we obtain the transition density

p(0, x; t, y)= sinh( y2 )

sinh( x2 )
exp

{

− (x + y)
2 tanh( t2 )

}

×
[

exp{ t2 }
exp{t} − 1

√
x

y
I1

( √
x y

sinh( t2 )

)

+ δ(y)
]

,

where δ(·) is again the Dirac delta function. Figure 5.3.1 displayed a transition
density of similar shape

(x) lastly, setting the drift function to

a(x)= x tanh

(
x

2

)
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we obtain the transition density

p(0, x; t, y)= cosh( y2 )

cosh( x2 )
exp

{

− (x + y)
2 tanh( t2 )

}

×
[

exp{ t2 }
exp{t} − 1

√
x

y
I1

( √
x y

sinh( t2 )

)

+ δ(y)
]

.

We plot in Fig. 5.3.5 the transition density for x = 1.

Many of the above diffusion processes are very recent in the literature and essen-
tially discovered in Craddock and Platen (2004). They offer new dynamics ready to
be employed in modeling, for instance, in finance.

5.4 Laplace Transforms of Joint Transition Densities

In this section, we present Laplace transforms of the type

E

(

exp

{

−λXt −μ
∫ t

0
Xs ds − γ

∫ t

0

ds

Xs

})

, (5.4.13)

for suitable stochastic processes X = {Xt, t ≥ 0}. These Laplace transforms have
important applications. For example, if X is the independent short rate process and
λ = γ = 0 and μ = 1, then Eq. (5.4.13) contributes to the price of a zero coupon
bond, see also Sect. 5.5. However, there are many applications beyond interest rate
modeling. For instance, in Chap. 6 we will design exact Monte Carlo schemes for
stochastic volatility models based on results from this section. In Sect. 8.5.2, we will
focus on exact and quasi-Monte Carlo methods for realized variance derivatives, to
illustrate further possible applications of the results presented in this section. At the
heart of such applications sits the observation that for some tasks, the fundamental
solution is sometimes more interesting than its Laplace transform, see Sect. 8.5.2
and Chap. 6. Hence even though we might not always be able to integrate the fun-
damental solution to calculate the Laplace transform, we may be nevertheless able
to calculate and subsequently use the fundamental solution.

We illustrate this type of technique in the following result, see Craddock and
Lennox (2009).

Proposition 5.4.1 Let X = {Xt, t ≥ 0} be a squared Bessel process,

dXt = δ dt + 2
√
Xt dWt,

where δ ≥ 2 and X0 = x > 0. Then the function u(x, t) given by

u(x, t)=E
(

exp

{

−λXt −μ
∫ t

0

ds

Xs

})

= exp{−x/2t}
(
x

2t

)d
Γ (α)1F1(α,β, x/(2t + 4t2λ))

Γ (β)(1 + 2λt)α
,
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where 1F1(a, b, z) is Kummer’s confluent hypergeometric function, satisfies the
PDE

ut = 2xuxx + δux − μ

x
u,

whose fundamental solution is given by

p(t, x, y)= 1

2t

(
x

y

)(1−δ/2)/2
I2d+δ/2−1

(√
xy

t

)

exp

{

− (x + y)
2t

}

, (5.4.14)

where d = 1
4 (2 − δ +√(δ − 2)2 + 8μ), α = d + δ

2 , and β = 2d + δ
2 .

Proof The drift function f (x)= δ satisfies the first Ricatti equation (4.4.34), where
σ = 2, γ = 1, g(x)= μ

x
, and A= 0. Choosing the stationary solution u0(x)= xd ,

where d = 1
4 (2 − δ+√(δ − 2)2 + 8μ), we obtain from Theorem 4.4.3

Uε(x, t)= exp

{

− 4εx

2(1 + 4εt)

}
xd

(1 + 4εt)2d+ δ
2

.

Next, we set ε = σλ
4 = λ

2 to obtain

Uε(x, t)=Uλ(x, t)=
∫ ∞

0
ydp(t, x, y) exp{−λy}dy

= xd

(1 + 2λt)
δ
2+2d

exp

{

− λx

(1 + 2λt)

}

.

Inverting this Laplace transform, we obtain the fundamental solution

p(t, x, y)= 1

2t
exp

{

−x + y
2t

}(
x

y

) 1−δ/2
2

I δ
2+2d−1

(√
xy

t

)

.

We obtain
∫ ∞

0
e−λyp(t, x, y) dy = Γ (α)

Γ (β)

(
x

2t

)d
e−

x
2t 1F1

(

α,β,
x

2t + 4t2λ

)

(1 + 2λt)−α,

by integrating the modified Bessel function of the first kind term-by-term. �

We now recall results from Craddock and Lennox (2009), where Eq. (4.4.35)
was handled via group invariant solutions. In particular, this approach produced
Whittaker transforms of fundamental solutions. Although such integral transforms
have known inversion integrals, explicit inversion is usually not possible, as few of
these transforms have been computed and tabulated. However, in Craddock (2009),
Eqs. (4.4.35) and (4.4.36) were handled via symmetry methods, namely by using
the full group of symmetries, see also the proof of Theorem 4.4.5. This approach
produces generalized Laplace transforms of the fundamental solutions.

As fundamental solutions will play an important role in Chap. 6, we present both,
Laplace transforms and fundamental solutions themselves.
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Theorem 5.4.2 Let X = {Xt, t ≥ 0} be a squared Bessel process where

dXt = δ dt + 2
√
Xt dWt,

for δ ≥ 2 and X0 = x > 0. Then the function u(x, t) given by

u(x, t)=E
(

exp

{

−λXt − b2

2

∫ t

0
Xs ds

})

= exp{−(xb/2)(1 + 2λb−1 coth(bt))/(coth(bt)+ 2λb−1)}
(cosh(bt)+ 2λb−1 sinh(bt))δ/2

.

satisfies the PDE

ut = 2xuxx + δux − b2

2
xu,

whose fundamental solution is given by

p(t, x, y)= b

2 sinh(bt)

(
y

x

)δ/4−1/2

exp

{

− b(x + y)
2 tanh(bt)

}

I(δ−2)/2

(
b
√
xy

sinh(bt)

)

.

We have the following result pertaining to square-root processes satisfying the
SDE,

dXt = (a − bXt) dt +
√

2σXt dWt , (5.4.15)

where X0 = x > 0.

Proposition 5.4.3 Let X = {Xt, t ≥ 0} be a square-root process of dimension
δ = 4a

2σ ≥ 2, whose dynamics satisfy the SDE (5.4.15). Then the function u(x, t)
is given by

u(x, t)=E
(

exp

{

−λXt −μ
∫ t

0

ds

Xs

})

= Γ (k + ν/2 + 1/2)

Γ (ν + 1)
βx−k exp

{
b

2σ

(

at + x − x

tanh(bt/2)

)}

× eβ
2/(2α)

βαk
M−k,ν/2

(
β2

α

)

,

where ν = 1
σ

√
(a − σ)2 + 4μσ , k = a

2σ , α = b
2σ (1 + coth( bt2 ))+ λ, β = b

√
x

2σ sinh( bt2 )
,

and Ms,r(z) denotes the Whittaker function of the first kind. Furthermore, u(x, t)
satisfies the PDE

ut = σxuxx + (a − bx)ux − μ

x
u,

whose fundamental solution is given by

p(t, x, y)= b

2σ sinh(bt/2)

(
y

x

)a/(2σ)−1/2

exp

{
b

2σ

(

at + (x − y)− x + y
tanh(bt/2)

)}

× Iν
(

b
√
xy

σ sinh(bt/2)

)

. (5.4.16)
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Finally, we present the Laplace transform of the joint density for
(

Xt,

∫ t

0
Xs ds,

∫ t

0

ds

Xs

)

.

In particular, we consider the function

u(x, t)=E
(

exp

{

−λXt −
(
b2/2

)
∫ t

0
Xs ds − ν

∫ t

0

ds

Xs

})

,

where X0 > 0. We have the following result.

Proposition 5.4.4 Let X = {Xt, t ≥ 0} be a squared Bessel process of dimension
δ ≥ 2. Then

u(x, t)=E
(

exp

{

−λXt −
(
b2/2

)
∫ t

0
Xs ds − ν

∫ t

0

ds

Xs

})

= exp
{−bx/(2 tanh(bt)

)}Γ (α)

Γ (β)

ba/2(x exp{bt})γ (exp{2bt} − 1)−γ

(cosh(bt)+ (2λ/b) sinh(bt))δ

× 1F1

(

α,β,
b2x csch(bt)

2b cosh(bt)+ 4λ sinh(bt)

)

,

where a =√(δ − 2)2 + 8ν, δ = 1
4 (2+ a+ δ), γ = 1

4 (2+ a− δ), α = 1
4 (a+ δ+ 2),

β = a+2
2 , and 1F1(a, b, z) is Kummer’s confluent hypergeometric function and csch

denotes the hyperbolic cosecant, csch(x)= 2 exp{x}
exp{2x}−1 . Furthermore, u(x, t) satisfies

the PDE

ut = 2xuxx + δux − b2

2
xu− ν u

x
,

whose fundamental solution is given by

p(t, x, y)= b

2 sinh(bt)
exp
(−b(x + y)/(2 tanh(bt)

))
(
y

x

)(δ−2)/4

× I√
(δ−2)2+8ν/2

(
b
√
xy

sinh(bt)

)

.

This result provides important access to functionals of squared Bessel processes
that have explicit formulas. We point out that Proposition 5.4.4 will be applied in
Sects. 5.5, 6.3, and 6.4.

5.5 Bond Pricing in Quadratic Models

So far in this chapter, we have illustrated how Lie symmetry methods can be used to
obtain transition densities and Laplace transforms of joint transition densities. This
section illustrates that by combining results obtained via Lie symmetry methods
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with probability theory, the scope of results that can be obtained is increased. We
illustrate this using two examples. Firstly, we use Proposition 5.4.4, which provides
the Laplace transform of joint transition densities of the squared Bessel process with
the change of law result from Pitman and Yor (1982), see Proposition 3.1.6, which
connects squared Bessel and square-root processes, to price zero coupon bonds in
the Cox, Ingersoll, Ross (CIR) model introduced in Cox et al. (1985). Secondly, we
recall from Sect. 3.1, that a 3/2 process is simply the inverse of a squared Bessel
process, and use this observation and Proposition 5.4.3, which deals with square-
root processes, to price zero coupon bonds under a 3/2 process for the short-rate.

We begin with the pricing of a zero coupon bond in the CIR model. Recall that
in the CIR model, the short rate is modeled using a square-root process,

drt = k(θ − rt ) dt + σ√rt dWt , (5.5.17)

where r0 ≥ 0 and 4kθ
σ 2 ≥ 2. Consequently, we are interested in computing

E

(

exp

{

−
∫ T

t

rs ds

} ∣
∣
∣
∣At
)

, (5.5.18)

where we use At to denote At = σ {rs, s ≤ t}. We find it convenient to reduce the
pricing problem to the study of Laplace transforms of squared Bessel processes. As
discussed in Sect. 3.1, we recall that there are at least two methods for reducing the
study of square-root processes to the study of squared Bessel processes. These are
transformation of space-time and the change of law, see Propositions 3.1.5 and 3.1.6.
As discussed in Sect. 3.1, using the standard change of time technique, we transform
(5.5.17) into a square-root process with volatility coefficient 2: we introduce the
process ρ = {ρt , t ≥ 0} via ρt = r 4t

σ2
, and obtain the following SDE for ρt :

dρt = (2jρt + δ) dt + 2
√
ρt dW̃t , (5.5.19)

where W̃ = {W̃t , t ≥ 0} is a standard Brownian motion, j =− 2k
σ 2 , and δ = 4kθ

σ 2 . We

use jP nρ0
to denote the law of ρ, and set Ft = σ {ρs, s ≤ t}. Due to the functional de-

pendence of r and ρ, we have A 4t
σ2

=Ft , t ≥ 0. By Proposition 3.1.6, the following

absolute continuity relationship between square-root and squared Bessel processes
holds:

jP δρ0

∣
∣
Ft= exp

{
j

2
(ρt − ρ0 − δt)− j2

2

∫ t

0
ρs ds

}

P δρ0

∣
∣
∣
∣
Ft
. (5.5.20)

We now use Eq. (5.5.20) to change the pricing problem (5.5.18) into one that can
be solved using the Laplace transforms of densities of squared Bessel processes
from Sect. 5.4. We point out that this technique will also be used in Chap. 6. The
next theorem shows how to derive the well-known bond pricing formula in the CIR
model by combining the results from Sect. 5.4, in particular Proposition 5.4.4, with
the change of law formula from Pitman and Yor (1982).
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Theorem 5.5.1 Assume that the dynamics of rt are given by (5.5.17) and 4kθ
σ 2 ≥ 2.

Then we have the following formula for a zero coupon price at time t with maturity
date T > t :

E

(

exp

{

−
∫ T

t

rs ds

} ∣
∣
∣
∣At
)

=A(t, T ) exp
{−B(t, T )rt

}
,

where

A(t, T )=
(

2h exp((k + h)(T − t)/2)
2h+ (k + h)(exp(h(T − t))− 1)

) 2kθ
σ2

B(t, T )= 2(exp((T − t)h)− 1)

2h+ (k + h)(exp((T − t)h)− 1)

h=
√
k2 + 2σ 2.

Proof Setting t̃ := tσ 2

4 and T̃ := T σ 2

4 , we employ Eq. (5.5.20) to obtain

E

(

exp

{

−
∫ T

t

rs ds

} ∣∣
∣
∣At
)

=E
(

exp

{

−
∫ T

t

ρ sσ2
4
ds

} ∣∣
∣
∣F tσ2

4

)

=E
(

exp

{

− 4

σ 2

∫ T̃

t̃

ρs̃ ds̃

} ∣∣
∣
∣Ft̃
)

= Ẽ
(

exp

{
j

2
ρ
T̃
− j

2
ρt̃ −

jδ(T̃ − t̃ )
2

−
(
j2

2
+ 4

σ 2

)∫ T̃

t̃

ρs̃ ds̃

} ∣
∣
∣
∣Ft̃
)

,

where we use E to denote the expectation with respect to jP δρ0
and Ẽ to denote the

expectation with respect to P δρ0
. Also, we recall that δ = 4kθ

σ 2 and j =− 2k
σ 2 . Now we

define

b2

2
= j2

2
+ 4

σ 2

to obtain

b= 2

σ 2

√
k2 + 2σ 2 = 2

σ 2
h

and we also set λ=− j
2 . It now follows from Theorem 5.4.2 that

Ẽ

(

exp

{
j

2
ρ
T̃
− j

2
ρt̃ −

jδ(T̃ − t̃ )
2

−
(
j2

2
+ 4

σ 2

)∫ T̃

t̃

ρs̃ ds̃

} ∣∣
∣
∣Ft̃
)

= exp

{
k2θ(T − t)

σ 2
+ rt k

σ 2

}
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×

exp

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−rt
h(1+2λ coth(b(T̃−t̃ ))σ2

2
√
k2+2σ2

)

σ2(coth(b(T̃−t̃ ))+2 λσ2

2
√
k2+2σ2

)

coth(b(T̃−t̃ ))+2λ σ2

2
√
k2+2σ2

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(cosh(b(T̃ − t̃ ))+ 2λb−1 sinh(b(T̃ − t̃ )))δ/2 .

It can be checked that

exp{ k2θ(T−t)
σ 2 }

(cosh(b(T̃ − t̃ ))+ 2λb−1 sinh(b(T̃ − t̃ )))δ/2 =A(t, T ).

Finally,

exp

{

−rt
(
h

σ 2

(
1 + k

h
coth(b(T̃ − t̃ ))

coth(b(T̃ − t̃ ))+ k
h

)

− k

σ 2

)}

= exp
{−rtB(t, T )

}
,

is completing the proof. �

Next, we discuss zero coupon bond pricing in the 3/2 model. However, we point
out that these techniques are also useful when studying volatility derivatives, see
e.g. Carr and Sun (2007). We recall the 3/2 process from Sect. 3.1, which is given
by

drt = κrt (θ − rt ) dt + σr3/2
t dWt ,

where r0 > 0. Consequently, we are interested in computing

E

(

exp

{

−
∫ T

t

rs ds

} ∣
∣
∣
∣At
)

,

where At = σ {rs, s ≤ t}. Now, we define vt = 1
rt

, and obtain by Itô’s formula

dvt =
(
κ + σ 2 − κθvt

)
dt − σ√vt dWt .

Since vt = 1
rt

, we have

E

(

exp

{

−
∫ T

t

rs ds

} ∣
∣
∣
∣At
)

=E
(

exp

{

−
∫ T

t

ds

vs

} ∣
∣
∣
∣At
)

.

We now simply use Proposition 5.4.3 to yield

E

(

exp

{

−
∫ T

t

rs ds

} ∣∣
∣
∣At
)

= Γ (k + ν
2 + 1

2 )

Γ (ν + 1)
βrkt exp

{
b

σ 2

(

aτ + r−1
t − r−1

t

tanh(bτ/2)

)}

× exp{β2/(2α)}
βαk

M−k,ν/2
(
β2

α

)

,
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where ν = 2
σ 2

√
(κ + σ 2 − σ 2

2 )
2 + 2σ 2, k = κ+σ 2

σ 2 , α = κθ

σ 2 (1 + coth( κθτ2 )), β =
κθv

− 1
2

t

σ 2 sinh( κθτ2 )
, a = κ + σ 2, and b= κθ . This result can be shown to match Theorem 3

in Carr and Sun (2007).
Note that similar calculations yield corresponding results for other diffusion pro-

cesses captured in Chap. 4.



Chapter 6
Exact and Almost Exact Simulation

The aim of this chapter is to discuss the simulation of tractable models, illustrated
in the context of stochastic volatility models. For two popular stochastic volatility
models, the Heston model, see Heston (1993), and the 3/2 model, see Heston (1997)
and Lewis (2000), we present exact simulation algorithms, where we use results
from Sect. 5.4. These techniques are based on the inverse transform method, which
we firstly recall. Moving to higher dimensions, it seems more difficult to generalize
these techniques except for the trivial dependence structure, the independent case.
Consequently, we recall almost exact simulation schemes from Platen and Bruti-
Liberati (2010), which are applicable in the multidimensional case. Finally, we point
out that in Chap. 11 we will discuss advanced multidimensional stochastic volatility
models based on the Wishart process, which have been successfully applied to the
modeling of stochastic volatility.

We introduce these simulation methods in an equity context, in particular, we
concentrate on modeling stocks and stock indices. However, these methods are
also applicable in other areas, for example in interest rate modeling: the stochastic
volatility Brace-Ga̧tarek-Musiela model introduces stochastic volatility processes in
the context of the LIBOR market model. The techniques discussed in this chapter are
also applicable in such a context, see e.g. Chap. 16 in Brace (2008), in particular,
Sect. 16.4, which deals with simulation.

6.1 Sampling by Inverse Transform Methods

Conceptually, we simulate the given models, one- and multidimensional models, us-
ing the inverse transform method, which was discussed e.g. in Chap. 2 in Platen and
Bruti-Liberati (2010). The forthcoming brief description of the inverse transform
method follows this discussion closely.

The well-known inverse transform method can be applied for the generation of a
continuous random variable Y with given probability distribution function FY . From

J. Baldeaux, E. Platen, Functionals of Multidimensional Diffusions with Applications
to Finance, Bocconi & Springer Series 5, DOI 10.1007/978-3-319-00747-2_6,
© Springer International Publishing Switzerland 2013
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a uniformly distributed random variable 0 < U < 1, we obtain an FY distributed
random variable y(U) by realizing that

U = FY
(
y(U)

)
, (6.1.1)

so that

y(U)= F−1
Y (U). (6.1.2)

Here F−1
Y denotes the inverse function of FY . More generally, one can still set

y(U)= inf
{
y: U ≤ FY (y)

}
(6.1.3)

in the case when FY is no longer continuous, where inf{y: U ≤ FY (y)} denotes the
lower limit of the set {y: U ≤ FY (y)}. If U is a U(0,1) uniformly distributed ran-
dom variable, then the random variable y(U) in (6.1.2) will be FY -distributed. The
above calculation in (6.1.2) may need to apply a root finding method, for instance,
a Newton method, see Press et al. (2002). Obviously, given an explicit transition
distribution function for the solution of a one-dimensional SDE we can sample a
trajectory directly from this transition law at given time instants. One simply starts
with the initial value, generates the first increment and sequentially the subsequent
random increments of the simulated trajectory, using the inverse transform method
for the respective transition distributions that emerge.

Also in the case of a two-dimensional SDE we can simulate by sampling from
the bivariate transition distribution. We first identify the marginal transition dis-
tribution function FY1 of the first component. Then we use the inverse transform
method, as above, for the exact simulation of an outcome of the first component of
the two-dimensional random variable based on its marginal distribution function.
Afterwards, we exploit the conditional transition distribution function FY2|Y1 of the
second component Y2, given the simulated first component Y1, and use again the
inverse transform method to simulate also the second component of the considered
SDE. This simulation method is exact as long as the root finding procedure involved
can be interpreted as being exact. It exploits a well-known basic result on multivari-
ate distribution functions, see for instance Rao (1973).

It is obvious that this simulation technique can be generalized to the exact sim-
ulation of increments of solutions of some d-dimensional SDEs. Based on a given
d-variate transition distribution function one needs to find the marginal distribution
FY1 and the conditional distributions FY2|Y1 ,FY3|Y1,Y2 , . . . ,FYd |Y1,Y2,...,Yd−1 . Then the
inverse transform method can be applied to each conditional transition distribution
function one after the other. This also shows that it is sufficient to characterize ex-
plicitly in a model just the marginal and conditional transition distribution functions.

Note also that nonparametrically described transition distribution functions are
sufficient for application of the inverse transform method. Of course, explicitly
known parametric distributions are preferable for a number of practical reasons.
They certainly reduce the complexity of the problem itself by splitting it into a se-
quence of problems. Finally, we recall that explicit transition densities have already
been presented in Chaps. 2, 3, and 5.
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Regarding the simulation of stochastic volatility models describing the evolution
of a stock or index price, we proceed as follows, assuming a price process with
SDE

dSt = μSt dt +
√
VtSt dWt ,

where V = {Vt , t ≥ 0} is a square-root process, see Sect. 3.1, if we deal with the
Heston model; or a 3/2 process, see Sect. 3.1, if we deal with the 3/2 model. For
both models, to obtain a realization of St , we firstly simulate Vt , subsequently we
simulate

∫ t
0 Vs ds conditional on Vt , and lastly St , which, conditional on Vt and

∫ t
0 Vs ds, follows a conditional Gaussian distribution. As discussed in Chap. 3, the

distribution of Vt is known for the square-root and the 3/2 process, see Sect. 3.1.
Regarding the conditional distribution of

∫ t
0 Vs ds, we compute the Laplace trans-

form of
∫ t

0 Vs ds, conditional on Vt . Subsequently, the probability distribution is
easily recovered by an approach due to Feller, see Feller (1971). Having obtained
the conditional probability distribution, the inversion method is applicable. To com-
pute the Laplace transform of

∫ t
0 Vsds conditional on Vt , we rely on the results

from Sect. 5.4, especially the fundamental solutions. We compute the relevant con-
ditional Laplace transforms in Sect. 6.2, and also compute additional conditional
Laplace transforms, such as the Hartman-Watson law for squared Bessel processes.
Subsequently, in Sects. 6.3 and 6.4, we show how to apply the results from Sect. 6.2
to the Heston and the 3/2 model.

6.2 Computing Conditional Laplace Transforms

In this section, we discuss how Laplace transforms of the form

E

(

exp

{

−b
2

2

∫ t

0
Xs ds − ν

∫ t

0

ds

Xs

} ∣
∣
∣
∣Xt

)

, (6.2.4)

where X = {Xt, t ≥ 0} is a one-dimensional diffusion process to be specified be-
low, can be computed using the results from Sect. 5.4. Such Laplace transforms turn
out to play important roles in the design of exact simulation methods for stochastic
volatility models, as we will show in Sects. 6.3 and 6.4. We point out when comput-
ing conditional Laplace transforms of the above form that Lie symmetry methods
turn out to be crucial.

Formally, we consider the computation of the functional

u(x, t)=E
(

exp

{

−λXt − b2

2

∫ t

0
Xs ds − ν

∫ t

0

ds

Xs

})

,

where X = {Xt, t ≥ 0} is such that its drift f satisfies one of the Ricatti equations
(4.4.34), (4.4.35), or (4.4.36), and X0 = x. We identify the corresponding PDE for
u and denote the fundamental solution by p(x, y, t).
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However,

u(x, t)=E
(

exp

{

−λXt − b2

2

∫ t

0
Xs ds − ν

∫ t

0

ds

Xs

})

=
∫ ∞

0
exp{−λy}E

(

exp

{

−b
2

2

∫ t

0
Xs ds − ν

∫ t

0

ds

Xs

} ∣
∣
∣
∣Xt = y

)

× q(x, y, t) dy,
where q(x, y, t) denotes the transition density of X = {Xt, t ≥ 0}. Since p(x, y, t)
is a fundamental solution of the associated PDE we immediately have

E

(

exp

{

−b
2

2

∫ t

0
Xs ds − ν

∫ t

0

ds

Xs

} ∣
∣
∣
∣Xt = y

)

= p(t, x, y)

q(t, x, y)
.

Assuming the fundamental solution p(x, y, t) and the transition density q(x, y, t)
are available in closed-form, the simple steps presented above outline a systematic
approach to computing conditional Laplace transforms. As an illustration, we com-
pute the Hartman-Watson law for squared Bessel processes, see also Jeanblanc et al.
(2009), Proposition 6.5.1.1.

Proposition 6.2.1 Assume that δ ≥ 2, and that X = {Xt, t ≥ 0} is given by the SDE

dXt = δ dt + 2
√
Xt dWt,

where X0 = x > 0. Then

E

(

exp

{

−b
2

2

∫ t

0

ds

Xs

} ∣
∣
∣
∣Xt = y

)

=
I√

b2+ν2(
√
xy/t)

Iν(
√
xy/t)

,

where ν = δ/2 − 1.

Proof The proof follows immediately from Proposition 5.4.1, where the fundamen-
tal solution of the PDE

ut = 2xuxx + δux − b2

2

u

x

is given by

p(x, y, t)= 1

2t

(
x

y

)(1−δ/2)/2
I2d+ δ

2−1

(√
xy

t

)

exp

{

− (x + y)
2t

}

,

where d = 1
4 (2 − δ + √(δ − 2)2 + 4b2) and the transition density of the squared

Bessel process is of the form

q(x, y, t)= 1

2t

(
x

y

)(1−δ/2)/2
Iδ/2−1

(√
xy

t

)

exp

{

− (x + y)
2t

}

.

Lastly, note that

2d + n

2
− 1 =

√
b2 + ν2,
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where ν = δ
2 − 1 is the index of the squared Bessel process, which finishes the

proof. �

The next result is due to Pitman and Yor (1982). However, we present an alter-
native proof which employs Lie symmetry methods.

Proposition 6.2.2 Assume δ ≥ 2, and that X = {Xt, t ≥ 0} is given by

dXt = δ dt + 2
√
Xt dWt,

X0 = x > 0. Then

E

(

exp

{

−b
2

2

∫ t

0
Xs ds

} ∣
∣
∣
∣Xt = y

)

= bt

sinh(bt)
exp

{
x + y

2t

(
1 − bt coth(bt)

)
}
Iν(

b
√
xy

sinh(bt) )

Iν(
√
xy

t
)
.

Proof The proof follows along the lines of the proof of Proposition 6.2.1. From
Proposition 5.4.2, we have that the fundamental solution of the PDE

ut = 2xuxx + δux − b2

2

u

x
,

is given by

p(x, y, t)= b

2 sinh(bt)

(
y

x

) δ/2−1
2

exp

{

− b(x + y)
2 tanh(bt)

}

I(δ−2)/2

(
b
√
xy

sinh(bt)

)

.

Recalling the transition density of the squared Bessel process, the result follows. �

Proposition 6.2.2 plays a crucial role in the Broadie-Kaya exact simulation
scheme for the Heston model, see Broadie and Kaya (2006). Consequently, the fun-
damental solutions presented in Chap. 5 can be used for this stochastic volatility
model.

Finally, the following result can be used in the design of an exact simulation
scheme for the 3/2 model, which is another stochastic volatility model.

Proposition 6.2.3 Let X = {Xt, t ≥ 0} be a squared Bessel process of dimension δ,
where δ ≥ 2. Then

E

(

exp

{

−b
2

2

∫ t

0
Xs ds −μ

∫ t

0

ds

Xs

} ∣∣
∣
∣Xt = y

)

= bt

sinh(bt)
exp

{
(x + y)

2t

(
1 − tb coth(bt)

)
}I√

ν2+2μ
(
b
√
xy

sinh(bt) )

Iν(
√
xy

t
)

.
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Proof From Proposition 5.4.4, we have that the fundamental solution of

ut = 2xuxx + δux −
(
b2x

2
+ μ

x

)

u

is

p(x, y, t)= b

2 sinh(bt)
exp

{

− b(x + y)
2 tanh(bt)

}(
y

x

) δ−2
4

I√
ν2+2μ

(
b
√
xy

sinh(bt)

)

.

Recalling the transition density of the squared Bessel process, the result follows. �

We remind the reader that the fundamental solutions obtained via Lie symmetry
methods sit at the heart of the computations of the results, not the Laplace transform
of the solutions.

These conditional Laplace transforms are now applied to two stochastic volatility
models, the Heston and the 3/2 model.

6.3 Exact Simulation of the Heston Model

In this section, we present the approach proposed by Broadie and Kaya (2006) to
simulate the stock price under the Heston model exactly. We recall that the dynamics
of the stock price and squared volatility under the Heston model satisfy the SDE,

dSt = μSt dt + ρ
√
VtSt dBt +

√
1 − ρ2

√
VtSt dWt , (6.3.5)

dVt = κ(θ − Vt ) dt + σ
√
Vt dBt , (6.3.6)

respectively, where W = {Wt, t ≥ 0} and B = {Bt , t ≥ 0} are independent Brown-
ian motions. Integrating the stock price, we have

St = S0 exp

{

μt − 1

2

∫ t

0
Vs ds + ρ

∫ t

0

√
Vs dBs +

√
1 − ρ2

∫ t

0

√
Vs dWs

}

.

We now integrate the squared volatility or the variance process

Vt = V0 + κθt − κ
∫ t

0
Vs ds + σ

∫ t

0

√
Vs dBs.

Hence one obtains
∫ t

0

√
Vs dBs = Vt − V0 − κθt + κ

∫ t
0 Vs ds

σ
. (6.3.7)

Consequently, it follows

St = S0 exp

{

μt − 1

2

∫ t

0
Vs ds + ρ

σ

(

Vt − V0 − κθt + κ
∫ t

0
Vs ds

)

+
√

1 − ρ2

∫ t

0

√
Vs dWs

}

.

We now present the exact simulation algorithm, and subsequently explain the indi-
vidual steps in detail.
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Algorithm 6.1 Exact simulation for the Heston model
1: Generate a sample of Vt given V0
2: Generate a sample of

∫ t
0 Vs ds given Vt

3: Compute
∫ t

0

√
Vs dBs from (6.3.7) given Vt and

∫ t
0 Vs ds

4: Generate a sample from St , given
∫ t

0

√
VsdBs and

∫ t
0 Vs ds

6.3.1 Simulating Vt

In Sect. 5.3, the transition density of the square-root process of dimension δ was
derived, see also Sect. 3.1, from which we can obtain the following equality in
distribution

Vt
d= σ 2(1 − exp{−κt})

4κ
χ2
δ

(
4κ exp{−κt}

σ 2(1 − exp{−κt})
)

,

where δ = 4θκ
σ 2 and χ2

δ (λ) denotes a non-central χ2 random variable with δ degrees

of freedom and non-centrality parameter λ. One way of sampling non-central χ2

random variables, which was also used in Broadie and Kaya (2006), proceeds as
follows: from Johnson et al. (1995), it is known that for δ > 1,

χ2
δ (λ)= χ2

1 (λ)+ χ2
δ−1,

and hence

χ2
δ (λ)= (Z +√

λ)2 + χ2
δ−1,

where Z is a standard normal random variable independent of χ2
δ−1. Furthermore,

for δ > 0, we have the following equality in distribution:

χ2
δ (λ)

d= χ2
δ+2N,

where N is a Poisson random variable with mean λ
2 . Since a χ2-distributed ran-

dom variable is a special case of a gamma random variable, we can use algorithms
to sample from the gamma distribution. Lastly, we remark that in Sect. 13.2, we
will present an algorithm to compute the cumulative distribution function of a non-
central χ2 random variable with δ ≥ 0 degrees of freedom, and hence we can also
sample by inverting the cumulative distribution function as discussed in Sect. 6.1.

6.3.2 Simulating
∫ t

0 Vs ds Given Vt

We point out that the challenging step in Algorithm 6.1 is the simulation of the inte-
grated variance,

∫ t
0 Vs ds, conditional on the end point of the integral, Vt . This prob-

lem is solved by computing the Laplace transform of
∫ t

0 Vs ds, conditional on Vt , by
combining a probabilistic result with a result from Sect. 5.4.
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The method illustrates that results obtained via Lie symmetry analysis can be
powerfully combined with results from probability theory, see also Sect. 5.5 for
additional examples. Having obtained the Laplace transform, we use it to compute
the characteristic function, which in turn can be used to compute the probability
distribution function.

In fact, the approach is similar to the approach presented in Sect. 5.5. We in-
troduce a time-change, i.e. we set ρt = V 4t

σ2
to obtain the following SDE for

ρ = {ρt , t ≥ 0},
dρt = (2jρt + δ) dt + 2

√
ρt dB̃t , (6.3.8)

where B̃ = {B̃t , t ≥ 0} is a standard Brownian motion, j =− 2κ
σ 2 , and δ = 4κθ

σ 2 . We
now recall formula (6.d) from Pitman and Yor (1982), which reads

jP δ,tρ0→y =
exp{− j2

2

∫ t
0 ρs ds}

P
δ,t
ρ0→y

P δ,tρ0→y, (6.3.9)

using jP δ,tρ0→y to denote the bridge for {ρs, 0 ≤ s ≤ t} obtained by conditioning jP δρ0

on ρt = y, where jP δρ0
denotes the law of ρ = {ρt , t ≥ 0} started at ρ0. Equation

(6.3.9) is the analogue of Proposition 3.1.6, but for bridge constructions. We are
now in a position to prove the following theorem.

Theorem 6.3.1 Let V = {Vt , t ≥ 0} be given by Eq. (6.3.6). Then

E

(

exp

{

−a
∫ t

0
Vs ds

} ∣
∣
∣
∣ Vt

)

= γ (a) exp{− (γ (a)−κ)t
2 }(1 − exp{−κt})

κ(1 − exp{−γ (a)t})
× exp

{
V0 + Vt
σ 2

(
κ(1 + exp{−κt})

1 − exp{−κt} − γ (a)(1 + exp{−γ (a)t})
1 − exp{−γ (a)t}

)}

×
I δ

2−1

( 4γ (a)
√
V0Vt

σ 2
exp{− γ (a)t

2 }
(1−exp{−γ (a)t})

)

I δ
2−1

( 4κ
√
V0Vt
σ 2

exp{− κt
2 }

(1−exp{−κt})
) ,

where γ (a)=√
κ2 + 2σ 2a.

Proof The steps of the proof are as follows: in fact, they are similar to the proof of
Theorem 5.5.1. We firstly change the volatility coefficient of Vt from σ to 2, using
the well-known time-change discussed above. Subsequently, we apply the bridge
construction from Eq. (6.3.9), which is analogous to Eq. (5.5.20), to reduce the
problem to the computation of conditional Laplace transforms involving a squared
Bessel process, which we derived in Sect. 6.2.

As in Sect. 5.5, we set ρt = V 4t
σ2

to obtain the SDE (6.3.8) for ρ = {ρt , t ≥ 0}.
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Recalling Eq. (6.3.9), we compute

E

(

exp

{

−a
∫ t

0
Vs ds

} ∣
∣
∣
∣ Vt

)

=E
(

exp

{

−a
∫ t

0
ρσ2s

4
ds

} ∣
∣
∣
∣ ρσ2 t

4

)

=E
(

exp

{

−4a

σ 2

∫ σ2 t
4

0
ρs ds

} ∣
∣
∣
∣ ρσ2 t

4

)

=
Ẽ
(
exp
{−( j2

2 + 4a
σ 2 )
∫ σ2 t

4
0 ρs ds

} ∣
∣ ρσ2 t

4

)

Ẽ(exp
{− j2

2

∫ σ2 t
4

0 ρs ds
} ∣
∣ ρσ2 t

4
)

,

where we use E to denote the expectation with respect to jP δ,tρ0→y , and Ẽ the expec-
tation with respect to P δ,tρ0→y . Applying Proposition 6.2.2 to both, the numerator and
the denominator, and recalling that ρσ2 t

4
= Vt and j =− 2κ

σ 2 , the result follows. �

As described in Broadie and Kaya (2006), we now obtain the characteristic func-
tion Φ(b) by setting a =−ıb,

Φ(b)=E
(

exp

{

ıb

∫ t

0
Vs ds

} ∣
∣
∣
∣ Vt

)

.

The probability distribution function can be obtained by Fourier inversion methods,
see Feller (1971):

P

(∫ t

0
Vs ds ≤ x

∣
∣
∣
∣ Vt

)

= 1

π

∫ ∞

−∞
sin(ux)

u
Φ(u)du

= 2

π

∫ ∞

0

sin(ux)

u
�(Φ(u))du, (6.3.10)

where �(Φ(u)) denotes the real part of Φ(u).
The final integral in Eq. (6.3.10) can be computed numerically and one can then

sample by inversion.

6.3.3 Generating St

We recall that in Step 3 of Algorithm 6.1, we computed
∫ t

0

√
Vs dBs in terms of Vt

and
∫ t

0 Vs ds. Due to the independence of V = {Vt , t ≥ 0} and W = {Wt, t ≥ 0},
it is clear that

∫ t
0

√
Vs dWs given

∫ t
0 Vs ds follows a normal distribution with mean

0 and variance
∫ t

0 Vs ds. Hence log(St ) follows a conditionally normal distribution
with mean

log(S0)+μt − 1

2

∫ t

0
Vs ds + ρ

σ

(

Vt − V0 − κθt + κ
∫ t

0
Vs ds

)
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and random variance
(
1 − ρ2)

∫ t

0
Vs ds.

In this way, we can obtain samples of St satisfying the dynamics (6.3.5).

6.4 Exact Simulation of the 3/2 Model

It is very useful to have exact simulation algorithms for important models. In this
section, we closely follow the approach from Baldeaux (2012a) to simulate exactly
the stock price or index under the 3/2 model, see e.g. Carr and Sun (2007), Heston
(1997), Itkin and Carr (2010), and Lewis (2000). We remark that this approach is
similar to the approach from Broadie and Kaya (2006), which we discussed in the
previous section.

The dynamics of the stock price under the 3/2 model are described by the system
of SDEs,

dSt = μSt dt + ρ
√
VtSt dBt +

√
1 − ρ2

√
VtSt dWt , (6.4.11)

dVt = κVt (θ − Vt ) dt + σ(Vt )3/2 dBt , (6.4.12)

where B = {Bt , t ≥ 0} and W = {Wt, t ≥ 0} are independent Brownian motions.
The key observation, as already discussed in Sects. 3.1 and 5.5, is that Vt is the
inverse of a square-root process. Defining Xt = 1

Vt
, we obtain

dXt =
(
κ + σ 2 − κθXt

)
dt − σ√Xt dBt . (6.4.13)

Expressing the stock price in terms of the process X = {Xt, t ≥ 0}, we obtain

St = S0 exp

{

μt − 1

2

∫ t

0
(Xs)

−1 ds + ρ
∫ t

0
(
√
Xs)

−1 dBs

+
√

1 − ρ2

∫ t

0
(
√
Xs)

−1 dWs

}

. (6.4.14)

It is useful to study log(Xt ), for which we obtain the following SDE

d log(Xt )=
(
κ + σ 2

2

Xt
− κθ

)

dt − σ(√Xt)−1 dBt .

Hence

log(Xt )= log(X0)+
(

κ + σ 2

2

)∫ t

0

ds

Xs
− κθt − σ

∫ t

0
(
√
Xs )

−1 dBs,

or equivalently
∫ t

0
(
√
Xs )

−1 dBs = 1

σ

(

log

(
X0

Xt

)

+
(

κ + σ 2

2

)∫ t

0

ds

Xs
− κθt

)

. (6.4.15)

Algorithm 6.2 describes how to simulate the stock price given by (6.4.11) exactly.
We now discuss the individual steps of the algorithm. Clearly, Steps (1), (3), and

(4) are very similar to steps (1), (3), and (4) of Algorithm 6.1.



6.4 Exact Simulation of the 3/2 Model 171

Algorithm 6.2 Exact simulation for the 3/2 model
1: Generate a sample of Xt given X0
2: Generate a sample of

∫ t
0
ds
Xs

given Xt
3: Compute

∫ t
0 (
√
Xs)

−1 dBs from (6.4.15) given Xt and
∫ t

0
ds
Xs

4: Generate a sample from St , given
∫ t

0 (
√
Xs)

−1 dBs and
∫ t

0 (Xs)
−1 ds

6.4.1 Simulating Xt

Since X = {Xt, t ≥ 0} is a square-root process, see Eq. (6.4.13), we can immedi-
ately apply the methodology from Sect. 6.3.

6.4.2 Simulating
∫ t

0
ds
Xs

Given Xt

We approach Step (2) of Algorithm 6.2 in the same manner as Step (2) of Algo-
rithm 6.1. However, we end up having to compute a different conditional Laplace
transform. Fortunately, the relevant Laplace transform can be computed as shown
in Sect. 6.2 using Lie symmetry methods. As before, we change the volatility coef-
ficient of X from σ to 2, using the standard time change, which was also used in
Sect. 6.3: we define ρt =X 4t

σ2
to obtain the SDE

dρt = (2jρt + δ) dt + 2
√
ρt dB̃t ,

where

δ = 4(κ + σ 2)

σ 2

and j =− 2κθ
σ 2 and B̃ = {B̃t , t ≥ 0} is a standard Brownian motion. Now we use for-

mula (6.3.9) again, but this time to obtain a different conditional Laplace transform
in the numerator.

E

(

exp

{

−a
∫ t

0

ds

Xs

} ∣
∣
∣
∣Xt

)

=E
(

exp

{

−a
∫ t

0

ds

ρσ2s
4

} ∣
∣
∣
∣ ρσ2 t

4

)

=E
(

exp

{

−4a

σ 2

∫ σ2 t
4

0

ds

ρs

} ∣∣
∣
∣ ρσ2 t

4

)

= Ẽ
(

exp

{

−4a

σ 2

∫ σ2 t
4

0

ds

ρs
− j2

2

∫ σ2 t
4

0
ρs ds

} ∣
∣
∣
∣ ρσ2 t

4

)/

Ẽ

(

exp

{

−j
2

2

∫ σ2 t
4

0
ρs ds

} ∣
∣
∣
∣ ρσ2 t

4

)

, (6.4.16)
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where we use E to denote the expectation with respect to jP
δ,t
ρ0→y , and Ẽ denotes

the expectation with respect to P δ,tρ0→y , see Eq. (6.3.9).
Computing the numerator in (6.4.16) using Proposition 6.2.3 and the denomina-

tor using Proposition 6.2.2 yields the following result.

Theorem 6.4.1 Let X be given by (6.4.13). Then

E

(

exp

{

−a
∫ t

0

ds

Xs

} ∣
∣
∣
∣Xt

)

=
I√

ν2+8a/σ 2

(− 2κθ
√
XtX0

σ 2 sinh(− κθt
2 )

)

Iν
(− 2κθ

√
XtX0

σ 2 sinh(− κθt
2 )

) ,

where δ = 4(κ+σ 2)

σ 2 and ν = δ
2 − 1.

Consequently, we can proceed as in Sect. 6.3: we compute the Laplace transform
using Theorem 6.4.1, compute the probability distribution of

∫ t
0
ds
Xs

conditional on
Xt , and sample by inversion.

6.4.3 Simulating St

As in Sect. 6.3, in Step 3) of Algorithm 6.2, we compute
∫ t

0 (
√
Xs)

−1 dBs in terms of
Xt and

∫ t
0
ds
Xs

. Due to the independence of X = {Xt, t ≥ 0} and W = {Wt, t ≥ 0}, it

follows that
∫ t

0 (
√
Xs )

−1 dWs given
∫ t

0 (Xs)
−1 ds follows a normal distribution with

mean 0 and variance
∫ t

0 (Xs)
−1 ds. Hence log(St ) follows a normal distribution with

mean

log(S0)+μt − 1

2

∫ t

0
(Xs)

−1 ds + ρ
∫ t

0
(
√
Xs)

−1 dBs

and variance

(
1 − ρ2)

∫ t

0
(Xs)

−1 ds.

6.5 Stochastic Volatility Models with Jumps in the Stock Price

In this section, we extend the model to the case where the stock price process is
also subjected to jumps. We follow the presentation in Broadie and Kaya (2006),
see also Korn et al. (2010), Sect. 7.2.3, and deal with the Heston model. However,
the argument does not rely on the specification of the volatility process, but tells
us how to modify the approach from Sects. 6.3 and 6.4 to allow for jumps. Hence
the discussion presented in this section also applies to the 3/2 model. The following
model was presented in Bates (1996), we also refer the reader to Chap. 5 in Gatheral
(2006), where it is referred to as the SVJ model,
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dSt = St−
(
(r − λμ̄) dt +√Vt

(
ρ dBt +

√
1 − ρ2 dWt

)+ (Yt − 1) dNt
)
,

dVt = κ(θ − Vt) dt + σ
√
Vt dBt ,

(6.5.17)

whereN = {Nt, t ≥ 0} is a Poisson process with constant intensity λ. The processes
B = {Bt , t ≥ 0} and W = {Wt, t ≥ 0} are independent Brownian motions and inde-
pendent of the Poisson process, and the jump variables Y = {Yt , t ≥ 0} are a family
of independent random variables all having the same lognormal distribution with
mean μs and variance σ 2

s . Furthermore,

E(Yt − 1)= μ̄,
and hence

μs = log(1 + μ̄)− 1

2
σ 2
s .

Integrating the SDE for the stock price (6.5.17), we obtain

St = S̃t
Nt∏

j=1

Ỹj , (6.5.18)

where

S̃t = S0 exp

{

(r − λμ̄)t − 1

2

∫ t

0
Vs ds + ρ

∫ t

0

√
Vs dBs

+
√

1 − ρ2

∫ t

0

√
Vs dWs

}

,

and Ỹj , j = 1, . . . ,Nt , denotes the size of the j -th jump. As discussed in Broadie
and Kaya (2006), Korn et al. (2010), Eq. (6.5.18) motivates the simulation algo-
rithm for the SVJ model: we firstly simulate the diffusion part as in Sect. 6.3 and
consequently take care of the jump part,

∏Nt
j=1 Ỹj . Algorithm 6.3 is the analogue of

Algorithm 6.1 and also appeared in Broadie and Kaya (2006) and in similar form in
Korn et al. (2010).

Algorithm 6.3 Exact Simulation Algorithm for the SVJ model
1: Generate a sample of Vt given V0
2: Generate a sample from the distribution of

∫ t
0 Vs ds given Vt and V0

3: Recover
∫ t

0

√
Vs dBs from (6.3.6) given Vt , V0 and

∫ t
0 Vs ds

4: Generate S̃t
5: Generate Nt
6: Generate

∏Nt
j=1 Ỹj , given Nt



174 6 Exact and Almost Exact Simulation

Since the Ỹj , j = 1, . . . ,Nt , are mutually independent and each follows a log-
normal distribution with mean μs and variance σ 2

s , it is clear that

Nt∑

j=1

log(Ỹj )|Nt ∼N
(
Ntμs,Ntσ

2
s

)
.

There are alternative approaches to simulating
∏Nt
j=1 Ỹj : in Sect. 3.5 in Glasserman

(2004), it was shown how to simulateNt by simulating the jump times of the Poisson
process. Furthermore, as discussed in Broadie and Kaya (2006), given Nt , one can
simulate the jump sizes Ỹj , j = 1, . . . ,Nt , individually. However, Algorithm 6.3
results in a problem that is of fixed dimension. More precisely, the dimension of
the problem in Algorithm 6.3 is five, i.e. five random numbers are used to obtain
a realization of St . Having a problem of fixed dimensionality is important when
applying quasi-Monte Carlo methods, permitting an effective way of tackling mul-
tidimensional problems, see Chap. 12, hence we choose the formulation presented
in Algorithm 6.3.

6.6 Stochastic Volatility Models with Simultaneous Jumps in the
Volatility Process and the Stock Price

In this section, we briefly extend the SVJ model from Sect. 6.5 to allow for simulta-
neous jumps in the stock price and the volatility process, the SVCJ model. As argued
in Gatheral (2006), it is unrealistic to assume that the instantaneous volatility would
not jump if the stock price did. Hence the following model, introduced in Duffie
et al. (2000), allows for simultaneous jumps in the stock price and the volatility,

dSt = St−
(
(r − λμ̄) dt +√Vt

(
ρ dBt +

√
1 − ρ2 dWt

)+ (Y st − 1
)
dNt
)
,

dVt = κ(θ − Vt) dt + σ
√
Vt dBt + YvdNt ,

where N = {Nt, t ≥ 0} is again a Poisson process with constant intensity λ, Y s =
{Y st , t ≥ 0} is the relative jump size of the stock price, and Yv = {Yvt , t ≥ 0} is
the jump size of the variance. The magnitudes of the jumps in the stock price and
variance processes are dependent, via the parameter ρJ , in the following way: the
distribution of Yvt is exponential with mean μv and given Yv , Y s is lognormally
distributed with mean μs + ρJ Y v and variance σ 2

s . The parameters μs and μ̄ are
related via

μs = log
(
(1 + μ̄)(1 − ρJμv)

)− 1

2
σ 2
s ,

hence only one needs to be specified. Due to the occurrence of jumps in the volatil-
ity, we have to modify the previous procedure. Essentially, we simulate the variance
and the stock price process at each jump time. Algorithm 6.4 is the analogue of Al-
gorithms 6.1 and 6.3 and we point out that this algorithm also appeared in Broadie
and Kaya (2006), see Sect. 6.2.
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Algorithm 6.4 Exact Simulation Algorithm for the SVCJ model
1: Simulate the arrival time of the next jump, τj .
2: if τj > T then
3: Set τj → T

4: end if
5: Simulate Vτ−j

and Sτ−j
, using the time step 
t→ τj − t∗

6: if τj = T then
7: Go to Step 13
8: else
9: Generate Yv from an exponential distribution with mean μv and set

Vτj → Vτ−j
+ Yv.

10: end if
11: Generate Y s by sampling from a lognormal distribution with mean (μs+ρJ Y s)

and variance σ 2
s . Set Sτj → Sτ−j

Y s .

12: Set St∗ → Sτj , Vt∗ → Vτj , t∗ → τj and go to Step 1
13: Set ST → Sτ−j

6.7 Multidimensional Stochastic Volatility Models

In this section, we discuss the extension of the methodology presented in Sects. 6.3
and 6.4 to the multidimensional case. We firstly explain why a generalization of
this methodology is not straightforward, which motivates us to consider almost ex-
act simulation schemes, see Platen and Bruti-Liberati (2010), Chap. 2, for more
information on this topic. Furthermore, in Chap. 11 we study advanced stochastic
volatility models based on Wishart processes.

Consider the following simple case, with SDEs

dS1
t = μ1S1

t dt +
√
V 1
t S

1
t dW

1
t , (6.7.19)

dS2
t = μ2S2

t dt +
√
V 2
t S

2
t dW

2
t , (6.7.20)

where the two Brownian motions W 1 = {W 1
t , t ≥ 0} and W 2 = {W 2

t , t ≥ 0} co-
vary, say d[W 1,W 2]t = ρ dt . The volatility processes, V 1 and V 2, which can be
square-root or 3/2 processes, see Sect. 3.1, are here driven by Brownian motions
independent of W 1 and W 2. Of course, S1 and S2 can be simulated as discussed
in Sects. 6.3 and 6.4, however, S1 and S2 are not independent. In particular, given
V
j
t ,
∫ t

0 V
j
s ds, j = 1,2, we have that, for j = 1,2,

log
(
S
j
t

)∼N(μj ,σ 2
j

)
,

with

μj = log
(
S
j

0

)− 1

2

∫ t

0
V
j
s ds
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and

σ 2
j =
∫ t

0
V
j
s ds.

Here the conditional covariance is given by

ρ

∫ t

0

√
V 1
s

√
V 2
s ds, (6.7.21)

where we recall that ρ denotes the correlation between W 1 and W 2. The computa-
tion of the integral in Eq. (6.7.21) does not follow immediately from the methods
discussed in Sect. 5.4. We hence recall the almost exact simulation methodology
from Platen and Bruti-Liberati (2010).

6.7.1 Matrix Square-Root Processes via Time-Changed Wishart
Processes

In this subsection, we briefly recall from Platen and Bruti-Liberati (2010) how to
obtain a matrix square-root process from a time-changed Wishart process. The di-
agonal elements of this process will play the role of V 1 and V 2 in Eqs. (6.7.19) and
(6.7.20). We point out that this discussion is based on the simple Wishart process
from Sect. 3.2. Once we fully develop the theory of Wishart processes in Chap. 11,
we can employ more advanced stochastic volatility models, as in Da Fonseca et al.
(2008c).

Recall from Sect. 3.2 that square-root processes can be obtained by time-
changing a squared Bessel process. As in Platen and Bruti-Liberati (2010), we con-
sider the function

st = s0 exp{ct},
where s0 > 0 and consider the transformed time

ϕ(t)= ϕ(0)+ 1

4

∫ t

0

b2

su
du,

and compute

ϕ(t)= ϕ(0)+ b2

4cs0

(
1 − exp{−ct}).

Let X = {Xt, t ≥ 0} denote a squared Bessel process of dimension δ > 0, then
we obtain a square-root process Y = {Yt , t ≥ 0} of the same dimension δ > 0 as
follows: setting

Yt = stXϕ(t),
we obtain the following dynamics for Y ,

dYt =
(
δ

2
b2 + cYt

)

dt + b√Yt dUt ,
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where

dUt =
√

4st
b2
dWϕ(t),

and since

[U ]t =
∫ t

0

4sz
b2
dϕ(z)= t,

U = {Ut, t ≥ 0} is a Brownian motion, by Levy’s characterization theorem, see
Sect. 15.3. This procedure is easily generalized. Recall the Wishart process from
Sect. 3.2, so W t is an n×p matrix, whose elements are independent scalar Brown-
ian motions and W 0 = C is the initial state matrix. We set

Xt = W�
t W t , X0 = C�C,

so X = {Xt , t ≥ 0} is a Wishart process WISp(X0, n,0, Ip). Following Platen and
Bruti-Liberati (2010), we generalize the idea of time-changing a squared Bessel
process to time-changing a Wishart process and set

Σ t = stXϕ(t),

to obtain the SDE

dΣ t =
(
δ

4
b2I + cΣ t

)

dt + b

2

(√
Σ t dU t + dU�

t

√
Σ t

)
, (6.7.22)

for t ≥ 0, Σ0 = s0Xϕ(0), and dU t =
√

4st
b2
t

dWϕ(t) is the differential of a matrix

Wiener process.

6.7.2 Multidimensional Heston Model with Independent Prices

We firstly focus on the case where the volatility process and the Brownian motion
driving the stock price are independent. We study the following model

dSt = At (r dt +
√

B t dW t ),

where S = {St = (S1
t , S

2
t , . . . , S

d
t )

�, t ≥ 0} is a vector process and A = {At =
[Ai,jt ]di,j=1, t ≥ 0} is a diagonal matrix process with elements

A
i,j
t =

{
Sit for i = j
0 otherwise.

(6.7.23)

Additionally, r = (r1, r2, . . . , rd)
� is a d-dimensional vector and W = {W t =

(W 1
t ,W

2
t , . . . ,W

d
t )

�, t ≥ 0} is a d-dimensional vector of correlated Wiener pro-

cesses. Moreover, B = {B t = [Bi,jt ]di,j=1, t ≥ 0} is a matrix process with elements

B
i,j
t =

{
Σ
i,i
t for i = j

0 otherwise.
(6.7.24)
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Note that B is the generalization of V in the one-dimensional case. Here, the matrix
process Σ = {Σ t = [Σi,jt ]di,j=1, t ≥ 0} is a matrix square-root process given by
the SDE (6.7.22). Therefore, B t can be constructed from the diagonal elements of
Σ t . Recall that these elementsΣ1,1

t ,Σ
2,2
t , . . . ,Σ

d,d
t form square-root processes and

that, for simplicity, we assumed that B is independent of W .
We illustrate the simulation in a two-dimensional example. The corresponding

two-dimensional SDE for the two prices can be represented as

dS1
t = S1

t r1 dt + S1
t

√
Σ

1,1
t dW̃ 1

t ,

dS2
t = S2

t r2 dt + S2
t

√
Σ

2,2
t

[
� dW̃ 1

t +
√

1 − �2 dW̃ 2
t

]
,

where t ≥ 0. Here, Σ1,1 and Σ2,2 are diagonal elements of the 2 × 2 matrix given
by (6.7.22) and W̃ 1 and W̃ 2 are independent Wiener processes. The logarithmic
transformation Xt = log(St ) yields the following SDE

dX1
t =
(

r1 − 1

2
Σ

1,1
t

)

dt +
√
Σ

1,1
t dW 1

t ,

dX2
t =
(

r2 − 1

2
Σ

2,2
t

)

dt +
√
Σ

2,2
t

[
� dW̃ 1

t +
√

1 − �2 dW̃ 2
t

]
,

for t ≥ 0. This results in the following representations:

X1
ti+1

=X1
ti
+ r1(ti+1 − ti )− 1

2

∫ ti+1

ti

Σ1,1
u du+

∫ ti+1

ti

√
Σ

1,1
u dW̃ 1

u ,

X2
ti+1

=X2
ti
+ r2(ti+1 − ti )− 1

2

∫ ti+1

ti

Σ2,2
u du+ �

∫ ti+1

ti

√
Σ

2,2
u dW̃ 1

u

+
√

1 − �2

∫ ti+1

ti

√
Σ

2,2
u dW̃ 2

u .

We approximate the integral
∫ ti+1
ti

Σ
j,j
u du, j = 1,2, using e.g. the trapezoidal rule.

Consequently, we can simulate the model, noting that conditional on
∫ ti+1
ti

Σ
j,j
u du

and Xjti , j = 1,2, we obtain that Xjti+1
follows a normal distribution with mean

X
j
ti
+ rj (ti+1 − ti )− 1

2

∫ ti+1

ti

Σ
j,j
u du, j = 1,2,

and variance
∫ ti+1

ti

Σ
j,j
u du.

Furthermore, X1
ti+1

and X2
ti+1

have the conditional covariance

�

∫ ti+1

ti

√
Σ

1,1
u

√
Σ

2,2
u du,

which we approximate, for example, using the trapezoidal rule and the trajectories
of Σ1,1 and Σ2,2.
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6.7.3 Multidimensional Heston Model with Correlated Prices

We now consider a multidimensional version of the Heston model, which allows
for correlation of the volatility vector Σ with the vector asset price process S. We
define the generalization by the system of SDEs

dSt = At
(
r dt +√B t

(
C dW 1

t +D dW 2
t

))
,

dΣ t = (a −EΣ t ) dt +F
√

B t dW
1
t ,

for t ≥ 0. Here, S = {St = (S1
t , S

2
t , . . . , S

d
t )

�, t ≥ 0} and r = (r1, r2, . . . , rd)�. The

matrix At = [Ai,jt ]di,j=1 is given by (6.7.23) and B t = [Bi,jt ]di,j=1 is a matrix with

elements as in (6.7.24). Additionally, C = [Ci,j ]di,j=1 is a diagonal matrix with ele-
ments

Ci,j =
{
�i for i = j
0 otherwise,

and D = [Di,j ]di,j=1 is a diagonal matrix with elements

Di,j =
{√

1 − �2
i for i = j

0 otherwise,

where �i ∈ [−1,1], i ∈ {1,2, . . . , d}. Moreover, Σ = {Σ t = (Σ
1,1
t ,Σ

2,2
t , . . . ,

Σ
d,d
t )�, t ∈ [0,∞)} and a = (a1, a2, . . . , ad)

�. The matrix E = [Ei,j ]di,j=1 is a
diagonal matrix with elements

Ei,j =
{
bi for i = j
0 otherwise,

and F = [F i,j ]di,j=1 is a diagonal matrix with elements

F i,j =
{
σi for i = j
0 otherwise.

Furthermore, W 1 = {W 1
t = (W 1,1

t ,W
1,2
t , . . . ,W

1,d
t )�, t ≥ 0} is a vector of inde-

pendent Wiener processes and W 2 = {W 2
t = (W 2,1

t ,W
2,2
t , . . . ,W

2,d
t )�, t ≥ 0} is a

vector of correlated Wiener processes which are independent of W 1. In two dimen-
sions, the model looks as follows:

dΣ
1,1
t = (a1 − b1Σ

1,1
t

)
dt + σ1

√
Σ

1,1
t dW

1,1
t ,

dΣ
2,2
t = (a2 − b2Σ

2,2
t

)
dt + σ2

√
Σ

2,2
t dW

1,2
t ,

for t ≥ 0. The two-dimensional asset price process is given by

dS1
t = r1S1

t dt + S1
t

√
Σ

1,1
t

(
�1 dW

1,1
t +

√
1 − �2

1 dW
2,1
t

)
,

dS2
t = r2S2

t dt + S2
t

√
Σ

2,2
t

(
�2 dW

1,2
t +

√
1 − �2

2 dW
2,2
t

)
,
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for t ≥ 0. Hence we can simulateΣ1,1 andΣ2,2 via the non-central χ2-distribution,
see Sect. 3.1, or the elements of a matrix square-root process. We can now generate
samples of the logarithm of the stock price, Xt = log(St ), using the representation

X1
ti+1

=X1
ti
+ r1(ti+1 − ti )+ �1

σ1

(
Σ

1,1
ti+1

−Σ1,1
ti

− a1(ti+1 − ti )
)

+
(
�1b1

σ1
− 1

2

)∫ ti+1

ti

Σ1,1
u du+

√
1 − �2

1

∫ ti+1

ti

√
Σ

1,1
u dW 2,1

u ,

X2
ti+1

=X2
ti
+ r2(ti+1 − ti )+ �2

σ2

(
Σ

2,2
ti+1

−Σ2,2
ti

− a2(ti+1 − ti )
)

+
(
�2b2

σ2
− 1

2

)∫ ti+1

ti

Σ2,2
u du+

√
1 − �2

2

∫ ti+1

ti

√
Σ

2,2
u dW 2,2

u .

Hence we approximate
∫ ti+1
ti

Σ
j,j
u du, j = 1,2, using e.g. the trapezoidal rule. We

recall that given

Σ
j,j
ti+1
,Σ

j,j
ti
,

∫ ti+1

ti

Σ
j,j
u du,X

j
ti
, j = 1,2,

the random variables Xjti+1
, j = 1,2, are conditionally Gaussian with mean

X
j
ti
+ rj (ti+1 − ti )+ �j

σj

(
Σ
j,j
ti+1

−Σj,jti − aj (ti+1 − ti )
)

+
(
�jbj

σj
− 1

2

)∫ ti+1

ti

Σ
j,j
u du

and variance

(
1 − �2

j

)
∫ ti+1

ti

Σ
j,j
u du.

Lastly, if d[W 2,1,W 2,2]t = ρ dt , then the covariance between X1
ti+1

and X2
ti+1

, con-

ditional on Σj,jti+1
,Σ

j,j
ti
,
∫ ti+1
ti

Σ
j,j
u du, Xjti , j = 1,2, is

ρ

√
1 − �2

1

√
1 − �2

2

∫ ti+1

ti

√
Σ

1,1
u

√
Σ

2,2
u du.

Concluding the chapter we mention that in Chap. 11 we will introduce another He-
ston model based on the Wishart process.



Chapter 7
Affine Diffusion Processes on the Euclidean
Space

Affine processes have been applied to problems in finance due to their ability to cap-
ture some stylized facts of financial time series, but also due to their computational
tractability. They are characterized by the fact that their associated characteristic
function is exponentially affine in the state variables. Consequently, this character-
istic function is also referred to as the affine transform.

In this book, we present two approaches to affine processes: the first, presented in
this chapter, is concerned with admissibility, which studies whether the affine trans-
form is well-defined. References dealing with this question include Duffie and Kan
(1996), Duffie et al. (2003), Filipović and Mayerhofer (2009), and Cuchiero et al.
(2011). The second approach is referred to as the Grasselli-Tebaldi approach, see
Grasselli and Tebaldi (2008). It studies the question of solvability, i.e. whether the
affine transform is analytically tractable. Of course, solvability is a stronger condi-
tion than admissibility, since in order to compute the affine transform, it has to exist.
We emphasize that the question of solvability is closer related to the spirit of this
book than admissibility. However, for completeness, we discuss both approaches.

We alert the reader to the fact that traditionally, affine processes were studied on
the Euclidean state space and positive factors take values in (�+)m, see e.g. Fil-
ipović and Mayerhofer (2009). In Gouriéroux and Sufana (2004b), it was noted that
when studying matrix-valued processes, positive factors can take values as elements
in positive semidefinite matrices. This allows one to model more general depen-
dence structures, which we will explore in Chap. 11. Finally, we remark that the
domain where factors take values was generalized to symmetric cones in Grasselli
and Tebaldi (2008).

We proceed as follows: in the current chapter and Chap. 8, we discuss admissibil-
ity and in Chap. 9 the solvability of affine processes, taking values in the Euclidean
state space. Later in Chap. 11, we will discuss the solvability of certain matrix-
valued processes, the Wishart processes.

In the first, more theoretical part of the current chapter, we provide the definition
of affine processes on the Euclidean space and discuss the admissibility of affine
processes, i.e. their existence and uniqueness. In particular, we discuss necessary
and sufficient conditions to guarantee the existence of the affine transform. Given
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this theoretical background, we will then apply affine processes to problems arising
in mathematical finance. In Sect. 7.2, we present recipes, which can be used to arrive
at a pricing formula in the classical risk-neutral setting. Finally, in Sect. 7.3, we
discuss pricing using affine diffusions under the benchmark approach. In Chap. 8,
the recipes presented in this chapter, for the classical risk-neutral setting and the
benchmark approach, are applied to concrete examples from finance.

7.1 Theoretical Background on Affine Diffusions

In this section, we recall parts of the theory of affine processes. The discussion is
based on Filipović and Mayerhofer (2009). For further details, the interested reader
is referred also to Filipović (2009).

7.1.1 Definition of Affine Processes

We start our discussion of affine processes on a general Euclidean state space and
subsequently consider a specific state space, referred to as canonical state space
in Filipović and Mayerhofer (2009). For a given dimension d ≥ 1 and a closed
state space X ⊂�d with non-empty interior, we consider for a process X = Xx =
{Xt , t ∈ [0, T ]} the following SDE

dXt = b(Xt ) dt + ρ(Xt ) dW t , (7.1.1)

X0 = x, where b : X →�d is assumed to be continuous. Here, ρ : X →�d×d is
assumed to be measurable so that the diffusion matrix

a(x)= ρ(x)ρ(x)� (7.1.2)

is continuous in x ∈X . Furthermore, W denotes a d-dimensional Brownian motion
defined on a filtered probability space (Ω,A,A,P ), and we assume throughout this
chapter that for each x ∈ X , there exists a unique solution X = Xx to (7.1.1). We
denote by C the set of complex numbers and by ı the imaginary unit.

