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Chapter 1
Image Motion Processing in Visual Function

Retinal motion comes about whenever we move or look at moving objects. Small
involuntary retinal movements take place even when we fixate on a stationary target.
Processing of this ever-present image motion plays several fundamental functional
roles in human vision. In machine vision as well, image motion processing by com-
puter vision algorithms has in many useful applications several essential functions
reminiscent of the processing by the human visual system. As the following discus-
sion sets to point out, computer vision modelling of motion has addressed problems
similar to some that have arisen in human vision research, including those concerning
the earliest fundamental questions and explanations put forth by Helmholtz and by
Gibson about human motion perception. However, computer vision motion models
have evolved independently of human perception concerns and specificities, much
like the camera has evolved independently of the understanding of the human eye
biology and function [1].

1.1 Image Motion in Visual Function

The most obvious role of image motion processing by the human visual system
is to perceive the motion of real objects. The scope and quality of this perception
varies widely according to the visual task performed, ranging from detection where
moving versus static labelling of objects in the visual field is sufficient, to event
interpretation where a characterization of motion by more detailed evaluation or
attributes is required.

Less evident a role is the perception of depth. Computational and experimental
investigations have revealed the link between the image motion and the variables of
depth and three-dimensional (3D) motion. To emphasize this role of image motion,
Nakayama and Loomis [2] named kineopsis, by analogy to stereopsis, the process
of recovering depth and 3D motion from image motion.

A. Mitiche and J. K. Aggarwal, Computer Vision Analysis of Image Motion by Variational 1
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2 1 Image Motion Processing in Visual Function

Kineopsis: The role of motion in the perception of depth, and structure thereof, has
been known for a long time. In the words of Helmholtz for instance ([3], pp. 297),
over a hundred years ago in his Handbook of Physiological Optics, 1910:

“If anybody with two good eyes will close one of them and look at unfamiliar objects of
irregular form, he will be apt to get a wrong, or at any rate an unreliable, idea of their shape.
But the instant he moves about, he will begin to have the correct apperceptions.”

He adds the following explanation as to the origin of this perception of environ-
mental structure, or apperception as he called it:

“In the variations of the retinal image, which are the results of movements, the only way an
apperception of differences of distance is obtained is by comparing the instantaneous image
with the previous images in the eye that are retained in memory.”

This is the first recorded enunciation of structure-from-motion, tying the percep-
tion of structure to image brightness variations. By distinguishing geometry from
photometry, Gibson elaborated on this Helmholtz view of structure-from-motion
and stated in his book The Perception of the Visual World, 1950, that image motion
was the actual stimulus for the perception of structure, rather than image variations
as Helmholtz conjectured. He was quite explicit about it when he wrote ([4], pp.119):

“When it is so considered, as a projection of the terrain or as the projection of an array of
slanted surfaces, the retinal image is not a picture of objects but a complex of variations. If the
relative motion is analyzed out and isolated from the complex of other variations, it proves
to be a lawful and regular phenomenon. Defined as a gradient of motion, it is potentially
a stimulus correlate for an experience of continuous distance on a surface, as we shall see,
and one no longer is required to postulate a process of unconscious inference about isolated
objects.”

By gradient of motion Gibson meant not the spatial or temporal variations of
image motion but the image motion field itself, or optical flow, stating, when he
discussed the example of the motion field on the retina of a flier landing on a runway
([4], pp. 128), that:

“The gradients of motion are approximately represented by a set of vectors indicating direc-
tion and rate at various points. All velocities vanish at the horizon”.

The veracity of Gibson’s statement that image motion is the stimulus for the per-
ception of structure is not so much surprising when we observe that the perception
of the structure of a surface in motion does not change for different texture cover-
ings of this surface. There have been several experiments designed to demonstrate
unequivocally this perception of structure-from-motion, first the landmark kinetic
depth effect experiment of Wallach and O’Connell [5] which used the shadow of a
tilted rod projected on a translucent screen which viewers observed from the back.
It was also demonstrated by Gibson et al. [6] who used a texture of paint splashed
on two lined-up parallel transparent screens the shadows of which were presented
to viewers on a frontal translucent screen. The most striking demonstrations are per-
haps the experiments of Ullman [7] and of Rogers and Graham [8] with random
dot distributions. Random dots constitute stimuli void of any texture or geometric
arrangement. Rogers and Graham’s demonstration [8] is to some extent a mechan-
ical counterpart of Ullman’s experiment with computer-generated random dots on
rotating cylinders [7]. Ullman presented viewers with the orthographic projection
on a computer screen of about a hundred points on each of two imaginary coaxial
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Fig. 1.1 Ullman’s rotating cylinders setup simulated by a computer program: Viewers were shown
the orthographic projection on a computer screen of a set of about a hundred random points on each
of two coaxial cylinders of different radii. The cylinders outline was not included in the display
so that they were imaginary to the viewers and, therefore, contributed no clue to the perception.
Looking at the random dots image on the screen when the cylinders were not moving afforded no
perception of depth. But when the cylinders were made to move, by a computer program, observers
reported the vivid perception of two rotating coaxial cylinders and were also able to give a good
estimate of the amount of rotation

cylinders of different radii (Fig. 1.1). The cylinders were imaginary in the sense that
their outline was not presented in the display so as not to offer viewers a cue to the
perception of structure. Looking at the image on the screen of the random dots on
static cylinders afforded no perception of depth. But when the cylinders were made
to move, by a computer program, observers reported perceiving vividly two rotating
coaxial cylinders and could also estimate the amount of rotation.

The view of Helmholtz on the role of image variations in the perception of struc-
ture, which we quoted previously, is quite general but otherwise correct, because the
link between image variations and image motion is lawful, to employ this expression
often used by Gibson to mean a relation which can be formally specified by governing
laws. Horn and Schunck provided us with such a law [9] in the form of a relation, or
equation, deduced from the assumption that the image sensed from a given point of
a surface in space remains unchanged when the surface moves. The equation, which
we will investigate thoroughly in Chap. 3 and use repeatedly in the other chapters, is
called the optical flow constraint, or the Horn and Schunck equation:

Ix u + Iyv + It = 0, (1.1)

where Ix , Iy, It are the image spatiotemporal derivatives, t being the time and x, y

the image spatial coordinates, and (u, v) = ( dx
dt ,

dy
dt ) is the optical flow vector. The

equation is written for every point of the image positional array.
As to the link between image motion and environmental motion and structure,

one can get a law, or equation, by drawing a viewing system configuration model,
projecting points in three-dimensional space onto the imaging surface, and taking
the time derivative of the projected points coordinates. Under a Cartesian reference

http://dx.doi.org/10.1007/978-3-319-00711-3_3
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system and a central projection model of imaging (to be detailed in Chap. 6), one can
immediately get equations connecting optical flow to 3D motion and depth:

u = f
U − xW

Z

v = f
V − yW

Z
,

(1.2)

where X,Y, Z are the 3D coordinates, Z being the depth, and U = d X
dt , V =

dY
dt ,W = d Z

dt are the corresponding coordinates of the 3D motion vector, called
the scene flow vector, and f is a constant representing the focal length of imag-
ing. The equation applies to every point on the visible environmental surfaces. The
viewing system configuration model, and Eq. (1.2), as well as other equations which
follow from it, will be the subject of Chap. 6. We will nonetheless mention now the
special but prevailing case of rigid 3D motion, i.e., compositions of 3D translations
and rotations. When we express 3D velocity (U, V,W ) as coming from rigid body
motion, then we have the Longuet-Higgins and Prazdny model equations [10]:

u = − xy

f
ω1 + f 2 + x2

f
ω2 − yω3 + f τ1 − xτ3

Z

v = − f 2 + y2

f
ω1 + xy

f
ω2 + xω3 + f τ2 − yτ3

Z
,

(1.3)

where τ1, τ2, τ3 are the coordinates of the translational component of the rigid motion
and ω1, ω2, ω3 those of the rotational component.

Equations 1.2 and 1.3 reveal an important basic fact: image motion codes depth
and 3D motion simultaneously, legitimizing the definition of kineopsis as the process
by which depth and 3D motion are recovered from image motion. However, depth
can evidently be eliminated from Eqs. (1.2) and (1.3) to obtain an equation which
references 3D motion only. Such computational manipulations will be studied in
Chap. 6.

Studies of kineopsis have generally distinguished ego-motion in a static environ-
ment, which is the motion of an observer, or a viewing system, from object motion.
From a general point of view, kineopsis applies to ego-motion and, as such, image
motion from ego-motion in a static environment instructs the observer about its
position and motion relative to the surrounding objects. When compared to object
motion, the particularity of ego-motion is that it causes image motion everywhere
on the image domain whereas object motion induces it only over the extent of the
object image. As a result, it provides global information about the observer motion,
such as the direction of heading. In machine vision, camera motion is represented
by a rigid motion, the parameters of which are, therefore, also global parameters of
image motion.

It is apparent from our discussion of kineopsis that image motion processing by
computational systems, mainly investigated in computer vision, and by the human
visual system, investigated in fields such as psychology, psychophysics, and neu-

http://dx.doi.org/10.1007/978-3-319-00711-3_6
http://dx.doi.org/10.1007/978-3-319-00711-3_6
http://dx.doi.org/10.1007/978-3-319-00711-3_6
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rophysiology, play similar roles, although the tools of investigation and analysis to
determine and characterize these roles may be quite different. Other important roles
include:

Image segmentation: Motion-based image segmentation is a natural, effortless rou-
tine activity of humans which allows them to interpret their environment in terms of
moving objects and to distinguish one motion from another. In machine vision as well,
computational methods have been devised which can be very effective at partitioning
an image into different motion regions. In general, computational schemes imple-
ment some form of the Gestalt principle of common fate by assuming that the image
velocities of points on a moving object are similar and smoothly varying except at
occlusion boundaries where sharp discontinuities occur. Motion-based segmentation
generally aims at image domain partitioning into distinctly moving objects in space
but its scope can reduce to the simpler but nevertheless important case of motion
detection, which aims at identifying the foreground of moving objects against the
background of the unmoving objects without concern about distinguishing between
different motions.

Tracking: Image motion processing can assist tracking, the process of following
the image of a moving object as it progresses through the visual field. Oculomotor
pursuit in the human visual system is driven by velocity information and can adapt to
target behaviour. For instance, constant velocity target motion triggers saccadic eye
pursuit and accelerated motion is followed by smooth eye movement. In computer
vision, target tracking is an essential component of systems in applications such as
visual surveillance and monitoring.

Pattern vision and perception: Motion affects pattern vision and perception. For
instance, pattern motion can enhance the vision of low spatial frequencies by the
human eye and can degrade the vision of high frequencies. In computer vision,
patterns of object motion can map to distinctive patterns of velocity which, therefore,
can serve to interpret objects dynamic behaviour.

1.2 Computer Vision Applications

Image motion processing plays an essential role in many computer vision applica-
tions. Here following are a few of its current important uses.

Robotics: A major goal of robotics is to give camera-equipped mobile robots the abil-
ity to use vision processing to navigate autonomously in their environment [11–13].
Image motion analysis can be used to address problems such as robot positioning
and guidance, obstacle avoidance, and tracking of moving objects. Visual servoing
[14–16] is also of great interest in robotics. Its purpose is to bring a robot to a position
where the sensed image agrees with a desired visual pattern. This movement control,
which uses visual feedback, can assist an autonomously moving robot in keeping its
course on a target in its visual field, or using an end-effector to manipulate an object.
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Human activity analysis [17–19]: The characterization and recognition of patterns
in human motion are the focus of scientific investigations in several applications.
In biomedical imaging, for instance, gait kinematic measurement patterns can serve
knee pathology diagnosis and re-education prescription. Other examples include
the study of lip movements or hand gestures for visual communication, and human
motion capture for computer animation. There is also a considerable interest in visual
monitoring applications such as surveillance [20]. Tasks which visual surveillance
systems take up include traffic survey, control of access to secured sites, and mon-
itoring of human activity. These tasks require motion detection and some form of
motion estimation and tracking.

Video compression [21]: Video data compression is indispensable in digital video
services such as telecommunications, broadcasting, and consumer electronics,
because enormous amounts of data are continually produced that must be processed
and transmitted with imperceptible delay. Current standards of video transmission
apply motion compensation, whereby image motion is used to predict and code the
temporal progression of an image.

Video description: Video archiving is essential in many applications, in surveillance,
for instance, also in television broadcasting, meteorology, and medical imaging, and
archives are regularly accessed for decision making or simply to view a particular
video segment. The exceedingly large and continually growing size of the archives
precludes manual annotation to describe the video. It requires, instead, automatic
means of describing and indexing the archives contents. By definition, motion is a
fundamental dimension of video, which, therefore, can be used to extract descriptions
which are characteristic of contents [22–25].

1.3 Variational Processing of Image Motion

The subject of this book is image motion processing by variational methods. Vari-
ational methods, rooted in physics and mechanics, but appearing in many other
domains, such as statistics and control, address a problem from an optimization
standpoint, i.e., they formulate it as the optimization of an objective function or func-
tional. The methods of image motion analysis we describe in this book use calculus
of variations to minimize (or maximize) an objective functional which transcribes
all of the constraints that characterize the desired solution. For instance, optical flow
estimation by the Horn and Schunck method [9] for an image sequence of domainΩ ,
I : (x, y, t) ∈ Ω×]0, T [�→ I (x, y, t) ∈ R+, where x, y are the spatial coordinates
and t designates time, minimizes the following functional:

E (u, v) =
∫
�

(Ix u + Iyv + It )
2dxdy + λ

∫
�

(‖∇u‖2 + ‖∇v‖2)dxdy (1.4)
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where Ix , Iy, It are the image spatiotemporal derivatives, ∇u,∇v are the spatial
gradients of optical flow and λ is a constant factor to weigh the contribution of the
two terms of the functional. The first integral is a data term which evaluates the
conformity of the motion field to the image spatiotemporal data. The other integral
is a regularization term to bias the solution toward smooth motion fields. Data and
smoothness terms are typical of the functionals we will investigate in this book.
Using the calculus of variations [26], the minimization of Eq. (1.4), i.e, a solution of
arg minu,v E (u, v), can be obtained by solving the Euler-Lagrange equations corre-
sponding to the functional, a topic we will address in Chap. 3.

The Horn and Schunck functional refers to the image domainΩ without attempt-
ing to divide it into specific subdomains characterized by specific descriptions.
However, image motion analysis often brings in image segmentation naturally. For
instance, motion detection is, by definition, the process of dividing the image domain
into a foreground of moving objects and its complement, called the background, and
three-dimensional interpretation of an image sequence requires segmenting in the
image sequence the distinctly moving objects in space. For image motion analysis
problems which involve also image segmentation, the use of closed regular plane
curves to represent the segmentation boundaries is quite natural and useful. For
example, if optical flow W = (u, v) were estimated beforehand, motion detection
can use the following functional:

E (γ ) =
∫

Rc
γ

‖W‖dxdy + λ
∫

Rγ
dxdy +

∫
γ

ds, (1.5)

where γ is a closed regular plane curve which partitions the image domain Ω into
two regions, Rγ , the interior of γ , to represent the foreground of moving objects,
and its complement Rc

γ . Curve γ is the single variable to determine. The first two
integrals are data terms. They assume, as explained in Chap. 4, that ‖W‖ ≥ λ for
moving objects, i.e., they transcribe a thresholding scheme in the formulation. The
last integral biases the solution toward smooth curves. Motion detection will seek the
best partition, i.e., a curve that minimizes the functional. As a result, such a functional
is called an active curve functional because the minimization equation with respect
to γ is a curve evolution equation.

This book is organized according to the four core subjects of motion analysis:
Motion estimation, detection, tracking, and three-dimensional interpretation. Each
topic is covered in a dedicated chapter. The presentation is prefaced by Chap. 2 which
gives brief descriptions and basic formulas related to curvature, Euler-Lagrange equa-
tions, unconstrained descent optimization, and level sets, all fundamental subjects or
tools which the variational image motion processing methods in the book repeatedly
use.

Chapter 3 covers image motion estimation, a topic that has been the focus of a
considerable number of studies in computer vision. The purpose of this chapter is not
to survey the vast literature but rather to offer a presentation of a few methods that
would uncover, and explain to a certain extent, the fundamental concepts underlying

http://dx.doi.org/10.1007/978-3-319-00711-3_3
http://dx.doi.org/10.1007/978-3-319-00711-3_4
http://dx.doi.org/10.1007/978-3-319-00711-3_2
http://dx.doi.org/10.1007/978-3-319-00711-3_3
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image motion estimation by variational methods. The important concepts to expose
include the optical flow constraint and its use in data terms of image motion estimation
objective functionals; the use of the smoothness constraint in regularization terms;
distinct views of the notion of motion discontinuity preservation which lead to distinct
schemes of achieving it; the paradigm of joint motion estimation and segmentation
by parametric representation; and, finally, the notions of mutiresolution and multigrid
processing to treat large extent velocities. Processing of motion in stereoscopic image
sequences will also be brought up. This reductive, concept-oriented presentation of
image motion estimation will be complemented by a commented bibliography of
recents studies which build upon the basic formulations we discuss and explain
important computational aspects and details that are essential in any reasonable
implementation.

Figure 1.2 shows two examples of motion estimation achievable by typical current
methods. Figure 1.2a shows an image of a moving truck filmed by a stationary camera.
The difficulty with the sequence is the lack of texture on the truck image and the
relatively large image motion between successive frames of the sequence. The optical
flow field computed by joint motion segmentation and parametric estimation [27],
which accounts for these difficulties, is illustrated by the vector field superimposed
on the image. Figure 1.2b is an image from a sequence showing a curled snake
in movement. The raised head of the snake is immobile, and the rest of the body
undergoes contortions. The motion is in one direction in the upper part of the body,
in the opposite direction in the middle part, and almost stationary in the lower part,
rendering a global representation of motion difficult. The results shown are also by
joint motion segmentation and parametric estimation [27].

Motion detection by variational methods is covered in Chap. 4. Motion detection
is currently the focus of intense research, particularly in key applications such as

(a) (b)

Fig. 1.2 a An image of a moving truck taken by a fixed camera and optical velocity vectors
computed by variational joint motion estimation and segmentation; weak texture makes motion
estimation difficult. b An image of snake contortions and computed optical velocity vectors. While
the truck motion can be adequately modelled by affine motion, the contortions require an elaborate
image motion representation

http://dx.doi.org/10.1007/978-3-319-00711-3_4
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human activity analysis [17, 18, 28–32]. Its purpose being to determine the region
in an image covered by moving objects, i.e., to divide an image into a foreground
of moving objects and its complement, the use of an active curve is quite natural.
The curve can be made to move according to characteristics of image motion in
the background and foreground so as to bring it to coincide with the foreground
boundary. We will describe both region-based and boundary-based active curve
motion detection. Region-based detection uses motion information inside the moving
curve and information outside. Boundary-based methods use information gathered
along the curve, in which case the curve is called a geodesic. Most of the methods we
will discuss will be for a static viewing system but the case of a moving system will
also be considered. Figure 1.3 shows an example (from Chap. 4) of the kind of results
variational formulations can achieve. In this particular example, the moving object
(the image of the white car proceeding through the intersection) was detected by
making a geodesic curve move to adhere to its boundary using optical flow contrast
along the curve.

Chapter 5 addresses variational motion tracking, the process of following objects
through an image sequence. The chapter starts with a brief presentation of the two
major veins along which variational tracking has been investigated, namely discrete-
time dynamic systems theory and energy minimization. This is followed with an
extended review of a few current variational methods which use motion information
about the targets they track. The methods include kernel-based tracking, supported
by mean-shift optimization [33], distribution tracking [34], and temporal matching
pursuit by active curves [35–37]. Figure 1.4 shows an example of the type of results
which active contour variational methods can accomplish. In this particular instance,
the method [36, 37] used both the photometric and shape profiles of the moving
target simultaneously, which the variational formulation of tracking and the active
contour representation of the target outline easily allowed to do.

(a) (b)

Fig. 1.3 Motion detection by minimizing a functional measuring the amount of optical flow contrast
along a geodesic active curve: a The first of the two consecutive images used, and the initial curve
superimposed and, b the final position of the curve. The active curve settled on the moving object
boundary due to the strong image motion contrast along this boundary

http://dx.doi.org/10.1007/978-3-319-00711-3_4
http://dx.doi.org/10.1007/978-3-319-00711-3_5
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(18)(8)(1)

(23) (33) (40)

Fig. 1.4 Tracking of a walker in a grey scale sequence filmed by a static camera. This particular
result was obtained using an active contour variational method driven both by the intensity profile of
the walker image and the shape of its outline [36]. The shape information was used to constrain the
active contour to retain a similar shape between consecutive frames of the sequence. The objective
functional afforded a joint instantiation of the photometric and shape information to realize more
accurate tracking

(a) (b)

Fig. 1.5 Dense three-dimensional interpretation of optical flow by an active contour variational
method [41]. The camera is static. The figurine moves in a static background. a The method was
able to outline the moving figurine using 3D motion information which was concurrently recovered.
b Displays a view, from a different angle, of the depth of the figurine constructed from the scheme’s
output
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The purpose of Chap. 6 is three-dimensional interpretation of image motion,
a long-standing topic of major importance in computer vision. Most of the related
research is groundwork dealing with sparse sets of image points [38–40]. Dense varia-
tional interpretation of optical flow, which the chapter focuses on, has been the subject
of much fewer later studies. The chapter discusses methods which use pre-computed
optical flow and methods which compute and interpret it concurrently. It also dis-
tinguishes ego-motion, where only the viewing system moves, from general motion
where objects and the viewing system can move. Most of the methods described
assume rigid objects in the environment but scene flow estimation to recover the
moving surfaces relative 3D velocity field without making such a hypothesis is also
addressed. Figure 1.5 show an example of the type of results that can be obtained by
active contour variational methods. Such methods realize joint motion-based image
segmentation and 3D motion estimation [42].
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Chapter 2
Background Preliminaries

In this preliminary chapter we will give definitions, descriptions, and formulas,
concerning curvature, Euler-Lagrange equations, unconstrained descent optimiza-
tion, and level sets, all fundamental topics and tools underlying the variational meth-
ods of motion analysis described in the subsequent chapters.

2.1 Curvature

Active curve objective functionals of the type we investigate in this book often contain
a term which measures the length of a regular closed plane curve, or which integrates
a scalar function along such a curve. These terms produce curvature in the objective
functional minimization equations. In this section we review some basic facts about
curvature of plane curves.

2.1.1 Curvature of a Parametric Curve

A parametrized differentiable plane curve is a differentiable map c : J → R
2, from

an open interval J ⊂ R into R
2, i.e., a correspondence which maps each r ∈ J to

a point (x(r), y(r)) of the plane in such a way that the coordinate functions x(r)
and y(r) are differentiable. The vector c′(r) = (x ′(r), y′(r)) of first derivatives of
the coordinate functions is the tangent vector, or velocity vector, of the curve c at r .
A regular curve is a differentiable curve for which c′(r) �= 0 for all r . For r ∈ J ,
the arc length of a regular curve c from a point r0 is defined as the function:

s(r) =
∫ r

r0

‖c′(z)‖dz (2.1)
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Since c′(r) �= 0, the arc length function is differentiable and

ds

dr
(r) = ‖c′(r)‖ =

(
(x ′(r))2 + (y′(r))2

)1/2
. (2.2)

When r is itself arc length, i.e., s(r) = r , then we have ds/dr(r) = 1 and,
therefore, ‖c′(r)‖ = 1, prompting the definition: A curve c : J → R

2 is said to be
parametrized by arc length s if ‖c′(s)‖ = 1 ∀s ∈ J ,

Let c : r ∈ J → (x(r), y(r)) ∈ R
2 be a regular parametrized plane curve,

not necessarily by arc length. The parametrization defines two possible orientations
of the curve: The orientation along which the parameter grows and the opposite
orientation. Let t be the unit tangent vector of c associated with the orientation of
growing curve parameter (Fig. 2.1). We have:

t =
(

x ′(
(x ′)2 + (y′)2)1/2 ,

y′(
(x ′)2 + (y′)2)1/2

)
, (2.3)

where the prime symbol designates the derivative with respect to parameter r .
Define now the unit normal vector n by requiring the basis (t,n) to have the same

orientation as the natural basis (e1, e2) of R
2 (Fig. 2.1) and then define curvature κ

by [1]:
dt
ds
= κn, (2.4)

where s is arc length. This definition gives a sign to the curvature, i.e., it can be
positive or negative depending on the point of evaluation. This can be quickly verified
graphically by drawing a figure such as Fig. 2.1. Changing the orientation of the curve
or of R

2 will change the sign of the curvature.

Fig. 2.1 For plane curves,
curvature can be given a sign
as follows: Let t be the unit
tangent vector and define
the unit normal vector n by
requiring the basis (t,n) to
have the same orientation
as the natural basis of R

2.
Then define curvature κ by
dt/ds = κn, where s is the
arc length parameter. The sign
of the curvature changes if the
orientation of either the curve
or of the normal changes
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Derivation of the unit tangent vector, with respect to parameter r , gives:

dt
dr
=

(
−y′ x ′y′′ − y′x ′′(

(x ′)2 + (y′)2)3/2 , x ′ x ′y′′ − y′x ′′(
(x ′)2 + (y′)2)3/2

)

= x ′y′′ − y′x ′′(
(x ′)2 + (y′)2)3/2

(−y′ , x ′
)
. (2.5)

Using Eq. (2.2), noting that dr/ds is the inverse of ds/dr �= 0, i.e., dr/ds =
1/‖c′(r)‖ = (

(x ′(r))2 + (y′(r))2)−1/2
, we have:

dt
ds
= dt

dr

dr

ds
= x ′y′′ − y′x ′′(

(x ′)2 + (y′)2)3/2

(
− y′(
(x ′)2 + (y′)2)1/2 ,

x ′(
(x ′)2 + (y′)2)1/2

)

= x ′y′′ − y′x ′′(
(x ′)2 + (y′)2)3/2 n (2.6)

Comparing Eq. (2.6) to Eq. (2.4), we have the following parametrization indepen-
dent expression of curvature:

κ = x ′y′′ − y′x ′′(
(x ′)2 + (y′)2)3/2 (2.7)

2.1.2 Curvature of an Implicit Curve

Assume that the level set {(x, y)|φ(x, y) = 0} defines a differentiable parametric
curve c : r → c(r) = (x(r), y(r)). Then by the chain rule of differentiation:

d

dr
φ(c(r)) = ∇φ · v = 0, (2.8)

where v = c′ is the tangent vector of c. This shows that the gradient of φ is perpen-
dicular to the level set curve. Let n be the unit vector normal to c defined by:

n = ∇φ
‖∇φ‖ =

⎛
⎜⎝ φx(

φ2
x + φ2

y

)1/2 ,
φy(

φ2
x + φ2

y

)1/2

⎞
⎟⎠ (2.9)

Let the unit tangent vector t be defined by requiring the basis {t,n} to have the same
orientation as the natural basis {e1, e2} of R

2, we have:
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t =
⎛
⎜⎝ φy(

φ2
x + φ2

y

)1/2 ,
−φx(

φ2
x + φ2

y

)1/2

⎞
⎟⎠ , (2.10)

Curvature can then be defined by Eq. (2.4).
Let s designate arc length. Using the chain rule of differentiation we can write:

dt
ds
= ∂t
∂x

dx

ds
+ ∂t
∂y

dy

ds
. (2.11)

In this expression,
(

dx
ds ,

dy
ds

)
= t; therefore, substitution in Eq. (2.11) of expression

Eq. (2.10) of t gives:
dt
ds
= 1

‖∇φ‖
(
φy
∂t
∂x
− φx

∂t
∂y

)
. (2.12)

The partial derivative with respect to x of the first component of t evaluates as follows:

∂

∂x

⎛
⎜⎝ φy(

φ2
x + φ2

y

)1/2

⎞
⎟⎠ = φxy(

φ2
x + φ2

y

)1/2 −
φy(φxφxx + φyφxy)

(φ2
x + φ2

y)
3/2

= φxy(φ
2
x + φ2

y)− φy(φxφxx + φyφxy)

(φ2
x + φ2

y)
3/2

= φxyφ
2
x − φxφyφxx

(φ2
x + φ2

y)
3/2 (2.13)

Similarly, we determine that the partial derivative with respect to y of the first com-
ponent of t is given by:

∂

∂y

⎛
⎜⎝ φy(

φ2
x + φ2

y

)1/2

⎞
⎟⎠ = φyyφ

2
x − φxφyφxy

(φ2
x + φ2

y)
3/2 . (2.14)

Substitution of Eqs. (2.13) and (2.14) back in Eq. (2.12) gives the derivative with
respect to s of the first component of t:

dt1
ds
= − φx

‖∇φ‖
φxxφ

2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)
3/2 (2.15)

We proceed in the same manner to obtain the partial derivatives with respect to x
and y of the second component of the tangent vector t:
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∂

∂x

⎛
⎜⎝ −φx(

φ2
x + φ2

y

)1/2

⎞
⎟⎠ = φxφyφxy − φxxφ

2
y

(φ2
x + φ2

y)
3/2 (2.16)

∂

∂y

⎛
⎜⎝ −φx(

φ2
x + φ2

y

)1/2

⎞
⎟⎠ = φxφyφyy − φxyφ

2
y

(φ2
x + φ2

y)
3/2 , (2.17)

which give the derivative with respect to s of the second component of t by substi-
tution into Eq. (2.12):

dt2
ds
= − φy

‖∇φ‖
φxxφ

2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)
3/2 (2.18)

Putting together Eq. (2.15) and Eq. (2.18) gives the desired equation:

dt
ds
= −φxxφ

2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)
3/2 n (2.19)

Comparing with Eq. (2.4), we have the expression of curvature:

κ = −φxxφ
2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)
3/2 (2.20)

Curvature can also be expressed as, with our choice of n and t:

κ = −div

( ∇φ
‖∇φ‖

)
, (2.21)

which can be proved by expanding the righthand side:

− div

( ∇φ
‖∇φ‖

)
(2.22)

= − ∂

∂x

⎛
⎜⎝ φx(

φ2
x + φ2

y

)1/2

⎞
⎟⎠− ∂

∂y

⎛
⎜⎝ φy(

φ2
x + φ2

y

)1/2

⎞
⎟⎠ (2.23)

= − φxx(
φ2

x + φ2
y

)1/2 +
φx (φxφxx + φyφxy)

(φ2
x + φ2

y)
3/2 − φyy(

φ2
x + φ2

y

)1/2 +
φy(φxφxy + φyφyy)

(φ2
x + φ2

y)
3/2

(2.24)
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= −φxx (φ
2
x + φ2

y)− φx (φxφxx + φyφxy)+ φyy(φ
2
x + φ2

y)− φy(φxφxy + φyφyy)

(φ2
x + φ2

y)
3/2

(2.25)

= −φxxφ
2
y − 2φxφyφxy + φyyφ

2
x

(φ2
x + φ2

y)
3/2 , (2.26)

which is the same expression as given in Eq. (2.20).1

2.2 Euler-Lagrange Equations

The active curve objective functionals we will investigate in this book are minimized
by solving the corresponding Euler-Lagrange equations.2 Here following is a review
of the basic formulas we will be using, concerning both definite integrals and variable
domain integrals. The variable domain integrals we will treat include curve length
integrals of a closed regular plane curve, integrals of a scalar function along a closed
regular plane curve, or over a closed regular surface in R

3, as well as integrals over
bounded regions in R

2 and R
3.

