
Chapter 3
Optical Flow Estimation

3.1 Introduction

Optical flow is the velocity vector field of the projected environmental surfaces when
a viewing system moves relative to the environment. Optical flow is a long standing
subject of intensive investigation in diverse fields such as psychology, psychophysics,
and computer vision [1–9]. In computer vision, of interest to us here, optical flow
estimation has been a topic of continued interest and extensively researched. One of
the most referenced paper on the subject is Determining optical flow, 1981, by B.K.P.
Horn and B.G. Schunck [10]. It is also one of the most influential for having served
as ground or benchmark for just about every dense flow computation algorithm.
The Horn and Schunck variational formulation, which we will describe in detail
subsequently (Sect. 3.4), seeks to determine the flow which minimizes a weighted
sum of two integrals over the image domain, one to bring the flow to conform
to the image spatiotemporal variations and the other to regularize the solution by
constraining it to be smooth:

E (u, v) =
∫
Ω

(Ix u + Iyv + It )
2dxdy + λ

∫
Ω

(‖∇u‖2 + ‖∇v‖2)dxdy, (3.1)

where I : (x, y, t) ∈ Ω×]0, T [�→ I (x, y, t) ∈ R+ is the image sequence of domain
Ω and duration T , Ix , Iy, It its spatiotemporal derivatives, ∇u,∇v the spatial gra-
dients of the coordinates u, v of optical flow, and λ is a real constant to balance the
contribution of the two terms in the functional. The corresponding Euler-Lagrange
equations yield the flow via efficient implementation by Jacobi/Gauss-Seidel
iterations.

A paper published the same year as [10] by B. D. Lucas and T. Kanade [11] on
image registration and application to stereo-vision, has also been extensively refer-
enced and used for optical flow estimation. The view taken was quite different as
the scheme sought to determine the coordinate transformation between two images
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which minimized the displaced frame difference (DFD), i.e., the squared differ-
ence between one image and the other evaluated after the coordinate transformation
(displaced, or warped as it is sometimes called). If the images are I1 and I2, and
x→ f(x; θ) is a parametric coordinate transformation with parameter vector θ , the
scheme minimizes with respect to θ the objective function:

E(θ) =
∑
x∈D

(I1(f(x; θ))− I2(x))2, (3.2)

where D is a discretization of Ω . The minimization is carried out iteratively by
expanding linearly I1 at each step about the transformed coordinates of the previous
step. The displacement at each point is computed subsequently from the estimated
coordinate transformation: therefore, one of the significant conceptual differences
between the methods of [10] and [11] is that the scheme in [10] references a vector
field, i.e., a velocity vector as a variable at each point of the image domain, whereas
the unknown in [11] is a global coordinate transformation between two images.
Another difference is that the points at which there is no texture, i.e., where the
spatial gradient is zero in the transformed image, do not contribute to determining
the coordinate transformation whereas spatial regularization is a central concept in
[10] which makes every point contribute to optical flow. From a computational point
of view, the method of [11] involves a coordinate transformation and evaluation of
the transformed image via spatial interpolation, an operation which does not occur in
[10]. Often, the transformation has been applied locally in windows to allow spatial
variations of the parameter vector estimate, which would improve its accuracy, but
the window size affects the outcome which also suffers from the so-called block
effect due to the lack of spatial regularization. However, both schemes [10, 11] have
been combined in a continuous variational framework [12].

The Horn and Schunck algorithm solves a large but significantly sparse system
of linear equations, which can be done very efficiently by convergent Jacobi or
Gauss-Seidel iterations, particularly block-wise iterations [13]. A parallel hardware
version has also been implemented [14, 15]. However, the basic neighborhood oper-
ations which drive the algorithm blur the optical flow estimate at motion boundaries.
This serious problem is caused by the quadratic smoothness regularization term of
the objective functional which leads to a Laplacian operator in the Euler-Lagrange
equations. The discrete version of the operator reduces to averaging the estimate
locally, which has the undesirable effect of blurring the computed flow at motion
boundaries. Therefore, studies have subsequently considered using motion bound-
ary preserving spatial regularizations. The problem has been addressed from four
different perspectives: image driven smoothing, robust statistics, boundary length
penalties, and nonlinear diffusion.

With image driven smoothing, the view is that motion edges coincide or tend to
coincide with the image intensity edges, which would then justify that image motion
smoothing be mediated by the image gradient [16–20]. However, this may also cause
undue smoothing of motion because motion edges do not always occur at intensity
edges, although image edges generally occur at motion edges.
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Along the vein of robust statistics [21], motion discontinuity preservation is based
on the notion of outliers. From this viewpoint, basically, the underlying interpretation
is that the optical flow values over an image positional array satisfy the spatiotemporal
data constraint and are smoothly varying everywhere except at motion boundaries
where there are treated as outliers [22, 23]. This led to the use of robust functions
such as the L1 norm, the truncated quadratic [24], and the Lorentzian, in lieu of
the quadratic to evaluate the objective functional terms. If ρ is a robust function, a
discrete objective function one can seek to minimize is:

E(u, v) =
∑
x∈D

⎛
⎝(Ix u + Iyv + It )

2(x)+ λ
∑

y∈Nx

(ρ(u(x)− u(y))+ ρ(v(x)− v(y)))

⎞
⎠ ,

(3.3)

where Nx is a set of neighbors of x (e.g., the 4-neighborhood). Slightly more general
expressions can be adopted [22, 23, 25]. From this view of the problem, the effect
of the robust function is to reduce the influence of the outliers on the estimation of
optical flow and, therefore, provide a better definition of motion boundaries where
the outliers are anticipated.

Another view of motion boundary preservation is to reference motion edges in the
formulation and introduce a motion boundary length penalty term in the objective
functional. This has been done via a line process in Markov random field (MRF)
modelling [26]. Such a formulation, where edges are referenced by the MRF line
process, has led to applications to optical flow estimation [27–29]. The objective
function data term is still as in Eq. (3.3) and the regularization has the form:

λ
∑
x∈D

∑
y∈Nx

(
α(1− lx,y)‖W (x)−W (y)‖2 + βlx,y

)
, (3.4)

where W = (u, v), α and β are constants, and lx,y ∈ {0, 1} is the binary variable of
the MRF line process to represent the motion boundaries. Motion edges can also be
referenced in a functional with a boundary length penalty term [30, 31] as in image
segmentation [32, 33].

Finally, motion discontinuity preservation can be investigated from the perspec-
tive of nonlinear diffusion [34]. The rationale, basically, is that spatial regularization
should be selective by allowing isotropic smoothing inside motion regions where
optical flow is thought to be smooth, i.e., varies little spatially, and inhibit it across
motion boundaries [35–45]. In particular, the L1 norm regularization, also called
total variation regularization and often abbreviated TV, which has been extensively
investigated in inverse problems [46], notably image restoration [47], has been used
for continuous variational optical flow estimation in several studies [39, 42–45, 48].
To simplify the rather elaborate TV minimization algorithm, and expedite the imple-
mentation thereof, the absolute value function in TV regularization, g(z) = |z|, is
often replaced by a function of the sort g(z) = √z2 + ε2, for some small ε.
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In the context of nonlinear diffusion optical flow estimation, the study in [37, 38]
is singular in that it investigated regularization functions g in the functional:

E (u, v) =
∫
Ω

(Ix u + Iyv+ It )
2dxdy + λ

∫
Ω

(g(‖∇u‖)+ g(‖∇v‖))dxdy (3.5)

by analyzing conditions which impose isotropic smoothing within motion regions and
smoothing along motion boundaries but not across. The analysis leads to functions
of the sort g(s) = 2

√
(1+ s2)− 2 (Aubert), g(z) = log(1+ s2) (Perona-Malik [49,

50]), and others.
The optical flow constraint, on which most formulations of optical flow estimation

rely, refers to the image sequence temporal derivative. In practice, image motion is
often of large extent, typically causing displacements of several pixels between con-
secutive views. As a result, the image temporal derivative may not be approximated
accurately to bear on motion estimation. In such a case, motion estimation has been
addressed efficiently by multiresolution/multigrid processing [22, 51, 52]. Multires-
olution and multigrid processing are “multilevel” computations which solve a system
of equations on a given discretization grid by solving smaller similar systems on grids
at coarser discretization.

Optical flow estimation has also been cast in a framework of simultaneous motion
estimation and segmentation [31, 53–61], where the purpose is to divide the image
into regions corresponding to distinct motions. Joint estimation and segmentation
accounts for motion boundaries since those coincide with motion region boundaries.
However, the emphasis in segmentation is not necessarily on accurate motion estima-
tion because motion regions can be distinguished using simple motion models, the
piecewise constant or affine models for instance, which do not necessarily describe
the fine variations of motion that may be occurring.

Finally, it is worth mentioning that disparity estimation in binocular images resem-
bles optical flow estimation and both problems can be cast in similar variational for-
mulations. As a result, benefits can accrue from their joint estimation in stereoscopic
image sequences [62, 63].

The purpose in this chapter forthcoming sections is to provide a digest of optical
flow estimation by variational methods. We will not review the very large literature
but rather describe a number of methods that would expose the fundamental con-
cepts underlying image motion estimation by variational methods. The important
ideas presented include (i) the basic formulation of image motion estimation as the
minimization of a functional containing a data term and a regularization term; (ii) the
use of optical flow smoothness in the regularization term; (iii) the notion of a motion
boundary and definitions of it which would allow its preservation; (iv) the represen-
tation of motion by parametric functions; (v) the relationship between motion esti-
mation and motion-based segmentation; and (vi) the concepts of mutiresolution and
multigrid computation and their role in processing large-magnitude motion. Motion
in stereoscopy will also be brought up. This reductive, concept-oriented description
of image motion estimation will be enhanced by references to recent studies which
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build upon the basic formulations we will discuss and provide important computa-
tional details.

We will start the presentation with the optical flow constraint (Sect. 3.2) and imme-
diately follow with the benchmark algorithms of Lucas-Kanade (Sect. 3.3) and of
Horn and Schunck (Sect. 3.4). Motion boundary preservation will be treated next with
the scheme of Deriche, Aubert, and Kornprobst [37] (Sect. 3.5), followed by image
intensity based regularization [20] (Sect. 3.6) and the minimum description length
(MDL) [31] (Sect. 3.7) formulations. Section 3.8 will describe parametric motion
representation and computation. After a brief mention of variants of the smoothness
and regularization terms (Sect. 3.9), the chapter will continue with a discussion of
multiresolution/multigrid processing (Sect. 3.10) and a presentation of joint optical
flow estimation and segmentation [54] (Sect. 3.11). Motion estimation in stereoscopy
will be investigated in Sect. 3.12. The chapter does not provide an experimental eval-
uation or comparison of the methods but it gives examples of results. Evaluations of
methods can be found in some of the cited papers.

3.2 The Optical Flow Constraint

Let the image sequence be a C1 function I : (x, y, t) ∈ Ω×]0, T [�→ I (x, y, t) ∈
R+. Let P be a point on an environmental surface and p its image with coordinates
x(t), y(t) at instant t . As P moves in space, let the spatiotemporal trajectory of p
have the parametric representation t → c(t) = (x(t), y(t), t). Let h be the function
t → h(t) = I ◦ c(t) = I (x(t), y(t), t), where ◦ indicates function composition.
Function h is the image intensity along the motion trajectory of p. If we assume that
the intensity recorded from the environmental point P does not change as the surface
it lies on moves, i.e., if h is constant, then we have the optical flow constraint (OFC)
at p:

dh

dt
= ∂ I

∂x

dx

dt
+ ∂ I

∂y

dy

dt
+ ∂ I

∂t
= 0 (3.6)

or, using the usual subscript notation for the partial derivatives:

Ix u + Iyv + It = 0, (3.7)

where (u, v) = ( dx
dt ,

dy
dt ) is called the optical velocity vector. The field over Ω of

optical velocities is the optical flow.
The assumption that the recorded intensity is constant along motion trajectories

is valid for translating Lambertian surfaces under constant uniform lighting. It is
generally accepted that it is a good approximation for small velocity motions of
non specular surfaces occurring over a short period of time. There have been a few
attempts at determining constraints other than the invariance of image intensity along
motion trajectories [64–67] but, by and large, the Horn and Schunck OFC (or discrete
writings of it) has been the basic constraint in optical flow studies.
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Fig. 3.1 Left The projection of the optical flow vector W on the image spatial gradient ∇ I can
be estimated from the image first-order spatiotemporal variations; whenever ∇ I 	= 0 it is equal
to − It‖∇ I‖ . Right The aperture problem: the movement of a straight edge seen through an aperture
(a circular window in this figure) is ambiguous because only the component of motion in the
direction perpendicular to the edge can be determined

If the optical velocity vector is denoted by W , the OFC is written∇ I ·W + It = 0
and its projection W⊥ in the direction of the image gradient, called the normal
component, can be written:

W⊥ = ∇ I

‖∇ I‖ ·W =
−It

‖∇ I‖ . (3.8)

The spatiotemporal derivatives can be estimated from the image sequence data.
Hence, the OFC determines the component of optical flow in the direction of the
image gradient and only this component. This is a reflection of the aperture problem,
the ambiguity in interpreting the translational motion of a straight line seen through
an aperture, i.e., in the absence of any external visual cues (Fig. 3.1). The aperture
problem is responsible for illusory percepts such as rotating spirals which appear to
expand or contract and translating sine waves which appear highly non rigid [68].
The aperture problem was apprehended as early as 1911 by P. Stumpf [69] and has
been the subject of many studies in psychophysics. In computer vision, it has been
investigated in Hildreth’s computational theory of visual motion measurement [70].

Local methods have been considered to solve the aperture problem. The sim-
plest treatment assumes that optical flow is constant in the neighborhood of each
point but that the image spatiotemporal gradient is not, leading to write one OFC for
the same velocity at each point of the neighborhood [71]. Local processing of the
aperture problem has also been addressed by the multiple OFC constraints method
which assumes that there are m ≥ 2 distinct image functions I1, ..., Im satisfying
the assumption of invariance to motion and giving m independent OFC equations
to solve simultaneously. Several sources of these functions have been looked at [6]:
(a) multispectral images, i.e., signals of different wavelengths as in colour images
[72, 73], (b) operators/filters, where I1, ..., Im are obtained by applying m opera-
tors/filters O1, ..., Om to a single image function f . Examples include spatial filters
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applied to the original image [74] and differential operators [75–78]. Another source
of functions is (c) multiple illumination sources, each giving a different image [79].

The assumptions supporting the local methods do not hold generally, leading to
local systems of equations which are rank deficient or ill-conditioned. This is one
important reason why variational methods which regularize the velocity field, such
as those we reviewed in the introduction and some of which we will describe next,
have been so much more effective.

3.3 The Lucas-Kanade Algorithm

The original study [11] addressed a general setting of image registration and devel-
oped an iterative algorithm which it applied to determining depth from stereoscopy.
When used for optical flow evaluation, it has been applied in windows, typically
5× 5 [80].