We now define an affine process.

Definition 7.1.1 The process X is affine, if the At -conditional characteristic func-
tion of XT is exponential affine in Xt , for all t ≤ T . This means that there exist C-
and Cd -valued functions φ(t,u) and ψ(t,u), respectively, with jointly continuous
t-derivatives such that X = Xx satisfies the conditional characteristic function

E
(
eu

�XT
∣
∣At
)= eφ(T−t,u)+ψ(T−t,u)�Xt (7.1.3)

for all u ∈ ı�d , t ≤ T and x ∈X .
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The functions φ and ψ will play a crucial role in the further discussion. For now,
we remind the reader that since E(eu

�XT | At ) is bounded by one, for u ∈ ı�d ,
the real part of the exponent φ(T − t,u) + ψ(T − t,u)�Xt in (7.1.3) has to be
negative. We remark that φ(t,u) and ψ(t,u) for t ≥ 0 and u ∈ ı�d are uniquely
determined by (7.1.3), and satisfy, in particular, the initial conditions φ(0,u) = 0
and ψ(0,u)= u. In the next theorem, we present necessary and sufficient conditions
on the diffusion matrix a(x) and the drift b(x) for X to be affine. We refer the reader
for the proof to Theorem 2.2 in Filipović and Mayerhofer (2009).

Theorem 7.1.2 Suppose X is affine. Then the diffusion matrix a(x) and drift b(x)

are affine in x, i.e.

a(x)= a +
d∑

i=1

xiαi

b(x)= b +
d∑

i=1

xiβ i = b +Bx

(7.1.4)

for some d × d-matrices a and αi , and d-vectors b and βi , where we denote by

B = (β1, . . . ,βd)

the d × d-matrix with i-th column vector βi , 1 ≤ i ≤ d . Moreover, φ and ψ =
(ψ1, . . . ,ψd)

� solve the system of Riccati equations

∂tφ(t,u)= 1

2
ψ(t,u)�aψ(t,u)+ b�ψ(t,u)

φ(0,u)= 0

∂tψi(t,u)= 1

2
ψ(t,u)�αiψ(t,u)+ β�

i ψ(t,u), 1 ≤ i ≤ d
ψ(0,u)= u.

(7.1.5)

In particular, φ is determined by ψ via simple integration:

φ(t,u)=
∫ t

0

(
1

2
ψ(s,u)�aψ(s,u)+ b�ψ(s,u)

)

ds.

Conversely, suppose the diffusion matrix a(x) and drift b(x) are affine of the form
(7.1.4) and suppose there exists a solution (φ,ψ) of the Riccati equations (7.1.5)
such that φ(t,u) + ψ(t,u)�x has negative real part for all t ≥ 0, u ∈ ı�d and
x ∈X . Then X is affine with conditional characteristic function (7.1.3).

As mentioned above, the functions φ and ψ play a crucial role in the study
of affine processes. To improve our understanding of them, we provide the fol-
lowing lemma, see also Filipović (2009), Lemma 10.1. However, as we subse-
quently fix a state space, its statement can be sharpened, see the forthcoming Theo-
rem 7.1.5.
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Lemma 7.1.3 Let a and αi be real d × d-matrices, and b and βi be real d-vectors,
1 ≤ i ≤ d . The letter K can represent either � or C.

• For every u ∈Kd , there exists some t+(u) ∈ (0,∞] such that there exists a unique
solution (φ(.,u),ψ(.,u)) : [0, t+(u))→K×Kd of the Riccati equations (7.1.5).
In particular, t+(0)=∞.

• The domain

DK = {(t,u) ∈ �+ ×Kd ∣∣ t < t+(u)
}

is open in �+ ×Kd and maximal in the sense that for all u ∈Kd either t+(u)=
∞ or limt↑t+(u) ‖ψ(t,u)‖ =∞, respectively.

• For every t ∈ �+, the t-section

DK(t)=
{
u ∈Kd ∣∣ (t,u) ∈DK

}

is an open neighborhood of 0 in Kd . Moreover, DK(0) = Kd and DK(t1) ⊇
DK(t2) for 0 ≤ t1 ≤ t2.

• φ and ψ are analytic functions on DK .
• D� =DC ∩ (�+ ×�d).

We shall call DK the maximal domain for the Riccati equation.
Regarding the conditions in Theorem 7.1.2, we note the following interplay be-

tween the parameters a,αi ,b,βi in (7.1.4) and the state space X :

• a,αi ,b,βi must be such that X does not leave the set X , and
• a,αi must be such that a +∑d

i xiαi is symmetric and positive semi-definite for
all x ∈X .

Following Filipović and Mayerhofer (2009), we now assume that the state space
under consideration is of the form

X = (�+)m ×�n (7.1.6)

for some integers m,n ≥ 0 with m + n = d . This type of state space is sufficient
for the applications we discuss in this chapter and the following chapter. For a dis-
cussion on this issue and references to other state spaces, we refer the reader to
Remark 3.1 in Filipović and Mayerhofer (2009) and Chaps. 10 and 11 of this book.

For the state space given in (7.1.6), we now present necessary and sufficient
conditions on the functions a(x) and b(x) for X to be affine. Following Filipović
and Mayerhofer (2009), we find the following notation helpful: we consider the
index sets:

I = {1, . . . ,m} and J = {m+ 1, . . . ,m+ n}.
For any vector μ, matrix ν, and index sets M,N , we define by

μM = (μi)i∈M, νMN = (νij )i∈M,j∈N
the respective sub-vector and sub-matrix. The following result represents Theo-
rem 3.2 in Filipović and Mayerhofer (2009).
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Theorem 7.1.4 The process X on the canonical state space (�+)m×�n is affine if
and only if a(x) and b(x) are of the form (7.1.4) for parameters a, αi , b, βi , which
are admissible in the following sense:

a,αi are symmetric positive semidefinite,

aII = 0
(
and thus aIJ = a�

J I = 0
)
,

αj = 0 for all j ∈ J,
αi,kl = αi,lk = 0 for k ∈ I \ {i}, for all 1 ≤ i, l ≤ d,

b ∈ (�+)m ×�n,
BIJ = 0,
BII has nonnegative off-diagonal elements.

(7.1.7)

In this case, the corresponding system of Riccati equations (7.1.5) simplifies to

∂tφ(t,u)= 1

2
ψJ (t,u)

�aJJψJ (t,u)+ b�ψ(t,u),

φ(0,u)= 0,

∂tψi(t,u)= 1

2
ψ(t,u)�αiψ(t,u)+ β�

i ψ(t,u), i ∈ I,
∂tψJ (t,u)= B�

JJψJ (t,u),

ψ(0,u)= u,

(7.1.8)

and there exists a unique global solution (φ(.,u),ψ(.,u)) : �+ → C− × (C−)m ×
ı�n for all initial values u ∈ (C−)m× ı�n. In particular, the equation for ψJ forms
an autonomous linear system with unique global solution ψJ (t,u)= exp{B�

JJ t}uJ
for all uJ ∈ Cn.

We point out that the admissibility conditions (7.1.7) are well illustrated in Fil-
ipović and Mayerhofer (2009). We now go back to Definition 7.1.1 and examine it
in the light of the canonical state space. In particular, we wish to extend both, the
definition of the functions φ and ψ beyond u ∈ ı�d , but also the validity of the
affine transform. The next result, Theorem 3.3 in Filipović and Mayerhofer (2009),
shows that this is possible.

Theorem 7.1.5 Suppose X is affine with admissible parameters as given in (7.1.7).
Let τ > 0. Then:

• S(D�(τ ))⊂DC(τ );
• D�(τ )=M(τ) where

M(τ)= {u ∈ �d ∣∣E(eu�Xx (τ )
)
<∞ for all x ∈ (�+)m ×�n};

• D�(τ ) and D� are convex sets; moreover, for all 0 ≤ t ≤ T and x ∈ (�+)m×�n;
• (7.1.3) holds for all u ∈ S(D�(T − t));
• (7.1.3) holds for all u ∈ (C−)m × ı�n;
• M(t)⊇M(T ).
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It is clear that extending the validity of the affine transform is a crucial result
for applications, in particular, for option pricing. Before discussing applications, we
finally address the following technical issue: we concentrate on an affine process X

on the canonical state space (�+)m ×�n with admissible parameters a,αi ,b, and
βi , which means that for any x ∈ (�+)m ×�n, the process X = Xx satisfies

dXt = (b +BXt ) dt + ρ(Xt ) dW t , (7.1.9)

X0 = x and ρ(x)ρ(x)� = a +∑i∈I xiαi . So far, the entire discussion in this chap-
ter was based on the premise that there exists a unique solution X = Xx to (7.1.9).
However, if a(x) = ρ(x)ρ(x)� is affine, then ρ(x) cannot be Lipschitz continu-
ous in x, in general, which means that the existence and uniqueness of a solution to
(7.1.9) has to be investigated. Following Sect. 8 in Filipović and Mayerhofer (2009),
we show how X can always be realized as a unique solution of the SDE (7.1.9) on
the canonical state space X = (�+)m ×�n and for particular choices of ρ(x).

We now proceed as follows: we illustrate that even though the law of an affine
process is uniquely determined by its characteristics, it can be realized by infinitely
many variants of the SDE, by replacing ρ(x) in (7.1.9) by ρ(x)D, for any orthog-
onal matrix D. Consequently, we present an algorithm, which produces a canonical
choice of ρ(x), and establishes that the resulting SDE admits a unique solution, the
law of which is uniquely determined by a, αi , b, βi , but is independent of the choice
of ρ.

Firstly, we show that the law of an SDE is uniquely determined by a, αi ,
b, βi , but can be realized via an infinite number of SDEs. Firstly, note that for
any orthogonal d × d-matrix D, the function ρ(x)D results in the same diffu-
sion matrix as ρ(x), since ρ(x)DD�ρ(x)� = ρ(x)ρ(x)�. However, from Theo-
rem 7.1.4, it is known that given admissible parameters a, αi ,b, βi , the functions
(φ(·,u),ψ(·,u)) : �+ → C− × (C−)m × ı�n are uniquely determined as solu-
tions of the Riccati equations (7.1.8), for all u ∈ (C−)m × ı�n. These, in turn,
uniquely determine the law of the process X. Indeed, for any 0 ≤ t1 < t2 and
u1,u2 ∈ (C−)m × ı�n, we iterate the affine transform (7.1.3) to obtain

E
(
eu

�
1 Xt1+u�

2 Xt2
)

= eφ(t2−t1,u2)+φ(t1,u1+ψ(t2−t1,u2))+ψ(t1,u1+ψ(t2−t1,u2))
�x .

We conclude that the joint distribution of (Xt1,Xt2) is uniquely determined by
the functions φ and ψ . Iterating this argument, one concludes that every finite-
dimensional distribution, and thus the law of X, is uniquely determined by the
parameters a, αi , b, and βi . Consequently, the law of an affine process X, while
uniquely determined by its characteristics (7.1.4), can be realized by infinitely many
variants of the SDE (7.1.9), by replacing ρ(x) by ρ(x)D, for an orthogonal d × d
matrix D. We now recall the canonical choice of ρ(x) presented in Filipović and
Mayerhofer (2009):

• from Lemma 7.1 in Filipović and Mayerhofer (2009), it follows that every affine
process X on (�+)m × �n can be written as X = Λ−1Y for some invertible
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d × d matrix Λ and some affine process Y on (�+)m ×�n with block-diagonal
diffusion matrix. Hence one can focus on ρ(x) for which

ρ(x)ρ(x)� =
(

diag(x1, . . . , xq,0, . . . ,0) 0

0 a +∑i∈I xiαi,JJ

)

for some integer 0 ≤ q ≤m. Since 0 ≤ q ≤m, ρ(x)≡ ρ(xI ) is a function of xI
only.

• set ρIJ (x)≡ 0, ρJ I (x)≡ 0, and

ρII (xI )= diag(
√
x1, . . . ,

√
xq,0, . . . ,0).

Choose for ρJJ (xI ) any measurable n× n-matrix-valued function satisfying

ρJJ (xI )ρJJ (xI )
� = a +

∑

i∈I
xiαi,JJ ,

see Sect. 8 in Filipović and Mayerhofer (2009) for a discussion on how to choose
such a function.

• consequently, the SDE (7.1.9) now reads

dXI = (bI +BIIXI ) dt + ρII (XI ) dW I ,

dXJ = (bJ +BJ IXI +BJJXJ ) dt + ρJJ (XI ) dW J ,

X0 = x.

Lemma 8.2 in Filipović and Mayerhofer (2009) asserts the existence and unique-
ness of an (�+)m ×�n-valued weak solution X = Xx for any x ∈ (�+)m ×�n.

We conclude this theoretical part with the following result, which presents Theo-
rem 8.1 in Filipović and Mayerhofer (2009).

Theorem 7.1.6 Let a, αi , b, βi be admissible parameters. Then there exists a mea-
surable function ρ : (�+)m ×�n →�d×d with ρ(x)ρ(x)� = a +∑i∈I xiαi , and
such that, for any x ∈ (�+)m ×�n, there exists a unique (�+)m ×�n-valued solu-
tion X = Xx of (7.1.9). Moreover, the law of X is uniquely determined by a, αi , b,
βi and does not depend on the particular choice of ρ.

Finally, we remark that the above discussion is similar to the forthcoming dis-
cussion in Sect. 9.3, which will show how to represent in normal form the affine
processes discussed in Dai and Singleton (2000).

7.2 Pricing Using Affine Diffusions

In this section, we present classical approaches to pricing in affine models, following
Filipović and Mayerhofer (2009). Here the expectation can be interpreted as being
taken under some assumed risk neutral probability measure.
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7.2.1 Classical Approaches to Pricing in Affine Models

We firstly present, following Filipović and Mayerhofer (2009), two classical ap-
proaches to pricing in affine models. The following assumption sits at the heart of
the classical approach.

Assumption 7.2.1 The process (rt )t≥0 is an affine transform of (Xt )t≥0,

rt = c+ γ�Xt ,

where X is affine on the canonical state space (�+)m×�n with admissible param-
eters a, αi , b, β i , where i ∈ {1, . . . , d}, given in Eq. (7.1.7) and c ∈ �, γ ∈ �d .

We are interested in computing expectations of the form

π(t)=E(e−
∫ T
t rsdsf (XT )

∣
∣At
)
,

where we assume that f is such that

E
(
e−
∫ T

0 rsds
∣
∣f (XT )

∣
∣
)
<∞.

Both classical approaches are based on the following result, see Theorem 4.1 in
Filipović and Mayerhofer (2009).

Theorem 7.2.2 Let τ > 0. The following statements are equivalent:

• E(e−
∫ τ

0 rsds) <∞ for all x ∈ (�+)m ×�n, where X0 = x.
• There exists a unique solution (Φ(·,u),Ψ (·,u)) : [0, τ ]→ C × Cd of

∂tΦ(t,u)= 1

2
Ψ J (t,u)

�aJJΨ J (t,u)+ b�Ψ (t,u)− c,
Φ(0,u)= 0,

∂tΨ i (t,u)= 1

2
Ψ (t,u)�αiΨ (t,u)+ β�

i Ψ (t,u)− γi, i ∈ I
∂tΨ J (t,u)= B�

JJΨ J (t,u)− γ J ,

Ψ (0,u)= u,

(7.2.1)

for u = 0.

In either case, there exists an open convex neighborhood U of 0 in �d such that
the system of Riccati equations (7.2.1) admits a unique solution (Φ(·,u),Ψ (·,u)) :
[0, τ ]→ C × Cd for all u ∈ S(U), and we have

E
(
e−
∫ T
t rs dseu

�XT
∣
∣At
)= eΦ(T−t,u)+Ψ (T−t,u)�Xt ,

for all u ∈ S(U), t ≤ T ≤ t + τ and x ∈ (�+)m ×�n.

For the remainder of this section, we assume that one of the conditions of Theo-
rem 7.2.2 is satisfied. In practice, given an affine process, we would firstly have to
solve the Riccati equations to make use of Theorem 7.2.2. There are two approaches
we can pursue:
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7.2.2 Forward-Measure Approach

We define the Radon-Nikodym derivative

ΛF = dP T

dP
= 1

PT (0)S0
T

,

where PT (t) = E(e−
∫ T
t rs ds | At ) and S0

T = exp{∫ T0 rs ds}. Here P is interpreted
as the assumed risk neutral probability measure and PT as the T -forward measure
with the zero coupon bond PT (t) as numéraire. We also set

ΛF (t)= dP T

dP

∣
∣
∣
∣
At

=E(ΛF |At )

and note thatΛF (t) is a strictly positive (A,P )-martingale. From Bayes’s Theorem,
see Sect. 15.8, one has

EPT
(
f (XT )

∣
∣At
)= E(f (XT )e

− ∫ Tt rs ds |At )
PT (t)

.

Up to normalization with E(e−
∫ T
t rs ds |At ), calculating

π(t)=E(e−
∫ T
t rs dsf (XT )

∣
∣At
)

amounts to computing EPT (f (XT ) | At ). The following result, Corollary 4.2 in
Filipović and Mayerhofer (2009), is used to compute the characteristic function of
XT under PT .

Corollary 7.2.3 For any maturity T ≤ τ , the T -zero coupon bond price at t ≤ T is
given as

PT (t)= e−A(T−t)−B(T−t)�Xt ,

where we denote

A(t)=−Φ(t,0), B(t)=−Ψ (t,0).

Moreover, for t ≤ T ≤ S ≤ τ , the At -conditional characteristic function of XT un-
der the S-forward measure PS is given by

EPS
(
eu

�XT
∣
∣At
)= e−A(S−T )+Φ(T−t,u−B(S−T ))+Ψ (T−t,u−B(S−T ))�Xt

PS(t)
, (7.2.2)

for all u ∈ S(U +B(S − T )), where U is the neighborhood of 0 in �d from Theo-
rem 7.2.2.

Consequently, using (7.2.2), we either recognize the characteristic function, or
we invert it numerically. The resulting distribution is denoted by q(t, T , dx) and we
can finally compute

π(t)= PT (t)
∫

(�+)m×�n
f (x)q(t, T , dx).
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7.2.3 Applying the Fubini Theorem

For this second approach, we assume that the payoff function f admits the repre-
sentation

f (x)=
∫

�d
e(u+ıy)�x f̃ (y) dy, (7.2.3)

for some integrable function f̃ : �d → C and some constant u ∈ U . Then we may
be able to apply Fubini’s theorem to change the order of integration, which gives

π(t)=E(e−
∫ T
t rs dsf (XT )

∣
∣At
)

=E
(

e−
∫ T
t rs ds

∫

�d
e(u+ıy)�XT f̃ (y) dy

∣
∣
∣
∣At
)

=
∫

�d
E
(
e−
∫ T
t rs ds+(u+ıy)�XT

∣
∣At
)
f̃ (y) dy

=
∫

�d
eΦ(T−t,u+ıy)+Ψ (T−t,u+ıy)�Xt f̃ (y) dy, (7.2.4)

where we used Theorem 7.2.2 to arrive at (7.2.4). The next lemma, Lemma 4.3 in
Filipović and Mayerhofer (2009), shows that f̃ can be found by Fourier transforma-
tion.

Lemma 7.2.4 Let f : �d → C be a measurable function and u ∈ �d be such that
the function h(x)= e−u�xf (x) and its Fourier transform

ĥ(y)=
∫

�d
h(x)e−ıy�x dx

are integrable on �d . Then (7.2.3) holds for almost all x ∈ �d for

f̃ (x)= 1

(2π)d
ĥ(x).

Moreover, the right-hand side of (7.2.3) is continuous in x. Hence, if f is continuous
then (7.2.3) holds for all x ∈ �d .

Finally, we summarize the classical approach to pricing in affine models, where
we are interested in computing

E
(
e−
∫ T
t g(Xs ) dsf (XT )

∣
∣At
)

under an assumed risk neutral probability measure:

1. postulate that g(x) is an affine function of x,

g(x)= c+ γ�x;
2. solve the system of Riccati equations, (7.2.1);
3. • identify the law of XT under the forward measure, either by inspection or

numerical inversion;
• represent f as in (7.2.3);

4. compute the resulting integral numerically.
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7.3 Pricing Using Affine Diffusions Under the Benchmark
Approach

The aim of this section is to demonstrate how to modify the classical approaches
to pricing in affine models presented in Sects. 7.2.2 and 7.2.3, to be applicable
under the benchmark approach. Recall that under the forward-measure approach,
Sect. 7.2.2, the distribution of the state variables under the forward measure played
the key role. Under the benchmark approach, we can price under the real world
probability measure, but replace the distribution with suitable fundamental solu-
tions, see also Chap. 5. As this approach was developed in Craddock and Platen
(2004, 2009), and Craddock and Lennox (2009), we refer to it as the Craddock-
Lennox-Platen approach. Regarding the approach from Sect. 7.2.3, we point out
that explicit formulas for the affine transform sit at the heart of this approach. When
dealing with the benchmark approach, we find that benchmarked Laplace trans-
forms naturally arise. Furthermore, using recent results from Chan and Platen (2011)
and Lennox (2011), for the models employed under the benchmark approach, these
benchmarked Laplace transforms are often available in closed-form. We conclude
this chapter by discussing how to employ forward measures under the benchmark
approach.

7.3.1 Craddock-Lennox-Platen Approach to the One-Dimensional
Problem

We now place ourselves in a one-dimensional setup and rely on results presented in
Craddock and Lennox (2009). We are interested in computing

E
(
e−
∫ T

0 g(Xs)f (XT )
)
,

where X is a one-dimensional affine process started at x, and P is interpreted as the
real world probability measure. Essentially, we wish to address two questions in this
subsection:

(i) is there a more general approach to the formulated problem than the steps out-
lined above, in particular, having to solve a different set of Riccati equations for
every affine process?

(ii) can we choose functions which are more general than the affine functions pre-
sented under Assumption 7.2.1?

It is clear that both approaches presented in the previous section require us to solve
the Riccati equations. Therefore, the classical approach cannot be used to obtain an
affirmative answer to (i). Regarding (ii), it is clear that both classical approaches
crucially relied on Theorem 7.2.2, which presented a closed form solution for

E
(
e−
∫ T

0 rs dseu
�XT
)
.

This result exploited the fact that the process r is an affine transform of X.
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We now show how to obtain an affirmative answer to the questions (i) and (ii) by
using the Craddock-Lennox-Platen approach, see e.g. Craddock and Platen (2004,
2009), Craddock and Lennox (2009). For the remainder of this subsection, we set
m= 1, n= 0, and hence d = 1. We have the following corollary to Theorem 7.1.4.

Corollary 7.3.1 The process X on �+ is affine if and only if a(x) and b(x) are
affine of the form given in Theorem 7.1.4 for parameters a, α, b, β , which are ad-
missible in the sense that

a = 0, α ≥ 0,

hence a(x)= αx, x ∈ �+, b ∈ �+,

b(x)= b+ βx.

We now introduce the functional

u(x, t)=E(e−
∫ t

0 g(Xs) dsf (Xt )
)
,

where X0 = x and use the Feynman-Kac formula, see Sect. 15.8, to obtain the fol-
lowing Cauchy problem:

ut = (b+ βx)ux + 1

2
αxuxx − g(x)u,

u(x,0)= f (x).
(7.3.5)

The following result is from Craddock and Lennox (2009), see Theorem 4.4.1 in
Chap. 4 of this book.

Corollary 7.3.2 The PDE (7.3.5) has a non-trivial Lie symmetry group if and only
if g is a solution of one of the following families of drift equations

Lf =Ax +B, (7.3.6)

or

Lf =Ax +Bx1/2 − 3

8

(
1

2
α

)2

, (7.3.7)

where

Lf = b(x)

α
β + g(x)+ xg′(x). (7.3.8)

In this section, we focus on Eq. (7.3.6). We remark that it is trivial to solve (7.3.6)
and (7.3.7) for g.

Corollary 7.3.3 If g(x)= Ãx+ B̃+ C̃
x

, then (7.3.6) is satisfied. Similarly, if g(x)=
Ãx + B̃x1/2 + (− 3

8 (
1
2α)

2 − bβ
α
)+ C̃

x
, then (7.3.7) is satisfied.
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Proof Substituting b(x)= b+ βx, we have

bβ

α
+ β2x

α
+ g(x)+ xg′(x)=Ax +B, for x > 0,

and we recognize the first-order ordinary differential equation

g′(x)+ g(x)

x
=
(

A− β2

α

)

+
(

B − bβ

α

)
1

x
.

The integrating factor is simply x, and we obtain

g(x)= x(A− β2

α
)

2
+
(

B − bβ

α

)

+ C

x
.

The second part of the proof can be completed analogously. �

We conclude that using the Craddock-Lennox-Platen approach we can handle a
function g(x) of the form

g(x)= Ãx + B̃ + C̃

x
.

Next, we address part (i). In particular, we point out that for the cases

g(x)= xμ, (7.3.9)

g(x)= μ

x
, (7.3.10)

g(x)= ν

x
+μx, (7.3.11)

fundamental solutions to the Cauchy problem are given in Craddock and Lennox
(2009), which we will recall below. Consequently, for g given by (7.3.9), (7.3.10),
or (7.3.11), computing

E
(
e−
∫ T

0 g(Xs) dsf (XT )
)

amounts to computing the following one-dimensional integral numerically
∫ ∞

0
f (y)p(x, y,T ) dy,

where p(x, y,T ) denotes the fundamental solution of (7.3.5), and x is the starting
point of the affine process. We now recall these fundamental solutions.

Corollary 7.3.4 Let g(x)= μx, where μ> 0, then there is a fundamental solution
of the PDE (7.3.5) of the form

p(x, y, t)=
√
Axye−(F (x)−F(y))/(2σ)

2σ sinh(
√
At/2)

exp

{

−Bt
2σ

−
√
A(x + y)

2σ tanh(
√
At/2)

}

×
(

C1(y)Iν

( √
Ayx

σ sinh(
√
At/2)

)

+C2(y)I−ν
( √

Ayx

σ sinh(
√
At/2)

))

,
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where ν =
√
σ 2+2C
σ

, F ′(x) = b(x)
x

, and we interpret I−ν to be Kν(z) if ν is an
integer, where σ = α

2 , A= β2 + 2αμ, B = bβ , and C = (b2 − αb).

The following results were also covered by our Propositions 5.4.3 and 5.4.4.

Corollary 7.3.5 Suppose g(x) = μ
x

, where μ > 0, then there is a fundamental so-
lution to the PDE (7.3.5) of the form

p(x, y, t)=
√
Ae(F(y)−F(x))/(2σ)

2σ sinh(
√
At/2)

√
x√
y

exp

{

−Bt
2σ

−
√
A(x + y)

2σ tanh(
√
At/2)

}

×
(

C1(y)Iν

( √
Axy

σ sinh(
√
At/2)

)

+C2(y)I−ν
( √

Axy

σ sinh(
√
At/2)

))

,

in which F ′(x) = b(x)/x and ν =
√

2C+4μσ+σ 2

σ
, and we interpret I−ν(z) to be

Kν(z) if ν is an integer, σ = α
2 , A= β2, B = bβ , and C = b2−αb

2 .

Let us provide for this case an example.

Example 7.3.6 Setting b = a1, β =−a2, α = 2σ in Corollary 7.3.5, we obtain the
square-root process

dXt = (a1 − a2Xt)dt +
√

2σXt dWt ,

started at x. Using the fundamental solution p(x, y, t), we can compute

E
(
e
−μ ∫ T0 ds

Xs f (XT )
)=
∫ ∞

0
f (y)p(x, y,T ) dy,

which usually has to be evaluated numerically. However, for the case f (x)= e−λx ,
we obtain the explicit formula

E
(
e
−λXt−μ

∫ t
0
ds
Xs

)= Γ (k + ν/2 + 1/2)

Γ (ν + 1)
βx−k

× exp

{
a2

2σ

(

a1t + x − x

tanh(a2t/2)

)}

× 1

βαk
eβ

2/(2α)M−k,ν/2
(
β2

α

)

,

whereMs,r(z) is the Whittaker function of the first kind, ν = 1
σ

√
(a1 − σ)2 + 4μσ ,

k = a1
2σ , α = a2

2σ (1 + coth( a2t
2 ))+ λ, and β = a2

√
x

2σ sinh(a2t/2)
.

Finally, we consider the case g(x)= ν
x
+μx, where μ> 0, ν > 0.

Corollary 7.3.7 Suppose g(x)= ν
x
+μx, μ> 0, ν > 0, then there is a fundamental

solution to the PDE (7.3.5) of the form



7.3 Pricing Using Affine Diffusions Under the Benchmark Approach 195

p(x, y, t)=
√
Axy

2σ sinh(
√
At/2)

e−(Bt+
√
A(x+y) coth(

√
At/2)+F(x)−F(y))/(2σ)

×
(

C1(y)I√
σ 2+2C/σ

( √
Axy

σ sinh(
√
At/2)

)

+C2(y)I−
√
σ 2+2C/σ

( √
Axy

σ sinh(
√
At/2)

))

.

As usual, F ′(x) = b(x)/x, I−ν(z) = Kν(z) if ν is an integer, A = β2 + 2αμ,
B = bβ , C = 1

2 (b
2 − αb+ 2αν), and σ = α

2 .

Following the discussion in Craddock and Lennox (2009), we usually have to
consider the case C1 = 1, C2 = 0.

In conclusion, we have the following procedure for calculating the above type of
functional for a one-dimensional affine process using the Craddock-Lennox-Platen
approach:

1. postulate that g(x) is given by

g(x)= ax + b+ c

x
;

2. compute numerically the one-dimensional integral
∫ ∞

0
f (y)p(x, y,T ) dy,

using the fundamental solution p(x, y,T ) identified in Corollaries 7.3.4, 7.3.5,
and 7.3.7.

7.3.2 Benchmarked Laplace Transforms

In this subsection, we discuss benchmarked Laplace transforms. These functionals
arise naturally in the context of the benchmark approach when applying the real
world pricing formula, as we illustrate using a simple example. For more advanced
examples, we refer the reader to Sect. 8.5.

As already discussed in Sect. 7.2.1, affine models have been applied to interest
rate modeling. We place ourselves in the stylized MMM, see Sect. 3.3, and assume
the following basic model for the short rate:

rt = c

Yt
, (7.3.12)

for t ≥ 0, where c > 0 and Y = {Yt , t ≥ 0} denotes the normalized GOP, see
Eq. (3.3.9). Though very simple, the diffusion coefficient of the interest rate has
the power 3

2 , which is also a feature of the interest rate models discussed in Ahn and
Gao (1999), and Platen (1999). The real world pricing formula (1.3.19) yields the
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following expression for the time t = 0 zero coupon bond price:

PT (0)= Sδ∗0 E

(
1

S
δ∗
T

)

= S
δ∗
0

α
δ∗
T

E

(exp{−c ∫ T0 ds
Ys
}

YT

)

.

Due to the presence of YT in the denominator, we refer to

E

(exp{−c ∫ T0 ds
Ys
}

YT

)

(7.3.13)

as a benchmarked Laplace transform. The following result, see Proposition 8.1 in
Chan and Platen (2011) and Proposition 2.0.41 in Lennox (2011), gives us access to
many useful benchmarked Laplace transforms. We choose to present this result in
generality, and employ the notation from Lennox (2011). We introduce the square-
root process X = {Xt, t ≥ 0}, where

dXt = (a − bXt) dt +
√

2σXt dWt , (7.3.14)

and X0 = x > 0.

Proposition 7.3.8 Assume that X = {Xt, t ≥ 0} is given by (7.3.14) and that
2a
σ

≥ 2. Let β = 1 + m − α + ν
2 , m = 1

2 (
a
σ
− 1), and ν = 1

σ

√
(a − σ)2 + 4μσ .

Then if m> α − ν
2 − 1,

E

(

exp

{

−μ
∫ t

0

ds

Xs

}

X−α
t

)

= 1

2νxm
exp

{

− bx

σ(ebt − 1)
+ bmt

}(
b exp{bt}
(ebt − 1)σ

)−m+α− ν
2

×
(

b2x

σ 2 sinh2( bt2 )

)ν/2
Γ (β)

Γ (1 + ν) 1F1

(

β,1 + ν, bx

σ(ebt − 1)

)

.

Setting a = 1, b = η, and σ = 1
2 , we can now compute (7.3.13). In Sect. 8.5, we

present further examples, which can be calculated using Proposition 7.3.8.
Finally, we present Proposition 2.0.42 from Lennox (2011).

Proposition 7.3.9 Assume that X = {Xt, t ≥ 0} is given by Eq. (7.3.14) and that
2a
σ

≥ 2. Define A = b2 + 4μσ , m = 1
σ

√
(a − σ)2 + 4σν, β =

√
Ax

σ sinh(
√
At
2 )

, and k =
√
A+b tanh(

√
At
2 )

2σ tanh(
√
At
2 )

. Then if a > (2α − 3)σ , for μ> 0, ν ≥ 0,

E

(

X−α
t exp

{

−ν
∫ t

0

ds

Xs
−μ
∫ t

0
Xs ds

})

=
√
Ax

1
2− a

2σ

2σ sinh(
√
At
2 )

(
β

2

)m
exp

{
b(x + at)−√

Ax coth(
√
At
2 )

2σ

}

k−(1+
a

2σ + 1
2+m

2 −α)

× Γ (1 + a
2σ + 1

2 + m
2 − α)

Γ (1 +m) 1F1

(

1 − α+ a

2σ
+ 1

2
+ m

2
,1 +m, β

2

4k

)

.
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7.3.3 Forward Measures Under the Benchmark Approach

In this subsection, we discuss how to employ the concept of a forward measure
under the benchmark approach. Recall from Sect. 3.3, that under the stylized MMM,
the benchmarked savings account

Ŝ
δ∗
T

Ŝ
δ∗
0

could not be used as a Radon-Nikodym derivative to introduce an equivalent risk
neutral probability measure, as this process is a strict supermartingale. However,
under the benchmark approach, benchmarked derivative prices are martingales, see
Chap. 1. Hence, the benchmarked zero coupon bond, P̂T (t), appears as a candi-
date to define an equivalent probability measure. We introduce the Radon-Nikodym
process Λ= {Λt, t ∈ [0, T ]},

Λt = P̂T (t)

P̂T (0)
, t ≤ T ,

where P̂T (t) = PT (t)

S
δ∗
t

denotes the price of a benchmarked zero coupon bond, and

PT (t) denotes the time t price of a zero coupon bond maturing at T . Clearly, since
P̂T (t) forms a martingale Λ= {Λt, t ∈ [0, T ]} is a martingale, where Λ0 = 1. Con-
sequently, we can use the Radon-Nikodym derivative

ΛT = 1

S
δ∗
T

1

E( 1
S
δ∗
T

)
,

to define a new probability measure, the T -forward measure PT , via

dP T

dP
= 1

S
δ∗
T

1

E( 1
S
δ∗
T

)
.

Note that P is here interpreted as the real world probability measure. We hence
obtain the following pricing rule for a nonnegative AT -measurable payoff HT sat-
isfying

E

(
HT

S
δ∗
T

)

<∞.

Proposition 7.3.10 The real world forward price at time t of an AT -measurable
payoff HT to be paid at T , where E(HT

S
δ∗
T

) <∞, is given by

EPT (HT |At )=
E
(
HT

S
δ∗
T

∣
∣At
)

P̂T (t)
.
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Proof The proof follows immediately from the real world pricing formula and the
Bayes rule, see Sect. 15.8,

EPT (HT |At )= E(HTΛT |At )
E(ΛT |At )

=E(ΛTΛ−1
t HT

∣
∣At
)

=E
(
HT

S
δ∗
T

∣
∣
∣
∣At
)

1

P̂T (t)
. �

In the case when an equivalent risk neutral probability measure exists, the for-
ward price derived in Sect. 7.2.2 under the classical approach can be shown to co-
incide with the above forward price. We emphasize that Proposition 7.3.10 does
not rely on the assumption of the existence of an equivalent risk neutral probability
measure.

The T -forward measure PT is employed as an auxiliary measure for pricing,
hence we are particularly interested in the distribution of random variables under
the measure PT . Using Proposition 7.3.10, we can compute the affine transform of
a random variable X under PT , where we use the real world probability measure
P to perform the computation, which is the same approach as employed in Theo-
rem 7.2.2:

EPT
(
exp{uX} ∣∣At

)= S
δ∗
t

PT (t)
E

(
exp{uX}
S
δ∗
T

∣
∣
∣
∣At
)

,

where u ∈ C.
A crucial observation is the following: if we want to apply the methodology from

Sect. 7.2.3, see also Sect. 8.6, to a typical problem arising in finance, such as the
pricing of index options, we are in fact interested in the affine transform of ln(Sδ∗T ).
This results in the following computation:

EPT
(
exp
{
u ln
(
S
δ∗
T

)} ∣
∣At
)= S

δ∗
t

PT (t)
E
((
S
δ∗
T

)u−1 ∣∣At
)
. (7.3.15)

Under the benchmark approach, we preferably employ realistic, but also tractable
models, hence Eq. (7.3.15) is easily computed. We illustrate this in the one-and
two-dimensional setting in Sect. 8.6.



Chapter 8
Pricing Using Affine Diffusions

The aim of this chapter is to illustrate how to price derivatives using affine diffu-
sions in the classical risk-neutral setting and under the benchmark approach. In the
classical risk-neutral setting, the affine transform plays a crucial role in the pricing
of derivatives. In particular, there are essentially two ways in which this transform
has been employed:

• the affine transform can be used to determine the law of the vector of random
variables under consideration, if necessary numerically;

• the affine transform can be employed together with the Fourier transform.

In this chapter, we first show how to use the affine transform to determine the law
of a vector of random variables. Later, we combine this with the Fourier transform.
We present the theory, mainly relying on Filipović and Mayerhofer (2009). Subse-
quently, we illustrate the theory by using two one-dimensional examples.

Under the benchmark approach, we can work under the real world probability
measure, using the Craddock-Lennox-Platen approach from Sect. 7.3.1, or bench-
marked Laplace transforms, or we can employ the forward measure from Sect. 7.3.3.
In Sect. 8.5, we illustrate the usage of benchmarked Laplace transforms, and in
Sect. 8.6, we work under the forward measure.

8.1 Theoretical Background

As in Chap. 7, we work on a filtered probability space (Ω,A,A,P ) and use X
to denote an affine process that assumes values in the canonical state space X =
(�+)m ×�n. The dynamics of X are given by

dXt = b(Xt ) dt + ρ(Xt ) dW t , (8.1.1)

where X0 = x and

ρ(x)ρ(x)� = a(x).

Affine processes are frequently used in the context of short rate models, and we
restate Assumption 7.2.1, also to recall the notation used therein.

J. Baldeaux, E. Platen, Functionals of Multidimensional Diffusions with Applications
to Finance, Bocconi & Springer Series 5, DOI 10.1007/978-3-319-00747-2_8,
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Assumption 8.1.1 The process r = {rt , t ≥ 0} is an affine transform of X =
{Xt , t ≥ 0},

rt = c+ γ�Xt ,

where X is an affine process on the canonical state space (�+)m × �n given by
Eq. (8.1.1) with admissible parameters a, αi , b, and β i , where i ∈ {1, . . . , d}, given
in Eq. (7.1.7), and c ∈ �, γ ∈ �d .

We are interested in computing conditional expectations of the form

π(t)=E
(

exp

{

−
∫ T

t

rs ds

}

f (XT )

∣
∣
∣
∣At
)

(8.1.2)

and hence impose the integrability condition

E

(

exp

{

−
∫ T

0
rs ds

}
∣
∣f (XT )

∣
∣
)

<∞
for the remainder of this chapter. In Eq. (8.1.2), the expectation is taken with re-
spect to the measure P . This refers either to the case when P denotes some as-
sumed equivalent risk-neutral probability measure or the case when P denotes the
real world probability measure. In the remainder of the section, we discuss how to
compute such discounted Laplace transforms. We recall Theorem 7.2.2, where we
assume that the expectation is taken with respect to the measure P , irrespective of
whether this refers to an assumed risk-neutral measure or the real world probability
measure. We point out that if P corresponds to an assumed risk neutral probability
measure and if f is simply the constant one, then the computation of (8.1.2) yields
the price at time t of a zero coupon bond maturing at time T . For the remainder of
the section, we assume that the conditions of Theorem 7.2.2 are satisfied. We have
the following result, see Corollary 4.2 in Filipović and Mayerhofer (2009).

Theorem 8.1.2 Let τ > 0 and assume that the conditions of Theorem 7.2.2 are
satisfied. Then for any maturity T ≤ τ , the T -zero coupon bond price at t ≤ T is
given as

E

(

exp

{

−
∫ T

t

rs ds

} ∣
∣
∣
∣At
)

= exp
{−A(T − t)−B(T − t)�Xt

}
(8.1.3)

where we denote

A(t)=−Φ(t,0), B(t)=−Ψ (t,0).

Moreover, for t ≤ T ≤ S ≤ τ , the At -conditional characteristic function of XT is
given by

E

(

exp

{

−
∫ S

t

rs ds + u�XT

} ∣
∣
∣
∣At
)

= e−A(S−T )+Φ(T−t,u−B(S−T ))+Ψ (T−t,u−B(S−T ))�Xt (8.1.4)

for all u ∈ S(U +B(S − T )), where U is the neighborhood of 0 in �d from Theo-
rem 7.2.2.
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We remark that if P corresponds to the risk-neutral probability measure, then
equality (8.1.4) gives the law of XT under a forward measure PS , defined via the
Radon-Nikodym derivative

ΛF = dP S

dP
= 1

E((S0
S)

−1)

1

S0
S

,

where S0
t = exp{∫ t0 rs ds}. From Bayes’ Theorem, see Sect. 15.8,

EPS
(
exp
{
u�XT

} ∣∣At
)= E(exp{− ∫ S

t
rs ds + u�XT } |At )

E(exp{− ∫ S
t
rs ds} |At )

. (8.1.5)

The expression E(exp{− ∫ S
t
rs ds} |At ) was computed in (8.1.3) and

E

(

exp

{

−
∫ S

t

rs ds + u�XT

} ∣
∣
∣
∣At
)

in Eq. (8.1.4). One can now recognize the law of XT under PS , or compute it nu-
merically. Finally, we point out that computations using forward measures under the
benchmark approach will be performed in Sect. 8.6.

We now illustrate how to apply Theorem 8.1.2. Clearly, this requires the solution
of the system of Riccati equations (7.2.1). In some cases, such as the Vasiček and
the CIR model, explicit solutions can be found, and we now show how to obtain
them.

8.2 One-Dimensional Examples

In this section, we discuss two one-dimensional examples, which feature promi-
nently in the finance literature.

8.2.1 Vasiček Model

The state space of the Vasiček model, see Vasiček (1977), is �, and we set rt =Xt ,
so that we consider the one-dimensional affine process

drt = (b+ βrt ) dt + σdWt, (8.2.6)

where σ ≥ 0, b,β ∈ �. Given this parametrization, the system of Riccati equations
(7.2.1) now reads

∂tΦ(t, u)= 1

2
Ψ 2(t, u)σ 2 + bΨ (t, u),

Φ(0, u)= 0,

∂tΨ (t, u)= βΨ (t, u)− 1,

Ψ (0, u)= u.

(8.2.7)
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This system is easily solved, in particular, we obtain

Ψ (t, u)= exp{βt}u− exp{βt} − 1

β

and

Φ(t,u)= 1

2
σ 2
[
u2

2β

(
exp{2βt} − 1

)+ 1

2β3

(
exp{2βt} − 4 exp{βt} + 3 + 2βt

)

− u

β2

(
exp{2βt} − 2 exp{βt} + 1

)
]

+ b
[
u

β

(
exp{βt} − 1

)− exp{βt} − 1 − tβ
β2

]

,

which holds for all u ∈ C, and hence (8.1.4) holds for all u ∈ C. This allows us, via
Theorem 8.1.2, to compute

E

(

exp

{

−
∫ T

t

rs ds

} ∣
∣
∣
∣At
)

= exp
{−A(T − t)−B(T − t)rt

}
,

where

A(t)=−Φ(t,0)
=− b

β2

(
1 − exp{βt} + βt)− σ 2

4β3

(
3 − 4 exp{βt} + exp{2βt} + 2βt

)
,

and

B(t)=−Ψ (t,0)= exp{βt} − 1

β
.

Furthermore, we have, by invoking Eq. (8.1.5),

EPS
(
exp{urT }

∣
∣At
)

= exp

{

u

(

exp
{
β(T − t)}rt − σ 2

2β2

(
2 − exp

{
β(S − T )}+ exp

{
β(S + T − 2t)

}

− 2 exp
{
β(T − t)})− b

β

(
1 − exp

{
β(T − t)})

+ σ 2u

4β

(
exp
{
2β(T − t)}− 1

)
)}

.

This means, we identify the distribution of rT under PS conditional on At as Gaus-
sian with mean

exp
{
β(T − t)}rt − σ 2

2β2

(
2 − exp

{
β(S − T )}

+ exp
{
β(S + T − 2t)

}− 2 exp
{
β(T − t)})

− b

β

(
1 − exp

{
β(T − t)})
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and variance

σ 2β

2

(
exp
{
2β(T − t)}− 1

)
. (8.2.8)

For the special case S = T , i.e. PT = PS , this distribution reduces to the well-
known law of a Gaussian random variable with mean

exp
{
β(T − t)}rt − σ 2

2β2

(
exp
{
2β(T − t)}− exp

{
β(T − t)})

−
(
b

β
+ σ 2

2β2

)
(
1 − exp

{
β(T − t)})

and variance (8.2.8). These results are in line with well-known results on pricing
under the Vasiček model, see e.g. Mamon (2004).

8.2.2 CIR Model

We now discuss the CIR model, see Cox et al. (1985), following the presentation in
Filipović and Mayerhofer (2009). In this case, the state space is �+. We set rt =Xt ,
and deal with the following model for the short rate

drt = (b+ βrt ) dt + σ√rt dWt , (8.2.9)

where b,σ > 0 and β < 0. The system of Ricatti equations (7.2.1) now reads

∂tΦ(t, u)= bΨ (t, u),
Φ(0, u)= 0,

∂tΨ (t, u)= 1

2
σ 2Ψ 2(t, u)+ βΨ (t, u)− 1,

Ψ (0, u)= u.

(8.2.10)

To solve system (8.2.10), we use the following lemma, which appeared as
Lemma 5.2 in Filipović and Mayerhofer (2009).

Lemma 8.2.1 Consider the Riccati differential equation

∂tG=AG2 +BG−C, G(0, u)= u, (8.2.11)

where A,B,C ∈ C and u ∈ C, with A �= 0 and B2 + 4AC ∈ C \ �−. Let
√· denote

the analytic extension of the real square root to C\�−, and define λ=√
B2 + 4AC.

• The function

G(t,u)=−2C(exp{λt} − 1)− (λ(exp{λt} + 1)+B(exp{λt} − 1))u

λ(exp{λt} + 1)−B(exp{λt} − 1)− 2A(exp{λt} − 1)u

is the unique solution of (8.2.11) on its maximal interval of existence [0, t+(u)).
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Moreover,
∫ t

0
G(s,u)ds

= 1

A
log

(
2λ exp{λ−B2 t}

λ(exp{λt} + 1)−B(exp{λt} − 1)− 2A(exp{λt} − 1)u

)

.

(8.2.12)

• If, in addition,A> 0, B ∈ �, �(C)≥ 0 and u ∈ C−, then t+(u)=∞ andG(t,u)
is C−-valued.

Invoking Lemma 8.2.1, we conclude that A = 1
2σ

2, B = β , C = 1, λ =√
β2 + 2σ 2 and

Ψ (t, u)=−2(exp{λt} − 1)− (λ(exp{λt} + 1)+ β(exp{λt} − 1))u

λ(exp{λt} + 1)− β(exp{λt} − 1)− σ 2(exp{λt} − 1)u

=−L1(t)−L2(t)u

L3(t)−L4(t)u
,

where

L1(t)= 2
(
exp{λt} − 1

)

L2(t)= λ
(
exp{λt} + 1

)+ β(exp{λt} − 1
)

L3(t)= λ
(
exp{λt} + 1

)− β(exp{λt} − 1
)

L4(t)= σ 2(exp{λt} − 1
)

and

Φ(t,u)= 2b

σ 2
log

(
2λ exp{λ−β2 t}

λ(exp{λt} + 1)− β(exp{λt} − 1)− σ 2(exp{λt} − 1)u

)

= 2b

σ 2
log

(
L5(t)

L3(t)−L4(t)u

)

,

i.e. we set

L5(t)= 2λ exp

{
λ− β

2
t

}

,

where (Φ(·, u),Ψ (·, u)) : �+ → C− × C− and (8.1.4) holds for all u ∈ C− and
t ≤ T . As an application of the above result, we can obtain from Theorem 8.1.2

E

(

exp

{

−
∫ T

t

rs ds

} ∣∣
∣
∣At
)

= exp
{−A(T − t)−B(T − t)rt

}
,

where

A(t)=−Φ(t,0)= 2b

σ 2
log

(
L3(t)

L5(t)

)

and

B(t)=−Ψ (t,0)= L1(t)

L3(t)
,

which is the same result as the one derived in Sect. 5.5 using Lie symmetry methods.
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We can also compute the law of rT under PS , conditional on At . Applying
Eq. (8.1.5), this gives

EPS
(
exp{urT }

∣
∣At
)

= exp{−A(S − T )+Φ(T − t, u−B(S − T ))+Ψ (T − t, u−B(S − T ))rt }
PS(t)

= exp
{−A(S − T )+Φ(T − t, u−B(S − T ))+Ψ (T − t, u−B(S − T ))rt

+A(S − t)+B(S − t)rt
}

=
(

L5(S − T )L5(T − t)L3(S − t)
L3(S − T )(L3(T − t)−L4(T − t)(u−B(S − T )))L5(S − t)

) 2b
σ2

× exp

{

rt

(
L1(S − t)
L3(S − t) −

L1(T − t)−L2(T − t)(u−B(S − T ))
L3(T − t)−L4(T − t)(u−B(S − T ))

)}

.

It can be confirmed that
L5(S − T )L5(T − t)L3(S − t)

L3(S − T )(L3(T − t)−L4(T − t)(u−B(S − T )))L5(S − t) =
1

1 −C1(t, T , S)u

and also that

L1(S − t)
L3(S − t) −

L1(T − t)−L2(T − t)(u−B(S − T ))
L3(T − t)−L4(T − t)(u−B(S − T ))

=−C2(t, T , S)+ C2(t, T , S)

1 −C1(t, T , S)u
,

where

C1(t, T , S)= L3(S − T )L4(T − t)
2λL3(S − t) and

C2(t, T , S)= L2(T − t)
L4(T − t) −

L1(S − t)
L3(S − t) .

To identify the distribution of rT under PS conditional on At , we recall the follow-
ing well-known result, which in this form appeared as Lemma 5.1 in Filipović and
Mayerhofer (2009), see also Sects. 3.1 and 13.1.

Lemma 8.2.2 The non-central χ2-distribution with δ > 0 degrees of freedom and
non-centrality parameter λ > 0 has the density function

p(x, δ, λ)= 1

2
exp

{

−x + λ
2

}(
x

λ

) δ
4− 1

2

I δ
2− 1

2
(
√
λx), x ≥ 0

and characteristic function
∫

�+
exp{ux}p(x, δ, λ) dx = exp{ λu

1−2u }
(1 − 2u)

δ
2

, u ∈ C−.

Here Iν(x)=∑j≥0
1

j !Γ (j+ν+1) (
x
2 )

2j+ν denotes the modified Bessel function of the
first kind of order ν >−1, see e.g. Abramowitz and Stegun (1972), Sect. 9.6.
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Using Lemma 8.2.2, we conclude that under PS , the random variable 2rT
C1(t,T ,S)

,

conditional on At , follows a non-central χ2-distribution with 4b
σ 2 degrees of freedom

and non-centrality parameter 2C2(t, T , S)rt . These results are consistent with well-
known pricing formulas under the CIR model.

8.3 Fourier Transform Approach

We recall that the methodology in the previous section relied on using the character-
istic function to identify the law of XT , either by inspection or numerical inversion.
The approach presented in the current section also uses the characteristic function,
but in a different manner. We follow the approach presented in Filipović (2009),
where the following economic interpretation was presented.

We start with the economic interpretation and later present the approach in a
rigorous fashion. Its applications to some examples will conclude the section. Es-
sentially, we express the payoff function f (x) as follows

f (x)=
∫

�q
exp
{
(v + ıLλ)�x

}
f̃ (λ) dλ, dx-a.s.,

where f̃ (λ) denotes an integrable function. Economically, this means that we set up
a static hedge using claims with complex payoffs exp{(v+ ıLλ)�x}, each weighted
by f̃ (λ). The linearity of pricing rules ensures that the price of the claim with payoff
f (x) is given by the weighted average of the prices of the claims with payoffs
exp{(v+ ıLλ)�x}, each weighted by f̃ (λ). The following theorem, which appeared
as Theorem 10.5 in Filipović (2009), makes this argument rigorous.

Theorem 8.3.1 Suppose either condition (i) or (ii) of Theorem 7.2.2 is met for some
τ ≥ T , and let D�(T ) denote the maximal domain for the system of Riccati equa-
tions (7.2.1). Assume that f satisfies

f (x)=
∫

�q
exp
{
(v + ıLλ)�x

}
f̃ (λ) dλ, dx-a.s., (8.3.13)

for some v ∈D�(T ) and d×q matrix L, and some integrable function f̃ : �q → C,
for some positive integer q ≤ d . Then the price (8.1.2) is well defined and given by
the formula

π(t)=
∫

�q
exp
{
Φ(T − t,v + ıLλ)+Ψ (T − t,v + ıLλ)�Xt

}
f̃ (λ) dλ. (8.3.14)

If f is continuous in x, then (8.3.13) holds for all x, which follows since the
right-hand side of (8.3.14) is continuous in x, by the Riemann-Lebesgue theorem.

Of course, the applicability of Theorem 8.3.1 depends on how easy it is to come
up with a representation of the form (8.3.13). Following Filipović (2009), we can
find some examples useful for finance. We refer also to Sect. 8.4 for a more con-
structive approach.
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8.3.1 Examples of Fourier Decompositions

Following Filipović (2009) and Hurst and Zhou (2010), we discuss European call
and put options, exchange options, and spread options. For the proofs of the follow-
ing results, we refer the reader to Filipović (2009).

Lemma 8.3.2 Let K > 0. For any y ∈ � the following identities hold:

1

2π

∫

�
exp
{
(w+ ıλ)y} K−(w−1+ıλ)

(w+ ıλ)(w− 1 + ıλ) dλ

=

⎧
⎪⎨

⎪⎩

(K − ey)+ if w < 0

(ey −K)+ − ey if 0<w < 1,

(ey −K)+ if w > 1.

Clearly, the case 0<w < 1 also equals (K − ey)+ −K .

By setting K = ez in Lemma 8.3.2, we obtain the payoff of an exchange option.

Corollary 8.3.3 For any y, z ∈ � the following identities hold:

1

2π

∫

�
exp{(w+ ıλ)y − (w− 1 + ıλ)z}

(w+ ıλ)(w− 1 + ıλ) dλ=
{
(ey − ez)+ if w > 1,

(ey − ez)+ − ey if 0<w < 1.

Lastly, we discuss the payoff of a spread-option.

Lemma 8.3.4 Let w = (w1,w2)
� ∈ �2 be such thatw2 < 0 andw1+w2 > 1. Then

for any y = (y1, y2)
� ∈ �2 the following identity holds:

(
ey1 − ey2 − 1

)+
(2π)2 =

∫

�2
exp
{
(w + ıλ)�y

}

× Γ (w1 +w2 − 1 + ı(λ1 + λ2))Γ (−w2 − ıλ2)

Γ (w1 + 1 + ıλ1)
dλ1 dλ2,

where the gamma function Γ (z)= ∫∞0 t−1+ze−t dt is defined for all complex z with
�(z) > 0.

8.4 A Special Class of Payoff Functions

Following Filipović (2009), we point out that for a special class of payoff functions,
we can apply both approaches, the one from Sect. 8.3 and the one from Sect. 8.1.
For particular payoff functions, we can compute f̃ , as needed for the Fourier trans-
form approach from Sect. 8.3, but one can also compute the relevant densities. The
following theorem is Theorem 10.6 in Filipović (2009).
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Theorem 8.4.1 Suppose either condition (i) or (ii) of Theorem 7.2.2 is met for some
τ ≥ T , and let D� denote the maximal domain for the system of Riccati equations
(7.2.1). Assume that f is of the form

f (x)= ev�xh
(
L�x

)

for some v ∈D�(T ) and d×q-matrix L, and some integrable function h : �q →�,
for a positive integer q ≤ d . Define the bounded function

f̃ (λ)= 1

(2π)q

∫

�q
e−ıλ�yh(y) dy, λ ∈ �q .

• If f̃ is an integrable function in λ ∈ �q , then the assumptions of Theorem 8.3.1
are met.

• If v = Lw, for some w ∈ �q , and eΦ(T−t,v+ıLλ)+Ψ (T−t,v+ıLλ)�Xt is an inte-
grable function in λ ∈ �q , then the At -conditional distribution of the �q -valued
random variable Y = L�XT under the T -forward measure PT admits the con-
tinuous density function

q(t, T ,y)= 1

(2π)q

∫

�q
e−(w+ıλ)�y e

Φ(T−t,v+ıLλ)+Ψ (T−t,v+ıLλ)�Xt

PT (t)
dλ.

In either case, the integral in (8.3.14) is well-defined and the pricing formula
(8.3.14) holds.

8.5 Pricing Using Benchmarked Laplace Transforms

In this section, we discuss pricing under the benchmark approach using bench-
marked Laplace transforms. We have two applications:

• a standard European put option;
• realized variance derivatives.

8.5.1 Put Options Under the Stylized MMM

In this subsection, we motivate how benchmarked Laplace transforms naturally arise
when pricing options. For simplicity, we place ourselves in the stylized MMM, see
Sect. 3.3, which we now briefly recall, as it is used in this and the next subsection,
and Sect. 8.6. The filtered probability space (Ω,A,A,P ), where the filtration A=
(At )t≥0 is assumed to satisfy the usual conditions, carries one source of uncertainty,
a standard Brownian motionW = {Wt, t ≥ 0}. As in Sect. 3.3, we assume a constant
short rate and model the savings account using the differential equation

dS0
t = rS0

t dt,
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for t ≥ 0 with S0
0 = 1. We recall that the GOP is modeled using the SDE

S
δ∗
t = S0

t S̄
δ∗
t = S0

t Yt α
δ∗
t , (8.5.15)

where Yt = S̄
δ∗
t

α
δ∗
t

is a square-root process of dimension four, satisfying the SDE

dYt = (1 − ηYt ) dt +
√
Yt dWt , (8.5.16)

for t ≥ 0 with initial value Y0 > 0 and net growth rate η > 0. As before, αδ∗t is a
deterministic function of time, given by

α
δ∗
t = α0 exp{ηt},

with scaling parameter α0 > 0. The following lemma shows how benchmarked
Laplace transforms arise when pricing options.

Lemma 8.5.1 Let g denote a positive AT -measurable random variable, and define

h(K) :=E
(
(K − g)+
YT

)

.

We have for λ > 0,
∫ ∞

0
exp{−λK}h(K)dK = 1

λ2
E

(
exp{−λg}
YT

)

.

Proof By the Fubini theorem it follows
∫ ∞

0
exp{−λK}h(K)dK =

∫ ∞

0
exp{−λK}E

(
(K − g)+
YT

)

dK

=E
(∫ ∞

0
exp{−λK} (K − g)+

YT
dK

)

.

We obtain
∫ ∞

0
exp{−λK} (K − g)+

YT
dK

=
∫ ∞

g

exp{−λK} (K − g)
YT

dK

= 1

YT

∫ ∞

g

exp{−λK}K dK − g

YT

∫ ∞

g

exp{−λK}dK

= 1

YT

(
g exp{−λg}

λ
+ exp{−λg}

λ2

)

− g

YT

exp{−λg}
λ

= 1

λ2

exp{−λg}
YT

,

and the result follows. �
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Now, for a put option with strike K and maturity date T , we compute

pT,K(0)= Sδ∗0 E

(
(K − Sδ∗T )+

S
δ∗
T

)

= Sδ∗0 E

(
(K̃ − YT )+

YT

)

,

where K̃ = K

S0
T α

δ∗
T

. We are interested in the Laplace transform with respect to the

modified strike K̃ , and obtain, for

h(K̃)=E
(
(K̃ − YT )+

YT

)

the following equality
∫ ∞

0
exp{−λK̃}h(K̃) dK̃ = 1

λ2
E

(
exp{−λYT }

YT

)

.

We recall from Sect. 3.1, that Yt exp{ηt}/c(t) ∼ χ2
4 (α), where α = Y0

c(t)
, c(t) =

exp{ηt}−1
4η , and χ2

ν (λ) denotes a non-central χ2-distributed random variable with ν
degrees of freedom and non-centrality parameter λ. Consequently,

E

(
exp{−μYT }

YT

)

=E
(

exp{−μ̃χ2
4 (α)}

χ2
4 (α)

)
exp{ηT }
c(T )

= exp{−α/2}(exp{ α
4μ̃+2 } − 1)

α

exp{ηT }
c(T )

, (8.5.17)

where μ̃= μ c(T )
exp{ηT } . Equality (8.5.17) is easily verified using the probability den-

sity function of χ2
4 (α). This illustrates how benchmarked Laplace transforms arise

naturally in the context of option pricing. Finally, we remark that using the tech-
niques from Sect. 13.5, options can now be priced.

8.5.2 Derivatives on Realized Variance Under the Stylized MMM

We remind the reader that in Sect. 3.3, we had already derived the price of a put
option under the stylized MMM, without using Laplace transforms. However, we
now discuss an example, where the availability of benchmarked Laplace transforms
is crucial. In particular, we discuss the pricing of derivatives on realized variance of
an index. We point out that derivatives on the realized variance of an index, such as
the VIX, and options on the VIX, as traded on the Chicago Board Options Exchange,
have become important risk management tools.

In this subsection, we show how to price call and put options on realized variance,
variance swaps, and volatility swaps. The formulas derived in this subsection are in
the spirit of the pricing formulas presented in Sect. 3.3. However, the results needed
to price derivatives on realized variance, rely on the benchmarked Laplace trans-
form, see Proposition 7.3.8. Hence we discuss realized variance derivatives in this
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subsection. Furthermore, we remark that the results presented here have appeared in
Baldeaux et al. (2011a), Chan and Platen (2011), and Lennox (2011).

We place ourselves in the stylized MMM and model realized variance as the
quadratic variation of the logarithm of the index,

[
ln
(
Sδ∗
)]
T
,

which admits the following representation.

Lemma 8.5.2 The realized variance of the index is given by the integral

[
ln
(
Sδ∗
)]
T
=
∫ T

0

dt

Yt
. (8.5.18)

Proof Clearly,
[
ln
(
Sδ∗
)]
T
= [ln(Y )]

T
,

as S0· and αδ∗· are deterministic functions of time. Now one has by the Itô formula

d ln(Yt )= dYt

Yt
− 1

2

d[Y ]t
Y 2
t

= 1

Yt
(1 − ηYt ) dt + dWt√

Yt
− 1

2

dt

Yt

= 1

Yt

(
1

2
− ηYt

)

dt + dWt√
Yt
,

which completes the proof. �

We now study call and put options on realized variance. In particular, we present
Laplace transforms of prices of options on realized variance and show how bench-
marked Laplace transforms naturally arise in this context. We will focus on put op-
tions, as prices of call options can be recovered from the following put-call parity.

Lemma 8.5.3 The following put-call parity relation holds for payoffs of options on
realized variance

E

(
( 1
T

∫ T
0
dt
Yt

−K)+
S
δ∗
T

)

=E
( 1
T

∫ T
0
dt
Yt

−K
S
δ∗
T

)

+E
(
(K − 1

T

∫ T
0
dt
Yt
)+

S
δ∗
T

)

.

Note that the put-call parity involves the fair zero coupon bond and not the sav-
ings bond even when the short rate is constant.
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Fig. 8.5.1 Prices of put
options on realized variance
versus strike prices

We address the problem of pricing put options on realized variance, which by
Lemma 8.5.3 also covers the case of call options. For notational convenience, we
focus on the case t = 0, and are, therefore, interested in computing the expectation

h(K) :=E
(
(K − 1

T

∫ T
0
dt
Yt
)+

YT

)

. (8.5.19)

Inspired by Carr et al. (2005), we first compute the Laplace transform of h(K) with
respect to the strike K , which we obtain from Lemma 8.5.1. Setting g = 1

T

∫ T
0
dt
Yt

,
we compute

∫ ∞

0
exp{−λK}h(K)dK = 1

λ2
E

(exp{− λ
T

∫ T
0
dt
Yt
}

YT

)

. (8.5.20)

The quantity

E

(exp{− λ
T

∫ T
0
dt
Yt
}

YT

)

is easily computed using Proposition 7.3.8. We can hence price put options on real-
ized variance by inverting the Laplace transform given in Eq. (8.5.20) and invoking
Proposition 7.3.8. To demonstrate that this methodology works reliably, Fig. 8.5.1
displays put option prices for different strikes, that have been confirmed to the shown
accuracy via numerical methods to be introduced in Sects. 12.2 and 13.5, where we
choose

Y0 = 1, T = 1, η= 0.052, r = 0.05.

In Sect. 13.5, we will discuss how to invert Laplace transforms, and also present
examples relevant to the pricing of realized variance derivatives.

We remark that the approach presented in this subsection cannot immediately
be extended to the pricing of call and put options on volatility. This is due to the
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fact that the approach presented in this subsection requires the computation of the
expectation

E

(exp{−λ
√∫ T

0
dt
Yt
}

YT

)

. (8.5.21)

However, there seems to exist no explicit formula for (8.5.21). This motivates us
to apply numerical methods to the problem, which we will develop in Sects. 12.2
and 13.5. In particular, we demonstrate how to recover the joint distribution of
(
∫ t

0
ds
Ys
, Yt ) by inverting the one-dimensional Laplace transform given in Eq. (5.4.16).

Subsequently, we can apply quadrature methods to compute prices, see Sect. 12.2.
We now discuss variance and volatility swaps. Again, the benchmarked Laplace

transforms are useful in this context. The payoff of a variance swap maturing at
T > 0 is given by

[
ln
(
Sδ∗
)]
T
−K,

where K is a fixed swap rate, chosen in such a way that the time t = 0 value of the
variance swap is zero. Hence from the real world pricing formula (1.3.19), we need
to solve the following equation for K ,

S
δ∗
0 E

( [ln(Sδ∗)]T −K
S
δ∗
T

)

= 0,

which by Eq. (8.5.15) and Lemma 8.5.2 is equivalent to

S
δ∗
0

α
δ∗
T S

0
T

E

(∫ T
0
ds
Ys

YT

)

−KPT (0)= 0,

where PT (t) denotes the time t price of a zero coupon bond maturing at T . Regard-
ing the computation of

E

(∫ T
0
ds
Ys

YT

)

,

we use the following proposition, see Lennox (2011), Proposition 2.0.41, and also
Chan and Platen (2011), Proposition 8.1. We present the result in generality. We
consider the square-root process

dXt = (a − bXt) dt +
√

2σXt dWt , (8.5.22)

where X0 = x > 0, and remark that this proposition follows immediately from the
benchmarked Laplace transform given in Proposition 7.3.8.