2.2.1 Definite Integrals

The purpose in this section is to provide succinct derivations of the basic Euler-
Lagrange differential equations for definite integrals. We will follow the presentation
of R. Weinstock [2] which requires only basic results in vector calculus [3]. We will
first develop the Euler-Lagrange equation corresponding to an integral involving a
real function of a real variable:

E (u) =
∫ x2

x1

g(x, u, u′)dx, (2.27)

where the endpoints x1 and x2 are given real numbers; u = u(x) is a twice differen-
tiable real function; u′ = du

dx ; and g is a function twice differentiable with respect to
any of its three arguments, x, u, and u′.

Assume that there exists a twice-differentiable function u satisfying the boundary
conditions u(x1) = u1 and u(x2) = u2 and which minimizes the integral Eq. (2.27).
We want to determine the differential equation which this minimizer u must satisfy.
To do this, let η(x) be an arbitrary differentiable function which satisfies the endpoint

1 Note that we could have defined the unit normal of the implicit curve as n = −∇φ/‖∇φ‖ instead
of n = ∇φ/‖∇φ‖ as in Eq. (2.9), in which case curvature would change sign, i.e., it would have
the expression in Eq. (2.20) but without the minus sign. At the same time it would be written
κ = div (∇φ/‖∇φ‖) rather than with the minus sign as in Eq. (2.21).
2 The discussions apply as well to the maximization of similar functionals.
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conditions η(x1) = η(x2) = 0, and define the following one-parameter family of
functions U indexed by parameter ε ∈ R:

U (x, ε) = u(x)+ εη(x) (2.28)

All functions U in this family have the same endpoints as u, i.e., U (x1, ε) = u1 and
U (x2, ε) = u2 for all ε. The minimizer u is the member of the family corresponding
to ε = 0, i.e., U (x, 0) = u(x). By definition, there is a neighborhood U of u where
the integral is a minimum at u, i.e., E (u) ≤ E (y) ∀y ∈ U . We can choose ε in
a small enough interval J so that the functions so defined by Eq. (2.28) fall in this
neighborhood for all ε ∈ J . In this case the following integral function of ε:

E(ε) =
∫ x2

x1

g(x,U (x, ε),U ′(x, ε))dx, (2.29)

with

U ′ = dU

dx
= u′ + εη′, (2.30)

is minimized with respect to ε for ε = 0 and, therefore:

d E

dε
(0) = 0 (2.31)

Differentiation under the integral sign (Sect. 2.3) of Eq. (2.29) with respect to para-
meter ε gives:

d E

dε
(ε) =

∫ x2

x1

(
∂g

∂U

∂U

∂ε
+ ∂g

∂U ′
∂U ′

∂ε

)
dx

=
∫ x2

x1

(
∂g

∂U
η + ∂g

∂U ′
η′

)
dx (2.32)

The necessary condition Eq. (2.31) is then written as:

d E

dε
(0) =

∫ x2

x1

(
∂g

∂u
η + ∂g

∂u′
η′

)
dx = 0 (2.33)

Integration by parts of the second term of the integrand gives:

d E

dε
(0) =

∫ x2

x1

[
∂g

∂u
− d

dx

(
∂g

∂u′

)]
η dx = 0. (2.34)

This equation must hold for all η. Therefore, we have the Euler-Lagrange equation
which the minimizer u of E must satisfy:
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∂g

∂u
− d

dx

(
∂g

∂u′

)
= 0. (2.35)

Several Dependent Variables

When the integral involves several dependent real variables u(x), v(x), . . . ,w(x):

E (u) =
∫ x2

x1

g(x, u, v, . . . ,w, u′, v′, . . . ,w′)dx, (2.36)

similar developments yield one Euler-Lagrange equation for each dependent variable:

∂g

∂u
− d

dx

(
∂g

∂u′

)
= 0

∂g

∂v
− d

dx

(
∂g

∂v′

)
= 0 (2.37)

· · ·
∂g

∂w
− d

dx

(
∂g

∂w′

)
= 0

Several Independent Variables

In subsequent chapters, we will encounter integrals involving scalar functions of two
independent variables. Consider an integral of the form:

E (w) =
∫

R
g(x, y,w,wx ,wy)dxdy, (2.38)

where R is a bounded region of R
2 the boundary ∂R of which is a regular closed

plane curve; w = w(x, y) assumes some prescribed values at all points on ∂R; wx

and wy are the partial derivatives of w; and g is twice continuously differentiable with
respect to its arguments. To determine the differential equation which a minimizing
function w(x, y)must satisfy, we proceed at first as we did with functions of a single
real variable, namely: we consider the following family of functions indexed by real
parameter ε:

W (x, y, ε) = w(x, y)+ εη(x, y), (2.39)

where η is an arbitrary continuously differentiable real function such that η(x, y) = 0
on ∂R, so that functions W all have the same boundary values. Then we form the
integral function of ε:
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E(ε) =
∫

R
g(x, y,W (x, y, ε),Wx (x, y, ε),Wy(x, y, ε))dxdy, (2.40)

and remark that d E

dε
(0) = 0, (2.41)

which would give:

d E

dε
(0) =

∫
R

(
∂g

∂w
η + ∂g

∂wx

∂η

∂x
+ ∂g

∂wy

∂η

∂y

)
dxdy = 0. (2.42)

To continue the derivation we need to apply the Green’s theorem to the integrals
corresponding to the last two terms of the integrand. We recall the theorem in its most
usual form: Let P(x, y) and Q(x, y) be real functions with continuous first partial
derivatives in a region R of the plane bounded by a regular closed curve. Then:

∫
R

(
∂P

∂x
+ ∂Q

∂y

)
dxdy =

∫
∂R
(Pdy − Qdx). (2.43)

We will use the integration by parts expression of this theorem, obtained by setting
P = ηG and Q = ηF [2]:
∫

R

(
G
∂η

∂x
+ F

∂η

∂y

)
dxdy = −

∫
R
η

(
∂G

∂x
+ ∂F

∂y

)
dxdy +

∫
∂R
η(Gdy − Fdx).

(2.44)

In our case, G = ∂g
∂wx
; F = ∂g

∂wy
, and the second integral on the righthand side of

Eq. (2.44) is zero because η = 0 on ∂R. Applying this to Eq. (2.42) gives:
∫

R
η

[
∂g

∂w
− ∂

∂x

(
∂g

∂wx

)
− ∂

∂y

(
∂g

∂wy

)]
dxdy = 0. (2.45)

This is an equation which must be satisfied for all η, leading to the desired Euler-
Lagrange equation:

∂g

∂w
− ∂

∂x

(
∂g

∂wx

)
− ∂

∂y

(
∂g

∂wy

)
= 0. (2.46)

In the general case of more than two independent variables x, y, . . . , z, Eq. (2.46)
generalizes to:

∂g

∂w
− ∂

∂x

(
∂g

∂wx

)
− ∂

∂y

(
∂g

∂wy

)
− · · · − ∂

∂z

(
∂g

∂wz

)
= 0. (2.47)

Example: Let I : (x, y, t) ∈ Ω×]0, T [�→ I (x, y, t) ∈ R
+ be an image sequence

and consider the Horn and Schunck optical flow estimation functional:
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E (u, v) =
∫
Ω

(Ix u + Iyv + It )
2dxdy + λ

∫
Ω

(‖∇u‖2 + ‖∇v‖2)dxdy

where Ix , Iy, It are the image spatiotemporal derivatives, ∇u,∇v are the spatial
gradients of the optical flow coordinates u, v, and λ is a constant factor to weigh the
contribution of the two terms in the objective functional. There are two independent
variables, namely the image coordinates x, y and two dependent variables, namely
the functions u(x, y), v(x, y). Therefore, we will have two equations, one for u and
one for v. We apply Eq. (2.46) to each of u and v with g(x, y, u, v, ux , uy, vx , vy) =
(Ix u + Iyv + It )

2 + λ(u2
x + u2

y + v2
x + v2

y) which immediately gives:

Ix (Ix u + Iyv+ It )− λ∇2u = 0

Iy(Ix u + Iyv + It )− λ∇2v = 0,
(2.48)

where ∇2 = ∂2/∂x2 + ∂2/∂y2 is the Laplacian operator.

Functional derivative: As frequently done in the computer vision literature, we will
refer to the lefthand side of the Euler-Lagrange equation of an integral E correspond-
ing to a dependent real variable u as the functional derivative of E with respect to u,
with the notation dE

du when u is the single argument of E and ∂E
∂u when E has several

arguments.

2.2.2 Variable Domain of Integration

We will derive the functional derivative of functionals which are common in image
motion analysis and image segmentation by active contours, and which appear
throughout this book, namely integrals over regions enclosed by closed regular plane
curves and path integrals of scalar functions over such curves. We will also derive
the functional derivative for surface and volume integrals.

Region Integral of a Scalar Function

Let Rγ be the interior of a closed regular plane curve parametrized by arc length,
γ : s ∈ [0, l] → (x(s), y(s)) ∈ R. The segmentation functionals we will encounter
in this book typically contain a term of the form:

E (γ ) =
∫

Rγ
f (x, y)dxdy, (2.49)

where f is a scalar function, i.e., independent of γ . The functional depends on γ via
its domain of integration which is a function of γ .
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To determine the Euler-Lagrange equation corresponding to the minimization of
Eq. (2.49) with respect to γ (we assume that the problem is to minimize E but,
of course, the discussion applies to maximization as well), the functional is first
transformed into a simple integral as follows using Green’s theorem [3]. Let

P(x, y) = −1

2

∫ y

0
f (x, z)dz (2.50)

and
Q(x, y) = 1

2

∫ x

0
f (z, y)dz (2.51)

According to Green’s theorem we have:
∫

Rγ

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

∫
γ

Pdx + Qdy (2.52)

Since ∂Q
∂x − ∂P

∂y = f (x, y) we get:

∫
Rγ

f (x, y)dxdy =
∫
γ

Pdx + Qdy =
∫ l

0

(
Px ′ + Qy′

)
ds, (2.53)

where x ′ = dx
ds and y′ = dy

ds . Applying Eq. (2.37) to the last integral in Eq. (2.53),
i.e., using:

g(s, x, y, x ′, y′) = P(x(s), y(s))x ′(s)+ Q(x(s), y(s))y′(s), (2.54)

we get two equations, one for each component function of γ :

∂E

∂x
= ∂g

∂x
− d

ds

(
∂g

∂x ′

)
=

(
∂Q

∂x
− ∂P

∂y

)
y′ = f y′

∂E

∂y
= ∂g

∂y
− d

ds

(
∂g

∂y′

)
=

(
−∂Q

∂x
+ ∂P

∂y

)
x ′ = − f x ′. (2.55)

The Green’s theorem expression in Eq. (2.52) assumes that curve γ is oriented
counter clockwise [3]. With this orientation and since we are using the arc length
parametrization, the outward unit normal n to γ is n = (y′,−x ′). Therefore, the
functional derivatives in Eq. (2.55) can be written in vector form as:

∂E

∂γ
= f n (2.56)
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The Length Integral (Two Dimensions)

Another functional which very often appears in the motion analysis formulations in
the book is the curve length functional:

E (γ ) =
∫
γ

ds, (2.57)

which can be rewritten as: ∫ l

0

(
x ′2 + y′2

) 1
2

ds, (2.58)

Applying Eq. (2.37) using:

g(s, x, y, x ′, y′) =
((

x ′(s)
)2 + (

y′(s)
)2

) 1
2
, (2.59)

where s is the arc length parameter, gives:

∂E

∂x
= ∂g

∂x
− d

ds

(
∂g

∂x ′

)
= − d

ds

(
x ′(

(x ′)2 + (y′)2)1/2

)
= −dx ′

ds

∂E

∂y
= ∂g

∂y
− d

ds

(
∂g

∂y′

)
= − d

ds

(
y′(

(x ′)2 + (y′)2)1/2

)
= −dy′

ds
, (2.60)

where we have used the fact that when a curve c is parametrized by arc length then
‖c′‖ = 1. Equation (2.60) are written in vector form as

∂E

∂γ
= − dt

ds
, (2.61)

where t is the unit tangent vector of γ . Using the definition Eq. (2.4) of curvature and
assuming the configuration of Fig. 2.1 where the curve is oriented clockwise and the
normal outward, we have:

∂E

∂γ
= −κn, (2.62)

If we orient the curve in the opposite direction, i.e., counter clockwise, but leave
the normal pointing outward, then:

∂E

∂γ
= κn, (2.63)

where the curvature κ is still given by Eq. (2.7).
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Path Integral of a Scalar Function (Two Dimensions)

Consider the following functional:

E (γ ) =
∫
γ

hds, (2.64)

where h is a scalar function, i.e., independent of γ . For h = 1 we have the curve
length integral Eq. (2.57) as a special case. We can rewrite this functional as:

E (γ ) =
∫ l

0
h

(
(x ′)2 + (y′)2

)1/2
ds, (2.65)

Using

g(s, x, y, x ′, y′) = h(x(s), y(s))
((

x ′(s)
)2 + (

y′(s)
)2

) 1
2
, (2.66)

where s is the arc length parameter, the functional derivative of E with respect to the
component x of γ is developed as follows:

∂E

∂x
= ∂g

∂x
− d

ds

(
∂g

∂x ′

)

= hx − (∇h · t) x ′ − h
dx ′

ds
, (2.67)

where t is the unit tangent vector of γ . Similarly, we have:

∂E

∂y
= hy − (∇h · t) y′ − h

dy′

ds

In vector form, we have:

∂E

∂γ
= ∇h − (∇h · t) t − h

dt
ds

(2.68)

Since
∇h − (∇h · t) t = (∇h · n) n (2.69)

and, according to the definition of curvature, dt/ds = κn, we finally get:

∂E

∂γ
= (∇h · n − hκ)n. (2.70)

Here also the formula assumes the configuration of Fig. 2.1 where the curve is oriented
clockwise and the normal outward. If we orient the curve in the opposite direction,
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i.e., counter clockwise, but leave the normal pointing outward, then:

∂E

∂γ
= (∇h · n + hκ)n. (2.71)

Next we give generic derivations of the functional derivatives of surface integrals
of a scalar function and volume integrals of a scalar function [4]. Such integrals
appear in the objective functional Eq. (4.80) in Chap. 5.

Surface Integral of a Scalar Function

We will now develop the functional derivative of a surface integral of a scalar func-
tion [4]:

E1 (S) =
∫

S
g dσ , (2.72)

where S is a closed regular surface in R
3 and g is a scalar function independent of S.

Let (O, i, j,k) be a cartesian reference system in R
3, and φ a parameterization of S:

φ : (r, s) ∈ [0, l1]× [0, l2]→ φ(r, s) = (x (r, s), y (r, s), z (r, s)) ∈ R
3 (2.73)

Let Tr and Ts be the following vectors:

Tr = xr i+ yr j+ zr k

Ts = xs i+ ysj+ zsk,
(2.74)

where the subscripts on x, y, z indicate partial derivatives. Functional Eq. (2.72) can
be rewritten as [1, 3]:

E1 (S) =
l1∫

0

l2∫

0

g (x, y, z) ‖Tr × Ts‖ drds, (2.75)

Let L1 designate the integrand of E1:

L1 (x, y, z, xr , yr , zr , xs, ys, zs, r, s) = g ‖Tr × Ts‖ (2.76)

The functional derivatives corresponding to E1 follow from the formulas:

http://dx.doi.org/10.1007/978-3-319-00711-3_4
http://dx.doi.org/10.1007/978-3-319-00711-3_5
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∂E1

∂x
= ∂L1

∂x
− ∂

∂r

∂L1

∂xr
− ∂

∂s

∂L1

∂xs

∂E1

∂y
= ∂L1

∂y
− ∂

∂r

∂L1

∂yr
− ∂

∂s

∂L1

∂ys
(2.77)

∂E1

∂z
= ∂L1

∂z
− ∂

∂r

∂L1

∂zr
− ∂

∂s

∂L1

∂zs
.

Let n be the unit normal vector that points outwards to the exterior of S, i.e., toward the
complement of its interior RS , and let� be an orientation-preserving parametrization
so that:

n = N
‖N‖ =

Tr × Ts

‖Tr × Ts‖ , (2.78)

in which case:
L1 = g ‖Tr × Ts‖ = g ‖N‖ . (2.79)

Consider the formula of the first row of Eq. (2.77). We have the following develop-
ments:

∂L1

∂x
= gx‖N‖

∂

∂r

∂L1

∂xr
= (∇g · Tr )n · ∂N

∂xr
+ gnr · ∂N

∂xr
(2.80)

∂

∂s

∂L1

∂xs
= (∇g · Ts)n · ∂N

∂xs
+ gns · ∂N

∂xs

The other two lines of Eq. (2.77) are developed in the same manner and we get:

∂E1

∂x
= gx ‖N‖ − (∇g · Tr )

(
n · ∂N

∂xr

)
− (∇g · Ts)n · ∂N

∂xs
− g

(
∂N
∂xr
· nr + ∂N

∂xs
· ns

)

∂E1

∂y
= gy ‖N‖ − (∇g · Tr )

(
n · ∂N

∂yr

)
− (∇g · Ts) n · ∂N

∂ys
− g

(
∂N
∂yr
· nr + ∂N

∂ys
· ns

)

∂E1

∂z
= gz ‖N‖ − (∇g · Tr )

(
n · ∂N

∂zr

)
− (∇g · Ts)n · ∂N

∂zs
− g

(
∂N
∂zr
· nr + ∂N

∂zs
· ns

)

(2.81)

Since N = Tr ×Ts, we further have, looking back at the expression of Tr and Ts in
Eq. (2.74):

n · ∂N
∂xr
= n · (i× Ts) = (Ts × n) · i (2.82)

and, similarly, we have:
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n · ∂N
∂yr
= (Ts × n) · j (2.83)

n · ∂N
∂zr
= (Ts × n) · k, (2.84)

giving the vectorial equation:

⎡
⎢⎢⎢⎢⎢⎢⎣

n · ∂N
∂xr

n · ∂N
∂yr

n · ∂N
∂zr

⎤
⎥⎥⎥⎥⎥⎥⎦
= Ts × n (2.85)

Similar manipulations give:
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

n · ∂N
∂xs

n · ∂N
∂ys

n · ∂N
∂zs

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= n × Tr , (2.86)

and ⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N
∂xr
· nr

∂N
∂yr
· nr

∂N
∂zr
· nr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Ts × nr ;

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂N
∂xs
· ns

∂N
∂ys
· ns

∂N
∂zs
· ns

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= ns × Tr (2.87)

We substitute Eqs. (2.85)–(2.87) in Eq. (2.81) to get the following vectorial expres-
sion of the functional derivative of E1:

∂E1

∂x
= ‖N‖∇g − (∇g · Tr ) (Ts × n)− (∇g · Ts) (n× Tr )− g (Ts × nr + ns × Tr ) ,

(2.88)

where x = (x, y, z). This is not yet the expression we want and proceed to further
developments. We decompose ∇g in the first term of the right-hand side of equa-

tion Eq. (2.88) in the basis
(

Tr‖Tr‖ ,
Ts‖Ts‖ ,n

)
, and we express nr and ns as a linear

combination of Tr and Ts [1]:

nr = a11Tr + a12Ts

ns = a12Tr + a22Ts,
(2.89)
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which, by substitution in Eq. (2.88) gives:

∂E1

∂x
= ‖N‖ ((∇g · n)n + (∇g · tr ) tr + (∇g · ts) ts)

− (∇g · tr ) (ts × n) ‖ts‖ ‖tr‖ − (∇g · ts) (n × tr ) ‖Ts‖ ‖Tr‖
− g (a11Ts × Tr + a22Ts × Tr ) (2.90)

Using circular permutations of the identity: tr × ts = n, and the definition of the
mean curvature:

κ = 1

2
(a11 + a22), (2.91)

we finally get the desired expression of the functional derivative of the integral of a
scalar function Eq. (2.72):

∂E1

∂x
= (∇g · n + 2gκ)N (2.92)

Volume Integral of a Scalar Function

We will now develop the functional derivative of a volume integral of a scalar func-
tion [4]:

E2 (S) =
∫

VS

f dρ, (2.93)

where VS is the volume bounded by S. We will first transform E2 into a surface using
the Gauss’ divergence theorem. To do this, let F = Pi+ Qj+ Rk be the vector field
defined by:

P (x, y, z) = 1
3

x∫
0

f (λ, y, z) dλ

Q (x, y, z) = 1
3

y∫
0

f (x, λ, z) dλ

R (x, y, z) = 1
3

z∫
0

f (x, y, λ) dλ

(2.94)

Then:
divF = Px + Qy + Rz = f, (2.95)

where subscripts indicate partial derivation. Using the Gauss divergence theorem we
have [3]:
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∫
RS

f dρ =
∫

VS

divFdρ =
∫

S
F · n dσ

=
l1∫

0

l2∫

0

F · n ‖Tr × Ts‖ drds, (2.96)

where n is the outward unit normal to S. Designate by L2(r, s, x, y, z, xr , yr , zr , xs,

ys, zs) the integrand of the last integral in Eq. (2.96). Just as with E1, the functional
derivative of E2 with respect to x = (x, y, z) follows the formulas:

∂E2

∂x
= ∂L2

∂x
− ∂

∂r

∂L2

∂xr
− ∂

∂s

∂L2

∂xs

∂E2

∂y
= ∂L2

∂y
− ∂

∂r

∂L2

∂yr
− ∂

∂s

∂L2

∂ys
(2.97)

∂E2

∂z
= ∂L2

∂z
− ∂

∂r

∂L2

∂zr
− ∂

∂s

∂L2

∂zs

Developing N as:

N = Tr × Ts =
⎛
⎝ xr

yr

zr

⎞
⎠×

⎛
⎝ xs

ys

zs

⎞
⎠ =

⎛
⎝ yr zs − ys zr

−xr zs + xs zr

xr ys − xs yr

⎞
⎠ =

⎛
⎝ N1

N2
N3

⎞
⎠ , (2.98)

we find that:

∂L2

∂x
= Px N1 + Qx N2 + Rx N2

∂

∂r

∂L2

∂xr
= −Qx xr zs − Qy yr zs − Qzzr zs + Rx xr ys + Ry yr ys + Rzzr ys (2.99)

∂

∂s

∂L2

∂xs
= Qx xs zr + Qy ys zr + Qzzs zr − Rx xs yr − Ry ys yr − Rzzs yr

Using Eq. (2.98), substitution of Eq. (2.99) back in Eq. (2.97) gives:

∂E2

∂x
= Px N1 + Qy N1 + Rz N1 = f N1 (2.100)

Similar developments yield:
∂E2
∂y = f N2

∂E2
∂z = f N3,

(2.101)

and, finally, this gives the desired result:
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∂E2

∂x
= f N (2.102)

An objective functional we will study in Chap. 5 for motion tracking in the spa-
tiotemporal domain [4, 5] has the form:

E (S) =
∫

VS

f dρ +
∫

S
g dσ (2.103)

According to the formulas Eqs. (2.92) and (2.102), the Euler-Lagrange equation
corresponding to this functional is:

( f +∇g · n + 2gκ) n = 0 (2.104)

2.3 Differentiation Under the Integral Sign

In addition to having functions as arguments, the integrands of the objective func-
tionals we will study in this book can also depend on a parameter. Their minimization
with respect to the parameter uses the differentiation under the integral sign, in which
the differentiation and integration operators are interchanged, i.e., the derivative of
the integral with respect to the parameter is the integral of the integrand derivative
with respect to the parameter. In its elementary calculus version, sufficient to us, the
theorem of differentiation under the integral sign is as follows:

Let J = [a, b] be a compact interval of R and A a compact subset of R
N . Let

(α, x) → f (α, x) be a continuous real function on J × A. If f has a continuous
partial derivative ∂ f

∂α
(α, x) on J × A, then the real function:

E (α) =
∫

A
f (x, α)dx (2.105)

is C1 on J and:

dE

dα
(α) = d

dα

(∫
A

f (x, α)dx
)
=

∫
A

∂ f

∂α
(x, α)dx (2.106)

2.4 Descent Methods for Unconstrained Optimization

Descent methods, sometimes also called greedy methods, for unconstrained opti-
mization of an objective function with respect to an argument, are iterative methods
which decrease the objective function at each iteration by incremental modification
of the argument.

http://dx.doi.org/10.1007/978-3-319-00711-3_5
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2.4.1 Real Functions

Let f : x ∈ R
N → f (x) ∈ R be a C1 real function of which we want to determine an

unconstrained local minimum, assuming such a minimum exists. To do so, consider
x to be a C1 function of (algorithmic) time, x : τ ≥ 0→ x(τ ) ∈ R

N , and let g be
the composition of f and x: g(τ ) = f (x(τ )). We have

dg

dτ
= ∇ f · dx

dτ
(2.107)

Therefore, if we vary x from an initial position x0 according to the evolution equation:

dx
dτ
(τ ) = −α∇ f (x(τ )), α ∈ R

+, (2.108)

then f will always decrease because:

d f

dτ
(x(τ )) = dg

dτ
(τ ) = −α‖∇ f (x(τ ))‖2 ≤ 0, (2.109)

and will eventually reach a local minimum. More generally, if we vary x in direction
d according to:

dx
dτ
(τ ) = −α(τ)d(x(τ ))

x(0) = x0, (2.110)

where α(τ) ∈ R
+ and ∇ f · d > 0, then f will vary according to

d f

dτ
(x(τ )) = dg

dτ
(τ ) = −α(τ)∇ f (x(τ )) · d(x(τ )) ≤ 0 (2.111)

Methods of unconstrained minimization based on Eq. (2.110) are called descent
methods. When d = ∇ f is used it is the gradient, or fastest, descent. The scaling
function α is often predetermined. For instance, α(τ) = constant, or α(τ) = 1/τ .
In general, numerical descent methods are implemented as [6]:

1. k = 0; x0 = x0
2. Repeat until convergence

dk = d(xk)

αk = arg min
α≥0

f (xk − αdk)

xk+1 = xk − αkdk

k ← k + 1
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Vectorial functions F = ( f1, ..., fn)
t are processed similarly by treating each com-

ponent real function fi as described above.

2.4.2 Integral Functionals

Consider the problem of minimizing functional Eq. (2.27):

E (u) =
∫ x2

x1

g(x, u, u′)dx,

where u = u(x) and u′ is the derivative of u with respect to x . To do so, let u
vary in time, i.e., u is embedded in a one-parameter family of functions indexed by
(algorithmic) time τ , and consider the time-dependent functional:

E (u, τ ) =
∫ x2

x1

g(x, u(x, τ ), u′(x, τ ))dx . (2.112)

The derivative of E with respect to the time parameter τ develops as:

∂E

∂τ
=

∫ x2

x1

(
∂g

∂u

∂u

∂τ
+ ∂g

∂u′
∂u′

∂τ

)
dx

=
∫ x2

x1

(
∂g

∂u

∂u

∂τ
+ ∂g

∂u′
∂

∂τ

(
∂u

∂x

))
dx

=
∫ x2

x1

(
∂g

∂u

∂u

∂τ
+ ∂g

∂u′
∂

∂x

(
∂u

∂τ

))
dx

Integration by parts of the second term of the integrand yields:

∂E

∂τ
= ∂g

∂u′
∂u

∂τ

]x2

x1

+
∫ x2

x1

(
∂g

∂u
− ∂

∂x

(
∂g

∂u′

))
∂u

∂τ
dx (2.113)

Assuming the endpoint conditions

∂u

∂τ
(x1, τ ) = ∂u

∂τ
(x2, τ ) ∀τ, (2.114)

we finally obtain:
∂E

∂τ
=

∫ x2

x1

(
∂g

∂u
− ∂

∂x

(
∂g

∂u′

))
∂u

∂τ
dx (2.115)

Therefore, when u varies according to the evolution equation:
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∂u

∂τ
= −

(
∂g

∂u
− ∂

∂x

(
∂g

∂u′

))
, (2.116)

i.e.,
∂u

∂τ
= −∂E

∂u
, (2.117)

it implies that:
∂E

∂τ
= −

∫ x2

x1

(
∂g

∂u
− ∂

∂x

(
∂g

∂u′

))2

≤ 0 (2.118)

Therefore, E continually decreases and, starting from an initial approximation
u(0) = u0, u will converge to a local minimum of E , assuming such a minimum
exists. Evolution Eq. (2.116) is the fastest descent equation to minimize functional
Eq. (2.112). Functionals of several dependent variables are processed similarly.