Let I1 and I2 be two images with the same domainΩ and f = ( f1, f2) a coordinate
transformation parametrized by θ = (θ1, ..., θn) ∈ R

n :

f : (x, θ) ∈ Ω × R→ f(x, θ) ∈ Ω (3.9)

Mapping f is often called a warp to distinguish it from a transformation that
would act on the intensity image rather than on the image domain. The problem is to
determine the transformation that minimizes the smallest displaced frame difference,
i.e., determine θ̃ such that:

θ̃ = arg min
θ

∑
x∈D

(I1(f(x; θ))− I2(x))2 (3.10)

The algorithm is developed from a first-order Taylor expansion of I1(f(x, θ)) with
respect to θ . In a open neighborhood V of θ0 ∈ R we have, assuming I1(f(x, θ)) is
differentiable in Ω × V ,

I1(f(x, θ)) = I1(f(x, θ0))+ ∇ I1(x, θ0)Jf (x, θ0)h+ o(‖h‖2), (3.11)

where h = θ − θ0, ∇ I1 is the spatial gradient of I1 written as a row vector, and Jf is
the Jacobian of f with respect to θ :

Jf =
( ∂ f1
∂θ1

...
∂ f1
∂θn

∂ f2
∂θ1

...
∂ f2
∂θn

)
(3.12)

Dropping the little o remainder, the objective function to minimize following this
expansion is:
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E(x, θ) =
∑
x∈D

(I1(f(x, θ0))+∇ I1(x, θ0)Jf (x, θ0)h− I2(x))2 (3.13)

Therefore, the first-order Taylor expansion has done two things: (1) the objective
function turns into a linear equation in h and, (2) viewing θ0 as a current estimate,
its minimization turns into iterations which consist at each step of determining an
update h by solving a linear system of equation by least squares. The scheme involves
“warping” the image, i.e., evaluating I1 at the points of grid D transformed by f . In
general, this involves interpolating the image I1. The original paper [11] mentions
solving for h using the least squares solution analytic expression, which involves
matrix inversion, but other numerical schemes are more efficient, for instance the
singular value decomposition method [81], and others which were investigated in the
context of the Lucas-Kanade image registration algorithm [80]. The main weakness
of the Lucas-Kanade formulation is its lack of regularization. In the Horn and Schunck
formulation, which we review next, regularization of the flow field is fundamental.

3.4 The Horn and Schunck Algorithm

We recall the Horn and Schunck optical flow estimation functional [10] for an image
sequence I : (x, y, t) ∈ Ω×]0, T [�→ I (x, y, t) ∈ R+:

E (u, v) =
∫
Ω

(Ix u + Iyv + It )
2dxdy + λ

∫
Ω

(‖∇u‖2 + ‖∇v‖2)dxdy,

where Ix , Iy, It are the image spatiotemporal derivatives, ∇u,∇v are the spatial
gradients of the optical flow coordinates u, v, and λ is a constant factor to weigh
the contribution of the two terms in the objective functional. The corresponding
Euler-Lagrange equations are:

Ix (Ix u + Iyv + It )− λ∇2u = 0
Iy(Ix u + Iyv + It )− λ∇2v = 0,

(3.14)

with Neumann boundary conditions

∂u

∂n
= 0,

∂v

∂n
= 0, (3.15)

where ∂
∂n designates differentiation in the direction of the normal n to the boundary

of the image domain Ω , and ∇2 denotes the Laplacian operator.
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3.4.1 Discretization

Let D be a unit-spacing grid over Ω with the grid points indexed left-to-right and
top-down by the integers {1, 2, ..., N }. For all grid point indices i ∈ {1, 2, ..., N }, a
discrete approximation of the Euler-Lagrange Equations Eq. (3.14) is :

I 2
xi ui + Ixi Iyi vi + Ixi Iti − λ∑

j∈Ni
(u j − ui ) = 0

Iyi Ixi ui + I 2
yi vi + Iyi Iti − λ∑

j∈Ni
(v j − vi ) = 0,

(3.16)

where λ has absorbed the averaging constant of the Laplacian approximation;
(ui , vi ) = (u, v)i is the optical flow vector at grid point i ; Ixi , Iyi , Iti are the spa-
tiotemporal derivatives Ix , Iy, It evaluated at i ; and Ni is the set of indices of the
neighbors of i for some neighborhood system. For the 4-neighborhood, for instance,
card(Ni ) < 4 for pixels on the boundary of D and card(Ni ) = 4 for interior
pixels. By accounting for the cardinality of Ni , the approximation of the Laplacian
in Eq. (3.16) is consistent with the Neumann boundary conditions Eq. (3.15) because
it is equivalent to considering neighbors j of i outside the image domain but giving
these the same flow vector as i . This is sometime called mirroring.

Re-arranging terms in Eq. (3.16), we have the following linear system of equations,
for i ∈ {1, ..., N }:

(S)

⎧⎨
⎩
(I 2

xi + λci )ui + Ixi Iyi vi − λ∑
j∈Ni

u j = −Ixi Iti

Ixi Iyi ui + (I 2
yi + λci )vi − λ∑

j∈Ni
v j = −Iyi Iti ,

where ci = card(Ni ). Let z = (z1, ..., z2N )
t ∈ R2N be the vector defined by

z2i−1 = ui , z2i = vi , i ∈ {1, ..., N }. (3.17)

Also, let b = (b1, ..., b2N )
t ∈ R2N be defined by

b2i−1 = −Ixi Iti , b2i = −Iyi Iti , i ∈ {1, ..., N }. (3.18)

In matrix form, linear system (S) is:

Az = b, (3.19)

where A is the 2N × 2N matrix the elements of which are, for i ∈ {1, ..., N }:

A2i−1,2i−1 = I 2
xi + λci , A2i,2i = I 2

yi + λci ,

A2i−1,2i = Ixi Iyi , A2i,2i−1 = Ixi Iyi , (3.20)

A2i−1,2 j−1 = A2i,2 j = −λ, j ∈ Ni ,
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all other elements being equal to zero. System Eq. (3.19) is a large scale sparse system
of linear equations. Such systems are best solved by iterative algorithms such as the
Jacobi and Gauss-Seidel iterations [82, 83] which we will give next. We will assume
that A is non-singular.

3.4.2 Gauss-Seidel and Jacobi Iterations

One can show that matrix A is positive definite [13]. This implies that the point-wise
and block-wise Gauss-Seidel iterations to solve system Eq. (3.19) will converge. This
is a standard result in numerical linear algebra [82, 83]. For the 2× 2 block division
of matrix A, the Gauss-Seidel iterations are [13], for all i ∈ {1, ..., N }:

uk+1
i = I 2

yi + λci

ci (I 2
xi + I 2

yi )+ λc2
i

⎛
⎝ ∑

j∈Ni ; j<i

uk+1
j +

∑
j∈Ni ; j>i

uk
j

⎞
⎠

− Ixi Iyi

ci (I 2
xi + I 2

yi )+ αc2
i

⎛
⎝ ∑

j∈Ni ; j<i

vk+1
j +

∑
j∈Ni ; j>i

vk
j

⎞
⎠− Ixi Iti

I 2
xi + I 2

yi + λci

(3.21)

vk+1
i = −Ixi Iyi

ci (I 2
xi + I 2

yi )+ λc2
i

⎛
⎝ ∑

j∈Ni ; j<i

uk+1
j +

∑
j∈Ni ; j>i

uk
j

⎞
⎠

+ I 2
xi + λci

ci (I 2
xi + I 2

yi )+ λc2
i

⎛
⎝ ∑

j∈Ni ; j<i

vk+1
j +

∑
j∈Ni ; j>i

vk
j

⎞
⎠− Iyi Iti

I 2
xi + I 2

yi + λci

Horn and Schunck [10] solve system Eq. (3.19) with the 2× 2 block-wise Jacobi
method. The iterations are:

uk+1
i =

I 2
yi + λci

ci (I
2
xi + I 2

yi )+ λc2
i

∑
j∈Ni

uk
j −

Ixi Iyi

ci (I
2
xi + I 2

yi )+ λc2
i

∑
j∈Ni

vk
j −

Ixi Iti

I 2
xi + I 2

yi + λci

(3.22)

vk+1
i = −Ixi Iyi

ci (I
2
xi + I 2

yi )+ αc2
i

∑
j∈Ni

uk
j +

I 2
xi + λci

ci (I
2
xi + I 2

yi )+ λc2
i

∑
j∈Ni

vk
j −

Iyi Iti

I 2
xi + I 2

yi + λci

The fact that matrix A is symmetric positive definite is not sufficient to imply that
the Jacobi iterations converge. However, it can be shown directly that they do. This
has been done using a vector norm in R

2N adapted to the special structure of the
linear system (S) [13].

The differences between the Gauss-Seidel and the Jacobi methods are well known:
the Jacobi method does the update for all points of the image domain grid and then
uses the updated values at the next iteration, whereas the Gauss-Seidel method uses
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Fig. 3.2 Data matrix A is
block tridiagonal. The dots
represent possibly nonzero
elements. For an n×n discrete
image, the blocks are 2n× 2n.
The block tridiagonal form
comes from the fact that points
with index K n, 1 ≤ K ≤ n, do
not have a right-side neighbor,
and those with index K n + 1,
0 ≤ K ≤ n − 1, do not have a
left-side neighbor
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the updated values as soon as they are available and, as a result, can be more efficient
than the Jacobi method in sequential computations. However, in contrast with the
Gauss-Seidel iterations, Jacobi’s can be performed in parallel for all pixels, which
can result in a very fast hardware implementation [14, 15]. As to memory storage,
the Jacobi method requires at each iteration the 2N values of the previous iteration
in memory store. With the Gauss-Seidel iterations Eq. (3.22), only a few of these
values are stored.

There is a remarkable block division which makes matrix A block tridiagonal
(Fig. 3.2). Combined with the property that A is symmetric positive definite, this
characteristic affords efficient resolution of the corresponding linear system [82].
For an n × n discrete image, the blocks are 2n × 2n. The block tridiagonal form is
due to the fact that points with index K n, 1 ≤ K ≤ n, do not have a neighbor on the
right, and those with index K n+1, 0 ≤ K ≤ n−1, do not have a neighbor on the left.
The block-wise iterations for a block tridiagonal symmetric positive definite matrix,
i.e., the iterations corresponding to the tridiagonal block decomposition (Fig. 3.2),
converge for both the Jacobi and the Gauss-Seidel implementations [82]. The spectral
radius of the Gauss-Seidel matrix is equal to the square of the spectral radius of the
Jacobi matrix, which signifies that the Gauss-Seidel implementation is in this case
much faster that the Jacobi. The readers interested in the details may refer to [13].

3.4.3 Evaluation of Derivatives

Horn and Schunck have used approximations of the image spatial and temporal
derivatives as averages of forward first differences. From two consecutive n × n
images I 1 and I 2 the formulas are:
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Ixi = 1

4
(I 1

i+1 − I 1
i + I 1

i−n+1 − I 1
i−n + I 2

i+1 − I 2
i + I 2

i−n+1 − I 2
i−n)

Iyi = 1

4
(I 1

i−n − I 1
i + I 1

i−n+1 − I 1
i+1 + I 2

i−n − I 2
i + I 2

i−n+1 − I 2
i+1) (3.23)

Iti = 1

4
(I 2

i − I 1
i + I 2

i+1 − I 1
i+1 + I 2

i−n − I 1
i−n + I 2

i−n+1 − I 1
i−n+1),

for i = 1, ..., n2. Alternatively, the spatial derivatives can be estimated using central
differences. Using central differences to compute the temporal derivatives would
not be consistent with the in-between consecutive frames velocities to be estimated
because it would require using the frames preceding and following the current, rather
than consecutive frames.

Points in the formulas which fall outside the image domain are often given the
index of the image wrapped around on its boundary to form a (digital) torus or,
alternatively, boundary points are simply given the spatiotemporal derivative values
of an immediate interior neighbor.

3.4.4 Ad hoc Variations to Preserve Motion Boundaries

As alluded to in the introduction, the single serious drawback of the Horn and Schunck
method is that the quadratic (Tikhonov) regularization it uses ignores motion bound-
aries which it smooths out as a result. This technically translates into the occurrence
of the isotropic Laplacian operator in the Euler-Lagrange equations. The original
study of Horn and Schunck approximates the discrete Laplacian 
2w as:


2w ∝ w− w, (3.24)

where w stands for either u or v and w is a weighted neighborhood average of w
according to the weights in Fig. 3.3.

This Laplacian approximation is used explicitly in their discretization of the Euler-
Lagrange equations to arrive at the following form of the iterations to compute optical
flow, where λ has absorbed the coefficient of proportionality:

uk+1
i = ui

k − Ixi
Ixi uk

i + Iyi vk
i + It

λ+ I 2
xi + I 2

yi

vk+1
i = vi

k − Iyi
Ixi uk

i + Iyi vk
i + It

λ+ I 2
xi + I 2

yi

(3.25)

Boundary conditions aside, the average w is computed according to the set of
fixed weights in Fig. 3.3. This suggests that one can be more general and approximate
the operator by spatially variant filters, rather than a fixed weighted average, with
the purpose of preserving motion boundaries, i.e., dampening blurring at motion
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discontinuities. In such a case, iterations Eq. (3.25) are executed with:

uk
i = g

(
{uk

j } : j ∈ Ni

)

vk
i = g

(
{vk

j } : j ∈ Ni

)
,

(3.26)

with filters g such as those suggested in [84]. These can be dependent of the image
or on the flow itself:
Image-based adaptive average: Under the assumption that the image of environ-

mental objects is smooth except at the projection of their occluding boundaries, flow
edges and image edges will coincide, justifying an intensity-based filter of the form:

g
(
{wk

j } : j ∈ Ni

)
=

∑
j∈Ni

α j w j , (3.27)

where coefficients α j are commensurate with the image contrast between i and j ,
for instance by using:

α j =
1

1+|I j−Ii |∑
j∈Ni

1
1+|I j−Ii |

(3.28)

In general, of course, flow discontinuities are only a subset of intensity edges so that
smoothing of the flow field according to Eq. (3.28) will follow the image intensity
structure rather than the structure of the motion field and, as a result, can cause
undesirable artefacts.
Optical flow-based adaptive average: The coefficients of a flow-based version of

the image-based filter would be:

Fig. 3.3 The discrete
Laplacian 
2w can be written
as 
2w ∝ w − w, where w
stands for either u or v and w
is a weighted neighborhood
average of w using the weights
above as suggested in the orig-
inal investigation of optical
flow estimation by the Horn
and Schunck method
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α j =
(

1
1+|w j−wi |

)β
∑

j∈Ni

(
1

1+|w j−wi |
)β (3.29)

where w stands for either of the optical flow coordinates and β > 1. The purpose
of exponent β is to discern better the coefficients values when the range of the flow
coordinates is small. This filter is expected to dampen smoothing across motions
discontinuities while stressing it along.
Median filtering: Here, filter g at pixel i would be the median of the current flow

estimates in the neighborhood Ni of i . At a flow discontinuity, median filtering is
more likely to yield a value representative of the values on a single side of the discon-
tinuity. A reasonable alternative consists of averaging the values of the flow velocity
in Ni which are above or below the median, whichever are more homogeneous. In
the event of a flow edge at i , these values would most likely come from pixels on a
single side of the edge.
Modulating the weight coefficient λ: The ad hoc variations above use digital

approximations of the Laplacian which adjust to the local structure of the image or
of the flow field at any stage of its estimation by the Horn and Schunck iterations,
in the hope that this structure is actually indicative of the actual flow discontinuities.
Along this vein of thought, one can also look at varying the weighing coefficient
λ during the iterations depending on the structure of the image or the current flow
field [85]. Since smoothing increases with λ, the rationale is that the value of this
coefficient should be low at suspected motion boundaries and high elsewhere. For
instance the study in [85] uses thresholds on ‖∇ I‖2 and ‖∇u‖2 + ‖∇v‖2 to decide
whether to smooth sufficiently, according to some threshold λh , when neither of these
gradient norms is high or, instead, inhibit smoothing using a small coefficient λs .