Proposition 8.5.4 Let X = {Xt, t ≥ 0} be given by (8.5.22), let β(μ) = 1 + m −
α+ ν(μ)

2 , m= 1
2 (
a
σ
− 1), and ν(μ)= 1

σ

√
(a − σ)2 + 4μσ , and assume that 2a

σ
≥ 2.



214 8 Pricing Using Affine Diffusions

Then if m> α − 1,

E

(∫ t
0
ds
Xs

Xαt

)

=−x−m exp

{

− bx

σ(ebt − 1)
+ bmt

}
d

dμ

((
bebt

(ebt − 1)σ

)−m+α− ν(μ)
2

×
(

b2x

4σ 2 sinh2( bt2 )

)ν(μ)/2Γ (1 +m− α + ν(μ)
2 )

(1 + ν(μ))

× 1F1

(

β(μ),1 + ν(μ), bx

σ(ebt − 1)

))∣
∣
∣
∣
μ=0

,

where 1F1 denotes the confluent hypergeometric function, see e.g. Chap. 13 in
Abramowitz and Stegun (1972).

To price variance swaps, we simply set a = 1, b = η, and σ = 1
2 in (8.5.22) and

note that

m= 1

2
> 0 = α− 1,

hence the result applies to the stylized MMM.
We now study volatility swaps. A volatility swap pays

√[
ln
(
Sδ∗
)]
T
−K,

at maturity T > 0, where again K is chosen so that the initial value of the volatility
swap is zero. Hence we solve the following equation for K :

S
δ∗
0 E

(√[ln(Sδ∗)]T
S
δ∗
T

)

−E
(
S
δ∗
0

S
δ∗
T

)

K = 0,

where again E(
S
δ∗
0

S
δ∗
T

) is the time 0 price of a fair zero coupon bond maturing at T .

The following representation is useful, and is, for example, also used in Gatheral
(2006), Eq. (11.6):

√
x = 1

2π

∫ ∞

0

1 − exp{−ux}
u3/2

du, x ≥ 0. (8.5.23)

Hence by Eq. (8.5.15) and Lemma 8.5.2,

E

(√[ln(Sδ∗)]T
S
δ∗
T

)

= 1

α
δ∗
T S

0
T

E

(
√∫ T

0
ds
Ys

YT

)

,

and

E

(
√∫ T

0
ds
Ys

YT

)

= 1

2π

∫ ∞

0

E( 1
YT
)−E( exp{−u ∫ T0 ds

Ys
}

YT
)

u3/2
du.
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We recall that E( 1
YT
) is easily computed using the transition density of Y , see

Eq. (3.1). Finally, we observe that

E

(exp{−u ∫ T0 ds
Ys
}

YT

)

is again the benchmarked Laplace transform, which was computed in Proposi-
tion 7.3.8.

We conclude that when pricing derivatives under the benchmark approach,
benchmarked Laplace transforms feature prominently, but are easily computed via
Lie symmetry methods, for those tractable models we consider in this book under
the benchmark approach.

8.6 Pricing Under the Forward Measure Using the Benchmark
Approach

In this section, we illustrate how to combine the results from Sect. 8.3 with the
benchmark approach. For simplicity, we begin with the one-dimensional case, but
we consequently also discuss a two-dimensional example. Assume that the payoff
function f admits the representation

f (x)=
∫

�
exp
{
(w+ ıλ)x}f̃ (λ) dλ, dx-a.s.

Also recall from Sect. 8.3.1, that f (·) is typically a function of the log-price ln(Sδ∗T ).
Consequently, Proposition 7.3.10 yields the formula

PT (t)EPT
(
f
(
S
δ∗
T

) ∣
∣At
)

= PT (t)
∫

�
EPT
(
exp
{
(w+ ıλ) ln

(
S
δ∗
T

)} ∣∣At
)
f̃ (λ) dλ

= PT (t)
∫

�
EPT
((
S
δ∗
T

)w+ıλ ∣∣At
)
f̃ (λ) dλ.

We have

EPT
((
S
δ∗
T

)w+ıλ ∣∣At
)= S

δ∗
t

PT (t)
E
((
S
δ∗
T

)w−1+ıλ ∣∣At
)
.

For the stylized MMM, we use Eq. (8.5.15) to compute, for u ∈ C,

EPT
(
exp
{
u ln
(
S
δ∗
T

)} ∣
∣At
)= S

δ∗
t

PT (t)
E

(
exp{u ln(Sδ∗T )}

S
δ∗
T

∣
∣
∣
∣At
)

= E((S
δ∗
T )

u−1 |At )
E((S

δ∗
T )

−1 |At )

= (αδ∗T S0
T

)uE(Y
u−1
T |At )

E(Y−1
T |At )

.
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Recall that we use χ2
ν (λ) to denote a non-central χ2-distributed random variable

with ν degrees of freedom and non-centrality parameter λ. In Sect. 3.1 we estab-
lished that conditional on At , YT exp{η(T−t)}

c(T−t) follows a non-central χ2-distribution

with 4 degrees of freedom and non-centrality parameter β = Yt
c(T−t) , where c(t)=

(exp{ηt} − 1)/(4η). We hence obtain

EPT
(
exp
{
u ln
(
S
δ∗
T

)} ∣
∣At
)

= (S0
T

(
ϕ(T )− ϕ(t)))uE((χ

2
4 (β))

u−1 |At )
E((χ2

4 (β))
−1 |At )

, (8.6.24)

where

ϕ(t)= 1

4

∫ t

0
αδ∗s ds.

Due to the tractability of the stylized MMM, we can compute explicitly

E
((
χ2

4 (β)
)u−1)= 2u−1Γ (1 + u) 1F1

(

−u+ 1,2,−β
2

)

, (8.6.25)

for �(u) > −1, where 1F1 denotes the confluent hypergeometric function, see
Chap. 13 in Abramowitz and Stegun (1972). For u= 0, this evaluates to

E
((
χ2

4 (β)
)−1)= (1 − exp{−β/2})

β
. (8.6.26)

The forward measure can also be employed in a bivariate context. We consider the
GOP denominated in two currencies: Sa denotes the GOP denominated in the do-
mestic currency, and Sb denotes the GOP denominated in the foreign currency. As in
Sect. 3.3, we model both discounted GOPs as independent squared Bessel processes
of dimension four, i.e. we assume that

Skt = S0,k
t αkt Y

k
t , k ∈ {a, b},

where S0,k
t = exp{rkt} denotes the savings account denominated in currency k,

αkt = αk0 exp
{
ηkt
}
,

and

dY kt = (1 − ηkY kt
)
dt +

√
Y kt dW

k
t ,

where we assume that d〈Wa,Wb〉t = 0.
We consider an exchange option, i.e. the payoff is given by

(
SaT − SbT

)+
.

Using the forward measure which employs the zero coupon bond in the domestic
currency, the real world pricing formula yields

Sat E

(
(SaT − SbT )+

SaT

∣
∣
∣
∣At
)

= PaT (t)EPT
((
SaT − SbT

)+ ∣∣At
)
,
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where P kT (t) denotes the time t price of a zero coupon bond in currency k ∈ {a, b},
maturing at T . From Corollary 8.3.3, we get

PaT (t)EPT
((
SaT − SbT

)+ ∣∣At
)

= PaT (t)

2π

∫

�
EPT ((S

a
T )
w+ıλ(SbT )−(w−1+ıλ) |At )

(w+ ıλ)(w− 1 + ıλ) dλ,

where w > 1. From the assumed independence of Sa and Sb ,

EPT
((
SaT
)w+ıλ(

SbT
)−(w−1+ıλ) ∣∣At

)

=EPT
((
SaT
)w+ıλ ∣∣At

)
EPT
((
SbT
)−(w−1+ıλ) ∣∣At

)
,

which can be computed as demonstrated above. This leads to the formula

Sat E

(
(SaT − SbT )+

SaT

∣
∣
∣
∣At
)

= PaT (t)

2π

∫

�
EPT ((S

a
T )
w+ıλ |At )EPT ((SbT )−(w−1+ıλ) |At )
(w+ ıλ)(w− 1 + ıλ) dλ,

where w > 1. Furthermore, we compute using Eqs. (8.6.24), (8.6.25), and (8.6.26),

EPT
((
SaT
)ua ∣∣At

)

= βa(S
0,a
T (ϕa(T )− ϕa(t)))ua2ua−1Γ (1 + ua) 1F1(−ua + 1,2,−βa

2 )

(1 − exp{−βa/2}) ,

where ua =w− 1 + ıλ,

ϕk(t)= 1

4

∫ t

0
αks ds, k ∈ {a, b},

βk = Y kt

ck(T − t) , k ∈ {a, b},

ck(t)= (exp{ηkt} − 1)

4ηk
, k ∈ {a, b}.

We now turn to the computation of EPT ((S
b
T )
ub |At ). Recall that we used the zero

coupon bond in the domestic currency to define the forward measure. It follows that

EPT
((
SbT
)ub ∣∣At

)= Sat

P aT (t)
E

(
(SbT )

ub

(SaT )

∣
∣
∣
∣At
)

= Sat

P aT (t)
E

(
1

SaT

∣
∣
∣
∣At
)

E
((
SbT
)ub ∣∣At

)

=E((SbT
)ub ∣∣At

)
.

As above, we compute

E
((
SbT
)ub ∣∣At

)

= (S0,b
T

(
ϕb(T )− ϕb(t)))ub2ubΓ (ub + 2) 1F1

(

−ub,2,−βb
2

)

.



Chapter 9
Solvable Affine Processes on the Euclidean State
Space

In this chapter, we focus on obtaining explicit formulas for the affine transform given
in Eq. (7.1.1). Hence the focus of this chapter differs from the focus of Chap. 7 in
the following way: in Chap. 7, we studied when the affine transform is well-defined,
however, in this chapter we want to know when we can compute the affine transform
explicitly. We remark that for specific models, such as the CIR model, Lemma 8.2.1
shows how to compute the affine transform. However, given a particular problem,
one would have to come up with a new version of Lemma 8.2.1 in order to solve
the problem. In some cases, it might not be possible to identify such a lemma, if the
corresponding system of Riccati equations cannot be solved explicitly.

An important application of affine processes is interest rate term structure model-
ing, as already discussed previously. Dealing with affine processes, the bond price is
an exponentially affine function of the state variables. We focus on affine processes
in this chapter. However, an obvious question is whether the methodology can be
extended to processes resulting in bond prices which are not necessarily affine func-
tions of the state variables, but are polynomial functions of the state variables. From
a result presented in Filipović (2002), it is known that the bond price is necessarily
affine or quadratic in the state variables. Consequently, for bond prices to be allowed
to depend exponentially polynomially on the state variables, we can classify which
processes are solvable using the methodology presented in this chapter.

The focal point of this chapter is solving the Riccati equations explicitly. This
approach is due to Grasselli and Tebaldi (2008). We now give a very brief non-
technical summary of the approach. Further illustrations will be given in Chap. 11.

9.1 A Guided Tour to the Grasselli-Tebaldi Approach

The Grasselli-Tebaldi approach, see Grasselli and Tebaldi (2008), can be summa-
rized as follows: one studies regular continuous Markov processes X assuming val-
ues in D =D+ ×�n−m, where D+ is a symmetric cone, which is the state space of
those elements of X corresponding to positive factors: we remind the reader that in

J. Baldeaux, E. Platen, Functionals of Multidimensional Diffusions with Applications
to Finance, Bocconi & Springer Series 5, DOI 10.1007/978-3-319-00747-2_9,
© Springer International Publishing Switzerland 2013
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Chap. 7 this state space was (�+)m. For a general definition of symmetric cones, see
e.g. Definition 2.3 in Grasselli and Tebaldi (2008), for purposes of this book, it suf-
fices to focus on the particular symmetric cones mentioned below in Remark 9.1.3.
As we will discuss later, allowing for such a general state space provides the modeler
with more flexibility, see the discussion in Sects. 9.2, 9.7, and Chap. 11.

Since affine processes have often been applied to term structure models and
because Grasselli and Tebaldi (2008) employ this nomenclature, we refer to the
stochastic process X = {Xt , t ≥ 0} as an affine term structure model (ATSM). How-
ever, as the examples in subsequent sections illustrate, the methodology is by no
means restricted to term structure modeling, but is more generally applicable. To fix
ideas, we assume that on the filtered probability space (Ω,A,A,P ) the Markovian
process X = {Xt , t ≥ 0} takes values in D ⊆ V , where D is the state space, and V
is a finite-dimensional real vector space of dimension n. The standard scalar product
on V is denoted by 〈·,·〉. As in Grasselli and Tebaldi (2008), we also take the liberty
of denoting the complex extension of the real vector space V by V and similarly
the scalar product by 〈·,·〉. Now, we recall the definition of an affine process on a
general state space.

Definition 9.1.1 The regular (continuous) Markov process X is said to be affine if
for every τ = T − t ∈ �+ the discounted conditional characteristic function has an
exponential affine dependence on the initial condition xt . That is,

ΨX(u,xt , t, τ )

=E
(

exp

{

−
∫ t+τ

t

(
η0 + 〈η,Xs〉

)
ds

}

exp
{
ı〈u,XT 〉

}
∣
∣
∣
∣At
)

= exp
{
V 0(τ, ıu)− 〈V (τ, ıu),xt

〉}
, (9.1.1)

where (τ,u) ∈ �+×V , V 0 : �+×V → C, V : �+×V → V , and η0 ∈ �+, η ∈D.

As in Grasselli and Tebaldi (2008), we refer to V as the factor sensitivities.
The infinitesimal generator of a regular affine diffusion process has necessarily

the following functional form, see Duffie and Kan (1996),

Ã= 1

2
Tr
[(

Σ(x)+Σ0
)
D�D

]+ 〈Ω0 +Ω(x),D�〉− (η0 + 〈η,x〉), (9.1.2)

using the notation D for the row vector gradient operator, Tr denotes the trace over
Mn(V ), where Mn(V ) denotes the set of n × n matrices defined on V , D�D

the Hessian matrix, Σ(x),Σ0 ∈ S+
n (V ), where S+

n (V ) denotes the set of positive
semidefinite matrices taking values in V , and Ω(x),Ω0 ∈ V . The functions Σ(x),
Ω(x) have to be linear in x ∈ V , so that we obtain

[
Σ(x)

]
i,j

=
n∑

k=1

Cki,j xk,
[
Ω(x)

]
l
=

n∑

k=1

Ωkl xk.

We use the Feynman-Kac formula to obtain

∂ΨX

∂t
+ ÃΨX = 0,
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subject to the initial condition

ΨX(u,x, T ,0)= exp
{
ı〈u,x〉},

or, employing τ = T − t and D�ΨX =−V , it follows from Eq. (9.1.1) that

d

dτ
V 0(τ )−

〈
d

dτ
V (τ ),x

〉

= 1

2
Tr
((

Σ(x)+Σ0
)
V V �)− 〈Ω0 +Ω(x),V

〉− (η0 + 〈η,x〉) (9.1.3)

subject to

V 0(0, ıu)= 0, V (0, ıu)=−ıu.
Hence, V solves a quadratic ODE. Given V , one can determine V 0 by integration,
and thus we focus on computing V . However, for those models which admit a matrix
representation, we obtain an explicit expression for V 0(τ ), see Chap. 11.

The first question asked by Grasselli and Tebaldi (2008) investigates in the spirit
of Chap. 7 whether the ATSM is admissible, in the following sense:

Definition 9.1.2 An ATSM model is admissible in a state space D ⊆ V if the gen-
erator (9.1.2) and the corresponding regular affine Markov semigroup exist and are
unique for any initial condition in D, or equivalently if ΨX is uniquely defined by
(9.1.1) ∀x ∈D and ∀τ ∈ �+.

Next, following Grasselli and Tebaldi (2008), we assume that the state space D
is a symmetric cone, i.e. we focus on the positive factors. We remark that it was
observed in Duffie et al. (2003), see also Chap. 7, that the extension to the case
D×�n−m, where D is the symmetric cone and �n−m the state space supporting the
evolution of conditionally Gaussian factors follows easily, as those factor sensitiv-
ities in V corresponding to the components of X on �n−m satisfy an independent
system of linear equations. This issue will be addressed in more detail in Sect. 9.2
and Chap. 11.

We now recall the main observations from Grasselli and Tebaldi (2008). Since the
approaches we focus on deal with specific choices of the symmetric cone, namely
(�+)m and positive definite matrix cones, we will discuss these examples in detail
in Sect. 9.2 and Chap. 11, and only present here the main ideas of the approach.
Readers interested in other state spaces are referred to the original paper.

Having introduced symmetric cones, see Definition 2.3 in Grasselli and Tebaldi
(2008), connections between the classification of symmetric cones and Euclidean
Jordan algebras (EJA) are used to produce sufficient conditions for an ATSM to
be admissible. These conditions are initially only sufficient for admissibility and
not necessary. However subsequently, the conditions will be shown to be necessary
and sufficient for an ATSM to be solvable. We remind the reader that the ability to
compute the affine transform, this means solvability, is the aim of this chapter and
not its admissibility. This is an important practical point of view. Before defining
solvability, we present an important observation from Grasselli and Tebaldi (2008).
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Remark 9.1.3 All possible finite dimensional irreducible symmetric cones are:

• the families of positive definite matrix cones of Hermitian matrices with real,
complex, or quaternion entries;

• the Lorentz cones Λn = {x ∈ �n: x2
1 −∑n

i=2 x
2
i > 0, x1 > 0};

• the exceptional cone (27 dimensional cone of 3 × 3 “positive definite” matrices
over the Cayley algebra).

Consequently, the results in Grasselli and Tebaldi (2008) actually produce all
possible domains on which one can find solvable ATSMs. The definition of solvabil-
ity also suggests the solution procedure, which we present in an algorithm below.
Subsequently, we will tailor this algorithm to specific state spaces.

Definition 9.1.4 An ATSM in a symmetric cone state space D is solvable if and
only if the corresponding Riccati ODE is linearizable.

For a formal definition of linearizability of ODEs on a symmetric cone state
space, we refer the reader to Definition 2.5 in Grasselli and Tebaldi (2008). A con-
sequence of linearizability is that we can explicitly compute the conditional charac-
teristic function in an algorithmic fashion, as will be given below. We point out that
for convenience, we again consider the state space D =D+ ×�n−m, where �n−m
supports possibly negative, conditionally Gaussian factor sensitivities.

Algorithm 9.1 Linearization Algorithm
1: Solve the ODE corresponding to the conditionally Gaussian factors
2: Decompose the remaining ODEs as a direct sum of Riccati ODEs corresponding

to factors living on irreducible symmetric cone state spaces
3: Linearize each of these Riccati ODEs
4: Solve the linearized system and map back to the original system.

The difficult step in Algorithm 9.1, as the examples will illustrate, is Step 4.
For autonomous ODEs, this step is straightforward. However, should the coefficient
be time dependent, the linear system involves a time ordered exponential, which
is a symbolic expression that is hard to compute. As remarked in Grasselli and
Tebaldi (2008), this is what is to be expected for linear non-autonomous ODEs.
Finally, Grasselli and Tebaldi (2008) point out that Walcher (1991) proposed an
alternative procedure for non-autonomous ODEs, but this procedure is explicit up
to the knowledge of a particular solution, to be determined on a case by case ba-
sis.

We will now discuss the state space D = (�+)m × �n−m, the Duffie and Kan
(1996) state space, and subsequently illustrate it with examples.
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9.2 Solvable Affine Processes on the Duffie-Kan State Space

We model the factor process X via the following SDE:

dXt =
(
ΩXt +Ω0)dt + Diag

((
CiXt +C0

i

)1/2)
dW t , (9.2.3)

t ≥ 0, where

X0 = x ∈ (�+)m ×�n−m,
where Ci denotes the ith row of the matrix C, m = Rank(C) ≤ n and W = {W t ,

t ≥ 0} is an n-dimensional Brownian motion. The parameters η, η0,Ω , Ω0, C, C0

are defined as follows:

• The drift matrix Ω satisfies

Ω =
(

ΩDD
m×m 0m×(n−m)

ΩBD
(n−m)×m ΩBB

(n−m)×(n−m)

)

,

where the off-diagonal elements of ΩBB are restricted to be nonnegative;
• Ω0 ∈ (�+)m ×�n−m;
• C and C0 are given by

C =
(

1m×m 0m×(n−m)
CBD(n−m)×m 0(n−m)×(n−m)

)

,

C0 =
(

0m×1
1(n−m)×1

)

;

• η0 ≥ 0, ηD ∈ (�+)m, ηB = 0.

In the above notation, D corresponds to �+-valued factors, and B to �-valued fac-
tors. We point out that the state space of positive factors (�+)m is the closure of
a reducible symmetric cone and obtained by considering m copies of �+. We now
recall Theorem 4.1 from Grasselli and Tebaldi (2008), which states when affine dif-
fusions on the Duffie-Kan spate space are solvable.

Theorem 9.2.1 The ATSM (9.2.3) is solvable on the state space (�+)m ×�n−m if
and only if the matrix ΩDD is diagonal.

We alert the reader to the fact that a necessary condition for an ATSM to be solv-
able on the state space (�+)m ×�n−m is that positive risk factors are uncorrelated.
It is, therefore, clear that retaining analytical tractability comes at the expense of
modeling freedom, see also Sect. 9.7. However, in Chap. 11 we will discuss a class
of processes allowing for more complex dependence structures.

Example 9.2.2 To illustrate the nature of the condition given in Theorem 9.2.1, con-
sider the following double-mean reverting model:



224 9 Solvable Affine Processes on the Euclidean State Space

dvt =−κ(vt − v′t
)
dt + σ1

√
vt dW

2
t ,

dv′t =−c(v′t − z3
)
dt + σ2

√
v′t dW 3

t ,

dSt

St
=√

vt dW
1
t ,

where κ, c, σ,σ2 > 0. Using the notation Xt := (vt , v′t , Yt ), where Yt = log(St ) is a
potentially negative factor, we havem= 2 and n= 3 and the drift matrix Ω is given
by Itô’s formula

Ω =
⎛

⎜
⎝

−κ κ 0

0 −c 0

− 1
2 0 0

⎞

⎟
⎠ ,

which is not diagonal. In fact, it is clear that the presence of v′t in the equation for
vt destroys the diagonal structure of Ω . On the other hand, Theorem 7.1.4 yields
that the ATSM is admissible, as this only requires ΩDD to have non-negative off-
diagonal elements.

The advantage of the Grasselli-Tebaldi approach is that we have an algorithm at
hand, showing how to solve the ATSM. In Grasselli and Tebaldi (2008), the general
Algorithm 9.1 was tailored to the special case of the Duffie-Kan state space, which
we now recall.

On the Duffie-Kan state space, the Riccati ODEs of a solvable ATSM become

d

dτ
V Di (τ )= ηDi +ΩDDi,i V Di +

n∑

j=m+1

(
ΩBD

)�
i,j
V Bj

− 1

2

m∑

i=1

(
VDi (τ )

)2 − 1

2

n∑

j=m+1

(
CBD

)�
i,j

(
V Bj (τ )

)2
, i = 1, . . . ,m

(9.2.4)

d

dτ
V Bi (τ )=

n∑

j=m+1

(
ΩBB

)�
i,j
V Bj (τ )+ ηBi , i =m+ 1, . . . , n, (9.2.5)

with boundary condition V (T )= ıu ∈ Cn. As stated above, the factor sensitivities,
corresponding to real, possibly negative factors, can be determined by solving an
independent system of linear equations, see (9.2.5). We now show how to tailor
Algorithm 9.1 to the Duffie-Kan state space.

Step 1 As stated above, the factor sensitivities corresponding to the conditionally
Gaussian factors satisfy (9.2.5), which is easily solved to yield

V B(τ)=
∫ τ

0
exp
{
(τ − t)(ΩBB

)�}
ηB dt + exp

{(
ΩBB

)�
τ
}
V B(0). (9.2.6)
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Step 2 Each of the remaining factors VDi (τ ), i = 1, . . . ,m, satisfies a one-
dimensional time-dependent Riccati equation, (9.2.4).

Step 3 We linearize the Riccati ODE for VDi (τ ) by setting

VDi (τ )= λ−1(τ )π(τ),

which yields

d

dτ

(
λ(τ)V Di (τ )

)− d

dτ
λ(τ)V Di (τ )= λ(τ)

d

dτ
V Di (τ ),

and hence substituting (9.2.4), we get

d

dτ
π(τ)− d

dτ
λ(τ)V Di (τ )= γ̃i (τ )λ(τ )+ΩDDi,i π(τ )−

1

2
π(τ)V Di (τ ),

where

γ̃i (τ )= ηDi +
n∑

j=m+1

(
ΩBD

)�
i,j
V Bj − 1

2

n∑

j=m+1

(
CBD

)�
i,j

(
V Bj (τ )

)2
. (9.2.7)

Matching coefficients yields

d

(
π(τ)

λ(τ)

)

=
(
ΩDDi,i γ̃i (τ )

1
2 0

)(
π(τ)

λ(τ)

)

. (9.2.8)

Step 4 Finally, we exponentiate (9.2.8) to obtain
(
π(τ)

λ(τ)

)

= T exp

{
τΩDDii

∫ τ
0 γ̃i (t) dt

τ
2 0

}(
π(0)

λ(0)

)

,

where T exp denotes the time ordered exponential. Introducing the notation
(
Mi

1(τ ) Mi
2(τ )

Mi
3(τ ) Mi

4(τ )

)

:= T exp

{
τΩDDi,i

∫ τ
0 γ̃i (t) dt

τ
2 0

}

,

we can represent the solution VDi (τ ) as follows:

VDi (τ )=
VDi (0)M

i
1(τ )+Mi

2(τ )

V Di (0)M
i
3(τ )+Mi

4(τ )
.

9.3 Reducing Admissible Affine Processes to the Normal Form

In this section, we show how to reduce an affine process to the normal form, as
shown in (9.2.3). Such a transformation is crucial, as it allows us to check if a pro-
cess is solvable. We start with the following definition of an affine process, which is
due to Dai and Singleton (2000), and is essentially the same as in Duffie et al. (2000).
We point out that the material presented in this section follows closely Grasselli and
Tebaldi (2004b). The following formulation, taken from Dai and Singleton (2000),
is convenient to work with.



226 9 Solvable Affine Processes on the Euclidean State Space

Definition 9.3.1 A term structure model is an affine ATSM, if the short rate rt is an
affine combination of factors

rt = δ0 + δ′Y t , t ≥ 0,

for some δ0 ∈ � and δ ∈ �n, and the dynamics of the factors satisfy the following
SDE:

dY t = κ(θ − Y t ) dt +Σ Diag
((
αi + β�

i Y t
)1/2)

dW t , t ≥ 0,

Y 0 = y ∈ �n, (9.3.10)

where W = {W t , t ≥ 0} is an n-dimensional standard Brownian motion and

θ,α ∈ �n; κ,β ∈Mn; Σ ∈ GL(n).

Here αi indicates the i-th element of the vector α. The notation βi refers to the
i-th column of matrix β . For a given vector z ∈ �n, Diag(zi) ∈Mn is the diagonal
matrix with the elements of the vector z along the diagonal. We require Σ to be an
element of GL(n), the set of n× n invertible matrices.

The rank of β is defined to bem≤ n: in the notation of Dai and Singleton (2000),
m classifies the families Am(n) of admissible models parameterized by m,n. With-
out loss of generality we assume that the upper left minor of orderm is non-singular.
Given an ATSM parameterized by (δ0, δ,κ, θ ,Σ, {αi, βi}1≤i≤n), an affine change
of variables

Y → X = LY + ϑ (9.3.11)

leaves prices unaffected, while the parameters are changed according to
(
δ0, δ,κ, θ ,Σ, {αi,βi}1≤i≤n

)→
(
δ0 − δ′L−1ϑ,

(
L−1)�δ,LκL−1,Lθ + ϑ,L−1Σ,

{(
α − β�L−1ϑ

)
i
,
(
β�L−1)

i

}
1≤i≤n

)
.

Consequently, we can study models in their normal form, see (9.2.3).

Definition 9.3.2 Consider a symmetry transformation (L,ϑ) of the type given in
Eq. (9.3.11). Let us fix L = Σ−1 and let ϑ ∈ �n denote any solution to the system
of equations

β�
i Σϑ = αi, i = 1, . . . ,m

{
Σ−1κ(θ − ϑ)

}
i
= 0, i =m+ 1, . . . , n.

Such a transformation maps the original factor dynamics (9.3.10) into the normal
form ATSM, whose factor dynamics become

dXt =
(
AXt +A0)dt + Diag

(
S

1/2
i,i

)
dW t , t ≥ 0

Si,i =
(
CiXt +C0

i

)
, (9.3.12)

X0 = x.
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Here Ci denotes the i-th row of the matrix C, m= Rank(C), while the short rate is
given by

rt = γ 0 + γ ′Xt .

The parameters φ = (γ , γ 0,A,A0,C,C0) are defined as follows:

Xt = Σ−1Y t , t ≥ 0,
γ 0 = δ0 − δ�Σϑ,

γ = Σ�δ,

A =−Σ−1κ(θ − ϑ) ∈Mn,

A0 = Σ−1κ(θ − ϑ) ∈ �n,
C = β�Σ ∈Mn,

C0 = α − β�Σϑ,

where C0
i = 0, i = 1, . . . ,m and A0

i = 0, i =m+ 1, . . . , n.

Recall that in Theorem 7.1.4, we characterized the conditions for admissibility
on the state space D = (�+)m×�n−m. The reason for introducing the normal form
is the ability to reduce any model to one whose natural domain is the state space D.
Consequently, from Theorem 7.1.4, we can identify parameter restrictions imposed
by the admissibility conditions on the normal form. This observation motivates us
to introduce the following definition.

Definition 9.3.3 An ATSM is called admissible in its natural domain if the corre-
sponding normal form ATSM is admissible within the canonical domain D.

We have the following proposition, which yields parameter restrictions on the
normal form.

Proposition 9.3.4 The normal form corresponding to an admissible ATSM in its
natural domain is specified by the parameter set φ = (γ , γ 0,A,A0,C,C0) with:

• drift matrix A given by

A =
(

ABBm×m 0m×(n−m)
ADB(n−m)×m ADD(n−m)×(n−m)

)

where the off-diagonal elements of ABB are restricted to be nonnegative;
• A0 ∈ (�+)m ×�n;
• C and C0 are given by

C =
(

Im×m 0m×(n−m)
CDB(n−m)×m 0(n−m)×(n−m)

)

,

C0 =
(

0m×1

CD(n−m)×1

)

,

where the elements of CDB(n−m)×m, CD(n−m)×1 are nonnegative;

• γ 0 ∈ �, γ ∈ �n.
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Proof We note that in the normal form framework,

d
[
Xk· ,Xl·

]
t
=
((

m∑

i=1

Ck,iX
i
t +C0

k

)

δk,l

)

dt, (9.3.13)

but the admissibility condition in Theorem 7.1.4 implies

d
[
Xk· ,Xl·

]
t
=
(
m∑

i=1

αi,klX
i
t + ak,l

)

dt. (9.3.14)

We equate the expressions in Eqs. (9.3.13) and (9.3.14), and since the rank of matrix
C ism, we can without loss of generality assume that αi,ii = 1 and that the non-zero
eigenvalues of the matrix A are equal to 1. Now

Ck,iδk,l = αi,kl, k, l, i = 1, . . . ,m,

yields that [Ck,i], k, i = 1, . . . ,m, is the identity matrix. Also, we have

Ck,iδk,l = αi,kl, k =m+ 1, . . . , n, i = 1, . . . ,m, l = 1, . . . , n,

and since αi is positive semi-definite, setting k = l, we obtain that Ck,i ≥ 0. Lastly,
regarding the constants

C0
k δk,l = ak,l,

only the lower diagonal square block of order n−m is non-zero, hence we focus on

C0
m+lδk+m,l+m = ak+m,l+m,

l, k = 1, . . . , n−m. The condition C0
m+l ≥ 0, l = 1, . . . , n−m, follows since A is

positive semidefinite. �

For illustration, we apply below this methodology.

9.4 A First Example: The Balduzzi, Das, Foresi and Sundaram
Model

In this section, we wish to apply the methodology developed in this chapter to a
particular short rate model, the Balduzzi, Das, Foresi, and Sundaram model, see
Balduzzi et al. (1996), where we follow the presentation in Grasselli and Tebaldi
(2004a). It is a three factor model, the factors being the short rate, r = {rt , t ≥ 0}, its
central tendency θ = {θt , t ≥ 0}, and its variance v = {vt , t ≥ 0}. We immediately
present the model under the assumed risk-neutral probability measure, which we
employ for pricing:

dvt = μ(v̄− vt ) dt + η√vt dWv
t ,

dθt = α(θ̄ − θt ) dt + ξ dWθ
t ,

drt = κ(θt − rt ) dt +√
vt dW

r
t ,
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where μ, v̄, η > 0, α, θ, ξ, κ ∈ �, and W = (Wv,Wθ ,Wv) is a standard Brownian
motion under the risk-neutral measure. We can see that the diffusion coefficient of
the short rate r = {rt , t ≥ 0} is stochastic, it is governed by v = {vt , t ≥ 0}, and so
is its central tendency θ = {θt , t ≥ 0}. Note that this model nests Gaussian central
tendency models, see e.g Beaglehole and Tenney (1991), Jegadesh and Pennachi
(1996), and short rate stochastic volatility models, see e.g. Fong and Vasiček (1991),
as special cases. By re-scaling the process vt , i.e. introducing ṽ = {ṽt , t ≥ 0} given
by ṽt = vt

η2 , we obtain the model in normal form:

dṽt = μ
(
v̄

η2
− ṽt
)

dt +
√
ṽt dW

v
t ,

dθt = α(θ̄ − θt ) dt + ξ dWθ
t ,

drt = κ(θt − rt ) dt + η
√
ṽt dW

r
t .

Rewriting this system as in (9.2.3), we obtain for

Xt =
⎛

⎜
⎝

ṽt

θt

rt

⎞

⎟
⎠ ,

the vector SDE

dXt =
(
ΩXt +Ω0)dt + Diag

((
CiXt +C0

i

)1/2)
dW�

t ,

where

W�
t =
⎛

⎜
⎝

Wv
t

Wθ
t

Wr
t

⎞

⎟
⎠ ,

and

Ω =
⎛

⎜
⎝

−μ 0 0

0 −α 0

0 κ −κ

⎞

⎟
⎠ , Ω0 =

⎛

⎜
⎝

μv̄

η2

αθ̄

0

⎞

⎟
⎠ ,

C1 =
(

1 0 0
)
, C2 =

(
0 0 0

)
, C3 =

(
η2 0 0

)
,

C0 =
⎛

⎜
⎝

0

ξ2

0

⎞

⎟
⎠ .

We point out that the state space is �+ ×�2, i.e. m= 1 and n= 3. Next we focus
on computing the bond price, which by (9.1.1) yields the expression

Pt+τ (t)= ΨX(0,xt , t, τ )

=E
(

exp

{

−
∫ t+τ

t

(
η0 + 〈η,Xs〉

)
ds

} ∣
∣
∣
∣At
)
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= exp
{
V 0(τ,0)− 〈V (τ,0),xt

〉}

= exp

{

V 0(τ,0)− V v(τ,0) vt
η2

− V θ(τ,0)θt − V r(τ,0)rt
}

,

(9.4.15)

where V (τ,u)= (V v(τ,u1),V
θ (τ, u2),V

r(τ, u3)), subject to the initial conditions

V v(0, u1)= 0, V θ (0, u2)= 0, V r(0, u3)= 0, V 0(0,u)= 0.

First, we compute the functions

V B(τ,0)= (V B1 (τ,0),V B2 (τ,0)
)= (V θ(τ,0),V r(τ,0)),

which correspond to the conditionally Gaussian factors. By setting

V B(τ,0)= V B(τ)= (V B1 (τ ),V B2 (τ )
)= (V θ(τ),V r(τ )),

we recall (9.2.6), which states that

V B(τ)=
∫ τ

0
exp
{
(τ − t)(ΩBB

)�}
ηB dt + exp

{(
ΩBB

)�}
V B(0).

This results in the relation

V r(τ )=
∫ τ

0
exp
{−κ(τ − t)}dt = 1 − exp{−κτ }

κ

and

V θ(τ)=
∫ τ

0

κ

α− κ
(
exp
{−κ(τ − t)}− exp

{−α(τ − t)})dt

=−exp{−κτ } − exp{−ατ }
α − κ + 1 − exp{−ατ }

α
.

Finally, regarding VD(τ)= V v(τ)= V v(τ,0), we have

V v(τ)= M2(τ )

M4(τ )
,

with the time ordered exponential
(
M1(τ ) M2(τ )

M3(τ ) M4(τ )

)

:= T exp

{
−τμ ∫ τ

0 γ̃ (t) dt

τ/2 0

}

(9.4.16)

and

γ̃ (t)=−1

2
η2(V v(t)

)2
.

We can simplify (9.4.16) using the integral
∫ τ

0
γ̃ (t) dt =−1

2

η2

κ2

(

τ − 2(1 − exp{−κτ })
κ

+ 1 − exp{−2κτ }
2κ

)

.

Lastly, from Eq. (9.1.3) it follows that V 0(τ ) can be obtained from

d

dτ
V 0(τ )=−μv̄

η2
V v(τ)− αθ̄V θ (τ )+ 1

2
ξ2(V θ(τ)

)2
,
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subject to V 0(0)= 0. This provides an explicit description of the zero coupon bond
price given in (9.4.15).

9.5 A Second Example: The Heston Model

In this section, we apply the methodology developed in this chapter to the Heston
model, as introduced in Heston (1993). We assume that the dynamics of the loga-
rithm of the stock price Y = {Yt , t ≥ 0} and the variance process v = {vt , t ≥ 0} are
given by

dvt = κ(η− vt ) dt + λ√vt dW 1
t ,

dYt =
(

r − 1

2
vt

)

dt + ρ√vt dW 1
t +
√

1 − ρ2√vt dW 2
t ,

where κ,η,λ > 0, r ∈ �, ρ ∈ (−1,1), and W = {W t = (W 1
t , W

2
t ), t ≥ 0} denotes a

standard Brownian motion. The Heston model does not fit the ATSM model formu-
lation in Definition 9.3.1. Nevertheless, we find the discussion in Sect. 9.3 useful in
rewriting the Heston model in normal form. We define a matrix Σ , which is given
by

Σ =
(
λ 0

ρ
√

1 − ρ2

)

,

and hence

Σ−1 = 1

λ
√

1 − ρ2

(√
1 − ρ2 0

−ρ λ

)

.

The matrix Σ plays a comparable role to the one appearing in Definition 9.3.2.
Consequently, we introduce the new processes

(
v̂t

Ŷt

)

= Σ−1

(
vt

Yt

)

,

and hence v̂t satisfies the SDE

dv̂t = κ
(
η

λ
− v̂t
)

dt +
√
v̂t λ dW

1
t ,

and

dŶt =
(

r
√

1 − ρ2
− vt

2
√

1 − ρ2

)

dt +√
vt dW

2
t −

ρκ
√

1 − ρ2

(
η

λ
− vt

λ

)

dt.

Finally, we set

ṽt = v̂t

λ
and Ỹt = Ŷt ,
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to obtain the SDE

dXt =
(
dṽt

dỸt

)

=
⎛

⎝

κη

λ2 + ṽt (−κ)
r− ρκη

λ√
1−ρ2

+ ṽt ρκλ−
λ2
2√

1−ρ2

⎞

⎠ dt + Diag

(√
C1Xt√
C2Xt

)

dW t ,

where

C1 = (1 0), C2 = (1 0).

This means in terms of (9.2.3) one has

Ω =
⎛

⎝
−κ 0

ρκλ− λ2
2√

1−ρ2
0

⎞

⎠ ,

Ω0 =
⎛

⎝

κη

λ2

r− ρκη
λ√

1−ρ2

⎞

⎠ ,

C0 =
(

0

0

)

.

We are now ready to compute the characteristic function of the logarithm of the
stock price under the Heston model, and obtain

ΨX(u,xt , t, τ )=E
(
exp{ıuYT }

∣
∣At
)

=E(exp
{
ıu

√
1 − ρ2ỸT + ıuρλṽT

} ∣∣At
)

= exp
{
V 0(τ, ıu)− ỸtV B(τ, ıu)− ṽtV D(τ, ıu)

}
,

subject to the initial conditions

V 0(0, ıu)= 0, V B(0, ıu)=−ıu
√

1 − ρ2, V D(0, ıu)=−ıuρλ.
We now follow the approach described in Sect. 9.2, and solve

V B(τ, ıu)= exp{0}VD(0, ıu)=−ıu
√

1 − ρ2.

Consequently, we follow Steps 2 to 4, yielding

VD(τ, ıu)= M1(τ )V
D(0, ıu)+M2(τ )

M3(τ )V D(0, ıu)+M4(τ )
,

where
(
M1(τ ) M2(τ )

M3(τ ) M4(τ )

)

:= exp

{

τ

(
ΩDD γ̃

1
2 0

)}

,

and

γ̃ = ρκλ− λ2

2√
1 − ρ2

(−ıu
√

1 − ρ2
)− λ2

2
(ıu)2

(
1 − ρ2), ΩDD =−κ.
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Using the notation

d =
√
(κ − λρıu)2 + λ2

(
ıu+ u2

)
,

we obtain

M1(τ )= exp{−κτ/2}
d

(

d cosh

(
dτ

2

)

− κ sinh

(
dτ

2

))

,

M2(τ )= −2

d
exp{−κτ/2}

((

ρκλ− λ2

2

)

ıu+ 1

2
λ2(1 − ρ2)(ıu)2

)

sinh

(
dτ

2

)

,

M3(τ )= 1

d
exp{−κτ/2} sinh

(
dτ

2

)

,

M4(τ )= exp{−κτ/2}
d

(

d cosh

(
dτ

2

)

+ κ sinh

(
dτ

2

))

.

We hence have

VD(τ, ıu)= (d(exp{dτ } + 1
)− κ(exp{dτ } − 1

))
(−ρλıu)

− 2

((

ρκλ− λ2

2

)

ıu+ λ2

2

(
1 − ρ2)(ıu)2

)
(
exp{dτ } − 1

)

/
((

exp{dτ } − 1
)
(−ρλıu)+ d(exp{dτ } + 1

)+ κ(exp{dτ } − 1
))
.

The above denominator becomes
(
exp{dτ } − 1

)
(−ρλıu)+ d exp{dτ } + d + κ exp{dτ } − κ

= (d + ρλıu− κ)(1 − g exp{dτ }),
where

g = (κ − ρλıu+ d)/(κ − ρλıu− d).
The numerator satisfies the relation

(
d
(
exp{dτ } + 1

)− κ(exp{dτ } − 1
))
(−ρλıu)

− 2

(

ρκλ− λ2

2

)

ıu
(
exp{dτ } − 1

)

− λ2(1 − ρ2)(ıu)2
(
exp{dτ } − 1

)

= exp{dτ }
(

−dρλıu+ κρλıu

− 2

(

ρκλ− λ2

2

)

ıu

− λ2(1 − ρ2)(ıu)2
)

+
(

−dρλıu− κρλıu+ 2

(

ρκλ− λ2

2

)

ıu

+ λ2(1 − ρ2)(ıu)2
)

.
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Hence one has

VD(τ, ıu)= (exp{dτ }(−dρλıu− κρλıu+ λ2ıu− λ2(ıu)2 + λ2ρ2(ıu)2
)

+ (−dρλıu+ κρλıu− λ2ıu+ λ2(ıu)2 − λ2ρ2(ıu)2
))

/
(
(d + ρλıu− κ)(1 − g exp{dτ })).

Recall that

E
(
exp{ıuYT }

∣
∣At
)

= exp
(
V 0(τ, ıu)− VD(τ, ıu)ṽt − V B(τ, ıu)Ỹt

)

= exp

(

V 0(τ, ıu)− VD(τ, ıu)vt

λ2
− (−ıu)

(

Yt − ρλvt

λ2

))

= exp

(

V 0(τ, ıu)+ Yt ıu−
(
VD(τ, ıu)

λ2
+ ρλıu

λ2

)

vt

)

,

where we used that

ṽt = vt

λ2
, Ỹt = Yt√

1 − ρ2
− ρvt

λ
√

1 − ρ2
, and V B(τ, ıu)=−ıu

√
1 − ρ2.

Hence the following calculation is relevant

VD(τ, ıu)+ ρλıu
= (exp{dτ }(−dρλıu− κρλıu+ λ2ıu− λ2(ıu)2 + λ2ρ2(ıu)2

)

+ (−dρλıu+ κρλıu− λ2ıu+ λ2(ıu)2 − λ2ρ2(ıu)2
)

+ ρλıu exp{dτ }(d + κ − ρλıu)+ ρλıu(d + ρλıu− κ))

/
(
(d + ρλıu− κ)(1 − g exp{dτ }))

= exp{dτ }(λ2ıu− λ2(ıu)2)+ (λ2(ıu)2 − λ2ıu)

(d + ρλıu− κ)(1 − g exp{dτ })
= (1 − exp{dτ })λ2(ıu+ u2)

(1 − g exp{dτ })(κ − d − ρλıu) .
It is readily checked that

−λ2(ıu+ u2)

κ − d − ρλıu = κ − ρλıu+ d,
hence

VD(τ, ıu)+ ρλıu=− 1 − exp{dτ }
1 − g exp{dτ } (κ − ρλıu+ d). (9.5.17)

Lastly, from (9.1.3), it follows that

∂

∂τ
V 0(τ, ıu)=−V

D(τ, ıu)κη

λ2
+ rıu− ρληıuκ

λ2

=−κη
λ2

(
VD(τ, ıu)+ ρıuλ)+ rıu.
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Using (9.5.17), we obtain,

∂

∂τ
V 0(τ, ıu)= κη

λ2

1 − exp{dτ }
1 − g exp{dτ } (κ − ρλıu+ d)+ rıu,

and hence, using
∫ τ

0

1 − exp{dt}
1 − g exp{dt} dt = τ +

g− 1

dg
log

(
1 − g

1 − g exp{dτ }
)

,

we get

V 0(τ, ıu)= ıurτ + κη

λ2
(κ − ρλıu+ d)τ − 2

κη

λ2
log

(
1 − g exp{dτ }

1 − g
)

,

which yields

E
(
exp{ıuYT }

∣
∣At
)

= exp

{

ıurτ + ıuYt + vt

λ2

(1 − exp{τd})(κ − ρλıu+ d)
1 − g exp{τd}

}

× exp

{
κη

λ2

(

(κ − ρλıu+ d)τ − 2 log

(
1 − g exp{τd}

1 − g
))}

,

which is the characteristic function of the logarithm of the stock price in the Heston
model. This function can now be used to calculate option prices and other deriva-
tives.

9.6 A Quadratic Term Structure Model

In the preceding sections, we showed that linearization can be successfully applied
to affine processes, or processes which produce bond prices that are exponentially
affine in the state variables. The assumption that processes are affine played a crucial
role in the derivations.

In this section, we briefly discuss the following questions:

• what processes exist beyond the affine class, which are relevant to interest rate
modeling?

• do the techniques developed in previous sections still apply?

The answer to the first question was provided in Filipović (2002): it was proven that
the quadratic class, which we define below, is the largest class of polynomial term
structure models, which satisfies the consistency condition used in Filipović (2002).
The consistency condition used in Filipović (2002) is that discounted bond prices
are local martingales under an assumed risk-neutral measure. The answer to the sec-
ond question is affirmative and will be given in this section. We base our discussion
on Grasselli and Tebaldi (2004b). The reader’s attention is drawn to the following:
in this section, we introduce nonlinearity by relaxing the assumption that the bond
price is exponentially affine, whilst retaining the assumption that the process as-
sumes values in the (linear) Euclidean space. In the next chapter, we will allow for
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processes which take values in a nonlinear domain, involving positive semidefinite
matrices, but still produce bond prices which are exponentially affine in the state
variables.

The following result from Filipović (2002) allows us to conclude that lineariza-
tion can essentially be applied to any polynomial term structure model, that is con-
sistent in the sense of Filipović (2002). For corresponding proofs, we refer to the
paper Filipović (2002):

Definition 9.6.1 A polynomial term structure model is defined by:

(i) the factors Zt defined in a cone domain Z ⊆ �n, whose dynamics under the
risk neutral measure satisfy the following SDE:

dZt = b(Zt ) dt + σ (Zt ) dW t , Zt ∈Z, (9.6.18)

where W t is an n-dimensional Brownian motion, and the drift b(·) and volatility
matrix σ (·) satisfy the growth constraint:

∥
∥b(z)

∥
∥+ ∥∥σ (z)∥∥≤ C(1 + ‖z‖), ∀z ∈Z.

(ii) the forward rate curve:

r(Zt , τ )=
d∑

|i|=0

gi(τ )(Zt )
i, τ ≥ 0, (9.6.19)

with the notation i = (i1, . . . , in), |i| = i1 + · · · + in and zi = zi11 . . . zinn ; here d
denotes the degree of the polynomial term structure.

Theorem 3.4 from Filipović (2002) establishes that the only relevant cases are
d = 1 and d = 2. This result is very important in the context of linearization: the
case d = 1 was discussed in Sect. 9.2, we now discuss the case d = 2.

Under mild regularity conditions, Zt is given by a multidimensional OU-process,
with constant diffusion coefficient satisfying the SDE:

dZt = (A0 +AZt ) dt + dW t ,

A0, Zt ∈ �n, A ∈Mn.

For the short rate we have the quadratic form

r(Zt )= Z�
t Ω0Zt + Γ �

0 Zt + γ0,

γ0 ∈ �, Γ 0 ∈ �n, Ω0 ∈ S+
n ,

where S+
n denotes the set of positive semidefinite matrices. For the forward rate we

set:

r(Zt , τ )= Z�
t Ω(τ )Zt + Γ (τ )�Zt + γ (τ),

γ (τ ) ∈ �, Γ (τ ) ∈ �n, Ω(τ ) ∈ S+
n , τ ≥ 0.
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We remind the reader that the risk neutral zero coupon bond price satisfies the rela-
tion

E

(

exp

{

−
∫ t+τ

t

rs ds

} ∣∣
∣
∣At
)

= exp
{−r(Zt , τ )

}
.

We obtain the following system of Riccati equations:

dΩ(τ )

dτ
= Ω0 +Ω(τ )A+A�Ω(τ )− 2Ω(τ )2 (9.6.20)

dΓ (τ )

dτ
= Γ 0 + 2Ω(τ )A0 +A�Γ (τ )− 2Ω(τ )Γ (τ ) (9.6.21)

dγ (τ)

dτ
= γ0 + Γ (τ )�A0 + T r

(
Ω(τ )

)− Γ (τ )�Γ (τ )/2, (9.6.22)

subject to the initial conditions

Ω(0)= 0n×n, Γ (0)= 0n×1, γ (0)= 0. (9.6.23)

We now explicitly linearize these equations, where we follow Grasselli and Tebaldi
(2004b). This procedure mimics the procedure in Sect. 9.2. Also here, we double the
dimensionality of the problem. We firstly solve the equation associated with Ω(τ ).
We introduce

Ω(τ )= F−1(τ )G(τ ), for F (τ ) ∈GL(n), G(τ ) ∈Mn,

then
d

dτ

(
F (τ )Ω(τ )

)− d

dτ

(
F (τ )

)
Ω(τ )= F (τ )

d

dτ
Ω(τ ),

and from (9.6.20), we get

d

dτ
G(τ )− d

dτ

(
F (τ )

)
Ω(τ )= (F (τ )Ω0 +G(τ )A

)− (−F (τ )A� + 2G(τ )
)
Ω(τ ).

We consequently have the following representation

d

dτ
G(τ )= F (τ )Ω0 +G(τ )A

d

dτ
F (τ )=−F (τ )A� + 2G(τ ),

which can be written as follows:

d

dτ

(
G(τ ) F (τ )

)= (G(τ ) F (τ )
)
(

A 2In

Ω0 −A�

)

.

Exponentiating yields

(
G(τ ) F (τ )

)= (G(0) F (0)
)

exp

{

τ

(
A 2In

Ω0 −A�

)}

= (Ω(0) In
)

exp

{

τ

(
A 2In

Ω0 −A�

)}

. (9.6.24)
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Analogous to Sect. 9.2, we now introduce the notation
(

A1
1(τ ) A1

2(τ )

A2
1(τ ) A2

2(τ )

)

:= exp

{

τ

(
A 2In

Ω0 −A�

)}

,

in which case (9.6.24) results in
(
G(τ ) F (τ )

)= ( (A1
1(τ )Ω(0)+A2

1(τ )
) (

A1
2(τ )Ω(0)+A2

2(τ )
) )
,

and hence

Ω(τ )= (A2
2(τ )
)−1

A2
1(τ ),

since Ω(0)= 0n×n. We solve the second equation
d

dτ
Γ (τ )= Γ 0 + 2Ω(τ )A0 +A�Γ (τ )− 2Ω(τ )Γ (τ ).

Again, we set

Γ (τ )= F−1(τ )Γ̃ (τ ),

and hence
d

dτ
Γ̃ (τ )− d

dτ
F (τ )Γ (τ )= F (τ )

d

dτ
Γ (τ ).

Consequently, we have

d

dτ
F (τ )− d

dτ
F (τ )Γ (τ )= F (τ )

(
Γ 0 + 2Ω(τ )A0 +A�Γ (τ )− 2Ω(τ )Γ (τ )

)

= F (τ )Γ 0 + 2Γ (τ )A0 −
(−F (τ )A� + 2G(τ )

)
Γ (τ ).

We immediately have
d

dτ
Γ̃ (τ )= F (τ )Γ 0 + 2G(τ )A0.

Hence we get the following result for Γ (τ ):

Γ (τ )= F−1(τ )Γ̃ (τ )

= F−1(τ )

∫ τ

0

(
F
(
τ ′
)
Γ 0 + 2G

(
τ ′
)
A0
)
dτ ′

= (A2
2(τ )
)−1
∫ τ

0

(
A2

2

(
τ ′
)
Γ 0 + 2A2

1

(
τ ′
)
A0
)
dτ ′.

Finally, we obtain γ (τ) from (9.6.22) by direct integration.

Corollary 9.6.2 For n = 1, we recover the result from Sect. 4.4 in Filipović et al.
(2004), i.e. setting c= 2

√
A2 + 2Ω0 and

L3(t)= 4Γ0

c

(
exp{cτ/2} − 1

)
(
c

2

(
exp{cτ/2} + 1

)+A(1 − exp{cτ/2})
)

+ 8A0Ω0

c

(
exp{cτ/2} − 1

)2
,

L5(t)= c
(
exp{cτ } + 1

)− 2A
(
exp{cτ } − 1

)
,

L7(t)= 2Ω0
(
exp{cτ } − 1

)
,
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we have

Ω(τ)= L7(τ )

L5(τ )
,

Γ (τ)= L3(τ )

L5(τ )
,

γ (τ )=
∫ τ

0

(

Γ (t)A0 − 1

2
Γ (t)2 +Ω(t)+ γ0

)

dt.

9.7 A Multifactor Heston Model

In this section, we discuss a multifactor model, which can be analyzed using the
techniques developed in this chapter. The aim is to illustrate that the approach can
be used to analyze a powerful, complex model, but at the same time, it also illustrates
the limitations of the approach, and motivates the study of the Wishart process in
Chap. 11.

The following model is covered by the Dai and Singleton (2000) and Duffie et al.
(2000) framework. We introduce two assets and drive their stochastic volatilities
using three square-root processes:

dS1
t = S1

t

(
r dt +

√
X1
t dZ

1
t +
√
X3
t dZ

3
t

)
, (9.7.25)

dS2
t = S2

t

(
r dt +

√
X2
t dZ

2
t +
√
X3
t dZ

3
t

)
, (9.7.26)

where

dX1
t = κ1(η1 −X1

t

)
dt + λ1

√
X1
t dW

1
t ,

dX2
t = κ2(η2 −X2

t

)
dt + λ2

√
X2
t dW

2
t ,

dX3
t = κ3(η3 −X3

t

)
dt + λ3

√
X3
t dW

3
t ,

and κj , ηj , λj > 0, j = 1,2,3. To ensure the affinity of the model, we introduce the
following correlation structure

d
[
Zi,Wj

]= ρj δi,j dt, i, j = 1,2,3,

where ρj ∈ (−1,1), j = 1,2,3. We now discuss this model, where we follow Da
Fonseca et al. (2007). Firstly, we remark that each price process enjoys the dynamics
of the Double Heston model of Christoffersen et al. (2009). Furthermore, the assets
exhibit stochastic volatilities, given by (X1

t +X3
t ) and (X2

t +X3
t ), respectively, and

stochastic covariation, given as

d
[
S1, S2]

t
= S1

t S
2
t X

3
t dt.
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The assets exhibit stochastic volatility, but the covariation is constrained to remain
nonnegative. This issue is addressed in Chap. 11. We encourage the reader to com-
pare the model presented in this section to the two models presented in Sect. 11.5.
Finally, we introduce log-asset prices Y it = log(Sit ), i = 1,2, and present the joint
characteristic function of the log-asset prices, so that the techniques from Chap. 8
are applicable.

Proposition 9.7.1 Let Y it = log(Sit ), i = 1,2, where the dynamics of S1
t and S2

t are
given by (9.7.25) and (9.7.26), respectively. Then

E
(
exp
{
ıu1Y

1
T + ıu2Y

2
T

}|At
)

= exp

{
3∑

j=1

Aj(τ)X
j
t + ı

2∑

k=1

ukY
k
t + c(τ )

}

,

where for j = 1,2,

dj =
√(
u2
j + ıuj

)
λ2
j + (κj − ıλjρjuj )2,

gj = κj − ıλjρjuj + dj
κj − ıλjρjuj − dj ,

Aj (τ )= κj − ıλjρjuj + dj
λ2
j

(
1 − exp{dj τ }

1 − gj exp{dj τ }
)

.

Furthermore,

d3 =
√(
(u1 + u2)2 + ı(u1 + u2)

)
λ2

3 +
(
κ3 − ıλ3ρ3(u1 + u2)

)2
,

g3 = κ3 − ıλ3ρ3(u1 + u2)+ d3

κ3 − ıλ3ρ3(u1 + u2)− d3
,

A3(τ )= κ3 − ıλ3ρ3(u1 + u2)+ d3

λ2
3

(
1 − exp{d3τ }

1 − g3 exp{d3τ }
)

,

and

c(τ )= rıu1τ + rıu2τ

+ κ1η1

λ2
1

(

(κ1 − ıλ1ρ1u1 + d1)τ − 2 log

(
1 − g1 exp{d1τ }

1 − g1

))

+ κ2η2

λ2
2

(

(κ2 − ıλ2ρ2u2 + d2)τ − 2 log

(
1 − g2 exp{d2τ }

1 − g2

))

+ κ3η3

λ2
3

(
(
κ3 − ıλ3ρ3(u1 + u2)+ d3

)
τ − 2 log

(
1 − g3 exp{d3τ }

1 − g3

))

.

In conclusion, we remark that on the Euclidean state space, one can introduce pow-
erful multidimensional models. However, it is also clear that the positive factors, in
this case the variance processes (X1,X2,X3), have to be orthogonal. This is clear
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from the discussion in Sect. 9.2. To allow for dependence between positive factors,
one needs a more general concept of positivity than �+. The Wishart process turns
out to be rich enough to allow for dependent positive factors, whilst at the same time
the process remains tractable, see Chap. 11.



Chapter 10
An Introduction to Matrix Variate Stochastics

In this chapter, we introduce the reader to matrix variate stochastics. It is intended
to set the scene for Wishart processes, which will be covered in the next chapter. We
begin by recalling notation and introducing some basic functions used throughout
both chapters. This will bring us in a position to discuss matrix valued random vari-
ables, matrix valued stochastic processes, and matrix valued stochastic differential
equations. To illustrate these concepts, we apply them to the matrix valued version
of the Ornstein-Uhlenbeck process and a multidimensional version of the MMM.
The main references for this chapter are Gupta and Nagar (2000) and Pfaffel (2008).

10.1 Basic Definitions and Functions

In this section, we fix primarily notation.

Definition 10.1.1 We employ the following notation:

• we denote by Mm,n(�) the set of all m× n matrices with entries in �. If m= n,
we write Mn(�) instead;

• we write GL(p) for the group of all invertible matrices of Mp(�);
• let Sp denote the linear subspace of all symmetric matrices of Mp(�);
• let S+

p (S−
p ) denote the set of all symmetric positive (negative) definite matrices

of Mp(�);
• denote by S+

p the closure of S+
p in Mp(�), that is the set of all symmetric positive

semidefinite matrices of Mp(�).

The next definition provides a one-to-one relationship between vectors and ma-
trices.

J. Baldeaux, E. Platen, Functionals of Multidimensional Diffusions with Applications
to Finance, Bocconi & Springer Series 5, DOI 10.1007/978-3-319-00747-2_10,
© Springer International Publishing Switzerland 2013
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Definition 10.1.2 Let A ∈Mm,n(�) with columns ai ∈ �m, i = 1, . . . , n. Define
the function vec :Mm,n(�)→�mn via

vec(A)=
⎛

⎜
⎝

a1
...

an

⎞

⎟
⎠ .

Note that vec(A) is also an element of Mmn,1(�). The next lemma is derived in
Gupta and Nagar (2000).

Lemma 10.1.3 The following properties hold:

• for A,B ∈Mm,n(�) it holds that tr(A�B)= vec(A)�vec(B);
• let A ∈Mp,m(�), B ∈Mm,n(�) and C ∈Mn,q(�). Then we have

vec(AXB)= (B� ⊗A
)
vec(X).

We now recall from Gupta and Nagar (2000) how a symmetric matrix can be
mapped to a vector.

Definition 10.1.4 Let S ∈ Sp . Define the function vech : S0 →� p(p+1)
2 via

vech(S)=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S11
S12
S22
...

S1p
...

Spp

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

such that vech(S) is a vector consisting of the elements of S from above and includ-
ing the diagonal, taken componentwise.

We point out that the vector vech gives access to the p(p+1)
2 distinct values of a

symmetric p× p matrix.

10.2 Integrals over Matrix Domains

The aim of this section is to define integrals over matrix domains. These definitions
will be employed in the subsequent sections, e.g. when computing characteristic
functions and Laplace transforms of matrix valued random variables. Discussing
integration, we need a notion of measurability. The following definition is taken
from Pfaffel (2008), see also Jacod and Protter (2004).
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Definition 10.2.1 Let (X,T ) be a topological space. The Borel σ -algebra on X is
then given by the smallest σ -algebra that contains T and is denoted by B(X).

In this chapter and the following, we focus on �, �n, and Mm,n(�), and employ
the notation B for B(�), Bn for B(�n) and Bm,n for B(Mm,n(�)). We are now in
a position to define integrals over matrices, allowing for matrices of size m× n.

Definition 10.2.2 Let f :Mm,n(�)→� be a Bm,n − B-measurable function and
M ∈ Bm,n a measurable subset of Mm,n(�) and let λ denote the Lebesgue-measure
on (�mn, Bmn). The integral of f over M is then defined by

∫

M

f (X) dX :=
∫

M

f (X) d(λ ◦ vec)(X)=
∫

vec(M)
f ◦ vec−1(x) dλ(x).

We call λ ◦ vec the Lebesgue-measure on (Mm,n(�),Bm,n).

As pointed out in Pfaffel (2008), Sp is isomorphic to � p(p+1)
2 , hence for p ≥ 2,

Sp is a real subspace of Mp(�), and, consequently, of Lebesgue-measure zero. As
this means that any integral over subsets of Sp is zero, we define another Lebesgue
measure on the subspace of symmetric matrices Sp:

Definition 10.2.3 Let f : Sp → � be a B(Sp)- B-measurable function and M ∈
B(Sp) a Borel-measurable subset of Sp and let λ denote the Lebesgue-measure on

(� p(p+1)
2 ,B

p(p+1)
2 ). The integral of f over M is then defined by

∫

M

f (X) dX :=
∫

M

f (X) d(λ ◦ vech)(X)=
∫

vech(M)
f ◦ vech−1(x) dλ(x).

We call λ ◦ vech the Lebesgue-measure on (Sp,B(Sp)).

As in Gupta and Nagar (2000) and Pfaffel (2008), we use the notation

etr(A) := exp
{
tr(A)

}
. (10.2.1)

This notation allows the formulation of the next definition.

Definition 10.2.4 The multivariate gamma function is defined as follows:

Γp(a) :=
∫

S+
p

etr(−A)det(A)a−
1
2 (p+1) dA ∀a > p− 1

2
.

The next result from Gupta and Nagar (2000), shows that for a > p−1
2 , the matrix

variate gamma function can be expressed as a finite product of ordinary gamma
functions.

Theorem 10.2.5 For a > 1
2 (p− 1),

Γp(a)= π 1
4p(p−1)

p∏

i=1

Γ

(

a − 1

2
(i − 1)

)

.
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Next, we want to introduce hypergeometric functions of matrix arguments. This
requires the definition of zonal polynomials, which in turn requires the definition of
symmetric homogeneous polynomials. Starting with the latter, a symmetric homo-
geneous polynomial of degree k in y1, . . . , ym is a polynomial which is unchanged
by a permutation of the subscripts and such that every term in the polynomial has
degree k. The following example from Muirhead (1982) illustrates this: set m= 2,
k = 3, then

y3
1 + y3

2 + 10y2
1y2 + 10y1y

2
2

is a symmetric homogeneous polynomial of degree 3 in y1 and y2. Following Gupta
and Nagar (2000), we denote by Vk the vector space of symmetric homogeneous
polynomials that are of degree k in the 1

2p(p − 1) distinct elements of S ∈ S+
p . As

discussed in Gupta and Nagar (2000), the space Vk can be decomposed into a direct
sum of irreducible invariant subspaces Vκ , where κ denotes a partition of k, defined
as follows: by a partition of k, we mean the p-tuple κ = (k1, . . . , kp), where k1 ≥
· · · ≥ kp ≥ 0, and furthermore k1 + · · · + kp = k. Then the polynomial tr(S)k ∈ Vk
has the unique decomposition into polynomials Cκ(S) ∈ Vκ as

tr(S)k =
∑

κ

Cκ(S).

We now define zonal polynomials.

Definition 10.2.6 The zonal polynomial Cκ(S) is the component of tr(S)k in the
subspace Vκ .

The next definition from Gupta and Nagar (2000) introduces hypergeometric
functions of matrix arguments.

Definition 10.2.7 The hypergeometric function of matrix argument is defined by

mFn(a1, . . . , am;b1, . . . , bn;S)=
∞∑

k=0

∑

κ

(a1)κ . . . (am)κCκ(S)

(b1)κ . . . (bn)κk! , (10.2.2)

where ai , bj ∈ �, S is a symmetric p × p-matrix and
∑
κ the summation over

all partitions κ of k and (a)κ = ∏pj=1(a − 1
2 (j − 1))kj denotes the generalized

hypergeometric coefficient, with (x)kj = x(x + 1) . . . (x + kj − 1).

The following remark provides some properties of hypergeometric functions of
matrix arguments.

Remark 10.2.8 Conditions for convergence of the infinite series in Eq. (10.2.2)
are of importance, see Gupta and Nagar (2000) for a discussion. The condition
m< n+ 1 is sufficient. We also have the special case

nFn(a1, . . . , an;a1, . . . , an;S)=
∞∑

k=0

(tr(S))k

k! = etr(S).
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The next lemma will be subsequently employed when computing expectations of
functions of non-central Wishart distributed random variables.

Lemma 10.2.9 Let Z,T ∈ S+
p . Then

∫

S+p
etr(−ZS)det(S)a−

p+1
2 mFn(a1, . . . , am;b1, . . . , bn;ST ) dS

= Γp(a)det(Z)−am+1Fn
(
a1, . . . , am;b1, . . . , bn;Z−1T

)
,

∀a > p−1
2 .