Example: Let I : Ω ⊂ R
2 → L ⊂ R

+ be an image and γ : s ∈ [0, 1] →
(x(s), y(s)) ∈ R a closed regular plane curve. Let R1 = Rγ be the interior of γ and
R2 = Rc

γ its complement. Consider minimizing the following functional [7]:

E (γ, μ1, μ2) =
∫

R1

(I − μ1)
2 dxdy +

∫
R2

(I − μ2)
2 dxdy + λ

∫
γ

ds, (2.119)

where λ is a real constant and μ1, μ2 are real parameters. This is an image seg-
mentation functional the minimization of which will realize a piecewise constant
two-region partition of the image. The first two terms are data terms which evaluate
the deviation of the image from a constant representation by μ1 in R1 and μ2 in its
complement R2, and the length integral is a regularization term to promote shorter,
smoother curves γ . The minimization of E can be done by an iterative two-step
greedy algorithm which repeats two consecutive steps until convergence, one step
to minimize with respect to the parameters μ1 and μ2 with γ fixed, and the other
to minimize with respect to γ with μ1, μ2 fixed, i.e., assumed independent of γ .
Minimization with respect to the parameters, with γ given, is done by setting the
derivative of E with respect to each parameter to zero. The derivatives are obtained
by differentiation under the integral sign and we have:

∂E

∂μi
= ∂

∂μi

∫
Ri

(I − μi )
2 dxdy =

∫
Ri

∂

∂μi

(
(I − μi )

2
)

dxdy = 0, i = 1, 2.

(2.120)
This immediately gives μi to be the mean value of I in Ri :

μi =
∫

Ri
I (x, y) dxdy∫

Ri
dxdy

, i = 1, 2. (2.121)



2.4 Descent Methods for Unconstrained Optimization 35

The minimization of E with respect to γ assuming μ1, μ2 fixed, independent of γ
thereof, can be done by embedding γ in a one-parameter family of curves γ : s, τ ∈
[0, 1] × R

+ → γ (s, τ ) = (x(s, τ ), y(s, τ ), τ ) ∈ Ω × R
+ indexed by algorithmic

time τ and using the corresponding (Euler-Lagrange) descent equation:

∂γ

∂τ
= −∂E

∂γ
. (2.122)

Note that each of the component functions of γ satisfies the endpoint conditions
Eq. (2.114). Orienting γ counterclockwise and its unit normal n to point away from
its interior, writing the data term of R2 as

∫
Ω
(I−μ2)

2dxdy−∫
R1
(I−μ2)

2dxdy, and
using the basic formulas of Eq. (2.56) and Eq. (2.63), we obtain the partial differential
equation governing the evolution of γ in (algorithmic) time:

∂γ

∂τ
= −

(
(I − μ1)

2 − (I − μ2)
2 + λκ

)
n, (2.123)

Instead of taking μ1, μ2 fixed when deriving the minimization equation with respect
to γ , one can substitute their expression Eq. (2.121) in the functional and then derive
the equation, thereby accounting for the dependence of the parameters on γ , and
then opting for gradient descent. In this particular case of functional, however, the
terms in the calculations due to the dependence on γ cancel out and one ends up with
the same equation as when simply assuming the parameters fixed, i.e., independent
of curve variable γ . This is a general result for a dependence of parameters on γ of
the type in Eq. (2.121) [8].

In the computer vision literature a curve such as γ is called an active curve or
active contour, and a partial differential equation such as Eq. (2.122) is referred to as
its evolution equation. It moves in the direction of its normal at every one of its points
and at the speed specified by the factor multiplying n in the evolution equation.

A direct implementation of the evolution equation which would discretize the
curve and move each of its points explicitly would, in general, run into insurmountable
numerical difficulties. The level set implementation, which we take up next, is an
efficient way of realizing curve evolution without the numerical ills of the explicit
implementation.

2.5 Level Sets

The level set method [9, 10] is for problems of moving interfaces, for curves, or
surfaces in higher dimensions, that are moved by a differential equation which affects
their shape. From a general point of view, it is, therefore, about optimizing the shape
of curves and surfaces. In the problems we address, curves and surfaces are made to
move so as to adhere to the boundary of desired regions in an image. For example,
to detect moving objects in an image sequence, an active curve can be made to move
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so as to coincide with image boundaries of high image motion contrast, which is a
characteristic of moving object contours, and in motion-based image segmentation
a number of such curves can be made to evolve so as to adhere to the boundary of
distinctly moving objects in space.

For a “nice” smooth curve which keeps its shape approximately during motion, it
is natural to think of following a number of maker points on the curve, simply moving
them from their current position for a time step and then interpolating the resulting
particle positions. However, such a simple means of processing a moving curve will
generally come to unresolvable numerical ills. There are several reasons for this. The
most obvious is perhaps the fact that the evolution equation can cause a change in
the topology of the curve. For instance, the curve can split into two pieces or more.
By following the points explicitly, i.e., individually, there is no general way to detect
when this splitting occurs, in which case the curve in its constituent parts cannot
be recovered and further processing of its motion will be unstable and arbitrarily
erroneous. Similar numerical instability problems will assuredly occur when distinct
curves merge to form a single one.

Two less obvious but nevertheless serious, and common, difficulties with explicit
following of marker points on a moving curve are fans and shocks. Consider, as
illustrated in Fig. 2.2a, a curve forming a corner initially and moving “outward” in
the direction of its normal at constant speed, say at unit speed. The particles on the
horizontal side of the corner move straight up and those on the vertical side straight
to the left, all transported a unit distance away from their initial position. Between
these two sets of makers, a gap, or fan, has developed where there is no information
about the shape of the curve because there are no particles to move in that place. The
gap will widen with every move outward and the process of following the curve can
break down quickly.

(a) (b)

Fig. 2.2 Fanning and shocks cause instability when trying to follow the movement of curves via
tracking explicitly a set of markers points on them. a Fanning: A corner moving outward in the
direction of its normal at constant speed. The particles on the horizontal side of the corner move
straight up and those on the vertical side straight to the left. Between these two sets of makers, a gap,
or fan, has developed where we have no information about the actual shape of the curve. b shock:
A curve with two straight segments, one on each side of a curved portion. When the marker points
on the curved portion are moved inward, they are brought closer to each other and, with continued
inward motion, will eventually meet and create a shock
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Fig. 2.3 A closed regular
curve moving outward at
speed V in the direction of its
normal n. Both n and V are
functions of position on the
curve

Shocks can appear when a contour initially curved as a fan is moved to “retract”.
This is illustrated in Fig. 2.2b, which basically shows the fanning example of Fig. 2.2a
with time running in the opposite direction. The curve has two straight segments,
one on each side of a curved portion. The particles in this curved portion will be
brought closer to each other by inward motion and will eventually be so close as to
meet and create a shock which will occult any previous ordering of the markers and,
therefore, cause numerical griefs of various sorts.

The level set method, instead, moves active curves in a numerically stable manner.
It deals efficiently with changes in the moving curve topology and with conditions
such as fans and shocks when these occur. The basic idea is to describe the moving
curve not explicitly by markers points on it but implicitly by a level set of a surface
φ(x, y), the zero level set for instance, in which case the curve is represented for all
practical purposes by φ(x, y) = 0.

Let Γ be the set of closed regular plane curves γ : s ∈ [0, 1] → γ (s) ∈ Ω .
For the purpose of describing its motion, an active contour is represented by a one-
parameter family of curves in Γ indexed by algorithmic time t , i.e, a function γ :
s, τ ∈ [0.1]×R

+ → γ (s, τ ) = (x(s, τ ), y(s, τ ), τ )) ∈ Ω ×R
+ such that ∀τ curve

γτ : s → (x(s, τ ), y(s, τ ) is in Γ ).
Consider a curve γ ∈ Γ moving according to a velocity vector which is in the

direction of its normal at each point (Fig. 2.3):

∂γ

∂τ
= V n, (2.124)

where V is the speed of motion. In the level set method, γ is described implicitly by
the zero level set of a function φ : R2 × R

+ → R (Fig. 2.4):

∀s, τ φ(γ (s, τ )) = φ(x(s, τ ), y(s, τ ), τ ) = 0 (2.125)

With φ sufficiently smooth, taking the total derivative of Eq. (2.125) with respect to
time gives:
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∂φ

∂τ
= ∇φ · ∂γ

∂τ
+ ∂φ
∂τ
= 0 (2.126)

Using Eq. (2.124), we get:
∂φ

∂τ
= −V∇φ · n (2.127)

With the convention that n is oriented outward and φ is positive inside its zero level
set, negative outside, the normal n is given by:

n = − ∇φ‖∇φ‖ , (2.128)

and substitution of Eq. (2.128) in Eq. (2.127) yields the evolution equation of φ:

∂φ

∂τ
= V ‖∇φ‖ (2.129)

The analysis above applies to points on the level set zero of φ. Therefore, one
must define extension velocities [10] to evolve the level set function elsewhere. Sev-
eral possibilities have been envisaged. For instance, the extension velocity at a point
has been taken to be the velocity of the evolving curve point closest to it. Extension
velocities have also been defined so that the level set function is at all times the dis-
tance function from the evolving curve. In image segmentation and motion analysis
problems, of the sort we have in this book, such extension velocities may not be
easily implemented. When an expression of velocity is valid for all level sets, which
is the case in just about all the active curve motion analysis methods in this book,
then one can simply use this expression in all of the image domain, i.e., to evolve φ
everywhere on its definition domain.

Regardless of what the extension velocities are chosen to be, the computational
burden can be significantly lightened by restricting processing to a band around the
active contour [10], a scheme called narrow banding.

By definition, an active curve γ can be recovered any time as the zero level set of
its level set function φ and this is regardless of variations in its topology. The level
set function always remains a function (Fig. 2.4), thereby assuring continued stable
processing; stable processing is preserved also in the presence of fans and socks. In
motion analysis problems which include motion-based image segmentation, and we
will address some in this book, another advantage of the level set implementation
is that region membership of points, i.e., the information as to which motion region
they belong, is readily available from the sign of the level set functions.

There are several articles and books on the subject of level sets. The book of
Sethian [10] is about efficient and numerically stable implementation of the level
method, with examples from different domains of applications, including image
analysis.

The velocities we will encounter in the forthcoming chapters of this book have
components of one of three distinct types:
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Type 1: V is a function of the curvature of the evolving curve. The component λκ
in Eq. (2.123) is of this type.

Type 2: V is of the form F · n where F is a vector field dependent on position and
possibly time but not on the curve. The term ∇h · n in Eq. (2.70), would it
appear in a curve evolution equation, would be of this type. Such terms are
called advection speeds in [10].

Type 3: V is a scalar function which depends on position and time but is not of
the other two types. The velocity component

(
(I − μ1)

2 − (I − μ2)
2
)

in
Eq. (2.123), corresponding to the objective functional data terms, is of this
type.

Velocities of the types 1, 2, and 3 are discretized differently as summarized
below [10]. The velocity of a curve evolution in motion analysis is, in general, a
linear combination of velocities of the three types. The discretization of Eq. (2.129)
can be written in the following manner:

φk+1
i j = φk

i j +�t

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

+V k
i j

(
(D0x

i j )
2 + (D0y

i j )
2
) 1

2
for type 1

−
(

max(Fk
1i j , 0)D−x

i j +min(Fk
1i j , 0)D+x

i j

+ max(Fk
2i j , 0)D−y

i j +min(Fk
2i j , 0)D+y

i j

)
⎤
⎦ for type 2

−
(

max(V k
i j , 0)∇+ +min(V k

i j , 0)∇−
)

for type 3

(2.130)
where i, j are indices on the discretization grid ofΩ , k is the iteration index, F1, F2
are the coordinates of F appearing in the general expression of terms of type 2. Finite
difference x−derivative operators D+x (forward scheme), D−x (backward scheme),
and D0x (central scheme), are applied toφ at i, j and iteration k, i.e., D+x

i j , D−x
i j , D0x

i j

in Eq. (2.130) stand for D+x (φk)i j , D−x (φk)i j , D0x (φk)i j and are given by:

Fig. 2.4 The active curve γ is represented implicitly by the zero level of the level set function φ.
Regardless of variations in the topology of γ , φ remains a function, thereby allowing stable curve
evolution, unaffected by changes in the curve topology, fanning, and shocks. In this figure, γ has
split into two component curves but φ remains a function
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D+x
i j = φk

i+1, j − φk
i j

D−x
i j = φk

i j − φk
i−1, j (2.131)

D0x
i j =

1

2
(φk

i+1, j − φk
i−1, j )

Similar formulas and comments apply to the y−derivative operators D+y, D−y, and
D0y . Finally, operators ∇+ and ∇− are defined by:

∇+ =
(

max(D−x
i j , 0)2 +min(D+x

i j , 0)2

+max(D−y
i j , 0)2 +min(D+y

i j , 0)2
) 1

2

∇− =
(

max(D+x
i j , 0)2 +min(D−x

i j , 0)2

+max(D+y
i j , 0)2 +min(D−y

i j , 0)2
) 1

2
(2.132)

The time step size�t is adjusted for the experimentation at hand; it may vary for dif-
ferent applications. As a rule of thumb, one can chose its value so that the movement
of the curve is approximately one pixel or less everywhere on the image positional
array at each iteration.
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Chapter 3
Optical Flow Estimation

3.1 Introduction

Optical flow is the velocity vector field of the projected environmental surfaces when
a viewing system moves relative to the environment. Optical flow is a long standing
subject of intensive investigation in diverse fields such as psychology, psychophysics,
and computer vision [1–9]. In computer vision, of interest to us here, optical flow
estimation has been a topic of continued interest and extensively researched. One of
the most referenced paper on the subject is Determining optical flow, 1981, by B.K.P.
Horn and B.G. Schunck [10]. It is also one of the most influential for having served
as ground or benchmark for just about every dense flow computation algorithm.
The Horn and Schunck variational formulation, which we will describe in detail
subsequently (Sect. 3.4), seeks to determine the flow which minimizes a weighted
sum of two integrals over the image domain, one to bring the flow to conform
to the image spatiotemporal variations and the other to regularize the solution by
constraining it to be smooth:

E (u, v) =
∫
Ω

(Ix u + Iyv + It )
2dxdy + λ

∫
Ω

(‖∇u‖2 + ‖∇v‖2)dxdy, (3.1)

where I : (x, y, t) ∈ Ω×]0, T [�→ I (x, y, t) ∈ R+ is the image sequence of domain
Ω and duration T , Ix , Iy, It its spatiotemporal derivatives, ∇u,∇v the spatial gra-
dients of the coordinates u, v of optical flow, and λ is a real constant to balance the
contribution of the two terms in the functional. The corresponding Euler-Lagrange
equations yield the flow via efficient implementation by Jacobi/Gauss-Seidel
iterations.

A paper published the same year as [10] by B. D. Lucas and T. Kanade [11] on
image registration and application to stereo-vision, has also been extensively refer-
enced and used for optical flow estimation. The view taken was quite different as
the scheme sought to determine the coordinate transformation between two images
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which minimized the displaced frame difference (DFD), i.e., the squared differ-
ence between one image and the other evaluated after the coordinate transformation
(displaced, or warped as it is sometimes called). If the images are I1 and I2, and
x→ f(x; θ) is a parametric coordinate transformation with parameter vector θ , the
scheme minimizes with respect to θ the objective function:

E(θ) =
∑
x∈D

(I1(f(x; θ))− I2(x))2, (3.2)

where D is a discretization of Ω . The minimization is carried out iteratively by
expanding linearly I1 at each step about the transformed coordinates of the previous
step. The displacement at each point is computed subsequently from the estimated
coordinate transformation: therefore, one of the significant conceptual differences
between the methods of [10] and [11] is that the scheme in [10] references a vector
field, i.e., a velocity vector as a variable at each point of the image domain, whereas
the unknown in [11] is a global coordinate transformation between two images.
Another difference is that the points at which there is no texture, i.e., where the
spatial gradient is zero in the transformed image, do not contribute to determining
the coordinate transformation whereas spatial regularization is a central concept in
[10] which makes every point contribute to optical flow. From a computational point
of view, the method of [11] involves a coordinate transformation and evaluation of
the transformed image via spatial interpolation, an operation which does not occur in
[10]. Often, the transformation has been applied locally in windows to allow spatial
variations of the parameter vector estimate, which would improve its accuracy, but
the window size affects the outcome which also suffers from the so-called block
effect due to the lack of spatial regularization. However, both schemes [10, 11] have
been combined in a continuous variational framework [12].

The Horn and Schunck algorithm solves a large but significantly sparse system
of linear equations, which can be done very efficiently by convergent Jacobi or
Gauss-Seidel iterations, particularly block-wise iterations [13]. A parallel hardware
version has also been implemented [14, 15]. However, the basic neighborhood oper-
ations which drive the algorithm blur the optical flow estimate at motion boundaries.
This serious problem is caused by the quadratic smoothness regularization term of
the objective functional which leads to a Laplacian operator in the Euler-Lagrange
equations. The discrete version of the operator reduces to averaging the estimate
locally, which has the undesirable effect of blurring the computed flow at motion
boundaries. Therefore, studies have subsequently considered using motion bound-
ary preserving spatial regularizations. The problem has been addressed from four
different perspectives: image driven smoothing, robust statistics, boundary length
penalties, and nonlinear diffusion.

With image driven smoothing, the view is that motion edges coincide or tend to
coincide with the image intensity edges, which would then justify that image motion
smoothing be mediated by the image gradient [16–20]. However, this may also cause
undue smoothing of motion because motion edges do not always occur at intensity
edges, although image edges generally occur at motion edges.



3.1 Introduction 43

Along the vein of robust statistics [21], motion discontinuity preservation is based
on the notion of outliers. From this viewpoint, basically, the underlying interpretation
is that the optical flow values over an image positional array satisfy the spatiotemporal
data constraint and are smoothly varying everywhere except at motion boundaries
where there are treated as outliers [22, 23]. This led to the use of robust functions
such as the L1 norm, the truncated quadratic [24], and the Lorentzian, in lieu of
the quadratic to evaluate the objective functional terms. If ρ is a robust function, a
discrete objective function one can seek to minimize is:

E(u, v) =
∑
x∈D

⎛
⎝(Ix u + Iyv + It )

2(x)+ λ
∑

y∈Nx

(ρ(u(x)− u(y))+ ρ(v(x)− v(y)))

⎞
⎠ ,

(3.3)

where Nx is a set of neighbors of x (e.g., the 4-neighborhood). Slightly more general
expressions can be adopted [22, 23, 25]. From this view of the problem, the effect
of the robust function is to reduce the influence of the outliers on the estimation of
optical flow and, therefore, provide a better definition of motion boundaries where
the outliers are anticipated.

Another view of motion boundary preservation is to reference motion edges in the
formulation and introduce a motion boundary length penalty term in the objective
functional. This has been done via a line process in Markov random field (MRF)
modelling [26]. Such a formulation, where edges are referenced by the MRF line
process, has led to applications to optical flow estimation [27–29]. The objective
function data term is still as in Eq. (3.3) and the regularization has the form:

λ
∑
x∈D

∑
y∈Nx

(
α(1− lx,y)‖W (x)−W (y)‖2 + βlx,y

)
, (3.4)

where W = (u, v), α and β are constants, and lx,y ∈ {0, 1} is the binary variable of
the MRF line process to represent the motion boundaries. Motion edges can also be
referenced in a functional with a boundary length penalty term [30, 31] as in image
segmentation [32, 33].

Finally, motion discontinuity preservation can be investigated from the perspec-
tive of nonlinear diffusion [34]. The rationale, basically, is that spatial regularization
should be selective by allowing isotropic smoothing inside motion regions where
optical flow is thought to be smooth, i.e., varies little spatially, and inhibit it across
motion boundaries [35–45]. In particular, the L1 norm regularization, also called
total variation regularization and often abbreviated TV, which has been extensively
investigated in inverse problems [46], notably image restoration [47], has been used
for continuous variational optical flow estimation in several studies [39, 42–45, 48].
To simplify the rather elaborate TV minimization algorithm, and expedite the imple-
mentation thereof, the absolute value function in TV regularization, g(z) = |z|, is
often replaced by a function of the sort g(z) = √z2 + ε2, for some small ε.



44 3 Optical Flow Estimation

In the context of nonlinear diffusion optical flow estimation, the study in [37, 38]
is singular in that it investigated regularization functions g in the functional:

E (u, v) =
∫
Ω

(Ix u + Iyv+ It )
2dxdy + λ

∫
Ω

(g(‖∇u‖)+ g(‖∇v‖))dxdy (3.5)

by analyzing conditions which impose isotropic smoothing within motion regions and
smoothing along motion boundaries but not across. The analysis leads to functions
of the sort g(s) = 2

√
(1+ s2)− 2 (Aubert), g(z) = log(1+ s2) (Perona-Malik [49,

50]), and others.
The optical flow constraint, on which most formulations of optical flow estimation

rely, refers to the image sequence temporal derivative. In practice, image motion is
often of large extent, typically causing displacements of several pixels between con-
secutive views. As a result, the image temporal derivative may not be approximated
accurately to bear on motion estimation. In such a case, motion estimation has been
addressed efficiently by multiresolution/multigrid processing [22, 51, 52]. Multires-
olution and multigrid processing are “multilevel” computations which solve a system
of equations on a given discretization grid by solving smaller similar systems on grids
at coarser discretization.

Optical flow estimation has also been cast in a framework of simultaneous motion
estimation and segmentation [31, 53–61], where the purpose is to divide the image
into regions corresponding to distinct motions. Joint estimation and segmentation
accounts for motion boundaries since those coincide with motion region boundaries.
However, the emphasis in segmentation is not necessarily on accurate motion estima-
tion because motion regions can be distinguished using simple motion models, the
piecewise constant or affine models for instance, which do not necessarily describe
the fine variations of motion that may be occurring.

Finally, it is worth mentioning that disparity estimation in binocular images resem-
bles optical flow estimation and both problems can be cast in similar variational for-
mulations. As a result, benefits can accrue from their joint estimation in stereoscopic
image sequences [62, 63].

The purpose in this chapter forthcoming sections is to provide a digest of optical
flow estimation by variational methods. We will not review the very large literature
but rather describe a number of methods that would expose the fundamental con-
cepts underlying image motion estimation by variational methods. The important
ideas presented include (i) the basic formulation of image motion estimation as the
minimization of a functional containing a data term and a regularization term; (ii) the
use of optical flow smoothness in the regularization term; (iii) the notion of a motion
boundary and definitions of it which would allow its preservation; (iv) the represen-
tation of motion by parametric functions; (v) the relationship between motion esti-
mation and motion-based segmentation; and (vi) the concepts of mutiresolution and
multigrid computation and their role in processing large-magnitude motion. Motion
in stereoscopy will also be brought up. This reductive, concept-oriented description
of image motion estimation will be enhanced by references to recent studies which
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build upon the basic formulations we will discuss and provide important computa-
tional details.

We will start the presentation with the optical flow constraint (Sect. 3.2) and imme-
diately follow with the benchmark algorithms of Lucas-Kanade (Sect. 3.3) and of
Horn and Schunck (Sect. 3.4). Motion boundary preservation will be treated next with
the scheme of Deriche, Aubert, and Kornprobst [37] (Sect. 3.5), followed by image
intensity based regularization [20] (Sect. 3.6) and the minimum description length
(MDL) [31] (Sect. 3.7) formulations. Section 3.8 will describe parametric motion
representation and computation. After a brief mention of variants of the smoothness
and regularization terms (Sect. 3.9), the chapter will continue with a discussion of
multiresolution/multigrid processing (Sect. 3.10) and a presentation of joint optical
flow estimation and segmentation [54] (Sect. 3.11). Motion estimation in stereoscopy
will be investigated in Sect. 3.12. The chapter does not provide an experimental eval-
uation or comparison of the methods but it gives examples of results. Evaluations of
methods can be found in some of the cited papers.

3.2 The Optical Flow Constraint

Let the image sequence be a C1 function I : (x, y, t) ∈ Ω×]0, T [�→ I (x, y, t) ∈
R+. Let P be a point on an environmental surface and p its image with coordinates
x(t), y(t) at instant t . As P moves in space, let the spatiotemporal trajectory of p
have the parametric representation t → c(t) = (x(t), y(t), t). Let h be the function
t → h(t) = I ◦ c(t) = I (x(t), y(t), t), where ◦ indicates function composition.
Function h is the image intensity along the motion trajectory of p. If we assume that
the intensity recorded from the environmental point P does not change as the surface
it lies on moves, i.e., if h is constant, then we have the optical flow constraint (OFC)
at p:

dh

dt
= ∂ I

∂x

dx

dt
+ ∂ I

∂y

dy

dt
+ ∂ I

∂t
= 0 (3.6)

or, using the usual subscript notation for the partial derivatives:

Ix u + Iyv + It = 0, (3.7)

where (u, v) = ( dx
dt ,

dy
dt ) is called the optical velocity vector. The field over Ω of

optical velocities is the optical flow.
The assumption that the recorded intensity is constant along motion trajectories

is valid for translating Lambertian surfaces under constant uniform lighting. It is
generally accepted that it is a good approximation for small velocity motions of
non specular surfaces occurring over a short period of time. There have been a few
attempts at determining constraints other than the invariance of image intensity along
motion trajectories [64–67] but, by and large, the Horn and Schunck OFC (or discrete
writings of it) has been the basic constraint in optical flow studies.
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Fig. 3.1 Left The projection of the optical flow vector W on the image spatial gradient ∇ I can
be estimated from the image first-order spatiotemporal variations; whenever ∇ I 	= 0 it is equal
to − It‖∇ I‖ . Right The aperture problem: the movement of a straight edge seen through an aperture
(a circular window in this figure) is ambiguous because only the component of motion in the
direction perpendicular to the edge can be determined

If the optical velocity vector is denoted by W , the OFC is written∇ I ·W + It = 0
and its projection W⊥ in the direction of the image gradient, called the normal
component, can be written:

W⊥ = ∇ I

‖∇ I‖ ·W =
−It

‖∇ I‖ . (3.8)

The spatiotemporal derivatives can be estimated from the image sequence data.
Hence, the OFC determines the component of optical flow in the direction of the
image gradient and only this component. This is a reflection of the aperture problem,
the ambiguity in interpreting the translational motion of a straight line seen through
an aperture, i.e., in the absence of any external visual cues (Fig. 3.1). The aperture
problem is responsible for illusory percepts such as rotating spirals which appear to
expand or contract and translating sine waves which appear highly non rigid [68].
The aperture problem was apprehended as early as 1911 by P. Stumpf [69] and has
been the subject of many studies in psychophysics. In computer vision, it has been
investigated in Hildreth’s computational theory of visual motion measurement [70].

Local methods have been considered to solve the aperture problem. The sim-
plest treatment assumes that optical flow is constant in the neighborhood of each
point but that the image spatiotemporal gradient is not, leading to write one OFC for
the same velocity at each point of the neighborhood [71]. Local processing of the
aperture problem has also been addressed by the multiple OFC constraints method
which assumes that there are m ≥ 2 distinct image functions I1, ..., Im satisfying
the assumption of invariance to motion and giving m independent OFC equations
to solve simultaneously. Several sources of these functions have been looked at [6]:
(a) multispectral images, i.e., signals of different wavelengths as in colour images
[72, 73], (b) operators/filters, where I1, ..., Im are obtained by applying m opera-
tors/filters O1, ..., Om to a single image function f . Examples include spatial filters
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applied to the original image [74] and differential operators [75–78]. Another source
of functions is (c) multiple illumination sources, each giving a different image [79].

The assumptions supporting the local methods do not hold generally, leading to
local systems of equations which are rank deficient or ill-conditioned. This is one
important reason why variational methods which regularize the velocity field, such
as those we reviewed in the introduction and some of which we will describe next,
have been so much more effective.

3.3 The Lucas-Kanade Algorithm

The original study [11] addressed a general setting of image registration and devel-
oped an iterative algorithm which it applied to determining depth from stereoscopy.
When used for optical flow evaluation, it has been applied in windows, typically
5× 5 [80].

Let I1 and I2 be two images with the same domainΩ and f = ( f1, f2) a coordinate
transformation parametrized by θ = (θ1, ..., θn) ∈ R

n :

f : (x, θ) ∈ Ω × R→ f(x, θ) ∈ Ω (3.9)

Mapping f is often called a warp to distinguish it from a transformation that
would act on the intensity image rather than on the image domain. The problem is to
determine the transformation that minimizes the smallest displaced frame difference,
i.e., determine θ̃ such that:

θ̃ = arg min
θ

∑
x∈D

(I1(f(x; θ))− I2(x))2 (3.10)

The algorithm is developed from a first-order Taylor expansion of I1(f(x, θ)) with
respect to θ . In a open neighborhood V of θ0 ∈ R we have, assuming I1(f(x, θ)) is
differentiable in Ω × V ,

I1(f(x, θ)) = I1(f(x, θ0))+ ∇ I1(x, θ0)Jf (x, θ0)h+ o(‖h‖2), (3.11)

where h = θ − θ0, ∇ I1 is the spatial gradient of I1 written as a row vector, and Jf is
the Jacobian of f with respect to θ :

Jf =
( ∂ f1
∂θ1

...
∂ f1
∂θn

∂ f2
∂θ1

...
∂ f2
∂θn

)
(3.12)

Dropping the little o remainder, the objective function to minimize following this
expansion is:
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E(x, θ) =
∑
x∈D

(I1(f(x, θ0))+∇ I1(x, θ0)Jf (x, θ0)h− I2(x))2 (3.13)

Therefore, the first-order Taylor expansion has done two things: (1) the objective
function turns into a linear equation in h and, (2) viewing θ0 as a current estimate,
its minimization turns into iterations which consist at each step of determining an
update h by solving a linear system of equation by least squares. The scheme involves
“warping” the image, i.e., evaluating I1 at the points of grid D transformed by f . In
general, this involves interpolating the image I1. The original paper [11] mentions
solving for h using the least squares solution analytic expression, which involves
matrix inversion, but other numerical schemes are more efficient, for instance the
singular value decomposition method [81], and others which were investigated in the
context of the Lucas-Kanade image registration algorithm [80]. The main weakness
of the Lucas-Kanade formulation is its lack of regularization. In the Horn and Schunck
formulation, which we review next, regularization of the flow field is fundamental.