Although ad hoc approximations of key variables in Eq. (3.25), such as the Lapla-
cian or the weight coefficient, can produce sharper motion boundaries at practically
no additional computational expense, there have been no extensive experimental
verification which would allow a definite conclusion about their effectiveness com-
pared to other boundary preserving formulations such as the ones we will describe
next. These are formal methods which aim at preserving motion discontinuities by
referencing motion edges via boundary length or by using a boundary preserving reg-
ularization function in the objective functional. We will describe both an image-based
and a flow-based boundary preserving regularization function.

3.5 Deriche–Aubert–Kornprobst Method

The Laplacian operator which appears in the Euler-Lagrange equations associated
with Eq. (3.14) causes smoothing, and blurring thereof, across motion boundaries.
To circumvent the problem, the study in [37] proposed to investigate regularization
functions g in the following generalization of the Horn and Schunck functional:
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E(u, v) =
∫
Ω

(Ix u + Iyv+ It )
2dxdy + λ

∫
Ω

(g(‖∇u‖)+ g(‖∇v‖))dxdy, (3.30)

such that motion boundaries are preserved. With g(z) = z2, Eq. (3.30) reduces to
the Horn and Schunck functional Eq. (3.14). The purpose of the analysis in [37,
38] was to determine g from conditions that would ensure isotropic smoothing of
motion where it varies smoothly and allow smoothing along motion boundaries while
inhibiting or dampening it across. The analysis is summarized in the following.

The Euler-Lagrange equations corresponding to Eq. (3.30) are:

Ix (Ix u + Iyv + It )− λ
2

div

(
g′(‖∇u‖) ∇u

‖∇u‖
)
= 0

Iy(Ix u + Iyv + It )− λ
2

div

(
g′(| ∇v‖) ∇v

| ∇v‖
)
= 0,

(3.31)

where div is the divergence operator and g′ is the first derivative of g. The corre-
sponding Neumann boundary conditions are:

g′(‖∇u‖)
‖∇u‖

∂u

∂n
= 0

g′(‖∇v‖)
‖∇v‖

∂v

∂n
= 0,

(3.32)

where n is the unit normal vector to the boundary ∂Ω of the image domain Ω , and
∂/∂n is the derivative operator in the direction of n.

For w ∈ {u, v}, i.e., where w stands for either of the optical flow components,
consider at each point a local orthonormal direct coordinate system (η, ξ) defined

by unit vectors ∇w
‖∇w‖ and its (counter clockwise) orthogonal unit vector

( ∇w
‖∇w‖

)⊥
.

In this reference system, the divergence terms in Eq. (3.31) are written:

div

(
g′(‖∇w‖)
‖∇w‖ ∇w

)
= g′(‖∇w‖)
‖∇w‖ wξξ + g′′(‖∇w‖)wηη (3.33)

In a region where w is homogeneous, i.e., where ‖∇w‖ is small, we want g to
allow smoothing in both orthogonal directions η and ξ , and in the same manner
(isotropy). Considering Eqs. (3.31) and (3.33), the conditions to impose are:

lims→0 g′′(s) = g′′(0) > 0

lims→0
g′(s)

s = g′′(0) (3.34)

At the limit when ‖∇w‖ → 0, we have:

div

(
g′(‖∇w‖)
‖∇w‖ ∇w

)
= g′′(0)(wηη + wξξ ) = g′′(0)∇2w
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Therefore, the Euler-Lagrange equations in this case, when ‖∇w‖ → 0, would be:

Ix (Ix u + Iyv + It ) = λ
2 g′′(0)∇2u

Iy(Ix u + Iyv + It ) = λ
2 g′′(0)∇2v, (3.35)

with Neumann boundary conditions

∂u

∂n
= 0,

∂u

∂n
= 0. (3.36)

These equations are those of the Horn and Schunck formulation, which is what we
want.

When∇w is large, as it would be at motion boundaries, we want to smooth w along
ξ but inhibit smoothing in the orthogonal direction, i.e., along η. The conditions to
set are:

lim
s→∞ g′′(s) = 0

lim
s→∞

g′(s)
s
= β > 0,

(3.37)

and the divergence term at the limit when ‖∇w‖ → ∞ would be:

div

(
g′(‖∇w‖)
‖∇w‖ ∇w

)
= βwξξ . (3.38)

However, both conditions in Eq. (3.37) cannot be satisfied simultaneously [37, 38].
Instead, the following weaker conditions can be imposed:

lim
s→∞ g′′(s) = lim

s→∞
g′(s)

s
= 0

lim
s→∞

g′′(s)
g′(s)

s

= 0.
(3.39)

Accordingly, diffusion is inhibited in both directions at the limit, when ‖∇w‖ →
∞, but is otherwise dampened more in direction η than ξ , i.e, smoothing will be
dampened more across motion boundaries than along. There are several functions
satisfying conditions Eqs. (3.34) and (3.39), g(s) = 2

√
1+ s2 − 2 (Aubert), for

instance, and the ones shown in Table 3.1.

Table 3.1 Boundary
preserving functions for the
estimation of optical flow

g(s)

Aubert 2
√

1+ s2 − 2
Geman and Reynolds s

1+s2

Perona-Malik log(1+ s2)

Green 2 log(cosh(s))
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A discretization of the Euler-Lagrange equations gives a large scale sparse system
of nonlinear equations. Instead of solving directly this system, the study in [37,
38] proposed a more efficient implementation using the half-quadratic minimization
algorithm applied to the following functional, the change from the original functional
being justified by a duality theorem [38]:

E(u, v, b1, b2) =
∫
Ω

(Ix u + Iyv + It )
2dxdy

+ λ
∫
Ω

(
b1‖∇u‖2 + b2‖∇v‖2 + ψ(b1)+ ψ(b2)

)
dxdy (3.40)

Two new functions, b1(x, y) and b2(x, y), called auxiliary variables, appear in this
functional. Also appearing is a functionψ , convex and decreasing, related implicitly
to g and such that, for every fixed s, the value of b which minimizes bs2 + ψ(b) is
given by

b = g′(s)
2s

(3.41)

This result is the basis of the half-quadratic greedy minimization algorithm which,
after initialization, repeats two consecutive steps until convergence. Each iteration
performs a minimization with respect to u, v with b1, b2 assumed constant followed
by a minimization with respect to b1, b2 with u, v assumed constant.

Minimization with respect to u, v, with b1, b2 considered constant, consists of
minimizing the following functional:

∫
Ω

(Ix u + Iyv + It )
2 + λ

(
b1‖∇u‖2 + b2‖∇v‖2

)
dxdy (3.42)

The corresponding Euler-Lagrange equations are:

Ix (Ix u + Iyv + It ) = λdiv(b1∇u)
Iy(Ix u + Iyv + It ) = λdiv(b2∇v),

(3.43)

with Neumann boundary conditions ∂u/∂n = ∂v/∂n = 0. Discretization of the
equations yields a large scale sparse linear system of equations which can be solved
efficiently with the Gauss-Seidel or the Jacobi method. The divergence terms in
Eq. (3.43) can be discretized as in [49].

The minimization with respect to b1, b2, with u, v considered constant, consists
of minimizing the functional:

∫
Ω

(
b1‖∇u‖2 + b2‖∇v‖2 + ψ(b1)+ ψ(b2)

)
dxdy (3.44)

The unique solution is given analytically following Eq. (3.41):
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b1 = g′(‖∇u‖)
2‖∇u‖

b2 = g′(‖∇v‖)
2‖∇v‖

(3.45)

The half-quadratic algorithm to minimize Eq. (3.40) can be summarized as follows:

1. Initialize b1, b2
2. Repeat until convergence

a. Minimize with respect to u, v using Jacobi (or Gauss-Seidel) iterations
to solve the linear system of equations corresponding to the discretized
Eq. (3.43).

b. Minimize with respect to b1, b2 using Eq. (3.45)
[
b1 = g′(‖∇u‖)

2‖∇u‖ , b2 =
g′(‖∇v‖)

2‖∇v‖
]

Example: This example (courtesy of R.Deriche) uses the Hamburg Taxi sequence
of a street intersection scene (from Karlsruhe University, Germany, Institut für
Algorithmen und Kognitive Systeme, http://i21www.ira.uka.de/image_sequences/):
Fig. 3.4a shows one of the two consecutive images used. The other figures contain
a graphical display of the flow field in the rectangular zoom window drawn in (a)
(which includes the white car in the center of the intersection and a small portion of the
dark-coloured car next to it): Methods of (b) Horn and Schunck, (c) Lucas-Kanade,
and (d) Deriche-Aubert-Kornprobst. Visual inspection reveals a motion smoothing
spread in (b) and a lack of spatial regularization in (c). In (d) the smooth motion field
is well confined to the moving cars as a result of discontinuity preserving smoothness
regularization.

Example: This other example uses the synthetic sequence depicted in Fig. 3.5a
(Marbled blocks sequence from Karlsruhe University, Germany, Institut für Algo-
rithmen und Kognitive Systeme). The camera and the block on the left do not move.
The block on the right moves away to the left. The images had noise added. The
texture variation is weak at the top edges of the blocks. Depth, and image motion
thereof, varies sharply at the blocks boundaries not in contact with the floor. The
blocks cast shadows which display apparent motion. The ground truth optical flow
vectors are displayed in Fig. 3.5b. Vectors computed with the method of Horn and
Schunck and of Deriche, Aubert, Kornprobst are displayed in Fig. 3.5c and d, respec-
tively. The average errors per pixel in magnitude (pixels) and direction (degrees) are
(0.142, 5.095) and (0.130, 4.456) for the Horn and Schunck and the Aubert, Deriche,
Kornprobst methods, respectively [61]. The better performance of the latter scheme
is likely due to the better handling of motion discontinuities as a visual inspection
tends to corroborate.

http://i21www.ira.uka.de/image_sequences/
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(a) (b)

(c) (d)

Fig. 3.4 Optical flow estimation on the Hamburg Taxi sequence (courtesy of Deriche, Aubert, and
Kornprobst): a One of the two consecutive images used. A graphical display of the flow field in the
rectangular window shown in a, by the methods of b Horn and Schunck, c Lucas-Kanade, and d
Deriche, Aubert, and Kornprobst. This last method produces a smooth field confined to the moving
objects (the white car and part of the dark car) as a result of discontinuity preserving smoothness
regularization

3.6 Image-Guided Regularization

Consider from a probabilistic viewpoint the problem of estimating optical flow from
two consecutive images I1 and I2. This consists of maximizing the posterior probabil-
ity P(W |I1, I2) over the space of all possible optical flow fields W . This probability
is proportional to the product P(I2|W, I1)P(W |I1). The first term, P(I2|W, I1),
is a term of conformity of W to the data because it is the likelihood that con-
nects I2 to I1 via W . The second term, P(W |I1), is a prior on W which exhibits
a partial dependence on data through the conditioning on I1. This dependence is
often ignored and the conditioning on I1 is removed, resulting in a prior independent
of any observation. This is equivalent to imposing statistical independence of W and
I1. However, the dependence is genuine because motion edges often occur at image
intensity edges [27]. Therefore, its inclusion in a prior, or a regularization term in
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(a) (b)

(c) (d)

Fig. 3.5 Optical flow estimation on the Marbled block sequence: a the first of the two images used,
b ground truth optical flow, and optical flow by the method of c Horn and Schunck, d Deriche,
Aubert, Kornprobst. This last method produces a smooth field confined to the moving objects as a
result of discontinuity preserving smoothness regularization

energy based formulations, affords the opportunity to smooth the motion field with-
out blurring its boundaries by allowing smoothing along the isophote, i.e., in the
direction perpendicular to the image spatial gradient, and inhibiting or dampening it
across. This can be done via an appropriate gradient-dependent linear transformation
A(∇ I ) of the motion field in the prior/regularization term. Here following are two
possible formulations [16, 19, 20].
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3.6.1 The Oriented-Smoothness Constraint

The following functional was investigated in [16, 86]:

E (u, v) =
∫
Ω

(I1(x − u, y − v)− I2(x, y))2 dxdy (3.46)

+ λ
∫
Ω

(
∇uT A(∇ I1)∇u +∇vT A(∇ I1)∇v

)
dxdy. (3.47)

Matrix A is defined as a function of the image partial derivatives by:

A(∇ I1) = 1

‖∇ I1‖2 + 2μ2

[(
I1y

−I1x

)
(I1y − I1x ) + μ2I

]
, (3.48)

where I is the identity matrix and μ a constant. The functional was later modified
[87] to remove the peculiarity that motion is applied to I2 in the data term but to I1
in the regularization term.

An analysis in [20] determined an image-guided regularization matrix A by impos-
ing on it conditions which would cause smoothing along intensity edges but damp-
ening it across. The analysis is as follows.

3.6.2 Selective Image Diffusion

Consider the following objective functional:

E (W ) =
∫
Ω

(Ix u + Iyv+ It )
2dxdy + λ

∫
Ω

(‖A∇u‖2 + ‖A∇v‖2)dxdy, (3.49)

where A = A(∇ I ) is a 2 × 2 matrix which depends on the image structure via
the image spatial gradient. Matrix A must be chosen so as to allow smoothing at
each point in the direction of the perpendicular to the image gradient, i.e., along the
isophote, and dampen it in the direction of the gradient, i.e., perpendicular to the
isophote. This can be done by imposing the following conditions on the eigenvalues
α1, α2 of A [20]:

1. For ‖∇ I‖ 	= 0 , x1 = ∇ I
‖∇ I‖ , x2 =

( ∇ I
‖∇ I‖

)⊥
are the unit eigenvectors corre-

sponding to α1, α2,
2. α2 = 1

3. α1 is a monotonically decreasing continuous function of ‖∇ I‖ such that:
lim‖∇ I‖→0 α1 = 1 and lim‖∇ I‖→∞ α1 = 0.



62 3 Optical Flow Estimation

Intuitively, the purpose of these conditions is as follows: the first condition says that
the two orthogonal directions which should be considered for smoothing are those of
the isophote and the image gradient; the second condition is to allow full smoothing
along the isophote; the third condition stipulates that smoothing along the gradient
direction is to be allowed only to a degree that decreases with the intensity edge
strength, varying from full to no strength.