Proof The result is a special case of Theorem 1.6.2 in Gupta and Nagar (2000). �

10.3 Matrix Valued Random Variables

In this section, we discuss matrix valued random variables. First, we need to de-
fine what we mean by a matrix valued random variable, and consequently associate
with it the concepts well-known from the vector and scalar case, such as probability
density functions, characteristic functions, and Laplace transforms. We will discuss
two examples, first the normal distribution and second the Wishart distribution. The
main reference for this section is Gupta and Nagar (2000), see also Pfaffel (2008).
As before, we use (Ω,A,A,P ) to denote the filtered probability space.

Definition 10.3.1 An m× n random matrix X is a measurable function

X : (Ω,F)→ (
Mm,n(�),Bm,n

)
.

We now discuss probability density functions of random variables.

Definition 10.3.2 A nonnegative measurable function fX such that

P(X ∈M)=
∫

M

fX(A) dA ∀M ∈ Bm×n

defines the probability density function of an m× n random matrix X.

We can now introduce expected values.

Definition 10.3.3 Let X be an m × n-random matrix. For every function h =
(hi,j )i,j :Mm,n(�)→Mr,s(�) with hi,j :Mm,n(�)→�, 1 ≤ i ≤ r , 1 ≤ j ≤ s,
the expected value E(h(X)) of h(X) is an element of Mr,s(�) with elements

E
(
h(X)

)
i,j

=E(hi,j (X)
)=
∫

Mm,n(�)
hi,j (A)P

X(dA).



248 10 An Introduction to Matrix Variate Stochastics

We point out that if X has a probability density function fX , then we have

E
(
h(X)

)
i,j

=
∫

Mm,n(�)
hi,j (A)fX(A) dA.

The characteristic function or Fourier transform of matrix-valued random variables
is now defined.

Definition 10.3.4 The characteristic function of an m × n-random matrix X with
probability density function fX is defined as

E
(
etr
(
ıXZ�))=

∫

Mm,n(�)
etr
(
ıAZ�)fX(A) dA, (10.3.3)

for every Z ∈Mp(�).

Due to the fact that |exp(ıx)| = 1, ∀x ∈ �, the integral in (10.3.3) always exists.
Furthermore, (10.3.3) is the Fourier transform of the measure PX at point Z.

Definition 10.3.5 The Laplace transform of a p × p-random matrix X ∈ S+
p with

probability density function fX is defined as

E
(
etr(−UX)

)=
∫

S+
p

etr(−UA)fX(A) dA, (10.3.4)

for every U ∈ S+
p .

Remark 10.3.6 Recall that the Laplace transform of a positive scalar random
variable is always well-defined. For A,U ∈ S+

p , we have that tr(−UA) =
−tr(

√
UA

√
U) < 0, since

√
UA

√
U is positive definite, hence the integral in

Eq. (10.3.4) is well-defined, where X ∈ S+
p is the analogue of a positive random

variable.

Next, we introduce covariance matrices for matrix valued random variables.

Definition 10.3.7 Let X be an m × n random matrix and Y be a p × q random
matrix. Then the mn× pq covariance matrix is defined as

cov(X,Y )= cov
(
vec
(
X�), vec

(
Y�))

=E(vec
(
X�)vec

(
Y�)�)−E(vec

(
X�))E

(
vec
(
Y�))�,

i.e. cov(X,Y ) is anm×p block matrix with blocks cov(x̃�
i , ỹ

�
j ) ∈Mn,q(�) where

x̃i (or ỹi respectively) denote the rows of X (respectively Y ).

Having these definitions at hand, we can now discuss some examples. We begin
with an example involving the normal distribution.
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Definition 10.3.8 A p × n random matrix is said to have a matrix variate normal
distribution with mean M ∈Mp,n(�) and covariance Σ ⊗Ψ , where Σ ∈ S+

p , Ψ ∈
S+
n , if vec(X�) ∼ Npn(vec(M�),Σ ⊗ Ψ ), where Npn denotes the multivariate

normal distribution on �pn with mean vec(M�) and covariance Σ ⊗ Ψ . We will
use the notation X ∼Np,n(M,Σ ⊗Ψ ).

We now recall a result from Gupta and Nagar (2000).

Theorem 10.3.9 If X ∼Np,n(M,Σ ⊗Ψ ), then X� ∼Np,n(M�,Ψ ⊗Σ).

Proof The proof is given by the one of Theorem 2.3.1 in Gupta and Nagar (2000). �

The next result gives the characteristic function of the normal distribution.

Theorem 10.3.10 Let X ∼ Np,n(M,Σ ⊗ Ψ ). Then the characteristic function of
X is given by

E
(
etr
(
ıXZ�))= etr

(

ıZ�M − 1

2
Z�ΣZΨ

)

.

By employing Theorem 10.3.10 one proves the matrix analogue of the linear
transformation property of normal random variables, see Pfaffel (2008).

Theorem 10.3.11 Let X ∼Np,n(M,Σ ⊗ Ψ ), A ∈Mm,q(�), B ∈Mm,p(�) and
C ∈Mn,q(�). Then A+BXC ∼Nm,q(A+BMC, (BΣB�)⊗ (C�Ψ C)).

Next, we discuss an example involving the Wishart distribution.

Definition 10.3.12 A p × p-random matrix X in S+
p is said to have a non-central

Wishart distribution with parameters p ∈N , n ≥ p, Σ ∈ S+
p and Θ ∈Mp(�), if

its probability density function is of the form

fX(S)=
(

2
1
2npΓp

(
n

2

)

det(Σ)
n
2

)−1

etr

(

−1

2

(
Θ +Σ−1S

)
)

× det(S)
1
2 (n−p−1)

0F1

(
n

2
; 1

4
ΘΣ−1S

)

,

where S ∈ S+
p and 0F1 is the hypergeometric function. We write

X ∼ Wp(n,Σ,Θ).

We remark that the requirement n ≥ p ensures that the matrix variate gamma
function is well-defined. If Θ = 0, X is said to follow the central Wishart distribu-
tion with parameters p,n and Σ ∈ S+

p , with probability density function
(

2
1
2npΓp

(
n

2

)

det(Σ)
n
2

)−1

etr

(

−1

2
Σ−1S

)

det(S)
1
2 (n−p−1),
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where S ∈ S+
p and n≥ p. Next we provide the Laplace transform of the non-central

Wishart distribution, see Pfaffel (2008).

Theorem 10.3.13 Let S ∼Wp(n,Σ,Θ). Then the Laplace transform of S is given
by

E
(
etr(−US)

)= det(Ip + 2ΣU)−
n
2 etr
(−Θ(Ip + 2ΣU)−1ΣU

)

with U ∈ S+
p .

Now, we list the characteristic function of the non-central Wishart distribution
according to Gupta and Nagar (2000).

Theorem 10.3.14 Let S ∼Wp(n,Σ,Θ). Then the characteristic function of S is
given by

E
(
etr(ıZS)

)= det(Ip − 2ıΣZ)−
n
2 etr
(
ıΘ(Ip − 2ıΣZ)−1ΣZ

)
,

with Z ∈Mp(�).

The next result, which is Theorem 3.5.1 in Gupta and Nagar (2000), shows that
the Wishart distribution is the matrix analogue of the non-central χ2-distribution.

Theorem 10.3.15 Let X ∼ Np,n(M,Σ ⊗ In), n ∈ {p,p + 1, . . .}. Then XX� ∼
Wp(n,Σ,Σ

−1MM�).

We remark that Σ can be interpreted as a scale parameter and Θ as a location
parameter for S. Consequently, a central Wishart distributed matrix is the square of
normally distributed matrix random variables with zero mean.

10.4 Matrix Valued Stochastic Processes

This section closely follows Sect. 3.3 in Pfaffel (2008). First, we define matrix val-
ued stochastic processes. Our first example will be matrix valued Brownian motion.
Later, we will introduce matrix valued local martingales and semimartingales, which
then allow us to formulate an Itô formula for matrix valued semimartingales. The
section concludes with an integration-by-parts formula, which is useful when apply-
ing the theory presented in this chapter to examples, such as the Ornstein-Uhlenbeck
process. We remind the reader that �+ refers to the interval of non-negative real
numbers [0,∞).

Definition 10.4.1 A measurable function X : �+ × Ω → Mm,n(�), (t,ω) �→
X(t,ω) = Xt (ω) is called a matrix valued stochastic process if X(t,ω) is a ran-

dom matrix for all t ∈ �+. Moreover, X is called a stochastic process in S+
p if

X : �+ ×Ω→ S+P .
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As noticed in Pfaffel (2008), most definitions applicable to scalar processes can
be transferred to matrix valued processes by demanding that they apply to every
element of the matrix. The first example is Brownian motion.

Definition 10.4.2 A matrix valued Brownian motion W in Mn,p(�) is a matrix
consisting of independent one-dimensional Brownian motions, i.e. W = (Wi,j )i,j ,
where Wi,j are independent one-dimensional Brownian motions, 1 ≤ i ≤ n,
1 ≤ j ≤ p. We write W ∼ BMn,p and W ∼ BMn if p = n.

We now show the obvious distributional properties of Brownian motion.

Corollary 10.4.3 The following distributional properties regarding a matrix valued
Brownian motion W = {W t , t ≥ 0} hold:

• W t ∼Nn,p(0, tInp);
• W ∼ BMn,, A ∈ Mm,q(�), B ∈ Mm,n(�) and C ∈ Mp,q(�). Then A +

BW tC ∼Nm,q(A, t (BB�)⊗ (C�C)).

Proof For the first part, we need to show that vec(W�
t ) ∼ Nnp(0, tInp), which is

easily verified. The second part follows from Theorem 10.3.11 and the observation
that Inp = In ⊗ Ip . �

We now define a matrix valued local martingale.

Definition 10.4.4 A matrix valued stochastic process X is called a local martin-
gale, if each component of X is a local martingale, i.e. if there exists a sequence
of strictly monotonic increasing stopping times (Tn)n∈N , where Tn

a.s.→∞, such that
Xmin(t,Tn),ij forms a martingale for all i, j , t ≥ 0 and n ∈ {1,2, . . .}.

The next result is the analogue of Lévy’s theorem, which allows us to decide if a
given matrix valued continuous local martingale is a Brownian motion. This result
appeared in Pfaffel (2008).

Theorem 10.4.5 Let B be a p × p dimensional continuous local martingale such
that

[Bi,j ,Bk,l]t =
{
t if i = k and j = l
0 else

for all i, j, k ∈ {1, . . . , p}. Then B is a p × p-dimensional Brownian motion,
B ∼ BMp .

Given the definition of a local martingale, as in the scalar case, we can define
semimartingales.

Definition 10.4.6 A matrix valued stochastic process X is called a semimartingale
if X can be decomposed into X = X0 +M +A, where M is a local martingale and
A an adapted process of finite variation.
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We can now consider stochastic integrals. As in the scalar and vector case, we
focus on continuous semimartingales, and for an n× p-dimensional Brownian mo-
tion W ∼ BMn,p , stochastic processes X and Y in Mm,n(�) and Mp,q(�), re-
spectively, and a stopping time T , the matrix variate stochastic integral on [0, T ] is
a matrix with entries
(∫ T

0
Xt dW t Y t

)

i,j

=
n∑

k=1

p∑

l=1

∫ T

0
Xt,ikYt,lj dWt,kl, ∀1 ≤ i ≤m, 1 ≤ j ≤ q.

We are now able to state an Itô formula for matrix-variate semimartingales, see
Pfaffel (2008).

Theorem 10.4.7 Let U ⊆Mm,n(�) be open, X a continuous semimartingale with
values in U and let f :U →� be a twice continuously differentiable function. Then
f (X) is a continuous semimartingale and

f (Xt )= f (X0)+ tr

(∫ t

0
Df (Xs)

� dXs

)

+ 1

2

∫ t

0

n∑

j,l=1

n∑

i,k=1

∂2

∂Xi,j ∂Xk,l
f (Xs) d[Xi,j ,Xk,l]s (10.4.5)

with D = ( ∂
∂Xi,j

)i,j .

The next corollary is given in Pfaffel (2008).

Corollary 10.4.8 Let X be a continuous semimartingale on a stochastic inter-
val [0, T ] with T = inf{t : Xt /∈ U} > 0 for an open set U ⊆ Mm,n(�) and let
f : U →� be a twice continuously differentiable function. Then (f (Xt ))t∈[0,T ] is
a continuous semimartingale and (10.4.5) holds for t ∈ [0, T ).

In order to state a matrix valued integration by parts formula, we need the fol-
lowing definition of covariation for matrix valued stochastic processes.

Definition 10.4.9 For two semimartingales A ∈Md,m(�), B ∈Mm,n(�) the ma-
trix valued quadratic covariation is defined by

[A,B]Mt,ij =
m∑

k=1

[Ai,k,Bk,j ]t ∈Md,n(�).

The following integration-by-parts formula will be useful, see Pfaffel (2008).

Theorem 10.4.10 Let A ∈Md,m(�), B ∈Mm,n(�) be two semimartingales. Then
the matrix product AtB t ∈Md,n(�) is a semimartingale and

AtB t = A0B0 +
∫ t

0
As dBs +

∫ t

0
dAs Bs + [A,B]Mt .
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10.5 Matrix Valued Stochastic Differential Equations

In this section, we briefly discuss matrix valued SDEs. The aim is to be able to make
sense of the SDEs presented later describing Wishart processes. We follow Pfaffel
(2008) and Stelzer (2007), where additional material on matrix valued Markov pro-
cesses is presented.

As with scalar valued SDEs, we can distinguish between strong and weak solu-
tions. Recall that a strong solution can roughly be thought of as a function of a given
Brownian motion. The next definition can be found in Pfaffel (2008).

Definition 10.5.1 Let (Ω,A,A,P ) be a filtered probability space satisfying the
usual conditions and consider the stochastic differential equation

dXt = b(t,Xt ) dt + σ(t,Xt ) dW t , (10.5.1)

where X0 = x0, b : �+ × Mm,n(�)→ Mm,n(�) and σ : �+ × Mm,n(�) →
Mm,p(�) are measurable functions, x0 ∈Mm,n(�) and W is a p×n-matrix valued
Brownian motion.

(i) A pair (X,W ) of At -adapted continuous processes defined on (Ω,A,A,P ) is
called a solution of the SDE (10.5.1) on [0, T ), T > 0, if W is an A-Brownian
motion and

Xt = x0 +
∫ t

0
b(s,Xs) ds +

∫ t

0
σ(s,Xs) dW s ∀t ∈ [0, T ).

(ii) Moreover, the pair (X,W ) is said to be a strong solution of (10.5.1), if X is
adapted to the filtration (AWt )t∈�+ , where GWt = σc(Ws, s ≤ t) is the σ -algebra
generated by W s , s ≤ t , completed with all P -null sets from A.

(iii) A solution (X,W ) of the SDE (10.5.1), which is not a strong solution is termed
a weak solution of Eq. (10.5.1).

We now discuss the existence of a solution. As in the scalar case, the local Lips-
chitz condition turns out to suffice, see Stelzer (2007).

Definition 10.5.2 Let (U,‖ · ‖U), (V ,‖ · ‖V ) be two normed spaces and A⊆ U be
open. Then a function f :A→ V is called locally Lipschitz, if for every x ∈A there
exists an open neighborhood U(x)⊂A and a constant C(x) ∈ �+ such that

∥
∥f (z)− f (y)∥∥

V
≤ C(x)‖z− y‖U ∀z,y ∈ U(x).

We term C(x) the local Lipschitz coefficient. If there is a K ∈ �+ such that
C(x)=K can be chosen for all x ∈A, then f is called globally Lipschitz.

The next theorem states that a local Lipschitz condition is a sufficient condition.

Theorem 10.5.3 Let U be an open subset of Md,n(�) and (Un)n∈N a sequence
of convex closed sets such that Un ⊂ U , Un ⊆ Un+1 ∀n ∈N and

⋃
n∈N Un = U .
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Assume that f :U →Md,m(�) is locally Lipschitz and Z in Mm,n(�) is a contin-
uous semimartingale. Then for each U -valued F0-measurable initial value X0 there
exists a stopping time T and a unique U -valued strong solution X to the stochastic
differential equation

dXt = f (Xt ) dZt (10.5.2)

up to the time T > 0 a.s., i.e. on the stochastic interval [0, T ). At T <∞ we have
that either X hits the boundary ∂U of U at T , i.e. XT ∈ ∂U , or explodes, i.e.
lim supt→T ,t<T ‖Xt‖ =∞. If f satisfies the linear growth condition

∥
∥f (X)

∥
∥2 ≤K(1 + ‖X‖2)

with some constant K ∈ �+, then no explosion can occur.

We point out that by unique solution we mean that pathwise uniqueness holds for
(10.5.2). Two solutions on the same probability space, started from the same initial
value and driven by the same semimartingale are then indistinguishable.

We now present a matrix version of the Girsanov theorem for matrix valued
stochastic processes. To do so, we recall the notion of stochastic exponentials.

Definition 10.5.4 Let X be a stochastic process. The unique strong solution
Z = E(X) of the SDE

dZt = Zt dXt , Z0 = 1 (10.5.3)

is called stochastic exponential of X.

Theorem 10.5.3 allows us to conclude that the SDE (10.5.3) has a unique strong
solution. We now formulate the Girsanov theorem, which will be employed in the
next chapter.

Theorem 10.5.5 Let T > 0, W ∼ BMp and U be an adapted, continuous stochas-
tic process with values in Mp(�) such that

(

E
(

tr

(

−
∫ t

0
U�
s dW s

)))

t∈[0,T ]
(10.5.4)

is a martingale, or, which is a sufficient condition for (10.5.4), but not necessary,
that the Novikov condition is satisfied

E

(

etr

(
1

2

∫ T

0
U�
t U t dt

))

<∞.
Then

Q̂=
∫

E
(

tr

(

−
∫ T

0
U�
t dW t

))

dP

is an equivalent probability measure, and

Ŵ t =
∫ t

0
U s ds +W t

is a Q̂-Brownian motion on [0, T ).
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We point out that the Novikov condition presents a general sufficient condition
for

(

E
(

tr

(

−
∫ t

0
U�
s dW s

)))

t∈[0,T ]
to be a martingale. Clearly, for a given matrix valued process U = {U t , t ∈ [0, T ]},
it can be possible to improve on this sufficient condition, see e.g. Theorem 4.1 and
Remark 4.2. in Mayerhofer (2012) for an example involving Wishart processes.

10.6 Matrix Valued Ornstein-Uhlenbeck Processes

As an example, we discuss the matrix valued OU-process, see Pfaffel (2008), where
we direct the reader for additional results.

Definition 10.6.1 Let A,B ∈Mp(�), x0 ∈Mn,p(�) a.s. and W ∼ BMn,p . A so-
lution X of the SDE

dXt = XtB dt + dW t A, X0 = x0, (10.6.5)

is called an n × p-dimensional Ornstein-Uhlenbeck process. We write X ∼
OUPn,p(A,B,x0) for its probability law.

Since the coefficients X �→ XB and X �→ A are globally Lipschitz and satisfy
the linear growth condition presented in Theorem 10.5.3, we are assured that the
SDE (10.6.5) has a unique strong solution on the interval [0,∞). We can even go
further and solve the SDE explicitly.

Theorem 10.6.2 For a Brownian motion W ∼ BMn,p , the unique strong solution
of (10.6.5) is given by

Xt = x0 exp{Bt} +
(∫ t

0
dW s A exp{−Bs}

)

exp{Bt}. (10.6.6)

Proof The proof is completed by verifying that (10.6.6) solves (10.6.5). In this re-
gard, the integration-by-parts formula, presented in Theorem 10.4.10, is crucial. We
compute

dXt = d
(
x0 exp{Bt})+ d

((∫ t

0
dW s A exp{−Bs}

)

exp{Bt}
)

= x0 exp{Bt}B dt + dW t A exp{−Bt} exp{Bt}
+
(∫ t

0
dW sA exp{−Bs}

)

exp{Bt}B dt

+ d
[∫ ·

0
dW s A exp{−Bs}, exp{B·}

]M

t
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=
(

x0 exp{Bt} +
(∫ t

0
dW s A exp{−Bs}

)

exp{Bt}
)

B dt + dW t A

= XtB dt + dW t A.

Finally, we note that (10.6.6) is by construction a strong solution. �

We state the following lemma, which is Lemma 3.48 from Pfaffel (2008).

Lemma 10.6.3 Let W ∼ BMn,p and X : �+ → Mp,m(�), t �→ Xt be a square
integrable, deterministic function. Then

∫ t

0
dW s Xs ∼Nn,m

(

0, In ⊗
∫ t

0
X�
s Xs ds

)

.

We conclude this section with a result giving the distribution of the matrix val-
ued Ornstein-Uhlenbeck process, see also Theorem 3.49 in Pfaffel (2008) for an
alternative presentation.

Theorem 10.6.4 Let X ∼ OUPn,p(A,B,x0), then the distribution of X is given
by

Xt |x0 ∼Nn,p
(
μ,σ 2),

where

μ = x0 exp{Bt},
σ 2 = In ⊗ exp

{
B�t
}
∫ t

0
exp
{−B�s

}
A�A exp{−Bs}ds exp{Bt}.

Proof The proof follows immediately from Lemma 10.6.3, Theorem 10.6.2, and
Theorem 10.3.11. �

Finally, we remark that the stationary distribution of the matrix valued Ornstein-
Uhlenbeck process can also be computed, see Pfaffel (2008), which is Gaussian.

10.7 A Two-Dimensional Correlated Minimal Market Model

In this section, we discuss how to extend the model for the GOP when denominated
in two currencies, as discussed in Sect. 3.3, to allow for a more complex dependence
structure. In particular, we introduce a model which allows us to use our knowledge
of the Wishart distribution, see Definition 10.3.12. We denote the GOP denominated
in the domestic currency by Sa , and the GOP denominated in the foreign currency
by Sb . As discussed e.g. in Heath and Platen (2005), an exchange rate at time t can
be expressed in terms of the ratio of the two GOPs, see also Sect. 9.7. Assuming

the domestic currency is a, then one would pay, at time t , S
a
t

Sbt
units of currency a to
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obtain one unit of the foreign currency b. As the domestic currency is a, the price
of e.g. a call option on the exchange rate can be expressed as:

Sa0E

( (
SaT
SbT

−K)+
SaT

)

. (10.7.7)

We now discuss an extension of the model, which is tractable, as we can employ the
non-central Wishart distribution to compute (10.7.7). For k ∈ {a, b}, we set

Skt = S0,k
t S̄kt ,

where S0,k
t = exp{rkt}, S0,k

0 = 1. So S0,k denotes the savings account in currency
k, which for simplicity is assumed to be a deterministic function of time. As for the
stylized MMM, we model S̄k as a time-changed squared Bessel process of dimen-
sion four. We introduce the 2 × 4 matrix process X = {Xt , t ≥ 0} via

Xt =
⎡

⎣
(W

1,1
ϕ1(t)

+w1,1) (W
2,1
ϕ1(t)

+w2,1) (W
3,1
ϕ1(t)

+w3,1) (W
4,1
ϕ1(t)

+w4,1)

(W
1,2
ϕ2(t)

+w1,2) (W
2,2
ϕ2(t)

+w2,2) (W
3,2
ϕ2(t)

+w3,2) (W
4,2
ϕ2(t)

+w4,2)

⎤

⎦ .

The processes Wi,1
ϕ1 , i = 1, . . . ,4, denote independent Brownian motions, subjected

to a deterministic time-change

ϕ1(t)= α1
0

4η1

(
exp
{
η1t
}− 1

)= 1

4

∫ t

0
α1
s ds,

cf. Sect. 3.3, and Wi,2
ϕ2 , i = 1, . . . ,4, denote independent Brownian motions, sub-

jected to the deterministic time change

ϕ2(t)= α2
0

4η2

(
exp
{
η2t
}− 1

)= 1

4

∫ t

0
α2
s ds.

Now consider the process Y = {Y t , t ≥ 0}, which assumes values in S+2 , and is
given by

Y t := XtX
�
t , t ≥ 0,

which yields

Y t =
⎡

⎣

∑4
i=1(W

i,1
ϕ1(t)

+wi,1)2 ∑4
i=1
∑2
j=1(W

i,j

ϕj (t)
+wi,j )

∑4
i=1
∑2
j=1(W

i,j

ϕj (t)
+wi,j ) ∑4

i=1(W
i,2
ϕ2(t)

+wi,2)2

⎤

⎦ .

We set

S̄at = Y 1,1
t ,

and

S̄bt = Y 2,2
t .
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We use the diagonal elements of Y t to model the GOP in different currency de-
nominations. Next, we introduce the following dependence structure: the Brownian
motions Wi,1 and Wi,2, i = 1, . . . ,4, covary as follows,

[
W
i,1
ϕ1(·),W

i,2
ϕ2(·)
]
t
= �

4

∫ t

0

√
α1
s α

2
0 ds, i = 1, . . . ,4, (10.7.8)

where −1< � < 1. The specification (10.7.8) allows us to employ the non-central
Wishart distribution. We work through this example in detail, as it illustrates how to
extend the stylized MMM to allow for a non-trivial dependence structure, but still
exploit the tractability of the Wishart distribution. As discussed in Sect. 10.3, matrix
valued normal random variables are studied by interpreting the matrix as a vector,
cf. Definition 10.3.12. We recall that vec(X�

T ) stacks the two columns of X�
T , hence

vec
(
X�
T

)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

(W
1,1
ϕ1(T )

+w1,1)

...

(W
4,1
ϕ1(T )

+w4,1)

(W
1,2
ϕ2(T )

+w1,2)

...

(W
4,2
ϕ2(T )

+w4,2)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

It is easily seen that the mean matrix M satisfies

vec
(
M�)=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

w1,1

...

w4,1

w1,2

...

w4,2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10.7.9)

and the covariance matrix of vec(X�
T ) is given by

Σ ⊗ I 4 =
[
Σ1,1I 4 Σ1,2I 4

Σ2,1I 4 Σ2,2I 4

]

, (10.7.10)

where Σ is a 2 × 2 matrix with Σ1,1 = ϕ1(T ), Σ2,2 = ϕ2(T ), and Σ1,2 =Σ2,1 =
�
4

∫ t
0

√
α1
s α

2
s ds. We remark that assuming −1 < � < 1 results in Σ being positive

definite. It now immediately follows from Theorem 10.3.15 that

XTX�
T ∼W2

(
4,Σ,Σ−1MM�),

where M and Σ are given in Eqs. (10.7.9) and (10.7.10) respectively.
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Recall that we set

Y t = XtX
�
t ,

S̄at = Y 1,1
t ,

S̄bt = Y 2,2
t .

Hence we can compute (10.7.7) using

E
(
f (Y T )

)
,

where f : S+2 →� is given by

f (M)=
( exp{r1T }M1,1

exp{r2T }M2,2 −K)+
exp{r1T }M1,1

,

for M ∈ S+2 , and Mi,i , i = 1,2, are the diagonal elements of M . The probability
density function of Y T is given in Definition 10.3.12.



Chapter 11
Wishart Processes

The aim of this chapter is to introduce Wishart processes as tractable diffusions,
which can be used to better capture dependence structures associated with multidi-
mensional stochastic models. The focus of this chapter is on the tractability aspect.
We present illustrative examples, which show that we can move beyond the depen-
dence structures possible on the Euclidean state space. As discussed in Chap. 9, we
consider a model to be tractable if we have access to its affine transform. As demon-
strated in Bru (1991), Grasselli and Tebaldi (2008), Ahdida and Alfonsi (2010),
Benabid et al. (2010), Laplace transforms of the Wishart process are available in
closed-form and exponentially affine. The Wishart process is, in fact, an affine pro-
cess. We present results on affine transforms in Sect. 11.4.

Besides computing Laplace transforms, exact simulation schemes play an im-
portant role in finance, as they allow the pricing of e.g. path-dependent options,
see also Chap. 6. In Sect. 11.3, we will discuss simulation schemes for the Wishart
process, where we present the approaches from Benabid et al. (2010) and Ahdida
and Alfonsi (2010). The two approaches are different in nature, as they exploit dif-
ferent properties of Wishart processes. We hence present both approaches, as they
illustrate interesting properties of Wishart processes.

Subsequently, we present an extension of the model presented in Sect. 9.7 to the
case where positive factors are modeled via a Wishart process. This illustrates the
additional degrees of freedom given by employing the Wishart process. We begin
this chapter with a section which introduces Wishart processes and present existence
results. Subsequently, we study some special cases of the Wishart process in detail
to gain further insight. One of the special cases motivates immediately one of the
simulation schemes to be presented in Sect. 11.3.

11.1 Definition and Existence Results

Wishart processes were introduced in Bru (1991), as a matrix generalization of
squared Bessel processes. In her PhD thesis, Bru applied these processes to prob-

lems from biology. As we will show below, Wishart processes are S+d or S+d valued,
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i.e. they assume values as positive definite or positive semidefinite matrices. This
makes them natural candidates for the modeling of covariance matrices, as noted
in Gouriéroux and Sufana (2004a). Starting with Gouriéroux and Sufana (2004a,
2004b), there is now a substantial body of literature applying Wishart processes to
problems in finance, see Gouriéroux et al. (2007), Da Fonseca et al. (2007, 2008a,
2008b, 2008c), and Buraschi et al. (2008, 2010).

All of the above references study Wishart processes in a pure diffusive setting.
Recently, matrix valued processes incorporating jumps have been studied, see e.g.
Barndorff-Nielsen and Stelzer (2007), Leippold and Trojani (2008). These processes
are all contained in the affine framework introduced in Cuchiero et al. (2011), where
we direct the interested reader. Furthermore, we mention the recent paper Cuchiero
et al. (2011), which extends the results from Cuchiero et al. (2011) to symmetric
cones.

We introduce the Wishart process as in the work of Grasselli and collaborators.

For x ∈ S+
d , we introduce the S+

d valued Wishart process Xx = X = {Xt , t ≥ 0},
which satisfies

dXt =
(
αa�a + bXt +Xtb

�)dt + (√Xt dW ta + a� dW�
t

√
Xt

)
, (11.1.1)

where α ≥ 0, a,b ∈Md and X0 = x ∈Md . An obvious question to ask is whether
Eq. (11.1.1) admits a solution, and furthermore if such a solution is unique and
strong. For results on weak solutions, we refer the reader to Cuchiero et al. (2011),
and for results on strong solutions to Mayerhofer et al. (2011b). We now present a
summary of their results, see Corollary 3.2 in Mayerhofer et al. (2011b) and also
Theorem 1 in Ahdida and Alfonsi (2010).

Theorem 11.1.1 Assume that x ∈ S+
d , and α ≥ d − 1, then Eq. (11.1.1) admits a

unique weak solution. If x ∈ S+
d and α ≥ d + 1, then this solution is strong.

In this book, we are primarily interested in explaining the tractability of the pro-
cesses under consideration, where in this chapter, we focus on Wishart processes.
In particular, we present for the Wishart process Laplace transforms and an ex-
act simulation scheme. Weak solutions suffice for our purposes and we assume that
α ≥ d−1, so that the weak solution is also unique. As in Ahdida and Alfonsi (2010),
we use WISd(x, α,b,a) to denote a Wishart process and WISd(x, α,b,a; t) for the
value of the process at time point t .

11.2 Some Special Cases

In this section, we discuss some particular special cases of Wishart processes. Recall
that we defined a Wishart process WISd(x, α,b,a) to be

dXt =
(
αa�a + bXt +Xtb

�)dt +√Xt dW t a + a� dW�
t

√
Xt ,
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for a,b ∈ Md , and α ≥ d − 1. In Sect. 3.2, we had already introduced Wishart
processes. We recover the special case studied in Sect. 3.2 by setting a = I d , b = 0,
and α = d , to obtain

dXt = dI d dt +
√

Xt dW t + dW�
t

√
Xt . (11.2.2)

Recall that Eq. (11.2.2) is the analogue of Eq. (3.1.1), which introduces the squared
Bessel process as a sum of squared Brownian motions. In Eq. (11.2.2), d is also an
integer. Subsequently, in Sect. 3.1 we relaxed the assumption that d is an integer. We
now do the same for Wishart processes. However, in Bru (1991), the condition α ≥
d − 1 was used to establish the existence of a unique weak solution, see Theorem 2
in Bru (1991), i.e. she established the existence of a unique weak solution of a
WISd(x, d,0, I d) process.

So far, we introduced Wishart processes as squares of matrices of Brownian mo-
tions, i.e. the WISd(x, d,0, I d) case. However, as in Bru (1991), we can also estab-
lish a connection with squared matrix-valued Ornstein-Uhlenbeck processes. This
is an important observation, and will also motivate our first simulation scheme in
Sect. 11.3.

Let X = {Xt , t ≥ 0} be an n× d matrix diffusion solution of

dXt = γ dB t + βXt dt, (11.2.3)

where B = {B t , t ≥ 0} is an n × d Brownian motion, and x is an n × d matrix,
γ ∈ �, and β ∈ �−. We set St = X�

t Xt , s = x�x.

Lemma 11.2.1 Assume that Xt satisfies Eq. (11.2.3). Then St = X�
t Xt satisfies the

SDE

dSt = γ
(√

St dB t + dB�
t

√
St
)+ 2β

√
St dt + nγ 2I d dt,

S0 = s.
(11.2.4)

Proof The technique of the proof follows Theorem 4.19 in Pfaffel (2008), where
the result was shown for the more general case that corresponds to Lemma 11.2.2.
We define

St = X�
t Xt , t ≥ 0,

and

W t =
∫ t

0

√
S−1
u X�

u dBu ∈Md,

for all t ≥ 0. We first show that W = {W t , t ≥ 0} is a Brownian motion. We compute

E

(∫ t

0

(√
S−1
u X�

u

)�(√
S−1
u X�

u

)
du

)

=E
(∫ t

0
XuS

−1
u X�

u du

)

= tIp <∞, a.s.,
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establishing that W is a local martingale. Also,

dWt,ij =
d∑

m=1

[√
S−1
u X�

u

]

i,m
dBt,mj .

Hence

d[W·,ijW·,kl]t

=
d∑

m=1

[√
S−1
t X�

t

]

i,m

[√
S−1
t X

�
t

]

k,m
1j=l dt

=
[√

S−1
t X�

t Xt

√
S−1
t

]

i,k
1j=l dt

= I ik1j=l dt
= 1i=k1j=l dt,

where we used that

d[W·,nj ,W·,nl]t = dt ⇐⇒ j = l.
By Theorem 10.4.5, W is a Brownian motion. Finally, we compute

dSt = d
(
X�
t Xt

)= (dXt )
�Xt +X�

t dXt + d
[
X�,X

]M
t

= (βX�
t dt + dB�

t γ
)
Xt +X�

t (βXt dt + dB t γ )+ γ d
[
B�,B

]M
t
γ

= βSt dt + dB�
t γXt + βSt dt +X�

t dB t γ + γ 2nI d dt

= 2βSt dt + γ
√

St dW t + γ dW�
t

√
St + γ 2nI d dt,

which yields that St solves Eq. (11.2.4). �

The following time-change formula is reminiscent of Proposition 3.1.5, see
Eq. (5.3) in Bru (1991). If X = {Xt , t ≥ 0} is a solution of (11.2.3), then there
exists a Wishart process Σ = {Σ t , t ≥ 0} ∈ WISd(s, α,0, I d) such that

St = X�
t Xt = exp{2βt}Σ

γ 2 1−exp{−2βt}
2β

.

Using this time-change formula, Bru established that the Wishart process WISd(x, α,

b,a), where b = βI d , a = γ I d , β,γ ∈ �, α ≥ d − 1 and x ∈ S+
d , with distinct

eigenvalues, admits a unique weak solution, see Theorem 2′ in Bru (1991). Fi-
nally, she extended this result replacing γ and β by d × d matrices b and a, where
a ∈ GL(d). We consider the following SDE for X = {Xt , t ≥ 0},

dXt = dB ta +Xtb dt, (11.2.5)

where X0 = x, B = {B t , t ≥ 0} is a n× d matrix valued Brownian motion and Xt

is an n×d matrix. We set St = X�
t Xt , s = x�x ∈ S+

d , and in the next lemma derive
the SDE for St .
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Lemma 11.2.2 Assuming X = {Xt , t ≥ 0} satisfies Eq. (11.2.5), we obtain the fol-
lowing dynamics for St = X�

t Xt ,

dSt =
√

St dW t

√
a�a +

√
a�a dW�

t

√
St +

(
b�St + Stb

)
dt + na�a dt,

(11.2.6)

where S0 = s.

Proof The proof is completed in the same fashion as the proof of Lemma 11.2.1,
and is given in Pfaffel (2008). We firstly define

W t =
∫ t

0

√
S−1
u X�

u dBua
(√

a�a
)−1

du ∈Md .

Note that the matrix square-root is positive definite and hence invertible. We com-
pute

E

(∫ t

0

(√
S−1
u X�

u a
(√

a�a
)−1
)�(√

S−1
u X�

u a
(√

a�a
)−1
)
du

)

=E
(∫ t

0

(
a�a
)− 1

2 a�XuS
−1
u X�

u a
(
a�a
)− 1

2 du

)

=
∫ t

0

(
a�a
)− 1

2 a�a
(
a�a
)− 1

2 du

= tIp <∞ a.s.

We have that

dWt,ij =
n∑

u=1

d∑

v=1

[
a
(√

a�a
)−1]

v,j

[√
S−1
t X�

t

]

i,u
dB t,uv,

and we compute

d[W·,ij ,W·,kl]t

=
n∑

u=1

d∑

v=1

[√
S−1
t X�

t

]

i,u

[√
S−1
t X�

t

]

k,u

[
a
(√

a�a
)−1]

v,j

[
a
(√

a�a
)−1]

v,l

=
[√

S−1
t X�

t Xt

√
S−1
t

]

i,k

[(√
a�a

)−1
a�a
(√

a�a
)−1]

j,l
dt

= I d,ikI d,j l dt

= 1i=k1j=l dt.
By Theorem 10.4.5, W is a Brownian motion. Finally, we compute

dSt = d
(
X�
t Xt

)= (dXt )
�Xt +X�

t dXt + d
[
X�,X

]M
t

= (a� dB�
t + b�X�

t dt
)
Xt +X�

t (dB ta +Xtb) dt + a�d
[
B�,B

]M
t

a

= a� dB�
t Xt + b�X�

t Xt dt +X�
t dB ta +X�

t Xtb dt + a�andt

= a� dB�
t Xt + b�St dt +X�

t dB ta + Stb dt + na�a dt

= (b�St + Stb
)
dt +√St dW t

√
a�a +

√
a�a dW�

t

√
St + na�a dt,
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where we used that

d
[
B�· ,B ·

]M
t,ij

=
n∑

k=1

d〈B·,ki ,B·,kj 〉t = n1i=j dt,

which establishes that St solves Eq. (11.2.6). �

We now state Theorem 2′′ from Bru (1991).

Theorem 11.2.3 Let α ∈ {1, . . . , d − 1} ∪ (d − 1,∞), a ∈ GL(d), b ∈ S−
d , s ∈ S+

d

and all eigenvalues of s be distinct, and B t is a d × d matrix valued Brownian
motion, then on [0, τ ), where τ denotes the first time that the eigenvalues of St
collide, the stochastic differential equation

dSt =
√

St dW t

√
a�a +

√
a�a dW�

t

√
St + (bSt + Stb) dt + α

√
a�a dt,

where S0 = s has a unique weak solution if b and
√

a�a commute.

We remind the reader that the preceding examples were all studied in the original
paper on Wishart processes, Bru (1991).

Now, we turn again to the Wishart process as discussed in Sect. 11.1. We intro-
duce the process X = {Xt , t ≥ 0} ∈ WISd(x, α,b,a), given by

dXt =
(
αa�a + bXt +Xtb

�)dt + (√Xt dW ta + a� dW�
t

√
Xt

)
,

and we firstly investigate the following case, which was investigated in Benabid
et al. (2010). It shows how to link a Wishart process to a multidimensional square
root process, see also Sect. 6.7. We assume that a and b are diagonal matrices and
that the elements of a are positive, whereas the elements of b are negative. Then one
can show that the diagonal elements of Xt satisfy

dXt,ii =
(
αa2
i,i + 2bi,iXt,ii

)+ 2ai,i

d∑

k=1

[√Xt ]i,k dWt,ki .

Now we define for i ∈ {1, . . . , d},

Bt,i =
∫ t

0

√
Xt,ii

−1
d∑

k=1

[√Xs]k,i dWs,ki .

We have

E

(∫ t

0
(
√
Xs,ii)

−1
d∑

k=1

[√Xs]k,i[
√

Xs]k,i[
√
Xs,ii]−1 ds

)

=E
(∫ t

0
(
√
Xs,ii)

−1[√Xs

√
Xs]i,i (

√
Xs,ii)

−1 ds

)

=E
(∫ t

0
(
√
Xs,ii)

−1Xs,ii(
√
Xs,ii)

−1 ds

)

= t.
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Hence, B = (B1, . . . ,Bd) is a vector of d independent Brownian motions, and we
obtain

dXt,ii =
(
αa2
i,i + 2bi,iXt,ii

)
dt + 2ai,i

√
Xt,ii dBt,i .

Consequently, for diagonal matrices a and b, the diagonal elements of the Wishart
process are square-root processes.

We now discuss how to construct a matrix-valued Wishart process from vector-
valued Ornstein-Uhlenbeck processes. This construction will also motivate the first
simulation scheme in Sect. 11.3. In particular, we set

V t =
β∑

k=1

Xt,kX
�
t,k ∈Md , (11.2.7)

where

dXt,k = MXt,k dt +Q� dW t,k, k = 1, . . . , β, (11.2.8)

where M ∈ Md , Xt ∈ �d , Q ∈ Md , W k ∈ �d , so that V t ∈ Md , V 0 = v ∈ S+
d

and β ≥ d + 1. The following lemma gives the dynamics of V = {V t , t ≥ 0}.

Lemma 11.2.4 Assume that V t is given by Eq. (11.2.7), where Xt satisfies
Eq. (11.2.8). Then

dV t =
(
βQ�Q+MV t + V tM

�)dt +√V t dW tQ+Q� dW�
t

√
V t ,

where W = {W t , t ≥ 0} is a d × d matrix valued Brownian motion that is deter-
mined by

√
V t dW t =

β∑

k=1

Xt,k dW
�
t,k.

Proof We compute

d
(
Xt,kX

�
t,k

)= (dXt,k)X
�
t,k +Xt,k(dXt,k)

� + d[Xk,X
�
k

]M
t

= (MXt,k +Q�dW t,k

)
X�
t,k

+Xt,k

(
X�
t,kM

� dt + dW�
t,kQ

)

+Q�d
[
W k,W

�
k

]M
t

Q

= MXt,kX
�
t,k dt +Q�dW t,kX

�
t,k +Xt,kX

�
t,kM

� dt

+Xt,kdW
�
t,kQ+Q�I dQdt,

where we used that

d
[
W ·,k,W�·,k

]M
t

= I d dt.
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Hence

dV t = M

β∑

k=1

Xt,kX
�
t,k dt +Q�

β∑

k=1

dW t,kX
�
t,k

+
β∑

k=1

Xt,kX
�
t,kM

� dt +
β∑

k=1

Xt,k dW
�
t,kQ

+ βQ�Qdt

= MV t dt +V tM
� dt +Q� dW�

t

√
V t +

√
V t dW tQ+ βQ�Qdt,

since

√
V t dW t =

β∑

k=1

Xt,k dW
�
t,k.

To complete the proof, we need to show that W t is a Brownian motion. As before,
we use Theorem 10.4.5. We define

W t =
∫ t

0

√
V −1
u

β∑

k=1

Xt,k dW
�
t,k

and it is easily seen that W is a local martingale. Furthermore,

dWt,ij =
d∑

m=1

[√
V −1
t

]

i,m

β∑

k=1

[Xt,k]m
[
dW�

t,k

]
j

=
β∑

k=1

d∑

m=1

[√
V −1
t

]

i,m
[Xt,k]m

[
dW�

t,k

]
j
.

Now we have

d[Wi,j ,Wk,l]t

=
β∑

k′=1

d∑

m′=1

[√
V −1
t

]

i,m′ [Xt,k′ ]m′
d∑

m′′=1

[√
V −1
t

]

k,m′′ [Xt,k′ ]m′′1j=l dt

=
β∑

k′=1

[√
V −1
t Xt,k′

]

i

[
X�
t,k′

√
V −1
t

]

k
1j=l dt

=
β∑

k′=1

[√
V −1
t Xt,k′X

�
t,k′

√
V −1
t

]

i,k
1j=l dt

=
[√

V −1
t

β∑

k′=1

Xt,k′X
�
t,k′

√
V −1
t

]

i,k

1j=l dt

= [I d ]i,k1j=l dt
= 1i=k1j=l dt. �
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11.3 Exact and Almost Exact Simulation Schemes for Wishart
Processes

In this section, we discuss two simulation schemes for Wishart processes. The first is
based on Benabid et al. (2010), Sect. 1.3, the second on Ahdida and Alfonsi (2010),
Sect. 2. We also alert the reader to Chap. 2 in Platen and Bruti-Liberati (2010),
where the simulation of the process WISd(x, d,0, I d) was discussed.

11.3.1 Change of Measure Approach

First we present the approach from Benabid et al. (2010). Recall that in Sect. 11.2,
we showed that if α assumes integer values, we can simulate a Wishart process
by simulating vectors of Ornstein-Uhlenbeck processes. The simulation of multi-
dimensional Ornstein-Uhlenbeck processes was discussed in Sects. 6.7 and 10.6.
Intuitively, the approach can be described as follows: starting under a probability
measure P , where the Wishart process is given by its general form in Eq. (11.1.1)
with α ≥ d+1, α ∈ �, we aim to find a change of probability measure, so that under
the new measure the corresponding value of α, say α̃, assumes integer values, i.e.
α̃ ∈N and α̃ ≥ d+ 1. Consequently, we can simulate the Wishart process under the
new measure by using Ornstein-Uhlenbeck processes, as explained in Sect. 11.2. In
particular, following Benabid et al. (2010), we represent α as follows,

α =K + 2ν,

where K = )α* ≥ d + 1, where )a* denotes the largest integer less than or equal
to a, and ν is a real number satisfying 0 ≤ ν ≤ 1

2 . The next result, Theorem 2 in
Benabid et al. (2010), shows how to introduce a new measure, say P ∗, under which
the Wishart process can be simulated via Ornstein-Uhlenbeck processes.

Theorem 11.3.1 Let q =K + ν − d − 1. If

ΛT = dP ∗

dP

∣
∣
∣
∣
AT

defines the Radon-Nikodym derivative of dP ∗ with respect to dP , then

ΛT =
(

det(XT )

det(X0)

)− ν
2

exp
{
νT
(
Tr(b)

)}
exp

{
νq

2

∫ T

0
Tr
(
X−1
s a�a

)
ds

}

.

Proof The proof is given in Benabid et al. (2010), see Theorem 2. We present here
only the basic ideas of the proof. As in Definition 10.5.4 and Theorem 10.5.5, we
specify the new measure via

dP ∗

dP

∣
∣
∣
∣
AT

= exp

{

−ν
∫ T

0
Tr
(√

X−1
s dW sa

)
− ν2

2

∫ T

0
Tr
(
X−1
s a�a

)
ds

}

,
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where the Wishart process X ∈ WISd(x, α,b,a) satisfies under P

dXt =
(
αa�a + bXt +Xtb

�)dt +√Xt dW ta + a� dW�√Xt .

Under the new measure P ∗,

W ∗
t = ν

∫ t

0

√
X−1
t a� dt +W t ,

is a Brownian motion, see Benabid et al. (2010). Consequently, the dynamics of Xt

are given by

dXt

= (αa�a + bXt +Xtb
�)dt +√Xt dW ta + a� dW�

t

√
Xt

= (Ka�a + bXt +Xtb
�)dt +√Xt dW

∗
t a + a�(dW ∗

t

)�√
Xt .

As shown in Benabid et al. (2010), Sect. 1.3.1, the dynamics of the determinant of
Xt satisfy

log

(
det(XT )

det(X0)

)

= 2T
(
Tr(b)

)+ (K − d − 1)
∫ T

0
Tr
(
X−1
t a�a

)
dt + 2

∫ T

0
Tr
(√

X−1
t dW ∗

t a
)
.

Substituting, we get

dP ∗

dP

∣
∣
∣
∣
AT

= exp

{

−ν
∫ T

0
Tr
(√

X−1
t dW ta

)
− ν2

2

∫ T

0
Tr
(
X−1
t a�a

)
dt

}

= exp

{

−ν
∫ T

0
Tr
(√

X−1
t dW

∗
t a
)
+ ν2

2

∫ T

0
Tr
(√

X−1
t a�a

)
dt

}

= exp

{

−ν
2

(

log

(
det(XT )

det(X0)

)

− 2T
(
Tr(b)

)− (K − d − 1)
∫ T

0
Tr
(
X−1
t a�a

)
dt

)

+ ν2

2

∫ T

0
Tr
(√

X−1
t a�a

)
dt

}

=
(

det(XT )

det(X0)

)− ν
2

exp

{

T νTr(b)+ ν

2
(K − d − 1 + ν)

∫ T

0
Tr
(√

X−1
t a�a

)
dt

}

.

�

Consequently, if we are interested in computing

EP
(
f (XT )

)
,

for a suitable function f (·), we use Theorem 11.3.1 and obtain
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E
(
f (XT )

)

= exp
{−νT (Tr(b)

)}
EP ∗
((

det(XT )

det(X0)

) ν
2

× exp

{

−ν
2
(K + ν − d − 1)

∫ T

0
Tr
(
X−1
t a�a

)
dt

}

f (XT )

)

.

The simulation of the integral, which appears in the Radon-Nikodym derivative, can
be discretized and approximated as follows:

∫ t+
t

t

Tr
(
X−1
s a�a

)
ds ∼ 1

2

tTr

((
X−1
t +X−1

t+
t
)
a�a
)
.

11.3.2 An Exact Simulation Method

We now discuss an exact simulation scheme for Wishart processes, which is based
on Ahdida and Alfonsi (2010). To produce the result, we firstly recall the char-
acteristic function associated with WISd(x, α,b,a). The result was presented in
Gouriéroux and Sufana (2004a), see also Gouriéroux and Sufana (2004b), and we
point out that this result led to the realization that there are affine processes that
do not assume values on the Euclidean state space. Furthermore, we point out that
additional Laplace transform identities are presented in Sect. 11.4. We now follow
the presentation in Ahdida and Alfonsi (2010).

Proposition 11.3.2 Let Xt ∼ WISd(x, α,b,a; t),

q t =
∫ t

0
exp(sb)a�a exp

(
sb�
)
ds

and mt = exp{tb}. The Laplace transform of Xt , for v ∈Db,a;t , is given by

E
(
exp
{
Tr(vXt )

})= exp{Tr(v(I d − 2q tv)
−1mtxm�

t )}
det(I d − 2q tv)

α
2

, (11.3.9)

where Db,a;t = {v ∈ Sd ,E(exp{Tr(vXt )}) <∞} is the set of convergence of the
Laplace transform, which is given explicitly by

Db,a;t =
{
v ∈ Sd, ∀s ∈ [0, t], I d − 2qsv ∈ GL(d)

}
.

We remark that for v = v� + ıvI , v� ∈Db,a;t and vI ∈ Sd , the Laplace transform
in Eq. (11.3.9) is well-defined. For Xt ∼ WISd(x, α,0, Ind ; t), we have

E
(
exp
{
Tr(vXT )

})= exp{Tr(v(I d − 2tIndv)
−1x)}

det(I d − 2tIndv)
α
2

.

For a proof of Proposition 11.3.2, we refer the reader to Gouriéroux and Sufana
(2004a), and also to Ahdida and Alfonsi (2010). We remark that in Lemma 11.4.3
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and Corollary 11.4.5, we will discuss the special cases vI = 0,b = 0, and a = I d
and a ∈ GL(d), respectively.

Regarding the exact simulation procedure, we need the following result from
linear algebra, which shows how to perform an extended Cholesky decomposition.

Lemma 11.3.3 Let q ∈ S+
d be a matrix with rank r . Then there is a permutation

matrix p, an invertible lower triangular matrix cr ∈ GL(r) and kr ∈Md−r×r such
that

pqp� = cc�, c =
(

cr 0
kr 0

)

.

The triplet (cr ,kr ,p) is called extended Cholesky decomposition of q . Besides,

c̃ =
(

cr 0

kr I d−r

)

∈ GL(d),

and we have

q = (c̃�p
)�

I rd c̃
�p,

where I rd = [1i=j≤r ]1≤i,j≤d and r ≤ d .

Proof The lemma appeared in this form in Ahdida and Alfonsi (2010), Lemma 33,
which refers to Golub and Van Loan (1996), Algorithm 4.2.4. �

We point out that a numerical procedure to obtain such a decomposition can be
found in Golub and Van Loan (1996), see Algorithm 4.2.4. When r = d , then we
can choose p = I d , and cr is the usual Cholesky decomposition.

The following proposition, which is Proposition 9 in Ahdida and Alfonsi (2010),
sits at the heart of the approach. Essentially, it shows that by rescaling, we can rep-
resent a general Wishart process WISd(x, α,b,a; t) as one which satisfies b = 0 and
a = Ind , where n= Rank(q t ). This is crucial, as the law of WISd(x, α,0, Ind ; t) can
be simulated exactly, as we demonstrate below. As in Ahdida and Alfonsi (2010),
we remark that one can exactly compute θ t , which appears in Proposition 11.3.4,
using Lemma 11.3.3.

Proposition 11.3.4 Let t > 0, a,b ∈Md , and α ≥ d− 1. Then mt = exp{tb}, q t =∫ t
0 exp{sb}a�a exp{sb�}ds and n= rank(q t ), and there is a θ t ∈ GL(d) such that

q t = tθ tIndθ�t ,
and we have

WISd(x, α,b,a; t) d= θ tWISd
(
θ−1
t mtxm�

t

(
θ−1
t

)�
, α,0, Ind; t

)
θ�t .
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Proof We present the proof from Ahdida and Alfonsi (2010), due to the impor-

tance of the result. We apply Lemma 11.3.3 to q t /t ∈ S+
d and obtain the extended

Cholesky decomposition (cn,kn,p). Also, we obtain from Lemma 11.3.3 that

c̃ =
(

cn 0

kn I d−n

)

.

We define

θ t = p−1c̃,

which by Lemma 11.3.3 is invertible. We now get that

q t = tθ tIndθ�t .
Next, we recall that for a,b, c ∈Md , the following equalities hold

det(ab)= det(ba), Tr(ab)= Tr(ba),

and also

(abc)−1 = c−1b−1a−1,

assuming that a, b, and c are invertible. We hence obtain the following string of
equalities,

det(I d − 2ıq tv)= det
(
I d − 2ıtθ tI

n
dθ

�
t v
)

= det
(
θ t
(
θ−1
t − 2ıtIndθ

�
t v
))

= det
((

θ−1
t − 2ıtIndθ

�
t v
)
θ t
)

= det
(
I d − 2ıtIndθ

�
t vθ t

)
.

Furthermore,

Tr
(
ıv(I d − 2ıq tv)

−1mtxm�
t

)

= Tr
(
ı
(
θ−1
t

)�
θ�t v
(
θ tθ

−1
t − 2ıtθ tI

n
dθ

�
t vθ tθ

−1
t

)−1
mtxm�

t

)

= Tr
(
ı
(
θ−1
t

)�
θ�t v
(
θ t
(
I d − 2ıtIndθ

�
t vθ t

)
θ−1
t

)−1
mtxm�

t

)

= Tr
(
ı
(
θ−1
t

)�
θ�t vθ t

(
I d − 2ıtIndθ

�
t vθ t

)−1
θ−1
t mtxm�

t

)

= Tr
(
ıθ�t vθ t

(
I d − 2ıtIndθ

�
t vθ t

)−1
θ−1
t mtxm�

t

(
θ−1
t

)�)
.

We now let Xt ∼ WISd(x, α,b,a; t) and X̃t ∼ WISd(θ
−1
t mtxm�

t (θ
−1
t )

�, α,0,
Ind ; t) and apply Proposition 11.3.2 to obtain

E
(
exp
{
ıTr(vXt )

})

= exp{Tr(ıv(I d − 2q t ıv)
−1mtxm�

t )}
det(I d − 2q t ıv)

α
2

= exp{Tr(ıθ�t vθ t (I d − 2ıtIndθ
�
t vθ t )

−1θ−1
t mtxm�

t (θ
−1
t )

�)}
det(I d − 2ıtIndθ

�
t vθ t )

α
2
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=E(exp
{
Tr
(
ıθ�t vθ tX̃t

)})

=E(exp
{
Tr
(
ıvθ t X̃tθ

�
t

)})

completing the proof. �

We remark that Lemma 11.3.3 generalizes the well-known one-dimensional link
between a square-root and a squared Bessel process. For d = 1, Lemma 11.3.3 gives

WIS1(x,α, b, a; t)= a2(exp{2b} − 1)

2bt
WIS1

(
2btx

a2(1 − exp{−2bt}) , α,0,1; t
)

.

(11.3.10)

This identity can easily be obtained from the results in Sect. 3.1. LetX = {Xt, t ≥ 0}
be a WIS1(x,α, b, a), then

dXt =
(
αa2 + 2bXt

)
dt + 2a

√
Xt dWt .

From Proposition 3.1.5, it follows that

Xt
d= exp{2bt}X̃c(t),

where

c(t)= a2(1 − exp{−2bt})
2b

and X̃ is a squared Bessel process, i.e. a WIS1(x,α,0,1) process. We hence have
established that

WIS1(x,α, b, a; t) d= exp{2bt}WIS1
(
x,α,0,1; c(t)).

Now we apply the linear time-change, see Proposition 3.1.2,

WIS1

(

x,α,0,1; c(t)
t
t

)
d= c(t)

t
WIS1

(
xt

c(t)
, α,0,1; t

)

.

Hence

WIS1(x,α,0,1; t)= exp{2bt}WIS1
(
x,α,0,1; c(t))

= exp{2bt}c(t)
t

WIS1

(
xt

c(t)
, α,0,1; t

)

,

which is Eq. (11.3.10).
We now proceed as follows: from Proposition 11.3.4, it is clear that we can fo-

cus on the WISd(x, α,0, Ind) case. For the generator of WISd(x, α,0, Ind), we recall
a remarkable splitting property from Ahdida and Alfonsi (2010). Having split the
operator, we show that each of these operators correspond to an SDE which can be
solved explicitly.
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11.3.3 A Remarkable Splitting Property

The infinitesimal generator of the Wishart process, or rather the splitting property
thereof, plays an important role in the development of an exact simulation scheme.
We hence recall this generator, which is a special case e.g. of Corollary 4 in Ahdida
and Alfonsi (2010).

Lemma 11.3.5 On Md , we associate with WISd(x, α,b,a) the infinitesimal gen-
erator

L = Tr
([
αa�a + bx + xb�

]
D
)+ 2Tr

(
xDa�aD

)
,

where D = ( ∂
∂xi,j

), 1 ≤ i, j ≤ d .

The following result, which is Proposition 10 in Ahdida and Alfonsi (2010),
gives the splitting property of the operator L, for the special case WISd(x, α,0, Ind).
Recall that by Proposition 11.3.4, the study of the simulation of Wishart processes
can be reduced to this case. We use eid to denote the matrix

end = [1i=j=n]1≤i,j≤d .
We clearly have, Ind =

∑n
i=1 eid .

Theorem 11.3.6 Let L be the generator associated with the Wishart process
WISd(x, α,0, Ind) and Li the generator associated with WISd(x, α,0, eid ) for i ∈
{1, . . . , d}. Then we have

L =
n∑

i=1

Li and ∀i, j ∈ {1, . . . , d}, LiLj = LjLi . (11.3.11)

Proof The first part of the proof follows immediately from Lemma 11.3.5, noting
that Ind =

∑n
i=1 eid . The commutativity property is established in Appendix C.1 in

Ahdida and Alfonsi (2010). �

As stated in Ahdida and Alfonsi (2010), two features of Eq. (11.3.11) are impor-
tant:

• the operators Li and Lj are the same up to the exchange of coordinates i and j ;

• the processes WISd(x, α,0, eid ) and WISd(x, α,0, Ind) are well defined on S+
d

under the same hypothesis, namely that α ≥ d − 1 and x ∈ S+
d .

The latter property motivates the simulation scheme:

X1,x
t ∼ WISd

(
x, α,0, e1

d ; t
)

X
2,X1,x

t
t ∼ WISd

(
X1,x
t , α,0, e2

d; t
)

...

Xn,...X
1,x
t

t ∼ WISd
(
Xn−1,...X

1,x
t

t , α,0, end; t
)
.
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Thus, one samples Xi,... X
1,x
t

t according to the distribution at time t of a Wishart

process starting from Xi−1,...X
1,x
t

t and with parameters α, a = eid and b = 0.

Proposition 11.3.7 Let Xn,...X
1,x
t

t be defined as above. Then

Xn,...X
1,x
t

t ∼ WISd
(
x, α,0, Ind ; t

)
.

Proof For a formal proof, we refer the reader to Ahdida and Alfonsi (2010), here

we just present the main ideas of the proof. Consider a smooth function f on S+
d .

Then by iterating Itô’s formula, one can establish that

E
(
f
(
Xx
t

))=
∞∑

k=0

tkLkf (x)/k!.

Next, we employ the tower property, to get

E
(
f
(
Xn,...X

1,x
t

t

))=E(E(f (Xn,... X
1,x
t

t

)|Xn−1,... X
1,x
t

t

))

=
∞∑

kn=0

tkn

kn!E
(
Lknn f

(
Xn−1,...X

1,x
t

t

))
.

Repeating this argument, we obtain

E
(
f
(
Xn,... X

1,x
t

t

))=
∞∑

k1,...,kn=0

t
∑n
i=1 ki

k1! . . . kn!L
k1
1 . . .L

kn
n f (x)

=
∞∑

k=0

tk

k! (L1 + · · · +Ln)
k =E(f (Xx

t

))
. (11.3.12)

Equality (11.3.12) relies on the identification of a Cauchy product and one uses the
fact that the operators commute. For example, for n= 2,

∞∑

k1,k2=0

tk1+k2

k1!k2!L
k1
1 L

k2
2 f (x)=

∞∑

k=0

ck,

where

ck =
k∑

l=0

albk−l

=
k∑

l=0

t l

l!
tk−l

(k − l)!L
l
1L

k−l
2

= tk

k!
k∑

l=0

k!
l!(k − l)!L

l
1L

k−l
2
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= tk

k!
k∑

l=0

(
k

l

)

Ll1L
k−l
2

= tk

k! (L1 +L2)
k. �

Proposition 11.3.7 shows that if we can simulate WISd(x, α,0, ekd; t), for k ∈
{1, . . . , d}, then we can simulate WISd(x, α,0, Ind ; t), which according to Proposi-
tion 11.3.4 means that we can simulate WISd(x, α,b,a; t). The next lemma shows
that we can simulate WISd(x, α,0, eid ; t) by simulating WISd(pkxpk, α,0, I

1
d; t),

and subsequently changing the first and the kth coordinates, where we use pk to de-
note the matrix which changes the first and the kth coordinate. The following lemma
formalizes this.

Lemma 11.3.8 Construct a matrix pk ∈ Sd , so that pk,1 = p1,k = pi,i = 1, for
i /∈ {1, k}, and pi,j = 0 otherwise. Let the law of Xt be given by WISd(pkxpk, α,0,
I 1
d ; t) and the law of X̃t by WISd(x, α,0, ekd; t). Then

WISd
(
x, α,0, ekd; t

) d= pkWISd
(
pkxpk, α,0, I

1
d ; t
)
pk.

Proof This result is proven in the same way as Proposition 11.3.4. In particular, we
use the characteristic function given in Proposition 11.3.2 for the case b = 0 and
a = Ind . The proof is now easily completed by using the facts

pkI
1
dpk = ekd and pkpk = I d ,

which then allows us to establish that

E
(
exp
{
ıTr(vpkXtpk)

})=E(exp
{
ıTr(vX̃t )

})
. �

11.3.4 Exact Simulation for Wishart Processes

In this subsection, we discuss how to simulate a WISd(x, α,0, I 1
d) process, with

α ≥ d − 1 and x ∈ S+
d . Due to Proposition 11.3.7 and Lemma 11.3.8, this allows us

to sample from the distribution of WISd(x, α,0, Ind ; t). As the presentation is easier,
we start with the case d = 2.

From Lemma 11.3.5, we obtain the following infinitesimal generator of

WIS2(x, α,0, I 1
2). For x ∈ S+2 ,

Lf (x)= α∂1,1f (x)+ 2x1,1∂
2
1,1f (x)+ 2x1,2∂1,1∂1,2f (x)+ x2,2

2
∂2

1,2f (x).

(11.3.13)

This generator is associated with an SDE that can be solved explicitly. As in Ah-
dida and Alfonsi (2010), we denote by Z1 = (Z1

t , t ≥ 0) and Z2 = {Z2
t , t ≥ 0}
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two independent standard Brownian motions. We distinguish the two cases when

x2,2 = 0 and x2,2 > 0. For x2,2 = 0, we have that x1,2 = 0, since x ∈ S+
2 . In fact,

one has

dXt,11 = α dt + 2
√
Xt,11dZ

1
t , dXt,12 = 0, dXt,22 = 0, (11.3.14)

where X0 = x, has the infinitesimal generator given in Eq. (11.3.13). Clearly, Xt,11
is a squared Bessel process of dimension α, that can be sampled as discussed in
Sect. 3.1.

We now turn to the case where x2,2 > 0. The SDE

dXt,11 = α dt + 2

√

Xt,11 −
X2
t,12

Xt,22
dZ1

t + 2
Xt,12

Xt,22
dZ2

t (11.3.15)

dXt,12 =
√
Xt,22 dZ

2
t (11.3.16)

dXt,22 = 0, (11.3.17)

started at X0 = x has an infinitesimal generator as given in Eq. (11.3.13). This
system can be solved explicitly. We introduce auxiliary variables

Ut,11 =Xt,11 − (Xt,12)
2

Xt,22
, Ut,12 = Xt,12√

x2,2
, Ut,22 = x2,2,

(11.3.18)

where U0 = u. An application of the Itô formula confirms that

dUt,11 = (α − 1) dt + 2
√
Ut,11 dZ

1
t , dUt,12 = dZ2

t , Ut,22 = 0.

Hence,Ut,11 is a squared Bessel process of dimension α−1, andUt,12 is a Brownian
motion. Consequently, we simulateXt,11,Xt,12 andXt,22 by inverting Eq. (11.3.18)
to yield

Xt,11 =Ut,11 + (Ut,12)
2, Xt,12 =Ut,12

√
Ut,22, Xt,22 =Ut,22. (11.3.19)

The following proposition summarizes the discussion in this subsection.

Proposition 11.3.9 Let x ∈ S+
2 . Then the process defined by either Eq. (11.3.14)

or Eq. (11.3.16) when x2,2 = 0 or x2,2 > 0 respectively, has its infinitesimal gen-
erator given by (11.3.13). Moreover, the SDE given by Eq. (11.3.16) has a unique

strong solution that is given by Eq. (11.3.19) starting from u1,1 = x1,1 − x2
1,2
x2,2

≥ 0,

u1,2 = x1,2√
x2,2

, u2,2 = x2,2.