3.4 The Horn and Schunck Algorithm

We recall the Horn and Schunck optical flow estimation functional [10] for an image
sequence I : (x, y, t) ∈ Ω×]0, T [�→ I (x, y, t) ∈ R+:

E (u, v) =
∫
Ω

(Ix u + Iyv + It )
2dxdy + λ

∫
Ω

(‖∇u‖2 + ‖∇v‖2)dxdy,

where Ix , Iy, It are the image spatiotemporal derivatives, ∇u,∇v are the spatial
gradients of the optical flow coordinates u, v, and λ is a constant factor to weigh
the contribution of the two terms in the objective functional. The corresponding
Euler-Lagrange equations are:

Ix (Ix u + Iyv + It )− λ∇2u = 0
Iy(Ix u + Iyv + It )− λ∇2v = 0,

(3.14)

with Neumann boundary conditions

∂u

∂n
= 0,

∂v

∂n
= 0, (3.15)

where ∂
∂n designates differentiation in the direction of the normal n to the boundary

of the image domain Ω , and ∇2 denotes the Laplacian operator.
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3.4.1 Discretization

Let D be a unit-spacing grid over Ω with the grid points indexed left-to-right and
top-down by the integers {1, 2, ..., N }. For all grid point indices i ∈ {1, 2, ..., N }, a
discrete approximation of the Euler-Lagrange Equations Eq. (3.14) is :

I 2
xi ui + Ixi Iyi vi + Ixi Iti − λ∑

j∈Ni
(u j − ui ) = 0

Iyi Ixi ui + I 2
yi vi + Iyi Iti − λ∑

j∈Ni
(v j − vi ) = 0,

(3.16)

where λ has absorbed the averaging constant of the Laplacian approximation;
(ui , vi ) = (u, v)i is the optical flow vector at grid point i ; Ixi , Iyi , Iti are the spa-
tiotemporal derivatives Ix , Iy, It evaluated at i ; and Ni is the set of indices of the
neighbors of i for some neighborhood system. For the 4-neighborhood, for instance,
card(Ni ) < 4 for pixels on the boundary of D and card(Ni ) = 4 for interior
pixels. By accounting for the cardinality of Ni , the approximation of the Laplacian
in Eq. (3.16) is consistent with the Neumann boundary conditions Eq. (3.15) because
it is equivalent to considering neighbors j of i outside the image domain but giving
these the same flow vector as i . This is sometime called mirroring.

Re-arranging terms in Eq. (3.16), we have the following linear system of equations,
for i ∈ {1, ..., N }:

(S)

⎧⎨
⎩
(I 2

xi + λci )ui + Ixi Iyi vi − λ∑
j∈Ni

u j = −Ixi Iti

Ixi Iyi ui + (I 2
yi + λci )vi − λ∑

j∈Ni
v j = −Iyi Iti ,

where ci = card(Ni ). Let z = (z1, ..., z2N )
t ∈ R2N be the vector defined by

z2i−1 = ui , z2i = vi , i ∈ {1, ..., N }. (3.17)

Also, let b = (b1, ..., b2N )
t ∈ R2N be defined by

b2i−1 = −Ixi Iti , b2i = −Iyi Iti , i ∈ {1, ..., N }. (3.18)

In matrix form, linear system (S) is:

Az = b, (3.19)

where A is the 2N × 2N matrix the elements of which are, for i ∈ {1, ..., N }:

A2i−1,2i−1 = I 2
xi + λci , A2i,2i = I 2

yi + λci ,

A2i−1,2i = Ixi Iyi , A2i,2i−1 = Ixi Iyi , (3.20)

A2i−1,2 j−1 = A2i,2 j = −λ, j ∈ Ni ,



50 3 Optical Flow Estimation

all other elements being equal to zero. System Eq. (3.19) is a large scale sparse system
of linear equations. Such systems are best solved by iterative algorithms such as the
Jacobi and Gauss-Seidel iterations [82, 83] which we will give next. We will assume
that A is non-singular.

3.4.2 Gauss-Seidel and Jacobi Iterations

One can show that matrix A is positive definite [13]. This implies that the point-wise
and block-wise Gauss-Seidel iterations to solve system Eq. (3.19) will converge. This
is a standard result in numerical linear algebra [82, 83]. For the 2× 2 block division
of matrix A, the Gauss-Seidel iterations are [13], for all i ∈ {1, ..., N }:

uk+1
i = I 2

yi + λci

ci (I 2
xi + I 2

yi )+ λc2
i

⎛
⎝ ∑

j∈Ni ; j<i

uk+1
j +

∑
j∈Ni ; j>i

uk
j

⎞
⎠

− Ixi Iyi

ci (I 2
xi + I 2

yi )+ αc2
i

⎛
⎝ ∑

j∈Ni ; j<i

vk+1
j +

∑
j∈Ni ; j>i

vk
j

⎞
⎠− Ixi Iti

I 2
xi + I 2

yi + λci

(3.21)

vk+1
i = −Ixi Iyi

ci (I 2
xi + I 2

yi )+ λc2
i

⎛
⎝ ∑

j∈Ni ; j<i

uk+1
j +

∑
j∈Ni ; j>i

uk
j

⎞
⎠

+ I 2
xi + λci

ci (I 2
xi + I 2

yi )+ λc2
i

⎛
⎝ ∑

j∈Ni ; j<i

vk+1
j +

∑
j∈Ni ; j>i

vk
j

⎞
⎠− Iyi Iti

I 2
xi + I 2

yi + λci

Horn and Schunck [10] solve system Eq. (3.19) with the 2× 2 block-wise Jacobi
method. The iterations are:

uk+1
i =

I 2
yi + λci

ci (I
2
xi + I 2

yi )+ λc2
i

∑
j∈Ni

uk
j −

Ixi Iyi

ci (I
2
xi + I 2

yi )+ λc2
i

∑
j∈Ni

vk
j −

Ixi Iti

I 2
xi + I 2

yi + λci

(3.22)

vk+1
i = −Ixi Iyi

ci (I
2
xi + I 2

yi )+ αc2
i

∑
j∈Ni

uk
j +

I 2
xi + λci

ci (I
2
xi + I 2

yi )+ λc2
i

∑
j∈Ni

vk
j −

Iyi Iti

I 2
xi + I 2

yi + λci

The fact that matrix A is symmetric positive definite is not sufficient to imply that
the Jacobi iterations converge. However, it can be shown directly that they do. This
has been done using a vector norm in R

2N adapted to the special structure of the
linear system (S) [13].

The differences between the Gauss-Seidel and the Jacobi methods are well known:
the Jacobi method does the update for all points of the image domain grid and then
uses the updated values at the next iteration, whereas the Gauss-Seidel method uses
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Fig. 3.2 Data matrix A is
block tridiagonal. The dots
represent possibly nonzero
elements. For an n×n discrete
image, the blocks are 2n× 2n.
The block tridiagonal form
comes from the fact that points
with index K n, 1 ≤ K ≤ n, do
not have a right-side neighbor,
and those with index K n + 1,
0 ≤ K ≤ n − 1, do not have a
left-side neighbor
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the updated values as soon as they are available and, as a result, can be more efficient
than the Jacobi method in sequential computations. However, in contrast with the
Gauss-Seidel iterations, Jacobi’s can be performed in parallel for all pixels, which
can result in a very fast hardware implementation [14, 15]. As to memory storage,
the Jacobi method requires at each iteration the 2N values of the previous iteration
in memory store. With the Gauss-Seidel iterations Eq. (3.22), only a few of these
values are stored.

There is a remarkable block division which makes matrix A block tridiagonal
(Fig. 3.2). Combined with the property that A is symmetric positive definite, this
characteristic affords efficient resolution of the corresponding linear system [82].
For an n × n discrete image, the blocks are 2n × 2n. The block tridiagonal form is
due to the fact that points with index K n, 1 ≤ K ≤ n, do not have a neighbor on the
right, and those with index K n+1, 0 ≤ K ≤ n−1, do not have a neighbor on the left.
The block-wise iterations for a block tridiagonal symmetric positive definite matrix,
i.e., the iterations corresponding to the tridiagonal block decomposition (Fig. 3.2),
converge for both the Jacobi and the Gauss-Seidel implementations [82]. The spectral
radius of the Gauss-Seidel matrix is equal to the square of the spectral radius of the
Jacobi matrix, which signifies that the Gauss-Seidel implementation is in this case
much faster that the Jacobi. The readers interested in the details may refer to [13].

3.4.3 Evaluation of Derivatives

Horn and Schunck have used approximations of the image spatial and temporal
derivatives as averages of forward first differences. From two consecutive n × n
images I 1 and I 2 the formulas are:
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Ixi = 1

4
(I 1

i+1 − I 1
i + I 1

i−n+1 − I 1
i−n + I 2

i+1 − I 2
i + I 2

i−n+1 − I 2
i−n)

Iyi = 1

4
(I 1

i−n − I 1
i + I 1

i−n+1 − I 1
i+1 + I 2

i−n − I 2
i + I 2

i−n+1 − I 2
i+1) (3.23)

Iti = 1

4
(I 2

i − I 1
i + I 2

i+1 − I 1
i+1 + I 2

i−n − I 1
i−n + I 2

i−n+1 − I 1
i−n+1),

for i = 1, ..., n2. Alternatively, the spatial derivatives can be estimated using central
differences. Using central differences to compute the temporal derivatives would
not be consistent with the in-between consecutive frames velocities to be estimated
because it would require using the frames preceding and following the current, rather
than consecutive frames.

Points in the formulas which fall outside the image domain are often given the
index of the image wrapped around on its boundary to form a (digital) torus or,
alternatively, boundary points are simply given the spatiotemporal derivative values
of an immediate interior neighbor.

3.4.4 Ad hoc Variations to Preserve Motion Boundaries

As alluded to in the introduction, the single serious drawback of the Horn and Schunck
method is that the quadratic (Tikhonov) regularization it uses ignores motion bound-
aries which it smooths out as a result. This technically translates into the occurrence
of the isotropic Laplacian operator in the Euler-Lagrange equations. The original
study of Horn and Schunck approximates the discrete Laplacian 
2w as:


2w ∝ w− w, (3.24)

where w stands for either u or v and w is a weighted neighborhood average of w
according to the weights in Fig. 3.3.

This Laplacian approximation is used explicitly in their discretization of the Euler-
Lagrange equations to arrive at the following form of the iterations to compute optical
flow, where λ has absorbed the coefficient of proportionality:

uk+1
i = ui

k − Ixi
Ixi uk

i + Iyi vk
i + It

λ+ I 2
xi + I 2

yi

vk+1
i = vi

k − Iyi
Ixi uk

i + Iyi vk
i + It

λ+ I 2
xi + I 2

yi

(3.25)

Boundary conditions aside, the average w is computed according to the set of
fixed weights in Fig. 3.3. This suggests that one can be more general and approximate
the operator by spatially variant filters, rather than a fixed weighted average, with
the purpose of preserving motion boundaries, i.e., dampening blurring at motion
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discontinuities. In such a case, iterations Eq. (3.25) are executed with:

uk
i = g

(
{uk

j } : j ∈ Ni

)

vk
i = g

(
{vk

j } : j ∈ Ni

)
,

(3.26)

with filters g such as those suggested in [84]. These can be dependent of the image
or on the flow itself:
Image-based adaptive average: Under the assumption that the image of environ-

mental objects is smooth except at the projection of their occluding boundaries, flow
edges and image edges will coincide, justifying an intensity-based filter of the form:

g
(
{wk

j } : j ∈ Ni

)
=

∑
j∈Ni

α j w j , (3.27)

where coefficients α j are commensurate with the image contrast between i and j ,
for instance by using:

α j =
1

1+|I j−Ii |∑
j∈Ni

1
1+|I j−Ii |

(3.28)

In general, of course, flow discontinuities are only a subset of intensity edges so that
smoothing of the flow field according to Eq. (3.28) will follow the image intensity
structure rather than the structure of the motion field and, as a result, can cause
undesirable artefacts.
Optical flow-based adaptive average: The coefficients of a flow-based version of

the image-based filter would be:

Fig. 3.3 The discrete
Laplacian 
2w can be written
as 
2w ∝ w − w, where w
stands for either u or v and w
is a weighted neighborhood
average of w using the weights
above as suggested in the orig-
inal investigation of optical
flow estimation by the Horn
and Schunck method
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α j =
(

1
1+|w j−wi |

)β
∑

j∈Ni

(
1

1+|w j−wi |
)β (3.29)

where w stands for either of the optical flow coordinates and β > 1. The purpose
of exponent β is to discern better the coefficients values when the range of the flow
coordinates is small. This filter is expected to dampen smoothing across motions
discontinuities while stressing it along.
Median filtering: Here, filter g at pixel i would be the median of the current flow

estimates in the neighborhood Ni of i . At a flow discontinuity, median filtering is
more likely to yield a value representative of the values on a single side of the discon-
tinuity. A reasonable alternative consists of averaging the values of the flow velocity
in Ni which are above or below the median, whichever are more homogeneous. In
the event of a flow edge at i , these values would most likely come from pixels on a
single side of the edge.
Modulating the weight coefficient λ: The ad hoc variations above use digital

approximations of the Laplacian which adjust to the local structure of the image or
of the flow field at any stage of its estimation by the Horn and Schunck iterations,
in the hope that this structure is actually indicative of the actual flow discontinuities.
Along this vein of thought, one can also look at varying the weighing coefficient
λ during the iterations depending on the structure of the image or the current flow
field [85]. Since smoothing increases with λ, the rationale is that the value of this
coefficient should be low at suspected motion boundaries and high elsewhere. For
instance the study in [85] uses thresholds on ‖∇ I‖2 and ‖∇u‖2 + ‖∇v‖2 to decide
whether to smooth sufficiently, according to some threshold λh , when neither of these
gradient norms is high or, instead, inhibit smoothing using a small coefficient λs .

Although ad hoc approximations of key variables in Eq. (3.25), such as the Lapla-
cian or the weight coefficient, can produce sharper motion boundaries at practically
no additional computational expense, there have been no extensive experimental
verification which would allow a definite conclusion about their effectiveness com-
pared to other boundary preserving formulations such as the ones we will describe
next. These are formal methods which aim at preserving motion discontinuities by
referencing motion edges via boundary length or by using a boundary preserving reg-
ularization function in the objective functional. We will describe both an image-based
and a flow-based boundary preserving regularization function.

3.5 Deriche–Aubert–Kornprobst Method

The Laplacian operator which appears in the Euler-Lagrange equations associated
with Eq. (3.14) causes smoothing, and blurring thereof, across motion boundaries.
To circumvent the problem, the study in [37] proposed to investigate regularization
functions g in the following generalization of the Horn and Schunck functional:
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E(u, v) =
∫
Ω

(Ix u + Iyv+ It )
2dxdy + λ

∫
Ω

(g(‖∇u‖)+ g(‖∇v‖))dxdy, (3.30)

such that motion boundaries are preserved. With g(z) = z2, Eq. (3.30) reduces to
the Horn and Schunck functional Eq. (3.14). The purpose of the analysis in [37,
38] was to determine g from conditions that would ensure isotropic smoothing of
motion where it varies smoothly and allow smoothing along motion boundaries while
inhibiting or dampening it across. The analysis is summarized in the following.

The Euler-Lagrange equations corresponding to Eq. (3.30) are:

Ix (Ix u + Iyv + It )− λ
2

div

(
g′(‖∇u‖) ∇u

‖∇u‖
)
= 0

Iy(Ix u + Iyv + It )− λ
2

div

(
g′(| ∇v‖) ∇v

| ∇v‖
)
= 0,

(3.31)

where div is the divergence operator and g′ is the first derivative of g. The corre-
sponding Neumann boundary conditions are:

g′(‖∇u‖)
‖∇u‖

∂u

∂n
= 0

g′(‖∇v‖)
‖∇v‖

∂v

∂n
= 0,

(3.32)

where n is the unit normal vector to the boundary ∂Ω of the image domain Ω , and
∂/∂n is the derivative operator in the direction of n.

For w ∈ {u, v}, i.e., where w stands for either of the optical flow components,
consider at each point a local orthonormal direct coordinate system (η, ξ) defined

by unit vectors ∇w
‖∇w‖ and its (counter clockwise) orthogonal unit vector

( ∇w
‖∇w‖

)⊥
.

In this reference system, the divergence terms in Eq. (3.31) are written:

div

(
g′(‖∇w‖)
‖∇w‖ ∇w

)
= g′(‖∇w‖)
‖∇w‖ wξξ + g′′(‖∇w‖)wηη (3.33)

In a region where w is homogeneous, i.e., where ‖∇w‖ is small, we want g to
allow smoothing in both orthogonal directions η and ξ , and in the same manner
(isotropy). Considering Eqs. (3.31) and (3.33), the conditions to impose are:

lims→0 g′′(s) = g′′(0) > 0

lims→0
g′(s)

s = g′′(0) (3.34)

At the limit when ‖∇w‖ → 0, we have:

div

(
g′(‖∇w‖)
‖∇w‖ ∇w

)
= g′′(0)(wηη + wξξ ) = g′′(0)∇2w
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Therefore, the Euler-Lagrange equations in this case, when ‖∇w‖ → 0, would be:

Ix (Ix u + Iyv + It ) = λ
2 g′′(0)∇2u

Iy(Ix u + Iyv + It ) = λ
2 g′′(0)∇2v, (3.35)

with Neumann boundary conditions

∂u

∂n
= 0,

∂u

∂n
= 0. (3.36)

These equations are those of the Horn and Schunck formulation, which is what we
want.

When∇w is large, as it would be at motion boundaries, we want to smooth w along
ξ but inhibit smoothing in the orthogonal direction, i.e., along η. The conditions to
set are:

lim
s→∞ g′′(s) = 0

lim
s→∞

g′(s)
s
= β > 0,

(3.37)

and the divergence term at the limit when ‖∇w‖ → ∞ would be:

div

(
g′(‖∇w‖)
‖∇w‖ ∇w

)
= βwξξ . (3.38)

However, both conditions in Eq. (3.37) cannot be satisfied simultaneously [37, 38].
Instead, the following weaker conditions can be imposed:

lim
s→∞ g′′(s) = lim

s→∞
g′(s)

s
= 0

lim
s→∞

g′′(s)
g′(s)

s

= 0.
(3.39)

Accordingly, diffusion is inhibited in both directions at the limit, when ‖∇w‖ →
∞, but is otherwise dampened more in direction η than ξ , i.e, smoothing will be
dampened more across motion boundaries than along. There are several functions
satisfying conditions Eqs. (3.34) and (3.39), g(s) = 2

√
1+ s2 − 2 (Aubert), for

instance, and the ones shown in Table 3.1.

Table 3.1 Boundary
preserving functions for the
estimation of optical flow

g(s)

Aubert 2
√

1+ s2 − 2
Geman and Reynolds s

1+s2

Perona-Malik log(1+ s2)

Green 2 log(cosh(s))
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A discretization of the Euler-Lagrange equations gives a large scale sparse system
of nonlinear equations. Instead of solving directly this system, the study in [37,
38] proposed a more efficient implementation using the half-quadratic minimization
algorithm applied to the following functional, the change from the original functional
being justified by a duality theorem [38]:

E(u, v, b1, b2) =
∫
Ω

(Ix u + Iyv + It )
2dxdy

+ λ
∫
Ω

(
b1‖∇u‖2 + b2‖∇v‖2 + ψ(b1)+ ψ(b2)

)
dxdy (3.40)

Two new functions, b1(x, y) and b2(x, y), called auxiliary variables, appear in this
functional. Also appearing is a functionψ , convex and decreasing, related implicitly
to g and such that, for every fixed s, the value of b which minimizes bs2 + ψ(b) is
given by

b = g′(s)
2s

(3.41)

This result is the basis of the half-quadratic greedy minimization algorithm which,
after initialization, repeats two consecutive steps until convergence. Each iteration
performs a minimization with respect to u, v with b1, b2 assumed constant followed
by a minimization with respect to b1, b2 with u, v assumed constant.

Minimization with respect to u, v, with b1, b2 considered constant, consists of
minimizing the following functional:

∫
Ω

(Ix u + Iyv + It )
2 + λ

(
b1‖∇u‖2 + b2‖∇v‖2

)
dxdy (3.42)

The corresponding Euler-Lagrange equations are:

Ix (Ix u + Iyv + It ) = λdiv(b1∇u)
Iy(Ix u + Iyv + It ) = λdiv(b2∇v),

(3.43)

with Neumann boundary conditions ∂u/∂n = ∂v/∂n = 0. Discretization of the
equations yields a large scale sparse linear system of equations which can be solved
efficiently with the Gauss-Seidel or the Jacobi method. The divergence terms in
Eq. (3.43) can be discretized as in [49].

The minimization with respect to b1, b2, with u, v considered constant, consists
of minimizing the functional:

∫
Ω

(
b1‖∇u‖2 + b2‖∇v‖2 + ψ(b1)+ ψ(b2)

)
dxdy (3.44)

The unique solution is given analytically following Eq. (3.41):
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b1 = g′(‖∇u‖)
2‖∇u‖

b2 = g′(‖∇v‖)
2‖∇v‖

(3.45)

The half-quadratic algorithm to minimize Eq. (3.40) can be summarized as follows:

1. Initialize b1, b2
2. Repeat until convergence

a. Minimize with respect to u, v using Jacobi (or Gauss-Seidel) iterations
to solve the linear system of equations corresponding to the discretized
Eq. (3.43).

b. Minimize with respect to b1, b2 using Eq. (3.45)
[
b1 = g′(‖∇u‖)

2‖∇u‖ , b2 =
g′(‖∇v‖)

2‖∇v‖
]

Example: This example (courtesy of R.Deriche) uses the Hamburg Taxi sequence
of a street intersection scene (from Karlsruhe University, Germany, Institut für
Algorithmen und Kognitive Systeme, http://i21www.ira.uka.de/image_sequences/):
Fig. 3.4a shows one of the two consecutive images used. The other figures contain
a graphical display of the flow field in the rectangular zoom window drawn in (a)
(which includes the white car in the center of the intersection and a small portion of the
dark-coloured car next to it): Methods of (b) Horn and Schunck, (c) Lucas-Kanade,
and (d) Deriche-Aubert-Kornprobst. Visual inspection reveals a motion smoothing
spread in (b) and a lack of spatial regularization in (c). In (d) the smooth motion field
is well confined to the moving cars as a result of discontinuity preserving smoothness
regularization.

Example: This other example uses the synthetic sequence depicted in Fig. 3.5a
(Marbled blocks sequence from Karlsruhe University, Germany, Institut für Algo-
rithmen und Kognitive Systeme). The camera and the block on the left do not move.
The block on the right moves away to the left. The images had noise added. The
texture variation is weak at the top edges of the blocks. Depth, and image motion
thereof, varies sharply at the blocks boundaries not in contact with the floor. The
blocks cast shadows which display apparent motion. The ground truth optical flow
vectors are displayed in Fig. 3.5b. Vectors computed with the method of Horn and
Schunck and of Deriche, Aubert, Kornprobst are displayed in Fig. 3.5c and d, respec-
tively. The average errors per pixel in magnitude (pixels) and direction (degrees) are
(0.142, 5.095) and (0.130, 4.456) for the Horn and Schunck and the Aubert, Deriche,
Kornprobst methods, respectively [61]. The better performance of the latter scheme
is likely due to the better handling of motion discontinuities as a visual inspection
tends to corroborate.

http://i21www.ira.uka.de/image_sequences/
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(a) (b)

(c) (d)

Fig. 3.4 Optical flow estimation on the Hamburg Taxi sequence (courtesy of Deriche, Aubert, and
Kornprobst): a One of the two consecutive images used. A graphical display of the flow field in the
rectangular window shown in a, by the methods of b Horn and Schunck, c Lucas-Kanade, and d
Deriche, Aubert, and Kornprobst. This last method produces a smooth field confined to the moving
objects (the white car and part of the dark car) as a result of discontinuity preserving smoothness
regularization

3.6 Image-Guided Regularization

Consider from a probabilistic viewpoint the problem of estimating optical flow from
two consecutive images I1 and I2. This consists of maximizing the posterior probabil-
ity P(W |I1, I2) over the space of all possible optical flow fields W . This probability
is proportional to the product P(I2|W, I1)P(W |I1). The first term, P(I2|W, I1),
is a term of conformity of W to the data because it is the likelihood that con-
nects I2 to I1 via W . The second term, P(W |I1), is a prior on W which exhibits
a partial dependence on data through the conditioning on I1. This dependence is
often ignored and the conditioning on I1 is removed, resulting in a prior independent
of any observation. This is equivalent to imposing statistical independence of W and
I1. However, the dependence is genuine because motion edges often occur at image
intensity edges [27]. Therefore, its inclusion in a prior, or a regularization term in
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(a) (b)

(c) (d)

Fig. 3.5 Optical flow estimation on the Marbled block sequence: a the first of the two images used,
b ground truth optical flow, and optical flow by the method of c Horn and Schunck, d Deriche,
Aubert, Kornprobst. This last method produces a smooth field confined to the moving objects as a
result of discontinuity preserving smoothness regularization

energy based formulations, affords the opportunity to smooth the motion field with-
out blurring its boundaries by allowing smoothing along the isophote, i.e., in the
direction perpendicular to the image spatial gradient, and inhibiting or dampening it
across. This can be done via an appropriate gradient-dependent linear transformation
A(∇ I ) of the motion field in the prior/regularization term. Here following are two
possible formulations [16, 19, 20].
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3.6.1 The Oriented-Smoothness Constraint

The following functional was investigated in [16, 86]:

E (u, v) =
∫
Ω

(I1(x − u, y − v)− I2(x, y))2 dxdy (3.46)

+ λ
∫
Ω

(
∇uT A(∇ I1)∇u +∇vT A(∇ I1)∇v

)
dxdy. (3.47)

Matrix A is defined as a function of the image partial derivatives by:

A(∇ I1) = 1

‖∇ I1‖2 + 2μ2

[(
I1y

−I1x

)
(I1y − I1x ) + μ2I

]
, (3.48)

where I is the identity matrix and μ a constant. The functional was later modified
[87] to remove the peculiarity that motion is applied to I2 in the data term but to I1
in the regularization term.

An analysis in [20] determined an image-guided regularization matrix A by impos-
ing on it conditions which would cause smoothing along intensity edges but damp-
ening it across. The analysis is as follows.

3.6.2 Selective Image Diffusion

Consider the following objective functional:

E (W ) =
∫
Ω

(Ix u + Iyv+ It )
2dxdy + λ

∫
Ω

(‖A∇u‖2 + ‖A∇v‖2)dxdy, (3.49)

where A = A(∇ I ) is a 2 × 2 matrix which depends on the image structure via
the image spatial gradient. Matrix A must be chosen so as to allow smoothing at
each point in the direction of the perpendicular to the image gradient, i.e., along the
isophote, and dampen it in the direction of the gradient, i.e., perpendicular to the
isophote. This can be done by imposing the following conditions on the eigenvalues
α1, α2 of A [20]:

1. For ‖∇ I‖ 	= 0 , x1 = ∇ I
‖∇ I‖ , x2 =

( ∇ I
‖∇ I‖

)⊥
are the unit eigenvectors corre-

sponding to α1, α2,
2. α2 = 1

3. α1 is a monotonically decreasing continuous function of ‖∇ I‖ such that:
lim‖∇ I‖→0 α1 = 1 and lim‖∇ I‖→∞ α1 = 0.
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Intuitively, the purpose of these conditions is as follows: the first condition says that
the two orthogonal directions which should be considered for smoothing are those of
the isophote and the image gradient; the second condition is to allow full smoothing
along the isophote; the third condition stipulates that smoothing along the gradient
direction is to be allowed only to a degree that decreases with the intensity edge
strength, varying from full to no strength.

The Euler-Lagrange equations corresponding to Eq. (3.49) are:

Ix (Ix u + Iyv + It )− λdiv(B∇u) = 0
Iy(Ix u + Iyv + It )− λdiv(B∇v) = 0,

(3.50)

where B = AtA+ AAt , with Neumann boundary conditions:

B∇u · n = 0
B∇v · n = 0

(3.51)

Let P be the 2 × 2 orthogonal matrix P = (x1, x2), i.e., whose columns are x1
and x2, and let

Λ =
(
α1 0
0 α2

)
(3.52)

Using the first condition, we have, by definition, AP = PΛ. Therefore, A =
PΛP−1 = PΛPt , since P is orthogonal. This gives, using the second condition
(α2 = 1),

A(∇ I ) = 1

‖∇ I‖2
(
α1 I 2

x + I 2
y (α1 − 1)Ix Iy

(α1 − 1)Ix Iy I 2
x + α1 I 2

y

)
(3.53)

Using the following α1, which satisfies the third condition,

α1 = 1

(1+ ‖∇ I‖2
μ2 )

1
2

, (3.54)

where μ is a parameter to modulate the strength of smoothing, we have:

B = 1

μ2‖∇ I‖2
(
μ2 + I 2

y −Ix Iy

−Ix Iy μ2 + I 2
x

)
(3.55)

Assuming ‖∇ I‖ is bounded onΩ , this matrix is positive definite, which means that
Eq. (3.50) are diffusion equations. To see intuitively that they realize the desired
diffusion, note that where ‖∇ I‖ is small, α1 is close to 1 and, therefore, A(∇ I )
is close to the identity, causing the regularization term in Eq. (3.49) to be close to
the L2 norm and Eq. (3.50) to behave isotropically. When, instead, ‖∇ I‖ is large,
A(∇ I ) approximates a projection onto the direction perpendicular to ∇ I and only
the projection of∇u and∇v along that direction will contribute to the regularization.
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Another way to see that we have the desired diffusion is by looking at the behaviour
of Eq. (3.50) locally at each point, in a small neighborhood where∇ I is constant and
nonzero. In this neighborhood, consider the local coordinate system (η, ξ) according

to the reference system defined by ∇ I
‖∇ I‖ ,

( ∇ I
‖∇ I‖

)⊥
. In this orthonormal reference

system, we have ∇u = (uη, uξ ) and ∇v = (vη, vξ ), and

B =
(
α2

1 0
0 α2

2

)
. (3.56)

which gives the following local form of the divergence term, using α2 = 1:

div(B∇u) = α2
1uηη + uξξ (3.57)

and, therefore, the local form of the Euler-Lagrange equations:

Ix (Ix u + Iyv + It )− λ(α2
1uηη + uξξ ) = 0

Iy(Ix u + Iyv + It )− λ(α2
1vηη + vξξ ) = 0 (3.58)

It is clear from these equations that diffusion will occur along axis ξ , i.e, along the
intensity edge and that it will be dampened along axis η, i.e., along the direction of
the gradient. Since α1 is a decreasing function of ‖∇ I‖, the degree of dampening
will be commensurate with the edge strength. Parameterμ in Eq. (3.54), although not
essential, can be used to control how fast with respect to edge strength dampening
occurs across edges.