The Euler-Lagrange equations corresponding to Eq. (3.49) are:

Ix (Ix u + Iyv + It )− λdiv(B∇u) = 0
Iy(Ix u + Iyv + It )− λdiv(B∇v) = 0,

(3.50)

where B = AtA+ AAt , with Neumann boundary conditions:

B∇u · n = 0
B∇v · n = 0

(3.51)

Let P be the 2 × 2 orthogonal matrix P = (x1, x2), i.e., whose columns are x1
and x2, and let

Λ =
(
α1 0
0 α2

)
(3.52)

Using the first condition, we have, by definition, AP = PΛ. Therefore, A =
PΛP−1 = PΛPt , since P is orthogonal. This gives, using the second condition
(α2 = 1),

A(∇ I ) = 1

‖∇ I‖2
(
α1 I 2

x + I 2
y (α1 − 1)Ix Iy

(α1 − 1)Ix Iy I 2
x + α1 I 2

y

)
(3.53)

Using the following α1, which satisfies the third condition,

α1 = 1

(1+ ‖∇ I‖2
μ2 )

1
2

, (3.54)

where μ is a parameter to modulate the strength of smoothing, we have:

B = 1

μ2‖∇ I‖2
(
μ2 + I 2

y −Ix Iy

−Ix Iy μ2 + I 2
x

)
(3.55)

Assuming ‖∇ I‖ is bounded onΩ , this matrix is positive definite, which means that
Eq. (3.50) are diffusion equations. To see intuitively that they realize the desired
diffusion, note that where ‖∇ I‖ is small, α1 is close to 1 and, therefore, A(∇ I )
is close to the identity, causing the regularization term in Eq. (3.49) to be close to
the L2 norm and Eq. (3.50) to behave isotropically. When, instead, ‖∇ I‖ is large,
A(∇ I ) approximates a projection onto the direction perpendicular to ∇ I and only
the projection of∇u and∇v along that direction will contribute to the regularization.
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Another way to see that we have the desired diffusion is by looking at the behaviour
of Eq. (3.50) locally at each point, in a small neighborhood where∇ I is constant and
nonzero. In this neighborhood, consider the local coordinate system (η, ξ) according

to the reference system defined by ∇ I
‖∇ I‖ ,

( ∇ I
‖∇ I‖

)⊥
. In this orthonormal reference

system, we have ∇u = (uη, uξ ) and ∇v = (vη, vξ ), and

B =
(
α2

1 0
0 α2

2

)
. (3.56)

which gives the following local form of the divergence term, using α2 = 1:

div(B∇u) = α2
1uηη + uξξ (3.57)

and, therefore, the local form of the Euler-Lagrange equations:

Ix (Ix u + Iyv + It )− λ(α2
1uηη + uξξ ) = 0

Iy(Ix u + Iyv + It )− λ(α2
1vηη + vξξ ) = 0 (3.58)

It is clear from these equations that diffusion will occur along axis ξ , i.e, along the
intensity edge and that it will be dampened along axis η, i.e., along the direction of
the gradient. Since α1 is a decreasing function of ‖∇ I‖, the degree of dampening
will be commensurate with the edge strength. Parameterμ in Eq. (3.54), although not
essential, can be used to control how fast with respect to edge strength dampening
occurs across edges.

The minimization of Eq. (3.49) can be done by the corresponding Euler-Lagrange
descent equations [20], namely,

∂u
∂τ
= −Ix (Ix u + Iyv + It )+ λdiv(B∇u)

∂v
∂τ
= −Iy(Ix u + Iyv + It )+ λdiv(B∇v) (3.59)

One can also discretize the Euler-Lagrange equations Eq. (3.50). This would give
a large scale sparse system of linear equations which can be solved efficiently by
Gauss-Seidel or Jacobi iterations.

3.7 Minimum Description Length

A way to preserve motion discontinuities is to bring in the length of the discontinuity
set in the regularization [30]. A boundary length term commonly appears in image
segmentation functionals, first in the Mumford and Shah functional [32]. It is essential
in the Leclerc’s minimum description length (MDL) formulation [33] which we focus
on in this section and transpose to optical flow estimation. The Leclerc’s method can
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be viewed as a discrete implementation of the Mumford-Shah functional [88]. It
minimizes an objective function which assigns a code length to an image partition
described according to a predefined “description language.”

Let I0 be an observed image with discrete domain D and I an approximation
corresponding to a partition R = {Rk} of the image domain D into regions where
the image is modelled by a parametric model with parameters {θk}. The Leclerc MDL
criterion [33] to estimate the image underlying I0 is:

E(R, {θk}) = a

2

∑
k

lk −
∑

k

∑
i∈Rk

log2 P(Ii |θk)+
∑

k

bk, (3.60)

where lk is the length of the boundary of Rk in terms of the number of pixels it threads
through, a is the bit cost of coding one edge element, and bk is the bit cost of coding
the (discrete) parameter vector of region Rk . The first term is the code length for
the boundaries and the second for the image given the region parameters. The last
term is the code length to describe the region models via their parameters; assuming
equal code length for all regions, the term can be dropped from the criterion. For a
piecewise constant description of I and quantized Gaussian noise, the criterion can
be re-written as [33]:

E(I ) = a

2

∑
i∈D

∑
j∈Ni

(1− δ(Ii − I j ))+ b
∑
i∈D

(Ii − I0i )
2

σ 2 , (3.61)

where a ≈ 2 and b = 1
2log2 ; Ni is some fixed neighborhood of pixel i ; and

δ(z) =
{

1 for z = 0
0 for z 	= 0

(3.62)

Energy Eq. (3.61) can be solved by a continuation scheme indexed by the stan-
dard deviation of a Gaussian substituted for δ: Starting from an initial large value,
the standard deviation is gradually lowered and, at each step, a solution to the cor-
responding problem is computed using as initial approximation the solution to the
previous problem.

A continuum version of the Leclerc’s MDL criterion is [89], assuming the code
length to describe the parametric models is common to all regions:

E (Γ, {θk}) =
∑

k

(
a

2

∫
∂Rk

ds − log P({I (x) : x ∈ Rk}|θk)

)
, (3.63)

where {Rk} is a partition of the image domain Ω , Γ = {∂Rk} its boundaries, and
{θk} the regions parameters. The code length to describe the parametric models was
assumed common to all regions and has been been dropped. A transposition to optical
flow can be written:
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E (Γ, {θk}) =
∑

k

(
a

2

∫
∂Rk

ds − log P({r(x)} : x ∈ Rk |θk)

)
, (3.64)

where r(x) = (Ix u + Iyv + It )(x). If we assume independent identical probability
models for r everywhere on Ω , then Eq. (3.64) can be re-written:

E (Γ, {θk}) = a

2

∑
k

∫
∂Rk

ds −
∫
Ω

log P(r(x))dx). (3.65)

A discretization of the length term is:

a

2

∑
i∈D

∑
j∈Ni

(
1− δ(ui − u j )δ(vi − v j )

)
, (3.66)

where a ≈ 2. For r normally distributed with variance σ 2, a discretization of the
data term can be written:

c + b
∑
i∈D

(Ixi ui + Iyi vi + Iti )
2

σ 2 , (3.67)

where b = 1
2 log 2 and c is a constant to ignore [33]. The minimum description

length estimate of optical flow is the motion field W̃ over D which corresponds to a
minimum of the total code length of description:

E(W ) = b
∑
i∈D

(Ixi ui + Iyi vi + Iti )
2

σ 2 + a

2

∑
i∈D

∑
j∈Ni

(
1− δ(ui − u j )δ(vi − v j )

)
.

(3.68)

Numerical Implementation

The objective function Eq. (3.68) is not differentiable due to the presence of the delta
function, as in the Leclerc objective function for intensity images. This suggests to
embed the minimization of Eq. (3.68) in a family of minimizations indexed by the
parameter of a differentiable approximation of the δ function, and use continuation
[33, 81] to carry out the estimation. Continuation can be based on the following
substitution:

δ(ui − u j )δ(vi − v j ) ← ei j (W, s) = e
− (ui−u j )

2+(vi−v j )
2

(sσ)2 (3.69)

Using sσ in Eq. (3.69), rather that s, simplifies subsequent expressions without
causing a loss of generality. The actual parameter of continuation remains s. With
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substitution Eq. (3.69), the objective function to minimize is re-written:

E(W, s) = b
∑
i∈D

(Ixi ui + Iyi vi + Iti )
2

σ 2 + a

2

∑
i∈D

∑
j∈Ni

(1− ei j (W, s)) (3.70)

Let s1, s2, ... be a decreasing sequence of s values tending to zero. Continuation
solves the following sequence of problems indexed by these values of s:

Minimize E(W, sl) (3.71)

For each value sl of s, the necessary conditions for a minimum of E give two con-
straints at each i ∈ D:

Ixi (Ixi ui + Iyi vi + Iti )+ al
∑

j∈Ni
(ui − u j )ei j (W, sl) = 0

Iyi (Ixi ui + Iyi vi + Iti )+ al
∑

j∈Ni
(vi − v j )ei j (W, sl) = 0,

(3.72)

where al = a log 2/s2
l . This yields a large scale sparse system of equations most

of which are linear, and that can be solved using the following Jacobi-type iterative
scheme where each iteration applies a Jacobi update to a linear system of equations
obtained by evaluating the exponential term with the values of motion computed at
the preceding iteration:

uk+1
i = −Ixi Iti − Ixi Iyi v

k
i + al

∑
j∈Ni

ek
i j (W, sl)uk

j

I 2
xi
+ al

∑
j∈Ni

ek
i j (W, sl)

vk+1
i = −Iyi Iti − Ixi Iyi u

k
i + al

∑
j∈Ni

ek
i j (W, sl)vk

j

I 2
yi
+ al

∑
j∈Ni

ek
i j (W, sl)

(3.73)

The solution of each problem in Eq. (3.71) serves as the initial solution for the
next problem. As s approaches zero, the problem approaches the original Eq. (3.68)
because ei j (s) tends to δ. When s tends to∞, the second term in Eq. (3.70) approaches
0. This suggest that the first problem be stated with s large, using, for instance, the
normal component vector of optical flow as initial approximation. The iterations are
continued up to a small sl . As a rule of thumb, about 100 iterations of continuation
and 5 of Eq. (3.73) sufficed in experiments.

Example: The MDL estimation scheme is illustrated using the Marbled blocks syn-
thetic test sequence (Marmor-2 sequence from the KOGS/ IAKS laboratory database,
University of Karlsruhe, Germany). The rightmost block moves away to the left and
the small center block forward to the left. The camera and the leftmost block are
static. The images have been noised. The texture variation is weak at the top edges of
the blocks. Depth varies sharply at the blocks boundaries not in contact with the floor.
The blocks cast some shadows. The scene and the actual motion field are shown in
Fig. 3.6a, and the MDL motion estimate in Fig. 3.6b. In spite of its embedded motion
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(a) (b)

Fig. 3.6 a Ground truth image motion superimposed on the first of the two Marbled blocks images
used in the experiment and, b the MDL motion estimate. In spite of its embedded motion bound-
ary preservation, the scheme has let some smoothing, although mild, across the blocks occluding
contours where there are motion discontinuities

boundary preservation, the scheme has let some smoothing, although mild, across
the blocks occluding contours where depth, and motion thereof, vary sharply and
significantly. The average error on the motion magnitude, over the whole image,
is 0.13 pixel and the average direction error on the two moving blocks is 4.7◦. The
standard deviations are 0.2 for the magnitude, 5.8 for the direction for the small block
and 3.5 for the large block. These statistics are comparable to those of the Horn and
Shunck and the Deriche, Aubert, and Kornprobst schemes.

3.8 Parametric Estimation

Parametric motion estimation in a support region R ⊂ Ω consists of representing
the motion field in R by a parametric model and using the spatiotemporal data to
determine the parameters which provide the best fit. One of the main motivations for
parametric motion estimation is economy of description because motion in the sup-
port region R can be compactly described by the set of model parameters. Parametric
estimation also forgoes the need for regularization in R because it implies smooth-
ness of motion. We will focus on linear parametric models. They are analytically
convenient to use and, when chosen properly, can be powerful so as to represent fine
details of motion.

Parametric estimation of optical flow over a support region R can be set up as
follows [60]. Let θ j : (x, y) ∈ Ω → θ j (x, y) ∈ R, j = 1, ...,M be basis
functions and L their span: L = span{θ1, ..., θM }. Each of the coordinate functions
u, v of optical flow W is considered an element of L :

W = αT θ (3.74)
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where θ is the vector of basis functions:

θ = (
θ1 θ2 · · · θM

)T (3.75)

and α is the matrix of parameters, i.e., of the coefficients of the expansion of motion
in the basis of L:

α =
(
α11 α21 · · · αM1
α12 α22 · · · αM2

)T

(3.76)

The first row of αT has the parameters of u and the second row those of v. The
parameters in R are computed by minimizing the following functional which uses
the optical flow constraint in which Eq. (3.74) is substituted:

E (α) =
∫

R
(∇ I · αT θ + It )

2dxdy. (3.77)

The corresponding least squares equations to determine the parameters are:

Bβ + d = 0 (3.78)

where:

• Vector β is the 2M × 1 vector constructed by vertical concatenation of the para-
meters α1 and α2 corresponding to optical flow components u and v:

β[m] = αm1
β[M + m] = αm2,

(3.79)

for m = 1, . . . ,M .
• Matrix B is the following 2M × 2M matrix formed by the vertical and horizontal

concatenation of 4 M × M sub-matrices Brc:

B =
[

B11 B12
B21 B22

]
, (3.80)

where the elements of the sub-matrices are defined by:

Brc[m, n] =
∫

R
Ir Icθmθn dxdy, (3.81)

for m = 1, . . . ,M , n = 1, . . . ,M and Il being the spatial derivative of I in the
horizontal (l = 1) and vertical (l = 2) directions.
• Vector d is the 2M × 1 vector with the following elements, for m = 1, . . . ,M :

d[m] = ∫
R It I1θm dxdy

d[M + m] = ∫
R It I2θm dxdy

(3.82)
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Region R is the support for the formulas above and the question arises as to which
region to use to compute the motion field inΩ . Several possibilities can be envisaged.
One can use R = Ω . In this case, the problem would be to choose the basis functions
and their number. Large images in which several complex motions occur, independent
human motions for instance, are likely to require a large number of parameters,
which might invalidate the argument of representation economy and also reduce
the effectiveness of the scheme. Another possibility is to formulate the problem
as joint parametric motion estimation and segmentation. Segmentation would be a
partition R = {Ri }N1 of Ω into N regions differing by their motion as described by
a parametric model, i.e., regions each with its own set of parameters. This problem
will be investigated in (Sect. 3.11).

Another way to do parametric motion estimation, which does not resort to least
squares fit over Ω or use joint estimation and segmentation, has been investigated
in [44]. The scheme, called over-parametrization, uses a set of parameters at each
point (x, y) ∈ Ω , i.e., α = α(x, y) and, showing the dependence of the parameters
on position:

W (x, y) = α(x, y)T θ(x, y) (3.83)

A linearized optical flow constraint version of the data term in [44] can be written:

∫
Ω

g
(
∇ I (x, y) · αT (x, y)θ(x, y)+ It (x, y)

)
dxdy, (3.84)

where g(z) = √z2 + ε2, for some small ε, which induces an approximate L1 metric.
The idea of over-parametrization was also used in image segmentation by Leclerc’s
MDL scheme [33] which looked at an image as a position-dependent parametric
function of position. The constant and polynomial models were explicitly treated.
Leclerc used the length of the motion boundary set to regularize the parameter field.
This set is evaluated in the MDL cost by explicitly defining an edge to be a point
between two regions of differing parametric motion descriptions. In [44], the regu-
larization acts directly on the parameters and has the form:

∫
Ω

g

⎛
⎝ 2∑

i=1

M∑
j=1

‖αi j‖2
⎞
⎠ . (3.85)

Alternatively, it may be appropriate to use a boundary-preserving function of the
type we discussed earlier. As with the boundary length term of Leclerc MDL for-
mulation, this regularization implies that regions formed by functional minimization
are characterized by one set of motion parameters and regions differ from each other
by this set.