Proof This result is a special case of Theorem 13 in Ahdida and Alfonsi (2010). �

As noted in Ahdida and Alfonsi (2010), an interesting property of the result in
Proposition 11.3.9 is that the squared Bessel process is well-defined when its di-
mension α − 1 satisfies α − 1 ≥ 0, which is the same condition under which the
Wishart process WIS2(x, α,0, I 1

2) is well defined, α ≥ d − 1, since d = 2. Lastly,
we point out that the process U = {U t , t ≥ 0} has a squared Bessel process on its
diagonal and a Brownian motion on the off-diagonal.
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We now discuss how to sample from the distribution WISd(x, α,0, Ind; t), where

d ≥ 2. It is easy to check that for WISd(x, α,0, Ind), for x ∈ S+
d , the infinitesimal

generator is given by

Lf (x)= α∂1,1f (x)+ 2x1,1∂
2
1,1f (x)

+ 2
∑

1≤m≤d
m �=1

x1,m∂1,m∂1,1f (x)+ 1

2

∑

1≤m,l≤d
m �=1,l �=1

xm,l∂1,m∂1,lf (x).

(11.3.20)

The next theorem, which is Theorem 13 in Ahdida and Alfonsi (2010), shows how
to construct an SDE with the same infinitesimal generator as Eq. (11.3.20) and that
it can be solved explicitly. Recall that for the case d = 2, we distinguished two cases
depending on whether x2,2 = 0 or x2,2 > 0. For the general case, the SDE depends
on the rank of the submatrix [xi,j ]2≤i,j≤d . We set

r = Rank
([xi,j ]2≤i,j≤d

) ∈ {0, . . . , d − 1}.
First we consider the case ∃cr ∈ Gr that is lower triangular, kr ∈Md−1−r×r , so that

[xi,j ]2≤i,j≤d =
(

cr 0

kr 0

)(
c�r k�

r

v0 0

)

=: cc�. (11.3.21)

The following theorem formally applies to the case where X0 = x satisfies
(11.3.21). However, the subsequent Lemma 11.3.11 shows that such a decomposi-
tion can always be obtained by permuting the coordinates {2, . . . , d}. As in Ahdida
and Alfonsi (2010), we also abuse the notation as follows: when r = 0, we still as-
sume that Eq. (11.3.21) holds, in particular with c = 0. When r = d − 1, we recover
the usual Cholesky decomposition of [xi,j ]2≤i,j≤d .

Theorem 11.3.10 Let us consider x ∈ S+
d such that Eq. (11.3.21) holds. Let Z =

{Zt = (Z1
t ,Z

2
t , . . . ,Z

r+1
t ), t ≥ 0} be a vector valued standard Brownian motion.

Then the following SDE, where
∑r
k=1 = 0, for r = 0,

dXt,11 = α dt + 2

√√
√
√Xt,11 −

r∑

k=1

(
r∑

l=1

[
c−1
r

]
k,l
Xt,1(l+1)

)2

dZ1
t

+ 2
r∑

k=1

r∑

l=1

[
c−1
r

]
k,l
Xt,1(l+1) dZ

k+1
t

dXt,1i =
r∑

k=1

ci−1,kdZ
k+1
t , i = 2 . . . , d

dXt,lk = 0, k, l = 2, . . . , d,
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has a unique strong solution X = {Xt , t ≥ 0} starting from x. It assumes values

in S+
d and has the infinitesimal generator L given in Eq. (11.3.20). Moreover, the

explicit solution is given by

Xt = C

⎛

⎜
⎝

Ut,11 +∑r
k=1(Ut,1(k+1))

2 [Ut,1(l+1)]�1≤l≤r 0

[Ut,1(l+1)]1≤l≤r I r 0

0 0 0

⎞

⎟
⎠C�, (11.3.22)

where

dUt,11 = (α − r) dt + 2
√
Ut,11 dZ

1
t , u1,1 = x1,1 −

r∑

k=1

u2
1,k+1 ≥ 0

dUt,1(l+1) = dZl+1
t , 1 ≤ l ≤ r, [u1,l+1]1≤l≤r = c−1

r [x1,l+1]1≤l≤r ,
and

C =
⎛

⎜
⎝

1 0 0

0 cr 0

0 kr I d−r−1

⎞

⎟
⎠ .

When r = 0, then Eq. (11.3.22) should simply be read as

Xt =
⎛

⎜
⎝

Ut,11 0 0

0 0 0

0 0 0

⎞

⎟
⎠ .

Regarding the matrix U t , we point out that the algorithm only accesses the first row
and column of this matrix. As in Ahdida and Alfonsi (2010), Xt can be seen as a
function of U t by setting

Ut,ij = ui,j = xi,j , i, j ≥ 2, Ut,1i = u1,i = 0, r + 1 ≤ i ≤ d.
For a proof of Theorem 11.3.10, we refer the reader to Ahdida and Alfonsi (2010).
We point out that sampling from the WISd(x, α,0, I 1

d ; t) distribution amounts to
sampling a non-central chi-squared random variable and a Gaussian random vari-
able. As for the d = 2 case, we note that the condition ensuring that the squared
Bessel process U1,1 is well-defined for all r ∈ {0, . . . , d − 1} is α − d − 1 ≥ 0,
the same as for the Wishart process. We now recall that the procedure in Theo-

rem 11.3.10 assumed that x ∈ S+
d satisfied Eq. (11.3.21). This assumption can be

relaxed using the extended Cholesky decomposition from Lemma 11.3.3.

Lemma 11.3.11 Let X = {Xt , t ≥ 0} be a WIS(x, α,0, I 1
d) process and (cr ,kr ,p)

be an extended Cholesky decomposition of [xi,j ]2≤i,j≤d obtained from
Lemma 11.3.3. Then

π =
(

1 0

0 p

)
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is a permutation matrix, and

X = {Xt , t ≥} d= π�WISd
(
πxπ�, α,0, I 1

d

)
π ,

and

[(
πxπ�)

i,j

]
2≤i,j≤d =

(
cr 0

kr 0

)(
c�r k�

r

0 0

)

satisfies (11.3.21).

Proof The first part of the proof can be completed in the same way as the proof
of Proposition 11.3.4, namely using characteristic functions. The second part of the
proof is an immediate consequence of Lemma 11.3.3. �

Hence, using Theorem 11.3.10 and Lemma 11.3.11, we have a simple way
of constructing an SDE that has the generator L from (11.3.13) for any initial

condition x ∈ S+
d . It means that we can sample exactly the Wishart distribution

WISd(x, α,0, I 1
d; t), which we summarize in Algorithm 11.1.

As discussed in Ahdida and Alfonsi (2010), the computational cost of Algo-
rithm 11.1 is O(d3), as this is the computational cost of performing the extended
Cholesky decomposition.

We recall that the splitting property established in Theorem 11.3.6 means
that if we can sample WISd(x, α,0, eid ; t), for i = 1, . . . , n, we can sample
WISd(x, α,0, Ind; t). However, Lemma 11.3.8 established that sampling WISd(x, α,
0, eid ; t) amounts to sampling WISd(x, α,0, I 1

d ; t), which we discussed in Theo-
rem 11.3.10 and Algorithm 11.1. This is illustrated in Algorithm 11.2.

Algorithm 11.2 performs Algorithm 11.1 n times, resulting in a computational
complexity of O(nd3), which is bounded by O(d4). Concluding this section, we
present Algorithm 11.3, which shows how to sample WISd(x, α,b,a; t), which
uses Proposition 11.3.4 to reformulate the problem into the one solved by Algo-
rithm 11.2. We remind the reader that this algorithm is applicable if α ≥ d − 1,
which is also the requirement for the existence of a unique weak solution of the
SDE (11.1.1) describing the Wishart process.

11.4 Affine Transforms of the Wishart Process

In this section, we discuss the explicit computation of affine transforms associated
with Wishart processes. These results are crucial, as they make Wishart processes
useful for practical applications. We present two approaches to this problem: the first
is based on the linearization procedure presented in Chap. 9. As discussed below, it
turns out that the Riccati equations associated with affine transforms of the Wishart
process can be linearized allowing us to compute the affine transform. Consequently,
we present an alternative approach, which generalizes a result from Bru (1991), and,
following Bru, we refer to it as Cameron-Martin formula. The section concludes
with a comparison of the two approaches.
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Algorithm 11.1 Exact Simulation for the operator L1

Require: x ∈ S+
d , α ≥ d − 1 and t > 0

1: Compute the extended Cholesky decomposition (cr ,kr ,p) of [xi,j ]2≤i,j≤d
given by Lemma 11.3.3, r ∈ {0, . . . , d − 1}

2: Set

π =
(

1 0
0 p

)

,

x̃ = πxπ�,
[u1,l+1]1≤l≤r = c−1

r [x̃1,l+1]1≤l≤r ,

u1,1 = x̃1,1 −
r∑

k=1

(u1,k+1)
2 ≥ 0.

3: Sample independently r normal variates G2, . . . ,Gr+1 ∼ N(0,1) and a non-
central chi-square random variate χ2

α−r (
u1,1
t
), i.e. a non-central chi-square dis-

tributed random variable with α − r degrees of freedom and non-centrality pa-
rameter u1,1

t
.

4: Set Ut,1(l+1) = u1,l+1 +√
tGl+1

5: Set Ut,11 = tχ2
α−r (

u1,1
t
)

6: return X =

π�C

⎛

⎜
⎝

Ut,11 +∑r
k=1(Ut,1(k+1))

2 [Ut,1(l+1)]�1≤l≤r 0

[Ut,1(l+1)]1≤l≤r I r 0

0 0 0

⎞

⎟
⎠C�π ,

where

C =
⎛

⎝
1 0 0
0 cr 0

0 kr I d−r−1

⎞

⎠ .

Algorithm 11.2 Exact Simulation for WISd(x, α,0, Ind ; t)
Require: x ∈ S+

d , n≤ d , α ≥ d − 1 and t > 0
1: Set y = x.
2: for k = 1 to n do
3: Construct the permutation matrix p by setting pk,1 = p1,k = pi,i = 1 for

i /∈ {1, k}, and pi,j = 0 otherwise.
4: Set y = pYp, where Y is sampled according to WISd(pyp, α,0, I 1

d ; t) by
using Algorithm 11.1.

5: end for
6: return X = y.



11.4 Affine Transforms of the Wishart Process 283

Algorithm 11.3 Exact Simulation for WISd(x, α,b,a; t)
Require: x ∈ S+

d , α ≥ d − 1, a,b ∈Md and t > 0
1: Calculate q t = ∫ t0 exp{sb}a�a exp{sb�}ds and (cn,kn,p) an extended

Cholesky decomposition of q t /t .
2: Set

θ t = p−1

(
cn 0

kn I d−n

)

and mt = exp{tb}.
3: return X = θ tYθ�t , where Y ∼ WISd(θ

−1
t mtxm�

t (θ
−1
t )

�, α, θ , Ind; t) is sam-
pled by Algorithm 11.2.

11.4.1 Linearization Applied to Wishart Processes

We assume the following dynamics for the Wishart process,

dXt =
(
αa�a + bXt +Xtb

�)dt + (√Xt dW ta + a� dW t

√
Xt

)
, (11.4.23)

and the infinitesimal generator is given by

L = Tr
([
αa�a + bx + xb�

]
D
)+ 2Tr

(
xDa�aD

)
,

see Lemma 11.3.5. As in Chap. 9, we study the discounted conditional characteristic
function,

ΨX(u,x, t, τ )

=E
(

exp

{

−
∫ T

t

(
η0 + Tr(ηXs)

)
ds

}

exp
{
Tr(ıuXT )

}|At
)

= exp
{
V 0(τ, ıu)− Tr

(
V(τ, ıu)Xt

)}
,

where τ = T − t . The Feynman-Kac argument now yields, where we use Ψ =
ΨX(u,x, t, τ ),

∂Ψ

∂τ
= LΨ − (η0 + Tr(ηx)

)

= Tr
((
αa�a + bx + xb�

)
DΨ + 2xDa�aDΨ

)

− (η0 + Tr(ηx)
)
.

On the other hand,

∂Ψ

∂τ
= d

dτ
V 0(τ )− Tr

(
d

dτ
V(τ )x

)

,
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which yields

dV 0(τ )

dτ
− Tr

(
d

dτ
V(τ )x

)

= Tr
((
αaa� + bx + xb�

)
DΨ + 2xDa�aDΨ

)

− (η0 + Tr(ηx)
)

= Tr
((
αa�a + bx + xb�

)
(−V)+ 2xVa�aV

)

− (η0 + Tr(ηx)
)
,

subject to the initial conditions

V 0(0)= 0, V(0)=−ıu.
By identifying the coefficients of x, we obtain the matrix Riccati ODE satisfied by
V(τ ):

− d

dτ
V(τ )=−V(τ )b − b�V(τ )+ 2V(τ )a�aV(τ )− η, (11.4.24)

and

dV 0(τ )

dτ
= Tr

(
αa�a

(−V(τ )
))− η0. (11.4.25)

From Eq. (11.4.24) we get

dV(τ )
dτ

= V(τ )b + b�V(τ )− 2V(τ )a�aV(τ )+ η. (11.4.26)

We now employ the linearization idea from Chap. 9, and set

V(τ )= F(τ )−1G(τ ),

where F(τ ) ∈ GL(d) and G(τ ) ∈Md . Now

d

dτ

(
F(τ )V(τ )

)−
(
d

dτ
F(τ )

)

V(τ )= F(τ )
d

dτ
V(τ ),

and substituting (11.4.26), we get

d

dτ

(
F(τ )V(τ )

)− d

dτ
F(τ )V(τ )= F(τ )V(τ )b + F(τ )b�V

− 2F(τ )V(τ )a�aV(τ )+ F(τ )η.

Matching coefficients, we obtain

d

dτ
G(τ )= G(τ )b + F(τ )η

d

dτ
F(τ )=−F(τ )b� + 2G(τ )a�a,

(11.4.27)

which can be written as

d

dτ

[
G(τ ) F(τ )

]= [G(τ ) F(τ )
]
[

b 2a�a

η −b�

]

.
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The solution is obtained through exponentiation,

[
G(τ ) F(τ )

]= [G(0) F(0)
]

exp

{

τ

[
b 2a�a

η −b�

]}

= [V(0) I d
]

exp

{

τ

[
b 2a�a

η −b�

]}

= [(V(0)A11(τ )+A21(τ )
) (

V(0)A12(τ )+A22(τ )
)]
,

where we use the notation
[

A11(τ ) A12(τ )

A21(τ ) A22(τ )

]

:= exp

{

τ

(
b 2a�a

η −b�

)}

for the matrix exponential. Hence

V(τ )= [V(0)A12(τ )+A22(τ )
]−1[V(0)A11(τ )+A21(τ )

]

= [−ıuA12(τ )+A22(τ )
]−1[−ıuA11(τ )+A21(τ )

]
,

since V(0)=−ıu. As usual, a direct integration allows us to compute

d

dτ
V 0(τ )=−Tr

(
αa�aV(τ )

)− η0, (11.4.28)

which implies that

V 0(τ )=−
∫ τ

0
Tr
(
αa�aV(s)

)
ds − η0τ. (11.4.29)

Performing the integration in (11.4.29) can be cumbersome, hence we employ the
following technique from Da Fonseca et al. (2008c). Equation (11.4.27) can be
rewritten as

1

2

(
d

dτ
F(τ )+ F(τ )b�

)
(
a�a
)−1 = G(τ )

and from

V(τ )= F−1(τ )G(τ ),

we obtain

F(τ )V(τ )= 1

2

(
d

dτ
F(τ )+ F(τ )b�

)
(
a�a
)−1
,

which is equivalent to

V(τ )= 1

2

(

F−1(τ )
d

dτ
F(τ )+ b�

)
(
a�a
)−1
,

which we substitute into (11.4.28) to obtain,
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d

dτ
V 0(τ )=−Tr

(

αa�a
1

2

(

F−1(τ )
d

dτ
F(τ )+ b�

)
(
a�a
)−1
)

− η0

=−α
2

Tr

(

F−1(τ )
d

dτ
F(τ )+ b�

)

− η0,

which gives

V 0(τ )=−α
2

Tr
(
log
(
F(τ )

)+ b�τ
)− η0τ.

We conclude that the solution can be explicitly represented in terms of blocks of a
matrix exponential. Before discussing this solution further, we present a competing
method from Gnoatto and Grasselli (2011) and conclude this section with a com-
parison.

11.4.2 Cameron-Martin Formula

In this subsection, we present an alternative derivation of the Laplace transform.
The result is presented in Gnoatto and Grasselli (2011), and it generalizes a result
from Bru (1991), namely Eq. (4.7) in Bru (1991). We first state the result and then
compare it with the one from the preceding subsection.

Theorem 11.4.1 Let X ∈ WISd(X0, α,b,a), assume that a ∈ GL(d),

b�
(
a�a
)−1 = (a�a

)−1
b,

let α ≥ d + 1, and define the set of convergence of the Laplace transform

Dt =
{

w,v ∈ Sd : E

(

exp

{

−Tr

(

wXt +
∫ t

0
vXu du

)})

<∞
}

.

Then for all w,v ∈ Dt the joint moment generating function of the process and its
integral is given by:

E

(

exp

{

−Tr

(

wXt +
∫ t

0
vXu du

)})

= det
(
exp{−bt}(cosh(

√
v̄t)+ sinh(

√
v̄t)k
)) α

2

× exp

{

Tr

((
a−1

√
v̄k(a�)−1

2
− (a�a)−1b

2

)

X0

)}

,

where the matrices k, v̄, w̄ are given by

k =−(√v̄ cosh(
√

v̄t)+ w̄ sinh(
√

v̄t)
)−1(√

v̄ sinh(
√

v̄t)+ w̄ cosh(
√

v̄t)
)
,

v̄ = a
(
2v + b�a−1(a�)−1

b
)
a�,

w̄ = a
(
2w − (a�a

)−1
b
)
a�.
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The proof of Theorem 11.4.1 can be found in Gnoatto and Grasselli (2011), it
consists of three parts. The first establishes the result for WISd(X0, α,0, I d), and
consequently the conclusion of the first part is extended to WISd(X0, α,0,a). The
final part establishes the result for WISd(X0, α,b,a). Here, we present the first two
parts of the proof, for the third part, we refer the reader to Gnoatto and Grasselli
(2011). Before proceeding with the proof, we recall two results from Bru (1991).
The next result is Proposition 2 in Bru (1991).

Lemma 11.4.2 If Φ : �+ → S+
d is continuous, constant on [t,∞) and such that

its right derivative (in the distribution sense) Φ ′ : �+ → S−
d is continuous, with

Φ(0) = I d , and Φ ′(t) = 0, then for every Wishart process X ∈ WISd(x, α,0, Ind),
we have

E

(

exp

{

−1

2
Tr

(∫ t

0
Φ ′′(s)Φ−1(s)Xs ds

)})

= (det Φ(t)
) α

2 exp

{
1

2
Tr
(
X0Φ

+(0)
)
}

,

where

Φ+(0)= lim
t↘tΦ

′(t).

Also, we recall Theorem 3 from Bru (1991), see also Proposition 11.3.2.

Lemma 11.4.3 Let X be a WISd(X0, α,0, I d) process, where α ≥ d + 1, and u ∈
S+
d , then

E
(
exp
{−Tr(uXt )

})= (det(I d + 2tu)
) α

2 exp
{−Tr

(
X0(I d + 2tu)−1u

)}
.

We now establish the result from Theorem 11.4.1 for a WISd(x, α,0, I d) process,
which is Proposition 2 in Gnoatto and Grasselli (2011).

Proposition 11.4.4 Let Σ ∈ WISd(x, α,0, I d), then

E

(

exp

{

−1

2
Tr

(

wΣ t +
∫ t

0
vΣ s ds

)})

= det
(
cosh(

√
vt)+ sinh(

√
vt)k
) α

2 exp

{
1

2
Tr(Σ0

√
vk)

}

,

where k is given by

k =−(√v cosh(
√

vt)+w sinh(
√

vt)
)−1(√

v sinh(
√

vt)+w cosh(
√

vt)
)
.

(11.4.30)

Proof By Lemma 11.4.2, we have to solve the ODE:
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Φ ′′(s)= vΦ(s), s ∈ (0, t),
Φ

′−(t)=−wΦ(t), (11.4.31)

Φ(0)= I d .

The general solution of (11.4.31) is given by

Φ(s)= cosh(
√

vs)k1 + sinh(
√

vs)k.

From the condition Φ(0)= I d , we get k1 = I d . In order to determine k, we look at
the boundary condition at Φ

′−(t) and hence obtain
√

v sinh(
√

vt)+√
v cosh(

√
vt)k =−w

(
cosh(

√
vt)+ sinh(

√
vt)k
)
.

This yields the value of k given in Eq. (11.4.30). Next, we compute the derivative
of Φ ,

Φ ′(s)=√
v sinh(

√
vs)+√

v cosh(
√

vs)k,

which yields

lim
s↘0

Φ ′(s)=√
vk.

Since Φ is constant on [t,∞), we obtain that Φ(∞)= Φ(t), which completes the
proof. �

Now we attend to the second part.

Corollary 11.4.5 Let X ∈ WISd(x, α,0,a), where α ≥ d + 1 and a ∈ GL(d), and

let u ∈ S+
d . Then

E
(
exp
{−Tr(uXt )

})

= (det
(
I d + 2ta�au

))− α
2 exp

{−Tr
(
u
(
I d + 2ta�au

)−1
x
)}
.

Proof Firstly, we note that since a ∈ GL(d), a�a ∈ S+
d , and since u ∈ S+

d , we
have that I d + 2ta�au ∈ S+

d . Furthermore, as demonstrated in Sect. 11.2, for
Σ ∈ WISd(x, α,0, I d), we can set

Xt = a�Σ ta, t ≥ 0

to obtain

dXt =
√

Xt dW̃ ta + a�dW̃�
t

√
Xt + αa�a dt,

where dW̃ t =
√

X
−1
t Q�√Σ t dW t is a Brownian motion, and W denotes the

Brownian motion driving Σ . We apply Lemma 11.4.3 and use the fact that Σ0 =
(a�)−1X0a

−1 to obtain
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E
(
exp
{−Tr(uXt )

})=E(exp
{−Tr

(
u
(
a�Σ ta

))})

= (det
(
I d + 2taua�))− α

2

× exp
{−Tr

((
a�)−1

X0a
−1(I d + 2taua�)−1

aua�)}

= (det
(
I d + 2taua�))− α

2

× exp
{−Tr

(
X0a

−1(I d + 2taua�)−1
au
)}
.

We now use Sylvester’s determinant theorem,

det(I d +AB)= det(I d +BA),

to obtain

det
(
I d + 2taua�)= det

(
I d + 2ta�au

)
.

Since

a−1(I d + 2taua�)−1
au = u

(
I d + 2ta�au

)−1
,

we compute

E
(
exp
{−Tr(uXt )

})

= (det
(
I d + 2ta�au

))− α
2 exp

{−Tr
(
X0u
(
I d + 2ta�au

)−1)}

= (det
(
I d + 2ta�au

))− α
2 exp

{−Tr
(
u
(
I d + 2ta�au

)−1
X0
)}
. �

We remark that Corollary 11.4.5 is a special case of Proposition 11.3.2. The third
step, where one incorporates the drift in Eq. (11.4.23), is completed by employing
the Girsanov theorem, we refer the reader to Gnoatto and Grasselli (2011).

11.4.3 A Comparison of the Two Approaches

In this subsection, we recall the discussion in Sect. 3.4 of Gnoatto and Grasselli
(2011), which compares the linearization approach to the Cameron-Martin formula.
First, in terms of precision and execution speed, the two methods produce identical
results. However, the disadvantage of the linearization method is that the functions
F (τ ) and G(τ ) are expressed in terms of matrix exponentials, and the matrix ex-
ponential depends on the parameters a and b of the Wishart process. Furthermore,
to obtain the function V 0(τ ), one multiplies the remaining parameter α by the log-
arithm of F (τ ), and F (τ ) depends on the matrix exponential. As the matrix expo-
nential is a symbolic expression, it means that the linearization method might be
less useful if we want to understand the implications of the various model param-
eters, which is particularly important in applications. The result in Theorem 11.4.1
is strictly explicit, and furthermore it involves exponentials of d × d matrices, as
opposed to the linearization method, which doubles the dimensionality of the prob-
lem, resulting in a 2d × 2d matrix. Also, the Cameron-Martin formula does not
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require the computation of the matrix logarithm. Finally, with regards to the com-
putation of sensitivities, which play an important role in finance, we can expect the
Cameron-Martin formula to be more useful.

11.5 Two Heston Multifactor Volatility Models

In this section, we discuss two Heston multifactor volatility models, firstly a single-
asset and secondly a multi-asset model, which were presented in Da Fonseca et al.
(2007) and Da Fonseca et al. (2008c), respectively. The aim of this section is to
illustrate how to exploit the tractability of the Wishart process. For each of the
two models, we firstly discuss how to correlate the Brownian motion driving the
asset, or assets respectively, and the Brownian motion driving the Wishart pro-
cess, to retain the affinity of the model. Finally, we find that once we have an
explicit representation of the infinitesimal generator, we can immediately employ
the approach from Sect. 11.4 to compute the characteristic function. We remark
that we employ linearization, as it follows easily from the presentation. However,
instead the Cameron-Martin formula could have been used, see Gnoatto and Gras-
selli (2011), where the two models were studied using the Cameron-Martin for-
mula.

11.5.1 A Single Asset Heston Multifactor Volatility Model

In this subsection, we present a single-asset model, in which we describe the
stochastic volatility via a Wishart process. This model can be considered to be the
natural extension of the Heston model, as discussed in Sect. 9.5. Following Da Fon-
seca et al. (2008c), we model the risky asset under an assumed risk-neutral measure
via the SDE,

dSt

St
= r dt + Tr(

√
Xt dZt ), (11.5.32)

where r denotes the risk-free interest rate which, for ease of presentation, is assumed
to be constant. The process Z = {Zt , t ≥ 0} is a matrix-valued Brownian motion,
X = {Xt , t ≥ 0} is a WISd(x, α,b,a) process, given by

dXt =
(
αa�a + bXt + b�Xt

)
dt + (√Xt dW ta + a� dW�

t

√
Xt

)
, (11.5.33)

where α ≥ d−1, b ∈Md , and a ∈ GL(d). Following Da Fonseca et al. (2008c), we

assume b ∈ S−
d , to obtain the mean-reverting behavior of X. We now turn to the cor-

relation structure of the Brownian motions Z and W . In particular, Da Fonseca et al.
(2008c) introduce a correlation matrix R ∈Md to obtain the following correlation
structure,

Zt = W tR
� +B t

√
I −RR�, t ≥ 0, (11.5.34)
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where B = {B t , t ≥ 0} is a Brownian motion independent of W . The next proposi-
tion establishes that Z is a Brownian motion.

Proposition 11.5.1 The process Z = {Zt , t ≥ 0} defined in Eq. (11.5.34) is a Brow-
nian motion.

Proof We use Theorem 10.4.5 to obtain the proof. Clearly, the process Z is a local
martingale. Furthermore,

dZt,ij =
d∑

k=1

dWt,ik Rj,k +
d∑

k=1

dBt,ik
(√

I −RR�)
k,j
.

Hence we have

d[Z·,ij ,Z·,kl]t

=
(

d∑

m=1

Rj,mRl,m + (
√

I −RR�)
m,j

(√
I −RR�)

m,l

)

1i=k dt

= I j,l1i=k dt

= 1i=k1j=l dt,

which completes the proof. �

The next result discusses the correlation structure of Zt and W t .

Proposition 11.5.2 The covariance of Zt and W t is given by

Cov(Zt , W t )= tI d ⊗R. (11.5.35)

Proof From Definition 10.3.7, we have

Cov(Zt ,W t )=E
(
vec
(
Z�
t

)
vec
(
W�
t

)�)−E(vec
(
Z�
t

))
E
(
vec
(
W�
t

))�

=E(vec
(
RW�

t

)
vec
(
W�
t

)�)
.

We find it convenient to denote the i-th row of W t by wi , and regarding the matrix
RW�

t , we denote its j -th column by rj , so that

rj =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

∑d
k=1R1,kWj,k

∑d
k=1R2,kWj,k

...
∑d
k=1Rd,kWj,k

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

.
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Hence

E
(
vec
(
RW�

t

)
vec
(
W�
t

)�)=E

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

r1

...

rd

⎤

⎥
⎥
⎦ [w1 · · ·wd ]

⎞

⎟
⎟
⎠

=E

⎛

⎜
⎜
⎝

⎡

⎢
⎢
⎣

r1w1 · · · r1wd

...
. . .

...

rdw1 · · · rdwd

⎤

⎥
⎥
⎦

⎞

⎟
⎟
⎠

=

⎡

⎢
⎢
⎣

tI1,1R · · · tI1,dR

...
. . .

...

tId,1R · · · td,dR

⎤

⎥
⎥
⎦ (11.5.36)

= tI d ⊗R.

To see equality (11.5.36), we consider an element of the matrix r lwm, say the ele-
ment [r lwm]i,j , where i, j, l,m ∈ {1, . . . , d}. This element admits the representation

d∑

k=1

Ri,kWt,lkWt,mj .

Consequently,

E

(
d∑

k=1

Ri,kWt,lkWt,mj

)

=
{

0 for l �=m
tRi,j for l =m. �

Hence, R, which is a d × d matrix, summarizes the covariance structure, which
is, in principle, a matrix of size d2 × d2. We choose to summarize the covariance
structure by R, as it preserves the affine structure of the model, which is crucial for
analytical tractability.

We now turn to option pricing. It is convenient to work with the logarithm of the
stock price, i.e. Yt = log(St ), which satisfies the SDE

dYt =
(

r − 1

2
Tr(Xt )

)

dt + Tr
(√

Xt

(
dW t R

� + dB t
√

I d −RR�)).

As in Da Fonseca et al. (2008c), we work with the infinitesimal generator of the
process, which then allows us to employ linearization to compute the Laplace trans-
form. Alternatively, the Cameron-Martin formula could have been employed, we
refer the reader to Gnoatto and Grasselli (2011) for this approach. Recall that the
Laplace transform is given by

Ψγ,t (τ )=E
(
exp{γ Yt+τ }

)

= exp
{
Tr
(
A(τ )Xt

)+ b(τ)Yt + c(τ )
}
, (11.5.37)

where γ ∈ �, A(τ ) ∈ Md , b(τ) ∈ � and c(τ ) ∈ �. We use LX to denote the in-
finitesimal generator of X, and LY,X to denote the infinitesimal generator of (Y,X).
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Recall from Lemma 11.3.5 that the infinitesimal generator of X is given by

LX = Tr
([
αa�a + bx + xb�

]
D + 2xDa�aD

)
,

where D is a matrix differential operator with Di,j = ( ∂
∂xi,j

), and from Da Fonseca
et al. (2008c), Proposition 3.1, we obtain the infinitesimal generator of (Yt ,Xt ),
which is given by

LY,X =
(

r − 1

2
Tr(x)

)
∂

∂y
+ 1

2
Tr(x)

∂2

∂y2

+ Tr
((
αa�a + bx + xb�

)
D + 2xDa�aD

)

+ 2Tr(xRQD)
∂

∂y
. (11.5.38)

Using the Feynman-Kac argument, we have

∂Ψγ,t

∂τ
= LY,XΨγ,t

and

Ψγ,t (0)= exp{γ Yt }.
Using Eq. (11.5.38), we obtain that

∂Ψγ,t

∂τ
=
(

r − 1

2
Tr(x)

)
∂Ψγ,t

∂y
+ 1

2
Tr(x)

∂2Ψγ,t

∂y2

+ Tr
((
αa�a + bx + xb�

)
DΨγ,t

+ 2
(
xDa�aD

)
Ψγ,t
)

+ 2Tr(xRaD)
∂Ψγ,t

∂τ
,

subject to A(0)= 0, b(0)= γ , and c(0)= 0. From Eq. (11.5.37), we obtain that

∂Ψγ,t

∂τ
= Tr

(
d

dτ
A(τ )x

)

+ d

dτ
b(τ)y + d

dτ
c(τ ).

Identifying the coefficients of y, we obtain

d

dτ
b(τ)= 0,

hence b(τ)= γ , for τ ≥ 0. The remaining part of the argument is identical to the lin-
earization procedure employed in Sect. 11.4. We obtain the following matrix Riccati
ODE satisfied by A(τ ),

d

dτ
A(τ )= A(τ )b + (b� + 2γRa

)
A(τ )+ 2A(τ )a�aA(τ )+ γ (γ − 1)

2
I d,

subject to the condition A(0)= 0. Again, we compute c(τ ) by direct integration,

d

dτ
c(τ )= Tr

(
αa�aA(τ )

)+ γ r,
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subject to c(0) = 0. As in Sect. 11.4, we double the dimension of the problem, by
setting

A(τ )= F−1(τ )G(τ ),

where F(τ ) ∈ GL(d), G(τ ) ∈Md . Hence we conclude that
[
G(τ ) F(τ )

]= [(A(0)A11(τ )+ A21(τ )
) (

A(0)A12(τ )+ A22(τ )
)]
,

where
[

A11(τ ) A12(τ )

A21(τ ) A22(τ )

]

:= exp

{

τ

(
b −2a�a

γ (γ−1)
2 I d −(b� + 2γRa)

)}

.

We conclude that

A(τ )= (A(0)A12(τ )+ A22(τ )
)−1(A(0)A11(τ )+ A21(τ )

)

= (A22(τ )
)−1A21(τ ),

since A(0)= 0. Lastly, we conclude that

c(τ )=−α
2

Tr
(
log
(
F(τ )

)+ (b� + 2γRa
)
τ
)+ γ rτ,

which, as in Sect. 11.4, avoids a numerical integration to compute c(τ ).

11.5.2 A Heston Multi-asset Multifactor Volatility Model

We now discuss Wishart processes in a multi-asset framework. The model presented
in this subsection first appeared in Da Fonseca et al. (2007) and extends the models
presented in Sect. 6.7. Under an assumed risk-neutral measure, we use the following
model for the vector of risky assets,

dSt = Diag(St )(r1dt +
√

Xt dZt ), (11.5.39)

where 1 = (1, . . . ,1)�, and Z = {Zt , t ≥ 0} ∈ �d is a vector-valued Brownian mo-
tion. The process X = {Xt , t ≥ 0} is a WISd(x, α,b,a) process with dynamics

dXt =
(
αa�a + bXt +Xtb

�)dt +√Xt dW ta + a� dW�
t

√
Xt ,

where α ≥ d−1, b ∈Md and a ∈ GL(d). We now make the following assumptions,
cf. Da Fonseca et al. (2007):

Assumption 11.5.3 The following assumptions are in force in this subsection:

1. the continuous-time diffusion model for S is a linear-affine stochastic factor
model with respect to the log-returns and variance-covariance factors X·,kl ;

2. the stochastic covariance matrix is given by the Wishart process X;
3. the Brownian motion driving the assets’ returns and those driving the instanta-

neous covariance matrix are linearly correlated.

Now we discuss how the Brownian motions Z = {Zt , t ≥ 0} and W = {W t ,

t ≥ 0} can be correlated in order to satisfy Assumptions 1–3 above.
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First we introduce d real-valued matrices Rk ∈Md , k = 1, . . . , d , so that

dZkt =
√

1 − Tr
(
RkR

�
k

)
dBkt + Tr

(
Rk dW

�
t

)
, k = 1, . . . , d,

where the vector Brownian motion B = (B1, . . . ,Bd) is independent of W . We
point out that for a generic choice of Rk the model in Eq. (11.5.39) need not remain
affine. Instead, we show the following result from Da Fonseca et al. (2007), which
explains how the Brownian motions can be correlated. For a proof, we refer to Da
Fonseca et al. (2007).

Proposition 11.5.4 Assumptions 1 and 2 imply that for k = 1, . . . , d , the correla-
tion matrix Rk is given by

Rk =
⎛

⎝
0 0 0

ρ1 · · · ρd
0 0 0

⎞

⎠← k-th row, (11.5.40)

where ρi ∈ [−1,1], i = 1, . . . , d and ρ�ρ ≤ 1.

Equation (11.5.40) implies that the Brownian motion driving the asset vector has
to satisfy

dZt =
√

1 − ρ�ρ dB t + dW t ρ.

In particular, for d = 2, this means that

dZt,1 =
√

1 − (ρ2
1 + ρ2

2

)
dBt,1 + (dWt,11 ρ1 + dWt,12 ρ2)

dZt,2 =
√

1 − (ρ2
1 + ρ2

2

)
dBt,2 + (dWt,21ρ1 + dWt,22 ρ2).

So all elements of the correlation vector ρ = (ρ1, ρ2) feature in both Brownian
motions, Z1 and Z2.

We now turn to derivative pricing. Recall from Lemma 11.3.5 that the infinitesi-
mal generator of the Wishart process X is given by

LX = Tr
([
αa�a + bx + xb�

]
D + 2xDa�aD

)
,

and furthermore, the infinitesimal generator of the asset returns, Y t = log(St ), is
given by

LY =∇y

(

r1 − 1

2
Vec(xii)

)

+ 1

2
∇yx∇�

y

=
d∑

i=1

(

r − 1

2
xii

)
∂

∂yi
+ 1

2

d∑

i,j=1

xij
∂2

∂yi∂yj
,

where ∇y denotes the gradient operator, ∇y = ( ∂
∂y1
, . . . , ∂

∂yd
). Lastly, from Proposi-

tion 4 in Da Fonseca et al. (2007), we have
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LY ,X = Tr
((
αa�a + bx + xb�

)
D + 2xDa�aD

)

+∇y

(

r1 − 1

2
Vec(xii)

)

+ 1

2
∇yx∇�

y

+ 2Tr
(
Da�ρ∇yx

)
,

where D is a matrix differential operator with elements

Di,j =
(
∂

∂xi,j

)

,

and Vec(xii) is the vector comprised of the elements xii , i = 1, . . . , d . We now attend
to the computation of the affine transform of the log-returns under the assumed risk-
neutral measure,

Ψγ ,t =E
(
exp
{〈γ ,Y t+τ 〉

}|At
)
.

As before, we apply the Feynman-Kac argument,

∂Ψγ ,t

∂τ
= LY ,XΨγ ,t . (11.5.41)

We guess that Ψγ ,t is exponentially affine in Xt and Y t , so we assume that

Ψγ ,t = exp
{
Tr
(
A(τ )Xt

)+ β�(τ )Y t + c(τ )
}
, (11.5.42)

where A(τ ) ∈Md , β(τ ) ∈ �d , and c(τ ) ∈ �. From Eq. (11.5.41), we compute

∂Ψγ ,t

∂τ
= Tr

((
αa�a + bx + xb�

)
D + 2xDa�aD

)
Ψγ ,t

+∇y

(

r1 − 1

2
Vec
(
Tr(eiix)

)
)

Ψγ ,t

+1

2
∇yx∇�

y Ψγ ,t

+ 2Tr
(
Da�ρ∇yx

)
Ψγ ,t ,

where eii = (δi,j,k)j,k=1,...,d denotes the canonical basis of Md . Replacing ∂Ψγ ,t

∂τ
,

we get

0 =−Tr

(
d

dτ
A(τ )x

)

− d

dτ
β�(τ )y − d

dτ
c(τ )

+ β�(τ )
(

r1 − 1

2
Vec
(
Tr(eiix)

)
)

+ 1

2
β�(τ )xβ(τ )

+ Tr
((
αa�a + bx + xb�

)
A(τ )+ 2xA(τ )a�aA(τ )

)

+ 2Tr
(
A(τ )a�ρβ�(τ )x

)
,
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that is

0 =−Tr

(
d

dτ
A(τ )x + ∂

∂τ
β(τ )y�

)

− ∂

∂τ
c(τ )

+ Tr

(

r1β�(τ )− 1

2

d∑

i=1

β i (τ )eiix + 1

2
β(τ )β�(τ )x

)

+ Tr
((
αa�a + bx + xb�

)
A(τ )+ 2xA(τ )a�aA(τ )+ 2A(τ )a�ρβ�(τ )x

)
,

subject to the boundary conditions

A(0)= 0, β(0)= γ , c(0)= 0.

Identifying the coefficients of y we deduce

d

dτ
β(τ )= 0,

hence β(τ ) = γ , for τ ≥ 0. As in Sect. 11.4, by identifying the coefficients of X,
we obtain the matrix Riccati ODE satisfied by A(τ ),

d

dτ
A(τ )= A(τ )b + b�A(τ )− 1

2

d∑

i=1

γ ieii + 2A(τ )a�aA(τ )+ 1

2
γ γ�

+A(τ )a�ργ� + γ ρ�aA(τ )

= A(τ )
(
b + a�ργ�)+ (b� + γ ρ�a

)
A(τ )+ 2A(τ )a�aA(τ )

− 1

2

d∑

i=1

γ ieii +
1

2
γ γ�,

subject to A(τ ) = 0. Doubling the dimension of the problem, as in Sect. 11.4, we
obtain

A(τ )= (A(0)A12(τ )+A22(τ )
)−1(

A(0)A11(τ )+A21(τ )
)
,

where
[

A11(τ ) A12(τ )

A21(τ ) A22(τ )

]

:= exp

{

τ

(
b + a�ργ� −2a�a

1
2 (γ γ� −∑d

i=1 γ ieii ) −(b� + γ ρ�a)

)}

.

For the function c(τ ), we have

d

dτ
c(τ )= Tr

(
r1γ� + αa�aA(τ )

)
,

subject to the initial condition c(0)= 0. We can solve the above equation to yield

c(τ )=−α
2

Tr
(
log
(
A22(τ )

)+ τb� + τγ ρ�a
)+ τrγ�1.

Consequently, we price derivatives as discussed in Chap. 8.



Chapter 12
Monte Carlo and Quasi-Monte Carlo Methods

In this chapter, we discuss Monte Carlo and Quasi-Monte Carlo methods and show
how they can be used to compute functionals of multidimensional diffusions.

12.1 Monte Carlo Methods

Monte Carlo (MC) methods can be employed to compute functionals of multidimen-
sional diffusions, e.g. by using the inverse transform method, see e.g. Sect. 6.1 and
Platen and Bruti-Liberati (2010), if the transition density is known explicitly. How-
ever, when the transition density is not known explicitly, one can employ discretiza-
tion schemes, such as the Euler Scheme, see Kloeden and Platen (1999), to approx-
imately sample from the transition density. The discretization scheme introduces an
error, which can be studied using the techniques in Kloeden and Platen (1999). The
aim of this section is to introduce two alternatives to discretization schemes, which
allow us to eliminate the discretization error introduced by discretization schemes
and to recover the Monte Carlo convergence rate. These alternatives are the exact
simulation methods, due to Roberts and collaborators, see Beskos et al. (2006, 2008,
2009), Beskos and Roberts (2005), and also Chen and Huang (2012b), and multi-
level methods due to Giles and coauthors, see Giles (2008a, 2008b).

We firstly provide a very brief introduction to Monte Carlo methods and then
briefly illustrate the Euler discretization scheme, which motivates the exact sim-
ulation and multilevel methods. For detailed references on Monte Carlo methods
applied to finance, we refer the reader to Kloeden and Platen (1999), Glasser-
man (2004), Jäckel (2002), Platen and Bruti-Liberati (2010), and Korn et al.
(2010).

J. Baldeaux, E. Platen, Functionals of Multidimensional Diffusions with Applications
to Finance, Bocconi & Springer Series 5, DOI 10.1007/978-3-319-00747-2_12,
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12.1.1 Monte Carlo Methods

Monte Carlo methods are easily illustrated by considering the problem of estimating
the integral

a =
∫ 1

0
f (x)dx.

This integral can be interpreted as the expected value

E
(
f (U)

)
,

where U is uniformly distributed over the interval [0,1], assuming that f is inte-
grable. Now consider the i.i.d. random variables U1,U2, . . . ,UN , uniformly dis-
tributed over [0,1], then

ãN = 1

N

N∑

i=1

f (Ui),

can be used to approximate a. In fact, since by assumption f is integrable, we have
that ãN is unbiased, i.e.

E(ãN)= a,
and furthermore strongly consistent, that is,

ãN → a

with probability 1 as n→∞. Assuming f is square integrable, the variance of ãN
is given by

Var(ãN )=
σ 2
f

N
, (12.1.1)

where

σ 2
f =
∫ 1

0

(
f (x)− a)2 ds.

One would expect that it is at least as hard to compute σ 2
f as it is to compute a,

hence for applications it is useful to be able to approximate σ 2
f . For this purpose, we

introduce the sample standard deviation

sf =
√√
√
√ 1

N

N∑

i=1

(f (Ui)− aN)2
N − 1

.

The sample standard deviation allows us to compute confidence intervals. For ex-
ample let zε denote the 1− ε quantile of the standard normal distribution, by which
we mean that

P(Z ≤ zε)= 1 − ε,
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where Z ∼N(0,1). Then

ãN ± z ε
2

sf√
N

(12.1.2)

is a 1 − ε confidence interval for a, as N → ∞. This is due to the fact that as
N→∞,

ãN − a ∼N
(

0,
σf√
N

)

.

We remark that at first sight, the convergence rate N− 1
2 in Eq. (12.1.2) might strike

the reader as being slow: for twice differentiable functions, the trapezoidal rule
achieves a convergence rate of N−2, and for four times differentiable functions,
the Simpson’s rule achieves a convergence rate of N−4. However, we remark that
for multidimensional integrals, say over the unit cube [0,1]d , the respective con-

vergence rates become N− 2
d and N− 4

d . One should point out that sparse grid tech-
niques, see Bungartz and Griebel (2004), allow one to obtain convergence rates ar-
bitrarily close to the convergence rates N−2 and N−4, respectively. For more details
on sparse grids, we refer the reader to Bungartz and Griebel (2004).

The advantage of Monte Carlo methods is that one only requires the function
under consideration to be square integrable, and secondly that the convergence rate
is independent of the dimension. These two facts make Monte Carlo methods very
useful techniques for the computation of functionals of multidimensional diffusions.
Lastly, another advantage of Monte Carlo methods is that they allow the user to
obtain statistical information on the problem via confidence intervals.

12.1.2 Bias and Computational Complexity

The aim of this subsection is to introduce two concepts, namely bias and computa-
tional complexity. To illustrate these two concepts, we discuss how to price Euro-
pean call options.

Firstly, we recall the Black-Scholes model from Sect. 2.3. Under the real world
probability measure P , we model the GOP via the SDE

dSt = St
(
r dt + σ 2 dt + σ dWt

)
,

where W is a Brownian motion under the real world measure. Alternatively,

St = S0 exp

(

rt + 1

2
σ 2t + σWt

)

,

hence we need to compute

cT ,K(0)= S0E

(
(ST −K)+

ST

)

(12.1.3)
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to price a European call with maturity T and strike K ∈ �+ at time 0. We need to
sampleWT , to obtain i.i.d. samples SiT , i = 1, . . . ,N . SinceWT ∼N(0, T ), we can
obtain realizations

ciT ,K(0)= S0
(SiT −K)+

SiT

,

to obtain the estimator

ĉT ,K(0)= 1

N

N∑

i=1

ciT ,K(0).

As discussed previously, the estimator is unbiased, and we can easily obtain confi-
dence intervals.

However, such a simulation scheme is not always available. Say, we consider the
SDE,

dSt = St
(
r dt + σ 2(St ) dt + σ(St ) dWt

)
, (12.1.4)

for which there is not necessarily an exact simulation scheme as was the case for the
Black-Scholes model. One may then consider a discretization scheme, such as the
Euler scheme, i.e. consider

S̃t+
t = S̃t
(
r
t + σ 2(S̃t )
t + σ(S̃t )
Wt

)
, (12.1.5)

where 
t = T
n

corresponds to the time step size of an n step Euler scheme, 
Wt =
Wt+
t −Wt , and S̃0 = S0, where we use the notation S̃ to emphasize that we are
approximating S. As the distribution of S̃T differs from the distribution of ST , the
resulting call prices can be expected to differ, i.e.

E

(
(S̃T −K)+

S̃T

)

�=E
(
(ST −K)+

ST

)

.

It is important to study by how much these prices differ. Useful notions are strong
order of convergence, which is the exponent α below, if

(
E
(|S̃T − ST |2

)) 1
2 ≤ c(
)α,

and weak order of convergence, which is the exponent β below if for a smooth test
function f from a given set one has

∣
∣E
(
f (S̃T )

)−E(f (ST )
)∣
∣≤ c(
t)β,

see Kloeden and Platen (1999) for details. For purposes of this discussion, it suffices
to note that the Euler scheme achieves usually strong order α = 1/2 and weak order
β = 1, for a sufficiently smooth volatility function σ(·) in (12.1.4). Strong conver-
gence is a useful concept when measuring pathwise convergence. Weak convergence
is appropriate for Monte Carlo simulation to approximate functionals.

In Monte Carlo simulation we face two errors, one introduced by sampling ran-
dom variables, the other due to the fact that we may sample from an approximated
distribution. Next we present a way of trading off these two errors. This approach
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will also be used in the subsection discussing multilevel methods. We draw random
i.i.d. samples from the distribution of S̃T using (12.1.5) to obtain S̃iT , i = 1, . . . ,N ,
and form the Monte Carlo estimator

ĈN = 1

N

N∑

i=1

C̃i ,

where

C̃i = S0
(S̃iT −K)+

S̃iT

,

to estimate

cT ,K(0)= S0E

(
(ST −K)+

ST

)

,

where ST is given by (12.1.4). We define the mean square error (MSE), given by

MSE =E((ĈN − cT ,K(0)
)2)

= (E(ĈN)− cT ,K(0)
)2 +E((ĈN −E(ĈN)

)2)
. (12.1.6)

The first term in (12.1.6) is the bias squared, the second term is the variance of ĈN .
Next we discuss how to trade off bias and variance. The bias depends on the weak
order of convergence of a scheme, which we assume is given by β , i.e.

(
E(ĈN)− cT ,K(0)

)2 ≤ c2(
t)2β .

Here 
t = T
n

, where n denotes the number of time steps. The variance is given by

E
((
ĈN −E(ĈN)

)2)= Var(C̃i)

N
,

here N denotes the number of Monte Carlo samples. The computational complexity
of the scheme can be assumed to be given by

C =Nn,
since we use n time steps for each of the N Monte Carlo samples. The MSE is given
by

MSE = c2 T
2β

n2β
+ Var(C̃i)

N
.

The MSE is minimized if we balance n2β and N , i.e. choose

n2β /N,
i.e. C / n2β+1. Hence the MSE satisfies

MSE / C− 2β
2β+1 .
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In particular, if an Euler scheme, which achieves weak order convergence β = 1, is
used, we have

MSE / C− 2
3 .

This convergence rate is slower than the convergence rate C−1, which an unbiased
Monte Carlo scheme can achieve. The slower convergence is due to the discretiza-
tion error, i.e. the bias. In the next two subsections, we introduce firstly an exact
simulation scheme for diffusions, which is capable of eliminating this bias for a
large class of diffusions. In the second subsection, we introduce multilevel meth-

ods. The latter methods trade off bias and variance in a manner in which the C− 2
3

convergence rate can be improved to C−1, i.e. the Monte Carlo convergence rate
achieved by unbiased schemes.

12.1.3 Exact Simulation Methods for Diffusions

There has been a growing literature concerned with the topic of exact simulation of
diffusions, see e.g. Beskos et al. (2006, 2008, 2009), Beskos and Roberts (2005),
and Chen and Huang (2012a, 2012b).

In this subsection, we briefly recall the approach from Chen and Huang (2012a).
Assume we are concerned with the following SDE on a filtered probability space
(Ω,A,A,P ):

dSt = μ(St ) dt + σ(St ) dWt , (12.1.7)

S0 = s, and also define MT := max0≤t≤T St . We point out that instead of con-
sidering the maximum of S, we could have also studied the minimum mT :=
min0≤t≤T St . For many problems in finance, see Chaps. 2 and 3, one needs to com-
pute expected values of the form

E
(
f (MT ,ST )

)
. (12.1.8)

In this subsection, we present a Monte Carlo estimator for (12.1.8), which allows
for general SDEs of the form specified in (12.1.7). We remark that we could have
employed an Euler scheme to compute (12.1.8). However, this introduces a bias, and
furthermore, the bias tends to be larger when approximatingMT than when approx-
imating ST , see Asmussen et al. (1995) for details. We assume that the function μ
is continuously differentiable, σ is twice differentiable and σ > 0 on the state space
of S. Now, we introduce the Lamperti transform,

F(x)=
∫ x

s

1

σ(u)
du,

where s is in the state space of S. We remark that F is strictly increasing as σ is
positive. Setting Yt = F(St ), we obtain by the Itô formula

dYt = b(Yt ) dt + dWt , (12.1.9)
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where

b(y)= μ(F−1(y))

σ (F−1(y))
− 1

2
σ ′(F−1(y)

)
.

For the remainder of this subsection, we focus on Y given by (12.1.9). We note that
due to the monotonicity of F , we simulate YT and max0≤t≤T Yt and, consequently,
set ST = F−1(YT ) and MT = F−1(max0≤t≤T Yt ). Furthermore, we assume that Y
does not explode, see Assumption 2.2. in Chen and Huang (2012a) for a sufficient
condition.

The exact simulation scheme in Chen and Huang (2012a) performs importance
sampling: the joint density of (YT ,max0≤t≤T Yt ) is not known, in general, however,
we know the joint density of (WT ,max0≤t≤T Wt), as we show below. So instead
of simulating (YT ,max0≤t≤T Yt ), we simulate (WT ,max0≤t≤T Wt), and adjust our
results by multiplying with a likelihood ratio. This likelihood ratio corresponds to a
Radon-Nikodym derivative: we change from a measure P under which Y is given
by (12.1.9) to another measure P̃ under which the drift is removed from Y , so that Y
follows a Brownian motion corresponding to the measure P̃ . This is formalized in
the next theorem, which is Theorem 2.1 from Chen and Huang (2012a), the proof of
which is based on a generalized Girsanov formula. For a proof, we refer the reader
to Chen and Huang (2012a).

Theorem 12.1.1 Suppose that μ is continuously differentiable, σ is twice continu-
ously differentiable, and σ > 0 on the state space of S. Furthermore, assume that Y
does not explode. Then for Borel-measurable h : �3 →�,

EP

(
h
(
YT , max

0≤t≤T
Yt

))
=E

P̃

(
h
(
W̃T , max

0≤t≤T
W̃t

)
LT

)
,

where the likelihood ratio LT is given by

LT = exp

{

A(W̃T )−
∫ T

0
φ(W̃s) ds

}

,

where W̃ = {W̃t , t ∈ [0, T ]} is a Brownian motion under P̃ and

A(y)=
∫ y

0
b(u)du and φ(y)= b2(y)+ b′(y)

2
.

Theorem 12.1.1 yields the following equality

EP
(
f (ST ,MT )

)=EP
(
f
(
F−1(YT ),F

−1
(

max
0≤t≤T

Yt

)))

=E
P̃

(
f
(
F−1(W̃T ),F

−1(K̃T )
)

exp
{
A(W̃T )

}
Q
)
,

where

Q=E
P̃

(

exp

{

−
∫ T

0
φ(Ws)ds

} ∣
∣
∣
∣ Θ̃T , K̃T , W̃T

)

, (12.1.10)

with Θ̃T = inf{u ∈ [0, T ]: W̃u = K̃T }. Computing E(f (ST ,MT )) we hence pro-
ceed as follows:
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1. simulate Θ̃T , K̃T , W̃T
2. evaluate

exp
{
A(W̃T )

}
E
P̃

(

exp

{

−
∫ T

0
φ(Ws)ds

} ∣
∣
∣
∣ Θ̃T , K̃T , W̃T

)

3. evaluate f (F−1(W̃T ),F
−1(K̃T )).

Since the last step is trivial, we focus on the first two steps.
As shown in Chen and Huang (2012a), the joint distribution of (Θ̃T , K̃T , W̃T )

is explicitly known, see Karatzas and Shreve (1991), Problem 2.8.17: we generate
three i.i.d. random variables U1, U2, U3, uniformly distributed on [0,1] and set

Θ̃T = T sin2(πU/2)

K̃T =
√
−2Θ̃T log(1 − V )

W̃T = K̃T −
√

2(T − Θ̃T )
(

− log

(
W̃T

T − Θ̃T

))

.

We now focus on the second step, where one exploits an interesting connection
with a Poisson process, see also Beskos et al. (2006) for a similar observation. The
following result is Proposition 3.1 in Chen and Huang (2012a), for which we provide
also the proof.

Proposition 12.1.2 Suppose Ñ is a Poisson random variable with parameter ΛT
under P̃ , where Λ is a positive constant, and {τ1, . . . , τÑ } are Ñ i.i.d. uniform ran-

dom variables on [0, T ]. All these random variables are independent of W̃ . Then

E
P̃

(

exp

{

−
∫ T

0
φ(W̃s) ds

} ∣
∣
∣
∣ Θ̃T , K̃T , W̃T

)

=E
P̃

(
Ñ∏

i=1

(
Λ− φ(Wτi )

Λ

) ∣
∣
∣
∣ Θ̃T , K̃T , W̃T

)

.

Proof We condition on the entire path of W̃ = {W̃t , t ∈ [0, T ]} and have

E
P̃

(
Ñ∏

i=1

(
Λ− φ(W̃τi )

Λ

) ∣∣
∣
∣ σ
(
W̃t , t ∈ [0, T ])

)

=
∞∑

n=0

E

(
n∏

i=1

(
Λ− φ(Wτi )

Λ

) ∣
∣
∣
∣ σ
(
W̃t , t ∈ [0, T ], Ñ = n)

)
exp{−ΛT }(ΛT )n

n! .

Since by assumption the random variables τi are uniformly distributed on [0, T ], we
have
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Algorithm 12.1 Exact simulation of a diffusion Y given by (12.1.9)

1: Simulate Ñ ∼ Poisson (ΛT ).
2: Generate independent τi , 1 ≤ i ≤ Ñ , each of which is uniform on [0, T ].
3: Sort {τ1, . . . , τÑ } to obtain their order statistics:

τ(1) < · · ·< τ(j−1) < Θ̃T < τ(j) < · · ·< τ(N).
4: Simulate Wτ(i) , 1 ≤ i ≤ Ñ , given W̃T , Θ̃T , K̃T .
5: Evaluate

Q̃=
Ñ∏

i=1

(
Λ− φ(W̃τ(i) )

Λ

)

.

E

(
n∏

i=1

(
Λ− φ(Wτi )

Λ

) ∣
∣
∣
∣ σ(Wt , 0 ≤ t ≤ T ), Ñ = n

)

=
(

1

T

∫ T

0

(
Λ− φ(Wt)

Λ

)

dt

)n
.

Hence we have

E

(
Ñ∏

i=1

(
Λ− φ(Wτi )

Λ

) ∣
∣
∣
∣ σ(Wt , 0 ≤ t ≤ T )

)

=
∞∑

n=0

(
1

T

∫ T

0

Λ− φ(Wt)
Λ

dt

)n exp{−ΛT }(ΛT )n
n!

= exp

{

−
∫ T

0
φ(Wt) dt

}

.

The proof is completed by taking expectations with respect to W̃T , K̃T , Θ̃T . �

We now state the respective exact simulation algorithm as Algorithm 12.1.
Clearly, we have

E
P̃

(
f
(
F−1(W̃T ),F

−1(K̃T )
)

exp
{
A(W̃T )

}
Q̃
)=Ep

(
f (ST ,MT )

)
.

Lastly, we need to solve the problem of how to simulate W̃τ(i) given W̃T , K̃T , Θ̃T .
The answer is given by the Williams path decomposition, see Williams (1974)

and Imhof (1984). Denoting Θ̃T = θ , K̃T = k, and W̃T =w, we have that

{k − W̃θ−u, 0 ≤ u≤ θ} and {k− W̃θ+u, 0 ≤ u≤ T − θ}
are two independent Brownian meanders, which are connected at Θ̃T = θ , where
the Brownian motion W̃ reaches its maximum over [0, T ]. Brownian meanders can
be represented in terms of Brownian bridges, see Imhof (1984). We have that
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{W̃u, 0 ≤ u≤ θ} d= k−
√(

k(θ − u)
θ

+B1,1
u

)2

+ (B1,2
u

)2 + (B1,3
u

)2
,

{W̃u, θ ≤ u≤ T } d= k−
√(

(k − y)(u− θ)
T − θ +B2,1

u

)2

+ (B2,2
u

)2 + (B2,3
u

)2
.

Here B1,j = {B1,j
t , 0 ≤ t ≤ θ}, j = 1, . . . ,3, are three independent Brownian mo-

tions from 0 to 0 over [0, θ ], and B2,j = {B2,j
t , θ ≤ t ≤ T }, j = 1, . . . ,3, are three

independent Brownian motions from 0 to 0 over [θ,T ], both under P̃ . Hence we see
that simulating W̃τ(i) , 1 ≤ i ≤ Ñ , amounts to simulating Brownian bridges, which is
described e.g. in Glasserman (2004).

We remark that it is also shown in Chen and Huang (2012a) how to sample func-
tionals f (ST ,MT ,mT ), recalling that mT = min0≤t≤T St , see Sect. 4 in Chen and
Huang (2012a). Finally, variance reduction techniques tailored to the exact simula-
tion scheme are also discussed in Sect. 5.1 in Chen and Huang (2012a).

We conclude that this importance sampling technique is a useful tool allowing
us to obtain unbiased estimators of diffusions and their extremal values, which are
important functionals in finance. As these estimators are unbiased, they achieve the
Monte Carlo convergence rate.

12.1.4 Multilevel Methods

We note that exact simulation methods eliminate bias, and consequently achieve
the Monte Carlo convergence rate. Multilevel methods are markedly different, they
show how to trade off bias and variance in a way so that the Monte Carlo conver-
gence rate can be recovered. These methods were introduced by Heinrich in the
context of parametric integration, see Heinrich (1998), Heinrich and Sindambiwe
(1999), and by Giles in the context of simulating SDEs, see Giles (2008b), and
Giles (2008a). The idea behind the multilevel method is to consider discretization
schemes, such as the Euler scheme discussed in the preceding subsection, with dif-
ferent step sizes. Recall that above, we used the time step size 
t = T

n
, now we

choose


tl = T

nl
,

where l = 0, . . . ,L. Furthermore, for a stock price given by

dSt = a(St ) dt + b(St ) dWt ,
where W denotes a scalar Brownian motion, we assume that we are interested in
computing the functional

E
(
f (ST )

)
.

Denoting f (ST ) by F , we use S̃l and F̃l to denote the approximations to ST and F ,
respectively, obtained by using a discretization scheme with time step size 
tl . It is
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useful to introduce for L ∈ {1,2, . . .} the following telescoping sum,

E(F̃L)=E(F̃0)+
L∑

l=1

E(F̃l − F̃l−1). (12.1.11)

The multilevel algorithm approximates each expectation on the right hand side of
(12.1.11) in a way that minimizes the overall computational complexity. We need to
introduce some further notation: we use Ỹ0 as an estimator for E(F̃0) usingN0 inde-
pendent samples and Ỹl as an estimator for E(F̃l − F̃l−1) based on Nl independent
samples. In particular, we set for l ∈ {0,1, . . . ,L}

Ỹl =N−1
l

Nl∑

i=1

(
F̃ il − F̃ il−1

)
, (12.1.12)

where {F̃ il − F̃ il−1}Nli=1 are assumed to be i.i.d and we set F̃ i−1 = 0. We now discuss

how to obtain realizations of F̃ il − F̃ il−1: the key point is that for fixed l and i,

the same Brownian path is used to construct F̃ il and F̃ il−1. In Giles (2008b), it is

suggested to first construct the Brownian increments to obtain F̃ il and then to sum
them in groups of size n to obtain the Brownian increments used to construct F̃ il−1.

For the same fixed l, we repeat this procedure to obtain the i.i.d. samples {F̃ il −
F̃ il−1}Nli=1. For a different level l, we again proceed by first constructing the Brownian

increments for the fine path F̃ il and then summing the increments in groups of size
n to compute the realization of the coarse path F̃ il−1. Hence for a fixed level l, the

realizations {F̃ il − F̃ il−1}Nli=1 are independent of each other, but for a fixed i, F̃ il and

F̃ il−1 are obtained using the same Brownian path. The latter property allows us to

apply strong convergence results when analyzing the variance of (F̃ il − F̃ il−1), as
shown below. Finally, we remark that for different levels l1 and l2, the estimators
Yl1 and Yl2 are independent of each other as independent Brownian paths are used
for the construction. By the independence of {F̃ il − F̃ il−1}Nli=1 for l ∈ {0, . . . ,L}, we
obtain

Var(Ỹl)=N−1
l Var(F̃l − F̃l−1)=N−1

l Vl,

i.e. we set Vl = Var(F̃l−F̃l−1). The combined estimator is now given by the formula

Ỹ =
L∑

l=0

Ỹl , (12.1.13)

and its variance by

Var(Ỹ )=
L∑

l=0

Var(Ỹl)=
L∑

l=0

N−1
l Vl, (12.1.14)

by the independence of Ỹ0, Ỹ1, . . . , ỸL. If we treat the Nl as continuous variables,
the variance of Ỹ will be minimized by choosing Nl to be proportional to

√
Vl
tl .
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The idea of the multilevel method can now be summarized as follows: for the
coarse level, i.e. those for which 
tl is large and hence those for which the com-
putational cost is low, one performs a large number of simulations to reduce the
overall variance. On the other hand, for the fine levels, i.e. those for which 
tl is
small and hence those for which the computational cost is high, one only performs
few simulations. As the bias associated with the estimator Ỹ in (12.1.13) is given by

∣
∣E(Ỹ )−E(F)∣∣= ∣∣E(F̃L)−E(F)

∣
∣,

one may conclude that on the coarse levels, one reduces the variance, but on the fine
levels one reduces the bias. To estimate the bias, as demonstrated in the preceding
subsection, one requires a weak convergence result. However, to bound the variance
Vl , one can employ a strong convergence result. We note that

Vl = Var(F̃l − F̃l−1)≤
(
Var(F̃l − F)1/2 + Var(F̃l−1 − F)1/2

)2
.

Now,

Var(F̃l − F)≤E
(
(F̃l − F)2

)
. (12.1.15)

If we have a strong convergence result for the right-hand side in (12.1.15), such as
strong order 1

2 for an Euler scheme,

E
(
(F̃l − F)2

)≤O(
tl),
we have that Vl behaves like O(
tl). Recall from Eq. (12.1.6) that the MSE is
given by bias squared plus variance, where bias depends only on the time step size
and variance only on the sample size. Hence to balance the sample size with the
time step size, we set Nl proportional to 
tl . We now fix ε > 0, which can be
interpreted as the target root mean square error we want to achieve. Then setting
Nl =O(ε−2L
tl), we have from (12.1.14) that Var(Ỹ ) =O(ε2). Now we choose
L so that the bias decreases sufficiently fast. In particular, by setting

L= log(ε−1)

logn
,

we obtain that 
tL = T n−L =O(ε). If we can apply a weak convergence order 1
result, we have

∣
∣E(F̃L)−E(F)

∣
∣=O(ε).

Hence the MSE of the scheme (12.1.13) is O(ε2) at a computational cost of

L∑

l=1

Nl

−1tl =O

(
L∑

l=1

ε−2
tl

−1tlL

)

=O(ε−2(log ε)2
)
,

which is the Monte Carlo convergence rate of an unbiased scheme, up to the (log ε)2

factor. This shows that by trading off bias and variance, a scheme based upon biased
discretization schemes can recover the Monte Carlo convergence rate achieved by
an unbiased scheme.
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12.2 Quasi-Monte Carlo Methods

In this section, we briefly review quasi-Monte Carlo (qMC) methods focusing on
the application to the computation of functionals of multidimensional diffusions.
Quasi-Monte Carlo methods can roughly be divided into integration lattices and
nets. For more details on integration lattices, we refer the reader to Niederreiter
(1992) and Sloan and Joe (1994). For more information on nets, we refer the reader
to Niederreiter (1992) and Dick and Pillichshammer (2010). Finally, for applications
of qMC methods to finance, we refer the reader to Glasserman (2004), Chap. 5,
Jäckel (2002), Chap. 8, and Korn et al. (2010), Chap. 2.