The minimization of Eq. (3.49) can be done by the corresponding Euler-Lagrange
descent equations [20], namely,

∂u
∂τ
= −Ix (Ix u + Iyv + It )+ λdiv(B∇u)

∂v
∂τ
= −Iy(Ix u + Iyv + It )+ λdiv(B∇v) (3.59)

One can also discretize the Euler-Lagrange equations Eq. (3.50). This would give
a large scale sparse system of linear equations which can be solved efficiently by
Gauss-Seidel or Jacobi iterations.

3.7 Minimum Description Length

A way to preserve motion discontinuities is to bring in the length of the discontinuity
set in the regularization [30]. A boundary length term commonly appears in image
segmentation functionals, first in the Mumford and Shah functional [32]. It is essential
in the Leclerc’s minimum description length (MDL) formulation [33] which we focus
on in this section and transpose to optical flow estimation. The Leclerc’s method can
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be viewed as a discrete implementation of the Mumford-Shah functional [88]. It
minimizes an objective function which assigns a code length to an image partition
described according to a predefined “description language.”

Let I0 be an observed image with discrete domain D and I an approximation
corresponding to a partition R = {Rk} of the image domain D into regions where
the image is modelled by a parametric model with parameters {θk}. The Leclerc MDL
criterion [33] to estimate the image underlying I0 is:

E(R, {θk}) = a

2

∑
k

lk −
∑

k

∑
i∈Rk

log2 P(Ii |θk)+
∑

k

bk, (3.60)

where lk is the length of the boundary of Rk in terms of the number of pixels it threads
through, a is the bit cost of coding one edge element, and bk is the bit cost of coding
the (discrete) parameter vector of region Rk . The first term is the code length for
the boundaries and the second for the image given the region parameters. The last
term is the code length to describe the region models via their parameters; assuming
equal code length for all regions, the term can be dropped from the criterion. For a
piecewise constant description of I and quantized Gaussian noise, the criterion can
be re-written as [33]:

E(I ) = a

2

∑
i∈D

∑
j∈Ni

(1− δ(Ii − I j ))+ b
∑
i∈D

(Ii − I0i )
2

σ 2 , (3.61)

where a ≈ 2 and b = 1
2log2 ; Ni is some fixed neighborhood of pixel i ; and

δ(z) =
{

1 for z = 0
0 for z 	= 0

(3.62)

Energy Eq. (3.61) can be solved by a continuation scheme indexed by the stan-
dard deviation of a Gaussian substituted for δ: Starting from an initial large value,
the standard deviation is gradually lowered and, at each step, a solution to the cor-
responding problem is computed using as initial approximation the solution to the
previous problem.

A continuum version of the Leclerc’s MDL criterion is [89], assuming the code
length to describe the parametric models is common to all regions:

E (Γ, {θk}) =
∑

k

(
a

2

∫
∂Rk

ds − log P({I (x) : x ∈ Rk}|θk)

)
, (3.63)

where {Rk} is a partition of the image domain Ω , Γ = {∂Rk} its boundaries, and
{θk} the regions parameters. The code length to describe the parametric models was
assumed common to all regions and has been been dropped. A transposition to optical
flow can be written:
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E (Γ, {θk}) =
∑

k

(
a

2

∫
∂Rk

ds − log P({r(x)} : x ∈ Rk |θk)

)
, (3.64)

where r(x) = (Ix u + Iyv + It )(x). If we assume independent identical probability
models for r everywhere on Ω , then Eq. (3.64) can be re-written:

E (Γ, {θk}) = a

2

∑
k

∫
∂Rk

ds −
∫
Ω

log P(r(x))dx). (3.65)

A discretization of the length term is:

a

2

∑
i∈D

∑
j∈Ni

(
1− δ(ui − u j )δ(vi − v j )

)
, (3.66)

where a ≈ 2. For r normally distributed with variance σ 2, a discretization of the
data term can be written:

c + b
∑
i∈D

(Ixi ui + Iyi vi + Iti )
2

σ 2 , (3.67)

where b = 1
2 log 2 and c is a constant to ignore [33]. The minimum description

length estimate of optical flow is the motion field W̃ over D which corresponds to a
minimum of the total code length of description:

E(W ) = b
∑
i∈D

(Ixi ui + Iyi vi + Iti )
2

σ 2 + a

2

∑
i∈D

∑
j∈Ni

(
1− δ(ui − u j )δ(vi − v j )

)
.

(3.68)

Numerical Implementation

The objective function Eq. (3.68) is not differentiable due to the presence of the delta
function, as in the Leclerc objective function for intensity images. This suggests to
embed the minimization of Eq. (3.68) in a family of minimizations indexed by the
parameter of a differentiable approximation of the δ function, and use continuation
[33, 81] to carry out the estimation. Continuation can be based on the following
substitution:

δ(ui − u j )δ(vi − v j ) ← ei j (W, s) = e
− (ui−u j )

2+(vi−v j )
2

(sσ)2 (3.69)

Using sσ in Eq. (3.69), rather that s, simplifies subsequent expressions without
causing a loss of generality. The actual parameter of continuation remains s. With
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substitution Eq. (3.69), the objective function to minimize is re-written:

E(W, s) = b
∑
i∈D

(Ixi ui + Iyi vi + Iti )
2

σ 2 + a

2

∑
i∈D

∑
j∈Ni

(1− ei j (W, s)) (3.70)

Let s1, s2, ... be a decreasing sequence of s values tending to zero. Continuation
solves the following sequence of problems indexed by these values of s:

Minimize E(W, sl) (3.71)

For each value sl of s, the necessary conditions for a minimum of E give two con-
straints at each i ∈ D:

Ixi (Ixi ui + Iyi vi + Iti )+ al
∑

j∈Ni
(ui − u j )ei j (W, sl) = 0

Iyi (Ixi ui + Iyi vi + Iti )+ al
∑

j∈Ni
(vi − v j )ei j (W, sl) = 0,

(3.72)

where al = a log 2/s2
l . This yields a large scale sparse system of equations most

of which are linear, and that can be solved using the following Jacobi-type iterative
scheme where each iteration applies a Jacobi update to a linear system of equations
obtained by evaluating the exponential term with the values of motion computed at
the preceding iteration:

uk+1
i = −Ixi Iti − Ixi Iyi v

k
i + al

∑
j∈Ni

ek
i j (W, sl)uk

j

I 2
xi
+ al

∑
j∈Ni

ek
i j (W, sl)

vk+1
i = −Iyi Iti − Ixi Iyi u

k
i + al

∑
j∈Ni

ek
i j (W, sl)vk

j

I 2
yi
+ al

∑
j∈Ni

ek
i j (W, sl)

(3.73)

The solution of each problem in Eq. (3.71) serves as the initial solution for the
next problem. As s approaches zero, the problem approaches the original Eq. (3.68)
because ei j (s) tends to δ. When s tends to∞, the second term in Eq. (3.70) approaches
0. This suggest that the first problem be stated with s large, using, for instance, the
normal component vector of optical flow as initial approximation. The iterations are
continued up to a small sl . As a rule of thumb, about 100 iterations of continuation
and 5 of Eq. (3.73) sufficed in experiments.

Example: The MDL estimation scheme is illustrated using the Marbled blocks syn-
thetic test sequence (Marmor-2 sequence from the KOGS/ IAKS laboratory database,
University of Karlsruhe, Germany). The rightmost block moves away to the left and
the small center block forward to the left. The camera and the leftmost block are
static. The images have been noised. The texture variation is weak at the top edges of
the blocks. Depth varies sharply at the blocks boundaries not in contact with the floor.
The blocks cast some shadows. The scene and the actual motion field are shown in
Fig. 3.6a, and the MDL motion estimate in Fig. 3.6b. In spite of its embedded motion
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(a) (b)

Fig. 3.6 a Ground truth image motion superimposed on the first of the two Marbled blocks images
used in the experiment and, b the MDL motion estimate. In spite of its embedded motion bound-
ary preservation, the scheme has let some smoothing, although mild, across the blocks occluding
contours where there are motion discontinuities

boundary preservation, the scheme has let some smoothing, although mild, across
the blocks occluding contours where depth, and motion thereof, vary sharply and
significantly. The average error on the motion magnitude, over the whole image,
is 0.13 pixel and the average direction error on the two moving blocks is 4.7◦. The
standard deviations are 0.2 for the magnitude, 5.8 for the direction for the small block
and 3.5 for the large block. These statistics are comparable to those of the Horn and
Shunck and the Deriche, Aubert, and Kornprobst schemes.

3.8 Parametric Estimation

Parametric motion estimation in a support region R ⊂ Ω consists of representing
the motion field in R by a parametric model and using the spatiotemporal data to
determine the parameters which provide the best fit. One of the main motivations for
parametric motion estimation is economy of description because motion in the sup-
port region R can be compactly described by the set of model parameters. Parametric
estimation also forgoes the need for regularization in R because it implies smooth-
ness of motion. We will focus on linear parametric models. They are analytically
convenient to use and, when chosen properly, can be powerful so as to represent fine
details of motion.

Parametric estimation of optical flow over a support region R can be set up as
follows [60]. Let θ j : (x, y) ∈ Ω → θ j (x, y) ∈ R, j = 1, ...,M be basis
functions and L their span: L = span{θ1, ..., θM }. Each of the coordinate functions
u, v of optical flow W is considered an element of L :

W = αT θ (3.74)
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where θ is the vector of basis functions:

θ = (
θ1 θ2 · · · θM

)T (3.75)

and α is the matrix of parameters, i.e., of the coefficients of the expansion of motion
in the basis of L:

α =
(
α11 α21 · · · αM1
α12 α22 · · · αM2

)T

(3.76)

The first row of αT has the parameters of u and the second row those of v. The
parameters in R are computed by minimizing the following functional which uses
the optical flow constraint in which Eq. (3.74) is substituted:

E (α) =
∫

R
(∇ I · αT θ + It )

2dxdy. (3.77)

The corresponding least squares equations to determine the parameters are:

Bβ + d = 0 (3.78)

where:

• Vector β is the 2M × 1 vector constructed by vertical concatenation of the para-
meters α1 and α2 corresponding to optical flow components u and v:

β[m] = αm1
β[M + m] = αm2,

(3.79)

for m = 1, . . . ,M .
• Matrix B is the following 2M × 2M matrix formed by the vertical and horizontal

concatenation of 4 M × M sub-matrices Brc:

B =
[

B11 B12
B21 B22

]
, (3.80)

where the elements of the sub-matrices are defined by:

Brc[m, n] =
∫

R
Ir Icθmθn dxdy, (3.81)

for m = 1, . . . ,M , n = 1, . . . ,M and Il being the spatial derivative of I in the
horizontal (l = 1) and vertical (l = 2) directions.
• Vector d is the 2M × 1 vector with the following elements, for m = 1, . . . ,M :

d[m] = ∫
R It I1θm dxdy

d[M + m] = ∫
R It I2θm dxdy

(3.82)
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Region R is the support for the formulas above and the question arises as to which
region to use to compute the motion field inΩ . Several possibilities can be envisaged.
One can use R = Ω . In this case, the problem would be to choose the basis functions
and their number. Large images in which several complex motions occur, independent
human motions for instance, are likely to require a large number of parameters,
which might invalidate the argument of representation economy and also reduce
the effectiveness of the scheme. Another possibility is to formulate the problem
as joint parametric motion estimation and segmentation. Segmentation would be a
partition R = {Ri }N1 of Ω into N regions differing by their motion as described by
a parametric model, i.e., regions each with its own set of parameters. This problem
will be investigated in (Sect. 3.11).

Another way to do parametric motion estimation, which does not resort to least
squares fit over Ω or use joint estimation and segmentation, has been investigated
in [44]. The scheme, called over-parametrization, uses a set of parameters at each
point (x, y) ∈ Ω , i.e., α = α(x, y) and, showing the dependence of the parameters
on position:

W (x, y) = α(x, y)T θ(x, y) (3.83)

A linearized optical flow constraint version of the data term in [44] can be written:

∫
Ω

g
(
∇ I (x, y) · αT (x, y)θ(x, y)+ It (x, y)

)
dxdy, (3.84)

where g(z) = √z2 + ε2, for some small ε, which induces an approximate L1 metric.
The idea of over-parametrization was also used in image segmentation by Leclerc’s
MDL scheme [33] which looked at an image as a position-dependent parametric
function of position. The constant and polynomial models were explicitly treated.
Leclerc used the length of the motion boundary set to regularize the parameter field.
This set is evaluated in the MDL cost by explicitly defining an edge to be a point
between two regions of differing parametric motion descriptions. In [44], the regu-
larization acts directly on the parameters and has the form:

∫
Ω

g

⎛
⎝ 2∑

i=1

M∑
j=1

‖αi j‖2
⎞
⎠ . (3.85)

Alternatively, it may be appropriate to use a boundary-preserving function of the
type we discussed earlier. As with the boundary length term of Leclerc MDL for-
mulation, this regularization implies that regions formed by functional minimization
are characterized by one set of motion parameters and regions differ from each other
by this set.

Let δ be the optical flow parametric representation data term:

δ = ∇ I · αT θ + It . (3.86)
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The Euler-Lagrange equations corresponding to the minimization of the over-
parametrization functional:

∫
Ω

g
(
δ2

)
dxdy + λ

∫
Ω

g

⎛
⎝ 2∑

i=1

M∑
j=1

‖αi j‖2
⎞
⎠ dxdy (3.87)

are given by, for j = 1, . . . ,M :

g′
(
δ2

)
δ Ixα1 j + λdiv

(
g′

(∑2
i=1

∑M
j=1 ‖αi j‖2

)
∇α1 j

)
= 0

g′
(
δ2

)
δ Iyα2 j + λdiv

(
g′

(∑2
i=1

∑M
j=1 ‖αi j‖2

)
∇α2 j

)
= 0

(3.88)

The formulation can be generalized to use the displaced frame difference in the
data term rather than its Horn and Schunck linearized form [44, 90]. The equations are
nonlinear. An efficient numerical implementation, within multiresolution processing
(Sect. 3.10), is described in [44], with a validation experiment using the Yosemite
test image sequences.

3.9 Variations on the Data and Smoothness Terms

To preserve motion boundaries some studies have used the L1-norm for the optical
flow smoothness term of the objective functional [91, 44, 92], in lieu of the quadratic
regularization term of Horn and Schunck [10]. However, there has been no analysis or
experimentation to support a comparison of the L1 norm and discontinuity preserving
functions of the type in Table 3.1, the Aubert function for instance. The L1 norm has
also been considered for the data term, to evaluate the displaced frame difference, or
its continuous total temporal derivative expression. However, there is some evidence
from an investigation of temporal noise in image sequences [93] that the L2 norm
may be more appropriate.

Data functions other than the displaced frame difference, or its total temporal
derivative continuous expression, have been suggested and some have been investi-
gated experimentally [42], for instance those which arise from the invariance along
motion trajectories of the image gradient or of its norm, the norm of the Laplacian,
and the norm or trace of the Hessian. Some of these variations have exhibited very
accurate results on the Yosemite test sequences.

3.10 Multiresolution and Multigrid Processing

Multiresolution and multigrid processing are “multilevel” computations which solve
a system of equations on a given discretization grid by solving similar systems on
grids at coarser discretizations. Although conceptually similar from this general point
of view, multiresolution and multigrid processing differ in the order they visit the
coarser grids and in the type of variables they compute at each of these grids.
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3.10.1 Multiresolution Processing

The optical flow constraint, which enters the formulations we have discussed, uses
the image temporal derivative, i.e., the image rate of change along the temporal
axis. In practice, of course, we have to estimate the motion field from a discrete-
time image sequence and if velocities are large, typically to cause displacements
of over a pixel between consecutive views, the image temporal derivative may not
be approximated sufficiently accurately to bear on velocity estimation, even when
the image spatial resolution is high. In such a case, motion estimation can benefit
from multiresolution processing [51, 22, 94, 28, 95]. In this coarse-to-fine strategy,
estimation is served by a pyramidal image representation [96] in which an image
is processed by filtering-and-subsampling into a pyramid of images of successively
lower resolution. The original image is at the base of the pyramid. As motion extent
decreases with resolution, the goal is to start processing at a pyramid level where
this extent is within range of estimation. The estimate at this level is then projected
on the level immediately below to warp the image at this level. The warped image
is processed for an increment of motion, also assumed within range of estimation,
and the scheme is repeated down to the original image at the base of the pyramid.
Several variants of this basic coarse-to-fine scheme have been investigated but these
have the same driving concepts, as just described, and differ mainly in the way the
various steps are accomplished. Black’s thesis [22] contains an introductory review
of the subject. An actual use of multiresolution processing within a thorough motion
estimation framework is given in [51, 28, 95].

The following algorithmic steps show the basic concepts involved in multiresolu-
tion estimation of optical flow. First, a pyramid of images is constructed from each
of the two original images I1 and I2 used in the estimation, by repeated low-pass
filtering, with a Gaussian, for instance, and subsampling at a rate of 2:

I l−1
j

(x
2

)
= h ∗ I l

j (x) j = 1, 2, (3.89)

where x = (x, y), l designates the resolution level, corresponding to image size
2l × 2l (we assume that the length and width of the original image are powers
of 2), the coarsest level being l = 0, h is the filter and ∗ designates convolution.
Subsampling brings down the optical flow magnitude by a factor of two, the purpose
being to have a valid discrete representation of the optical velocity components u and
v. The intended purpose of low pass filtering is to bring the wavelength of the image
spatial frequency components below the motion magnitude so as to have a valid
discrete evaluation of the image temporal derivative. Both operations, filtering and
subsampling, concur to make continuous formulations applicable at a pyramid level
high enough, i.e., at an image resolution low enough. Optical flow is estimated at this
coarsest level and estimation is continued down successive pyramid levels, i.e., up
successively higher image resolution, using three basic operations at each level: (1)
prolongation of the optical flow from the immediately preceding (higher, coarser)
level, (2) transformation, at this level, of the first of the two images by this projected
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flow, called image warping, and (3) estimation, at this level, of an incremental flow
using the warped image and the second image:

At coarsest level l = 0 initialize flow field W 0

From l = 1 to L

1. Prolong the flow field: W l = p(W l−1)

2. Displace (warp) the first image by the flow field: I l
1(x)← I l

1(x +W )

3. Estimate the flow increment δW l from I l
1 and I l

2

4. Update the flow field: W l ← W l + δW l

Prolongation is a coarse-to-fine interpolation operator which assigns to each fine-
level point a value interpolated from the values at neighboring coarse-level points,
i.e., it fills in the empty grid positions at level l by interpolating neighboring flow
values at level l − 1 multiplied by 2. The prolongation is generally called projection
in the optical flow literature although the appellation is discordant with the common
mathematical usage of the term. As well, image displacement (warping) at any level
is done by interpolating the non-grid (displaced) values of the image.

3.10.2 Multigrid Computation

Multigrid procedures have been used in optical flow estimation [52] generally to
complement mutiresolution processing at each level of the image pyramid [97, 95,
67, 98]. Multigrid schemes have had a great impact in numerical analysis where
they were developed, particularly to solve iteratively large scale linear systems of
equations in boundary value problems for partial differential equations [99, 100].
The main reason for using the multigrid computation is to refine via coarser grids a
fine grid approximate solution cheaper, faster, and more accurately than using only
the fine grid.

The multigrid method is better explained with (large) systems of linear equations
although it is also applicable to nonlinear equations. Let Ahzh = bh be a fine-
grid system of linear equations, h designating the domain grid spacing. Let z̃h be an
approximate solution and rh = bh−Ah z̃h , called the residual. The error eh = zh−z̃h

then satisfies:
Aheh = rh (3.90)

This equation can be transferred to a coarser grid with spacing H , double the spacing
for instance, H = 2h, as:

AH eH = RH
h rh, (3.91)

where AH is a coarse-grid approximation of the fine-grid Ah and RH
h is a restriction

operator from the fine to the coarse grid, which assigns to each point of the coarse
grid some weighed average of its argument evaluated at the neighboring fine-grid
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points. An approximate solution ẽH of Eq. (3.91) is then computed to correct the
fine-grid approximation z̃h :

z̃h ← z̃h + Ph
H ẽH , (3.92)

where Ph
H is a coarse-to-fine interpolation operator, also called prolongation, which

assigns to each fine-grid point a value interpolated from the values at neighboring
coarse-grid points. This basic two-level process is summarized by the following steps
[100]:

1. Compute approximate solution z̃h by iterating a few times on Ahzh = bh

2. Compute fine grid residual rh = bh − Ah z̃h

3. Restrict rh to coarse grid residual rH by rH = RH
h rh

4. Solve AH eH = rH for error ẽH

5. Prolong ẽH to fine grid error ẽh by ẽh = Ph
H ẽH

6. Correct z̃h by z̃h ← z̃h + ẽh

7. Iterate a few times on Ahzh = bh from z̃h

For common problems, there are standard restriction and prolongation operators,
and the coarse-grid version AH can be computed from these as AH = RH

h AhPh
H

[100]. The two-level algorithm above can be extended to a pyramid of more levels by
using a hierarchy of coarse grids, for instance with spacings h, 2h, 4h, . . . , H , and
calling the two-level algorithm recursively at each level except the coarsest, i.e., step
4 of the two-level algorithm is now a recursive call to it except at the coarsest grid
where the error is computed to trigger an upward string of error prolongations and
corresponding solution corrections. This “deep” V-path is illustrated in Fig. 3.7b.

The multigrid method is essentially different from the multiresolution in that
it is an error estimation scheme which successively refines an initial approximate
solution on the original high-resolution discretization grid using errors calculated on
successively coarser grids. Multiresolution computations, instead, refine an initial
approximation solved on the coarsest grid by working successively through higher
resolutions up to the original fine grid. From this perspective, a multiresolution

Fig. 3.7 Multiresolution and multigrid paths: a Multiresolution processing proceeds from low
resolution to high; b V-cycle multigrid computations start at the original finest resolution grid to
move though successively coarser grids to the coarsest and then up though successively finer grids
until the finest; c Full multigrid cycle links several V-cycles of different size and the same depth
starting at the coarsest grid
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Fig. 3.8 a The first of the two
images used to compute opti-
cal flow; b the second image
and the flow estimated by
embedding in multiresolution
processing. The flow occurs,
predictably, in both the region
uncovered by motion in the
first image and the region
covered in the second image.
Multiresolution computations
have been able to capture well
the overall movement of the
person

(a)

(b)

scheme adopts a coarse-to-fine strategy, i.e., after creating the image pyramid by
low-pass filtering and sub-sampling, it works strictly down the image pyramid, i.e.,
from lowest resolution to highest (Fig. 3.7a), whereas multigrid processing moves
both ways in this pyramid, first down to successively coarser resolutions and then
back up to successively finer resolutions up to the original to apply corrections
computed from an error solved at the coarsest resolution. Several of these V-shaped
paths of different sizes but of the same depth can be linked into a string that starts
at the coarsest grid to give the full multigrid cycle. This is illustrated in Fig. 3.7c.
Nonlinear equations are generally resolved with such a cycle of computations.

Example: It is remarkable that multiresolution/multigrid processing works at all
when displacements between views are significantly large as in the following exam-
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ple. The displacements in the two images used here, of a person walking, are quite
large. The first image is shown in Fig. 3.8a and the second in Fig. 3.8b which also dis-
plays the optical flow estimated by embedding in multiresolution processing. What
should be pointed out in this example is that the flow seems to capture well the overall
movement of the person in spite of the large displacements. Predictably, motion is
found and estimated in both the region unveiled by motion in the first image and the
region covered by motion in the second image. This kind of result can serve motion
detection as we will see in Chap. 4.

3.11 Joint Estimation and Segmentation

Segmentation, or partitioning, of the flow field with concurrent estimation within
each segmentation region with no particular concern about motion boundaries is
an alternative to estimation with boundary-preserving regularization because seg-
mentation will place boundaries between regions of significantly differing motion,
therefore at significant flow edges. The usefulness of joint optical flow estimation
and segmentation by variational methods was first investigated in [25, 101]. Active
contours as motion boundary variables were used [54, 60, 102, 103], and embedding
three-dimensional rigid body interpretation in estimation was considered in [58, 61].
When motion-based image partitioning is the main purpose of concurrent flow field
estimation and segmentation, a coarse model of image motion such as piecewise
constant or affine can be sufficient, particularly when this motion is due to viewing
system movement and rigid environmental objects. However, given a flow-based
segmentation obtained with a coarse motion model, one can apply a more accurate
optical flow algorithm a posteriori in each segmentation region separately, the Horn
and Schunck algorithm, for instance, or least squares in linear space parametriza-
tion [44, 60] or, yet, by over-parametrization for added accuracy and motion edge
definition [44] (Sect. 3.8).

The following shows how active contours can be used to formulate joint motion
estimation and segmentation. The formulation has been investigated in [54] for an
arbitrarily fixed number of regions using the piecewise constant model of motion,
i.e., optical flow in each segmentation region is considered constant. It has been
extended to higher order linear models of motion, the affine for instance, and to the
spatiotemporal domain in [103]. The expansion of motion in a general linear space of
functions was studied in [60]. To bring out the main concepts involved in concurrent
optical flow estimation and segmentation it is sufficient to use the piecewise constant
model of motion and the case of a segmentation into two regions. We will use the
method of Cremers [54] for this purpose.

Two-region partitioning.
Consider the case of segmenting the flow field into two regions and let R = {Ri }21
be any two-region partition of the image sequence domain Ω . Let γ be a regular
closed plane curve parametrized by arc length, γ : [0, l]← R

2, where l is the curve
length, such that γ and all its derivatives agree at the endpoints 0 and l. We will

http://dx.doi.org/10.1007/978-3-319-00711-3_4
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further request that γ be a simple curve, i.e., that it has no other self-intersections
but at 0, l, i.e., s1, s2 ∈ ]0, l[ , s1 	= s2 =⇒ γ (t1) 	= γ (t2). Let Rγ be the interior
of γ . The regions R1 and R2 of the two-region partition R ofΩ will be represented
by Rγ and Rc

γ , respectively. i.e., R1 = Rγ and R2 = Rc
γ .

Under the piecewise constant model of optical flow, i.e, where the flow is assumed
constant, equal to some velocity vector (ai , bi ) in each region Ri of R, the worth,
or quality, of R as an optical flow based segmentation of the image sequence I at
some time of observation can be represented by the following functional:

E (R, {ai , bi }21) = E (γ, {ai , bi }21) =
2∑

i=1

∫
Ri

ei (x, y)dxdy + λ
∫
γ

ds, (3.93)

where, for i = 1, 2, ei is a function which evaluates how well the piecewise constant
representation of optical flow fits the observed data, namely the spatiotemporal varia-
tions of the image sequence within Ri . For instance, we can use the squared piecewise
constant parametric expression of the lefthand side of the Horn and Schunck equation,
a special case of the more general representation in Eqs. 3.74–3.77. An alternative is
to use the squared cosine of the angle between the image spatiotemporal gradient and
the spatiotemporal velocity vector (u, v, 1), i.e., the square of the dot product of the
unit image spatiotemporal gradient and unit spatiotemporal velocity vector, which
is just what the lefthand side of the Horn and Schunck equation expresses would
we normalize the two vectors by their respective length. Precisely, if the constant
velocity vector of region Ri is wi = (ai , bi , 1)T , i = 1, 2, then:

ei = (wT
i ∇3 I )2

‖wi‖2‖∇3 I‖2 , (3.94)

where ∇3 designates the spatiotemporal gradient, ∇3 I = (Ix , Iy, It )
T = (∇ I, It )

T .
Of course, wi 	= 0 because the third component of the vectors is 1. To avoid zero
denominators, a small quantity may be added to the image spatiotemporal gradient
norm: ‖∇3 I‖ + ε← ‖∇3 I‖.

The main difference between the data function of Eq. 3.94 and the one used com-
monly in optical flow estimation, namely the squared lefthand side of the Horn and
Schunck gradient equation:

ei = (Ix u + Iyv + It )
2, (3.95)

is the normalization of the spatiotemporal image gradient and motion vectors occur-
ring in Eq. (3.94). The normalization to a unit vector of the image spatiotemporal
gradient gives equal strength to the contribution in the objective functional from every
point of Ω where this vector is not zero. This is not the case with Eq. (3.95) which
gives more weight, therefore more importance, to high contrast points. It is unclear
whether high image contrast should or should not be given priority in determining
optical flow. However, Eq. 3.94 has the merit, as we will see, of leading directly to
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the expression of a small-matrix eigenvalue problem when minimizing the objective
functional with respect to the optical flow model parameters ai , bi , i = 1, 2.