Let δ be the optical flow parametric representation data term:

δ = ∇ I · αT θ + It . (3.86)
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The Euler-Lagrange equations corresponding to the minimization of the over-
parametrization functional:

∫
Ω

g
(
δ2

)
dxdy + λ

∫
Ω

g

⎛
⎝ 2∑

i=1

M∑
j=1

‖αi j‖2
⎞
⎠ dxdy (3.87)

are given by, for j = 1, . . . ,M :

g′
(
δ2

)
δ Ixα1 j + λdiv

(
g′

(∑2
i=1

∑M
j=1 ‖αi j‖2

)
∇α1 j

)
= 0

g′
(
δ2

)
δ Iyα2 j + λdiv

(
g′

(∑2
i=1

∑M
j=1 ‖αi j‖2

)
∇α2 j

)
= 0

(3.88)

The formulation can be generalized to use the displaced frame difference in the
data term rather than its Horn and Schunck linearized form [44, 90]. The equations are
nonlinear. An efficient numerical implementation, within multiresolution processing
(Sect. 3.10), is described in [44], with a validation experiment using the Yosemite
test image sequences.

3.9 Variations on the Data and Smoothness Terms

To preserve motion boundaries some studies have used the L1-norm for the optical
flow smoothness term of the objective functional [91, 44, 92], in lieu of the quadratic
regularization term of Horn and Schunck [10]. However, there has been no analysis or
experimentation to support a comparison of the L1 norm and discontinuity preserving
functions of the type in Table 3.1, the Aubert function for instance. The L1 norm has
also been considered for the data term, to evaluate the displaced frame difference, or
its continuous total temporal derivative expression. However, there is some evidence
from an investigation of temporal noise in image sequences [93] that the L2 norm
may be more appropriate.

Data functions other than the displaced frame difference, or its total temporal
derivative continuous expression, have been suggested and some have been investi-
gated experimentally [42], for instance those which arise from the invariance along
motion trajectories of the image gradient or of its norm, the norm of the Laplacian,
and the norm or trace of the Hessian. Some of these variations have exhibited very
accurate results on the Yosemite test sequences.

3.10 Multiresolution and Multigrid Processing

Multiresolution and multigrid processing are “multilevel” computations which solve
a system of equations on a given discretization grid by solving similar systems on
grids at coarser discretizations. Although conceptually similar from this general point
of view, multiresolution and multigrid processing differ in the order they visit the
coarser grids and in the type of variables they compute at each of these grids.
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3.10.1 Multiresolution Processing

The optical flow constraint, which enters the formulations we have discussed, uses
the image temporal derivative, i.e., the image rate of change along the temporal
axis. In practice, of course, we have to estimate the motion field from a discrete-
time image sequence and if velocities are large, typically to cause displacements
of over a pixel between consecutive views, the image temporal derivative may not
be approximated sufficiently accurately to bear on velocity estimation, even when
the image spatial resolution is high. In such a case, motion estimation can benefit
from multiresolution processing [51, 22, 94, 28, 95]. In this coarse-to-fine strategy,
estimation is served by a pyramidal image representation [96] in which an image
is processed by filtering-and-subsampling into a pyramid of images of successively
lower resolution. The original image is at the base of the pyramid. As motion extent
decreases with resolution, the goal is to start processing at a pyramid level where
this extent is within range of estimation. The estimate at this level is then projected
on the level immediately below to warp the image at this level. The warped image
is processed for an increment of motion, also assumed within range of estimation,
and the scheme is repeated down to the original image at the base of the pyramid.
Several variants of this basic coarse-to-fine scheme have been investigated but these
have the same driving concepts, as just described, and differ mainly in the way the
various steps are accomplished. Black’s thesis [22] contains an introductory review
of the subject. An actual use of multiresolution processing within a thorough motion
estimation framework is given in [51, 28, 95].

The following algorithmic steps show the basic concepts involved in multiresolu-
tion estimation of optical flow. First, a pyramid of images is constructed from each
of the two original images I1 and I2 used in the estimation, by repeated low-pass
filtering, with a Gaussian, for instance, and subsampling at a rate of 2:

I l−1
j

(x
2

)
= h ∗ I l

j (x) j = 1, 2, (3.89)

where x = (x, y), l designates the resolution level, corresponding to image size
2l × 2l (we assume that the length and width of the original image are powers
of 2), the coarsest level being l = 0, h is the filter and ∗ designates convolution.
Subsampling brings down the optical flow magnitude by a factor of two, the purpose
being to have a valid discrete representation of the optical velocity components u and
v. The intended purpose of low pass filtering is to bring the wavelength of the image
spatial frequency components below the motion magnitude so as to have a valid
discrete evaluation of the image temporal derivative. Both operations, filtering and
subsampling, concur to make continuous formulations applicable at a pyramid level
high enough, i.e., at an image resolution low enough. Optical flow is estimated at this
coarsest level and estimation is continued down successive pyramid levels, i.e., up
successively higher image resolution, using three basic operations at each level: (1)
prolongation of the optical flow from the immediately preceding (higher, coarser)
level, (2) transformation, at this level, of the first of the two images by this projected
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flow, called image warping, and (3) estimation, at this level, of an incremental flow
using the warped image and the second image:

At coarsest level l = 0 initialize flow field W 0

From l = 1 to L

1. Prolong the flow field: W l = p(W l−1)

2. Displace (warp) the first image by the flow field: I l
1(x)← I l

1(x +W )

3. Estimate the flow increment δW l from I l
1 and I l

2

4. Update the flow field: W l ← W l + δW l

Prolongation is a coarse-to-fine interpolation operator which assigns to each fine-
level point a value interpolated from the values at neighboring coarse-level points,
i.e., it fills in the empty grid positions at level l by interpolating neighboring flow
values at level l − 1 multiplied by 2. The prolongation is generally called projection
in the optical flow literature although the appellation is discordant with the common
mathematical usage of the term. As well, image displacement (warping) at any level
is done by interpolating the non-grid (displaced) values of the image.

3.10.2 Multigrid Computation

Multigrid procedures have been used in optical flow estimation [52] generally to
complement mutiresolution processing at each level of the image pyramid [97, 95,
67, 98]. Multigrid schemes have had a great impact in numerical analysis where
they were developed, particularly to solve iteratively large scale linear systems of
equations in boundary value problems for partial differential equations [99, 100].
The main reason for using the multigrid computation is to refine via coarser grids a
fine grid approximate solution cheaper, faster, and more accurately than using only
the fine grid.

The multigrid method is better explained with (large) systems of linear equations
although it is also applicable to nonlinear equations. Let Ahzh = bh be a fine-
grid system of linear equations, h designating the domain grid spacing. Let z̃h be an
approximate solution and rh = bh−Ah z̃h , called the residual. The error eh = zh−z̃h

then satisfies:
Aheh = rh (3.90)

This equation can be transferred to a coarser grid with spacing H , double the spacing
for instance, H = 2h, as:

AH eH = RH
h rh, (3.91)

where AH is a coarse-grid approximation of the fine-grid Ah and RH
h is a restriction

operator from the fine to the coarse grid, which assigns to each point of the coarse
grid some weighed average of its argument evaluated at the neighboring fine-grid
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points. An approximate solution ẽH of Eq. (3.91) is then computed to correct the
fine-grid approximation z̃h :

z̃h ← z̃h + Ph
H ẽH , (3.92)

where Ph
H is a coarse-to-fine interpolation operator, also called prolongation, which

assigns to each fine-grid point a value interpolated from the values at neighboring
coarse-grid points. This basic two-level process is summarized by the following steps
[100]:

1. Compute approximate solution z̃h by iterating a few times on Ahzh = bh

2. Compute fine grid residual rh = bh − Ah z̃h

3. Restrict rh to coarse grid residual rH by rH = RH
h rh

4. Solve AH eH = rH for error ẽH

5. Prolong ẽH to fine grid error ẽh by ẽh = Ph
H ẽH

6. Correct z̃h by z̃h ← z̃h + ẽh

7. Iterate a few times on Ahzh = bh from z̃h

For common problems, there are standard restriction and prolongation operators,
and the coarse-grid version AH can be computed from these as AH = RH

h AhPh
H

[100]. The two-level algorithm above can be extended to a pyramid of more levels by
using a hierarchy of coarse grids, for instance with spacings h, 2h, 4h, . . . , H , and
calling the two-level algorithm recursively at each level except the coarsest, i.e., step
4 of the two-level algorithm is now a recursive call to it except at the coarsest grid
where the error is computed to trigger an upward string of error prolongations and
corresponding solution corrections. This “deep” V-path is illustrated in Fig. 3.7b.

The multigrid method is essentially different from the multiresolution in that
it is an error estimation scheme which successively refines an initial approximate
solution on the original high-resolution discretization grid using errors calculated on
successively coarser grids. Multiresolution computations, instead, refine an initial
approximation solved on the coarsest grid by working successively through higher
resolutions up to the original fine grid. From this perspective, a multiresolution

Fig. 3.7 Multiresolution and multigrid paths: a Multiresolution processing proceeds from low
resolution to high; b V-cycle multigrid computations start at the original finest resolution grid to
move though successively coarser grids to the coarsest and then up though successively finer grids
until the finest; c Full multigrid cycle links several V-cycles of different size and the same depth
starting at the coarsest grid
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Fig. 3.8 a The first of the two
images used to compute opti-
cal flow; b the second image
and the flow estimated by
embedding in multiresolution
processing. The flow occurs,
predictably, in both the region
uncovered by motion in the
first image and the region
covered in the second image.
Multiresolution computations
have been able to capture well
the overall movement of the
person

(a)

(b)

scheme adopts a coarse-to-fine strategy, i.e., after creating the image pyramid by
low-pass filtering and sub-sampling, it works strictly down the image pyramid, i.e.,
from lowest resolution to highest (Fig. 3.7a), whereas multigrid processing moves
both ways in this pyramid, first down to successively coarser resolutions and then
back up to successively finer resolutions up to the original to apply corrections
computed from an error solved at the coarsest resolution. Several of these V-shaped
paths of different sizes but of the same depth can be linked into a string that starts
at the coarsest grid to give the full multigrid cycle. This is illustrated in Fig. 3.7c.
Nonlinear equations are generally resolved with such a cycle of computations.

Example: It is remarkable that multiresolution/multigrid processing works at all
when displacements between views are significantly large as in the following exam-
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ple. The displacements in the two images used here, of a person walking, are quite
large. The first image is shown in Fig. 3.8a and the second in Fig. 3.8b which also dis-
plays the optical flow estimated by embedding in multiresolution processing. What
should be pointed out in this example is that the flow seems to capture well the overall
movement of the person in spite of the large displacements. Predictably, motion is
found and estimated in both the region unveiled by motion in the first image and the
region covered by motion in the second image. This kind of result can serve motion
detection as we will see in Chap. 4.

3.11 Joint Estimation and Segmentation

Segmentation, or partitioning, of the flow field with concurrent estimation within
each segmentation region with no particular concern about motion boundaries is
an alternative to estimation with boundary-preserving regularization because seg-
mentation will place boundaries between regions of significantly differing motion,
therefore at significant flow edges. The usefulness of joint optical flow estimation
and segmentation by variational methods was first investigated in [25, 101]. Active
contours as motion boundary variables were used [54, 60, 102, 103], and embedding
three-dimensional rigid body interpretation in estimation was considered in [58, 61].
When motion-based image partitioning is the main purpose of concurrent flow field
estimation and segmentation, a coarse model of image motion such as piecewise
constant or affine can be sufficient, particularly when this motion is due to viewing
system movement and rigid environmental objects. However, given a flow-based
segmentation obtained with a coarse motion model, one can apply a more accurate
optical flow algorithm a posteriori in each segmentation region separately, the Horn
and Schunck algorithm, for instance, or least squares in linear space parametriza-
tion [44, 60] or, yet, by over-parametrization for added accuracy and motion edge
definition [44] (Sect. 3.8).

The following shows how active contours can be used to formulate joint motion
estimation and segmentation. The formulation has been investigated in [54] for an
arbitrarily fixed number of regions using the piecewise constant model of motion,
i.e., optical flow in each segmentation region is considered constant. It has been
extended to higher order linear models of motion, the affine for instance, and to the
spatiotemporal domain in [103]. The expansion of motion in a general linear space of
functions was studied in [60]. To bring out the main concepts involved in concurrent
optical flow estimation and segmentation it is sufficient to use the piecewise constant
model of motion and the case of a segmentation into two regions. We will use the
method of Cremers [54] for this purpose.

Two-region partitioning.
Consider the case of segmenting the flow field into two regions and let R = {Ri }21
be any two-region partition of the image sequence domain Ω . Let γ be a regular
closed plane curve parametrized by arc length, γ : [0, l]← R

2, where l is the curve
length, such that γ and all its derivatives agree at the endpoints 0 and l. We will

http://dx.doi.org/10.1007/978-3-319-00711-3_4
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further request that γ be a simple curve, i.e., that it has no other self-intersections
but at 0, l, i.e., s1, s2 ∈ ]0, l[ , s1 	= s2 =⇒ γ (t1) 	= γ (t2). Let Rγ be the interior
of γ . The regions R1 and R2 of the two-region partition R ofΩ will be represented
by Rγ and Rc

γ , respectively. i.e., R1 = Rγ and R2 = Rc
γ .

Under the piecewise constant model of optical flow, i.e, where the flow is assumed
constant, equal to some velocity vector (ai , bi ) in each region Ri of R, the worth,
or quality, of R as an optical flow based segmentation of the image sequence I at
some time of observation can be represented by the following functional:

E (R, {ai , bi }21) = E (γ, {ai , bi }21) =
2∑

i=1

∫
Ri

ei (x, y)dxdy + λ
∫
γ

ds, (3.93)

where, for i = 1, 2, ei is a function which evaluates how well the piecewise constant
representation of optical flow fits the observed data, namely the spatiotemporal varia-
tions of the image sequence within Ri . For instance, we can use the squared piecewise
constant parametric expression of the lefthand side of the Horn and Schunck equation,
a special case of the more general representation in Eqs. 3.74–3.77. An alternative is
to use the squared cosine of the angle between the image spatiotemporal gradient and
the spatiotemporal velocity vector (u, v, 1), i.e., the square of the dot product of the
unit image spatiotemporal gradient and unit spatiotemporal velocity vector, which
is just what the lefthand side of the Horn and Schunck equation expresses would
we normalize the two vectors by their respective length. Precisely, if the constant
velocity vector of region Ri is wi = (ai , bi , 1)T , i = 1, 2, then:

ei = (wT
i ∇3 I )2

‖wi‖2‖∇3 I‖2 , (3.94)

where ∇3 designates the spatiotemporal gradient, ∇3 I = (Ix , Iy, It )
T = (∇ I, It )

T .
Of course, wi 	= 0 because the third component of the vectors is 1. To avoid zero
denominators, a small quantity may be added to the image spatiotemporal gradient
norm: ‖∇3 I‖ + ε← ‖∇3 I‖.

The main difference between the data function of Eq. 3.94 and the one used com-
monly in optical flow estimation, namely the squared lefthand side of the Horn and
Schunck gradient equation:

ei = (Ix u + Iyv + It )
2, (3.95)

is the normalization of the spatiotemporal image gradient and motion vectors occur-
ring in Eq. (3.94). The normalization to a unit vector of the image spatiotemporal
gradient gives equal strength to the contribution in the objective functional from every
point of Ω where this vector is not zero. This is not the case with Eq. (3.95) which
gives more weight, therefore more importance, to high contrast points. It is unclear
whether high image contrast should or should not be given priority in determining
optical flow. However, Eq. 3.94 has the merit, as we will see, of leading directly to
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the expression of a small-matrix eigenvalue problem when minimizing the objective
functional with respect to the optical flow model parameters ai , bi , i = 1, 2.