Quasi-Monte Carlo rules are equal weight integration lattices that can be used to
approximate integrals over the unit cube, which are typically of high dimension. In
this section, we focus on the construction of qMC point sets, which we are going to
apply to finance problems in the next section. We concentrate on nets, in particular
digital nets, the explicit construction of which we now outline.

12.2.1 The Digital Construction Scheme

We now formally introduce the digital construction scheme, which allows us to
define digital nets.

Definition 12.2.1 Let b be a prime and m be an integer. Let C1, . . . ,Cd be m×m
matrices over the finite field Zb . We construct bm points in [0,1)d as follows: for
0 ≤ h < bm let h = h0 + h1b + · · · + hm−1b

m−1 be the b-adic expansion of h.
Identify h with the vector h = (h0, . . . , hm−1)

� ∈ Z
m
b . For 1 ≤ j ≤ d we multiply

the matrix Cj by h, i.e.

Cjh =: (yj,1(h), . . . , yj,m(h)
)� ∈ Z

m
b

and set

xh,j := yj,1(h)

b
+ · · · + yj,m(h)

bm
.

The point set {x0,x1, . . . ,xbm−1} is called a digital net over Zb with generating
matrices C1, . . . ,Cd .

Having defined the digital construction scheme, we are now in a position to define
digital nets.

Definition 12.2.2 Let b be a prime, t a nonnegative integer, and m ∈ N , Zb the
finite field of order b and C1, . . . ,Cd ∈ Z

m×m
b with Cj = (cj,1, . . . , cj,m)

�. If

∀dj , j = 1, . . . , d , 0 ≤ dj ≤ m, such that
∑d
j=1 dj = m − t , the vectors {cj,i , i =

1, . . . , dj , j = 1, . . . , d} are linearly independent, then the matrices C1, . . . ,Cd gen-
erate a digital (t,m,d)-net over Zb .
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We now briefly comment on the parameters that characterize a digital net:

• m determines the number of points, which is bm;
• d determines the dimensionality of the point set;
• t is the quality parameter of the digital net, the lower the better the net is.

Having defined digital nets, we note that in order to compute functionals of multidi-
mensional diffusions, we need to have access to the generating matrices C1, . . . ,Cd .
Fortunately, many examples of such matrices are known, see e.g. Faure (1982),
Niederreiter (1992, 2005, 2008), Niederreiter and Xing (1999), Sobol (1967) and
the references therein. Efficient implementations of qMC point sets have been pub-
lished in the literature, see e.g. Joe and Kuo (2003, 2008), for the Sobol sequence
and Pirsic (2002) for an implementation of the Niederreiter-Xing sequence. Imple-
mentations of different sequences are also discussed in Hong and Hickernell (2003).
We now illustrate the above definitions with some examples.

Example 12.2.3 The Hammersley net, Hammersley (1960), is an example of a dig-
ital (0,m,2)-net over Z2. Its generating matrices are given by

C1 =

⎛

⎜
⎜
⎜
⎜
⎝

1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1

⎞

⎟
⎟
⎟
⎟
⎠

and C2 =

⎛

⎜
⎜
⎜
⎜
⎝

0 · · · 0 1
...

...
... 0

0
...

...
...

1 0 · · · 0

⎞

⎟
⎟
⎟
⎟
⎠
.

Example 12.2.4 The following matrices generate a strict digital (1,3,4)-net over
Z2 and stem from a Niederreiter-Xing sequence as implemented in Pirsic (2002):

C1 =
⎛

⎝
1 1 1
0 1 0
0 0 0

⎞

⎠ , C2 =
⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ ,

C3 =
⎛

⎝
1 1 0
1 0 0
0 0 1

⎞

⎠ , C4 =
⎛

⎝
0 1 1
1 1 0
1 1 1

⎞

⎠ .

Example 12.2.5 The following matrices generate a strict digital (2,3,4)-net over Z2:

C1 =
⎛

⎝
1 1 0
1 0 0
1 1 0

⎞

⎠ , C2 =
⎛

⎝
1 0 1
1 0 1
0 0 0

⎞

⎠ ,

C3 =
⎛

⎝
0 0 1
1 0 0
0 0 1

⎞

⎠ , C4 =
⎛

⎝
0 1 0
0 1 0
0 0 0

⎞

⎠ .

Since Paskov and Traub (1995) it has been known that qMC methods can be suc-
cessfully applied to finance problems. In theory, see e.g. Niederreiter (1992) and
Dick and Pillichshammer (2010), for functions of bounded variation in the sense
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of Hardy and Krause, see Niederreiter (1992), qMC rules can achieve convergence
rates arbitrarily close to N−1, which is a significant improvement on the N−1/2

convergence rate achieved by MC methods. However, as evident from the discus-
sion in this section, qMC rules are deterministic point sets and provide no practical
information on the actual error incurred. Monte Carlo methods on the other hand
allow for the computation of confidence intervals, giving statistical information on
the error. We now remedy this shortcoming and randomize the qMC point sets. This
allows us to supplement the faster convergence rates enjoyed by qMC rules with sta-
tistical information. Though different randomization techniques exist, see e.g. Dick
and Pillichshammer (2010), we focus on Owen’s scrambling algorithm, introduced
in Owen (1995), see also Owen (1997), which produces optimal convergence rates,
as we explain below.

12.2.2 Owen’s Scrambling Algorithm

In this subsection we discuss Owen’s scrambling algorithm, which was introduced
in Owen (1995). We describe this algorithm using a generic point x ∈ [0,1)d , where
x = (x1, . . . , xd) and

xj = ξj,1

b
+ ξj,2

b2
+ · · · .

Then the scrambled point shall be denoted by y ∈ [0,1)d , where y = (y1, . . . , ys),

yj = ηj,1

b
+ ηj,2

b2
+ · · · .

The permutation applied to ξj,l , j = 1, . . . , d , depends on ξj,k , for 1 ≤ k < l. In
particular, ηj,1 = πj (ξj,1), ηj,2 = πj,ξj,1(ξj,2), ηj,3 = πj,ξj,1,ξj,2(ξj,3) and in general

ηj,k = πj,ξj,1,...,ξj,k−1(ξj,k), k ≥ 2,

where πj and πj,ξj,1,...,ξj,k−1 , k ≥ 2, are random permutations of {0, . . . , b− 1}. We
assume that permutations with different indices are mutually independent. It was
shown in Owen (1995), Proposition 2, that if we apply Owen’s scrambling algorithm
to a digital net, each of the resulting points is uniformly distributed in the unit cube.
Finally, for an efficient implementation of the scrambling algorithm we refer the
reader to Hong and Hickernell (2003) and Matoušek (1998).

12.2.3 Numerical Integration Using Scrambled Digital Nets

We now discuss the effectiveness of scrambled digital nets. The definitive reference
on integration using scrambled digital nets is Chap. 13 in Dick and Pillichshammer
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(2010), and we briefly discuss one of the main results from this chapter. We intro-
duce the estimator

Î (f )= 1

N

N−1∑

i=0

f (yi ),

where the point set {yi}N−1
i=0 , for N = bm and m ∈ N , is obtained by applying

Owen’s scrambling algorithm to a digital net. In Dick and Pillichshammer (2010),
the authors discuss functions f that enjoy generalized variation in the sense of Vi-
tali of order α, where 0< α ≤ 1, see Chap. 13 in Dick and Pillichshammer (2010).
Essentially, α determines the degree of smoothness of f , α = 0 corresponds to func-
tions that are only square integrable, and α = 1 corresponds to functions with square
integrable mixed partial derivatives. One can think of α as a continuity parameter,
the larger α, the smoother the function. One of the main results of Chap. 13 in Dick
and Pillichshammer (2010) is Theorem 13.25, which states that

Var
(
Î (f )

)≤ Cm,t,dN−(1+2α),

where Cm,t,d denotes a constant dependent on m, t , and d . Some comments should
be made: for α = 1, we have Var(Î (f )) ≤ Cm,t,dN−3, which is a significant im-
provement upon N−1, the Monte Carlo rate. For square integrable functions f , one
obtains Var(Î (f )) = o(N−1), which is still an improvement on the Monte Carlo
rate. Finally, we note that scrambled digital nets are adaptive in the following sense:
the smoothness α of the integrand under consideration need not be known a priori.
Scrambled digital nets will always deliver the optimal convergence rate, N−(1+2α),
for 0< α ≤ 1. These observations suggest that scrambled digital nets are very useful
tools when computing functionals of multidimensional diffusions.

12.2.4 Multilevel Quasi-Monte Carlo Methods

We conclude this section by recalling that multilevel methods could be used to com-
bine biased estimators in such a way as to recover the Monte Carlo convergence rate
of an unbiased scheme. The same comment applies to multilevel quasi-Monte Carlo
methods. In a series of papers, see e.g. Gnewuch (2012a, 2012b), Hickernell et al.
(2010), Niu et al. (2011), Baldeaux (2012b), Baldeaux and Gnewuch (2012), it was
shown how to combine biased qMC rules using a multilevel approach to recover the
optimal qMC rate. We refer the reader to these references for details.

12.3 Applications Under the Benchmark Approach

We now apply quasi-Monte Carlo methods to the pricing of realized variance prod-
ucts, see Sect. 8.5.2. In Sect. 13.5 we will discuss how to recover the joint distri-
bution of (YT ,

∫ T
0

1
Yt
dt). In this subsection, we discuss how to apply quasi-Monte
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Carlo methods to this problem. This approach is applied to the pricing of put options
on realized variance and volatility. We compare the results with an almost exact sim-
ulation scheme. In the case of the put option on realized variance, we compare the
results with the closed-form solution from Sect. 8.5.2.

We firstly discuss how to map the joint density to the unit square [0,1]2. For a
detailed discussion, with illustrations, we refer the reader to Baldeaux et al. (2011b),
here we only present the outcome of the analysis. Assume that the joint density of
(YT ,

∫ T
0

1
Yt
dt), which we obtain from (5.4.16) by inverting the Laplace transform

numerically, is given by f (y, z), where the variable y corresponds to YT and z
to
∫ T

0
1
Yt
dt . We have the following representation for a general functional H of

realized variance

E

(
H(
∫ T

0
1
Yt
dt)

YT

)

=
∫ ∞

0

∫ ∞

0

H(z)

y
f (y, z) dy dz.

We alert the reader to the fact that mapping the joint density into the unit square is
not a trivial problem, in particular, since we do not have an explicit representation
for f . The difficulty in mapping joint densities incorporating dependence structures
to the unit cube was also discussed in Kuo et al. (2008). However, the problem stud-
ied in Kuo et al. (2008) was slightly different, as the joint density was a multivariate
normal density, which is known explicitly. In this section, we map the joint density
to the unit square using the transformation

x1 − 1 − exp{−λ1y},
x2 − 1 − exp{−λ2z}, (12.3.1)

i.e. we base the transformation on the cumulative distribution function of the expo-
nential distribution. We remark that λ1 and λ2 can differ, a feature which turns out
to be crucial for the approach. Furthermore, another important feature of the trans-
formation (12.3.1) is that it is easily interpretable, which is important, in particular,
since we do not have access to an explicit representation of the joint density. We
display in Fig. 12.3.1 the resulting joint density for λ1 = 0.5 and λ2 = 0.18. This
particular transformation is used for numerical integration, for a detailed discussion
of this problem, see Baldeaux et al. (2011b).

We now discuss how to employ quasi-Monte Carlo methods where we use the
notation

x1 = Ψ1(y)= 1 − exp{−λ1y},
x2 = Ψ2(z)= 1 − exp{−λ2z}, (12.3.2)

hence

y = Ψ−1
1 (y)= log(1 − x1)

−λ1
,

z= Ψ−1
2 (z)= log(1 − x2)

−λ2
,

(12.3.3)

and
ψ1(y)= λ1 exp{−λ1y},
ψ2(z)= λ2 exp{−λ2z}. (12.3.4)
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Fig. 12.3.1 Joint density of
(YT ,

∫ T
0

1
Yt
dt) for Y0 = 1,

η= 0.052, T = 1, l1 = 0.5,
l2 = 0.18

We employ digital nets as discussed in the previous section. Given a digital net
{(xi,1, xi,2)}Ni=1 ∈ [0,1)2, we approximate the integral under consideration as fol-
lows:

∫ ∞

0

∫ ∞

0

H(z)

y
f (y, z) dy dz

=
∫ 1

0

∫ 1

0

H(Ψ−1
2 (x2))

Ψ−1
1 (x1)

f (Ψ−1
1 (x1),Ψ

−1
2 (x2))

ψ(Ψ−1
1 (x1))ψ(Ψ

−1
2 (Ψ−1

2 (x2)))
dx1 dx2

=
∫ 1

0

∫ 1

0

H(Ψ−1
2 (x2))

Ψ−1
1 (x1)

f (Ψ−1
1 (x1),Ψ

−1
2 (x2))

λ1(1 − x1)λ2(1 − x2)
dx1 dx2

≈ 1

N

N∑

i=1

H(Ψ−1
2 (xi,2))

Ψ−1
1 (xi,1)

f (Ψ−1
1 (xi,1),Ψ

−1
2 (xi,2))

λ1(1 − xi,1)λ2(1 − xi,2) . (12.3.5)

As we deal with a two-dimensional integration problem, we base our quasi-Monte
Carlo rule on the Sobol sequence, which, in two dimensions, is well known to have
the optimal quality parameter t = 0. Furthermore, to be able to estimate standard
errors, we use l independent copies of the quadrature rule presented in (12.3.5),
each of which is obtained by applying Owen’s scrambling algorithm, see Sect. 12.2,
to the quasi-Monte Carlo point set {(xi,1, xi,2)}Ni=1. We remark that the scrambling
algorithm is implemented according to Hong and Hickernell (2003), and Matoušek
(1998). Consequently, we estimate the integral as follows:

IRQMC = 1

l

l∑

j=1

Ij = 1

l

l∑

j=1

1

N

N∑

i=1

g
(
y
j

i,1, y
j

i,2

)
, (12.3.6)
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where {(yji,1, yji,2)}Ni=1, j = 1, . . . , l, is obtained from the quasi-Monte Carlo point

set {(xi,1, xi,2)}Ni=1 by applying Owen’s scrambling algorithm. We estimate standard
errors via

σRQMC =
√∑l

j=1(Ij − IRQMC)2

l(l − 1)
. (12.3.7)

For purposes of comparison, we will also look at Monte Carlo estimators. In this
case, we use lN points {(ui,1, ui,2)}lNi=1, independent and identically distributed in
[0,1]2, estimate the integral under consideration via

IMC = 1

lN

lN∑

i=1

g(ui,1, ui,2), (12.3.8)

and compute standard errors using

σMC =
√∑lN

i=1(g(ui,1, ui,2)− IMC)

lN(lN − 1)
. (12.3.9)

Numerical results for puts on realized variance and volatility are presented in
Sect. 12.4. Finally, we would like to point out that the numerical scheme presented
in this subsection could also be used for variance reduction, e.g. it could serve as a
control variate, if models less tractable than the stylized MMM are employed.

12.4 Numerical Results

In this section, we present some numerical results illustrating the method introduced
in Sect. 12.2. First, we discuss put options on realized variance, for which analytical
solutions are available using the results from Sect. 8.5.2 and, subsequently, we dis-
cuss put options on volatility. For the latter, closed form solutions are not available,
but we check our results using the almost exact simulation from Sect. 12.4.1.

12.4.1 Almost Exact Simulation for Functionals of Realized
Variance

Another method for computing prices of functionals of realized variance is based on
a discretization of the integral appearing in the definition of realized variance, i.e.

∫ T

0

1

Yt
dt ≈

n∑

i=0

wi
1

Yti
, (12.4.10)
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where we choose t0 = 0, tn = T . Furthermore, in this section, we use the trapezoidal
rule, i.e. we set

wi = T

N
for i = 1, . . . , n− 1,

wi = T

2N
for i = 0, n.

(12.4.11)

Obviously, Yti , i = 1, . . . , n, can be simulated exactly. It is well known that
Yt

4η
1−exp{−ηt} follows a χ2(4, α) distribution, where α = 4ηy

exp{ηt}−1 and Y0 = y, see
e.g. Sect. 3.1, Platen and Rendek (2009) or Jeanblanc et al. (2009). We use a simple
Monte Carlo simulation for this approach. A quasi-Monte Carlo point set could have
been employed, too. Finally, we remark that the multilevel Monte Carlo method, as
discussed in Sect. 12.1, could also be useful in this context.

Since the discretization of the integral introduces a bias, we refer to the scheme as
being almost exact. The computational effort needs to be divided up between vari-
ance and bias reduction. Following the approach in e.g. Duffie and Glynn (1995),
see also Sect. 12.1, we consider the mean square error,

MSE :=E
((

Ŷ −E
(

f

(∫ T

0

1

Yt
dt

)))2)

,

where f (·) is the functional of interest and Ŷ = 1
N

∑N
j=1(f (

∑n
i=0wi

1
Y
j
ti

)), where

Y
j
ti

, j = 1, . . . ,N , are independent copies of Yti . Consequently,

MSE =
Var(f (

∑n
i=0wi

1
Yti
))

N
+
(

E

(

f

(
n∑

i=0

wi
1

Yti

))

−E
(

f

(∫ T

0

1

Yt
dt

)))2

.

For the functionals under consideration in this paper,

f (z)= (K − z)+
YT

(12.4.12)

and

f (z)= (K −√
z)+

YT
, (12.4.13)

respectively, estimates on the bias
∣
∣
∣
∣
∣
E

(

f

(
n∑

i=0

wi
1

Yti

))

−E
(

f

(∫ T

0

1

Yt
dt

))∣∣
∣
∣
∣

do not seem to be known. Consequently, we estimate the bias numerically, using the
Laplace transform method from Sect. 8.5.2 and the quasi-Monte Carlo method from
Sect. 12.2 to obtain reference values for E(f (

∫ T
0

1
Yt
dt)). This allows us to numeri-

cally investigate the bias, which we find to be O(n−1) for (12.4.12) and (12.4.13).
Consequently, we can now divide the computational effort between variance and
bias reduction. Using our numerical estimates on the bias, we find that for both
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functionals, (12.4.12) and (12.4.13), considered in this paper,

MSE = c1

N
+ c2

n2
, (12.4.14)

where c1 and c2 are positive constants. The computational cost of this scheme is
proportional to nN . Consequently, given a computational budget C, (12.4.14) sug-
gests that one should choose N = C2/3 and n = C1/3, see e.g. Duffie and Glynn
(1995) and Sect. 12.1. In this section, we will make use of this choice of n and N ,
for a given computational budget C.

We remark that this approach paints a very favorable picture for the almost exact
simulation approach: the availability of reference solutions allows us to estimate
the bias, which in turn allows us to trade-off variance and bias reduction, using the
mean-square-error as a criterion. Should reference solutions not be available, one
might have to divide the computational effort in a more ad-hoc fashion, resulting in
a worse performance of the method.

Finally, we point out that this method could also be applied to corridor variance
swaps, the floating leg of which is given by

∫ T

0
1
S
δ∗
t ∈D d

[
log
(
Sδ∗
)]
t
. (12.4.15)

The almost exact simulation scheme presented in this subsection allows us to handle
corridor variance swaps.

12.4.2 Numerical Results for Put Options on Realized Variance

In this subsection, we apply the numerical scheme introduced in Sect. 12.2 to com-
pute

E

[
(K − ∫ T0 1

Yt
dt)+

YT

]

, (12.4.16)

from which we can compute prices of European puts on realized variance by multi-

plying by the constant
S
δ∗
0

α
δ∗
T S

0
T

. We use the following set of parameters

Y0 = 1, K = 5, η= 0.052, T = 1,

and obtain from Sect. 8.5.2 the true value of (12.4.16) as being around 3.11. In
Figs. 12.4.2 and 12.4.3, we show estimates of (12.4.16) and standard errors ob-
tained from the quasi-Monte Carlo and the Monte Carlo method, as detailed in
Sect. 12.2, and the almost exact simulation scheme from Sect. 12.4.1. For the quasi-
Monte Carlo method, estimates of (12.4.16) and standard errors are calculated us-
ing (12.3.6) and (12.3.7), where we choose l = 30 and N = 2m and vary m. On
the x-axes in Figs. 12.4.2 and 12.4.3, we show the logarithm of the computational
complexity of the problem, that is the logarithm of the number of function evalu-
ations performed, which is log(l2m2). As we mentioned before, the computational
complexity changes with m.
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Fig. 12.4.2 Estimates of (12.4.16) versus logarithm of the number of function evaluations

Fig. 12.4.3 Standard errors for the put option on realized variance versus logarithm of the number
of function evaluations

We compare the performance of the quasi-Monte Carlo point set to the perfor-
mance of the standard Monte Carlo method, which uses l2m two-dimensional points
to ensure that the two methods are of the same computational complexity. Estimates
of (12.4.16) and standard errors are obtained from (12.3.8) and (12.3.9). We con-
clude that scrambled quasi-Monte Carlo point sets offer a marked advantage over
plain Monte Carlo simulation.

Finally, we use the almost exact simulation scheme (AE MC), discussed in
Sect. 12.4.1. As we numerically determined that the bias is O(n−1), we choose
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Fig. 12.4.4 Estimates of (12.4.17) versus logarithm of the number of function evaluations

N = (l2m2)2/3 and n= (l2m2)1/3, ensuring that the almost exact simulation scheme
is of the same computational complexity as the previous two approaches. We note
that due to the fact that the computational effort is to be divided up between variance
and bias reduction, the two competing methods offer better estimates and standard
errors converge at a faster rate, as one would expect. These numerical results high-
light the usefulness of the Lie symmetry methods, which allow us to obtain explicit
formulae for the Laplace transforms of put option prices and the joint distribution
of (YT ,

∫ T
0

1
Yt
dt).

12.4.3 Numerical Results for Put Options on Volatility

In this subsection, we present numerical results for put options on volatility. In par-
ticular, we compute

E

( (K −
√∫ T

0
1
Yt
dt)+

YT

)

, (12.4.17)

from which we can obtain prices of European puts on volatility by multiplying by
S
δ∗
0

α
δ∗
T S

0
T

, which is constant. As in Sect. 12.4.2, we choose the set of parameters

Y0 = 1, K = 5, η= 0.052, T = 1.

As discussed in Sect. 8.5.2, we do not have a closed-form solution for (12.4.17).
In Figs. 12.4.4 and 12.4.5, we show estimates of (12.4.17) and standard errors, re-
spectively, obtained from the quasi-Monte Carlo and Monte Carlo method as de-
tailed in Sect. 12.2 and the almost exact simulation scheme from Sect. 12.4.1. As
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Fig. 12.4.5 Standard errors for the put option on volatility versus logarithm of the number of
function evaluations

in Sect. 12.4.2, for the quasi-Monte Carlo method, estimates of (12.4.17) and stan-
dard errors are calculated using (12.3.6) and (12.3.7), where we choose l = 30 and
N = 2m and again we vary m. Following the discussion in Sect. 12.4.2, on the
x-axes in Figs. 12.4.4 and 12.4.5 we show the logarithm of the computational com-
plexity, i.e. the logarithm of the number of function evaluations, which is log(l2m2),
where we vary m.

For the Monte Carlo method, we use l2m two-dimensional points to ensure
that the two methods are of the same computational complexity. Again, we obtain
estimates of (12.4.17) and standard errors from (12.3.8) and (12.3.9), and conclude
that the quasi-Monte Carlo point sets offer a marked advantage over plain Monte
Carlo simulation.

Regarding the almost exact simulation scheme, the bias seems to be O(n−1), re-
sulting in the same choice for n and N as before, N = (l2m2)2/3 and n= (l2m2)1/3.
We find again that dividing up the computational effort between variance and bias
reduction results in the competing two methods outperforming the almost exact sim-
ulation scheme, as expected, highlighting the importance of the results obtained us-
ing Lie symmetry methods.



Chapter 13
Computational Tools

It is the aim of this chapter to introduce computational tools, which can be used
to implement functionals presented in this book. In particular, we focus on the non-
central chi-squared distribution, which appeared in the context of the MMM and the
TCEV model, and the non-central beta distribution, which appeared in the context
of pricing exchange options. Lastly, we discuss the inversion of Laplace transforms,
which can be used to recover transition densities from the Laplace transforms.

13.1 Some Identities Related to the Non-central Chi-Squared
Distribution

The non-central chi-squared distribution featured prominently when pricing Euro-
pean call and put options under the MMM and TCEV model, see Sect. 3.3. In the
current section, we recall the distribution, and in Sect. 13.2 we will present an algo-
rithm showing how to implement the distribution, where we follow ideas presented
in Hulley (2009).

First, we recall the link between the squared Bessel process and the non-central
chi-squared distribution, which is given by

Xt

t

d= χ2
δ

(
x

t

)

,

where X = {Xt, t ≥ 0} denotes a squared Bessel process of dimension δ, and χ2
δ (λ)

denotes a non-central chi-squared random variable with δ degrees of freedom and
non-centrality parameter λ > 0. We recall from Lemma 8.2.2 that the non-central
χ2-distribution with δ > 0 degrees of freedom and non-centrality parameter λ > 0
has the density function

p(x, δ, λ)= 1

2
exp

{

−x + λ
2

}(
x

λ

) δ
4− 1

2

I δ
2− 1

2
(
√
λx), x ≥ 0. (13.1.1)
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Here Iν(x)=∑j≥0
1

j !Γ (j+ν+1) (
x
2 )

2j+ν denotes the modified Bessel function of the
first kind of order ν >−1. The following equality is given in Hulley (2009), where

λ

x
p(x,4, λ)= 1

2
e−

λ+x
2

(
λ

x

) 1
2

I1(
√
λx )

= 1

2
e−

λ+x
2

(
x

λ

)− 1
2

I−1(
√
λx )= p(x,0, λ), (13.1.2)

for x ∈ (0,∞) and λ > 0, since the modified Bessel function of the first kind sat-
isfies I1 = I−1, see e.g. Abramowitz and Stegun (1972), Eq. (9.6.6). Clearly, this
equality entails the probability density function, of a non-central chi-squared ran-
dom variable of zero degrees of freedom, p(x,0, λ). Such a random variable is
comprised of a discrete part, as it places positive mass at zero, and a continuous part
assuming values in the interval (0,∞). We return to this issue when discussing this
type of probability distributions below. From Eq. (13.1.2), we immediately obtain
the following formula, which is employed frequently in the context of the MMM,
see Sect. 3.3:

E

(
λ(t, S)

χ2
4 (λ(t, S))

g
(
χ2

4

(
λ(t, S)

))
)

=E(g(χ2
4

(
λ(t, S)

)))− g(0) exp

{

−λ(t, S)
2

}

, (13.1.3)

for an appropriately integrable function g(·). Next, we introduce the cumulative
distribution function of a non-central chi-squared random variable. The following
equality, see Eq. (29.3) in Johnson et al. (1995), introduces the non-central chi-
squared distribution as a weighted average of central chi-squared distributions, the
weights being Poisson weights:

P
(
χ2
δ (λ)≤ x

)=
∞∑

j=0

exp{−λ/2}(λ/2)j
j ! P

(
χ2
δ+2j ≤ x

)
, (13.1.4)

for all x ∈ (0,∞), δ > 0 and λ > 0, where χ2
δ denotes the central chi-squared ran-

dom variable. The distribution of the central chi-squared random variable admits
the following presentation in terms of the regularized incomplete gamma function
P(·,·), see Johnson et al. (1994), Eq. (18.3):

P
(
χ2
δ ≤ x

)=P
(
δ

2
,
x

2

)

, (13.1.5)

for x ∈ (0,∞) and δ > 0, where

P(a, z) := 1

Γ (a)

∫ z

0
exp{−t}ta−1 dt, (13.1.6)

for z ∈ �+ and a > 0. We can obtain an expression similar to Eq. (13.1.4) for the
density of a non-central chi-squared random variable,

p(x, δ, λ)=
∞∑

j=0

exp{−λ/2}(λ/2)j
j ! p(x, δ + 2j),
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for x ∈ (0,∞), δ > 0 and λ > 0, and where p(x, δ) denotes the probability density
function of a chi-squared random variable with δ > 0 degrees of freedom. Finally,
we focus on the non-central chi-squared distribution with zero degrees of freedom,
which also featured in the context of the MMM in Sect. 3.3. From Eq. (13.1.4), we
get

P
(
χ2

0 (λ)≤ x
)=

∞∑

j=0

exp{−λ/2}(λ2 )j
j ! P

(
χ2

2j ≤ x
)
, (13.1.7)

for x ≥ 0 and λ > 0. However, χ2
0 , a central chi-squared random variable of zero

degrees of freedom, is simply equal to zero, i.e.,

P
(
χ2

0 (λ)≤ x
)= 1,

for all x ≥ 0, hence

P
(
χ2

0 (λ)= 0
)= exp{−λ/2},

where λ > 0. From Eq. (13.1.7) we get

P
(
χ2

0 (λ)≤ x
)= P (χ2

0 (λ)= 0
)+ P (0< χ2

0 (λ)≤ x
)

= exp{−λ/2} +
∫ x

0
p(x,0, λ) dx,

for x ≥ 0, λ > 0. We remark that a non-central chi-squared random variable of
0 degrees of freedom is not continuous, but places mass at the origin, and hence
p(x,0, λ) is not a probability density function. Nevertheless, it is obtained by for-
mally setting δ = 0 in Eq. (13.1.1).

We conclude this section with some useful identities pertaining to the non-central
chi-squared distribution. These equalities feature frequently in Sect. 3.3. We recall
that p(·, δ, λ) denotes the probability density of a χ2-distributed random variable,
and we use Ψ (·, δ, λ) to denote the distribution of a χ2-distributed random variable
with δ degrees of freedom and non-centrality parameter λ.

Lemma 13.1.1 The following useful properties hold:

(
λ

x

) ν−2
2

p(x, ν,λ)= p(λ, ν, x) (13.1.8)

∫ ∞

0
p(x, ν + 2, y) dy = Ψ (x, ν,0) (13.1.9)

∫ ∞

λ

p(x, ν + 2, y) dy = Ψ (x, ν,λ) (13.1.10)

∫ λ

0
p(x, ν + 2, y) dy = Ψ (x, ν,0)−Ψ (x, ν,λ). (13.1.11)
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13.2 Computing the Non-central Chi-Squared Distribution

The aim of this section is to introduce an algorithm allowing us to compute the non-
central chi-squared distribution. We recall from Sect. 3.3, that in order to price calls
and puts, we need to be able to evaluate this distribution function. Furthermore, we
point out that we need to be able to evaluate this distribution function for zero de-
grees of freedom and for a variety of non-centrality parameters. In particular, for
large maturities, the non-centrality parameter is small, whereas for small maturities,
the non-centrality parameter is large. This section follows Hulley (2009) closely. As
in this reference, we base our approach on an algorithm from Ding (1992), which
performs well for small values of the non-centrality parameter, but not for large val-
ues. For this reason, we employ an analytic approximation due to Sankaran (1963),
for large values. We introduce the non-central regularized incomplete gamma func-
tion, given by

P(a, b, z) :=
∞∑

j=0

exp{−b}bj
j ! P(a + j, z), (13.2.12)

for all z ∈ �+0 and a, b ≥ 0. Formally, we set P(0, z) := 1, as the regularized in-
complete gamma function from Eq. (13.1.6) is not well-defined in this case. We can
express the distribution function of the non-central chi-squared and the chi-squared
random variables in terms of the non-central regularized incomplete gamma func-
tion,

P
(
χ2
δ ≤ x

)=P
(
δ

2
,0,

x

2

)

,

where x ∈ (0,∞) and δ > 0, and

P
(
χ2
δ (λ)≤ x

)=P
(
δ

2
,
λ

2
,
x

2

)

,

for x ∈ (0,∞) (respectively x ∈ �+), δ > 0, (respectively δ = 0) and λ > 0. We
assume for the remainder of this section that one of the following conditions is
satisfied:

• z ∈ (0,∞) and a, b > 0;
• z ∈ �+, a = 0 and b > 0,

which correspond to the cases δ > 0 and δ = 0, respectively.
In a first step, we rewrite the terms P(a + j, z) on the right-hand side of

Eq. (13.2.12) in terms of an infinite sum. Using integration by parts and the identity
Γ (a + j + 1)= (a + j)Γ (a + j), we obtain

P(a + j + 1, z)=P(a + j, z)− exp{−z}za+j
Γ (a + j + 1)

, (13.2.13)
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which also holds for a = j = 0, as by definition P(0, z)= 1. A recursive application
of Eq. (13.2.13) yields

P(a + j, z)=P(a + j + 1, z)+ exp{−z}za+j
Γ (a + j + 1)

=
∞∑

k=j

exp{−z}za+k
Γ (a + k+ 1)

, (13.2.14)

for j ∈ {0, ,12, . . .}. Defining

Ak =
k∑

j=0

exp{−b}bj
j !

and

Bk = exp{−z}za+k
Γ (a + k + 1)

,

we have

P(a, b, z)=
∞∑

k=0

AkTk. (13.2.15)

The idea is to truncate the series in Eq. (13.2.15),

P(a, b, z)=
N−1∑

k=0

AkTk +
∞∑

k=N
AkTk

= P̃N(a, b, z)+ εN .
We now aim to find an effective bound for εN =∑∞

k=N AkTk . We have the trivial
bound

Ak =
k∑

j=0

exp{−b}bj
j ! <

∞∑

j=0

exp{−b}bj
j ! = 1,

and hence

εN =
∞∑

k=N
AkTk <

∞∑

k=N
Tk.

We note that the Tk , k ∈N , admit the following recursive formula:

Tk = exp{−z}za+k
Γ (a + k+ 1)

= z

a + k
exp{−z}za+k−1

Γ (a + k) = z

a + k Tk−1, (13.2.16)

for k ∈N . Hence

Tk =
k∏

l=N

z

a + l TN−1 ≤
(

z

a +N
)k−N+1

TN−1,



328 13 Computational Tools

for N ∈N and k ∈ {N,N + 1,N + 2, . . .}. This allows us to obtain the following
bound on εN :

εN <

∞∑

k=N

(
z

a +N
)k−N+1

TN−1 =
∞∑

k=1

(
z

a +N
)k
TN−1 = z

a +N − zTN−1,

(13.2.17)

for each N ∈ {N∗,N∗ + 1,N∗ + 2, . . .}, where

N∗ := min
{
n ∈ {0,1,2, . . .} ∣∣ z < a + n}.

In Algorithm 13.1 below, we present pseudo-code for an algorithm which com-
putes the non-central chi-squared distribution. In words, the algorithm proceeds
as follows: we specify a desired level of accuracy, say ε ∈ (0,1). Next, we com-
pute N∗. Obtaining N∗ is crucial, as our error bound in Eq. (13.2.17) only applies
for N ≥ N∗. We then compute P̃N∗(a, b, z), and consequently check the trunca-
tion error incurred via Eq. (13.2.17). We then proceed to add further terms AkTk ,
where k ∈ {N∗,N∗ + 1,N∗ + 2, . . .}. As soon as the bound for the truncation er-
ror εN has fallen below ε, we truncate the loop and obtain a value P̃(a, b, z) ∈
(P(a, b, z)− ε,P(a, b, z)), where N ∈ {N∗,N∗ + 1,N∗ + 2, . . .}.

Finally, we discuss the implementation of the algorithm. Recall that the Tk can be
computed recursively using Eq. (13.2.16), with only one multiplication and division
required to compute the next term. Lastly, Ak admits the representation

Ak =
k∑

j=0

exp{−b}bj
j ! =Ak−1 + exp{−b}bk

k! =Ak−1 +Bk,

where

Bk = exp{−b}bk+1

k! = b

k
Bk−1.

Hence we can also obtain the Ak recursively, with one multiplication, division, and
addition required. This means that we can compute P̃N (a, b, z) in linear time, i.e.
using O(N) operations. In a detailed study, Dyrting (2004) discovered that the al-
gorithm outlined above performs well for small and moderate values of b. For large
values of b, the series in Eq. (13.2.12) converges slowly, meaning a large number
of terms have to be used to achieve a particular precision ε. Furthermore, underflow
problems can occur, as the individual terms in the series are small.

To remedy this shortcoming, Hulley (2009) fixed a maximum number of terms
to be used in the summation. Once this limit is reached, an analytical approximation
to the non-central incomplete gamma function is used. For this there are numerous
possibilities, see Johnson et al. (1995), Sect. 29.8. We follow the advice of Schroder
(1989), who recommends the analytic approximation due to Sankaran (1963),

P(a, b, z)≈Φ(x),
where Φ denotes the standard normal cumulative distribution function and

x := −1 − hp(1 − h+ (2−h)mp
2

)− ( z
a+b
)h

h
√

2p(1 +mp)
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with

h= 1 − 2

3

(a + b)(a + 3b)

(a + 2b)2
, p = 1

2

a + 2b

(a + b)2 , m= (h− 1)(1 − 3h).

This is a robust and efficient scheme, see Dyrting (2004). In addition, the approxi-
mation improves as the value of b increases. This fact is of particular relevance to
us, as the performance of our original scheme performs worse as b increases. We
present the pseudo-code of this algorithm in Algorithm 13.1 below.

13.3 The Doubly Non-central Beta Distribution

We firstly introduce the (central) beta random variable, after that the singly non-
central beta random variable and finally the doubly non-central beta random vari-
able, all with strictly positive shape parameters. However, in Sect. 3.3, we presented
formulas for exchange options in terms of the non-central beta distribution with one
shape parameter assuming the value zero, see Eq. (3.3.16). Hence in this section, we
follow Hulley (2009) and extend the doubly non-central beta distribution allowing
for one shape parameter assuming the value zero. In Sect. 13.4, we show how to
compute the doubly non-central beta distribution.

It is well-known that the (central) beta random variable with shape parameters
δ1/2> 0 and δ2/2> 0 admits the following representation in terms of chi-squared
random variables,

βδ1,δ2 :=
χ2
δ1

χ2
δ1
+ χ2

δ2

, (13.3.18)

see Johnson et al. (1995), Chap. 25. As chi-squared random variables are strictly
positive, βδ1,δ2 assumes values in (0,1). The distribution of βδ1,δ2 can be expressed
in terms of the regularized incomplete beta function,

P(βδ1,δ2 ≤ x)= Ix
(
δ1

2
,
δ2

2

)

, (13.3.19)

for x ∈ (0,1), where

Iz(a, b) := Γ (a + b)
Γ (a)Γ (b)

∫ z

0
ta−1(1 − t)b−1 dt, (13.3.20)

for all z ∈ [0,1] and a, b > 0. We now define the singly non-central beta distribution,
with shape parameters δ1/2> 0 and δ2/2> 0 and non-centrality parameter λ > 0,
which is given by

βδ1,δ2(λ,0) :=
χ2
δ1
(λ)

χ2
δ1
(λ)+ χ2

δ2

. (13.3.21)

This distribution was introduced in Tang (1938) and Patnaik (1949), in connection
with the power function for the analysis of variance tests. We remark that (13.3.21)
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Algorithm 13.1 Non-central regularized incomplete gamma function

Require: a, b, z ∈ �+, ε ∈ (0,1) and maxiter ∈N
1: errbnd ← 1
2: if z− a /∈ {0,1,2, . . .} then
3: N∗ ← 0(z− a)+1
4: else
5: N∗ ← 0z− a1 + 1
6: end if
7: if N∗ − 1 ≤ maxiter then
8: A← exp{−b}
9: B←A

10: T ← exp{−z}za
Γ (a+1)

11: value ←A× T
12: k← 1
13: while k ≤N∗ − 1 do
14: B← b

k
×B

15: A←A+B
16: T ← z

a+k × T
17: k← k + 1
18: end while
19: errbnd ← z

a+k−z × T
20: while errbnd ≥ ε and k ≤ maxiter do
21: B← b

k
×B

22: A←A+ b
23: T ← z

a+k × T
24: value ← value +A× T
25: k← k + 1
26: errbnd ← z

a+k−z × T
27: end while
28: end if
29: if errbnd ≥ ε then
30: h← 1 − 2

3
(a+b)(a+3b)
(a+2b)2

31: p← 1
2
a+2b
(a+b)2

32: m← (h− 1)(1 − 3h)

33: x←− 1−hp(1−h+ (2−h)mp
2 )−( z

a+b )h
h
√

2p(1+mp)
34: value ←Φ(x)

35: end if
36: return value

is referred to as Type I non-central beta random variable in Chattamvelli (1995),
distinguishing it from a Type II non-central beta random variable, given by

βδ1,δ2(0, λ) := 1 − βδ1,δ2(λ,0)=
χ2
δ2

χ2
δ1
(λ)+ χ2

δ2

.
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The doubly non-central beta distribution, with shape parameters δ1/2 > 0, δ2 > 0
and non-centrality parameters λ1 > 0 and λ2 > 0 is given by

βδ1,δ2(λ1, λ2) :=
χ2
δ1
(λ1)

χ2
δ1
(λ1)+ χ2

δ2
(λ2)

. (13.3.22)

We recall from Eq. (13.1.4) that the distribution of the non-central chi-squared dis-
tribution could be expressed as a Poisson weighted mixture of central chi-squared
distributions. Analogously, the distribution of the non-central beta distribution can
be expressed as a Poisson weighted mixture of central beta distributions

P
(
βδ1,δ2(λ,0)≤ x

)=
∞∑

j=0

exp{−λ/2}(λ/2)j
j ! P(βδ1+2j,δ2 ≤ x), (13.3.23)

for all x ∈ (0,1), δ1, δ2 > 0 and λ > 0, and

P
(
βδ1,δ2(λ1, λ2)≤ x

)

=
∞∑

j=0

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ2}(λ2/2)k

k! P(βδ1+2j,δ2+2k ≤ x),

for all x ∈ (0,1), δ1, δ2 > 0 and λ1, λ2 > 0.
Now, we discuss how to extend the singly and doubly non-central beta distri-

butions to the case where one of the shape parameters is zero. We remark that the
distributions in (13.3.23) and (13.3.24) do not allow for this, as the gamma function
is not defined at zero. We hence follow Hulley (2009), where techniques from Siegel
(1979) were used to extend the non-central chi-squared distribution to include the
case of zero degrees of freedom. As with the non-central chi-squared distribution,
the distribution of the non-central beta distribution with one shape parameter equal
to zero is no longer continuous, but comprised of a discrete part placing mass at the
end points of the interval [0,1], and a continuous part assuming values in (0,1).
Setting δ2 = 0 in Eq. (13.3.21), results in a random variable identically equal to one.
However, setting δ1 = 0 yields a non-trivial random variable assuming values in
[0,1). Similarly, setting δ1 = 0 in (13.3.22), results in a non-trivial random variable
assuming values in [0,1) and setting δ2 = 0 in Eq. (13.3.22) results in a non-trivial
random variable assuming values in (0,1]. For the remainder of this section, we set
δ1 = 0 in Eqs. (13.3.23) and (13.3.22) and set δ = δ2 > 0 and define

β0,δ(λ,0) := χ2
0 (λ)

χ2
0 (λ)+ χ2

δ

, (13.3.24)

for all δ > 0 and λ > 0, and

β0,δ(λ1, λ2) := χ2
0 (λ1)

χ2
0 (λ1)+ χ2

δ (λ2)
, (13.3.25)

for all δ > 0, and λ1, λ2 > 0. The following result from Hulley (2009) shows how to
extended the doubly non-central beta distribution to the case where one of the shape
parameters assumes the value zero.
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Proposition 13.3.1 Suppose x ∈ [0,1), δ > 0, and λ1, λ2 > 0. Then

P
(
β0,δ(λ1, λ2)≤ x

)=
∞∑

j=0

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ2}(λ2/2)k

k!
× P(β2j,δ+2k ≤ x). (13.3.26)

Proof We employ Eqs. (13.3.25) and (13.1.4), (13.1.5), (13.1.6), (13.1.1), to obtain

P
(
β0,δ(λ1, λ2)≤ x

)

= P
(

χ2
0 (λ1)≤ x

1 − x χ
2
δ (λ2)

)

=
∫ ∞

0
P

(

χ2
0 (λ1)≤ x

1 − x ξ
)

p(ξ, δ, λ2) dξ

=
∞∑

j=0

exp{−λ1/2}(λ1/2)j

j !
∫ ∞

0
P

(

ξ2
2j ≤

x

1 − x ξ
)

× 1

2
exp

{

−λ2 + ξ
2

}(
ξ

λ2

) δ−2
4

∞∑

k=0

(
√
λ2ξ/2)

δ−2
2 +2k

k!Γ (δ/2 + k) dξ

=
∞∑

j=0

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ/2}
k!

1

2

(
2

λ2

) δ−2
2

×
∫ ∞

0

(λ2ξ/4)
δ−2

2 +k exp{−ξ/2}
Γ (δ/2 + k) P

(

χ2
2j ≤

xξ

1 − x
)

dξ

= exp{−λ1/2} +
∞∑

j=1

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ2}(λ2/2)k

k!

× 1

2

∫ ∞

0

(ξ/2)
δ−2

2 +k exp{−ξ/2}
Γ (δ/2 + k) P

(

j,
x

2(1 − x)ξ
)

dξ

= exp{−λ1/2} +
∞∑

j=1

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ2/2}(λ2/2)k

k!

× 1

Γ (j)Γ (δ/2 + k)
∫ ∞

0
ζ δ/2+k−1 exp{−ζ }

∫ xζ
1−x

0
tj−1 exp{−t}dt dζ

= exp{−λ1/2} +
∞∑

j=1

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ2/2}(λ2/2)k

k!

× Γ (δ/2 + j + k)
Γ (j)Γ (δ/2 + k)

∫ x
1−x

0

uj−1

(1 + u)δ/2+j+k du
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= exp{−λ1/2} +
∞∑

j=1

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ2/2}(λ2/2)k

k!

× Γ (δ/2 + j + k)
Γ (j)Γ (δ/2 + k)

∫ x

0
vj−1(1 − v)δ/2+k−1 dv

= exp{−λ1/2}

+
∞∑

j=1

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ2}(λ2/2)k

k! Ix

(

j,
δ

2
+ k
)

= exp{−λ1/2}

+
∞∑

j=1

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ2}(λ2/2)k

k! P(β2j,δ+2k ≤ x),

(13.3.27)

where we used the transformations ξ/2 �→ ζ , t/ζ �→ u, and u/(1+u) �→ v, together
with Eq. (13.3.19). We note that since central chi-squared random variables with
zero degrees of freedom are equal to zero, the same applies to β0,δ+2k , for all k ∈
{0,1,2, . . .}, see Eq. (13.3.18). Hence we have

exp{−λ1/2} = exp{−λ1/2}
∞∑

k=0

exp{−λ2}(λ2/2)k

k! P(β0,δ+2k ≤ x),

which completes the proof. �

Inspecting Eq. (13.3.27), we remark that the first term can be interpreted as
P(β0,δ(λ1, λ2)= 0) and the double sum as the probability P(0< β0,δ(λ1, λ2)≤ x)
for all x ∈ (0,1), δ > 0 and λ1, λ2 > 0. Hence we can decompose the distribution of
β0,δ(λ1, λ2) into a discrete component placing mass exp{−λ1/2} at zero and a con-
tinuous component describing the distribution over (0,1). Finally, setting λ2 = 0 we
obtain the distribution of a singly non-central beta random variable

P
(
βδ,0(0, λ)≤ x

)=
∞∑

j=0

exp{−λ/2}(λ/2)j
j ! P(βδ,2j ≤ x), (13.3.28)

for all x ∈ [0,1), δ > 0 and λ > 0. Finally, we present the extended versions of the
Type II beta random variables,

βδ,0(0, λ) := 1 − β0,δ(λ,0)= χ2
δ

χ2
0 (λ)+ χ2

δ

, (13.3.29)

for all δ > 0 and λ > 0, and

βδ,0(λ2, λ1) := 1 − β0,δ(λ1, λ2)= χ2
δ (λ2)

χ2
0 (λ1)+ χ2

δ (λ2)
, (13.3.30)

where δ > 0 and λ1, λ2 > 0, whose values lie in (0,1]. Equations (13.3.30),
(13.3.26), and (13.3.18) yield
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P
(
βδ,0(λ2, λ1)

)

= 1 − P (β0,δ(λ1, λ2) < 1 − x)

= 1 −
∞∑

j=0

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ2/2}(λ2/2)k

k! P(β2j,δ+2k < 1 − x)

=
∞∑

j=0

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ2/2}(λ2/2)k

k!
(
1 − P(β2j,δ+2k < 1 − x))

=
∞∑

j=0

exp{−λ1/2}(λ1/2)j

j !
∞∑

k=0

exp{−λ2/2}(λ2/2)k

k! P(βδ+2k,2j ≤ x),

for all x ∈ (0,1], δ > 0 and λ1, λ2 > 0. We note that βδ+2k,0 is identically equal to
one for all k ∈ {0,1,2, . . .}. Hence βδ,0(λ2, λ1) can be decomposed into a discrete
component that places mass exp{−λ1/2} at one and a continuous component taking
values in (0,1) for all δ > 0, λ1, λ2 > 0. Similarly, we obtain

P
(
βδ,0(0, λ)≤ x

)=
∞∑

j=0

exp{−λ/2}(λ/2)j
j ! P(βδ,2j ≤ x),

for all x ∈ (0,1], δ > 0 and λ > 0. Again, βδ,0 is identically equal to one, hence
βδ,0(0, λ) can be decomposed into a discrete part placing mass exp{−λ} at one and
a continuous component assuming values in (0,1).

13.4 Computing the Doubly Non-central Beta Distribution

In this section, we present an algorithm, which shows how to implement the doubly
non-central beta distribution. The algorithm is based on Hulley (2009), where an
idea from Posten (1989, 1993) is used to enhance an algorithm presented by Seber
(1963) for computing the distribution function of standard singly non-central beta
random variables.

We define the doubly non-central regularized incomplete beta function

Iz(a, b, c, d) :=
∞∑

j=0

exp{−c}cj
j !

∞∑

k=0

exp{−d}dk
k! Iz(a + j, b+ k), (13.4.31)

for all z ∈ [0,1] and a, b, c, d ≥ 0, such that either a > 0 or b > 0 and where Iz(a, b)
is given by Eq. (13.3.20). We formally set

Iz(0, b) := 1 and Iz(a,0) :=
{

0 if z < 1;
1 if z= 1,

(13.4.32)

for all z ∈ [0,1] and a, b > 0. This is necessary, as the gamma functions in
Eq. (13.3.20) are not well-defined at zero. We note that we can express the dis-
tribution functions of both the central and the non-central beta distributions in terms
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of the doubly non-central regularized incomplete beta function in Eq. (13.4.31). In
particular, we have

P(βδ1,δ2 ≤ x)= Ix
(
δ1

2
,
δ2

2
,0,0

)

,

for all x ∈ (0,1) and δ1, δ2 > 0. The distribution of the Type I singly non-central
beta distribution satisfies

P
(
βδ1,δ2(λ,0)≤ x

)= Ix
(
δ1

2
,
δ2

2
,
λ

2
,0

)

,

for all x ∈ (0,1) (respectively x ∈ [0,1) ), δ1 > 0 (respectively δ1 = 0), δ2 > 0 and
λ > 0, while for the Type II singly non-central beta distribution we obtain

P
(
βδ2,δ1(0, λ)≤ x

)= Ix
(
δ2

2
,
δ1

2
,0,

λ

2

)

for all x ∈ (0,1) ( respectively x ∈ (0,1]), δ1 > 0 (respectively δ1 = 0), δ2 > 0 and
λ > 0. Lastly, the distribution function of the doubly non-central beta distribution
satisfies the equality

P
(
βδ1,δ2(λ1, λ2)≤ x

)= Ix
(
δ1

2
,
δ2

2
,
λ1

2
,
λ2

2

)

,

for all x ∈ (0,1) (respectively x ∈ [0,1); x ∈ (0,1]), δ1, δ2 > 0 (respectively δ1 =
0, δ2 > 0; δ1 > 0, δ2 = 0) and λ1, λ2 > 0. We assume that one of the following
parameter combinations is in force:

(i) z ∈ (0,1), a, b ∈N , c, d > 0;
(ii) z ∈ [0,1), a = 0, b ∈N , c, d > 0;

(iii) z ∈ (0,1], a ∈N , b= 0, c, d > 0.

Assuming condition (i) is in force, we obtain from Seber (1963)

Iz(a, b, c, d)= exp
{−c(1 − z)}za

∞∑

k=0

exp{−d}dk
k!

b+k−1∑

n=0

(1 − z)nL(a−1)
n (−cz)

= exp
{−c(1 − z)}za

∞∑

k=0

PkTk, (13.4.33)

where we have defined the Poisson weights

Pk := exp{−d}dk
k! , k ∈ {0,1,2, . . .},

and

Tk :=
b+k−1∑

n=0

(1 − z)nL(a−1)
n (−cz), k ∈ {0,1,2, . . .}.

When condition (ii) is satisfied with z = 0, the problem is trivial, I0(0, b, c, d) =
exp{−c}. But for condition (ii) and z ∈ (0,1), Eqs. (13.3.20) and (13.4.32) yield
Iz(j, b+ k)= 1 − I1−z(b+ k, j), for each j, k ∈ {0,1,2, . . .}, and hence
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Iz(0, b, c, d)=
∞∑

j=0

exp{−c}cj
j !

∞∑

k=0

exp{−d}dk
k!

(
1 − I1−z(b+ k, j)

)

= 1 −
∞∑

j=1

exp{−c}cj
j !

∞∑

k=0

exp{−d}dk
k! I1−z(b+ k, j)

= 1 − exp{−dz}(1 − z)b
∞∑

j=1

exp{−c}cj
j !

j−1∑

n=0

znL(b−1)
n

(−d(1 − z))

= 1 − exp{−dz}(1 − z)b
∞∑

j=1

Pj

j−1∑

n=0

Tj , (13.4.34)

from (13.4.32) and Seber (1963). Finally, if the arguments satisfy condition (iii)
with z = 1, then the problem is again trivial since I1(a,0, c, d) = 1. On the other
hand, if the arguments satisfy condition (iii) with z ∈ (0,1), then applying (13.4.32)
and Seber (1963) yields

Iz(a,0, c, d)=
∞∑

j=0

exp{−c}cj
j !

∞∑

k=1

exp{−d}dk
k! IZ(a + j, k)

= exp
{−c(1 − z)}za

∞∑

k=1

exp{−d}dk
k!

k−1∑

n=0

(1 − z)nL(a−1)
n (−cz)

= exp
{−c(1 − z)}za

∞∑

k=1

Pk

k−1∑

n=0

Tk. (13.4.35)

We remark that by L(α)n we denote the Laguerre polynomials, which are defined for
n ∈ {0,1,2, . . .} , α ∈ � \ {−1,−2, . . .}. However, for α ∈ {0,1,2, . . .} we have

L(α)n (ζ )=
n∑

m=0

(
n+ α
n−m

)
ζm

m! , (13.4.36)

for all ζ ∈ � and each n ∈ {0,1,2, . . .}. Equation (13.4.36) implies the following
recurrence relation, see also Abramowitz and Stegun (1972), Chap. 22,

L
(α)
0 (ζ )= 1,

L
(α)
1 (ζ )= α− 1 + ζ,

nL(α)n (ζ )= (2n+ α − 1 − ζ )L(α)n−1(ζ )− (n+ α − 1)L(α)n−2(ζ ),

(13.4.37)

for all ζ ∈ �, and for all α ∈ {0,1,2, . . .} and n ∈ {2,3, . . .}. Comparing
Eqs. (13.4.33), (13.4.34), and (13.4.35), we note that it suffices to focus on condition
(i), as conditions (ii) and (iii) can be covered using the same algorithm. Regarding
the outer, infinite sum, we employ an idea from Posten (1989, 1993), and sum the
terms in decreasing order of the Poisson weights. The maximal Poisson weight is
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approximately attained by the index value k∗ = 0d1, hence we truncate the outer
sum to the range of index values (k∗ −Nε)+, . . . , k∗ +Nε , where Nε is given by

Nε := min

{

N ∈ {0,1,2, . . .} ∣∣
k∗+N∑

k=(k∗−N)+
Pk > 1 − ε

}

, (13.4.38)

i.e. we approximate Iz(a, b, c, d) using Ĩz(a, b, c, d), which is given by

ĨNε,z(a, b, c, d) := exp
{−c(1 − z)}za

k∗+Nε∑

k=(k∗−Nε)+
PkTk. (13.4.39)

We now aim to produce a good bound on the approximation error

Iz(a, b, c, d)− ĨNε,z(a, b, c, d). (13.4.40)

From Seber (1963) we have

exp
{−c(1 − z)}zaTk = Iz(a, b+ k, c,0) ∈ (0,1), (13.4.41)

hence

Iz(a, b, c, d)− ĨNε,z(a, b, c, d)

= exp
{−c(1 − z)}za

(
(k∗−Nε)+−1∑

k=0

PkTk +
∞∑

k=k∗+Nε+1

PkTk

)

≤
(k∗−Nε)+−1∑

k=0

Pk +
∞∑

k=k∗+Nε+1

Pk = 1 −
k∗+Nε∑

k=(k∗−Nε)
Pk < ε,

where we used the fact that the Poisson weights sum to one and the last inequality
follows from the definition of Nε . Hence we have

ĨNε,z(a, b, c, d) ∈
(
Iz(a, b, c, d)− ε, Iz(a, b, c, d)

)
,

so the truncation error is bounded by ε. Clearly, the value of Nε cannot be de-
termined explicitly in advance, but can only be determined by iteratively adding
Poisson weights until their sum exceeds 1 − ε. The Pk satisfy

Pk = Pk−1
d

k
,

for each k ∈N , which allows for a rapid computation of these weights. Finally, we
attend to the inner sum in Eq. (13.4.33). In Algorithm 13.2 below, we make use
of a list, which stores the values of the Laguerre polynomials, which are used to
compute the Tk . Firstly, we calculate the Laguerre polynomials needed to compute
Tk∗ , and store them in a list. Thereafter, we use the following iterative scheme, based
on (13.4.37) to compute Tk∗+1, Tk∗−1, Tk∗+2, Tk∗−2, . . .:
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Algorithm 13.2 Doubly non-central regularized incomplete beta function
Require: a, b ∈N , c, d ∈ (0,∞), z ∈ (0,1) and ε ∈ (0,1) or

a = 0, b ∈N , c, d ∈ (0,∞), z ∈ [0,1) and ε ∈ (0,1) or
a ∈N , b= 0, c, d ∈ (0,∞), z ∈ (0,1] and ε ∈ (0,1)

1: switch (z)
2: case z= 0:
3: value ← exp{−c}
4: case z= 1:
5: value ← 1
6: otherwise:
7: if a = 0 then
8: a↔ b
9: c↔ d

10: z↔ 1 − z
11: swapflag ← true
12: else
13: swapflag ← false
14: end if
15: kmin ← kmax ←)d1 ∨ 2

16: cumPoiss ← exp{−d}dkmax

kmax!
17: for n= 0 : b+ kmax − 1 do
18: switch (n)
19: case n= 0:
20: Laglist ←〈1〉
21: case n= 1:
22: Laglist ← Laglist 3 a + cz
23: otherwise:
24: Laglist ← Laglist 3 (2n+a−2+cz)×Laglist〈〈end〉〉−(n+a−2)×Laglist〈〈end−1〉〉

n
25: end switch
26: Tmax ← Tmax + (1 − z)n × Laglist〈〈end〉〉
27: end for
28: Tmin ← Tmax
29: value ← Pmax × Tmax
30: if b= 0 then
31: errthrshld ← 1 − exp{−d} − ε
32: else
33: errthrshld ← 1 − ε
34: end if
35: while cumPoiss ≤ errthrshld do
36: kmax ← kmax + 1
37: Pmax ← Pmax × d

kmax

38: Laglist ← Laglist 3 (a+2b+2kmax−4+cz)×Laglist〈〈end〉〉−(a+b+kmax−3)×Laglist〈〈end−2〉〉
b+kmax−1

39: Tmax ← Tmax + (1 − z)b+kmax−1 × Laglist〈〈end〉〉
40: value ← value + Pmax × Tmax
41: cumPoiss ← cumPoiss + Pmax
42: if kmin ≥ 2 or kmin ≥ 1 and b > 0 then
43: Pmin ← Pmin × kmin

d

44: Tmin ← Tmin − (1 − z)b+kmin−1 × Laglist〈〈b+ kmin〉〉
45: value ← value + Pmin × Tmin
46: cumPoiss ← cumPoiss + Pmin
47: kmin ← kmin − 1
48: end if
49: end while
50: if swapflag then
51: value ← 1 − exp{−c(1 − z)}za × value
52: else
53: value ← exp{−c(1 − z)}za × value
54: end if
55: end switch
56: return value
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Tk = Tk−1 +L(a−1)
b+k−1(−cz)

=

⎧
⎪⎨

⎪⎩

Tk−1 + 1 if k = 1 − b
Tk−1 + (1 − z)(a − 2 − cz) if k = 2 − b
Tk−1 + (1−z)b+k−1

b+k−1 (AkL
(a−1)
b+k−2(−cz)−BkL(a−1)

b+k−3(−cz)) if k ≥ 3 − b,
for each k ∈ N , where Ak := a + 2b + 2k − 4 + cz and Bk := a + b + l − 3.
We present in Algorithm 13.2 below the algorithm, which shows how to compute
the doubly non-central regularized incomplete gamma function, which is given in
Hulley (2009). The term Laglist denotes the list of Laguerre polynomials, and
list 〈〈i〉〉 references element i of list, and by the symbol list 3 x we mean that
the value x is appended to list.

13.5 Inverting Laplace Transforms

In this section, we discuss how to compute values of a function f : �+ →� from
its Laplace transform

f̂ (s)=
∫ ∞

0
exp{−st}f (t) dt,

where s is a complex variable with a nonnegative real part. We present the Euler
method from Abate and Whitt (1995), which is based on the Bromwich contour
inversion integral. We let this contour be any vertical line s = a so that f̂ (s) has no
singularities on or to the right of it, and hence obtain, as in Abate and Whitt (1995),

f (t)= 2 exp{at}
π

∫ ∞

0
Re
(
f̂ (a + ıu)) cos(ut) du.

The integral is evaluated numerically using the trapezoidal rule. Specifying the step
size as h gives

f (t)≈ fh(t) := h exp{at}
π

Re
(
f̂ (a)

)+ 2h exp{at}
π

∞∑

k=1

Re
(
f̂ (a + ıkh)) cos(kht).

Setting h= π
2t and a = A

2t , one arrives at the nearly alternating series

fh(t)= exp{A/2}
2t

Re

(

f̂

(
A

2t

))

+ exp{A/2}
t

∞∑

k=1

(−1)kRe

(

f̂

(
A+ 2kπı

2t

))

.

(13.5.42)

Regarding the parameters, we need to know how to choose A: In Abate and Whitt
(1995) it is shown that to achieve a discretization error 10−γ , we should set A =
γ log 10. Consequently, truncating the series after n terms, we have

sn(t)= exp{A/2}
2t

Re

(

f̂

(
A

2t

))

+ exp{A/2}
t

n∑

k=1

(−1)kak(t), (13.5.43)
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where

ak(t)=Re
(

f̂

(
A+ 2kπı

2t

))

.

Lastly, we apply the Euler summation, which explains the name of the algorithm.
In particular, we apply the Euler summation to m terms after the initial n terms, so
that the Euler summation, which approximates (13.5.42), is given by

E(m,n, t)=
m∑

k=0

(
m

k

)

2−msn+k(t), (13.5.44)

where sn(t) is given by (13.5.43).We note that E(m,n, t) is the weighted average
of the last m partial sums by a binomial probability distribution characterized by
parameters m and p = 1

2 . In Abate and Whitt (1995), the parameters m = 11 and
n = 15 are used, and it is suggested to increase n as necessary. In the following
subsection, we illustrate how to use this algorithm to recover a bivariate probability
density function. Using Lie symmetry methods, the first inversion can be performed
analytically, for the second we use the Euler method presented in this section given
by (13.5.44).

13.5.1 Recovering the Joint Distribution to Price Realized Variance

In this subsection, we apply the methodology discussed in this section to the pricing
of realized variance derivatives, in particular, options on volatility, see Sect. 8.5.2.
To price such products, we need to recover the joint distribution of (YT ,

∫ T
0

1
Yt
dt).

At first sight, obtaining the joint distribution should entail the inversion of a double
Laplace transform. However, since Lie symmetry methods provide us with funda-
mental solutions, we already have the inversion with respect to one of the variables.
Consequently, one only needs to invert a one-dimensional Laplace transform nu-
merically, to obtain the joint density over �+ ×�+. We subsequently map the joint
density into [0,1]2, following the discussion in Kuo et al. (2008), and hence can
employ a randomized quasi-Monte Carlo point set to compute prices. Assuming
that the one-dimensional Laplace transform can be inverted at a constant computa-
tional complexity, the resulting computational complexity is O(N), where N is the
number of two-dimensional quasi-Monte Carlo points employed.

We numerically invert the one-dimensional Laplace transform given in (5.4.16)
using the Euler method from Abate and Whitt (1995), which was also employed
in Hulley and Platen (2008), see also Craddock et al. (2000). We display the joint
density in Fig. 13.5.1.

Inverting the Laplace transform produces the joint density of (YT ,
∫ T

0
1
Yt
dt) over

�+ ×�+. One could now employ a product rule, such as the tensor product of two
one-dimensional trapezoidal rules, usingN points for each co-ordinate, and perform
the numerical integration usingN2 points, at a computational complexity ofO(N2),
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Fig. 13.5.1 Joint density of
(YT ,

∫ T
0

1
Yt
dt) for Y0 = 1,

η= 0.052, T = 1

assuming the Laplace inversion can be performed in constant time. However, instead
we map the joint distribution into the unit square, and employ an N point quasi-
Monte Carlo rule to obtain a quadrature rule whose computational complexity is
only O(N), see Sect. 12.2.



Chapter 14
Credit Risk Under the Benchmark Approach

In this chapter, we discuss how to model credit risk under the benchmark approach.
We employ the techniques from Sect. 12.3 in Filipović (2009), and we show how
under the benchmark approach, the Laplace transforms derived in this book can be
incorporated in this framework. The structure of this chapter is as follows: firstly
we introduce an affine credit risk model in Sect. 14.1. This model satisfies the key
assumptions of Sect. 12.3 in Filipović (2009). Hence the results presented there ap-
ply, which we recall for the convenience of the reader. Consequently, in Sect. 14.2,
we show how to price credit default swaps (CDSs) and introduce credit valuation
adjustment (CVA) in Sect. 14.3 as an extension of CDSs. In particular, our model
can capture right-way—and wrong-way exposure. This means, we capture the de-
pendence structure of the default event and the value of the transaction under con-
sideration. For simple contracts, we provide closed-form solutions, however, due to
the fact that we allow for a dependence between the default event and the value of
the transaction, closed-form solutions are difficult to obtain in general. Hence we
conclude this chapter with a reduced form model, which is more tractable than the
model from Sect. 14.1.

14.1 An Affine Credit Risk Model

In this section, we aim to introduce a realistic, yet tractable model for credit risk.
In particular, our model allows for a stochastic interest rate, and a stochastic default
intensity, both of which are correlated with the GOP. Mathematically, the model
is based on the approach in Sect. 12.3 in Filipović (2009). We point out that our
model satisfies the assumptions (D1) and (D2), see pages 230 and 233 in Filipović
(2009), and hence we can employ the results presented in this reference. For further
technical background, we refer the reader to this reference.