The integral in the second term of the objective functional Eq. (3.93) is the length
of γ and has the effect of shortening it, therefore smoothing it. We know from
Chap. 2 that this smoothing manifests as curvature in the Euler-Lagrange equation
corresponding to this term in the minimization of Eq. (3.93) with respect to γ .
Minimization with respect to the motion parameters.
Let S be the 3× 3 matrix defined by:

S = ∇3 I (∇3 I )T

‖∇3 I‖2 . (3.96)

This matrix is, of course, a function of image position: S = S(x, y). The data function
for each region Ri , i = 1, 2 can then be rewritten as:

ei = wT
i Swi

‖wi‖2 , (3.97)

With this notation, differentiation with respect to {ai , bi }21 of Eq. (3.93) under the
integral sign gives for each region Ri the solution w̃i defined by:

w̃i = arg min
w

wT Mi w
wt w

, (3.98)

where Mi is the 3× 3 data matrix given by:

Mi =
∫

Ri

S(x, y)dxdy, (3.99)

obtained by integrating each element of S over Ri . Because Mi is a symmetric matrix,
its smallest eigenvalue μi is characterized by [104]:

μi = min
w

wT Mi w
wt w

. (3.100)

Therefore, the solution w̃i is the eigenvector corresponding to this smallest eigenvalue
and which has the third component equal to 1.
Minimization with respect to γ : curve evolution equation.
With the motion parameters fixed, i.e., assuming they are independent of γ (or Rγ ),
the functional derivative of the integral on Rγ of the objective functional data term
is (see Chap. 2 for basic formulas):

∂

∂γ

∫
Rγ

e1(x, y)dxdy = e1n, (3.101)

http://dx.doi.org/10.1007/978-3-319-00711-3_2
http://dx.doi.org/10.1007/978-3-319-00711-3_2
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where n is the outward unit normal function of γ . Similarly for the integral over Rc
γ :

∂

∂γ

∫
Rc
γ

e2(x, y)dxdy = −e2n. (3.102)

The minus sign on the right-hand side of Eq. (3.102) is due to the fact that the
boundary of Rc

γ is −n. The functional derivative of the length integral of Eq. (3.93)
is (see Chap. 2):

∂

∂γ

∫
γ

ds = κn, (3.103)

where κ is the curvature function of γ . Accounting for all its terms, the functional
derivative of the objective functional Eq. (3.93) is:

∂E

∂γ
= (e1 − e2 + λκ)n, (3.104)

Let γ be embedded in a one-parameter family of curves γ (s, τ ) indexed by algo-
rithmic time τ . The evolution equation to minimize the objective functional with
respect to γ is (see Chap 2):

∂γ

∂τ
= −∂E

∂γ
= −(e1 − e2 + λκ)n, (3.105)

Recall that the evolving curve is called an active curve, or an active contour.
Level set representation and evolution equation.

We recall from Chap. 2 some basic facts about level sets: an implementation of
Eq. (3.105) which would explicitly discretize γ as a set of particles and move these,
would be tantamount to numerical breakdown because changes in the curve topology
would not be resolvable in general. Fans, where the particles separate widely to create
large gaps, and shocks, where the particles come so close together as to collide or
cross paths, would also be major hurdles. The level set method [105] avoids these
serious problems by representing γ implicitly as a level set, the zero level set, for
instance, of a functionφ defined on the plane. The level set functionφ is then evolved,
rather than evolving γ , in a manner that is consistent with the evolution of γ , enabling
the recovery of the curve at any time as its zero level set. With this representation,
γ remains a well defined curve in the face of topology changes, fans, and shocks.
Refer to Chap. 2 for a review.

Let the evolving curve γ (s, τ ) be represented at all times τ by the zero level-set
of function φ : R

2 × R → R, taken by convention to be positive inside Rγ and
negative outside. The evolution equation of φ is given by:

∂φ

∂τ
= (e1 − e2 + λκ) ‖∇φ‖ (3.106)

http://dx.doi.org/10.1007/978-3-319-00711-3_2
http://dx.doi.org/10.1007/978-3-319-00711-3_2
http://dx.doi.org/10.1007/978-3-319-00711-3_2
http://dx.doi.org/10.1007/978-3-319-00711-3_2
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In terms of the level set function, curvature κ of γ is expressed as:

κ = div

( ∇φ
‖∇φ‖

)
(3.107)

when the normal unit vector n is oriented outward:

n = − ∇φ‖∇φ‖ (3.108)

General linear models of motion.
The method [54] is easily extended to general linear models of optical flow by writing
the spatiotemporal motion vector w = (u, v, 1)T in terms of the motion parameters
via a transformation matrix T = T(x, y) independent of the image. The temporal
dimension can also be included in the writing. For a model of n parameters a1, . . . , an ,

w = Tα, (3.109)

where α is the vector of parameters augmented by a last element equal to 1, α =
(a1, . . . , an, 1)T . The first half of the parameters correspond to the component u of
optical flow and the other half to the v component. Matrix T is of size 3× (n + 1).
For instance, for the affine model, we have:

T =
⎛
⎝ x y 1 0 0 0 0

0 0 0 x y 1 0
0 0 0 0 0 0 1

⎞
⎠ (3.110)

With this model of motion, the data function of region Ri in the objective functional
becomes:

ei = (αT
i T∇3 I )2

‖αi‖2‖T∇3 I‖2 , (3.111)

From here on, the problem statement remains the same as with the piecewise constant
model of motion.

A formulation using the standard data function Eq. (3.95), rather than Eq. (3.111),
and an expansion of each component of optical flow in the span of a general basis of
functions as in Eqs. 3.74–3.76 of Sect. 3.8, leads to similar computations, namely an
algorithm which iterates two steps, least-squares estimation of the motion parameters,
which can be done efficiently by the singular value decomposition (SVD) method,
and active curve evolution with a velocity of the same expression as Eq. (3.105). More
specifically, and using the notation and definitions in Eqs. 3.74–3.76 of Sect. 3.8, the
formulation would seek to minimize:

E (γ, α1, α2) =
2∑

i=1

∫
Ri

(
∇ I · αT

i θ + It

)2
dxdy + λ

∫
γ

ds, (3.112)
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where αi , i = 1, 2 are the coefficient vectors for Ri , i = 1, 2, with R1 = Rγ , R2 =
Rc
γ , and θ is the vector of basis functions. The minimization is done by iterations of

two steps, one to compute the parameters by least squares (Eq. 3.78), via SVD for
instance, in each region separately, and the other to evolve the curve with:

dγ

dτ
= −

((
∇ I · αT

1 θ + It

)2 −
(
∇ I · αT

2 θ + It

)2 + λκ
)

n. (3.113)

The dependence of the parameters on the segmentation does not produce extra
terms [106] in the evolution equation and the minimization corresponds to gradient
descent rather than simply greedy descent.

An important question arises in parametric motion estimation as to which model
complexity to use, i.e., how many basis functions to use in the representation of
the components of optical flow. In what concerns estimation on a given support,
the higher the model order the higher the accuracy. However, when the emphasis
is on segmentation, then estimation accuracy is of secondary concern as long as it
is sufficient to serve the segmentation, i.e., the model order to use is the least com-
plex that permits a distinction between the regions of segmentation. For flow fields
caused by moving rigid environmental objects, or by camera motion, a low-order
model such as piecewise constant or affine will probably be satisfactory. However,
other flow fields, such as those due to articulated objects or elastic environmental
motion, may require higher order models. Ideally, one should use the smallest order
that allows discriminating between the different relevant motions of the flow field
because models of higher order might represent flow variations so fine as to pro-
duce a segmentation that is an artifact of the model rather that coherent motion. This
is the problem of over-fitting mentioned in [103] which observed in practice cases
of reduced curve evolution stability with increased model complexity. At any rate,
accurate region-confined flow estimation can always follow a reasonably correct
segmentation obtained with a lower order model.
Multiregion segmentation.

A segmentation into more than two regions, called multiregion segmentation, or
multiphase segmentation, uses two or more active curves. In essence, the objective
functional data term for N regions {Ri } is:

D =
N∑

i=1

∫
Ri

ei (x, y)dxdy (3.114)

If one has several active curves and uses the interior of each to define a region, one
must make sure that at algorithm completion the regions so defined form a partition,
i.e., that they cover the image domain and do not intersect. Therefore, one cannot
simply generalize a two-region algorithm by using more curves and assigning a
region to the interior of each.

Multiregion segmentation has been addressed in several different ways. The
methods have been described in detail in their original papers and have also been



3.11 Joint Estimation and Segmentation 81

reviewed in [31]. We will merely give of them here a brief account for a quick
introduction to the literature on the subject. Matlab code of several algorithms
is freely available on the web at mathworks.de/matlabcentral/fileexchange/29447-
multiphase-level-set-image-segmentation and elsewhere.

The earliest investigations of multiregion segmentation [89, 107] addressed the
problem in two quite different ways. In a region competition framework [89], the
curves {γi } were taken together as a set formed by their union, started as a parti-
tion, and moved as a set, i.e., the curve evolution equations resulting from region
competition were applied to Γ = ∪γi considered a single curve. This representation
does not extent to the level set method and, as a result, Γ is tracked by discretization
particles, predisposing the scheme to numerical ills which do not occur with the level
set method. Along a different vein in [107], several active curves mediate multire-
gion segmentation, each with its own speed function, but also with a contribution
from a term in the objective functional dedicated to bias the segmentation toward a
partition. However, a partition is not guaranteed at algorithm convergence because
this term is weighed against the others in the functional and, therefore, the weight
value conditions the outcome. The scheme also appears in the investigations of image
segmentation of [108, 109].

Using several active contours and stating segmentation as spatially regularized
clustering, the investigations in [60, 110, 111] were able to obtain coupled func-
tionals, one for each curve. The resulting movement of the curves ends in a partition
when the curves are started so as to define a partition [110]. However, the scheme can
be quite slow because it sweeps through the image several times at each of many iter-
ations and can sometimes produce artifacts such as elongated portions along region
borders.

A definite means of ensuring a partition in multiregion segmentation is simply to
define a general mapping between the regions {Ri } of the segmentation formulation
and partition-defining regions drawn from the various sets which regions {Rγi } form
when they intersect [112, 113]. Two such mappings are shown in Fig. 3.9. Both
methods guarantee a partition by construction but the computational load can quickly
become excessive when the number of regions increases.

A first order-order analysis of the region data functions in the two-region case
brings out the interpretation of curve evolution as point membership operations.
This directs to enforcing a simple partition constraint in the multiregion case directly
in the functional minimization process and which states that a point relinquished
by a region is claimed by another without transition through intermediate regions,
thereby maintaining implicitly a partition of the image domain at all times when
segmentation is started with a partition [114, 115]. This can lead in general to very
efficient execution.

Multiregion segmentation raises the question as to what the number of regions is.
In general, this is just fixed to equal the number one expects to occur, but there are
many cases where this is not applicable. With curve evolution methods, there have
been some efforts at determining the number of regions automatically, either as part of
curve evolution optimization [116] or by an external process [89, 117, 111]. However,
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experimentation regarding determining the number of regions automatically remains
by and large insufficient, even though the question is quite important.

Example: This example (courtesy of D. Cremers) illustrates joint parametric esti-
mation and segmentation of optical flow by the general active curve framework
in [54] which we have just described. The scene of this sequence contains three
circular objects moving against a mobile background. The purpose, therefore, is
to segment the image into four regions on the basis of the direction of motion to
be simultaneously estimated. The true image movements in the scene are: down
(top left object), up (top right object), right (lower object), and left (background).
The multiple region representation in terms of active contours is that of Chan
and Vese [112]; therefore, two curves are needed (refer to Fig. 3.9a). The initial
position of these curves is shown in Fig. 3.10a which also displays the evolving
motion field. Intermediate motion fields and positions of the curves are shown in
Figs. 3.10b and c. The curves and the motion field at convergence are in Fig. 3.10d.
The curves define regions which correspond accurately to the objects and back-
ground, and the motion field fits the ground truth.

(b)(a)

Fig. 3.9 a Partition construction in [112]: A single curve defines two regions. Two intersecting
simple closed curves give four disjoint subsets A, B,C, D. These can be combined to have partitions
of up to four regions. For four regions, R1 = B = Rγ1 ∩ Rc

γ2
; R2 = D = Rγ2 ∩ Rc

γ1
; R3 = C =

Rγ1 ∩ Rγ2 ; R4 = A = (R1 ∪ R2)
c. In general, N regions necessitate �log N� curves; b The

mapping of [113]: three curves map to four partition regions: R1 = Rγ1 ; R2 = Rγ2 ∩ Rc
γ1
; R3 =

Rγ3 ∩ Rc
γ2
∩ Rc

γ1
; R4 =

(∪3
i=1 Ri

)c
. In general, the mapping requires N−1 curves for N regions
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(b)(a)

(c) (d)

Fig. 3.10 Joint segmentation and parametric estimation of optical flow by the Cremers method
(Courtesy of Daniel Cremers): The true motions in the scene are: vertically down for the top
left object, vertically up for the top right object, horizontally to the right for the lower object, and
horizontally to the left for the background. Two curves are used to represent four regions according to
the Chan and Vese mapping (Fig. 3.9a). The initial position of the curves is shown in a, intermediate
positions and the evolving motion field are displayed in b and c. The final segmentation and motion
field are shown in d. Both the segmentation and the motion field fit the ground truth

3.12 Joint Optical Flow and Disparity Estimation

In stereoscopy, the disparity field and optical flow are related by the stereokinematic
constraint [62, 63]. Therefore, their joint estimation, via this constraint, can be
advantageous [118–124]. Joint estimation involves computing two motion fields and
two disparity fields using the stereokinematic constraint [62, 63] which relates three
of these fields to the fourth.

Let the image sequence be a real positive function over a domain Ω × ]0, S[ ×
]0, T [, where ]0, T [ is an interval of time, and ]0, S[ an interval of R:
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I : Ω × ]0, S[× ]0, T [ �→ R

x, s, t �→ I (x, s, t)

Variable s can be thought of as the parameter of the trajectory of a sequence of image
planes in these planes coordinate domain. For a fixed value of s we have a temporal
image sequence of images and for two distinct fixed values we obtain a stereoscopic
image sequence. Therefore, this generalizes the definition of a stereoscopic image
sequence. Let (x, s, t) ∈ Ω × ]0, S[ × ]0, T [ and x + d(x, s + ds, t + dt) its
correspondent at (s+ds, t+dt), where d designates a displacement. The assumption
that I does not change at corresponding points,

I (x + d(x, s + ds, t + dt), s + ds, t + dt) = I (x, s, t)

gives the following motion and disparity constraints:

∇ I ·W + It = 0 (3.115)

∇ I · D + Is = 0,

where W is the optical velocity vector, D the disparity vector,∇ I the spatial gradient
of I , It and Is the partial derivatives of I with respect to t and s. Because

W = ∂d
∂t
, D = ∂d

∂s
, (3.116)

we also have the integrability constraint:

∂W

∂s
= ∂D

∂t
(3.117)

The integrability constraint is the continuous-disparity form of the stereokinematic
constraint of [62] which was written for optical flow in discrete-disparity stereoscopic
image sequences.

A fully discrete version of the integrability constraint can be written as follows.
Let I l,t , I r,t be the left and right images at time t and I l,t ′ , I r,t ′ the left and right
images at the next time t ′. Let W l,t = (ul,t , vl,t ) and W r,t = (ur,t , vr,t ) designate

left and right optical motion vectors at time t , and Dt = (δt
1, δ

t
2), Dt ′ = (δt ′

1 , δ
t ′
2 ) the

disparity vectors at t and t ′. A discrete representation of the integrability constraint
can then be written:

W r,t −W l,t = Dt ′ − Dt (3.118)

This is the quadrilateral expression of the stereokinematic constraint (Fig. 3.11). It
is the expression generally used in practice [118–122].
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Fig. 3.11 Quadrilateral rep-
resenting the stereokinematic
constraint Eq. 3.118: Knowing
three sides, we can deduce the
fourth.

The two motion fields and the two disparity fields are related via the stereokine-
matic constraint. There is no other relation between any three of them but through
the fourth. Therefore, joint estimation of the four fields which would treat the left
and right data of stereoscopy even-handedly, can proceed along the following two
veins:

(1) The four fields are estimated concurrently, for instance by minimizing an
objective functional containing data and smoothness terms for each field, and a term
to account for the stereokinematic constraint to bind the fields together. A slightly
more efficient version of this, computationally, would estimate concurrently three
of the fields bound by the stereokinematic constraint which uses the fourth field
computed beforehand independently.

(2) Three of the fields are estimated independently, for instance by a variational
formulation such as we have seen, and the fourth field is deduced directly using the
stereokinematic constraint.

Estimation along the first vein entails solving a very large system of equations,
nonlinear equations when using discontinuity preserving formulations. For instance,
with a 400 × 400 image, the number of scalar variables to determine in four fields
is 28 × 104 at each instant of observation. Along the second vein, one would would
solve independently three much smaller problems to estimate three fields, and follow
with a direct application of the stereokinematic constraint to compute the fourth field.
The process, therefore, is much more efficient along this vein. Also, and as we shall
see, prolonging the estimation through time can be done at each instant of time by
computing independently only the two flow fields, followed by an execution of the
stereokinematic constraint using the previously computed disparity field.

According to the second paradigm, whereby three fields are computed indepen-
dently and the fourth deduced, we can use constraints Eq. (3.115) to estimate sep-
arately the left and right motion fields and the disparity field at time t before com-
puting the disparity field at time t ′ using the integrability/stereokinematic constraint
Eq. (3.118). The left and right motion fields at t can be estimated for instance as in
Section 3.5 by solving:
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Table 3.2 The two lines in the top box show the ground truth (constant) disparity for the background
(B) and each of the two objects (O1 and O2) between the left and right images of the second
stereoscopic image (Fig. 3.12a,b)

Actual B O1 O2

x −1.0 1.0 1.0
y 0.0 1.0 1.0
Joint estimation B O1 O2

x −0.8 0.96 0.92
y 0.02 0.81 0.87
Deriche et al. B O1 O2

x −0.81 0.87 0.90
y 0.02 0.78 0.87

The middle box displays the average disparities, for the background and each object, computed by
joint estimation optical flow and disparity as described in the text. The bottom box gives the average
disparities computed by the Deriche-Aubert-Kornprobst method

W {l,r},t = arg min
W
{
∫
Ω

(
(∇ I {l,r},t ·W + I {l,r},tt )2 + λ(g(‖∇u‖)+ g(‖∇v‖))

)
dx

(3.119)
The disparity field can be computed by variational methods in a similar fashion, with
or without the epipolar constraint [87, 125–128].

When the left and right motion fields and the disparity field are estimated at time
t , the disparity field at time t ′ is deduced using the integrability/stereokinematic
constraint, i.e.,

Dt ′ = W r,t −W l,t + Dt (3.120)

We can make two observations: (1) Initially, the disparity field at time t is com-
puted independently. Subsequently, the current disparity field is the disparity field
computed at the previous instant, i.e., at each instant of time, except at the start, only
the two motion fields are computed by Eq. (3.119), followed by an application of
Eq. 3.120 and, (2) the formulation assumes that the disparity and motion are both of
small extent. In the presence of either motion or disparity of large extent, estimation
must resort to some form of multiresolution/multigrid computations (Sect. 3.10).

Example: The second of the two stereoscopic pairs of images used (constructed
from the Aqua sequence) in this verification example (from [123]) is displayed in
Fig. 3.12a, b. The scene consists of a circular object on the left (sea shell like) and
a circular object on its right (sponge like), against a background (in an aquarium).
Both objects are cutouts from real images.The background and the objects are given
disparities in the first stereoscopic pair of images and are made to move such that
disparities in the second stereoscopic pair are (−1,0) for the background, and (1,1) for
the two objects (Table 3.2 upper box). The results are shown graphically in Fig. 3.12
for a qualitative appraisal, and quantitatively in Table 3.2 (lower two boxes).
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(a) (b)

(c) (d)

Fig. 3.12 Joint estimation of small extent optical flow and disparity: a, b the second of the two pairs
of stereoscopic images used; c a graphical display of the disparities computed by joint estimation
using the integrability/stereokinematic constraint; d A graphical display of the disparities computed
with the Deriche-Aubert-Kornprobst method

3.13 State-of-the-Art

This chapter has presented the fundamental concepts underlying optical flow and
its estimation, namely (i) the optical flow constraint which relates optical veloc-
ity to the image spatiotemporal gradient, (ii) the variational principle and the basic
roles that conformity to data and regularization play in problem formulations, (iii)
the necessity and mechanisms to preserve the sharpness of motion boundaries, (iv)
mutiresolution/multigrid processing to deal with long-range motion, (v) the combi-
nation of motion segmentation and motion estimation as joint processes, and (vi) the
concurrent estimation of the optical flow and disparity fields. These concepts are self-
contained and, as such, they were described separately to allow their full meaning to
be exposed unconcealed by other considerations. Algorithms which account for each
concept have been described, such as the Horn and Schunck method, the Deriche-
Aubert-Kornprobst’s and the Cremers’. The purpose of the presentation was to focus
on explaining the idea underlying each abstraction and on means of effecting it, and
no attempt was made to describe algorithms that would embody together several
concepts. Such algorithms have been the concern of a number of studies investigat-
ing various mechanisms for accurate estimation. The domain is now mature enough
to allow a thorough treatment of the problem leading to fast, effective, and accurate
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algorithms with results that can be used for a variety of useful purposes, including
motion detection and three-dimensional structure and motion recovery. This is the
case, for instance, with the investigations in [12, 41, 42] which describe detailed
optical flow computations that have produced impressive results. Faster computa-
tions using the conjugate gradient method to solve a large linear system of equa-
tions, rather than Gauss-Seidel or similar, have been implemented in Matlab/C++
and made available by [129] (http://people.csail.mit.edu/celiu/OpticalFlow/). The
availability of good algorithms and implementations is complemented by useful col-
lections of test image sequences and motion data, notably the Middlebury database
(http://vision.middlebury.edu/flow/). Finally, the successful computational formula-
tions and mechanisms used in optical flow estimation have found good use in joint
disparity and optical flow estimation [124].
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Chapter 4
Motion Detection

4.1 Introduction

In the context of motion analysis, the image foreground is the region of the image
domain which corresponds to the projected surfaces of the moving environmen-
tal objects, and the background is its complement. Motion detection separates the
domain of an image sequence into foreground and background. Because it refers to
environmental object motion, this general definition is valid for both static and mov-
ing viewing systems. When the viewing system is static, the foreground motion is
exclusively due to the projected surfaces of the objects in motion. When the viewing
system moves, it causes image motion which combines by vector addition with the
image motion due to object movement. In this case, foreground detection requires
that the motion due to the viewing system movement be accounted for, for instance
by subtracting it from the combined image motion so that the residual motion is due
to the moving objects only.

Motion detection does not necessarily have to evaluate image motion, unlike
motion segmentation which divides the image domain into regions corresponding
to distinct motions and which, therefore, must distinguish between the various dif-
ferently moving image objects by evaluating their motion, or the motion of the
environmental objects which induced it. However, image motion can be the basis of
detection when available.

Detection may be done without explicit recourse to the motion field in two different
ways. One scheme is to use a background template. The template is an image of the
environment considered typical when none of the anticipated object motions occur.
Motion in an image is then detected by comparing the image to the template. The
other way of detecting motion without computing it first is to use the image temporal
derivative, which amounts to successive frames differencing in the case of digital
image sequences. In this case, the derivative is evaluated to determine whether it is
due to environmental motion or not, which, ultimately, amounts to deciding whether
an image change at a point is significant and attributable to object motion rather than
to noise or other imaging artifact.

A. Mitiche and J. K. Aggarwal, Computer Vision Analysis of Image Motion by Variational 95
Methods, Springer Topics in Signal Processing 10, DOI: 10.1007/978-3-319-00711-3_4,
© Springer International Publishing Switzerland 2014
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Fig. 4.1 Examples of scenes in surveillance and scene monitoring applications. The intensity at
any given point and time in such scenes is affected generally by sensing noise. a The intensity can
be significantly altered by illumination variations in the course of the day. b The tree foliage can
have local movements that produce significant variations in the sensed image intensity; yet this
motion is irrelevant. c Snow produces sensing artifacts which can prevent the detection of moving
targets

At first consideration, motion detection might be deemed an easy task because
it seems to require a mere comparison of an image to a template or of an image
to a subsequent one in a sequence, or an estimation of image motion and a simple
analysis of it to determine where in the image domain it is significant, for instance
by a thresholding operation which would declare part of the static background any
point where the amount of motion is under a cutoff value. These simple ways of
detecting motion are in fact commonly in use in many applications. However, as the
following few examples indicate, the problem is not so simple in reality.

The illumination and sensing conditions of the building scene imaged in Fig. 4.1a
(image sequence from the Video Surveillance Online Repository, VISOR, http://
imagelab.ing.unimore.it/visor/video_videosInCategory.asp?idcategory=11) are com-
mon in surveillance and scene monitoring applications. The intensity at any given
point and time is affected in such scenes by sensing noise and can be significantly
altered by illumination variations in the course of the day. When the camera and the
scene are motionless, one may think that an image sequence recorded during a short
interval of time will be just about constant. However, this is not generally the case,
as the graphs of Fig. 4.2a, b illustrate well. The plots show the grey level intensity
in consecutive frames for two different image domain grid points, during an interval
of time when both the camera and the scene are motionless. The intensity variations
from a frame to the next in these plots foretell that even image differencing, the
simplest method for motion detection, will require some form of noise modelling or
of spatial/temporal regularization to be of any practical use.

Objects such as trees, commonly appearing in surveillance scenes, as in Fig. 4.1b
(image sequence from the Video Surveillance Online Repository, VISOR, http://
imagelab.ing.unimore.it/visor/video_videosInCategory.asp?idcategory=11), or Fig.
4.3, pp. 103 (courtesy of Prof. Robert Laganière, University of Ottawa), can exhibit
local movements that produce significant variations in the sensed image intensity.
Yet, the image of such objects is to be assigned to the background rather than the fore-
ground. Tree foliage produces intensity variations which resemble flicker due to the

http://imagelab.ing.unimore.it/visor/video_videosInCategory.asp?idcategory=11
http://imagelab.ing.unimore.it/visor/video_videosInCategory.asp?idcategory=11
http://imagelab.ing.unimore.it/visor/video_videosInCategory.asp?idcategory=11
http://imagelab.ing.unimore.it/visor/video_videosInCategory.asp?idcategory=11
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Fig. 4.2 Grey level temporal variations at two different pixels of the Building surveillance video
sequence

Fig. 4.3 Staufer-Grimson motion detection method by mixture of Gaussians modelling of intensity:
a The observed scene; everything is motionless in this scene except the tree foliage and the bike
and its rider. b The detected foreground points. The points are on the image of the bicycle and its
rider, and at the fringes of the tree foliage where the intensity variation between consecutive frames
is more noticeable

continual fluctuations of the leaves which occur when air moves even slightly. These
intensity variations can cause unwanted spurious motion to be detected (Fig. 4.3).

Image sequences acquired during rain, or snowfall (Fig. 4.1c) (image sequence
from Karlsruhe University, Institut für Algorithmen und Kognitive Systeme, http://
i21www.ira.uka.de/image_sequences/), are other examples where moving object
detection is adversely affected. Conditions such as rain and snow produce gener-
ally incoherent temporal sensing measurements which can obscure the movement of
targeted moving objects and thus jeopardize their detection.

Sensing noise always occurs and illumination change is prevalent in practice.
Therefore, they must be included in any statement of motion detection. Occasional
impediments which occur in some applications but not in others, such as unsought

http://i21www.ira.uka.de/image{_}sequences/
http://i21www.ira.uka.de/image{_}sequences/
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surface deformations of fixed environmental objects, as with tree foliage under blow-
ing air, and atmospheric sensing interference, as with rain and snow, require specific
processing which may include the intervention of procedures and descriptions exter-
nal to the intrinsic process of motion detection.

Motion detection serves useful applications and offers technical and technological
challenges worthy of research. It has been the subject of a considerable number of
studies and a frequent theme in image processing conferences. It is also a long
standing topic of computer vision [1, 2]. Key among applications are human activity
analysis and traffic monitoring, principally for the impact they have or can have on
collective and personal safety of people. There have been several lengthy surveys of
investigations in these applications [3–9]. A general review of image change detection
can be found in [10] and a survey of background modelling by Gaussian mixtures
in [11]. Most of the research surveyed in these reviews looks at motion detection
from the viewpoint of image change without an explicit link to the motion that caused
it. However, although motion can be detected without referring to it explicitly, as in
background differencing for instance, it remains the underlying fundamental variable.
Moreover, there have been relatively very few studies which investigated variational
formulations [12–18] when such statements are now common in computer vision,
affording tractable accurate algorithms to solve difficult problems [19–22].

This chapter will focus on variational motion detection formulations. Variational
methods, we recall, solve a problem by minimizing a functional which contains all
of the problem variables and constraints. With the proper constraints, and the proper
tools of optimization, these can lead to algorithms that are accurate in the evaluation
of the problem unknowns, that are stable numerically, and whose behavior can be
explained. The objective functionals of most of the variational formulations we will
be discussing are active curve functionals minimized by developing the correspond-
ing Euler-Lagrange equations and solving these using the level set formalism we
have reviewed in Chap. 2.

The chapter sets out with a discussion of background modelling and background
subtraction methods. Applications where reliable background models are work-
able, such schemes can be very efficient. The discussion is divided in two parts,
one dealing with point-wise background subtraction (Sect. 4.2) and another treating
variational, and global thereof, background subtraction (Sect. 4.3). Variational for-
mulations explicitly reference the background and foreground as regions, thereby
providing a natural description of the division of the image domain into a fore-
ground and a background. Moreover, and contrary to point-wise methods, variational
schemes can use spatial regularization to exploit the fundamental characteristic that
neighbors in the image domain tend to have the same foreground/background mem-
bership, i.e., background points tend to cluster spatially, and so do the foreground
points. Therefore, variational formulations can produce a detection map that is free
of small, noisy regions that generally plague point-wise detection.

When viable background modelling is not practicable, detection can resort to
consecutive image differencing or to the use of image motion variables such as
optical flow or its normal component. These approaches are taken up in Sects. 4.4
and 4.5, respectively. The discussions up to Sect. 4.5 assume that the viewing

http://dx.doi.org/10.1007/978-3-319-00711-3_2
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system does not move so that the background is static modulo noise. Section 4.6
addresses the problem of detecting motion in the presence of viewing system move-
ment. In this case, the image motion is the result of a superposition by vector addition
of the motion due to the viewing system movement and to the moving environmental
objects. The main strategy is to state the problem with the motion due to the viewing
system subtracted from the overall image motion. This would bring the problem
back to the case of moving objects against a static background so that the schemes
of previous sections can be applied.