The integral in the second term of the objective functional Eq. (3.93) is the length
of γ and has the effect of shortening it, therefore smoothing it. We know from
Chap. 2 that this smoothing manifests as curvature in the Euler-Lagrange equation
corresponding to this term in the minimization of Eq. (3.93) with respect to γ .
Minimization with respect to the motion parameters.
Let S be the 3× 3 matrix defined by:

S = ∇3 I (∇3 I )T

‖∇3 I‖2 . (3.96)

This matrix is, of course, a function of image position: S = S(x, y). The data function
for each region Ri , i = 1, 2 can then be rewritten as:

ei = wT
i Swi

‖wi‖2 , (3.97)

With this notation, differentiation with respect to {ai , bi }21 of Eq. (3.93) under the
integral sign gives for each region Ri the solution w̃i defined by:

w̃i = arg min
w

wT Mi w
wt w

, (3.98)

where Mi is the 3× 3 data matrix given by:

Mi =
∫

Ri

S(x, y)dxdy, (3.99)

obtained by integrating each element of S over Ri . Because Mi is a symmetric matrix,
its smallest eigenvalue μi is characterized by [104]:

μi = min
w

wT Mi w
wt w

. (3.100)

Therefore, the solution w̃i is the eigenvector corresponding to this smallest eigenvalue
and which has the third component equal to 1.
Minimization with respect to γ : curve evolution equation.
With the motion parameters fixed, i.e., assuming they are independent of γ (or Rγ ),
the functional derivative of the integral on Rγ of the objective functional data term
is (see Chap. 2 for basic formulas):

∂

∂γ

∫
Rγ

e1(x, y)dxdy = e1n, (3.101)

http://dx.doi.org/10.1007/978-3-319-00711-3_2
http://dx.doi.org/10.1007/978-3-319-00711-3_2
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where n is the outward unit normal function of γ . Similarly for the integral over Rc
γ :

∂

∂γ

∫
Rc
γ

e2(x, y)dxdy = −e2n. (3.102)

The minus sign on the right-hand side of Eq. (3.102) is due to the fact that the
boundary of Rc

γ is −n. The functional derivative of the length integral of Eq. (3.93)
is (see Chap. 2):

∂

∂γ

∫
γ

ds = κn, (3.103)

where κ is the curvature function of γ . Accounting for all its terms, the functional
derivative of the objective functional Eq. (3.93) is:

∂E

∂γ
= (e1 − e2 + λκ)n, (3.104)

Let γ be embedded in a one-parameter family of curves γ (s, τ ) indexed by algo-
rithmic time τ . The evolution equation to minimize the objective functional with
respect to γ is (see Chap 2):

∂γ

∂τ
= −∂E

∂γ
= −(e1 − e2 + λκ)n, (3.105)

Recall that the evolving curve is called an active curve, or an active contour.
Level set representation and evolution equation.

We recall from Chap. 2 some basic facts about level sets: an implementation of
Eq. (3.105) which would explicitly discretize γ as a set of particles and move these,
would be tantamount to numerical breakdown because changes in the curve topology
would not be resolvable in general. Fans, where the particles separate widely to create
large gaps, and shocks, where the particles come so close together as to collide or
cross paths, would also be major hurdles. The level set method [105] avoids these
serious problems by representing γ implicitly as a level set, the zero level set, for
instance, of a functionφ defined on the plane. The level set functionφ is then evolved,
rather than evolving γ , in a manner that is consistent with the evolution of γ , enabling
the recovery of the curve at any time as its zero level set. With this representation,
γ remains a well defined curve in the face of topology changes, fans, and shocks.
Refer to Chap. 2 for a review.

Let the evolving curve γ (s, τ ) be represented at all times τ by the zero level-set
of function φ : R

2 × R → R, taken by convention to be positive inside Rγ and
negative outside. The evolution equation of φ is given by:

∂φ

∂τ
= (e1 − e2 + λκ) ‖∇φ‖ (3.106)

http://dx.doi.org/10.1007/978-3-319-00711-3_2
http://dx.doi.org/10.1007/978-3-319-00711-3_2
http://dx.doi.org/10.1007/978-3-319-00711-3_2
http://dx.doi.org/10.1007/978-3-319-00711-3_2
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In terms of the level set function, curvature κ of γ is expressed as:

κ = div

( ∇φ
‖∇φ‖

)
(3.107)

when the normal unit vector n is oriented outward:

n = − ∇φ‖∇φ‖ (3.108)

General linear models of motion.
The method [54] is easily extended to general linear models of optical flow by writing
the spatiotemporal motion vector w = (u, v, 1)T in terms of the motion parameters
via a transformation matrix T = T(x, y) independent of the image. The temporal
dimension can also be included in the writing. For a model of n parameters a1, . . . , an ,

w = Tα, (3.109)

where α is the vector of parameters augmented by a last element equal to 1, α =
(a1, . . . , an, 1)T . The first half of the parameters correspond to the component u of
optical flow and the other half to the v component. Matrix T is of size 3× (n + 1).
For instance, for the affine model, we have:

T =
⎛
⎝ x y 1 0 0 0 0

0 0 0 x y 1 0
0 0 0 0 0 0 1

⎞
⎠ (3.110)

With this model of motion, the data function of region Ri in the objective functional
becomes:

ei = (αT
i T∇3 I )2

‖αi‖2‖T∇3 I‖2 , (3.111)

From here on, the problem statement remains the same as with the piecewise constant
model of motion.

A formulation using the standard data function Eq. (3.95), rather than Eq. (3.111),
and an expansion of each component of optical flow in the span of a general basis of
functions as in Eqs. 3.74–3.76 of Sect. 3.8, leads to similar computations, namely an
algorithm which iterates two steps, least-squares estimation of the motion parameters,
which can be done efficiently by the singular value decomposition (SVD) method,
and active curve evolution with a velocity of the same expression as Eq. (3.105). More
specifically, and using the notation and definitions in Eqs. 3.74–3.76 of Sect. 3.8, the
formulation would seek to minimize:

E (γ, α1, α2) =
2∑

i=1

∫
Ri

(
∇ I · αT

i θ + It

)2
dxdy + λ

∫
γ

ds, (3.112)
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where αi , i = 1, 2 are the coefficient vectors for Ri , i = 1, 2, with R1 = Rγ , R2 =
Rc
γ , and θ is the vector of basis functions. The minimization is done by iterations of

two steps, one to compute the parameters by least squares (Eq. 3.78), via SVD for
instance, in each region separately, and the other to evolve the curve with:

dγ

dτ
= −

((
∇ I · αT

1 θ + It

)2 −
(
∇ I · αT

2 θ + It

)2 + λκ
)

n. (3.113)

The dependence of the parameters on the segmentation does not produce extra
terms [106] in the evolution equation and the minimization corresponds to gradient
descent rather than simply greedy descent.

An important question arises in parametric motion estimation as to which model
complexity to use, i.e., how many basis functions to use in the representation of
the components of optical flow. In what concerns estimation on a given support,
the higher the model order the higher the accuracy. However, when the emphasis
is on segmentation, then estimation accuracy is of secondary concern as long as it
is sufficient to serve the segmentation, i.e., the model order to use is the least com-
plex that permits a distinction between the regions of segmentation. For flow fields
caused by moving rigid environmental objects, or by camera motion, a low-order
model such as piecewise constant or affine will probably be satisfactory. However,
other flow fields, such as those due to articulated objects or elastic environmental
motion, may require higher order models. Ideally, one should use the smallest order
that allows discriminating between the different relevant motions of the flow field
because models of higher order might represent flow variations so fine as to pro-
duce a segmentation that is an artifact of the model rather that coherent motion. This
is the problem of over-fitting mentioned in [103] which observed in practice cases
of reduced curve evolution stability with increased model complexity. At any rate,
accurate region-confined flow estimation can always follow a reasonably correct
segmentation obtained with a lower order model.
Multiregion segmentation.

A segmentation into more than two regions, called multiregion segmentation, or
multiphase segmentation, uses two or more active curves. In essence, the objective
functional data term for N regions {Ri } is:

D =
N∑

i=1

∫
Ri

ei (x, y)dxdy (3.114)

If one has several active curves and uses the interior of each to define a region, one
must make sure that at algorithm completion the regions so defined form a partition,
i.e., that they cover the image domain and do not intersect. Therefore, one cannot
simply generalize a two-region algorithm by using more curves and assigning a
region to the interior of each.

Multiregion segmentation has been addressed in several different ways. The
methods have been described in detail in their original papers and have also been
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reviewed in [31]. We will merely give of them here a brief account for a quick
introduction to the literature on the subject. Matlab code of several algorithms
is freely available on the web at mathworks.de/matlabcentral/fileexchange/29447-
multiphase-level-set-image-segmentation and elsewhere.

The earliest investigations of multiregion segmentation [89, 107] addressed the
problem in two quite different ways. In a region competition framework [89], the
curves {γi } were taken together as a set formed by their union, started as a parti-
tion, and moved as a set, i.e., the curve evolution equations resulting from region
competition were applied to Γ = ∪γi considered a single curve. This representation
does not extent to the level set method and, as a result, Γ is tracked by discretization
particles, predisposing the scheme to numerical ills which do not occur with the level
set method. Along a different vein in [107], several active curves mediate multire-
gion segmentation, each with its own speed function, but also with a contribution
from a term in the objective functional dedicated to bias the segmentation toward a
partition. However, a partition is not guaranteed at algorithm convergence because
this term is weighed against the others in the functional and, therefore, the weight
value conditions the outcome. The scheme also appears in the investigations of image
segmentation of [108, 109].

Using several active contours and stating segmentation as spatially regularized
clustering, the investigations in [60, 110, 111] were able to obtain coupled func-
tionals, one for each curve. The resulting movement of the curves ends in a partition
when the curves are started so as to define a partition [110]. However, the scheme can
be quite slow because it sweeps through the image several times at each of many iter-
ations and can sometimes produce artifacts such as elongated portions along region
borders.

A definite means of ensuring a partition in multiregion segmentation is simply to
define a general mapping between the regions {Ri } of the segmentation formulation
and partition-defining regions drawn from the various sets which regions {Rγi } form
when they intersect [112, 113]. Two such mappings are shown in Fig. 3.9. Both
methods guarantee a partition by construction but the computational load can quickly
become excessive when the number of regions increases.

A first order-order analysis of the region data functions in the two-region case
brings out the interpretation of curve evolution as point membership operations.
This directs to enforcing a simple partition constraint in the multiregion case directly
in the functional minimization process and which states that a point relinquished
by a region is claimed by another without transition through intermediate regions,
thereby maintaining implicitly a partition of the image domain at all times when
segmentation is started with a partition [114, 115]. This can lead in general to very
efficient execution.

Multiregion segmentation raises the question as to what the number of regions is.
In general, this is just fixed to equal the number one expects to occur, but there are
many cases where this is not applicable. With curve evolution methods, there have
been some efforts at determining the number of regions automatically, either as part of
curve evolution optimization [116] or by an external process [89, 117, 111]. However,
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experimentation regarding determining the number of regions automatically remains
by and large insufficient, even though the question is quite important.

Example: This example (courtesy of D. Cremers) illustrates joint parametric esti-
mation and segmentation of optical flow by the general active curve framework
in [54] which we have just described. The scene of this sequence contains three
circular objects moving against a mobile background. The purpose, therefore, is
to segment the image into four regions on the basis of the direction of motion to
be simultaneously estimated. The true image movements in the scene are: down
(top left object), up (top right object), right (lower object), and left (background).
The multiple region representation in terms of active contours is that of Chan
and Vese [112]; therefore, two curves are needed (refer to Fig. 3.9a). The initial
position of these curves is shown in Fig. 3.10a which also displays the evolving
motion field. Intermediate motion fields and positions of the curves are shown in
Figs. 3.10b and c. The curves and the motion field at convergence are in Fig. 3.10d.
The curves define regions which correspond accurately to the objects and back-
ground, and the motion field fits the ground truth.

(b)(a)

Fig. 3.9 a Partition construction in [112]: A single curve defines two regions. Two intersecting
simple closed curves give four disjoint subsets A, B,C, D. These can be combined to have partitions
of up to four regions. For four regions, R1 = B = Rγ1 ∩ Rc

γ2
; R2 = D = Rγ2 ∩ Rc

γ1
; R3 = C =

Rγ1 ∩ Rγ2 ; R4 = A = (R1 ∪ R2)
c. In general, N regions necessitate �log N� curves; b The

mapping of [113]: three curves map to four partition regions: R1 = Rγ1 ; R2 = Rγ2 ∩ Rc
γ1
; R3 =

Rγ3 ∩ Rc
γ2
∩ Rc

γ1
; R4 =

(∪3
i=1 Ri

)c
. In general, the mapping requires N−1 curves for N regions
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(b)(a)

(c) (d)

Fig. 3.10 Joint segmentation and parametric estimation of optical flow by the Cremers method
(Courtesy of Daniel Cremers): The true motions in the scene are: vertically down for the top
left object, vertically up for the top right object, horizontally to the right for the lower object, and
horizontally to the left for the background. Two curves are used to represent four regions according to
the Chan and Vese mapping (Fig. 3.9a). The initial position of the curves is shown in a, intermediate
positions and the evolving motion field are displayed in b and c. The final segmentation and motion
field are shown in d. Both the segmentation and the motion field fit the ground truth

3.12 Joint Optical Flow and Disparity Estimation

In stereoscopy, the disparity field and optical flow are related by the stereokinematic
constraint [62, 63]. Therefore, their joint estimation, via this constraint, can be
advantageous [118–124]. Joint estimation involves computing two motion fields and
two disparity fields using the stereokinematic constraint [62, 63] which relates three
of these fields to the fourth.

Let the image sequence be a real positive function over a domain Ω × ]0, S[ ×
]0, T [, where ]0, T [ is an interval of time, and ]0, S[ an interval of R:
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I : Ω × ]0, S[× ]0, T [ �→ R

x, s, t �→ I (x, s, t)

Variable s can be thought of as the parameter of the trajectory of a sequence of image
planes in these planes coordinate domain. For a fixed value of s we have a temporal
image sequence of images and for two distinct fixed values we obtain a stereoscopic
image sequence. Therefore, this generalizes the definition of a stereoscopic image
sequence. Let (x, s, t) ∈ Ω × ]0, S[ × ]0, T [ and x + d(x, s + ds, t + dt) its
correspondent at (s+ds, t+dt), where d designates a displacement. The assumption
that I does not change at corresponding points,

I (x + d(x, s + ds, t + dt), s + ds, t + dt) = I (x, s, t)

gives the following motion and disparity constraints:

∇ I ·W + It = 0 (3.115)

∇ I · D + Is = 0,

where W is the optical velocity vector, D the disparity vector,∇ I the spatial gradient
of I , It and Is the partial derivatives of I with respect to t and s. Because

W = ∂d
∂t
, D = ∂d

∂s
, (3.116)

we also have the integrability constraint:

∂W

∂s
= ∂D

∂t
(3.117)

The integrability constraint is the continuous-disparity form of the stereokinematic
constraint of [62] which was written for optical flow in discrete-disparity stereoscopic
image sequences.