We fix a probability space (Ω,A,P ), where P denotes the real world probability
measure. Next, we present a model for the evolution of financial information. We
remark that in our model, only having access to market information is not sufficient
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to Finance, Bocconi & Springer Series 5, DOI 10.1007/978-3-319-00747-2_14,
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to decide whether or not default has occurred or not. We now present this model,
which is a doubly stochastic intensity based model. We introduce a filtration G =
(Gt )t≥0, satisfying the usual conditions and set

G∞ = σ {Gt , t ≥ 0} ⊂A,
and a nonnegative G-progressively measurable process λ = {λt , t ≥ 0} with the
property

∫ t

0
λs ds <∞, P -a.s. for all t ≥ 0.

Next, we fix an exponential random variable φ with intensity parameter 1, indepen-
dent of G∞, and we define the random time

τ := inf

{

t :
∫ t

0
λs ds ≥ φ

}

assuming values in (0,∞]. From the independence property of φ and G∞, we have
that

P(τ > t | G∞)= P
(

φ >

∫ t

0
λs ds

∣
∣
∣
∣ G∞

)

= exp

{

−
∫ t

0
λs ds

}

. (14.1.1)

Lastly, we condition both sides in the preceding equation on Gt and obtain

P(τ > t | Gt )= exp

{

−
∫ t

0
λs ds

}

. (14.1.2)

Equations (14.1.2) and (14.1.1) are consistent with the assumptions (D1) and (D2)
in Filipović (2009), which are hence satisfied in our model. Next, we set

Ht = 1{τ≤t}
and Ht = σ {Hs, s ≤ t} and set At = Gt ∨Ht , the smallest σ -algebra containing Gt
and Ht . We remark that the inclusion Gt ⊂At is strict, having access to Gt does not
allow us to decide whether default has occurred by t , i.e. the event {τ ≤ t} is not
included in Gt , so τ is not a G-stopping time. We find this realistic, since it means
that only by observing financial data such as stock prices and interest rates, one
cannot determine whether default has occurred or not, as additional, non-financial
factors, can be assumed to be relevant to this decision, too. The following lemma is
Lemma 12.1 in Filipović (2009).

Lemma 14.1.1 Let t ≥ 0. Then for every A ∈At , there exists a B ∈ Gt such that

A∩ {τ > t} = B ∩ {τ > t}.

We have the following corollary to Lemma 14.1.1, the proof of which is analo-
gous to the proof of Lemma 12.1 in Filipović (2009).

Corollary 14.1.2 Let t ≥ 0. Then for every A ∈At , there exists a B ∈ Gt such that

A∩ {τ ≤ t} = B ∩ {τ ≤ t}. (14.1.3)
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The first part of the following lemma is Lemma 12.2 in Filipović (2009), the second
part of the next lemma forms part of Lemma 12.5 in Filipović (2009).

Lemma 14.1.3 Let Y be a nonnegative random variable and λ and τ be as defined
above. Then

E(1{τ>t}Y |At )= 1{τ>t} exp

{∫ t

0
λs ds

}

E(1{τ>t}Y | Gt ),

for all t ≥ 0. If Y is also G∞ measurable, then we have

E(1{τ≤t}Y |At )= 1{τ≤t}E(Y | Gt ).

Proof The first part of the lemma is proven in Filipović (2009), see the proof of
Lemma 12.2. For the second part, let A ∈ At , and note that by Corollary 14.1.2,
there exists a B ∈ Gt with property (14.1.3). We now use the definition of con-
ditional expectation, the fact that 1{τ≤t}1A = 1{τ≤t}1B , that Y ∈ G∞ and that
P(τ ≤ t | G∞)= P(τ ≤ t | Gt ), which follows from Eqs. (14.1.2) and (14.1.1):

∫

A

1{τ≤t}Y dP =
∫

B

1{τ≤t}Y dP

=
∫

B

E(1{τ≤t}Y | Gt ) dP

=
∫

B

E
(
E(1{τ≤t}Y | G∞)

∣
∣ Gt
)
dP

=
∫

B

E
(
YE(1{τ≤t} | G∞)

∣
∣ Gt
)
dP

=
∫

B

E(Y | Gt )E(1{τ≤t} | Gt ) dP

=
∫

B

E
(
1{τ≤t}E(Y | Gt )

∣
∣ Gt
)
dP

=
∫

B

1{τ≤t}E(Y | Gt ) dP

=
∫

A

1{τ≤t}E(Y | Gt ) dP .
Hence we have

E(1{τ≤t}Y |At )=E
(
1{τ≤t}E(Y | Gt )

∣
∣At
)= 1{τ≤t}E(Y | Gt ). �

The following formula is useful, when considering claims which are independent
of default risk. It is an immediate corollary to Lemma 14.1.3.

Corollary 14.1.4 Let Y be a nonnegative random variable which is G∞ measur-
able. Then

E(Y |At )=E(Y | Gt ).
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We now present our specific model, which is based on affine processes. Firstly,
we define the square-root process Y = {Yt , t ≥ 0}, given by

dYt = (1 − ηYt ) dt +
√
YtdW

1
t ,

where W 1 is a G-Brownian motion and we define the deterministic time-change

αt = α0 exp{ηt},
see also Sect. 3.3, and we model the discounted GOP as

S̄
δ∗
t = αtYt .

We now describe the short-rate using the stochastic process

rt = art + brZ1
t + crf r(Yt ), (14.1.4)

where ar· is a nonnegative deterministic function of time and br and cr are non-
negative constants and f r(x)= x or f r(x)= 1

x
. The process Z1 = {Z1

t , t ≥ 0} is a
square-root process given by

dZ1
t = κ1(θ1 −Z1

t

)
dt + σ 1

√
Z1
t dW

2
t , (14.1.5)

where κ1, θ1, σ 1 > 0 and 2κ1θ1 > (σ 1)2, whereW 2 is an independent G-Brownian
motion. We now introduce the GOP, which is given by

Sδ
∗
t = Bt S̄δ∗t , (14.1.6)

where Bt = exp{∫ t0 rs ds}. Furthermore, by setting f r(x)= x or f r(x)= 1
x

respec-
tively, we retain analytical tractability via Propositions 7.3.8 and 7.3.9. Finally, we
introduce a model for the stochastic intensity

λt = aλt + bλZ1
t + cλf r(Yt )+ dλZ2

t , (14.1.7)

where κ2, θ2, σ 2 > 0, aλ· is a nonnegative function of time. The constants bλ, cλ,
and dλ are nonnegative, and Z2 = {Z2

t , t ≥ 0} is a square-root process:

dZ2
t = κ2(θ2 −Z2

t

)
dt + σ 2

√
Z2
t dW

3
t ,

where 2κ2θ2 > (σ 2)2, andW 3 is an independent G-Brownian motion. We conclude
that λ, r , and Sδ

∗
are dependent, as they share some of their respective stochastic

drivers.
We conclude this section with presenting pricing formulas for some standard

claims, namely zero coupon bonds and European put options on the GOP. In
Sect. 14.3, we will study these products in the presence of CVA. We remark that
the affine nature of our model and the Laplace transforms derived using Lie sym-
metry analysis allow us to obtain these option pricing formulas. Regarding the zero
coupon bond with maturity T > 0 at time t ∈ [0, T ], we have from the real world
pricing formula (1.3.19)
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PT (t)= Sδ∗t E
(

1

S
δ∗
T

∣
∣
∣
∣At
)

= Sδ∗t E
(

1

S
δ∗
T

∣
∣
∣
∣ Gt
)

= αt

αT
YtE

(
1

YT
exp

{

−
∫ T

t

ars ds − br
∫ T

t

Z1
s ds − cr

∫ T

t

f (Ys) ds

} ∣
∣
∣
∣ Gt
)

= αt

αT
Yt exp

{

−
∫ T

t

ars ds

}

E

(
exp{−cr ∫ T

t
f r (Ys) ds}

YT

∣
∣
∣
∣ Gt
)

×E
(

exp

{

−br
∫ T

t

Z1
s ds

} ∣
∣
∣
∣ Gt
)

.

We remark that the expectations

E

(
exp{−cr ∫ T

t
f r (Ys) ds}

YT

∣
∣
∣
∣ Gt
)

and

E

(

exp

{

−br
∫ T

t

Z1
s ds

} ∣∣
∣
∣ Gt
)

can be computed using Propositions 7.3.8 and 7.3.9.
Having introduced zero coupon bonds, we now attend to swaps, in particular,

we consider a fixed-for-floating forward starting swap settled in arrears. We fix a
finite collection of future dates Tj , j = 0, . . . , n, T0 ≥ 0, and Tj − Tj−1 =: δj > 0,
j = 1, . . . , n. The floating rate L(Tj , Tj+1) received at time Tj+1 is set at time Tj
by reference to a zero coupon bond for the time period [Tj , Tj+1), in particular,

P−1
Tj+1

(Tj )= 1 + δj+1L(Tj , Tj+1). (14.1.8)

The interest rate L(Tj , Tj+1) is the spot LIBOR that prevails at time Tj for the
period of length δj+1. A long position in a payer swap entitles the investor to receive
floating payments in exchange for fixed payments, so the cash flow at time Tj is
L(Tj−1, Tj )δj − κδj . The dates T0, . . . , Tn−1 are known as reset dates, whereas the
dates T1, . . . , Tn are known as settlement dates. The first reset date T0 is known as
the start date of the swap. For t ≤ T0, the real world pricing formula (1.3.19) gives
the following value for a swap:

FSκ,T0(t) :=E
(

n∑

j=1

S
δ∗
t

S
δ∗
Tj

(
L(Tj−1, Tj )− κ

)
δj

∣
∣
∣
∣At

)

. (14.1.9)

We now show how to rewrite the value of a swap as the difference of a zero coupon
bond and a coupon bearing bond. From Eq. (14.1.9), we obtain

FSκ,T0(t)=
n∑

j=1

E

(
S
δ∗
t

S
δ∗
Tj

(
1

PTj (Tj−1)
− (1 + κδj )

) ∣∣
∣
∣At
)

. (14.1.10)
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Focusing on the computation of a single term in this sum we obtain

E

(
S
δ∗
t

S
δ∗
Tj

(
1

PTj (Tj−1)
− (1 + κδj )

) ∣∣
∣
∣At
)

=E
(

S
δ∗
t

S
δ∗
Tj
PTj (Tj−1)

∣
∣
∣
∣At
)

− (1 + κδj )E
(
S
δ∗
t

S
δ∗
Tj

∣
∣
∣
∣At
)

=E
(
S
δ∗
t

S
δ∗
Tj−1

1

PTj (Tj−1)
E

(Sδ∗Tj−1

S
δ∗
Tj

∣
∣
∣
∣ATj−1

) ∣
∣
∣
∣At
)

− (1 + κδj )PTj (t)

= PTj−1(t)− (1 + κδj )PTj (t). (14.1.11)

Substituting Eq. (14.1.11) into (14.1.10), we obtain

FSκ,T0(t)= PT0(t)−
n∑

j=1

cjPTj (t), (14.1.12)

where cj = κδj , j = 1, . . . , n− 1 and cn = 1 + κδn. We remark that Eq. (14.1.12)
is analogous to Eq. (13.2) in Musiela and Rutkowski (2005). In Sect. 14.3, we show
that in the presence of default risk, even a simple linear product like a swap is in fact
treated like an option a swap, or a swaption, which we now introduce.

The owner of an option on the above described swap with strike rate κ maturing
at T = T0 has the right to enter at time T the underlying fixed-for-floating forward
starting swap settled in arrears. The real world pricing formula (1.3.19) yields the
following price for such a contract:

PSκ,T0 := Sδ∗t E
(
(FSκ,T0(T0))

+

S
δ∗
T0

∣
∣
∣
∣At
)

. (14.1.13)

We remark that, as discussed in Sect. 13.1.2 in Musiela and Rutkowski (2005), it
seems difficult to develop closed form solutions for swaptions. However, as we
employ a tractable model, we can easily price swaptions via Monte Carlo meth-
ods: from Eq. (14.1.13), it is clear that in order to price the swaption, we need to
have access to the joint distributions of (YT ,

∫ T
t
f r (Ys) ds) conditional on Yt , and

(Z1
T ,
∫ T
t
Z1
s ds) conditional on Z1

t . These were derived in Sects. 6.3 and 6.4, which
means that we can price swaptions using an exact Monte Carlo scheme.

For purposes of credit valuation adjustment (CVA), it is convenient to introduce a
forward start swaption: here the expiry date T of the swaption precedes the initiation
date T0 of the swap, i.e. T ≤ T0. The real world pricing formula (1.3.19) associates
the following value with this contract:

PSκ,T0,T (t) := Sδ∗t E
(
(FSκ,T0(T ))

+

S
δ∗
T

∣
∣
∣
∣At
)

.

We will return to forward start swaptions when discussing CVA.



14.1 An Affine Credit Risk Model 349

Finally, we show how to price a European put option, where we employ
Lemma 8.3.2 and we explicitly emphasize the dependence on Z1

t , Yt and St , which
will be relevant when discussing CVA. From Corollary 14.1.4, we get

pT,K
(
t,Z1

t , Yt , St
)= Sδ∗t E

(
(K − Sδ∗T )+

Sδ
∗
T

∣
∣
∣
∣At
)

= Sδ∗t E
(
(K − Sδ∗T )+

Sδ
∗
T

∣
∣
∣
∣ Gt
)

=KE
((
S
δ∗
t

S
δ∗
T

− S
δ∗
t

K

)+ ∣∣
∣
∣ Gt
)

=KE((exp
{− ln

(
Y(t, T )

)}− K̃)+ ∣∣ Gt
)
,

where K̃ = S
δ∗
t

K
, Y(t, T )= S

δ∗
T

S
δ∗
t

. Hence from Lemma 8.3.2, for w > 1, it follows

Sδ
∗
t E

(
(K − Sδ∗T )+

Sδ
∗
T

∣
∣
∣
∣ Gt
)

= K

2π

∫

�
E
(
exp
{
(w+ ıλ)(− ln

(
Y(t, T )

))} ∣
∣ Gt
) K̃−(w−1+ıλ)

(w+ ı)(w− 1 + ıλ) dλ.

We now discuss the computation of the above conditional expectation

E
(
exp
{
(w+ ıλ)(− ln

(
Y(t, T )

))} ∣
∣ Gt
)
.

From Eq. (14.1.4), we have

E
(
exp
{
(w+ ıλ)(− ln

(
Y(t, T )

))} ∣
∣ Gt
)

=E
(

exp

{

−(w+ ıλ)
(∫ T

t

rs ds + ln

(
αT

αt

)

+ ln(YT )− ln(Yt )

)} ∣
∣
∣
∣ Gt
)

= exp

{

−(w+ ıλ)
∫ T

t

ars ds − (w+ ıλ) ln

(
αT

αt

)}

Y
(w+ı)λ
t

×E
(

exp

{

−(w+ ıλ)
∫ T

t

brZ1
s ds

} ∣
∣
∣
∣ Gt
)

×E
(

exp

{

−(w+ ıλ)
∫ T

t

crf 1(Ys) ds

}

Y
−(w+ıλ)
T

∣
∣
∣
∣ Gt
)

=: f (λ,Z1
t , Yt
)
.

Here

E

(

exp

{

−(w+ ıλ)
∫ T

t

brZ1
s ds

} ∣
∣
∣
∣ Gt
)
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and

E

(

exp

{

−(w+ ıλ)
∫ T

t

crf 1(Ys) ds

}

Y
−(w+ıλ)
T

∣
∣
∣
∣ Gt
)

can be computed using Propositions 7.3.8 and 7.3.9. Hence, we obtain

pT,K
(
t,Z1

t , Yt , St
)

= K

2π

∫

�
f
(
λ,Z1

t , Yt
)

× exp

{

−(w+ ıλ)
(∫ T

t

ars ds + ln

(
αT

αt

))}
(K̃)−(w−1+ıλ)

(w+ ıλ)(w− 1 + ıλ) dλ.
The above formulas will be employed in Sect. 14.3.

14.2 Pricing Credit Default Swaps Under the Benchmark
Approach

We now discuss how to price CDSs. In the next section, we show how CVA cal-
culations naturally extend this concept. Firstly, we summarize a CDS transaction.
Consider two parties: A, the protection buyer, and B, the protection seller. If a third
party, say C, the reference company, defaults at a time τ , where τ is between two
fixed times Ta and Tb , B pays A a certain fixed amount, say L. In exchange A pays
B coupons at a rate R at time points Ta+1, . . . , Tb , or until default.

Under the benchmark approach, the techniques from Filipović (2009) can be
combined with the Laplace transforms developed in this book. Using the real world
pricing formula, the value of this contract to B at a time t < Ta is given by

CDSt := Sδ∗t E
(

1{Ta<τ≤Tb}R
τ − Tβ(τ)−1

S
δ∗
τ

∣
∣
∣
∣At
)

+ Sδ∗t
b∑

i=a+1

αiRE

(
1{τ>Ti }
S
δ∗
Ti

∣
∣
∣
∣At
)

− Sδ∗t LE
(

1{Ta<τ≤Tb}
S
δ∗
τ

∣
∣
∣
∣At
)

,

where δi = Ti−Ti−1, and Tβ(τ) is the first of the Ti ’s following τ . The interpretation
is clear, the first two terms represent payments from party A to party B, where the
first term represents the amount accrued between the last payment before default,
made at time Tβ(τ)−1, and the default time τ . The last term represents the payment
to be made by B in case C defaults. Using the terminology from Filipović (2009),
the second term is a zero recovery zero coupon bond, a payment R is only made
at Ti if default occurs after Ti . The third term is a partial recovery at default zero
coupon bond with payment L, and so is the first term, for which the payment at
default is (τ − Tβ(τ)−1)R.
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We firstly value the zero recovery zero coupon bond, where we use Lemma 14.1.3:

P 0
T (t) := Sδ∗t E

(
1{τ>T }
S
δ∗
T

∣
∣
∣
∣At
)

= 1{τ>t}Sδ∗t exp

{∫ t

0
λs ds

}

E

(
1{τ>T }
S
δ∗
T

∣
∣
∣
∣ Gt
)

= 1{τ>t}Sδ∗t exp

{∫ t

0
λs ds

}

E

(
1

S
δ∗
T

E(1{τ>T } | GT )
∣
∣
∣
∣ Gt
)

= 1{τ>t}Sδ∗t exp

{∫ t

0
λs ds

}

E

(
exp{− ∫ T0 λs ds}

S
δ∗
T

∣
∣
∣
∣ Gt
)

= 1{τ>t}Sδ∗t E
(

exp{− ∫ T
t
λs ds}

S
δ∗
T

∣
∣
∣
∣ Gt
)

= 1{τ>t}
αt

αT
E

(
Yt

YT
exp

{

−
∫ T

t

(rs + λs) ds
} ∣
∣
∣
∣ Gt
)

(14.2.14)

= 1{τ>t}
αt

αT
Yt

×E
(

exp{− ∫ T
t
as ds − b

∫ T
t
Z1
s ds − d

∫ T
t
Z2
s ds −

∫ T
t
f (Ys) ds}

YT

∣
∣
∣
∣ Gt
)

= 1{τ>t}
αt

αT
Yt exp

{

−
∫ T

t

as ds

}

E

(

exp

{

−b
∫ T

t

Z1
s ds

} ∣∣
∣
∣ Gt
)

(14.2.15)

×E
(

exp

{

−d
∫ T

t

Z2
s ds

} ∣
∣
∣
∣ Gt
)

E

(
exp{− ∫ T

t
f (Ys) ds}
YT

∣
∣
∣
∣ Gt
)

,

(14.2.16)

where at = art +aλt , b= br +bλ, d = dλ, and f (x)= crf r(x)+cλf λ(x). We point
out that from Eq. (14.2.14), one can confirm the observation from Filipović (2009)
that when pricing a zero recovery zero coupon bond, as opposed to a zero coupon
bond, one replaces the short rate process by rt + λt , which results in a lower price.
Again, the expected values in Eqs. (14.2.15) and (14.2.16) can be computed using
Propositions 7.3.8 and 7.3.9.

We now turn to the remaining two components of the credit default swap pricing
formula. We remark that it suffices to focus on

S
δ∗
t E

(
τ − Tβ(τ)−1

S
δ∗
τ

1{Ta<τ≤Tb}
∣
∣
∣
∣At
)

.

From Sect. 12.3.3.3 in Filipović (2009) we recall that the distribution of τ , condi-
tional on the event {τ > t} for t ≤ u, is given by

P(t < τ ≤ u | G∞ ∨Ht )

= 1{τ>t} exp

{∫ t

0
λs ds

}

E(1{t<τ≤u} | G∞)
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= 1{τ>t} exp

{∫ t

0
λs ds

}(

exp

{

−
∫ t

0
λs ds

}

− exp

{

−
∫ u

0
λs ds

})

= 1{τ>t}
(

1 − exp

{

−
∫ u

t

λs ds

})

,

which is the regular G∞ ∨Ht -conditional distribution of τ given {τ > t}. For more
details on regular conditional distributions the reader is referred to Sect. 4.1.4 in
Filipović (2009). To obtain the density function, we differentiate with respect to u
to obtain

1{τ>t}λu exp

{

−
∫ u

t

λs ds

}

, (14.2.17)

for u≥ t . We now price the partial recovery at default bond

P
p
T (t) := Sδ∗t E

(
(τ − Tβ(τ)−1)

S
δ∗
τ

1{Ta<τ≤Tb}
∣
∣
∣
∣At
)

.

Using Eq. (14.2.17) and the Fubini theorem, we compute

S
δ∗
t E

(
τ − Tβ(τ)−1

S
δ∗
τ

1{Ta<τ≤Tb}
∣
∣
∣
∣At
)

= Sδ∗t E
(
f (τ)1{Ta<τ≤Tb}

S
δ∗
τ

∣
∣
∣
∣At
)

=E
(

E

(

f (τ)
αt

ατ
exp

{

−
∫ τ

t

rs ds

}

1{Ta<τ≤Tb}
Yt

Yτ

∣
∣
∣
∣ G∞ ∨Ht

) ∣∣
∣
∣At
)

= 1{τ>t}E
(∫ Tb
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f̃ (u) exp
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−
∫ u

t

rs ds

}

λu exp

{

−
∫ u

t

λs ds

}
Yt

Yu
du

∣
∣
∣
∣At
)

= 1{τ>t}
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f̃ (u)E

(

exp
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rs ds

}

λu exp
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−
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λs ds

}
Yt

Yu

∣
∣
∣
∣At
)

du,

where f (x)= (x−Tβ(x)−1) and f̃ (x)= αt
αx
f (x). From Corollary 14.1.4, we obtain

E

(

exp

{

−
∫ u

t

rs ds

}

λu exp
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−
∫ u
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λs ds

}
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Yu

∣
∣
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∣At
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(14.2.18)

=E
(
λu exp{− ∫ u

t
(rs + λs) ds}Yt
Yu

∣
∣
∣
∣ Gt
)

. (14.2.19)

Hence we conclude that

P
p
T (t)= 1{τ>t}Yt

∫ T

t

f̃ (u)E

(
λu exp{− ∫ u

t
(rs + λs) ds}
Yu

∣
∣
∣
∣ Gt
)

du.

We now discuss how to compute

E

(
λu exp{− ∫ u

t
(rs + λs) ds}
Yu

∣
∣
∣
∣ Gt
)

.
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Since we have

exp

{

−
∫ u

t

(rs + λs) ds
}

= exp

(

−
∫ u

t

as ds − b
∫ u

t

Z1
s ds − d

∫ u

t

Z2
s ds −

∫ u

t

f (Ys) ds

)

and

λu = aλu + bλZ1
u + cλf λ(Yu)+ dλZ2

u,

we have

E

(

exp

{

−
∫ u

t

as ds − b
∫ u

t

Z1
s ds − d

∫ u

t

Z2
s −
∫ u

t

f (Ys) ds

}
λu

Yu

∣
∣
∣
∣ Gt
)

= exp

{

−
∫ u

t

as ds

}(

aλuE

(

exp

{

−b
∫ u

t

Z1
s ds

} ∣
∣
∣
∣ Gt
)

×E
(

exp

{

−d
∫ u

t

Z2
s ds

} ∣
∣
∣
∣ Gt
)

E

(
exp{− ∫ u

t
f (Ys) ds}
Yu

∣
∣
∣
∣ Gt
)

+E
(

bλZ1
u exp

{

−b
∫ u

t

Z1
s ds

} ∣
∣
∣
∣ Gt
)

E

(

exp

{

−d
∫ u

t

Z2
s ds

} ∣
∣
∣
∣ Gt
)

×E
(

exp{− ∫ u
t
f (Ys) ds}
Yu

∣
∣
∣
∣ Gt
)

+E
(

exp

{

−b
∫ u

t

Z1
s ds

} ∣∣
∣
∣ Gt
)

E

(

dλZ2
u exp

{

−d
∫ u

t

Z2
s ds

} ∣∣
∣
∣ Gt
)

×E
(

exp{− ∫ u
t
f (Ys) ds}
Yu

∣
∣
∣
∣ Gt
)

+E
(

exp

{

−b
∫ u

t

Z1
s ds

} ∣
∣
∣
∣ Gt
)

E

(

exp

{

−d
∫ u

t

Z2
s ds

} ∣
∣
∣
∣ Gt
)

×E
(
cλf 2(Yu) exp{− ∫ u

t
f (Ys) ds}

Yu

∣
∣
∣
∣ Gt
))

,

where all expectations can be computed using Propositions 7.3.8 and 7.3.9. We re-
mark that the third term in the CDS valuation formula can be computed as above, in
this case f (τ)= 1.

14.3 Credit Valuation Adjustment Under the Benchmark
Approach

In this section, we discuss the computation of CVA, in the affine credit risk model
introduced in Sect. 14.1. First, we introduce CVA as an extension of a CDS: assume
two parties, A and C, have entered into a series of contracts, the aggregate value of
which at time t is given by Vt . We take the point of view of party A, and say that
Vt > 0 if the aggregate value of the contracts at time t is profitable to A, and Vt < 0
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if the aggregate value of the contracts is profitable to C. For ease of exposition, we
assume that party A cannot default but C can, so we discuss unilateral CVA, though
of course bilateral CVA can also be discussed under the benchmark approach using
the techniques introduced in this chapter.

Party A now approaches another party, say B, for protection on its portfolio V
with C over the period [0, T ]: in case C defaults, B pays the value of the part of the
portfolio that is not recovered at the time of default, only if the value of the portfolio
is positive to A, i.e. only if Vτ > 0, where τ denotes the time of default of C. Hence
the payment at default is

(1 −R)V +
τ ,

where R is the recovery rate and V +
t := max(Vt ,0). Again, for ease of exposition,

we assume that B cannot default. Using the real world pricing formula (1.3.19), we
obtain the real world price of this protection as

CVAt := (1 −R)Sδ∗t E
(
V +
τ

S
δ∗
τ

1{τ>T }
∣
∣
∣
∣At
)

, (14.3.20)

for t ≥ 0. It is crucial for CVA computations, that right-way exposure and wrong-
way exposure are taken into account. This requires the modeling of a dependence
structure between the portfolio process V and the time of default, τ : under the
benchmark approach, the value of V depends on the numéraire, which is the GOP,
Sδ∗ , and hence its stochastic drivers, Y and Z1. However, τ can in general also be
expected to depend on Sδ∗ : if the GOP drops, which affects the value of V , a default
of C can be more likely, or less likely, depending on the nature of company C. In
Sect. 14.4, we present an illustrative example including commodities. The exposure
is called right-way if the value of V is negatively related to the credit quality of the
counter party and wrong-way is defined analogously, see Cesari et al. (2009). Our
specification of λ, which takes into account Z1 and Y allows us to model this by
choosing f λ(x)= x or f λ(x)= 1

x
. We now consider the valuation of some simple

contracts.
Firstly, we assume that Vt = Sδ∗t and that A has bought protection from B for the

period [0, T ], then

CVAt = Sδ∗t E
(
V +
τ

S
δ∗
τ

1{t<τ≤T }
∣
∣
∣
∣At
)

= Sδ∗t P (t < τ ≤ T |At )
= Sδ∗t E(1{τ>t} − 1{τ>T } |At )
= 1{τ>t}Sδ∗t E(1 − 1{τ>t}1{τ>T } |At ).

Now, we have

E(1{τ>t}1{τ>T } |At )= 1{τ>t} exp

{∫ t

0
λs ds

}

E(1{τ>t}1{τ>T } | Gt )

= 1{τ>t} exp

{∫ t

0
λs ds

}

E
(
E(1{τ>T } | GT )

∣
∣ Gt
)
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= 1{τ>t} exp

{∫ t

0
λs ds

}

E

(

exp

{

−
∫ T

0
λs ds

} ∣∣
∣
∣ Gt
)

= 1{τ>t}E
(

exp

{

−
∫ T

t

λs ds

} ∣
∣
∣
∣ Gt
)

,

where we used Lemma 14.1.3 with Y = 1{τ>T } and Eq. (14.1.2). Finally,

CVAt = 1{τ>t}Sδ∗t E
(

1 − exp

{

−
∫ T

t

λs ds

} ∣
∣
∣
∣ Gt
)

,

and we compute

E

(

exp

{

−
∫ T

t

λs ds

} ∣
∣
∣
∣ Gt
)

as in Sect. 14.2, since λt is a function of affine processes, and the relevant Laplace
transforms are given in Propositions 7.3.8 and 7.3.9.

Now assume that Vt = PT (t), a zero coupon bond, which we priced in Sect. 14.1.
Again we consider CVA over the period [0, T ]

CVAt = Sδ∗t E
(
V +
τ

S
δ∗
τ

1{t<τ≤T }
∣
∣
∣
∣At
)

= Sδ∗t E
(

E

(
1

S
δ∗
T

∣
∣
∣
∣Aτ
)

1{t<τ≤T }
∣
∣
∣
∣At
)

= Sδ∗t E
(

1{t<τ≤T }
S
δ∗
T

∣
∣
∣
∣At
)

= 1{τ>t}
(

S
δ∗
t E

(
1

S
δ∗
T

∣
∣
∣
∣At
)

− Sδ∗t E
(

1{τ>T }
S
δ∗
T

∣
∣
∣
∣At
))

= 1{τ>t}
(
PT (t)− P 0

T (t)
)
,

so, conditional on the event {τ > t}, we have represented CVA as the difference
between a zero coupon bond and a zero recovery zero coupon bond. We remind the
reader that the latter was priced in Sect. 14.2.

Next, we discuss the pricing of a European put option in the presence of counter-
party risk. Recall that standard European put options were priced in Sect. 14.1. We
use the density function from Eq. (14.2.17), the fact that 1{τ>t} is At -measurable,
and Corollary 14.1.4 to obtain

CVAt

= Sδ∗t E
(
V +
τ

S
δ∗
τ

1{t<τ≤T }
∣
∣
∣
∣At
)

= Sδ∗t E
(
pT,K(τ,Z

1
τ , Yτ , S

δ∗
τ )

S
δ∗
τ

1{t<τ≤T }
∣
∣
∣
∣At
)

= Sδ∗t E
(
(K − Sδ∗T )+

S
δ∗
T

1{t<τ≤T }
∣
∣
∣
∣At
)
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= Sδ∗t E
(

E

(
(K − Sδ∗T )+

S
δ∗
T

1{t<τ≤T }
∣
∣
∣
∣ G∞ ∨Ht

) ∣∣
∣
∣At
)

= Sδ∗t E
(

1{τ>t}
∫ T

t

(K − Sδ∗T )+
S
δ∗
T

λu exp

{

−
∫ u

t

λs ds

}

du

∣
∣
∣
∣At
)

= 1{τ>t}Sδ∗t
∫ T

t

E

(
(K − Sδ∗T )+

S
δ∗
T

λu exp

{

−
∫ u

t

λs ds

} ∣∣
∣
∣ Gt
)

du

= 1{τ>t}Sδ∗t
∫ T

t

E

(
S
δ∗
u

S
δ∗
u

E

(
(K − Sδ∗T )+

S
δ∗
T

∣
∣
∣
∣Au
)

λu exp

{

−
∫ u

t

λs ds

} ∣∣
∣
∣ Gt
)

du

= 1{τ>t}Sδ∗t
∫ T

t

E

(
pT,K(u,Z

1
u,Yu, S

δ∗
u )

S
δ∗
u

λu exp

{

−
∫ u

t

λs ds

} ∣
∣
∣
∣ Gt
)

du.

(14.3.21)

In general, it seems difficult to simplify the above expression further. Essentially,
this is due to the fact that our model incorporates wrong-way and right-way ex-
posure, i.e. we allow for dependence between τ and Sδ∗ . Hence one would usu-
ally employ a Monte Carlo algorithm, see e.g. Cesari et al. (2009). We remark that
in Sect. 6.3, we derived the joint law of (

∫ u
t
Ys ds,Yu), conditional on Yt , and in

Sect. 6.4, the joint law of (
∫ u
t
ds
Ys
, Yu) conditional on Yt , which are useful in devel-

oping a Monte Carlo algorithm.
We now discuss the pricing of swaps in the presence of counterparty risk. In

Sect. 14.1, we presented the value of a swap as a linear combination of zero coupon
bonds. Hence, if market prices of zero coupon bonds are available, a model would
not be required to price swaps in practice. In the presence of counterparty risk, this
is different, as we now show. We set Vt = FSκ,T0(t), where FSκ,T0(t) is defined in
Eq. (14.1.9), so we consider a swap with start date T0, and we focus on CVA for the
period [0, T ] for T ≤ T0. We have

CVAt := Sδ∗t E
(
V +
τ

S
δ∗
τ

1{t<τ≤T }
∣
∣
∣
∣At
)

= S
δ∗
t E

(
(FSκ,T0(τ ))

+

S
δ∗
τ

1{t<τ≤T }
∣
∣
∣
∣At
)

, (14.3.22)

hence the market price of counterparty risk associated with a swap can be interpreted
as a forward start swaption with random expiry date τ . Again, we use the den-
sity function from Eq. (14.2.17), the fact that 1{τ>t} is At -measurable, and Corol-
lary 14.1.4 to obtain

S
δ∗
t E

(
(FSκ,T0(τ ))

+

S
δ∗
τ

1{t<τ≤T }
∣
∣
∣
∣At
)

= Sδ∗t E
(

E

(

1{t<τ≤T }
(FSκ,T0(τ ))

+

S
δ∗
τ

∣
∣
∣
∣ G∞ ∨Ht

) ∣
∣
∣
∣At
)

(14.3.23)
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= 1{τ>t}Sδ∗t E
(∫ T

t

(FSκ,T0(u))
+

S
δ∗
u

λu exp

{

−
∫ u

t

λs ds

}

du

∣
∣
∣
∣At
)

= 1{τ>t}Sδ∗t E
(∫ T

t

(FSκ,T0(u))
+

S
δ∗
u

λu exp

{

−
∫ u

t

λs ds

}

du

∣
∣
∣
∣ Gt
)

= 1{τ>t}Sδ∗t
∫ T

t

E

(
(FSκ,T0(u))

+

S
δ∗
u

λu exp

{

−
∫ u

t

λs ds

} ∣∣
∣
∣ Gt
)

du.

(14.3.24)

Hence, as for the European put, we resort to Monte Carlo methods to compute equa-
tion (14.3.24). This is due to the fact that accounting for right-way and wrong-way
exposure makes it more challenging to compute CVA analytically.

14.4 CVA for Commodities

We now consider counterparty risk for commodities. In particular, we consider the
case where the counterparty C is directly affected by the value of the commodity
underlying the transaction. For example, say the counterparty C is an airline, in
which case it is clear that the company has a large exposure to the price of oil
and could be interested in trading forward contracts on oil with company A, which
is assumed to be default free. However, in case the price of oil rises, default of
company C becomes more likely. Taking into account right-way and wrong-way
exposure, it is important to recognize that the value of the commodity impacts both,
the value of the transaction V , assumed to be a forward on oil, but also the time of
default τ . We hence model this under the benchmark approach following Du and
Platen (2012b). In particular, we use Si,δ∗t to denote the value of the GOP at time t ,
denominated in units of the i-th security. A general exchange price, which could be
a number of units of currency i to be paid for one unit of currency j , or a number
of units of currency i to be paid for one unit of commodity j is then given by

X
i,j
t = S

i,δ∗
t

S
j,δ∗
t

. (14.4.25)

In this section, currency i would be the domestic currency and commodity j the
commodity of interest, so j could correspond to oil and i to US dollars. In par-
ticular, we note that if Si,δ∗t appreciates or Sj,δ∗t depreciates, then Xi,jt appreciates,
so more units of currency i, say US dollars, have to be paid for one unit of the
commodity. We recall the MMM from Du and Platen (2012b). Though parsimo-
nious, the model is tractable and in particular allows us to incorporate right-way
and wrong-way exposure. In particular, we set

S
k,δ∗
t = Bkt Y kt Akt , (14.4.26)

where k ∈ {i, j} and where

dY kt = ξk(1 − Y kt
)
dt +

√
ξkY kt dW

k
t ,
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k ∈ {i, j}, where Wi and Wj are independent G-Brownian motions. Furthermore,

Akt =Ak0 exp
{
ξkt
}
,

and

Bkt = exp

{∫ t

0
rks ds

}

.

When considering a currency, say i, ri = {rit , t ≥ 0} is interpreted as a short rate

process, and for commodities rj = {rjt , t ≥ 0} can be interpreted as the convenience
yield process. Following Du and Platen (2012b), we set

rit = ai + biiY it + bijY jt ,
r
j
t = aj + bjiY it + bjjY jt ,

where ai , aj , bii , bji , bij , bjj are nonnegative constants, and bij corresponds to
the sensitivity of the short rate ri to changes in Y j . In particular, we note that Si,δ∗

and Sj,δ∗ are dependent, as they share common drivers. We are now in a position to
price a standard forward contract, and recall the relevant result from Du and Platen
(2012b). Recall that at initiation time t , the forward price F i,j,Tt of one unit of
commodity j to be delivered at time T , denominated in currency i, is chosen so that
the forward has no value. Using the real world pricing formula (1.3.19), we chose
F
i,j,T
t so that

E

(
(X

i,j
T − F i,j,Tt )

S
i,δ∗
T

∣
∣
∣
∣At
)

= 0. (14.4.27)

Solving Eq. (14.4.27) for F i,j,Tt produces Theorem 3.1 from Du and Platen (2012b),
which we now present.

Theorem 14.4.1 The real world price at inception time t ∈ [0, T ] in units of the
i-th currency, for one unit of the j -th commodity to be delivered at time T ∈ [0,∞)
equals

F
i,j,T
t =Xi,jt

P
j
T (t)

P iT (t)
.

We point out that P iT (t) corresponds to a zero coupon bond in currency i, whereas

P
j
T (t) is the value of the delivery of one unit of the j -th commodity at maturity T ,

denominated in units of the commodity j itself. Furthermore, we need to know the
value of the forward initiated at time t0, at an intermediate time, say t ∈ [t0, T ]. The
relevant formula is given in Theorem 3.2 in Du and Platen (2012b).

Theorem 14.4.2 The real world value Ui,j,t0,Tt of a forward contract at time t for
one unit of the j th commodity with initiation time t0 and maturity date T equals

U
i,j,t0,T
t = P iT (t)

(
F
i,j,T
t − F i,j,Tt0

)
,

when denominated in units of the i-th currency, t0 ∈ [0, T ], t ∈ [t0, T ], T ∈ [0,∞).
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We remark that for the model introduced in this section, we can derive closed-
form solutions for forward prices and the value of forward contracts the way we did
in Sect. 14.1.

Now we want to return to our counterparty risk example. As we had discussed
before, the airline is more likely to default if the price of the commodity increases.
Hence we propose the following model: we introduce an additional square-root pro-
cess

dZt = κ(θ −Zt) dt + σ
√
Zt dW

k
t ,

whereWk is a G-Brownian motion independent ofWi andWj . The default intensity
λ is modeled as follows:

λt = aλt + bλY it + cλ
1

Y
j
t

+ dλZt , (14.4.28)

where bλ, cλ, dλ are nonnegative constants and aλ· is a nonnegative function. In

particular, we note that if the main driver of Si,δ∗ , which is Y i , increases, then Xi,jt
and λt increase, i.e. default becomes more likely as the price of the commodity
increases. Likewise, as the main driver of Sj,δ∗t , which is Y jt , decreases, then Xi,jt
and λt increase, i.e. default becomes more likely. We now consider CVA for Vt =
U
i,j,t0,T
t over the period [0, T ]. We employ the density function from Eq. (14.2.17),

the fact that 1{τ>t} is At -measurable, and Corollary 14.1.4 to obtain

CVAt = Si,δ∗t E

(
V +
τ

S
i,δ∗
τ

1{t<τ≤T }
∣
∣
∣
∣At
)

= 1{τ>t}Si,δ∗t E

(∫ T

t

(U
i,j,t0,T
u )+

S
i,δ∗
u

λu exp

{

−
∫ u

t

λs ds

}

du

∣
∣
∣
∣At
)

= 1{τ>t}Si,δ∗t

∫ T

t

E

(
(U

i,j,t0,T
u )+

S
i,δ∗
u

λu exp

{

−
∫ u

t

λs ds

} ∣
∣
∣
∣ Gt
)

du.

(14.4.29)

Again, one would resort to Monte Carlo methods to compute (14.4.29), due to the
fact that our model takes into account right-way and wrong-way exposure.

14.5 A Reduced-Form Model

The affine credit risk model presented in Sect. 14.1 is able to incorporate right-
way and wrong-way exposure, and should hence be useful when performing CVA
computations. However, for many products, Monte Carlo algorithms need to be em-
ployed when performing computations. Though from e.g. Cesari et al. (2009), this
should be expected, we aim to produce a reduced form model in this section. The
model assumes independence between default risk and financial risk. Though not
necessarily satisfied for all transactions relevant to practice, this is a very tractable
model.
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We hence modify the model from Sect. 14.1 as follows: firstly, we model Sδ∗

using the MMM from Sect. 3.3, we set

dYt = (1 − ηYt ) dt +
√
Yt dWt ,

where W is a G-Brownian motion and we set

αt = α0 exp{ηt}.
A constant interest rate r ≥ 0 is employed for simplicity, so we have

Bt = exp{rt}.
Next, we set λt = λ > 0, i.e. we employ a constant default intensity. The assump-
tions of Sect. 12.3 in Filipović (2009) are still satisfied and we have

P(τ > t | G∞)= P(τ > t | Gt )= exp{−λt}
and

P(t < τ ≤ u | G∞ ∨Ht )= 1{τ>t}
(
1 − exp

{−λ(u− t)}),
so the conditional density of τ given τ > t is exponential with parameter λ, i.e.

1{τ>t}λ exp
{−λ(u− t)}. (14.5.30)

This facilitates computations greatly, as we now demonstrate.
Assume that Vt ≥ 0, ∀t ∈ [0, T ], and that the portfolio V does not generate any

cash flows on the interval [0, T ]. Furthermore, we assume that V is fair, see Defini-
tion 1.3.4, so V

Sδ∗ forms an (A,P )-martingale,

CVAt = Sδ∗t E
(
V +
τ

Sτ
1{t<τ≤T }

∣
∣
∣
∣At
)

= Sδ∗t E
(

E

(
V +
τ

Sτ
1{t<τ≤T }

∣
∣
∣
∣ G∞ ∨Ht

) ∣∣
∣
∣At
)

= 1{τ>t}Sδ∗t E
(∫ T

t

V +
u

S
δ∗
u

λ exp
{−λ(u− t)}du

∣
∣
∣
∣At
)

= 1{τ>t}Sδ∗t
∫ T

t

E

(
V +
u

S
δ∗
u

∣
∣
∣
∣At
)

λ exp
{−λ(u− t)}du.

Since V +
t = Vt , one can compute

S
δ∗
t E

(
V +
u

S
δ∗
u

∣
∣
∣
∣At
)

= Sδ∗t E
(
Vu

S
δ∗
u

∣
∣
∣
∣At
)

= Sδ∗t E
(

E

(
VT

S
δ∗
T

∣
∣
∣
∣Au
)

At
)

= Sδ∗t E
(
VT

S
δ∗
T

∣
∣
∣
∣At
)

= Vt .
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Hence we get

CVAt = 1{τ>t}Vt
(
1 − exp

{−λ(T − t)}). (14.5.31)

We point out that Eq. (14.5.31) can be used to deal with zero coupon bonds, Eu-
ropean call options and swaptions, but not, for example, to deal with swaps, as the
latter can assume negative values. We do, however, recall our previous observation
that there exists a close link with forward start swaptions, which we now exploit.
Set Vt = FSκ,T0(t) and we consider CVA over the period [0, T ], where T ≤ T0, then
using the density in Eq. (14.5.30) we obtain

CVAt = Sδ∗t E
(
V +
τ

S
δ∗
τ

1{t<τ≤T }
∣
∣
∣
∣At
)

= Sδ∗t E
(

E

(
V +
τ

S
δ∗
τ

1{t<τ≤T }
∣
∣
∣
∣ G∞ ∨Ht

) ∣
∣
∣
∣At
)

= 1{τ>t}Sδ∗t E
(∫ T

t

V +
u

S
δ∗
u

λ exp
{−λ(u− t)}du

∣
∣
∣
∣At
)

= 1{τ>t}
∫ T

t

S
δ∗
t E

(
V +
u

S
δ∗
u

∣
∣
∣
∣At
)

λ exp
{−λ(u− t)}du

= 1{τ>t}
∫ T

t

S
δ∗
t E

(
(FSκ,T0(u))

+

S
δ∗
u

∣
∣
∣
∣At
)

λ exp
{−λ(u− t)}du

= 1{τ>t}
∫ T

t

PSκ,T0,u(t)λ exp
{−λ(u− t)}du.

We remark that under the MMM, the value of a forward start swaption amounts to
the computation of a one-dimensional integral. From Sect. 14.1, we recall

PSκ,T0,T (t)= Sδ∗t E
(
(FSκ,T0(T ))

+

S
δ∗
T

∣
∣
∣
∣At
)

= Sδ∗t E
(
(PT0(T )−

∑n
j=1 cjPTj (T ))

+

S
δ∗
T

∣
∣
∣
∣At
)

.

For the reduced form model,

S
δ∗
t = Bt S̄δ∗t ,

and S̄δ∗ is a time-changed squared Bessel process of dimension four, the transition
density of which is known in closed-form, see Sect. 3.1:

p4
(
ϕ(t), x;ϕ(T ), y)

= 1

2(ϕ(T )− ϕ(t))
(
y

x

) 1
2

exp

{

− x + y
2(ϕ(T )− ϕ(t))

}

I1

( √
x y

ϕ(T )− ϕ(t)
)

.

Furthermore, in Sect. 3.3 we derived

PT (t)= exp
{−r(T − t)}

(

1 − exp

{

− S̄
δ∗
t

2(ϕ(T )− ϕ(t))
})

.
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We define

f (t, T , y)= exp
{−r(T − t)}

(

1 − exp

{

− y

2(ϕ(T )− ϕ(t))
})

.

Hence we get

PSκ,T0,T (t)

= S̄δ∗t exp
{−r(T − t)}

×
∫ ∞

0

(f (T ,T0, y)−∑n
j=1 cjf (T ,Tj , y))

y
p4
(
ϕ(t), S̄

δ∗
t , ϕ(T ), y

)
dy,

and regarding CVA, we obtain

CVAt = 1{τ>t}S̄δ∗t
∫ T

t

∫ ∞

0
exp
{−(r + λ)(u− t)}

× (f (u,T0, y)−∑n
j=1 cjf (u,Tj , y))

+

y
p4
(
ϕ(t), S̄

δ∗
t , ϕ(u), y

)
λdy du.

Hence the CVA associated with a swap can be expressed in terms of a two-
dimensional integral, which is easily evaluated e.g. using the methods from
Chap. 12.



Chapter 15
Continuous Stochastic Processes

It is the aim of this chapter to briefly recall basic definitions and results concern-
ing continuous stochastic processes. We also discuss the Itô formula, the Feynman-
Kac formula and existence and uniqueness of solutions of SDEs driven by Wiener
processes. This chapter is tailored towards the content presented in this book. For
a more detailed discussion, also covering SDEs driven by Poisson processes and
Poisson random measures, the reader is referred to e.g. Chap. 1 in Platen and Bruti-
Liberati (2010).

15.1 Stochastic Processes

15.1.1 Stochastic Process

If not otherwise stated, throughout the chapter we assume that there exists a com-
mon underlying probability space (Ω,A,P ) consisting of the sample space Ω , the
sigma-algebra or collection of events A, and the probability measure P , see for
instance Shiryaev (1984). One typically observes a collection of random variables
Xt0,Xt1, . . . , which describe the evolution of financial quantities, at the observation
times t0 < t1 < · · ·. The collection of random variables is indexed by the time t , and
we call T the time set. The state space of X is usually the d-dimensional Euclidean
space �d , d ∈N = {1,2, . . .}, or a subset of it. However in Chaps. 10 and 11, we
also consider matrix-valued diffusions.

Definition 15.1.1 We call a family X = {Xt, t ∈ T } of random variables Xt ∈ �d
a d-dimensional stochastic process, where the totality of its finite-dimensional dis-
tribution functions

FXti1
,...,Xtij

(xi1, . . . , xij )= P(Xti1 ≤ xi1, . . . ,Xtij ≤ xij ) (15.1.1)

for ij ∈ {0,1, . . .}, j ∈N , xij ∈ �d and tij ∈ T determines its probability law.
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to Finance, Bocconi & Springer Series 5, DOI 10.1007/978-3-319-00747-2_15,
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We set the time set to the interval T = [0,∞) if not otherwise stated. On some
occasions the time set may become the bounded interval [0, T ] for T ∈ (0,∞) or a
set of discrete time points {t0, t1, t2, . . .}, where t0 < t1 < t2 < · · ·.

15.1.2 Filtration as Information Structure

As already indicated previously, our modeling is based on a given probability space
(Ω,A,P ). On such a probability space we consider dynamics that are based on the
observation of a continuous time stochastic vector process X = {Xt ∈ �d, t ≥ 0},
d ∈ N . We denote by Ât the time t information set, which is the sigma-algebra
generated by the events that are known at time t ≥ 0, see Shiryaev (1984). Our
interpretation of Ât is that it represents the information available at time t , which
is obtained from the observed values of the vector process X up to time t . More
precisely, it is the sigma-algebra

Ât = σ
{
Xs : s ∈ [0, t]}

generated from all observations of X up to time t . Since information is not lost, the
increasing family

Â= {Ât , t ≥ 0}
of information sets Ât satisfies, for any sequence 0 ≤ t1 < t2 < · · ·<∞ of observa-
tion times, the relation Ât1 ⊆ Ât2 ⊆ · · · ⊆ Â∞ =⋃t≥0 Ât .

For technical reasons one introduces the information set At as the augmented
sigma-algebra of Ât for each t ≥ 0. It is augmented by every null set in Â∞ such
that it belongs to A0, and also to each Ât , saying that At is complete. Define At+ =⋂
ε>0 At+ε as the sigma-algebra of events immediately after t ∈ [0,∞). The family

A= {At , t ≥ 0} is called right continuous if At =At+ holds for every t ≥ 0. Such
a right-continuous family A= {At , t ≥ 0} of information sets one calls a filtration.
A filtration can model the evolution of information as it becomes available over time.
We define A as the smallest sigma-algebra that contains A∞ =⋃t≥0 At . From now
on, if not stated otherwise, we always assume in this chapter a filtered probability
space (Ω,A,A,P ) to be given.

Any right-continuous stochastic process Y = {Yt , t ≥ 0} generates its natural fil-
tration AY = {AYt , t ≥ 0}, which is the sigma-algebra generated by Y up to time t .
For a given model with a vector process X we typically set A=AX with At =AX

t .
If for a process Z = {Zt , t ≥ 0} and each time t ≥ 0 the random variable Zt is

AX
t -measurable, then Z is called adapted to AX = {AX

t , t ≥ 0}. The history of the
process Z until time t is then covered by the information set AX

t .

15.1.3 Conditional Expectations

The notion of conditional expectation is central to many of the concepts that arise
in applications of stochastic processes. The mean value or expectation E(X) is the



15.1 Stochastic Processes 365

coarsest estimate that we have for an integrable random variable X, that is, for
which E(|X|) <∞, see Shiryaev (1984). If we know that some event A has oc-
curred we may be able to improve on this estimate. For instance, suppose that the
event A= {ω ∈Ω: X(ω) ∈ [a, b]} has occurred. Then in evaluating our estimate of
the value of X we need only to consider corresponding values of X in [a, b] and
weight them according to their likelihood of occurrence, which thus becomes the
conditional probability given this event, see Shiryaev (1984).

The resulting estimate is called the conditional expectation of X given the event
A and is denoted by E(X|A). For a continuous random variable X with a density
function fX the corresponding conditional density is

fX(x |A)=
{

0 for x < a or b < x
fX(x)∫ b

a fX(s) ds
for x ∈ [a, b] ,

with the conditional expectation

E(X |A)=
∫ ∞

−∞
xfX(x |A)dx =

∫ b
a
xfX(x)dx

∫ b
a
fX(x)dx

, (15.1.2)

which is conditioned on the event A and is, thus, a number.
More generally let (Ω,A,P ) be a given probability space with an integrable

random variable X. We denote by S a sub-sigma-algebra of A, thus representing
a coarser type of information than is given by S ⊂ A. We then define the condi-
tional expectation of X with respect to S , which we denote by E(X | S), as an
S-measurable function satisfying the equation

∫

Q

E(X | S)(ω)dP (ω)=
∫

Q

X(ω)dP (ω), (15.1.3)

for all Q ∈ S . The Radon-Nikodym theorem, see Shiryaev (1984), guarantees the
existence and uniqueness of the random variable E(X | S). Note that E(X | S) is
a random variable defined on the coarser probability space (Ω,S,P ) and thus on
(Ω,A,P ). However, X is usually not a random variable on (Ω,S,P ), but when it
is we have

E(X | S)=X, (15.1.4)

which is the case when X is S-measurable.
For nested sigma-algebras S ⊂ T ⊂A and an integrable random variable X we

have the iterated conditional expectations

E
(
E(X | T ) ∣∣ S)=E(X | S) (15.1.5)

almost surely. Since most equations and relations formulated in this book hold al-
most surely, we typically suppress these words. WhenX is independent of the events
in S we have

E(X | S)=E(X). (15.1.6)

By setting S = {∅,Ω} it can be seen that

E
(
E(X | S))=E(X). (15.1.7)
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Conditional expectations have similar properties to those of ordinary integrals
such as the linearity property

E(αX+ βY | S)= αE(X | S)+ βE(Y | S), (15.1.8)

where X and Y are integrable random variables and α, β ∈ � are deterministic
constants. Furthermore, if X is S-measurable, then

E(XY | S)=XE(Y | S). (15.1.9)

Finally, one has the order preserving property

E(X | S)≤E(Y | S) (15.1.10)

if X ≤ Y a.s.
The conditional expectation E(X | S) is in some sense obtained by smoothing

X over the events in S . Thus, the finer the information set S , the more E(X | S)
resembles the random variable X.

15.1.4 Wiener Process

The Wiener process or Brownian motion is a stochastic process with stationary in-
dependent increments. These mathematical properties make it suitable as funda-
mental building block in stochastic modeling. The random increments Xtj+1 −Xtj ,
j ∈ {0,1, . . . , n− 1}, of these processes are independent for any sequence of time
instants t0 < t1 < · · · < tn in [0,∞) for all n ∈ N . If t0 = 0 is the smallest time
instant, then the initial value X0 and the random increment Xtj − X0 for any
other tj ∈ [0,∞) are also required to be independent. Additionally, the increments
Xt+h−Xt are assumed to be stationary, that is Xt+h−Xt has the same distribution
as Xh −X0 for all h > 0 and t ≥ 0.

Definition 15.1.2 We define the standard Wiener processW = {Wt, t ≥ 0} as an A-
adapted process with Gaussian stationary independent increments and continuous
sample paths for which

W0 = 0, μ(t)=E(Wt)= 0, Var(Wt −Ws)= t − s (15.1.11)

for all t ≥ 0 and s ∈ [0, t].

We now recall the following basic distributional properties of the Wiener process,
see e.g. Borodin and Salminen (2002).

Lemma 15.1.3 The Wiener processW = {Wt, t ≥ 0} enjoys the following distribu-
tional properties:

• spatial homogeneity: for every x ∈ �, the process x +W is a Brownian motion
started at x;

• symmetry: −W is a Brownian motion;
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• Scaling: for every c > 0 the process {√cWt/c, t ≥ 0} is a Brownian motion;
• time inversion: the process given by

Zt :=
{

0 for t = 0

tW1/t for t > 0
(15.1.12)

is a Wiener process;
• time reversibility: for a given t > 0 the following equality in law holds

{Ws : 0 ≤ s ≤ t} d= {Wt−s −Wt : 0 ≤ s ≤ t}. (15.1.13)

There exists also a multidimensional version of the above Wiener process.
We call the vector process W = {W t = (W 1

t ,W
2
t , . . . ,W

m
t )

�, t ≥ 0} an m-

dimensional standard Wiener process if each of its componentsWj = {Wj
t , t ≥ 0},

j ∈ {1,2, . . . ,m} is a scalar A-adapted standard Wiener process and the Wiener
processes Wk and Wj are independent for k �= j , k, j ∈ {1,2, . . . ,m}.

This means that according to Definition 15.1.2, each random variable Wj
t is

Gaussian and At -measurable with

E
(
W
j
t

∣
∣A0
)= 0 (15.1.14)

and we have independent increments Wj
t −Wj

s such that

E
(
W
j
t −Wj

s

∣
∣As
)= 0 (15.1.15)

for t ≥ 0, s ∈ [0, t] and j ∈ {1,2, . . . ,m}. Moreover, one has the additional property
that

E
((
W
j
t −Wj

s

)(
Wk
t −Wk

s

) ∣
∣As
)=
{
(t − s) for k = j
0 otherwise

(15.1.16)

for t ≥ 0, s ∈ [0, t] and j, k ∈ {1,2, . . . ,m}.

15.2 Supermartingales and Martingales

15.2.1 Martingales

We define the quantity Fs for s ∈ [0,∞) as the least-squares estimate of a future
value Xt at the future time t ∈ [s,∞) under the information given by As at time s.
This estimate is As -measurable and minimizes the error

εs =E
(
(Xt − Fs)2

)

over all possible As -measurable estimates, assuming that εs <∞. The random vari-
able Fs is simply the least-squares projection of Xt given the information at time
s ∈ [0, t]. It is obtained by the conditional expectation

Fs =E(Xt |As), (15.2.17)

for all s ∈ [0, t]. This leads to the following definition:
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Definition 15.2.1 A continuous time stochastic process X = {Xt, t ≥ 0} is called
an (A,P )-martingale or simply a martingale, if it satisfies the equation

Xs =E(Xt |As) (15.2.18)

for all s ∈ [0, t] and the integrability condition

E
(|Xt |

)
<∞ (15.2.19)

for all t ≥ 0.

An example of an (A,P )-martingale is a Wiener process W = {Wt, t ≥ 0} on a
filtered probability space (Ω,A,A,P ).

There are many other continuous time stochastic processes that form martingales.
For example, using again the standard Wiener process W it can be shown that the
process

X = {Xt =W 2
t − t, t ≥ 0

}
(15.2.20)

is an (A,P )-martingale.

15.2.2 Super- and Submartingales

Some systematically upward or downward “trending” stochastic processes can be
captured by the following notions:

Definition 15.2.2 An A-adapted process X = {Xt, t ≥ 0} is an (A,P )-supermar-
tingale (submartingale) if

E
(|Xt |

)
<∞ (15.2.21)

and

Xs
(≤)≥ E(Xt |As) (15.2.22)

for all s ∈ [0,∞) and t ∈ [s,∞).

This means, a supermartingale is “trending” systematically downward or has no
trend. We call a supermartingale a strict supermartingale (strict submartingale) if
the inequality in (15.2.22) is always a strict inequality.

15.2.3 Stopping Times

We define stopping times on the filtered probability space (Ω,A,A,P ) introduced
above.
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Definition 15.2.3 A random variable τ :Ω→[0,∞) is called a stopping time with
respect to the filtration A if for all t ≥ 0 one has

{τ ≤ t} ∈At . (15.2.23)

The relation (15.2.23) expresses the fact that the event {τ ≤ t} is At -measurable
and, thus, observable at time t . The information set associated with a stopping time
τ is defined as

Aτ = σ
{
A ∈A: A∩ {τ ≤ t} ∈At for t ≥ 0

}
. (15.2.24)

It represents the information available before and at the stopping time τ . For exam-
ple, the first time

τ(a)= inf{t ≥ 0: Wt = a} (15.2.25)

when a Wiener process W reaches a level a ∈ � is a stopping time.
One calls a sigma-algebra predictable when it is generated by left-continuous

A-adapted processes with right hand limits. We exclude in a predictable sigma-
algebra, in principle, all information about the time instant when a sudden non
predictable event occurs. Immediately after the event a predictable sigma-algebra
already contains this information.

A stochastic process X = {Xt, t ≥ 0}, where Xτ is for each stopping time τ mea-
surable with respect to a predictable sigma-algebra, is called predictable. For exam-
ple, all continuous stochastic processes are predictable.

A stopping time is called predictable, if Aτ is predictable. This means, Aτ is
generated by left-continuous stochastic processes with right hand limits. The first
hitting time τ(a), given in (15.2.25), of the level a by the Wiener process W is
predictable.

For a, b ∈ � we employ the notation a ∧ b = min(a, b) and a ∨ b = max(a, b).
Let us summarize the following useful properties of stopping times τ and τ ′, see,
for instance, Karatzas and Shreve (1991) and Elliott (1982):

(i) τ is Aτ -measurable;
(ii) for a continuous A-adapted process X = {Xt, t ≥ 0} the random variable Xτ is

Aτ -measurable;
(iii) if P(τ ≤ τ ′)= 1, then Aτ ⊆Aτ ′ ;
(iv) the random variables τ ∧ τ ′, τ ∨ τ ′ and (τ + τ ′) are stopping times;
(v) if for a real valued random variable Y we haveE(|Y |) <∞ and P(τ ≤ τ ′)= 1,

then

E(Y |Aτ )=E(Y |Aτ∧τ ′) (15.2.26)

and

E
(
E(Y |Aτ )

∣
∣Aτ ′

)=E(Y |Aτ ). (15.2.27)

If X = {Xt, t ≥ 0} is a right continuous (A,P )-supermartingale, then the super-
martingale property (15.2.18) still holds if the times s and t in (15.2.18) are bounded
stopping times. More precisely, Doob’s Optional Sampling Theorem states the fol-
lowing result, see Doob (1953):
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Theorem 15.2.4 (Doob) If X = {Xt, t ≥ 0} is a right continuous (A,P )-super-
martingale on (Ω,A,A,P ), then it holds for two bounded stopping times τ and
τ ′ with τ ≤ τ ′ almost surely that

E(Xτ ′ |Aτ )≤Xτ . (15.2.28)

Furthermore, if X is additionally an (A,P )-martingale, then equality holds in
(15.2.28).

15.3 Quadratic Variation and Covariation

15.3.1 Quadratic Variation

For simplicity, let us consider an equidistant time discretization
{
tk = kh: k ∈ {0,1, . . .}}, (15.3.29)

with small time steps of length h > 0, such that 0 = t0 < t1 < t2 < · · · . Thus, we
have the discretization times tk = k h for k ∈ {0,1, . . .}. The specific structure of the
time discretization is not essential for the definition below, as long as the maximum
time step size vanishes. There is no need to have the time discretization equidistant.
However, it makes our presentation simpler.

For a given stochastic process X the quadratic variation process [X] =
{[X]t , t ≥ 0} is defined as the limit in probability as h→ 0 of the sums of squared
increments of the process X, provided this limit exists and is unique, see Jacod and
Shiryaev (2003) and Protter (2005). More precisely, we have at time t the quadratic
variation

[X]t P= lim
h→0

[X]h,t , (15.3.30)

where the approximate quadratic variation [X]h,t is given by the sum

[X]h,t =
nt∑

k=1

(Xtk −Xtk−1)
2. (15.3.31)

Here nt denotes the integer

nt = max{k ∈N : tk ≤ t}, (15.3.32)

which is the index of the last discretization point before or including t ≥ 0.
The value of the quadratic variation process [W ] = {[W ]t , t ≥ 0} at time t for a

standard Wiener process W is given by the relation

[W ]t = t (15.3.33)

for t ≥ 0.
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15.3.2 Covariation

For the definition of covariation the same equidistant time discretization, as given in
(15.3.29), is now used. For two continuous stochastic processes Z1 and Z2 the co-
variation process [Z1,Z2] = {[Z1,Z2]t , t ≥ 0} is defined as the limit in probability
as h→ 0 of the values of the approximate covariation process [Z1,Z2]h,· with

[Z1,Z2]h,t =
nt∑

k=1

(
Z1(tk)−Z1(tk−1)

)(
Z2(tk)−Z2(tk−1)

)
(15.3.34)

for t ≥ 0 and h > 0, see (15.3.32). More precisely, at time t ≥ 0 we obtain the co-
variation

[Z1,Z2]t P= lim
h→0

[Z1,Z2]h,t , (15.3.35)

where [Z1,Z2]h,t is the above approximate covariation.

15.3.3 Local Martingales

As we will see, certain stochastic processes become martingales when properly
stopped but are not true martingales.

Definition 15.3.1 A stochastic process X = {Xt, t ≥ 0} is an (A,P )-local martin-
gale if there exists an increasing sequence (τn)n∈N of stopping times, that may
depend on X, such that limn→∞ τn

a.s.= ∞ and each stopped process

Xτn = {Xτnt =Xt∧τn , t ≥ 0
}

(15.3.36)

is an (A,P )-martingale, where t ∧ τn = min(t, τn).

If X is a local martingale, then the value Xs does, in general, not equal the con-
ditional expectation E(Xt | As) for s ∈ [0,∞) and t ∈ [s,∞). A local martingale
that is not a martingale is called a strict local martingale.

The following holds, see Protter (2005) and Shiryaev (1984):

Lemma 15.3.2

(i) An almost surely nonnegative (negative) (A,P )-local martingale is an (A,P )-
supermartingale (submartingale).

(ii) An almost surely uniformly bounded (A,P )-local martingale is an (A,P )-
martingale.

(iii) A square integrable (A,P )-local martingale X is a square integrable (A,P )-
martingale if and only if

E
([X]T

)
<∞ (15.3.37)

for all T ∈ [0,∞).
(iv) A nonnegative (A,P )-local martingale X = {Xt, t ≥ 0} with E(Xt |As) <∞

for all 0 ≤ s ≤ t <∞ is an (A,P )-supermartingale.
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15.3.4 Identification of Martingales as Wiener Processes

The Wiener process plays a central role in stochastic calculus and is the basic build-
ing block for modeling continuous uncertainty. We saw that the Wiener process is
a martingale and from (15.3.33) it follows that its quadratic variation [W ]t equals
the time t . Note that the converse can also be shown. Lévy’s Theorem provides this
important result. Its derivation can be found, for instance in Platen and Heath (2010).