The discussions to follow assume that the image sequence is a spatiotemporal
image intensity pattern, i.e., a temporal sequence of single valued images:

I (x, y, t) : Ω×]0, T [→ R
+, (4.1)

where Ω is the image domain and T is the duration of the sequence. However, the
formulations can be simply generalized to multivalued images.

4.2 Background Modelling and Point-Wise Background
Subtraction

The simplest of background models would be a snapshot of the environment when
none of the anticipated motions occur, i.e., a template image of the environment at
a time it contains only fixed constituent objects. Except in simple situations, one
would easily expect this naive template to fail motion detection because it contains
no information about the image temporal variations not caused by object motion,
such as sensing noise or illumination change. This snapshot template model can be
generalized by processing the temporal intensity stream at each point of the image
domain, rather than a single template value, and describing the intensity variations in
some window of time by a statistical model. Statistical models have been frequently
used to advantage in variational image analysis, particularly image segmentation but
also in motion analysis [22].

Statistical background intensity modelling can be examined from two distinct per-
spectives: parametric representation which uses a parametric distribution to describe
the image intensity stream, and nonparametric representation which uses an empir-
ical distribution (histogram) of the intensity.

4.2.1 Parametric Modelling: The Stauffer–Grimson Method

An immediate generalization of the naive template is the image averaged in a time
interval [23]. This would be an improved template because averaging is a low pass
filter which smooths out spurious variations of the sensed signal. This comes to
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assuming a Gaussian model with unit variance and a mean equal to the empirical
average. For a slightly more general representation, the Gaussian model can include
both the mean and the variance parameters. In practice, of course, the Gaussian den-
sity is discretized into bins of grey levels. The classification of a pixel has often been
expedited in practice by comparing the value of the Gaussian density corresponding
to its intensity to a threshold determined experimentally; the pixel is assigned to the
background if this value is under the threshold, and to the foreground otherwise.

Although mathematically convenient, the Gaussian model is not generally
applicable. For instance, it is not descriptive of non-additive noise and it is not
expressive of scene illumination variations, specularity, and intensity changes due to
changing local surface orientation of objects such as trees and water bodies. It is also
not applicable when the background template must be constructed from an image
sequence in the presence of moving objects because these objects might contribute
arbitrary intensities to the background template at arbitrary position and time. All
such conditions are common in applications, particularly outdoor scene surveillance
and monitoring. To describe background templates under these circumstances, more
descriptive models are needed. For instance, a mixture of Gaussians at each pixel has
been used in [24]. The rationale is that sensing noise, illuminant brightness change,
and transient background masking by moving objects, will cause distinct pixel inten-
sity clusters, each represented by a distinct Gaussian distribution. The experimental
investigations in [24], and elsewhere, support this assertion and show that K -means
clustering is an expeditious substitute for Gaussian mixing.

The method in [24] may be implemented to run in real time and, as a result,
it has been widely used in applications such as surveillance. It is not a variational
method because it performs single pixel measurements, operations, and decisions, to
classify each pixel x as part of the background or the foreground. More specifically,
the scheme models the image intensity at a point x by a mixture of K Gaussians:

P(I (x)) =
K∑

i=1

ci G(I (x)|μi , σi ), (4.2)

where the meansμi and the variances σi are estimated from the image values at x, for
each x of the image positional array, in a time interval ending with the current time. As
we have already mentioned, the estimation can be expedited by K -Means clustering
of the data at x into K groups each one of which is represented by a Gaussian. The
mixture coefficients ci , i = 1, . . . , K are approximated by the relative number data
points in the clusters i , i = 1, . . . , K , respectively.

Starting from an initial estimate, the mixture parameters are estimated iteratively
as follows: The new image intensity value at x is mapped to the current clusters at x.
If it is an outlier, i.e., if it is too far, according to some threshold, from all K clusters,
the farthest cluster representation according to the clusters Gaussian distributions is
dropped and replaced by a Gaussian with the current image value as its mean, a high
variance (“high” according to some reference value), and a low mixture coefficient
value (according to some other reference value). Otherwise, the parameters of all
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distributions remain the same except for the distribution of the closest cluster j
which is updated as follows: Its mixture coefficient is modified by:

cn
j = cn−1

j + α
(

1− cn−1
j

)
, (4.3)

where n is the discrete time index, and α is a constant (called the learning rate).
The representation mean is pulled toward the current image intensity value and its
variance is modified accordingly using the formulas:

μn
j = μn−1

j + ρ j

(
I (x)− μn−1

j

)

vn
j = vn−1

j + ρ j

(∣∣∣I (x)− μn−1
j

∣∣∣2 − vn−1
j

)
,

(4.4)

where ν j indicates the variance, v j = σ 2
j , and ρ j is the learning factor, ρ j =

αG(I (x)|μ j , σ j ).
The update processing scheme of Eqs. (4.3) and (4.4) produces after some time

a set of cluster representations of a mixture of Gaussians at each pixel, but has
no provision for classifying observed image values, i.e., for assigning a pixel of
the current image of the sequence to the foreground or background. In [24], the
background model (which gives the foreground by complementarity), is determined
by first ranking the clusters at x according to the values of ci/σi and then the first
m clusters for which

∑m
i=1 ci > L , where L is a threshold, will be the background

representation. The rationale for ordering the ci/σi values is that the background is
expected to have clusters with higher mixture coefficient values and lower variances.

Following the background/foreground representation by models everywhere on
the image domain, the decision to classify a new image value at some point as back-
ground or foreground is done by mapping the value onto the clusters corresponding to
the point. The method depends on heuristics, such as setting thresholds and other such
constants, but these have natural explanations and can be dealt with by reasonable
rules of thumb. The method has been used in many motion detection investigations
and applications where it has generally performed well by succeeding in long-term
learning of the intensity representation parameters and other necessary quantities.
The scheme’s output can be followed by connected component analysis [25] to extract
explicitly the background/foreground regions.

Figure 4.3 (courtesy of Dr R. Laganière) shows an example which illustrates the
kind of results that can be achieved with the scheme. The observed scene is depicted
in (a). The bicycle and the tree foliage are moving and everything else is background.
The camera is fixed. The detected foreground points are shown in (b). These are not
organized into delimited regions, a process which is generally done with this scheme
by connected component analysis. The foliage movement is detected mainly at its
outer edges where the intensity from frame to frame varies significantly.
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4.2.2 Nonparametric Modelling

Although the mixture of Gaussians offers a general representation of the image
sequence at a point, it generally requires several components learned from a large
data sample to be accurate. Learning can be quite time consuming. These are short-
comings which prompted [24] to simplify Gaussian mixture modelling to K -Means
clustering. However, a more efficient alternative may be to use an empirical den-
sity, i.e., a histogram, to represent the image sequence at a pixel. Histograms have
been effective representations in computer vision problems such as segmentation and
tracking [26] as well as pattern recognition [27]. For the motion detection applica-
tion, it can be learned simply by binning the sensed grey level intensities at a pixel
within a time window ending at the current frame. A histogram is a direct record of
the image sequence grey level profile. It can be continually updated to account for
illumination change and transient masking by moving objects. At any current time,
one can select the most often occurring value in the image histogram at x to be the
background value at x.

4.2.3 Image Spatial Regularization

Single pixel intensity modelling as discussed so far ignores the image spatial proper-
ties. There have been studies which addressed spatial consistency of pixel intensity
models and its use in image interpretation. For instance, the Bayes/Markov random
field regularization formalism was used in [28, 29] for moving object detection, and
the graph cut data description and regularization framework was combined in [30]
with clustering and Gaussian mixing for simultaneous segmentation and tracking of
multiple objects.

In many applications an image can be approximated by a piecewise constant
model, which means that it can be segmented into a set of regions in each one of
which it is the sum of a constant plus random noise [19, 20, 22, 31–33], i.e., the model
can be seen as an approximation of the image in which random perturbations such as
sensing noise and artifacts have been smoothed out. As a result, this representation
can be quite useful in motion detection since it removes or lessens intensity variations
which are not due to object motion but which can be large enough to adversely affect
the interpretation. The piecewise constant approximation of the image can be used
as input to motion detection rather than the raw image. Alternatively, one can use the
most often occurring image intensity at each point, taken from a piecewise constant
approximation of the image rather than from the image directly; the map of the most
often occurring grey level is expected to be more stable, i.e., to vary less in time than
the raw image or its piecewise approximation and, therefore, be a better background
model to use with background subtraction.

Variational formulations of piecewise constant image segmentation commonly
involve minimizing a functional of two terms, a data term which measures the
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deviation of the image from the piecewise constant model approximation, and a
regularization term for smooth segmentation region boundaries. The spatial smooth-
ness of the approximating image data is explicit in the use of the constant image
model representation, so that no additional term in the objective functional is nec-
essary. The problem can be stated in the continuous domain [31] but it can also be
solved directly and efficiently in the discrete case by graph cut optimization [34, 35],
a scheme which we outline in the following.

Let I : x ∈ Ω ⊂ R → I (x) ∈ I be a general image function from domain
Ω to a space I of photometric variables such as intensity, intensity features, or
colour. Graph cut methods state image segmentation as a label assignment problem.
Partitioning of the image domainΩ amounts to assigning each pixel a label l in some
finite set of labels L . A region Rl is defined as the set of pixels with label l, i.e.,
Rl = {x ∈ Ω | x is labeled l}. The problem consists of finding the labelling which
minimizes a given objective function describing some common constraints. Let λ be
an indexing function which assigns each pixel to a region:

λ : x ∈ Ω −→ λ(x) ∈ L , (4.5)

where L is the finite set of region labels. For instance, L can be the set of grey
levels {0, . . . , 255} for a grey level image. The graph cut objective function, F , can
then be written as:

F (λ) =
∑
l∈L

∑
x∈Rl

‖λ(x)− I (x)‖2 + α
∑
{x,y}∈N

r{x,y}(λ(x), λ(y)), (4.6)

where ‖·‖ indicates the Euclidian norm, or the absolute value for scalar quantities,α is
a positive constant to weigh the contribution of the first term (data term) relative to the
other (regularization term), N is the pixel neighborhood set, and r{x,y}(λ(x), λ(x))
is a smoothness function, often in truncated form [34]:

r{x,y}(λ(x), λ(y)) = min(c2, ‖μλ(x) − μλ(y)‖2), (4.7)

where c is a constant threshold and μλ is a function characterizing the region
labelled λ. For instance, when labels are grey levels then one can use μλ = λ. The
minimization of Eq. (4.6) can be done very efficiently by graph cut combinatorial
optimization and implementations can be found on the web.

Figures 4.4a, b show an example of piecewise constant image representation by
graph cut optimization. The original image is shown in (a) and the computed piece-
wise approximation in (b). Most grey levels in the range [0, 255] appear in the input
image. Only about forty grey levels survive in the piecewise constant approximation,
giving rise to forty constant grey level regions.

Figure 4.5 shows the grey scale temporal variations in the graph cut piecewise
constant approximation of the building surveillance sequence, shown in Fig. 4.4, at
the pixels of the raw image used in the graphs of Fig. 4.2. The variations have been
reduced in magnitude because the pixels generally remain in the same region over
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Fig. 4.4 Piecewise constant image approximation by graph cut representation and optimization:
a The input image; b the piecewise constant approximation. The input image contains most of
the grey levels in the range [0, 255] but the approximation has only about forty of these. The
approximation will likely be more stable in time than the original image

Fig. 4.5 Grey level temporal variations at pixels of the piecewise constant approximation by graph
cut segmentation of the building surveillance video sequence shown in Fig. 4.4

time and the regularized grey level of the region varies moderately. It would be
interesting to investigate whether this behavior is of a general nature.

4.3 Variational Background Subtraction

In the previous section we discussed background model building and corresponding
point-wise background subtraction for motion detection. Single-pixel background/
foreground detection does not exploit the spatial continuity of pixel classification, i.e.,
the fundamental property that neighbouring pixels tend to have the same interpreta-
tion. In contrast, variational formulations of background differencing refer explicitly
to the background and the foreground as regions which partition the image domain.
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In the following, we describe how a background model M can be used to detect
motion by a variational method, i.e., a method where the desired partition corresponds
to a minimum of a functional over a space of allowable image domain partitions. In
the following, we will consider two distinct cases: when M is a probability model
and when it is an image template.

4.3.1 Probability Models

Let M (x) be a probability model of the background at x ∈ Ω . Motion detection
by background subtraction can be stated as a two-region image partitioning problem
by maximizing the following functional, E , containing a data term which constrains
the region representing the background to conform to probability model M , and
a term for the region representing the foreground and related to a threshold on the
conformity of the image to the model. This is a region-based functional because it
refers to region information, in contrast to region boundary information.

E (R) =
∫

Rc
P(I (x)|M (x))dx + λ

∫
R

dx, (4.8)

where R represents the foreground and its complement Rc the background. The
coefficient λ in such a linear combination of terms is generally interpreted simply
as a weight modulating the contribution of the term it multiplies. In the case of this
functional, coefficient λ has a more explicit interpretation as a threshold which the
image intensity probability must exceed at background points. We will show this after
we derive the Euler-Lagrange equations for the maximization of Eq. (4.8), which we
will do by rewriting the functional via the active curve formalism as follows.

Let γ (s) : s ∈ [0, 1] → x(s) ∈ Ω be a closed simple parametric curve of the
plane and Rγ its interior. The objective functional can be rewritten as:

E (γ ) =
∫

Rc
γ

P(I (x)|M (x))dx + λ
∫

Rγ
dx. (4.9)

By embedding γ in a one-parameter family of curves indexed by algorithmic time
τ , γ (s, τ ) : s, τ ∈ [0, l] × R

+ → (x(s, τ ), τ ) ∈ Ω × R
+, we can determine the

functional derivative of the objective functional Eq. (4.9) with respect to γ :

∂E

∂γ
= (λ− P(I |M ))n, (4.10)

where n is the outward unit normal function of γ . This gives the Euler-Lagrange
ascent equation to drive γ to a maximum of Eq. (4.9):
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∂γ

∂τ
= (λ− P(I |M )) n (4.11)

Curve γ is called an active contour under evolution equation (4.11). The motion of γ
is along n at each of its points, and its speed function is (λ− P(I |M )). The desired
partition into background and foreground is given by the curve at convergence, i.e.,
as τ →∞.

By examining the speed function at a point x, V = (λ− P(I (x)|M )), we note
that the curve will move to assign x to region Rc

γ representing the background if
P(I (x)|M ) > λ and to region Rγ representing the foreground otherwise. Therefore,
λ can be seen as a classification threshold: when P(I (x)|M ) < λ, it is better to assign
x to the foreground. Otherwise it is classified as part of the background. However,
this threshold is not applied pixel-wise and independently for different pixels but in
the context of optimizing the global objective functional Eq. (4.9).

One can add a curve length term S to the objective functional so as to promote
smooth region boundaries [31, 36, 37]:

S (γ ) = −β
∫
γ

ds, (4.12)

the functional derivative of which is:

∂S

∂γ
= −βκn. (4.13)

Coefficient β weighs the contribution of the boundary smoothness term against the
data fidelity term. With the length term, the curve evolution equation becomes:

∂γ

∂τ
= (λ− P(I |M )− βκ)n (4.14)

Equation (4.14) can be implemented by an explicit discretization of γ using a
number of marker points. However, and as we have discussed in the preliminaries of
Chap. 2, such an implementation faces serious problems. First, topological changes,
fans, and shocks, which can occur during curve evolution, cannot be processed in
general. Second, results depend on the parametrization and errors in the represen-
tation can significantly grow cumulatively during evolution. A better method is to
represent γ implicitly as the zero level-set of a function φ, called a level set function,
φ : R2 → R, i.e., γ is the set {φ = 0}. By evolving the level set function φ, rather
than the curve, the topological variations of the curve occur automatically and its
position at any time can be recovered as the level zero of φ. The level set method has
been reviewed in Chap. 2 and there is an extensive literature on effective numerical
algorithms to implement level set evolution equations [38].

As reviewed in Chap. 2, when a curve moves according to dγ
dτ = V n, the level set

function evolves according to:

http://dx.doi.org/10.1007/978-3-319-00711-3_2
http://dx.doi.org/10.1007/978-3-319-00711-3_2
http://dx.doi.org/10.1007/978-3-319-00711-3_2
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∂φ

∂τ
(τ ) = V ‖∇φ‖. (4.15)

Assuming φ positive in the interior of γ and negative in the exterior, the outward
unit normal n and the curvature κ in Eq. (4.14) can be expressed in terms of the level
set function φ:

n = − ∇φ‖∇φ‖ (4.16)

and

κ = div

( ∇φ
‖∇φ‖

)
(4.17)

In our case, the velocity V is given by the right-hand side of Eq. (4.14). Therefore,
the corresponding level set function evolution equation is given by:

∂φ

∂τ
= (λ− P(I |M )− βκ) ‖∇φ‖ (4.18)

Although Eq. (4.14) refers to the points on γ , the velocity can be computed every-
where inΩ . Therefore, Eq. (4.18) can be used to update the level set function every-
where in Ω .

As discussed in Sect. 4.2, probability models can be approximated from data by
assuming a parametric form of the density and estimating the parameters, or by
nonparametric estimates such as histograms.

4.3.2 Template Models

A background template model is typically chosen to be a view of the scene containing
only objects that are static during the detection process, i.e., fixed objects that are
usually part of the scene. Given a current image, one can then look at motion detection
in one of two distinct fundamental ways, as determining regions where the difference
between the image and the template at corresponding points is high, or as determining
the boundaries where the gradient of this difference is strong. A combination of both
ways is of course possible and can be of benefit to some applications.

4.3.2.1 Region-Based Template Subtraction Detection

Region-based motion detection using a background template can be formulated as
the minimization of the following functional [12]:

E (γ ) =
∫

Rc
γ

((B − I )2dx + λ
∫

Rγ
dx, (4.19)
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where B is the background template image. This functional uses directly the differ-
ence between the background and the image rather than the probability of the image
according to the background probability model [as such, we minimize the functional
rather than maximize it as with Eq. (4.9)]. However, this amounts to assuming that
the difference between the background template and the image to be zero-mean, unit-
variance Gaussian. Indeed, the data function is, up to an additive positive constant,
equal to the negative of the logarithm of the zero-mean, unit-variance normal density
function, therefore a special case of general model-based data functions discussed
in the preceding function.

Coefficient λ in Eq. (4.19) may, as in Eq. (4.9), be interpreted as a threshold, but
this time on the data function (B− I )2 to decide whether there has been a change or
not in the image compared to its template: if (B − I )2 > λ at x, it is better to assign
the point to the foreground.

If we add a length regularization term to the objective functional, to bias detection
toward a partition with a smooth foreground/background boundary:

S = β
∫
γ

ds, (4.20)

where β is a positive constant, the minimization, conducted as before, leads to the
following Euler-Lagrange descent curve evolution equation:

∂γ

∂τ
= −

(
λ− (B − I )2 + βκ

)
n. (4.21)

The corresponding level set evolution equation is given by:

∂φ

∂τ
= −

(
λ− (B − I )2 + βκ

)
‖∇φ‖. (4.22)

Example : This is an example from a camera surveillance application (courtesy of
Dr Hicham Sekkati). The monitored scene is a bank ATM booth. The template is
shown in Fig. 4.6a. It is an image of the ATM booth interior environment with only
the static objects normally appearing in it. Figure 4.6b shows an image of the current
scene, with a person using the machine. A grey level depiction of the difference
between the template and the current image is displayed in Fig. 4.7a and the detected
motion region, which is the interior of the active curve at convergence, is depicted
in Fig. 4.7b. The detected region has positioned the person properly even though its
boundary does not bear much precise shape information. However, in applications
where the moving objects need to be properly located but without necessarily having
an accurate delineation of their boundary such results can be very useful.
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Fig. 4.6 Motion detection by background subtraction: a the template image of the scene; it contains
only the objects that are normally part of the scene and are static during the detection process and,
b an image of the current scene, in which motion detection is to be performed

Fig. 4.7 Motion detection by region-based background subtraction via level set evolution
Eq. (4.22): a grey-level representation of the background subtraction image and, b the region
detected as the foreground. The detected foreground contains useful information about the position
and shape of the detected object (person), even though its boundary is only a sketch of the object
occluding contour

4.3.2.2 Boundary-Based Template Subtraction Detection

The geodesic active contour functional [39, 40] is a boundary-based integral func-
tional originally presented as a means to detect in images object contours of strong
intensity contrast. Its general form is, for a parametric curve γ defined on [a, b]:

F (γ ) =
∫ b

a
g (‖∇I (γ (q))‖) ‖γ ′(q)‖dq, (4.23)

where ∇I is the image spatial gradient, and g : [0,∞]→ R
+ is a positive monoton-

ically decreasing function verifying the condition:

lim
z→+∞ g(z) = 0. (4.24)
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In this formulation, image contrast is measured by the norm of the image gradient.
Other definitions are, of course, allowed. Common choices of function g are:

g(z) = 1

1+ z2 (4.25)

and
g(z) = e−z2

(4.26)

with such a function g, one can easily see that the quantity g(‖∇I‖) is an edge
indicator in the sense that it is low at strong edges and high at weak ones. We will
see shortly that the geodesic active contour velocity is mediated by g(‖∇I‖) and its
gradient, in such a way that it will slow down at object boundaries and adhere to
them.

The geodesic functional is parametrization independent because if f is a re-
parametrization function:

f : r ∈ [c, d]→ q = f (r) ∈ [a, b] ; f ′ > 0, (4.27)

we have:

F (γ ◦ f ) =
∫ d

c
g (‖∇I (γ ◦ f )(r)‖) ‖(γ ◦ f )′(r)‖dr, (4.28)

where ◦ indicates composition of functions. Therefore, the Euler-Lagrange equations
corresponding to the minimization of the functional would remain the same. When
the curve is parametrized by arc length, the functional is written as:

F (γ ) =
∫ l

0
g (‖∇I (γ (s))‖) ds, (4.29)

where s designates arc length and l the Euclidean length of γ ; in shorthand notation,
it can be written:

F (γ ) =
∫
γ

g (‖∇I‖) ds (4.30)

The curve evolution equation to minimize a geodesic functional F can be derived
in the usual way, first by embedding γ in a one-parameter family of curves γ : s, t ∈
[0, l]×R

+ → γ (s, τ ) ∈ Ω×R
+, and adopting the Euler-Lagrange descent equation

∂γ

∂τ
= −∂F

∂γ
, (4.31)

The functional derivative with respect to γ of the integral over γ of a positive scalar
function h = h(x(s)) is given by (Chap. 2, [41]).

http://dx.doi.org/10.1007/978-3-319-00711-3_2
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∂
∫
γ

hds

∂γ
= (< ∇h,n > −hκ)n, (4.32)

where< ., . > denotes the scalar product. Therefore, this gives the following move-
ment at every point on the geodesic curve γ :

∂γ

∂τ
= (g (‖∇I‖) κ− < ∇g (‖∇I‖) ,n >) n (4.33)

This evolution equation will drive the curve to adhere to high contrast object bound-
aries, i.e, object contours of high intensity transitions. The curvature term of the
velocity vector, with a corresponding speed equal to curvature modulated by the
positive function g, promotes shorter, smoother curves. At ideal edges, i.e., where
‖∇I‖ → ∞, we have g→ 0. For this reason, g is often called a stopping function. In
practice, g is small at edges and the contribution of the first term to the curve speed
weakens significantly. The second velocity vector component, sometimes called a
refinement term, drives the curve towards significant edges because the gradient vec-
tor ∇g points toward high image transitions (Fig. 4.8). This component assists the
first term to effectively inhibit curve evolution at high contrast object boundaries.
Its contribution is essential when the stopping function is not sufficiently low every-
where on the target object boundaries.

Both velocity terms depend on the image gradient, which will cause the curve
to linger at open, irrelevant high contrast images boundaries. Therefore, a geodesic
evolution can be slow reaching the desired object boundaries. It is customary in this
case to add a balloon velocity term [39] to speed it up:

−νg (‖∇I (γ )‖) n (4.34)

(a) (b)

Fig. 4.8 Geometric interpretation in two dimensions of the geodesic active curve velocity vector
profile at a contrast edge: a a 2D ramp edge, b the corresponding valley created by the stop-
ping function g. The speed of the curve, in the direction of the curve normal, is g (‖∇I‖) κ− <

∇g (‖∇I‖) ,n >. At a strong edge, the term g (‖∇I‖) κ is very small because g → 0 when
‖∇I‖ → ∞. The refinement speed− < ∇g (‖∇I‖) ,n > attracts the evolving contour to the valley
because the gradient vector ∇g points toward high image transitions
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This is the velocity one would get from the functional derivative of the region term:

ν

∫
Rγ

g (‖∇I‖) dx (4.35)

Coefficient ν is chosen positive when the curve encloses the target object and is made
to move inward. It is negative when, instead, the curve is initially enclosed by the
desired object and is made move outward.

The level set evolution equation corresponding to Eq. (4.33) is:

∂φ

∂τ
= κg (‖∇I‖) ‖∇φ‖− < ∇g (‖∇I‖) ,∇φ > (4.36)

If a balloon component is included then:

∂φ

∂τ
= κg (‖∇I‖) ‖∇φ‖− < ∇g (‖∇I‖) ,∇φ > −νg(‖∇I‖)‖∇φ‖ (4.37)

An important property of the geodesic contour functional F is that it is, as we
have seen, curve parametrization invariant, i.e., a re-parametrization of γ does not
affect it, contrary to its precursor, the Snake active curve functional of [42] which is
parametrization dependent. With a parametrization dependent functional, a change
in the curve parametrization can lead to a different curve evolution and, therefore
to different results. Another significant advantage of the geodesic functional over
the Snake is that it is amenable to the level set implementation, contrary to the
Snake which relies on an explicit curve representation as a set of points which are
explicitly moved, exposing the evolution to irreparable numerical ills. The level set
representation, we know (Chap. 2), secures a stable curve evolution execution.

For our motion detection application we will, of course, use a geodesic driven not
by the strength of the image gradient but, rather, by the strength of the difference
between the current image and the template, measured, for instance, by ‖∇(B− I )‖,
in which case the geodesic would be:

F (γ ) =
∫
γ

g (ξ) ds, (4.38)

where ξ = ‖∇(B − I )‖. One may also use ξ = |B − I |.

Example : This is the bank ATM booth scene shown in Fig. 4.6. A grey level depic-
tion of the absolute difference between the template and the current image is repro-
duced again in Fig. 4.9a and the detected motion region, the interior of the geo-
desic in its position at convergence, is depicted in Fig. 4.9b. As with the preceding
region-based method of detection by background subtraction, this geodesic detected
foreground contains useful information about the position and shape of the moving
object, even though its boundary is only a sketch of the object occluding contour.

http://dx.doi.org/10.1007/978-3-319-00711-3_2
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Fig. 4.9 Motion detection by a background subtraction geodesic: a grey-level representation of the
background subtraction image and, b the detection region corresponding to the motion boundary
detected by the geodesic. The detected foreground contains useful information about the position
and shape of the moving object, even though its boundary is only a sketch of the object occluding
contour

4.4 Detection by Image Differencing

Detection by image differencing uses the amplitude of the intensity difference
between two consecutive images, or a combination of such, to determine the region
of the image domain which corresponds to objects moving in the observed environ-
ment. The problem can be looked at as detection by background template differencing
where the first of the two consecutive images plays the role of the template. However,
there are important differences.

First, there is the fact that consecutive video images generally occur in a very short
interval of time, implying that the region covered in one image by slow moving objects
may overlap significantly the region the objects occupy in the other image. If these
object regions have no significant image spatial variations, i.e., are not textured, they
may not be detected, in the sense that only the small image areas covered/uncovered
by motion will be accessible to detection. This situation does not generally occur
with the background differencing scheme. If, instead, the motion between frames is
significant, so that the areas uncovered and covered by object motion do not overlap,
image differencing will produce at each frame two regions for the moving object,
one corresponding to the covered image and the other to the uncovered, which is not
the correct foreground since it should be only one of these two regions. This also
does not occur with background differencing detection.

The second difference, just as important as the first, is that for small image motion
occurring in a short period of time, the difference of two consecutive images is an
approximation of the temporal image derivative It = ∂ I

∂t , a quantity which can be
analytically related to motion, in contrast with the difference between an image and
its background template. This relation is conveyed by the Horn and Schunck optical
flow equation [43]:

Ix u + Iyv + It = 0, (4.39)
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where (Ix , Iy) = ∇I is the image spatial gradient, and W = (u, v) is the image
motion, or optical flow. From Eq. (4.39) we get:

It = −‖∇I‖W⊥, (4.40)

where W⊥ = W · ∇I
‖∇I‖ is the component of W is the direction of the gradient, i.e.,

in the direction perpendicular to the isophote. We know from Chap. 2 that this is a
manifestation of the aperture problem because the image data at individual points
gives access not to the full motion but only to its normal component which, as a
result, can be appropriately called the visible motion. According to Eq. (4.40), the
temporal derivative is the visible motion modulated by image contrast. Therefore, it
is a good motion cue, and detection by image differencing which uses it is a sensible
scheme. However, it is important to remember that this interpretation of It is valid
for small intervals of time and small motions. It is also important to remember that
not all image temporal variations are due to motion as we have discussed in Sect. 4.1.

A straightforward variational formulation to detect motion by image differencing
consists of minimizing a region-based functional similar to the background template
differencing Eq. (4.19). Because the moving object regions in one image and the
other can overlap significantly, the overlap can be missed by detection when the
objects do not have sufficient texture. In this case, it may be advantageous to use
a boundary-based functional which would look for the moving objects boundary
where, in general, there is sufficient image differencing contrast. We will examine
both approaches. In the subsequent discussions on image differencing, we will use the
continuous notation It to designate the difference (I2− I1) between two consecutive
images.