A fully discrete version of the integrability constraint can be written as follows.
Let I l,t , I r,t be the left and right images at time t and I l,t ′ , I r,t ′ the left and right
images at the next time t ′. Let W l,t = (ul,t , vl,t ) and W r,t = (ur,t , vr,t ) designate

left and right optical motion vectors at time t , and Dt = (δt
1, δ

t
2), Dt ′ = (δt ′

1 , δ
t ′
2 ) the

disparity vectors at t and t ′. A discrete representation of the integrability constraint
can then be written:

W r,t −W l,t = Dt ′ − Dt (3.118)

This is the quadrilateral expression of the stereokinematic constraint (Fig. 3.11). It
is the expression generally used in practice [118–122].
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Fig. 3.11 Quadrilateral rep-
resenting the stereokinematic
constraint Eq. 3.118: Knowing
three sides, we can deduce the
fourth.

The two motion fields and the two disparity fields are related via the stereokine-
matic constraint. There is no other relation between any three of them but through
the fourth. Therefore, joint estimation of the four fields which would treat the left
and right data of stereoscopy even-handedly, can proceed along the following two
veins:

(1) The four fields are estimated concurrently, for instance by minimizing an
objective functional containing data and smoothness terms for each field, and a term
to account for the stereokinematic constraint to bind the fields together. A slightly
more efficient version of this, computationally, would estimate concurrently three
of the fields bound by the stereokinematic constraint which uses the fourth field
computed beforehand independently.

(2) Three of the fields are estimated independently, for instance by a variational
formulation such as we have seen, and the fourth field is deduced directly using the
stereokinematic constraint.

Estimation along the first vein entails solving a very large system of equations,
nonlinear equations when using discontinuity preserving formulations. For instance,
with a 400 × 400 image, the number of scalar variables to determine in four fields
is 28 × 104 at each instant of observation. Along the second vein, one would would
solve independently three much smaller problems to estimate three fields, and follow
with a direct application of the stereokinematic constraint to compute the fourth field.
The process, therefore, is much more efficient along this vein. Also, and as we shall
see, prolonging the estimation through time can be done at each instant of time by
computing independently only the two flow fields, followed by an execution of the
stereokinematic constraint using the previously computed disparity field.

According to the second paradigm, whereby three fields are computed indepen-
dently and the fourth deduced, we can use constraints Eq. (3.115) to estimate sep-
arately the left and right motion fields and the disparity field at time t before com-
puting the disparity field at time t ′ using the integrability/stereokinematic constraint
Eq. (3.118). The left and right motion fields at t can be estimated for instance as in
Section 3.5 by solving:
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Table 3.2 The two lines in the top box show the ground truth (constant) disparity for the background
(B) and each of the two objects (O1 and O2) between the left and right images of the second
stereoscopic image (Fig. 3.12a,b)

Actual B O1 O2

x −1.0 1.0 1.0
y 0.0 1.0 1.0
Joint estimation B O1 O2

x −0.8 0.96 0.92
y 0.02 0.81 0.87
Deriche et al. B O1 O2

x −0.81 0.87 0.90
y 0.02 0.78 0.87

The middle box displays the average disparities, for the background and each object, computed by
joint estimation optical flow and disparity as described in the text. The bottom box gives the average
disparities computed by the Deriche-Aubert-Kornprobst method

W {l,r},t = arg min
W
{
∫
Ω

(
(∇ I {l,r},t ·W + I {l,r},tt )2 + λ(g(‖∇u‖)+ g(‖∇v‖))

)
dx

(3.119)
The disparity field can be computed by variational methods in a similar fashion, with
or without the epipolar constraint [87, 125–128].

When the left and right motion fields and the disparity field are estimated at time
t , the disparity field at time t ′ is deduced using the integrability/stereokinematic
constraint, i.e.,

Dt ′ = W r,t −W l,t + Dt (3.120)

We can make two observations: (1) Initially, the disparity field at time t is com-
puted independently. Subsequently, the current disparity field is the disparity field
computed at the previous instant, i.e., at each instant of time, except at the start, only
the two motion fields are computed by Eq. (3.119), followed by an application of
Eq. 3.120 and, (2) the formulation assumes that the disparity and motion are both of
small extent. In the presence of either motion or disparity of large extent, estimation
must resort to some form of multiresolution/multigrid computations (Sect. 3.10).

Example: The second of the two stereoscopic pairs of images used (constructed
from the Aqua sequence) in this verification example (from [123]) is displayed in
Fig. 3.12a, b. The scene consists of a circular object on the left (sea shell like) and
a circular object on its right (sponge like), against a background (in an aquarium).
Both objects are cutouts from real images.The background and the objects are given
disparities in the first stereoscopic pair of images and are made to move such that
disparities in the second stereoscopic pair are (−1,0) for the background, and (1,1) for
the two objects (Table 3.2 upper box). The results are shown graphically in Fig. 3.12
for a qualitative appraisal, and quantitatively in Table 3.2 (lower two boxes).
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(a) (b)

(c) (d)

Fig. 3.12 Joint estimation of small extent optical flow and disparity: a, b the second of the two pairs
of stereoscopic images used; c a graphical display of the disparities computed by joint estimation
using the integrability/stereokinematic constraint; d A graphical display of the disparities computed
with the Deriche-Aubert-Kornprobst method

3.13 State-of-the-Art

This chapter has presented the fundamental concepts underlying optical flow and
its estimation, namely (i) the optical flow constraint which relates optical veloc-
ity to the image spatiotemporal gradient, (ii) the variational principle and the basic
roles that conformity to data and regularization play in problem formulations, (iii)
the necessity and mechanisms to preserve the sharpness of motion boundaries, (iv)
mutiresolution/multigrid processing to deal with long-range motion, (v) the combi-
nation of motion segmentation and motion estimation as joint processes, and (vi) the
concurrent estimation of the optical flow and disparity fields. These concepts are self-
contained and, as such, they were described separately to allow their full meaning to
be exposed unconcealed by other considerations. Algorithms which account for each
concept have been described, such as the Horn and Schunck method, the Deriche-
Aubert-Kornprobst’s and the Cremers’. The purpose of the presentation was to focus
on explaining the idea underlying each abstraction and on means of effecting it, and
no attempt was made to describe algorithms that would embody together several
concepts. Such algorithms have been the concern of a number of studies investigat-
ing various mechanisms for accurate estimation. The domain is now mature enough
to allow a thorough treatment of the problem leading to fast, effective, and accurate
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algorithms with results that can be used for a variety of useful purposes, including
motion detection and three-dimensional structure and motion recovery. This is the
case, for instance, with the investigations in [12, 41, 42] which describe detailed
optical flow computations that have produced impressive results. Faster computa-
tions using the conjugate gradient method to solve a large linear system of equa-
tions, rather than Gauss-Seidel or similar, have been implemented in Matlab/C++
and made available by [129] (http://people.csail.mit.edu/celiu/OpticalFlow/). The
availability of good algorithms and implementations is complemented by useful col-
lections of test image sequences and motion data, notably the Middlebury database
(http://vision.middlebury.edu/flow/). Finally, the successful computational formula-
tions and mechanisms used in optical flow estimation have found good use in joint
disparity and optical flow estimation [124].

References

1. J.J. Gibson, The Perception of the Visual World (Houghton Mifflin, Boston, 1950)
2. K. Nakayama, Biological image motion processing: a survey. Vision. Res. 25, 625–660 (1985)
3. H.-H. Nagel, On the estimation of optical flow: relations between different approaches and

some new results. Artif. Intell. 33(3), 299–324 (1987)
4. H.-H. Nagel, Image sequence evaluation: 30 years and still going strong, in International

Conference on Pattern Recognition, 2000, pp. 1149–1158
5. J. Barron, D. Fleet, S. Beauchemin, Performance of optical flow techniques. Int. J. Comput.

Vision 12(1), 43–77 (1994)
6. A. Mitiche, Computational Analysis of Visual Motion (Plenum Press, New York, 1994)
7. A. Mitiche, P. Bouthemy, Computation and analysis of image motion: A synopsis of current

problems and methods. Int. J. Comput. Vision 19(1), 29–55 (1996)
8. C. Stiller, J. Konrad, Estimating motion in image sequences: A tutorial on modeling and

computation of 2D motion. IEEE Signal Process. Mag. 16(4), 70–91 (1999)
9. G. Aubert, P. Kornpbrost, Mathematical Problems in Image Processing: Partial Differential

Equations and the Calculus of Variations (Springer, New York, 2006)
10. B. Horn, B. Schunck, Determining optical flow. Artif. Intell. 17, 185–203 (1981)
11. B.D. Lucas, T. Kanade, An iterative image registration technique with an application to stereo

vision, in IJCAI, 1981, pp. 674–679
12. A. Bruhn, J. Weickert, C. Schnörr, Lucas/kanade meets Horn/Schunck: combining local and

global optic flow methods. Int. J. Comput. Vision 61(3), 211–231 (2005)
13. A. Mitiche, A. Mansouri, On convergence of the Horn and Schunck optical flow estimation

method. IEEE Trans. Image Process. 13(6), 848–852 (2004)
14. C. Koch, J. Luo, C. Mead, J. Hutchinson, Computing motion using resistive networks, in

NIPS, 1987, pp. 422–431
15. J. Hutchinson, C. Koch, J. Luo, C. Mead, Compting motion using analog and binary resistive

networks. IEEE Comput. 21(3), 52–63 (1988)
16. H. Nagel, W. Enkelmann, An investigation of smoothness constraints for the estimation of

displacement vector fields from image sequences. IEEE Trans. Pattern Anal. Mach. Intell.
8(5), 565–593 (1986)

17. H.-H. Nagel, On a constraint equation for the estimation of displacement rates in image
sequences. IEEE Trans. Pattern Anal. Mach. Intell. 11(1), 13–30 (1989)

18. H.-H. Nagel, Extending the ’oriented smoothness constraint’ into the temporal domain and
the estimation of derivatives of optical flow, in European Conference on Computer Vision,
1990, pp. 139–148

http://people.csail.mit.edu/celiu/OpticalFlow/
http://vision.middlebury.edu/flow/


References 89

19. M. Snyder, On the mathematical foundations of smoothness constraints for the determination
of optical flow and for surface reconstruction. IEEE Trans. Pattern Anal. Mach. Intell. 13(11),
1105–1114 (November 1991)

20. A. Mansouri, A. Mitiche, J. Konrad, Selective image diffusion: application to disparity esti-
mation, in International Conference on Image Processing, 1998, pp. 284–288

21. F. Hampel, E. Ronchetti, P. Rousseeuw, W. Stahel, Robust Statistics: The Approach Based on
Influence Functions (Wiley-Interscience, New York, 1986)

22. M. Black, “Robust incremental optical flow”, in Ph.D. Thesis, Yale University, Research
Report YALEU-DCS-RR-923, 1992

23. M. J. Black, P. Anandan, A framework for the robust estimation of optical flow, in International
Conference on Computer Vision, 1993, pp. 231–236

24. A. Blake, A. Zisserman, Visual Reconstruction (MIT Press, Cambridge, 1987)
25. E. Memin, P. Perez, Joint estimation-segmentation of optic flow, in European Conference on

Computer Vison, 1998, vol. II, pp. 563–578
26. S. Geman, D. Geman, Stochastic relaxation, gibbs distributions, and the bayesian restoration

of images. IEEE Trans. Pattern Anal. Mach. Intell. 6(6), 721–741 (1984)
27. J. Konrad, E.Dubois, Bayesian estimation of motion vector fields. IEEE Trans. Pattern Anal.

Mach. Intell. 14(9), 910–927 (1992)
28. F. Heitz, P. Bouthemy, Multimodal estimation of discontinuous optical flow using markov

random fields. IEEE Trans. Pattern Anal. Mach. Intell. 15(12), 1217–1232 (1993)
29. J. Zhang, G.G. Hanauer, The application of mean field theory to image motion estimation.

IEEE Trans. Image Process. 4(1), 19–33 (1995)
30. P. Nesi, Variational approach to optical flow estimation managing discontinuities. Image

Vision Comput. 11(7), 419–439 (1993)
31. A. Mitiche, I. Ben Ayed, Variational and Level Set Methods in Image Segmentation (Springer,

New York, 2010)
32. D. Mumford, J. Shah, Boundary detection by using functionals. Comput. Vis. Image Underst.

90, 19–43 (1989)
33. Y.G. Leclerc, Constructing simple stable descriptions for image partitioning. Int. J. Comput.

Vision 3(1), 73–102 (1989)
34. J. Weickert, A review of nonlinear diffusion filtering, in Scale-Space, 1997, pp. 3–28
35. L. Blanc-Feraud, M. Barlaud, T. Gaidon, Motion estimation involving discontinuities in a

multiresolution scheme. Opt. Eng. 32, 1475–1482 (1993)
36. M. Proesmans, L.J.V. Gool, E.J. Pauwels, A. Oosterlinck, Determination of optical flow and

its discontinuities using non-linear diffusion, in European Conference on Computer Vision,
1994, pp. 295–304

37. R. Deriche, P. Kornprobst, G. Aubert, Optical-flow estimation while preserving its disconti-
nuities: A variational approach, in Asian Conference on Computer Vision, 1995, pp. 71–80

38. G. Aubert, R. Deriche, P. Kornprobst, Computing optical flow via variational thechniques.
SIAM J. Appl. Math. 60(1), 156–182 (1999)

39. A. Kumar, A. Tannenbaum, G.J. Balas, Optical flow: a curve evolution approach. IEEE Trans.
Image Process. 5(4), 598–610 (1996)

40. J. Weickert, C. Schnörr, Variational optic flow computation with a spatio-temporal smoothness
constraint. J Math. Imaging Vision 14(3), 245–255 (2001)

41. T. Brox, A. Bruhn, N. Papenberg, J. Weickert, High accuracy optical flow estimation based
on a theory for warping, 2004. http://citeseer.ist.psu.edu/brox04high.html.

42. N. Papenberg, A. Bruhn, T. Brox, S. Didas, J. Weickert, Highly accurate optic flow computa-
tion with theoretically justified warping. Int. J. Comput. Vision 67(2), 141–158 (2006)

43. C. Zach, T. Pock, H. Bischof, A duality based approach for realtime tv-l1 optical flow, in
Annual Symposium of the German Association Pattern Recognition, 2007, pp. 214–223

44. T. Nir, A.M. Bruckstein, R. Kimmel, Over-parameterized variational optical flow. Int. J.
Comput. Vision 76(2), 205–216 (2008)

45. M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, H. Bischof, Anisotropic huber-l1
optical flow, in BMVC, 2009

http://citeseer.ist.psu.edu/brox04high.html.


90 3 Optical Flow Estimation

46. C. Vogel, Computational Methods for Inverse Problems (SIAM, Philadelphia, 2002)
47. L. I. Rudin, S. Osher, Total variation based image restoration with free local constraints, in

ICIP, vol. 1, 1994, pp. 31–35
48. I. Cohen, Nonlinear variational method for optical flow computation, in SCIA93, 1993, pp.

523–530
49. P. Perona, J. Malik, Scale space and edge detection using anisotropic diffusion. IEEE Trans.

Pattern Anal. Mach. Intell. 12(7), 629–639 (1981)
50. G. Bellettini, On the convergence of discrete schemes for the perona-malik equation. Proc.