Theorem 15.3.3 (Lévy) Form ∈N let A be a givenm-dimensional vector process
A = {At = (A1

t ,A
2
t , . . . ,A

m
t )

�, t ≥ 0} on a filtered probability space (Ω,A,A,P ).
If each of the processes Ai = {Ait , t ≥ 0} is a continuous, square integrable (A,P )-
martingale that starts at 0 at time t = 0 and their covariations are of the form

[
Ai,Ak

]
t
=
{
t for i = k
0 for i �= k (15.3.38)

for all i, k ∈ {1,2, . . . ,m} and t ≥ 0, then the vector process A is an m-dimensional
standard Wiener process on [0,∞). This means that each process Ai is a one-
dimensional Wiener process that is independent of the other Wiener processes Ak

for k �= i.

This result implies that a continuous processX = {Xt, t ≥ 0} is a one-dimensional
Wiener process if and only if both the process X and the process Y = {Yt =
X2
t − t, t ≥ 0} are martingales.

15.4 Itô Integral

We now introduce the notion of a stochastic integral. Consider the piecewise con-
stant process ξ = {ξ(t), t ∈ [0, T ]} with ξ(t) = ξ(tk) at time t ∈ [tk, tk+1), k ∈
{0,1, . . .} and tk = kh for h > 0. Then we have, for a suitable stochastic process
X = {Xt, t ≥ 0},

∫ t

0
ξ(s) dXs =

nt∑

k=1

ξ(tk−1){Xtk −Xtk−1} + ξ(tnt ){Xt −Xtnt }, (15.4.1)

where

nt = max{k ∈N : tk ≤ t} (15.4.2)

is the integer index of the latest discretization time before and including t .
For a left continuous, predictable stochastic process ξ = {ξ(t), t ≥ 0} as inte-

grand with
∫ T

0
ξ(s)2 d[X]t <∞ (15.4.3)
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for all T ∈ [0,∞) almost surely, the Itô integral with respect to X is defined as the
left continuous limit in probability

∫ t

0
ξ(s) dXs

P= lim
h→0

nt∑

k=1

ξ(tk−1){Xtk −Xtk−1} (15.4.4)

of a sequence of corresponding approximating sums for progressively finer time
discretizations for t ≥ 0.

For details on the definition of Itô integrals we refer to Karatzas and Shreve
(1991), Kloeden and Platen (1999), Protter (2005) or Platen and Heath (2010). The
most important characteristic of the Itô integral is that the evaluation point tk−1 for
the integrand ξ is always taken at the left hand side of the discretization interval
[tk−1, tk).

To model more general dynamics than those of the Wiener process let e =
{et , t ≥ 0} and f = {ft , t ≥ 0} be predictable stochastic processes. Consider a
stochastic process Y = {Yt , t ≥ 0}, where

Yt = y0 +
∫ t

0
es ds +

∫ t

0
fs dWs (15.4.5)

for t ≥ 0 and initial value Y0 = y0. Here W = {Wt, t ≥ 0} is a standard Wiener
process. The first integral is a random ordinary Riemann-Stieltjes integral, assuming

∫ t

0
|es |ds <∞ (15.4.6)

for all t ≥ 0 almost surely (a.s.). The second integral is an Itô integral with respect
to the Wiener process W , see (15.4.4), where we assume that

∫ t

0
|fs |2 ds <∞ (15.4.7)

almost surely for all t ≥ 0. It is common to express the integral equation (15.4.5) in
an equivalent short hand notation, i.e. Itô differential equation in the form

dYt = et dt + ft dWt (15.4.8)

for t ≥ 0 with Y0 = y0. Equation (15.4.8) is simply another way of writing (15.4.5).
The processes e and f are called drift and diffusion coefficients, respectively. The
concept of an Itô differential allows the modeling of rather general dynamics.

The above definitions of an Itô integral and Itô differential can be extended to
the case of multidimensional integrands ξ and integration with respect to several
independent standard Wiener processes.

15.4.1 Some Properties of Itô Integrals

Consider two A-adapted independent Wiener processes W 1 and W 2. Recall that
(Wi

t −Wi
s ) is independent of As for t ≥ 0, s ∈ [0, t] and i ∈ {1,2}. It is useful to
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specify for T ≥ 0 the class L2
T of predictable, square integrable integrands f =

{ft , t ∈ [0, T ]} in the form that
∫ T

0
E
(
f 2
t

)
dt <∞. (15.4.9)

The Itô integral exhibits the following important properties:

1. linearity: for T ≥ 0, t ∈ [0, T ], s ∈ [0, t], Z1,Z2 ∈ L2
T , and As -measurable

square integrable random variables A and B it holds
∫ t

s

(
AZ1(u)+B Z2(u)

)
dW 1

u =A
∫ t

s

Z1(u) dW
1
u +B

∫ t

s

Z2(u) dW
1
u

(15.4.10)

2. local martingale property: for ξ predictable with
∫ T

0
ξ(u)2 du <∞ (15.4.11)

a.s. for all T ∈ [0,∞) the Itô integral Iξ,W = {Iξ,W (t) =
∫ t

0 ξ(s) dWs, t ≥ 0}
forms an (A,P )-local martingale

3. martingale property: assume that Iξ,W (t) forms a square integrable process, then
it is a square integrable (A,P )-martingale if and only if

E

(∫ T

0
ξ(u)2 du

)

<∞ (15.4.12)

for all T ≥ 0
4. correlation property: for T ≥ 0, t ∈ [0, T ], independent Wiener processes W 1

and W 2 and Z1,Z2 ∈ L2
T it holds that

E

(∫ t

0
Z1(u) dW

i
u

∫ t

0
Z2(u) dW

j
u

∣
∣
∣
∣As
)

=
{∫ t

0 E(Z1(u)Z2(u) |As) du for i = j
0 otherwise

(15.4.13)

for i, j ∈ {1,2}
5. covariation property: for t ≥ 0, independent Wiener processes W 1 and W 2 and

predictable integrands Z1 and Z2 with
∫ t

0 |Z1(u)Z2(u)|du <∞ almost surely it
holds

[∫

0
Z1(u) dW

i
u,

∫

0
Z2(u) dW

j
u

]

t

=
{∫ t

0 Z1(u)Z2(u) du for i = j
0 otherwise

(15.4.14)

for i, j ∈ {1,2}
6. finite variation property: for t ≥ 0 and predictable Z1 and Z2 one has

[∫

0
Z1(u) dW

1
u ,

∫

0
Z2(u) du

]

t

= 0. (15.4.15)
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Note that some of the above employed conditions can be weakened, see Protter
(2005).

15.5 Itô Formula

15.5.1 One-Dimensional Continuous Itô Formula

To be able to handle functions of solutions to stochastic processes, a chain rule, as
it is known in classical calculus, is needed. Let X = {Xt, t ≥ 0} be a continuous
stochastic process characterized by the Itô differential

dXt = et dt + ft dWt (15.5.16)

for t ≥ 0 with initial value X0 = x0, see (15.4.8). Here e = {et , t ≥ 0} and f =
{ft , t ≥ 0} are two predictable stochastic processes.

Consider a function u : [0,∞)×�→� that is differentiable with respect to time
t and twice continuously differentiable with respect to the spatial component x, that

is, the partial derivatives ∂u
∂t

, ∂u
∂x

and ∂2u

∂x2 exist and are continuous. To quantify the
changes in u(t,Xt ) caused by changes in Xt one has the Itô formula

du(t,Xt )=
(
∂u(t,Xt )

∂t
+ et ∂u(t,Xt )

∂x
+ 1

2
(ft )

2 ∂
2u(t,Xt )

∂x2

)

dt

+ ft ∂u(t,Xt )
∂x

dWt (15.5.17)

for t ≥ 0.
By using the notion of quadratic variation, see (15.3.30), we can rewrite the Itô

formula (15.5.17) conveniently in the form

du(t,Xt )= ∂u(t,Xt )

∂t
dt + ∂u(t,Xt )

∂x
dXt + 1

2

∂2u(t,Xt )

∂x2
d[X]t (15.5.18)

for t ≥ 0.

15.5.2 Multidimensional Continuous Itô Formula

We now extend the Itô-formula to the multidimensional case. Consider a
d-dimensional vector process e = {et = (e1

t , . . . , e
d
t )
T , t ≥ 0} with predictable com-

ponents ek , k ∈ {1,2, . . . , d}. Assume that
∫ T

0

∣
∣ekz
∣
∣dz <∞ (15.5.19)
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almost surely for all k ∈ {1,2, . . . , d}. The d ×m-matrix valued process F = {F t =
[F i,jt ]d,mi,j=1, t ≥ 0} is assumed to have predictable elements F i,j with

∫ T

0

(
F
i,j
z

)2
dz <∞ (15.5.20)

almost surely for i ∈ {1,2, . . . , d}, j ∈ {1,2, . . . ,m} and all T ∈ (0,∞), see Protter
(2005). This allows us to introduce a d-dimensional continuous stochastic vector
process X = {Xt = (X1

t ,X
2
t , . . . ,X

d
t )

�, t ≥ 0}, where the kth component Xk is de-
fined via the Itô differential

dXkt = ekt dt +
m∑

j=1

F
k,j
t dW

j
t (15.5.21)

for t ≥ 0 and given A0-measurable initial value X0 = (X1
0, . . . ,X

d
0 )

� ∈ �d .
Consider now a function u : [0,∞)×�d →� that has continuous partial deriva-

tives ∂u
∂t

, ∂u
∂xk

and ∂2u
∂xk∂xi

for all k, i ∈ {1,2, . . . , d}, t ≥ 0 and x = (x1, x2, . . . , xd)�.

The scalar stochastic process u = {u(t,X1
t ,X

2
t , . . . ,X

d
t ), t ≥ 0} satisfies then the

Itô differential characterized by the Itô formula

du
(
t,X1

t ,X
2
t , . . . ,X

d
t

)

=
{
∂u

∂t
+

d∑

k=1

ekt
∂u

∂xk
+ 1

2

m∑

j=1

d∑

i,k=1

F
i,j
t F

k,j
t

∂2u

∂xi∂xk

}

dt

+
m∑

j=1

d∑

i=1

F
i,j
t

∂u

∂xi
dW

j
t , (15.5.22)

for t ≥ 0 with initial value u(0,X1
0,X

2
0, . . . ,X

d
0 ), where the partial derivatives of

the function u are evaluated at (t,X1
t ,X

2
t , . . . ,X

d
t ), which we suppressed in our

notation.
We can rewrite the multidimensional Itô formula (15.5.22) also in the form

du
(
t,X1

t ,X
2
t , . . . ,X

d
t

)= ∂u

∂t
dt +

m∑

i=1

∂u

∂xi
dXit +

1

2

m∑

i,k=1

∂2u

∂xi ∂xk
d
[
Xi,Xk

]
t

(15.5.23)

for all t ≥ 0 using covariations, see (15.3.35).

15.6 Stochastic Differential Equations

15.6.1 Feedback in Stochastic Dynamics

In the Itô differentials that we have considered we left the specification of the drift
coefficient and the diffusion coefficient open. For instance, these coefficients can
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be made state dependent. A stochastic differential equation (SDE) contains an un-
known, which is its solution process. To be useful in modeling, such a solution needs
to exist in an appropriate sense. Furthermore, some uniqueness of the solution of an
SDE has to be guaranteed to make sure that one achieves the modeling goal without
any ambiguity.

15.6.2 Solution of Continuous SDEs

We consider now a continuous stochastic process Y = {Yt , t ≥ 0}, which is a solu-
tion of a given SDE

dYt = a(t, Yt ) dt + b(t, Yt ) dWt (15.6.24)

for t ≥ 0, with initial value Y0 = y0. Here W denotes the driving standard Wiener
process. If the process Y has for all t ≥ 0 an Itô differential of the form (15.6.24),
then Y = {Yt , t ≥ 0} is called a solution of the SDE (15.6.24). More precisely, a so-
lution of the SDE (15.6.24) is a pair (Y,W) of adapted stochastic processes, defined
on a given filtered probability space (Ω,A,A,P ), where the continuous process Y
satisfies for each t ≥ 0 the Itô integral equation

Yt = y0 +
∫ t

0
a(s,Ys) ds +

∫ t

0
b(s,Ys) dWs. (15.6.25)

We need to assume that both integrals on the right hand side of (15.6.25) exist. It is
sufficient to request that

∫ t

0

∣
∣a(s,Ys)

∣
∣ds +

∫ t

0

∣
∣b(s,Ys)

∣
∣2 ds <∞

almost surely for all t ≥ 0. Note that the SDE (15.6.24) is only a shorthand notation
for the integral equation (15.6.25). The existence and uniqueness of a solution of
an SDE is not trivially given, and needs to be ensured, as will be discussed later. In
addition to the initial value, not only the drift coefficient and the diffusion coefficient
need to be given for certain SDEs, additionally also the behavior of its solution at
certain boundaries may have to be defined when establishing the uniqueness of the
solution of the SDE. For instance, absorption or reflection has to be declared for
certain SDEs at the level zero.

15.6.3 Continuous Vector SDEs

We now consider multidimensional solutions

X = {Xt =
(
X1
t ,X

2
t , . . . ,X

d
t

)
, t ≥ 0)

}

of SDEs. We recall that W = {W t = (W 1
t ,W

2
t , . . . ,W

m
t )

�, t ≥ 0} is an m-di-
mensional standard Wiener process with components W 1,W 2, . . . ,Wm.
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Given a d-dimensional vector function a : [0,∞) × �d → �d and a d × m-
matrix function b : [0,∞) × �d → �d×m, then we can form the d-dimensional
vector stochastic differential equation

dXt = a(t,Xt ) dt + b(t,Xt ) dW t (15.6.26)

for t ≥ 0 with initial value X0 ∈ �d . The vector stochastic differential (15.6.26)
should be interpreted as an Itô integral equation of the form

Xt = X0 +
∫ t

0
a(s,Xs) ds +

∫ t

0
b(s,Xs) dW s , (15.6.27)

for t ≥ 0, where the integrals are defined componentwise. Thus, the ith component
of (15.6.27) is then given by the SDE

Xit =Xi0 +
∫ t

0
ai(s,Xs) ds +

m∑

#=1

∫ t

0
bi,#(s,Xs) dW

#
s , (15.6.28)

for t ≥ 0 and i ∈ {1,2, . . . , d}. Note that the drift and diffusion coefficients of each
component can depend on all other components.

We now address the issue of existence and uniqueness of SDEs, see also Krylov
(1980) and Protter (2005).

15.7 Existence and Uniqueness of Solutions of SDEs

15.7.1 Strong Solution

For any model that uses an SDE it is essential that it has a solution. Furthermore,
it is important that it has a unique solution according to some appropriate crite-
rion. One such criterion is described below in detail, which is based on a notion of
strong uniqueness. Usually one can only formulate sufficient conditions to estab-
lish uniqueness. The techniques presented in the literature for proving existence and
uniqueness of a solution of an SDE are rather similar. They typically assume Lips-
chitz continuity of the drift and diffusion coefficients. We briefly discuss here some
typical issues that arise when ensuring the existence and uniqueness of a solution of
an SDE.

Assume that we have given a filtered probability space (Ω,A,A,P ). For
Eq. (15.6.27) to make sense X needs to be A-adapted. This leads to the follow-
ing definition.

Definition 15.7.1 We call (X,W ), consisting of a stochastic process X = {Xt , t ∈
[0, T ]}, T ∈ (0,∞), and an A-adapted standard Wiener process W , a strong solution
of the Itô integral equation (15.6.27) if X is A-adapted, the integrals on the right
hand side are well-defined and the equality in (15.6.27) holds almost surely.



15.7 Existence and Uniqueness of Solutions of SDEs 379

For fixed coefficient functions a and b, any solution X will usually depend on
the particular initial value X0 and the sample path of the Wiener process W under
consideration. For a specified initial value X0 the uniqueness of strong solutions
of the SDE (15.6.27) refers to the following notion of indistinguishability of the
solution processes.

Definition 15.7.2 If any two strong solutions X and X̃ are indistinguishable on
[0, T ], that is,

Xt = X̃t (15.7.29)

almost surely for all t ∈ [0, T ], then we say that the solution of (15.6.27) on [0, T ]
is a unique strong solution.

15.7.2 Existence and Uniqueness Theorem

Let us now state a standard theorem on the existence and uniqueness of strong solu-
tions of SDEs. It ensures that the objects we model are well defined. For details on
the definition of strong solutions of SDEs, we can refer, for instance, to Ikeda and
Watanabe (1989) or Protter (2005).

We assume that the coefficient functions of the SDE (15.6.27) satisfy the Lips-
chitz conditions
∣
∣a(t,x)− a(t,y)

∣
∣≤ C1|x − y|, ∣

∣b(t,x)− b(t,y)
∣
∣≤ C2|x − y|, (15.7.30)

for every t ∈ [0, T ] and x,y ∈ �d , as well as the linear growth conditions
∣
∣a(t,x)

∣
∣≤K1

(
1 + |x|), ∣

∣b(t,x)
∣
∣≤K2

(
1 + |x|), (15.7.31)

for all t ∈ [0, T ] and x ∈ �d . Note that the linear growth conditions can usually be
derived from the corresponding Lipschitz conditions.

Moreover, we assume that the initial value X0 is A0-measurable with

E
(|X0|2

)
<∞. (15.7.32)

Theorem 15.7.3 Suppose that the coefficient functions a(·) and b(·) of the SDE
(15.6.27) satisfy the Lipschitz conditions (15.7.30), the linear growth conditions
(15.7.31) and the initial condition (15.7.32). Then the SDE (15.6.27) admits a
unique strong solution. Moreover, the solution X of the SDE (15.6.27) satisfies the
estimate

E
(

sup
0≤s≤T

|Xs |2
)
≤ C(1 +E(|X0|2

))
(15.7.33)

with T <∞, where C is a finite positive constant.

The proof of Theorem 15.7.3 can be found in Ikeda and Watanabe (1989) or
Situ (2005). In the mentioned literature one finds also the notion of a weak solution
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of an SDE. We note that if an SDE has a strong solution, then it has also a weak
solution. Within this book we have discussed several classes of tractable diffusions,
which do not satisfy the above mentioned Lipschitz and linear growth conditions.
Still, there exist unique weak solutions of the respective SDEs. By working with
tractable diffusions and functions of these one can access a modeling world with
properties that are difficult or impossible to establish under classical Lipschitz and
linear growth conditions.

15.8 Functionals of Solutions of SDEs

This book is concerned with the exploration of classes of diffusions for which ex-
plicit formulas for important functionals can be computed. These functionals often
have the format of conditional expectations. For Markovian state variables these
conditional expectations lead to pricing functions that satisfy partial differential
equations (PDEs). The link between the conditional expectations and respective
PDEs can be interpreted as an application of the, so-called, Feynman-Kac formula.
Below we formulate the Feynman-Kac formula in various ways. Furthermore, this
section presents some results on transition probability densities, changes of mea-
sures, the Bayes rule, and the Girsanov transformation. For details, see e.g. Platen
and Heath (2010).

15.8.1 SDE for Some Factor Process

We consider a fixed time horizon T ∈ (0,∞) and a d-dimensional Markovian factor
process Xt,x = {Xt,x

s , s ∈ [t, T ]}, which satisfies the vector SDE

dXt,x
s = a

(
s,Xt,x

s

)
ds +

m∑

k=1

bk
(
s,Xt,x

s

)
dWk

s (15.8.34)

for s ∈ [t, T ] with initial value Xt,x
t = x ∈ �d at time t ∈ [0, T ]. The process

W = {W t = (W 1
t , . . . ,W

m
t )

�, t ∈ [0, T ]} is an m-dimensional standard Wiener
process on a filtered probability space (Ω,A,A,P ). The process Xt,x has a drift
coefficient a(·,·) and diffusion coefficients bk(·,·), k ∈ {1,2, . . . ,m}. In general,
a = (a1, . . . , ad)� and bk = (b1,k, . . . , bd,k)�, k ∈ {1,2, . . . ,m}, represent vector
valued functions on [0, T ] × �d into �d , and we assume that a unique strong solu-
tion of the SDE (15.8.34) exists. We motivate various versions of the Feynman-Kac
formula by giving them financial interpretations. The values considered will be typ-
ically denominated in units of the benchmark.
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15.8.2 Terminal Payoff

Let us discuss the case of a European style option, where we have a terminal payoff
H(Xt,x

T ) at the maturity date T with some given payoff function H : �d → [0,∞)
such that

E
(∣∣H
(
Xt,x
T

)∣∣)<∞. (15.8.35)

We can then introduce the pricing function u : [0, T ] × �d → [0,∞) as the condi-
tional expectation

u(t,x)=E(H (Xt,x
T

) ∣
∣At
)

(15.8.36)

for (t,x) ∈ [0, T ] ×�d . The Feynman-Kac formula for this payoff refers to the fact
that under sufficient regularity on a,b1, . . . ,bm and H the function u : (0, T ) ×
�d →[0,∞) satisfies the PDE

L0u(t,x)= ∂u(t,x)

∂t
+

d∑

i=1

ai(t,x)
∂u(t,x)

∂xi

+ 1

2

d∑

i,k=1

m∑

j=1

bi,j (t,x)bk,j (t,x)
∂2u(t,x)

∂xi∂xk

= 0 (15.8.37)

for (t,x) ∈ (0, T )×�d with terminal condition

u(T ,x)=H(x) (15.8.38)

for x ∈ �d . Equation (15.8.37) is also called the Kolmogorov backward equation.
Note that, in general, one needs also to specify the behavior of the solution of the

PDE at its boundaries. In a benchmark setting when nonnegative value processes
become zero they stay afterwards zero and face absorption at the respective bound-
ary.

15.8.3 Discounted Payoff

We now generalize the above payoff function by discounting it, using a given dis-
count rate process r , which is obtained as a function of the given vector diffusion
process Xt,x , that is r : [0, T ] × �d →�.

Over the period [t, T ] we consider for the discounted payoff

exp

{

−
∫ T

t

r
(
s,Xt,x

s

)
ds

}

H
(
Xt,x
T

)

the pricing function

u(t,x)=E
(

exp

{

−
∫ T

t

r
(
s,Xt,x

s

)
ds

}

H
(
Xt,x
T

)
∣
∣
∣
∣At
)

(15.8.39)
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for (t,x) ∈ [0, T ] ×�d . It follows rather generally that the pricing function u satis-
fies the PDE

L0 u(t,x)= r(t,x)u(t,x) (15.8.40)

for (t,x) ∈ (0, T )×�d with terminal condition

u(T ,x)=H(x) (15.8.41)

for x ∈ �d . Here the PDE operator L0 is given as in (15.8.37).

15.8.4 Terminal Payoff and Payoff Rate

Now, we add to the above discounted payoff structure some payoff stream that con-
tinuously pays with a payoff rate g : [0, T ] × �d → [0,∞) some amount per unit
of time. The corresponding discounted payoff with payoff rate is then of the form

exp

{

−
∫ T

t

r
(
s,Xt,x

s

)
ds

}

H
(
Xt,x
T

)+
∫ T

t

exp

{

−
∫ s

t

r
(
z,Xt,x

z

)
dz

}

g
(
s,Xt,x

s

)
ds,

which leads to the pricing function

u(t,x)=E
(

exp

{

−
∫ T

t

r
(
s,Xt,x

s

)
ds

}

H
(
Xt,x
T

)

+
∫ T

t

exp

{

−
∫ s

t

r
(
z,Xt,x

z

)
dz

}

g
(
s,Xt,x

s

)
ds

∣
∣
∣
∣At
)

(15.8.42)

for (t,x) ∈ [0, T ] × �d . This pricing function satisfies the PDE

L0u(t,x)+ g(t,x)= r(t,x)u(t,x) (15.8.43)

for (t,x) ∈ (0, T )×�d with terminal condition

u(T ,x)=H(x) (15.8.44)

for x ∈ �d . As mentioned earlier, for certain dynamics boundary conditions may
have to be added.

15.8.5 Payoff with First Exit Time

Derivatives like barrier options have a, so-called, continuation region Φ , which is
an open connected subset of [0, T ] × Γ . The holder of a derivative continues to
receive payments as long as the process Xt,x stays in the continuation region Φ .
For instance, in the case of a, so-called, knock-out-barrier option this would mean
that Xt,x

s has to stay below a given critical barrier to receive the terminal payment.
To make this precise, we define the first exit time τ tΦ from Φ after t as

τ tΦ = inf
{
s ∈ [t, T ]: (s,Xt,x

s

)
/∈Φ}, (15.8.45)

which is a stopping time, see (15.2.23).
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Consider now a general payoff structure with terminal payoff function H :
(0, T ] × Γ → [0,∞) for payments at time τ tΦ , a payoff rate g : [0, T ] × Γ →
[0,∞) for incremental payments during the time period [t, τ tΦ) and a discount rate
r : [0, T ] × Γ → �. Assume that the process Xt,x does not explode or leave Γ
before the terminal time T . We then define the pricing function u :Φ→[0,∞) by

u(t,x)=E
(

H
(
τ tΦ,X

t,x

τ tΦ

)
exp

{

−
∫ τ tΦ

t

r
(
s,Xt,x

s

)
ds

}

+
∫ τ tΦ

t

g
(
s,Xt,x

s

)
exp

{

−
∫ s

t

r
(
z,Xt,x

u

)
dz

}

ds

∣
∣
∣
∣At
)

(15.8.46)

for (t,x) ∈Φ .
For the formulation of the resulting PDE of the function u we use the operator L0

given in (15.8.37). Under sufficient regularity of Φ , a,b1, . . . ,bm, H , g and r one
can show by application of the Itô formula (15.5.23) and some martingale argument
that the pricing function u satisfies the PDE

L0u(t,x)+ g(t,x)= r(t,x)u(t,x) (15.8.47)

for (t,x) ∈Φ with boundary condition

u(t,x)=H(t,x) (15.8.48)

for (t,x) ∈ ((0, T ] × Γ )\Φ . This result links the functional (15.8.46) to the PDE
(15.8.47)–(15.8.48) and is often called a Feynman-Kac formula.

15.8.6 Generalized Feynman-Kac Formula

For a rather general situation, where Φ = (0, T )× Γ and τ tΦ = T , let us now for-
mulate sufficient conditions that ensure that the Feynman-Kac formula holds, see
Heath and Schweizer (2000) and Platen and Heath (2010).

(A) The drift coefficient a and diffusion coefficients bk , k ∈ {1,2, . . . ,m}, are as-
sumed to be on [0, T ] × Γ locally Lipschitz-continuous in x, uniformly in t .
That is, for each compact subset Γ 1 of Γ there exists a constant KΓ 1 <∞
such that

∣
∣a(t,x)− a(t,y)

∣
∣+

m∑

k=1

∣
∣bk(t,x)− bk(t,y)

∣
∣≤KΓ 1 |x − y| (15.8.49)

for all t ∈ [0, T ] and x,y ∈ Γ 1.
(B) For all (t,x) ∈ [0, T )× Γ the solution Xt,x of (15.8.34) neither explodes nor

leaves Γ before T , that is

P
(

sup
t≤s≤T

∣
∣Xt,x
s

∣
∣<∞

)
= 1 (15.8.50)

and

P
(
Xt,x
s ∈ Γ for all s ∈ [t, T ])= 1. (15.8.51)
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(C) There exists an increasing sequence (Γn)n∈N of bounded, open and connected
domains of Γ such that

⋃∞
n=1 Γn = Γ , and for each n ∈N the PDE

L0un(t,x)+ g(t,x)= r(t,x)un(t,x) (15.8.52)

has a unique solution un in the sense of Friedman (1975) on (0, T )× Γn with
boundary condition

un(t,x)= u(t,x) (15.8.53)

on ((0, T )× ∂Γn)∪ ({T } × Γn), where ∂Γn denotes the boundary of Γn.
(D) The process bi,k(·,X·) ∂u(·,X·)

∂xi
is measurable and square integrable on [0, T ]

for all i ∈ {1,2, . . . , d} and k ∈ {1,2, . . . ,m}.
The proof of the following theorem is given in Platen and Heath (2010).

Theorem 15.8.1 Under the conditions (A), (B), (C) and (D), the function u given
by (15.8.46) is the unique solution of the PDE (15.8.47) with boundary condition
(15.8.48), where u is differentiable with respect to t and twice differentiable with
respect to the components of x.

Condition (A) is satisfied if, for instance, a and b = (b1, . . . ,bm) are differ-
entiable in x on the open set (0, T ) × Γ with derivatives that are continuous on
[0, T ] × Γ .

To establish condition (B) one needs to exploit specific properties of the process
Xt,x given by the SDE (15.8.34).

Condition (C) can be shown to be implied by the following assumptions.

(C1) There exists an increasing sequence (Γn)n∈N of bounded, open and connected
subdomains of Γ with Γn∪ ∂Γn ⊂ Γ such that ∪∞

n=1Γn = Γ , and each Γn has
a twice differentiable boundary ∂Γn.

(C2) For each n ∈N the functions a and bb� are uniformly Lipschitz-continuous
on [0, T ] × (Γn ∪ ∂Γn).

(C3) For each n ∈ N the function b(t,x)b(t,x)� is uniformly elliptic on �d for
(t,x) ∈ [0, T ] × Γn, that is, there exists a δn > 0 such that

y�b(t,x)b(t,x)�y ≥ δn |y|2 (15.8.54)

for all y ∈ �d .
(C4) For each n ∈ N the functions r and g are uniformly Hölder-continuous on

[0, T ]× (Γn∪ ∂Γn), that is, there exists a constant K̄n and an exponent qn > 0
such that

∣
∣r(t,x)− r(t,y)∣∣+ ∣∣g(t,x)− g(t,y)∣∣≤ K̄n|x − y|qn (15.8.55)

for t ∈ [0, T ] and x,y ∈ (Γn ∪ ∂Γn).
(C5) For each n ∈N the function u is finite and continuous on ([0, T ] × ∂Γn) ∪

({T } × (Γn ∪ ∂Γn)).
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Condition (D) is satisfied, for instance, when
∫ T

0
E

((

bi,k(t,Xt )
∂u(t,Xt )

∂xi

)2)

dt <∞

for all i ∈ {1,2, . . . , d} and k ∈ {1,2, . . . ,m}. This condition ensures that the process
u(·,X·) is a martingale and that the PDE (15.8.47)–(15.8.48) has a unique solution.

Note that in the case when local Lipschitz continuity is not guaranteed, one may
have to specify particular boundary conditions to obtain an appropriate description
of the pricing function. This is a consequence of the fact that strict local martingales
may drive the factor dynamics. These need extra care when defining the behavior of
PDE solutions at boundaries. Within this book we have given many explicit formu-
las for pricing functions, which satisfy a PDE of the form (15.8.47)–(15.8.48) but
may not satisfy some of the above mentioned conditions. This reveals another ad-
vantage of working with tractable diffusions, where one has not to rely on restrictive
Lipschitz conditions or similar constraining assumptions and still obtains a solution
for the problem at hand.

15.8.7 Kolmogorov Equations

When the drift coefficient a(·) and diffusion coefficient b(·) of the solution of a
scalar SDE are appropriate functions, then the corresponding transition probability
density p(s, x; t, y) of the solution of the SDE satisfies a certain PDE. This is the
Kolmogorov forward equation or Fokker-Planck equation

∂p(s, x; t, y)
∂t

+ ∂

∂y

{
a(t, y)p(s, x; t, y)}− 1

2

∂2

∂y2

{
b2(t, y)p(s, x; t, y)}= 0,

(15.8.56)

for (s, x) fixed. However, p(s, x; t, y) satisfies also the Kolmogorov backward equa-
tion

∂p(s, x; t, y)
∂s

+ a(s, x)∂p(s, x; t, y)
∂x

+ 1

2
b2(s, x)

∂2p(s, x; t, y)
∂x2

= 0, (15.8.57)

for (t, y) fixed. Obviously, the initial condition for both PDEs is given by the Dirac
delta function

p(s, x; s, y)= δ(y − x)=
{∞ for y = x

0 for y �= x, (15.8.58)

where
∫ ∞

−∞
δ(y − x)dy = 1 (15.8.59)

for given x. The Kolmogorov equations have multidimensional counterparts. In
Sect. 5.3 we have given various examples of explicit transition probability densi-
ties.
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15.8.8 Change of Probability Measure

We denote by W = {W t = (W 1
t , . . . ,W

m
t )

�, t ∈ [0, T ]} an m-dimensional stan-
dard Wiener process on a filtered probability space (Ω,A,A,P ) with A0 being the
trivial σ -algebra, augmented by the sets of zero probability. For an A-predictable
m-dimensional stochastic process θ = {θ t = (θ1

t , . . . , θ
m
t )

�, t ∈ [0, T ]} with
∫ T

0

m∑

i=1

(
θit
)2
dt <∞ (15.8.60)

almost surely, let us assume that the strictly positive Radon-Nikodym derivative pro-
cess Λθ = {Λθ (t), t ∈ [0, T ]}, where

Λθ (t)= exp

{

−
∫ t

0
θ�s dW s − 1

2

∫ t

0
θ�s θ s ds

}

<∞ (15.8.61)

almost surely for t ∈ [0, T ], is an (A,P )-martingale. By the Itô formula (15.5.22)
it follows from (15.8.61) that

Λθ (t)= 1 −
m∑

i=1

∫ t

0
Λθ (s)θ

i
s dW

i
s (15.8.62)

for t ∈ [0, T ]. Since Λθ is assumed here to be an (A,P )-martingale we have for
t ∈ [0, T ]

E
(
Λθ (t)

∣
∣A0
)=Λθ (0)= 1. (15.8.63)

We can now define a measure Pθ via the Radon-Nikodym derivative

dPθ

dP
=Λθ (T ) (15.8.64)

by setting

Pθ (A)=E
(
Λθ (T )1A

)=Eθ (1A) (15.8.65)

for A ∈AT . Here 1A is the indicator function for A and Eθ means expectation with
respect to Pθ .

Note that Pθ is not just a measure but also a probability measure because

Pθ (Ω)=E
(
Λθ (T )

)=E(Λθ (T )
∣
∣A0
)=Λθ (0)= 1 (15.8.66)

as a result of the martingale property ofΛθ . For several asset price models discussed
in this book, the Radon-Nikodym derivative for the putative risk neutral probability
measure is only a strict local martingale and a risk neutral probability measure does
not exist.

15.8.9 Bayes Rule

It is useful to be able to change the probability measure when taking conditional ex-
pectations. The following Bayes rule establishes a relationship between conditional
expectations with respect to different equivalent probability measures.
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Assume for an equivalent probability measure Pθ that the corresponding strictly
positive Radon-Nikodym derivative process Λθ is an (A,P )-martingale. Then for
any given stopping time τ ∈ [0, T ] and any Aτ -measurable random variable Y , sat-
isfying the integrability condition

Eθ

(|Y |)<∞, (15.8.67)

one can apply the Bayes rule

Eθ (Y |As)= E(Λθ (τ )Y |As)
E(Λθ (τ ) |As) (15.8.68)

for s ∈ [0, τ ].

15.8.10 Girsanov Transformation

The following Girsanov transformation allows us to perform a measure transfor-
mation, which transforms a drifted Wiener process into a Wiener process under
a new probability measure Pθ . More precisely, if for T ∈ (0,∞) a given strictly
positive Radon-Nikodym derivative process Λθ is an (A,P )-martingale, then the
m-dimensional process Wθ = {Wθ (t), t ∈ [0, T ]}, given by

Wθ (t)= W t +
∫ t

0
θ s ds (15.8.69)

for all t ∈ [0, T ], is an m-dimensional standard Wiener process on the filtered prob-
ability space (Ω,A,A,Pθ ).

Note that certain assumptions need to be satisfied before one can apply the above
Girsanov transformation. The key assumption is that Λθ must be a strictly positive
(A,P )-martingale. For instance, if the Radon-Nikodym derivative process is only a
strictly positive local martingale, then this does not guarantee that Pθ is a probability
measure, see Platen and Heath (2010).

A sufficient condition for the Radon-Nikodym derivative process Λθ to be an
(A,P )-martingale is the Novikov condition, see e.g. Novikov (1972), which requires
that

E

(

exp

{
1

2

∫ T

0
θ�s θ s ds

})

<∞. (15.8.70)



Chapter 16
Time-Homogeneous Scalar Diffusions

In this book, we pursue mostly a probabilistic approach, essentially originated in Itô
(1944), who set out to generate diffusions directly from given Brownian motions.
This chapter refers more to an analytic approach to diffusions, tracing its origin
back to Kolmogorov (1932) and Feller (1936). The approach allows us to obtain
transition densities by solving Kolmogorov equations, see Sect. 15.8.

Following Hulley (2009), we explain below how to obtain some explicit solutions
for functionals of scalar diffusions, especially functionals associated with stopping
times.

16.1 Basic Definitions

With the following definition we follow Hulley (2009).

Definition 16.1.1 Fix an interval I ⊆�, with left end-point l ≥−∞ and right end-
point r ≤∞. Denote the space of continuous I -valued paths byΩ := C(�+, I ) and
let X be the coordinate mapping process on this space, defined by Xt(ω) := ω(t),
for all ω ∈ Ω and t ∈ �+. Define the filtration A0 = (A0

t )t∈�+ , by setting A0
t :=

σ {Xs |s ≤ t}, for all t ∈ �+, as well as the σ -algebra A0∞ := σ {Xt | t ∈ �+}. The
shift operators ϑ = (ϑt )t∈�+ are constructed, by setting (ϑtω)(s) := ω(t + s), for
all ω ∈ Ω and t, s ∈ �+. Finally, let P = {Px | x ∈ I } be a family of probability
measures on (Ω,A0∞), satisfying:

(i) x �→ Px(A) is measurable, for all A ∈A0∞;
(ii) Px(X0 = x)= 1, for all x ∈ I ;

(iii) Ex(η ◦ ϑσ |A0
σ+)=EXσ (η)Px-a.s.,

for all bounded A0∞-measurable random variables η, and all A0-stopping times σ .
The tuple (Ω,A0∞,A0,X,ϑ,P) is then called a canonical diffusion on I .

The filtration A used in Definition 16.1.1 is not necessarily right-continuous or
complete. We remedy this by introducing the right-continuous filtration

J. Baldeaux, E. Platen, Functionals of Multidimensional Diffusions with Applications
to Finance, Bocconi & Springer Series 5, DOI 10.1007/978-3-319-00747-2_16,
© Springer International Publishing Switzerland 2013
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A+ = (A+
t )t∈�+ , defined by setting A+

t :=⋂ε>0 A0
t+ε , for all t ∈ �+. Next, the

family of null-sets is introduced:

A := {N ⊆Ω|N ⊆A, for some A ∈A0∞ satisfying Px(A)= 0, ∀x ∈ I}.
The filtration A= (At )t∈�+ is constructed by setting At :=A+

t ∨N , for all t ∈ �+.
Since none of the above affects the strong Markov property of X, as expressed
by Definition 16.1.1(iii), we shall henceforth regard (Ω,A∞,A,X,ϑ,P) as the
diffusion under consideration, where A∞ := A0∞ ∨N . Obviously, the probability
measures Px , for all x ∈ I , are easily extended to A∞, by setting Px(N) := 0, for
all N ∈N .

16.2 Boundary Classification

For any z ∈ I , we are interested in first-passage times of X to z, defined by

τz := inf{t > 0 |Xt = z}. (16.2.1)

We shall assume that X is a regular diffusion, which we define below.

Definition 16.2.1 X is said to be a regular diffusion if and only if

Px(τz <∞) > 0,

for all x ∈ int(I ) and z ∈ I .

We remark that since Px(Ω) = 1 for all x ∈ I , X is a, so-called, honest diffu-
sion, meaning its behavior is completely determined by its speed measure m and
scale function s. Explicit examples of speed measures and scale functions will
be presented in Example 16.2.2. In particular, we classify end-points of I as exit
or entrance boundaries for X. Boundaries which are both exit and entrance are
called non-singular, while boundaries which are neither, are referred to as natural.
If a boundary is either entrance or exit, but not both, it is referred to as exit-not-
entrance or, respectively, as entrance-not-exit. We point out that natural boundaries
and boundaries which are entrance-not-exit do not form part of the state space of the
diffusion. In particular, if a diffusion is started from the interior of its state-space,
it reaches exit-boundaries with positive probability. Diffusions can be started at en-
trance boundaries.

At non-singular boundaries, the behavior of the diffusion must be specified sep-
arately, as it cannot be determined from the speed measure and the scale function.
Typical specifications include reflection, killing and absorption.

Example 16.2.2 For many diffusions of interest, the speed measure m(·) and the
scale function s(·) are known. For example, for Brownian motion, the speed measure
is given by m(dx) = 2dx, and the scale function by s(x) = x. For the squared
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Table 16.2.1 Boundary classification for time-homogeneous scalar diffusions

Lower Boundary l Upper Boundary r

Exit
∫
(l,z)

m([y, z])s(dy) <∞ ∫
(z,r)

m([z, y])s(dy) <∞
Entrance

∫
(l,z)
(s(z)− s(y))m(dy) <∞ ∫

(z,r)
(s(y)− s(z))m(dy) <∞

Bessel process of dimension δ, the speed measure and the scale function are also
known: defining the index ν = δ

2 − 1, we obtain the speed measure

m(dx)=
{
xν

2|ν| dx, ν �= 0

1
2 dx, ν = 0,

and scale function

s(x)=
⎧
⎨

⎩

−x−ν, ν > 0

logx, ν = 0

x−ν, ν < 0.

For the squared Bessel process, the nature of the boundary point 0 depends on the
value of ν, which can be confirmed using Table 16.2.1:

• if ν ≥ 0 then 0 is entrance-not-exit;
• if −1< ν < 0 then 0 is non-singular;
• if ν ≤−1 then 0 is exit-not-entrance.

We remind the reader that in the literature on time-homogeneous diffusions and
also in some of the preceding chapters of this book, if the boundary point at zero is
non-singular, it is often specified to be reflecting.

Note that under the benchmark approach a benchmarked nonnegative portfolio
is a nonnegative local martingale and hence a nonnegative supermartingale, which
needs to be absorbed at zero whenever it reaches zero.

16.3 Laplace Transform Identities

We now focus on the computation of functionals associated with first passage times
of X. First, we define the transition density of X with respect to its speed measure
by the function q : �+ × I × I →�+, where I is the state space of X, so that

P(Xt ∈A)=
∫

A

q(t, x, y)m(dy),

for t ∈ �+, x ∈ I and A ∈ B(I ). Here B(I ) is the smallest Borel σ -algebra gener-
ated by I . The associated Green’s functionGα : I × I →�+, for α > 0, is given by
the Laplace transform with respect to time of the transition density

Gα(x, y) := Lα
{
q(t, x, y)

}=
∫ ∞

0
exp{−αt}q(t, x, y) dt, (16.3.2)
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for x, y ∈ I . We have the following representation for Gα :

Gα(x, y)=
{
w−1
α ψα(x)φα(y) if x ≤ y
w−1
α φα(x)ψα(y) if x ≥ y. (16.3.3)

We now make the additional assumption that the speed measure and scale function
of X are absolutely continuous with respect to the Lebesgue measure. Then we can
infer the existence of positive continuous functions m and s′, such that

m(dx)=m(x)dx and s(x)=
∫ x

c

s′(y) dy,

for all x, c ∈ I . A further simplification occurs when s′′ exists and is continuous.
In this case, there are functions a : I →�+ and b : I →�, with a(x) > 0, for all
x ∈ int(I ), such that

m(x)= 2

a2(x)s′(x)
and s′(x)= exp

(

−
∫ x

c

2b(y)

a2(y)
dy

)

,

for all x ∈ I . We point out that the processes considered in Example 16.2.2 satisfy
this assumption. Under this assumption, the Wronskian appearing in Eq. (16.3.3)
admits the representation,

wα = φα(x)ψ
′
α(x)− φ′(x)ψα(x)
s′(x)

, (16.3.4)

for all x ∈ I and α > 0.

Example 16.3.1 Continuing the Example 16.2.2, we remark that the Wronskian of
Brownian motion is given by

wα = 2
√

2α,

whereas for the squared Bessel process, the Wronskian is given by

wα = 1

2|ν| , for ν �= 0, wα = 1

2
, for ν = 0.

The functions ψα,φα : I → �+ appearing in Eq. (16.3.3) are strictly convex,
continuous, strictly monotone, positive, and finite throughout int(I ). Furthermore,
they are the unique (up to a multiplicative constant) increasing and decreasing solu-
tions, respectively, of the standard ordinary differential equation

Gf (x)= αf (x),
for all x ∈ int(I ) and α > 0, where the second-order differential operator is given by

Gf (x) := 1

2
a2(x)f ′′(x)+ b(x)f ′(x),

for f in the domain of the operator.
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As in Sect. 2.1, Lemma 2.1.9, we define for any z ∈ I the density (with respect
to the Lebesgue measure) of the first passage time τz, so that

Px(τz < t)=
∫ t

0
pz(x, s) ds,

for all t > 0 and x ∈ I representing the starting point of X. We denote by q̃z :
[0,∞)× I × I →[0,∞) the transition density (with respect to the speed measure)
of X, with absorption at z. We then obtain

Px(Xt ∈A,τz ≥ t)=
∫

A

q̃z(t, x, y)m(dy),

for all t ∈ �+, x ∈ I and A ∈ B. Now we prove Lemma 2.1.9, derived in Hulley and
Platen (2008).

Lemma 16.3.2 Let x, y, z ∈ I and suppose that t > 0. Then

q(t, x, y)= q̃z(t, x, y)+
∫ t

0
pz(x, s)q(t − s, z, y) ds. (16.3.5)

Proof From the Markov property of X, we get

Px(Xt ≤ y)= Px(Xt ≤ y, τz ≥ t)+ Px(Xt ≤ y, τz < t)
= PX(Xt ≤ y, τz ≥ t)+

∫ t

0
Px(τz ∈ ds)Px(Xt ≤ y|τz = s)

= Px(Xt ≤ y, τz ≥ t)+
∫ t

0
Px(τz ∈ ds)Pz(Xt−s ≤ y).

The result follows after differentiating with respect to y. �

We note that immediately from Eq. (16.3.5), we obtain

G̃zα(x, y) := Lα
(
q̃z(t, x, y)

)= Lα
(
q(t, x, y)

)−Lα
(
pz(x, t)

)
Lα
(
q(t, z, y)

)
.

(16.3.6)

Assume now that t ∈ �+, and that x, y, z ∈ I satisfy x ≤ z ≤ y or x ≥ z ≥ y, from
which it follows that q̃z(t, x, y) = 0. Then, since the integral in Eq. (16.3.6) is a
convolution, we have

Lα
(
q(t, x, y)

)= Lα
(
pz(x, t)

)
Lα
(
q(t, z, y)

)

for all α > 0, from which we obtain that

Ex
(
exp{−ατz}

)= Lα
(
pz(x, t)

)= Gα(x, y)

Gα(z, y)
=
⎧
⎨

⎩

ψα(x)
ψα(z)

if x ≤ z
φα(x)
φα(z)

if x ≥ z.
(16.3.7)

Note that this is a well-known formula, see e.g. Itô and McKean (1996), p. 128.
However, our derivation was purely formal, which illustrates the usefulness of
Lemma 16.3.2. Returning to Eq. (16.3.6), we have



394 16 Time-Homogeneous Scalar Diffusions

G̃zα(x, y) := Lα
(
q̃z(t, x, y)

)= Lα
(
q(t, x, y)

)−Lα
(
pz(x, t)

)
Lα
(
q(t, z, y)

)

=
⎧
⎨

⎩

Gα(x, y)− ψα(x)
ψα(z)

Gα(z, y) for x, y ≤ z
Gα(x, y)− φα(x)

φα(z)
Gα(z, y) for x, y ≥ z

=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

w−1
α ψα(x)(φα(y)− φα(z)

ψα(z)
ψα(y)) for x ≤ y ≤ z

w−1
α ψα(y)(φα(x)− φα(z)

ψα(z)
ψα(x)) for y ≤ x ≤ z

w−1
α (ψα(x)− ψα(z)

φα(z)
φα(x))φα(y) for y ≥ x ≥ z

w−1
α (ψα(y)− ψα(z)

φα(z)
φα(y))φα(x) for x ≥ y ≥ z,

where we used Eqs. (16.3.7) and (16.3.3). Finally, we prove a main result in Hulley
and Platen (2008).

Proposition 16.3.3 Fix α > 0 and let t ≥ 0 and x, z ∈ I . Then

Lα
(
P(τz ≤ t)

)=
⎧
⎨

⎩

1
α
ψα(x)
ψα(z)

for x ≤ z
1
α
φα(x)
φα(z)

for x ≥ z,
(16.3.8)

and

Lα
(
E
(
1τz≤t exp{−βτz}

))=
⎧
⎨

⎩

1
α

ψα+β(x)
ψα+β (z) for x ≤ z

1
α

φα+β(x)
φα+β(z) for x ≥ z,

(16.3.9)

for all β > 0. Furthermore,

E
(
(γ + λτz)−ρ

)=
⎧
⎨

⎩

1
Γ (ρ)

Lγ (s
ρ−1 ψλs(x)

ψλs(z)
) for x ≤ z

1
Γ (ρ)

Lγ (s
ρ−1 φλs(x)

φλs(z)
) for x ≥ z,

(16.3.10)

and

Lα
(
E
(
1τz≤t (γ + λτz)−ρ

))=
⎧
⎨

⎩

1
αΓ (ρ)

Lγ (s
ρ−1 ψα+λs(x)

ψα+λs(z) ) for x ≤ z
1

αΓ (ρ)
Lγ (s

ρ−1 φα+λs(x)
φα+λs(z) ) for x ≥ z,

(16.3.11)

for all γ,λ,ρ > 0.

Proof To prove Eq. (16.3.8), we note that

Lα
(
Px(τz < t)

)= Lα
(∫ t

0
pz(x, s) ds

)

= 1

α
Lα
(
pz(x, t)

)
,

for all α > 0, and one now applies Eq. (16.3.7). Regarding Eq. (16.3.9), we note that

Lα
(
E
(
1τz≤t exp{−βτz}

))= Lα
(∫ t

0
exp{−βs}pz(x, s) ds

)

=
∫ ∞

0
exp{−αt}

(∫ t

0
exp{−βs}pz(x, s) ds

)

dt
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= 1

α

∫ ∞

0
exp
{−(α + β)s}pz(x, s) ds

= 1

α
Lα+β

(
pz(x, t)

)
.

Equation (16.3.9) now follows from Eq. (16.3.7). To prove Eqs. (16.3.10) and
(16.3.11), we use the equality,

∫ ∞

0
sρ−1 exp

{−(γ + λt)s}ds = Γ (ρ)

(γ + λt)ρ , (16.3.12)

where γ,λ,ρ > 0 and Γ denotes the standard gamma function. To obtain
Eq. (16.3.10), we compute

Ex
(
(γ + λτz)−ρ

)=
∫ ∞

0

pz(x, t)

(γ + λt)ρ dt

=
∫ ∞

0
pz(x, t)

1

Γ (ρ)

∫ ∞

0
sρ−1 exp

{−(γ + λt)s}ds dt

= 1

Γ (ρ)

∫ ∞

0
exp{−γ s}sρ−1

∫ ∞

0
exp{−λst}pz(x, t) dt ds

= 1

Γ (ρ)
Lγ
(
sρ−1Lλs

(
pz(x, t)

))
,

and apply Eq. (16.3.7). Similarly, again employing Eq. (16.3.12), we compute

Lα
(
Ex
(
1τz≤t (γ + λτz)−ρ

))

= Lα
(∫ t

0

pz(x, s)

(γ + λs)ρ ds
)

= 1

α
Lα

(
pz(x, t)

(γ + λt)ρ
)

= 1

α

∫ ∞

0
exp{−αt} pz(x, t)

(γ + λt)ρ dt

= 1

α

∫ ∫

0
exp{−αt} 1

Γ (ρ)

∫ ∞

0
sρ−1 exp

{−(γ + λt)s}ds dt

= 1

αΓ (ρ)

∫ ∞

0
exp{−γ s}sρ−1

∫ ∞

0
exp
{−(α + λs)t}pz(x, t) dt ds

= 1

αΓ (ρ)
Lγ
(
sρ−1Lα+λs

(
pz(x, t)

))
,

which results in (16.3.11), with the help of Eq. (16.3.7). �



Chapter 17
Detecting Strict Local Martingales

In Sect. 3.3, we presented two models for the GOP, namely the MMM and the TCEV
model. For both models, we established the property that a risk-neutral measure
does not exist, because the Radon-Nikodym derivative of the putative risk-neutral
measure is a strict local martingale. Figure 3.3.6 seems to suggest that this is a
plausible feature of our financial market, in particular, when analyzing its history
over long periods of time and taking into account that investors request extra long
term growth in risky securities. We established the local martingale property by
making use of the explicitly available transition density of squared Bessel processes.
This highlights the usefulness of squared Bessel processes in finance, they produce
both tractability but also realistic models.

In this chapter, we propose another class of processes for modeling the GOP.
For this class one can easily establish whether the processes allow for a risk-neutral
measure or not. An argument due to Sin, see Sin (1998), allows us to determine
if a particular model for the GOP admits a risk-neutral measure by studying the
boundary behavior of a one-dimensional diffusion. The boundary behavior of one-
dimensional diffusions is well understood, we refer the reader e.g. to our Chap. 16.
As demonstrated in Chap. 16, in particular in Table 16.2.1, it simply amounts to con-
firming if certain integrals explode or not. Hence for the class of processes studied
in this chapter, we present simple tools that allow us to answer the crucial ques-
tion whether a particular local martingale is a martingale or a strict local martin-
gale.

We remark that the question whether a local martingale is a martingale or a strict
local martingale, has received much attention in the literature. In Kotani (2006), Hul-
ley and Platen (2011), necessary and sufficient conditions have been presented for
one-dimensional regular strong Markov continuous local martingales. Furthermore,
in Kallsen and Muhle-Karbe (2010), Kallsen and Shiryaev (2002), and Mayerhofer
et al. (2011a) an exponential semimartingale framework with focus on affine pro-
cesses is considered. For further background, the reader is referred to Mijatovic and
Urusov (2012). At the end of Sect. 17.1, we will present one of the main results
from Mijatovic and Urusov (2012).

J. Baldeaux, E. Platen, Functionals of Multidimensional Diffusions with Applications
to Finance, Bocconi & Springer Series 5, DOI 10.1007/978-3-319-00747-2_17,
© Springer International Publishing Switzerland 2013

397

http://dx.doi.org/10.1007/978-3-319-00747-2_17


398 17 Detecting Strict Local Martingales

17.1 Sin’s Argument

In this section, we work on a filtered probability space (Ω,A,A,P ) carrying two
Brownian motions W 1 and W 2. We use the following dynamics for the GOP,

dS
δ∗
t = Sδ∗t

(
(rt + Vt) dt + ρ

√
Vt dW

1
t + ρ⊥

√
Vt dW

2
t

)
,

and

dVt = κ(θ − Vt) dt + σV pt dW 1
t , (17.1.1)

where Sδ∗0 > 0 and V0 > 0. Here r = {rt , t ≥ 0} is an adapted short-rate process,
ρ ∈ [−1,1] denotes the correlation between the GOP and the variance process and
ρ⊥ = √1 − ρ2. The parameters κ , θ , σ , and p are positive. We remark that this
model is based on Andersen and Piterbarg (2007). For p = 1

2 , we obtain the Heston
model, see also Sect. 6.3, for b = 1 we recover a GARCH model, and for b = 3

2
we recover a 3/2-model with linear drift. Next we define the savings account Bt =
exp{∫ t0 rs ds}, for t ≥ 0, and the benchmarked savings account B̂t = Bt

S
δ∗
t

, t ≥ 0,

which satisfies the SDE

dB̂t =−B̂t
(
ρ
√
Vt dW

1
t + ρ⊥

√
Vt dW

2
t

)
, (17.1.2)

for t ≥ 0. We recall the following properties of the process V from Andersen and
Piterbarg (2007), see Proposition 2.1.

Proposition 17.1.1 For the process V given by Eq. (17.1.1), the following proper-
ties hold:

• 0 is always an attainable boundary for 0<p < 1
2 ;

• 0 is an attainable boundary for p = 1
2 , if 2κθ < σ 2;

• 0 is an unattainable boundary for p > 1
2 ;

• ∞ is an unattainable boundary for p > 0.

Proof The proof is easily completed using Table 16.2.1 in Chap. 16. Recall that the
speed measure is given by

m(dx)=m(x)dx
and the scale function by

s(x)=
∫ x

c

s′(y) dy,

where c ∈ [0,∞). Now,

m(x)= 2

a2(x)s′(x)
and s′(x)= exp

(

−
∫ x

c

2b(y)

a2(y)
dy

)

,

for x ∈ [0,∞), where

a(x)= σxp and b(x)= κ(θ − x). �
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For the remainder of this section, we assume that p ≥ 1
2 and 2κθ ≥ σ 2, so that

V cannot reach 0. From Eq. (17.1.2), it is clear that B̂ is a local martingale. As
discussed in Sect. 3.3, if B̂ is a martingale, a risk-neutral probability measure exists.
If B̂ is a strict local martingale, a risk-neutral measure does not exist. The following
proposition identifies when B̂ is a martingale. The proof is based on Lemma 2.3 in
Andersen and Piterbarg (2007), which uses techniques from the proof of Lemma 4.2
in Sin (1998).

Lemma 17.1.2 Let B̂ and V be given by Eqs. (17.1.1) and (17.1.2). Denote by τ̃∞
the explosion time for Ṽ ,

τ̃∞ = lim
n→∞ τ̃n, τ̃n = inf{t : Ṽt ≥ n}, (17.1.3)

P -almost surely. Here the dynamics of Ṽ under P are given by

dṼt =
(
κ(θ − Vt)− ρσ Ṽ p+

1
2

t

)
dt + σ Ṽ pt dWt . (17.1.4)

Then

E(B̂T )= B̂0P(τ̃∞ > T ).
Furthermore, when p = 1

2 or p > 3
2 , then B̂ is a martingale. When 1

2 <p <
3
2 , B̂ is

a martingale for ρ ≥ 0 and a strict local martingale for ρ < 0. For p = 3
2 , B̂ is a

martingale for ρ ≥−σ
2 and a strict local martingale for ρ <−σ

2 .

Proof We follow the technique of the proof of Lemma 2.3 in Andersen and Piterbarg
(2007) and compute

E(B̂T )= B̂0E

(

exp

{

−1

2

∫ T

0
Vs ds − ρ

∫ T

0

√
Vs dW

1
s − ρ⊥

∫ T

0

√
Vs dW

2
s

})

= B̂0E

(

exp

{

−1

2

∫ T

0
Vs ds − ρ

∫ T

0

√
Vs dW

1
s

}

×E
(

exp

{

−ρ⊥
∫ T

0

√
Vs dW

2
s

} ∣∣
∣
∣ σ
{
W 1
t , t ≤ T

}
))

= B̂0E

(

exp

{

−ρ
∫ T

0

√
Vs dW

1
s −

ρ2

2

∫ T

0
Vs ds

})

.

Next, introduce a sequence of stopping times

τn := inf

{

t :
∫ t

0
Vs ds ≥ n

}

and define the stochastic Doléan exponential

ξt = exp

{

−ρ
∫ t

0

√
Vs dW

1
s −

ρ2

2

∫ t

0
Vs ds

}

.

Clearly, ξ = {ξt , t ≥ 0} is a local martingale. We now define

ξ
(n)
t = ξt∧τn ,
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which is a martingale and use it to define the auxiliary measure,

P̃ n(A)=E(1Aξ(n)T
)
,

for A ∈AT . We now use the argument in Lemma 4.2 in Sin (1998) and compute

E(ξT 1τ>T )=E
(
ξ
(n)
T 1τn>T

)

=E
P̃n
(1τn>T )

=EP (1τ̃n>T ),
where we recall that τ̃n is defined in (17.1.3) and Ṽ in (17.1.4). To justify the last
equality, we note that by the Girsanov theorem, see Sect. 15.8, we obtain that the
process

W
(n)
t =Wt + ρ

∫ t

0
1u≤τn

√
Vu du

is a Brownian motion under P̃ n and W and V satisfy

dWt = dW
(n)
t − ρ1t≤τn

√
Vt dt,

dVt = σV pt dW(n)
t + (κ(θ − Vt)− ρ1t≤τnσV

p+ 1
2

t

)
dt.

Hence the stopped process Ṽt∧τ̃n has the same law under P as the stopped process
Vt∧τn under P̃ n. Now by Proposition 17.1.1, we have that V does not reach ∞
under P , hence

E(ξT )= lim
n→∞E(ξT 1

¯τn>T
)

= lim
n→∞E(1τ̃n>T )

= P(τ̃∞ > T ).
The exchange of the limit and the expectation operator is justified by the monotone
convergence theorem. This completes the proof of the first part of the result.

The second part follows immediately from Proposition 2.5 in Andersen and Piter-
barg (2007). We replace the ρ in the statement of Proposition 2.5 in Andersen and
Piterbarg (2007) by −ρ, as we consider the benchmarked savings account, which is
essentially the inverse of the process considered in Andersen and Piterbarg (2007),
and we compare Eq. (17.1.4) and Eq. (2.5) in Andersen and Piterbarg (2007). �

We have the following corollary to Lemma 17.1.2.

Corollary 17.1.3 For important special cases, we obtain the following result:

• under the Heston model, which corresponds to p = 1
2 , the process B̂ =

{B̂t , t ≥ 0} follows a martingale;
• under the 3

2 model with linear drift, which corresponds to the case p = 3
2 ,

B̂ = {B̂t , t ≥ 0} follows a martingale for ρ ≥ 0 and otherwise a strict local mar-
tingale;
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• under a continuous limit of a GARCH model, which corresponds to p = 1, B̂ =
{B̂t , t ≥ 0} follows a martingale for ρ ≥ 0, otherwise a strict local martingale.

For completeness, we present a general version of the result, which stems from
Mijatovic and Urusov (2012). Consider the state space J = (l, r), −∞≤ l < r ≤∞
and a J -valued diffusion Y = {Yt , t ≥ 0} on (Ω,A,A,P ) given by the SDE

dYt = μ(Yt ) dt + σ(Yt ) dWt , (17.1.5)

where Y0 ∈ J , W is a A-Brownian motion and μ,σ : J →� are Borel functions
satisfying the Engelbert-Schmidt conditions,

σ(x) �= 0 ∀x ∈ J ; 1

σ 2
,
μ

σ 2
∈ L1

loc(J ), (17.1.6)

where L1
loc(J ) denotes the class of locally integrable functions, i.e. mappings from

J to � that are integrable on compact subsets of J . The SDE (17.1.5) admits a
unique in law weak solution that possibly exits its state space J at the exit time ζ .
Following Mijatovic and Urusov (2012), we specify that if Y can exit its state space,
i.e. P(ζ <∞) > 0, then Y stays at the boundary point of J at which it exits after
the time ζ , so the boundary is absorbing. We introduce the stochastic exponential

ξt = exp

{∫ t∧ζ

0
b(Yu) dWu − 1

2

∫ t∧ζ

0
b2(Yu) du

}

,

t ≥ 0, and set ξt := 0 for t ≥ ζ on the set {ζ <∞, ∫ ζ0 b2(Yu) du = ∞}. Also we
assume that

b2

σ 2
∈ L1

loc(J ). (17.1.7)

Remark 17.1.4 In order to connect this discussion to the results in Proposi-
tion 17.1.1 and Lemma 17.1.2, set Y = V and b(x)=−ρ√x.

We now consider an auxiliary J -valued diffusion Ỹ , where

dỸt = μ(Ỹt ) dt + b(Ỹt )σ (Ỹt ) dt + σ(Ỹt ) dWt .
Then Ỹ admits a unique weak solution that possibly exits its state space at ζ̃ . Before
we present Corollary 2.2 from Mijatovic and Urusov (2012), recall from Proposi-
tion 17.1.1 that V cannot reach infinity under P , and Lemma 17.1.2 states that B̂ is
a martingale if Ṽ cannot reach infinity under P , i.e. B̂ is martingale if the boundary
behavior of V and Ṽ coincides. Corollary 2.2 from Mijatovic and Urusov (2012)
extends this to the general case.

Corollary 17.1.5 Assume that Y does not exit its state space and assume that μ,σ
and b satisfy the assumptions (17.1.6) and (17.1.7). Then ξ is a martingale if and
only if Ỹ does not exit its state space.

For a more general result, see Theorem 2.1 in Mijatovic and Urusov (2012).
Finally, we recall an important remark from Mijatovic and Urusov (2012).
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Remark 17.1.6 The conditions in Lemma 17.1.2 (resp. Corollary 17.1.5) are neces-
sary and sufficient conditions for B̂ (resp. ξ ) to be a martingale on the time interval
(0,∞). Furthermore, they are necessary and sufficient conditions for B̂ (resp. ξ ) to
be a martingale on the time interval [0, T ] for any fixed T ∈ (0,∞).

Remark 17.1.6 can intuitively be explained as follows: the process B̂ (resp. ξ ) is a
time-homogeneous diffusion process, hence the process cannot loose its martingale
property over time, but would have to lose it immediately.

17.2 Multidimensional Extension

This section briefly illustrates how to extend the results from the previous section to
a multidimensional setting. Assume that the dynamics of the benchmarked savings
account are given by

dB̂t =−B̂t
d∑

k=1

√
V kt
(
ρk dWk

t +
(
ρk
)⊥
dWd+k

t

)
, (17.2.8)

where W = {W t = (W 1
t ,W

2
t , . . . ,W

2d
t ), t ≥ 0} is a vector Brownian motion and

dV kt = κk(θk − V kt
)
dt + σk(V kt

)pk
dWk

t . (17.2.9)

Here V k0 , κ
k , θk , σk , pk are positive parameters, −1 ≤ ρk ≤ 1, and

(
ρk
)⊥ =

√
1 − (ρk)2.

Proposition 17.2.1 Let B̂ and V k , for k = 1, . . . , d , be given by Eqs. (17.2.8) and
(17.2.9). Denote by τ̃ k∞ the explosion time for Ṽ k ,

τ̃ k∞ = lim
n→∞ τ̃

k
n , τ̃ kn = inf

{
t : Ṽ kt ≥ n},

where the dynamics of Ṽ k are given by

dṼ kt = (κk(θk − Ṽ kt
)− ρkσ k(Ṽ kt

)pk+ 1
2
)
dt + σk(Ṽ kt

)pk
dWk

t . (17.2.10)

Then

E(B̂T )= B̂0

d∏

k=1

P
(
τ̃ k∞ > T

)
.

Furthermore, B̂ is a martingale if and only if for all k ∈ {1, . . . , d}, one of the fol-
lowing conditions holds:

• pk = 1
2 or pk > 3

2 ;
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• 1
2 <p

k < 3
2 and ρk ≥ 0;

• pk = 3
2 and ρk ≥−σk

2 .

As in Sect. 17.1, the conditions presented in Proposition 17.2.1 are necessary
and sufficient for B̂ to be a martingale on the time interval [0, T ] for any fixed
T ∈ (0,∞).
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Filipović, D., Mayerhofer, E.: Affine diffusion processes: theory and applications. In: Albrecher,

H., Runggaldier, W., Schachermayer, W. (eds.) Advanced Financial Modelling, pp. 125–165.
de Gruyter, Berlin (2009)

Florens-Zmirou, D.: On estimating the diffusion coefficient from discrete observations. J. Appl.
Probab. 30(4), 790–804 (1993)

Föllmer, H., Schweizer, M.: Hedging of contingent claims under incomplete information. In:
Davis, M.H.A., Elliott, R.J. (eds.) Applied Stochastic Analysis. Stochastics Monogr., vol. 5,
pp. 389–414. Gordon & Breach, New York (1991)

Föllmer, H., Sondermann, D.: Hedging of non-redundant contingent claims. In: Hildebrandt, W.,
Mas-Colell, A. (eds.) Contributions to Mathematical Economics, pp. 205–223. North-Holland,
Amsterdam (1986)
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