Appl. Math. Mech.7(1), 1023401–1023402 (2007)
51. W. Enkelmann, Investigation of multigrid algorithms for the estimation of optical flow fields in

image sequences. Computer Vision, Graphics, and Image Processing 43(2), 150–177 (August
1988)

52. D. Terzopoulos, Efficient multiresolution algorithms for computing lightness, shape-from-
shading, and optical flow, in AAAI conference, 1984, pp. 314–317

53. D. Cremers, C. Schnorr, Motion competition: Variational integration of motion segmentation
and shape regularization, in DAGM Symposium on, Pattern Recognition, 2002, pp. 472–480

54. D. Cremers, A multiphase level set framework for motion segmentation, in Scale Space
Theories in Computer Vision, ed. by L. Griffin, M. Lillholm (Springer, Isle of Skye, 2003),
pp. 599–614

55. A. Mansouri, J. Konrad, Multiple motion segmentation with level sets. IEEE Trans. Image
Process. 12(2), 201–220 (Feb. 2003)

56. D. Cremers, S. Soatto, Motion competition: A variational approach to piecewise parametric
motion segmentation. Int. J. Comput. Vision 62(3), 249–265 (2005)

57. T. Brox, A. Bruhn, J. Weickert, Variational motion segmentation with level sets, in European
Conference on Computer Vision, vol. 1, 2006, pp. 471–483

58. H. Sekkati, A. Mitiche, Joint optical flow estimation, segmentation, and 3D interpretation
with level sets. Comput. Vis. Image Underst. 103(2), 89–100 (2006)

59. H. Sekkati, A. Mitiche, Concurrent 3D motion segmentation and 3D interpretation of temporal
sequences of monocular images. IEEE Trans. Image Process. 15(3), 641–653 (2006)

60. C. Vazquez, A. Mitiche, R. Laganiere, Joint segmentation and parametric estimation of image
motion by curve evolution and level sets. IEEE Trans. Pattern Anal. Mach. Intell. 28(5),
782–793 (2006)

61. A. Mitiche, H. Sekkati, Optical flow 3D segmentation and interpretation: A variational method
with active curve evolution and level sets. IEEE Trans. Pattern Anal. Mach. Intell. 28(11),
1818–1829 (Nov. 2006)

62. A. Mitiche, On combining stereopsis and kineopsis for space perception, in IEEE Conference
on Artificial Intelligence Applications, 1984, pp. 156–160

63. A. Mitiche, A computational approach to the fusion of stereopsis and kineopsis, in Motion
Understanding: Robot and Human Vision, ed. by W.N. Martin, J.K. Aggarwal (Kluwer Aca-
demic Publishers, Boston, 1988), pp. 81–99

64. S. Negahdaripour, C. Yu, A generalized brightness change model for computing optical flow,
in ICCV, 1993, pp. 2–11

65. M. Mattavelli, A. Nicoulin, Motion estimation relaxing the constancy brightness constraint,
in ICIP, vol. 2, 1994, pp. 770–774

66. R.P. Wildes, M.J. Amabile, A.-M. Lanzillotto, T.-S. Leu, Physically based fluid flow recovery
from image sequences, in CVPR, 1997, pp. 969–975

67. T. Corpetti, É. Mémin, P. Pérez, Dense estimation of fluid flows. IEEE Trans. Pattern Anal.
Mach. Intell. 24(3), 365–380 (2002)

68. K. Nakayama, S. Shimojo, Intermediate and higher order aspects of motion processing, in
Neural Mechanisms of Visual Perception, ed. by D.M-K. Lam, C.D. Gilbert (Portfolio Pub-
lishing Company, The Woodlands, Texas, 1989), pp. 281–296

69. D. Todorovic, A gem from the past: Pleikart Stumpf’s (1911) anticipation of the aperture
problem, reichardt detectors, and perceived motion loss at equiluminance. Perception 25(10),
1235–1242 (1996)



References 91

70. E. Hildreth, The Measurement of Visual Motion (MIT Press, Cambridge, 1983)
71. J. Kearney, W. Thompson, D. Boley, Optical flow estimation: an error analysis of gradient-

based methods with local optimization. IEEE Trans. Pattern Anal. Mach. Intell. 9(2), 229–244
(1987)

72. K. Wohn, L.S. Davis, P. Thrift, Motion estimation based on multiple local constraints and
nonlinear smoothing. Pattern Recogn. 16(6), 563–570 (1983)

73. V. Markandey, B. Flinchbaugh, Multispectral constraints for optical flow computation, in
International Conference on Computer Vision, 1990, pp. 38–41

74. A. Mitiche, Y.F. Wang, J.K. Aggarwal, Experiments in computing optical flow with the
gradient-based, multiconstraint method. Pattern Recogn. 20(2), 173–179 (1987)

75. O. Tretiak, L. Pastor, Velocity estimation from image sequences with second order differential
operators, in International Conference on Pattern Recognition and Image Processing, 1984,
pp. 16–19

76. A. Verri, F. Girosi, V. Torre, Differential techniques for optical flow. J. Opt. Soc. Am. A 7,
912–922 (May 1990)

77. M. Campani, A. Verri, “Computing optical flow from an overconstrained system of linear
algebraic equations, in International Conference on Computer Vision, 1990, pp. 22–26

78. M. Tistarelli, Computation of coherent optical flow by using multiple constraints, in Interna-
tional Conference on Computer Vision, 1995, pp. 263–268

79. R. Woodham, Multiple light source optical flow, in International Conference on Computer
Vision, 1990, pp. 42–46

80. S. Baker, I. Matthews, Lucas-kanade 20 years on: a unifying framework. Int. J. Comput.
Vision 56(3), 221–255 (2004)

81. G. Dahlquist, A. Bjork, Numerical Methods (Prentice Hall, Englewood Cliffs, 1974)
82. P. Ciarlet, Introduction à l’analyse numérique matricielle et à l’optimisation, 5th edn. (Mas-

son, Paris, 1994)
83. J. Stoer, P. Burlisch, Introduction to Numerical Methods, 2nd edn. (Springer, New York, 1993)
84. R. Feghali, A. Mitiche, Fast computation of a boundary preserving estimate of optical flow.

SME Vision Q. 17(3), 1–4 (2001)
85. L. Yuan, J. Li, B. Zhu, Y. Qian, A discontinuity-preserving optical flow algorithm, in IEEE

International Symposium on Systems and Control in Aerospace and Aeronautics, 2006, pp.
450–455

86. W. Enkelmann, K. Kories, H.-H. Nagel, G. Zimmermann, An experimental investigation of
estimation approaches for optical flow fields, in Motion Understanding: Robot and Human
Vision, ed. by W.N. Martin, J.K. Aggarwal, (Chapter 6), (Kluwer Academic Publications,
Boston, 1988), pp. 189–226

87. L. Álvarez, J. Weickert, J. Sánchez, Reliable estimation of dense optical flow fields with large
displacements. Int. J. Comput. Vision 39(1), 41–56 (2000)

88. S. Solimini, J.M. Morel, Variational Methods in Image Segmentation (Springer, New York,
2003)

89. S. Zhu, A. Yuille, Region competition: Unifying snakes, region growing, and bayes/mdl for
multiband image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 118(9), 884–900
(1996)

90. T. Brox, B. Rosenhahn, D. Cremers, H.-P. Seidel, High accuracy optical flow serves 3- D
pose tracking: Exploiting contour and flow based constraints, in European Conference on
Computer Vision, 2006, pp. 98–111

91. C. Zach, T. Pock, H. Bischof, A duality based approach for realtime tv-l1 optical flow, in
DAGM, 2007, pp. 214–223

92. A. Wedel, T. Pock, C. Zach, H. Bischof, D. Cremers, An improved algorithm for tv-l1 optical
flow, in Statistical and Geometrical Approaches to Visual Motion Analysis, ed. by D. Cremers,
B. Rosenhahn, A. Yuille, F. Schmidt. ser. Lecture Notes in Computer Science, (Springer,
Heidelberg, 2009), pp. 23–45

93. A. Foi, M. Trimeche, V. Katkovnik, K. Egiazarian, Practical poissonian-gaussian noise mod-
eling and fitting for single-image raw-data. IEEE Trans. Image Process. 17(10), 1737–1754
(2008)



92 3 Optical Flow Estimation

94. J. Bergen, P. Anandan, K. Hanna, R. Hingorani, Hierarchical model-based motion estimation,
in European Conference on Computer Vision, 1992, pp. 237–252

95. É. Mémin, P. Pérez, Dense estimation and object-based segmentation of the optical flow with
robust techniques. IEEE Trans. Image Process. 7(5), 703–719 (1998)

96. P. Burt, E. Adelson, The Laplacian pyramid as a compact image code. IEEE Trans. Commun.
31(4), 532–540 (April 1983)

97. F. Heitz, P. Perez, P. Bouthemy, Multiscale minimization of global energy functions in some
visual recovery problems. CVGIP: Image Underst. 59(1), 125–134 (1994)

98. C. Cassisa, V. Prinet, L. Shao, S. Simoens, C.-L. Liu, Optical flow robust estimation in a
hybrid multi-resolution mrf framework, in IEEE Acoustics, Speech, and, Signal Processing,
2008, pp. 793–796

99. W. Hackbusch, U.Trottenberg (eds.), Multigrid Methods. Lecture Notes in Mathematics, vol.
960, (Springer, New York, 1982)

100. W.L. Briggs, A Multigrid Tutorial (SIAM, Philadelphia, 1987)
101. M. Chang, A. Tekalp, M. Sezan, Simultaneous motion estimation and segmentation. IEEE

Trans. Image Process. 6(9), 1326–1333 (1997)
102. D. Cremers, A. Yuille, A generative model based approach to motion segmentation, in German

Conference on Pattern Recognition (DAGM), (Magdeburg, Sept 2003), pp. 313–320
103. D. Cremers, S. Soatto, Variational space-time motion segmentation, in International Confer-

ence on Computer Vision, vol 2 (Nice, France, 2003), pp. 886–892
104. R.A. Horn, C.R. Johnson, Matrix Analysis (Cambridge University Press, Cambridge, 1985)
105. J.A. Sethian, Level Set Methods and Fast Marching Methods (Cambridge University Press,

Cambridge, 1999)
106. G. Aubert, M. Barlaud, O. Faugeras, S. Jehan-Besson, Image segmentation using active con-

tours: calculus of variations or shape gradients? SIAM J. Appl. Math. 63(6), 2128–2154
(2003)

107. H.-K. Zhao, T. Chan, B. Merriman, S. Osher, A variational level set approach to multiphase
motion. J. Comput. Phys. 127(1), 179–195 (1996)

108. N. Paragios, R. Deriche, Coupled geodesic active regions for image segmentation: A level set
approach, in Europeean Conference on Computer vision, (Dublin, Ireland, June 2000), pp.
224–240

109. C. Samson, L. Blanc-Feraud, G. Aubert, J. Zerubia, A level set model for image classification.
Int. J. Comput. Vision 40(3), 187–197 (2000)

110. C. Vazquez, A. Mitiche, I. Ben Ayed, Image segmentation as regularized clustering: A fully
global curve evolution method, in International Conference on Image Processing, 2004, pp.
3467–3470

111. T. Brox, J. Weickert, Level set segmentation with multiple regions. IEEE Trans. Image Process.
15(10), 3213–3218 (2006)

112. L. Vese, T. Chan, A multiphase level set framework for image segmentation using the Mumford
and Shah model. Int. J. Comput. Vision 50(3), 271–293 (2002)

113. A. Mansouri, A. Mitiche, C. Vazquez, Multiregion competition: a level set extension of region
competition to multiple region partioning. Comput. Vis. Image Underst. 101(3), 137–150
(2006)

114. I. Ben Ayed, A. Mitiche, Z. Belhadj, Polarimetric image segmentation via maximum likelihood
approximation and efficient multiphase level sets. IEEE Trans. Pattern Anal. Mach. Intell.
28(9), 1493–1500 (2006)

115. I. Ben Ayed, A. Mitiche, A partition constrained minimization scheme for efficient multiphase
level set image segmentation, in International Conference on Image Processing, 2006, pp.
1641–1644

116. I. Ben Ayed, A. Mitiche, A region merging prior for variational level set image segmentation.
IEEE Trans. Image Process. 17(12), 2301–2313 (2008)

117. T. Kadir, M. Brady, Unsupervised non-parametric region segmentation using level sets, in
International Conference on Computer Vision, 2003, pp. 1267–1274



References 93

118. A. Tamtaoui, C. Labit, Constrained disparity and motion estimators for 3DTV image sequence
coding. Signal Proces.: Image Commun. 4(1), 45–54 (1991)

119. J. Liu, R. Skerjanc, Stereo and motion correspondence in a sequence of stereo images. Signal
Process.: Image Commun. 5(4), 305–318 (October 1993)

120. Y. Altunbasak, A. Tekalp, G. Bozdagi, Simultaneous motion-disparity estimation and segmen-
tation from stereo, in IEEE International Conference on Image Processing, vol. III, 1994, pp.
73–77

121. R. Laganière, Analyse stéreocinétique d’une séquence d’images: Estimation des champs de
mouvement et de disparité, Ph.D. dissertation, Institut national de la recherche scientifique,
INRS-EMT, 1995

122. I. Patras, N. Alvertos, G. Tziritas, Joint disparity and motion field estimation in stereoscopic
image sequences, in IAPR International Conference on Pattern Recognition, vol. I, 1996, pp.
359–363

123. H. Weiler, A. Mitiche, A. Mansouri, Boundary preserving joint estimation of optical flow and
disparity in a sequence of stereoscopic images, in International Conference on Visualization,
Imaging, and Image Processing, 2003, pp. 102–106

124. A. Wedel, T. Brox, T. Vaudrey, C. Rabe, U. Franke, D. Cremers, Stereoscopic scene flow
computation for 3D motion understanding. Int. J. Comput. Vision 95(1), 29–51 (2011)

125. L. Robert, R. Deriche, Dense depth map reconstruction: A minimization and regularization
approach which preserves discontinuities, in European Conference on Computer Vision, 1996,
pp. I:439–451

126. O. Faugeras, R. Keriven, Variational principles, surface evolution, PDEs, level set methods,
and the stereo problem. IEEE Trans. Image Process. 7(3), 336–344 (1998)

127. H. Zimmer, A. Bruhn, L. Valgaerts, M. Breuß, J. Weickert, B. Rosenhahn, H.-P. Seidel, PDE-
based anisotropic disparity-driven stereo vision, in Vision Modeling and Visualization, 2008,
pp. 263–272

128. C. Wohler, 3D Computer Vision: Efficient Methods and Applications (Springer, Berlin, 2009)
129. C. Liu, Beyond pixels: Exploring new representations and applications for motion analysis,

in Ph.D. Thesis, MIT, May 2009


	3 Optical Flow Estimation
	3.1 Introduction
	3.2 The Optical Flow Constraint 
	3.3 The Lucas-Kanade Algorithm
	3.4 The Horn and Schunck Algorithm
	3.4.1 Discretization
	3.4.2 Gauss-Seidel and Jacobi Iterations
	3.4.3 Evaluation of Derivatives
	3.4.4 Ad hoc Variations to Preserve Motion Boundaries

	3.5 Deriche--Aubert--Kornprobst Method 
	3.6 Image-Guided Regularization
	3.6.1 The Oriented-Smoothness Constraint
	3.6.2 Selective Image Diffusion

	3.7 Minimum Description Length
	3.8 Parametric Estimation
	3.9 Variations on the Data and Smoothness Terms
	3.10 Multiresolution and Multigrid Processing
	3.10.1 Multiresolution Processing
	3.10.2 Multigrid Computation

	3.11 Joint Estimation and Segmentation 
	3.12 Joint Optical Flow and Disparity Estimation
	3.13 State-of-the-Art
	References