4.4.1 Region-Based Image Differencing Detection

If one looks at the foreground of moving objects in an image as the region where the
squared difference between consecutive images exceeds a given threshold, motion
detection can be done by minimizing the following objective functional:

E (γ ) =
∫

Rc
γ

I 2
t dx + λ

∫
Rγ

dx, (4.41)

where, as before, γ is a simple closed plane curve, with the interior Rγ representing
the foreground and Rc

γ the background. Coefficientλ can be interpreted as a threshold
which I 2

t must exceed in the motion foreground, because the functional can be
minimized by the following classification rule:

{
x ∈ background for I 2

t < λ

x ∈ foreground otherwise

http://dx.doi.org/10.1007/978-3-319-00711-3_2
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Augmenting Eq. (4.41) with a curve length term will add regularization to the
classification from this decision rule with the practical effect of removing small, iso-
lated regions from the foreground/background partition, such as those noisy sensing
can produce:

E (γ ) =
∫

Rc
γ

I 2
t dx + λ

∫
Rγ

dx + α
∫
γ

ds. (4.42)

The curve evolution equation to minimize Eq. (4.42) is:

∂γ

∂τ
= −

(
λ− I 2

t + ακ
)

n, (4.43)

and the corresponding level set evolution equation is, with the orientation and sign
conventions described in the section on level sets of Chap. 2:

∂φ

∂τ
= −

(
λ− I 2

t + ακ
)
‖∇φ‖ (4.44)

Example : With an unmoving viewing system, consecutive image differencing is
a sensible means of motion detection, but one needs to remember that the detected
foreground will contain the areas covered by the moving objects in both the first and
the second of the two successive images used. This can be an important consideration
when the object movements are of large extent. The following example illustrates
this fact. It uses two consecutive images of a person entering an office (courtesy of
Dr Hicham Sekkati). The camera is static. The second image is shown in Fig. 4.10a.
The movement is of large magnitude so that the images of the person in the two
images have little overlap. Expectedly so, the detected foreground includes both
regions covered by the person in the first and second image. It also contains a small
segment of the table where there actually is some important intensity change between
the images due to shadowing in the first image but not in the second.

Fig. 4.10 Motion detection by region-based image differencing via the minimization of Eq. (4.41):
a the second of the two consecutive images used and, b the boundary of the detected region superim-
posed on the first image. The detected motion region includes, expectedly so, both regions covered
by the object in the first and second image

http://dx.doi.org/10.1007/978-3-319-00711-3_2
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4.4.2 MAP Image Differencing Detection

The problem of region-based motion detection by image differencing can be cast in
a Bayesian formulation [13]. Let R = {R, Rc} be a partition of the image domainΩ
into foreground (R) and background (Rc). The problem can be stated as a maximum
a posteriori estimation (MAP) of R: Among all allowable partitions, determine the
most probable given the temporal image variation It , i.e., determine R such that:

R̃ = arg max
R

P(R|It ) = arg max
R

P(It |R)P(R) (4.45)

Assuming conditional independence of the image difference measurements at
points x �= y, we have:

P(It |R) =
∏
x∈R

P (It (x) |R)
∏

x∈Rc

P (It (x)|R) . (4.46)

Therefore, the MAP estimation of the foreground R can be stated as:

R̃ = arg min
R

E (R) (4.47)

with

E (R) =−
∫

x∈R
log P(It (x)|R)dx

−
∫

x∈Rc
log P(It (x)|R)dx − log P(R). (4.48)

The first two integral terms on the right-hand side of Eq. (4.48) measure the agree-
ment between the partition and the image difference measurements, according to a
probability distribution to be specified. The third term is the prior on the partition,
also to be specified. In [13], the following types of probability distribution models
were used:

P(It (x)|R) ∝
{

e−
α

1+|It | for x ∈ R
e−β|It | for x ∈ Rc,

where∝ is the “proportional to” symbol and α, β are positive constants. Essentially,
these models will bias motion detection toward partitions in which the foreground
has high absolute image differences and the background has low differences. The
prior can be simply modelled by, for some positive μ:

P(R) ∝ e−μ
∫
∂R ds, (4.49)
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where ∂R is the boundary of R, assumed regular. This model will favor shorter,
therefore smoother, foreground boundaries, thereby promote the removal of small
noisy fragments in the partition. With these models, the problem becomes: minimize

E (R) = α
∫

R

1

1+ |It |dx + β
∫

Rc
|It | dx + μ

∫
∂R

ds, (4.50)

where α, β, and μ are constants to weigh the contribution of the terms they multiply.
Let γ (s) : [0, 1] → Ω be a closed simple parametric plane curve to represent

∂R, where s is arc length and R = Rγ is the interior of γ . By embedding γ in a
one-parameter family of curves γ (s, τ ) : [0, 1] × R

+ → Ω × R
+, we have the

following curve evolution equation to minimize Eq. (4.50) and, therefore, determine
a partition of the image domain into foreground and background:

∂γ

∂τ
= −

(
α

1

1+ |It | − β|It | + μκ
)

n, (4.51)

where, as before, n is the outward unit normal function of γ and κ is its curvature
function. The corresponding level set evolution equation is

∂φ

∂τ
= −

(
α

1

1+ |It | − β|It | + μκ
)
‖∇φ‖. (4.52)

The coefficients α, β, μ, which can be normalized to add to 1, must be set appro-
priately for proper algorithm behavior. Coefficient μ affects the smoothness of the
evolving curve. A version of this formulation which includes the case of a moving
viewing system will be described in Sect. 4.6.

Example : The MAP image differencing model Eq. (4.50) has been investigated
in the spatiotemporal domain to implement a motion tracking scheme [13]. The
result shown in Fig. 4.11 is from an example in [13] using a slightly different input,
namely the difference image scaled by the image gradient magnitude rather than
the difference image, and a term characteristic of motion boundaries. The scene,
recorded in a 24 f/s low resolution sequence, shows a person picking up a bag on
the floor by stooping while walking. The bag becomes part of the foreground when
picked. An extended spatiotemporal formulation which accounts for camera motion
will be described in Chap. 5.

4.4.3 Boundary-Based Image Differencing Detection

With boundary-based image differencing detection, we detect motion boundaries via
consecutive image difference boundaries rather than via image contrast boundaries.
If a moving object boundary is looked at as an image contour of high consecutive
image difference then minimizing the following objective functional is relevant to
motion detection:

http://dx.doi.org/10.1007/978-3-319-00711-3_5
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Fig. 4.11 Picking bag sequence (from [13]): An initial curve is placed wide so as to contain the
foreground, and made to move to close on the foreground, first by containing moving parts of the
person reaching for the back and then to also include the bag once picked

F =
∫
γ

g (|It |) ds, (4.53)

where g is defined as before. A moving object boundary may also be looked at as
a contour of high image difference gradient, in which case the following functional
can be used:

F =
∫
γ

g (‖∇It‖) ds (4.54)

Moving object contours can also be characterized in others ways. For instance,
the investigations in [13, 44] used a function of second order image derivatives
which is theoretically zero everywhere for piecewise constant image motion fields
except at motion boundaries. This function is obtained as follows. Assuming that
everywhere except at motion boundaries the motion field is locally approximately
constant, i.e., ∇u ≈ 0 and ∇v ≈ 0, and that the image I is twice continuously
differentiable, differentiation with respect to the image spatial coordinates of the
Horn and Schunck optical flow constraint:
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< ∇I,W > + It = 0, (4.55)

yields
∇ (< ∇I,W > + It ) ≈ HW +∇It ≈ 0, (4.56)

where H is the Hessian matrix of image I , i.e., the matrix of second order derivatives
of I .

H =
⎛
⎝

∂2 I
∂x2

∂2 I
∂x∂y

∂2 I
∂x∂y

∂2 I
∂y2

⎞
⎠ (4.57)

Combining Eq. (4.56) with Eq. (4.55), we obtain the following motion boundary
characterization function:

h = ∣∣det(H)It− < ∇I,
(
H∗∇It

)
>

∣∣ , (4.58)

where | · | denotes the absolute value; H∗ is the transpose of the matrix of cofactors of
H (it has the property H∗H = det(H)I, where I is the identity matrix). Function h is
an indicator of motion boundaries because it takes small values inside motion regions
where motion is assumed smooth, and generally large values at motion boundaries
where the optical flow constraint equation is theoretically not valid.

Using function h, motion detection can be done by minimizing a geodesic func-
tional of the form:

F (γ ) =
∫
γ

g(h)ds, (4.59)

where g is, for instance, given by Eq. (4.25).
In motion detection applications, we do not know, by definition, where the moving

objects are. Therefore, and because a geodesic active contour moves in a single
direction [39], either inward or outward, the initial curve must be positioned wide
enough so as to surround all the moving objects. In practice, one would place the
initial curve close to the image domain boundary.

A ballon term can be added to the functional to speed up detection. The balloon
velocity would be, where coefficient ν is positive for an inward moving geodesic:

−νg (|It |)n, (4.60)

Because g is a monotonically decreasing function, this balloon velocity is larger at
points with lower image differences, i.e., the ballon term makes the curve move faster
where there likely is no moving object boundary.

Geodesic curves can leak through a moving object boundary at places, called
holes, where the argument of the boundary function is small. In the motion detection
application of image differencing, these are segments of the moving object boundaries
where the intensity difference between consecutive images is faint, a condition that
would be present when the intensity transition between the background and the
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moving object is flat or blurred. Leakage can be abated by adding a properly weighed
length regularization term to the geodesic functional. The purpose of using this term
is to increase the value of the objective functional when the curve extends past a
target boundary by encroachment through a hole. However, setting the weight value
of the length regularization term can be difficult because such a term has the effect
of shrinking the active curve overall, i.e., the curve can be moved through the target
boundary as a result of a weight value improperly set too high. Leakage can be abated
more securely by the addition to the objective functional of a region term which
characterizes the image in the interior of the target object [45]. This characterization
can be photometric, i.e., related to the moving objects intensity profile, or motion-
based, i.e., associated with properties of the object motion. In the next section, we
will see an example of a motion-based region term used in conjunction with the
image contrast geodesic term.

In general, it is beneficial, for accrued detection robustness, to have an objective
functional which contains both region-based and geodesic terms. For instance,

E =
∫

Rc
γ

I 2
t dx + λ

∫
Rγ

dx + α
∫
γ

ds +
∫
γ

g (|It |) ds (4.61)

Example : The second of the two consecutive images (from the Saarland University
Computer Vision and Multimodal Computing group dataset http://www.d2.mpi-inf.
mpg.de/) used in this example is shown in Fig. 4.12a. As with the example of Fig. 4.10,
the foreground movement (the person’s image motion) is of large magnitude, expect-
edly causing the detected motion region to contain the image region of the moving
person in both images. The scheme has been accurate in delineating this “compound”
foreground.

Fig. 4.12 Boundary-based image differencing detection via the minimization of the last two terms
of Eq. (4.61): a the second of the two consecutive images used and, b the boundary of the detected
region superimposed on the first image. The detected motion region includes, expectedly so, both
regions covered by the object in the first and second image

http://www.d2.mpi-inf.mpg.de/
http://www.d2.mpi-inf.mpg.de/
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4.5 Optical Flow Based Motion Detection

When optical flow is available, its norm can be used to write region-based and
geodesic formulations just as with image differencing. The optical flow version of
Eq. (4.41) is

E (γ ) =
∫

Rc
γ

‖W‖dx + λ
∫

Rγ
dx. (4.62)

Coefficient λ acts as a threshold on the norm of optical flow. The assumption is that
this norm is larger than λ for the foreground points. One can add a curve length term,
μ

∫
γ

ds, where μ is a positive weighing coefficient, to the functional for smooth
foreground boundary, in which case the curve evolution equation is:

∂γ

∂τ
= − (λ− ‖W‖ + μκ)n, (4.63)

with the corresponding level set equation:

∂φ

∂τ
= − (λ− ‖W‖ + μκ) ‖∇φ‖. (4.64)

Example : Small-extent motion: This experiment uses two consecutive images of
the marbled blocks sequence (Marmor-2 sequence from the KOGS/ IAKS laboratory
database, University of Karlsruhe, Germany). The rightmost block moves away to
the left and the small center block forward to the left. The camera and the leftmost
block are static. The images have been noised. The texture variation is weak at the
top edges of the blocks and depth varies sharply at the blocks boundaries not in
contact with the floor. The motion between the two consecutive views used is small
so as to fit approximately the basic assumptions of the Horn and Schunck optical
flow constraint. A vector rendering of the input (i.e., pre-computed) image motion
(Chap. 3) is shown in Fig. 4.13a superimposed on the first of the two images used. The
active curve boundary of the detected foreground by the application of the evolution
equation (4.63) (via level set equation 4.64) is displayed in Fig. 4.13b. The active
curve has correctly outlined the two moving blocks.

Example : Large-extent motion: The purpose of this second example is to see what
kind of behavior the motion detection scheme described by Eq. (4.63) (via level
set equation 4.64) has when the motion between views is significantly large. If the
motion estimation succeeds in capturing this large object motion, then one would
expect detection to determine a foreground which includes both the region in the
first image uncovered by motion as well as the region in the second image covered
by motion. Motion will, necessarily, be computed using a multiresolution scheme
(Chap. 3). The two images used in this experiment are shown in Fig. 4.14a, b (the same
images as in the example of Fig. 4.12, from the Saarland University Computer Vision
and Multimodal Computing group dataset http://www.d2.mpi-inf.mpg.de/). We can

http://dx.doi.org/10.1007/978-3-319-00711-3_3
http://dx.doi.org/10.1007/978-3-319-00711-3_3
http://www.d2.mpi-inf.mpg.de/
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Fig. 4.13 a The first of the two Marbled blocks images used in this experiment and the input (pre-
computed) optical flow superimposed; b Application of the optical flow, region-based active curve
method via Eq. (4.64): display of the boundary of the detected foreground contour superimposed
on the first image

Fig. 4.14 a The first of the two images used to compute optical flow; b the second image used and
the flow estimated by the Horn and Schunck algorithm embedded in multiresolution processing. The
flow occurs, predictably, in both the region uncovered by motion in the first image and the region
covered in the second image. Multiresolution computations have been able to capture well the overall
pattern of the person’s movement; c and d display the detected foreground contour, superimposed
on the first and second image, respectively, showing that, as suspected, this foreground includes
both the region covered and the region uncovered by motion
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see that image motion between these images is quite large. The flow computed by the
Horn and Shunck method embedded in multiresolution processing is superimposed
on the second image. In spite of its large extent, motion was estimated so as to capture
the movement of the person against the unmoving background, and one would expect
this to serve well detection. This is indeed the case as shown in Fig. 4.14c, d which
display the detected foreground contour (superimposed on both the first and second
image). As suspected, this foreground includes both the region covered and the region
uncovered by motion.

For accrued effectiveness, the study in [14] also included the image gradient
geodesic of [39]:

E (γ ) =
∫

Rc
γ

‖W‖dx + λ
∫

Rγ
dx + μ

∫
γ

ds + ν
∫
γ

g(‖∇I‖)ds, (4.65)

where ν is another positive weighing coefficient. The minimization of Eq. (4.65)
would look for a smooth motion boundary which exhibits high image contrast to
delineate a foreground of high motion. The corresponding Euler-Lagrange descent
equations for the evolution of active curve γ are:

∂γ

∂τ
= − (λ− ‖W‖ + μκ + κg (‖∇I‖)− < ∇g (‖∇I‖) ,n >) n. (4.66)

The corresponding level set evolution equation is

∂φ

∂τ
= − (λ− ‖W‖ + μκ + κg (‖∇I‖)) ‖∇φ‖+ < ∇g (‖∇I‖) ,∇φ>. (4.67)

If the motion field W is available, it can simply be used as data in the evolution
equations. Alternatively, terms to estimate optical flow, those of the Horn and Schunck
functional, for instance, can be included in the detection functional for concurrent
optical flow estimation and motion detection. However, there is no compelling reason
for doing so. It may be more convenient to estimate motion prior to detection by the
Horn and Schunck algorithm [43, 46] or by a boundary preserving scheme such as
the one in [47, 48]. By examining the basic functional Eq. (4.62), one can reasonably
expect motion detection not to be dependent on highly accurate image motion because
the only relevant information that is ultimately needed about the optical flow is
whether the magnitude of its norm is below or above the threshold λ. However,
preserving motion boundaries can be beneficial because it affords more accurate
moving object boundaries.

Motion detection can also be driven by optical flow at motion boundaries. For
instance, an optical flow variant of the geodesic functional Eq. (4.53) is:

F =
∫
γ

g (‖W‖) ds, (4.68)
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Starting with an initial curve which contains the desired moving objects, a mini-
mization of this functional with respect to curve γ will move the curve and bring it
to coincide with a high optical flow amplitude boundary.

Alternatively, and more robustly, one can assume that motion boundaries are
characterized not by high image motion amplitude but by high motion contrast, and
minimize the geodesic functional:

F =
∫
γ

g (‖∇W‖) ds, (4.69)

where ∇W is the Jacobian matrix of W :

∇W =
(
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
(4.70)

and ‖.‖ designates a matrix norm. For instance, using the Frobenius matrix norm and
g(z) = e−z2

, the curve evolution equation can be developed as:

∂γ

∂τ
= − (κg + 〈g1∇g2,n〉 + 〈g2∇g1,n〉) n, (4.71)

where
g1 (γ (s)) = e−‖∇u(γ (s))‖2

g2 (γ (s)) = e−‖∇v(γ (s))‖2 (4.72)

Functions g1 and g2 in Eq. (4.72) above are proportional to the two-dimensional
Gaussian function with zero mean and unit-variance diagonal covariance matrix,
evaluated for the partial derivative vectors (ux , uy) and (vx , vy) of the optical flow
component functions. Therefore, more generality, and a more flexible moving object
boundary description thereof, can be achieved using a more general covariance
matrix. For instance, variance parameters Ku and Kv can be used and have g1, g2
defined as:

g1 (γ (s)) = e
−‖∇u(γ (s))‖2

K 2
u

g2 (γ (s)) = e
−‖∇v(γ (s))‖2

K 2
v

(4.73)

Example : Figure 4.15 shows an example of motion detection by the geodesic evo-
lution equation (4.71) (Hamburg taxi sequence from Karlsruhe University, Institut für
Algorithmen und Kognitive Systeme, http://i21www.ira.uka.de/image_sequences/).
There is a single moving object in this sequence, a car which proceeds through an
intersection. The first of the two consecutive images used is displayed with the initial
position of the active curve in Fig. 4.15a. The final position of the curve is shown in
Fig. 4.15b. The car has been correctly delineated. However, note that the curve has
advanced past the car boundary through the blurred shade at the rear.

http://i21www.ira.uka.de/image{_}sequences/
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Fig. 4.15 Hamburg Taxi sequence: Optical flow based motion detection by minimizing the geodesic
functional of Eq. (4.69) via the curve evolution equation (4.71). The white car proceeding through
the intersection is the single moving object: a shows the image with the initial geodesic curve placed
wide enough to contain the image of the moving car; b shows the motion boundary detected by the
geodesic curve at convergence

4.6 Motion Detection with a Moving Viewing System

When the viewing system is allowed to move, region-based motion detection requires
that the image motion induced by the viewing system be subtracted so that only the
motion of environmental objects remains. The background becomes, ideally, motion
free. However, the use of a motion-based geodesic can do without motion subtraction
to correct for the viewing system movement. We will describe examples of both
approaches.

4.6.1 Region Based Detection Normal Component Residuals

The study in [49] detected moving objects by simultaneously compensating for the
image motion caused by the viewing system movement. The formulation, cast in a
Bayesian framework, is as follows:

The basic assumption is that the background motion due to the viewing system
movement can be fully characterized by a parameter vector θ . As before, let R be
the region representing the foreground of moving objects and R the partition of Ω
into R and Rc. The MAP estimate of (R, θ) is:

(R̂, θ̂) = arg max
R,θ

P((R, θ)|m)

= arg max
R,θ

P(m|(R, θ))P(R, θ)
P(m)
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where m is a motion measurement defined on Ω = R ∪ Rc. The denominator,
P(m), is independent of θ and R and can be removed from the arg max expression.
P(m|(R, θ) is the observation data term, and P(R, θ) is the a priori term.

Assuming conditional independence of the motion measurement for x �= y gives:

P(m|(R, θ)) =
∏
x∈R

P(m(x)|(R, θ))
∏

y∈Rc

P(m(y)|(R, θ)) (4.74)

Therefore, the problem is equivalent to minimizing the following functional:

E (R, θ) = − ∫
R log P(m(x)(R, θ))dx

− ∫
Rc log P(m(x)|(R, θ))dx

− log P(R, θ)

(4.75)

The first two terms on the righthand side of Eq. (4.75) will be specified by the obser-
vation model, or data model, and the last term by the model of prior.

Let measurement m be the normal component W⊥ of optical flow:

W⊥ =
{ −It‖∇I‖ for ‖∇I‖ �= 0

0 for ‖∇I‖ = 0,
(4.76)

Component W⊥ is a data dependent measurement of motion activity which has been
useful in other studies [50]. Let the optical flow normal component residual be:

W⊥∗ = W⊥ −W⊥c (4.77)

where Wc
⊥ is the normal component of the image motion due to camera motion.

Residual W⊥∗ is a function of θ , the parameters of the image motion due to the
viewing system motion. In ideal, noiseless situations, the residuals W⊥∗ are zero at
background points, and typically non-zero in the foreground of the moving objects.

The following data model, similar to the image differencing model of Sect. 4.4.2
but based on the normal component residual function, is a legitimate model here:

P(m(x)|(R, θ)) ∝
{

e−αe−(W⊥∗ (θ))2 for x ∈ R

e−β(W⊥∗ (θ))2 for x ∈ Rc,
(4.78)

where α and β are positive real constants and ∝ is the proportional-to symbol. This
model choice will favor partitions R = R ∪ Rc where the points in the background,
Rc, have W⊥∗ ≈ 0 and the points in the foreground R have |W⊥∗ | � 0. As a result,
the formulation will look for a partition where P(m(x)|(R, θ)) is high everywhere,
i.e., in both R and Rc, the regions being described by different data models. These
models will bias motion detection toward a partition where the foreground and the
background display the largest possible difference in residual motion, high residuals
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occurring in the foreground of moving objects and low residuals in its complement.
For smooth foreground boundary, and to remove small, noisy partition fragments,
the following regularization term independent of θ can be used, for some positive
scalar λ:

P(R, θ)) ∝ e−λ
∫
∂R ds . (4.79)

Let γ (s) : [0, 1]→ Ω be a closed simple parametric plane curve to represent the
boundary ∂R of R, where s is arc length and R = Rγ is the interior of γ . Maximizing
the a posteriori probability P((R, θ)|m) is equivalent to minimizing the following
energy functional:

E (R, θ) =α
∫

Rγ
e−(W⊥∗ (θ))

2

dx +β
∫

Rc
γ

(W⊥∗ (θ))
2
dx + λ

∫
γ

ds (4.80)

Assuming that the viewing system induced image motion is a translation overΩ ,
we have θ = (a, b), where a and b are, therefore, the horizontal and vertical com-
ponents of this motion, respectively. In this case,

W⊥∗ = −
Ix a + Iyb + It

‖∇I‖
Let γ be embedded in a one-parameter family of curves γ (s, τ ) : [0, 1] ×

R
+ → Ω . The descent parameter update equations to minimize E (R, θ) = E (γ, θ)

with respect to parameters a and b are:

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂a
∂τ
= α ∫

Rγ
2Ix‖∇I‖

(
It+aIx+bIy
‖∇I‖

)
e
−

(
It+aIx+bIy
‖∇I‖

)2

dx

−β ∫
Rc
γ

2Ix‖∇I‖
(

It+aIx+bIy
‖∇I‖

)
dx

∂b
∂τ
= α ∫

Rγ
2Iy
‖∇I‖

(
It+aIx+bIy
‖∇I‖

)
e
−

(
It+aIx+bIy
‖∇I‖

)2

dx

−β ∫
Rc
γ

2Iy
‖∇I‖

(
It+aIx+bIy
‖∇I‖

)
dx

(4.81)

Assuming that a, b are independent of R, or γ , i.e., with a and b fixed, the Euler-
Lagrange curve evolution equation to minimize E (γ, θ) with respect to γ is given
by:

∂γ

∂τ
= −(2λκ + αe−(W⊥∗ (a,b))2 − β(W⊥∗ (a, b))2)n, (4.82)

where n is the outward unit normal to γ , and κ is its mean curvature. The level set
evolution equation corresponding to the evolution of γ in Eq. (4.82) is:

∂φ

∂τ
= −(2λκ + αe−(W⊥∗ (a,b))2 − β(W⊥∗ (a, b))2))‖∇φ‖ (4.83)
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Fig. 4.16 Walker sequence: Motion detection by optical flow normal component residuals [49]: The
camera tilts down slightly to cause an upward, approximately translational image motion. Images
a, b, and c show the detected motion region in three distinct frames. The foot on the ground and
part of the leg just above it are not included in the motion region because they exhibit little or no
motion. The parameters used are α = 1;β = 10; λ = 5

The algorithm can be summarized as follows:

1. Initialize γ and (a, b).

2. Perform an iteration of the descent equations for a and b in Eq. (4.81).

3. Evolve the level set φ of γ by an iteration of the descent Eq. (4.83).

4. Return to step 2 until convergence.

The parameters a, b can be both initialized to 0 and γ can be initially placed wide
so as to contain the moving objects.

Example : The algorithm has been implemented in the image space-time domain
by [49]. Motion detection is done in this case by evolving a closed regular spa-
tiotemporal surface rather than a closed simple plane curve. However, the driving
concepts remain the same in both cases. The following results have been obtained
with the spatiotemporal implementation. The Walker sequence shows a man walk-
ing on a sidewalk. The camera tilts slightly down causing an upward, approximately
translational image motion. Results are displayed in Fig. 4.16 showing the detected
foreground of the pedestrian in three different frames. Because detection is solely
based on motion activity, motion boundaries do not include portions of the pedestrian
that are static during the walk. For instance, the foot on the ground and part of the
leg just above are not included in the foreground because they exhibit little or no
motion.

4.6.2 Detection by Optical Flow Residuals

Assume that optical flow W = (u, v) overΩ is available, pre-computed, for instance
by one of the methods in Chap. 3. Let W0 be the motion overΩ induced by the viewing

http://dx.doi.org/10.1007/978-3-319-00711-3_3
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system movement. The field W is equal to W0 in the background and it is the sum
of object induced motion and W0 in the foreground. Assume that W0 is constant and
write W0 = (a, b). Then motion detection can be done by minimizing the following
functional:

E (γ ) =
∫

Rc
γ

(Ix a + Iyb + It )
2 dx + α

∫
Rc
γ

‖W −W0‖2 dx + λ
∫

Rγ
dx + β

∫
γ

ds,

(4.84)
where γ is, as before, a closed simple plane curve to represent the foreground contour,
Rγ is the interior of γ , and (Ix , Iy, It ) is the image spatiotemporal gradient.

The first term of the functional serves the estimation of W0 in the background
represented by the complement of Rγ . The estimation conforms to the Horn and
Schunck optical flow constraint. No smoothness term is necessary since the flow is
assumed constant in the region. The difference W −W0 appearing in the second term
is the optical flow residual. The last three terms are as in the case of a static viewing
system except that, in this case, the viewing system motion is subtracted from the
motion of the moving objects. Coefficient λmultiplying the third term plays the role
of a threshold on the squared norm of the optical flow residual, i.e., on the squared
norm of the image motion from which the motion induced by the viewing system
movement has been subtracted. When this squared norm is larger than λ at a point,
it is better to assign the point to the foreground.

The minimization equations corresponding to the functional Eq. (4.84) are derived
with respect to the viewing system induced optical flow parameters a and b which
appear in the two integrals over Rc

γ , and also with respect to the active curve γ which
concerns all four integrals. We can adopt a descent algorithm which, after initializing
γ so as to contain the moving objects, consists of repeating two consecutive steps
until convergence: one step considers γ fixed and minimizes with respect to the
motion parameters a and b by solving the corresponding necessary conditions:

∫
Rc
γ

(
Ix (Ix a + Iyb + It )+ α(a − u)

)
dx = 0∫

Rc
γ

(
Iy(Ix a + Iyb + It )+ α(b − v)

)
dx = 0

(4.85)

Since the integrands are linear functions of a and b, this amounts to determining
these parameters by least squares over Rc

γ . The 2× 2 system to solve is:

a
∫

Rc
γ

(
I 2
x + α

)
dx + b

∫
Rc
γ

Ix Iy dx = − ∫
Rc
γ
(Ix It − αu) dx

a
∫

Rc
γ

Ix Iy dx + b
∫

Rc
γ

(
I 2

y + α
)

dx = − ∫
Rc
γ

(
Iy It − αv

)
dx

(4.86)

The next step considers the parameters a and b fixed and minimizes E with respect
to γ using the corresponding Euler-Lagrange curve evolution equation:

∂γ

∂τ
= −

(
λ+ βκ − (Ix a + Iyb + It )

2 − ‖W −W0‖2
)

n, (4.87)
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to which corresponds the level set evolution equation:

∂φ

∂τ
= −

(
λ+ βκ − (Ix a + Iyb + It )

2 − ‖W −W0‖2
)
‖∇φ‖, (4.88)

4.6.3 Detection by a Geodesic

When the viewing system is static, there is motion contrast at moving objects bound-
aries because motion is zero, ideally, in the background and it is non zero in the fore-
ground. When the viewing system moves, the motion in the background is non-zero
but there still is, in general, motion contrast at moving objects contours. Therefore,
the geodesic functional Eq. (4.69):

F =
∫
γ

g (‖∇W‖) ds

can be used. Also, function h in Eq. (4.58) is still a motion boundary indicator and
a term proportional to Eq. (4.59) can be added to the geodesic functional. How-
ever, functional Eq. (4.53) is no longer valid because high values of |It | no longer
characterize motion boundaries, and neither does ∇It .

4.6.4 A Contrario Detection by Displaced Frame Differences

Rather than the optical flow residual, one can use the displaced frame difference
(DFD), which is the image residual after a subtraction from optical flow of the motion
induced by the viewing system movement. In the ideal, noise-free case, the DFD is
zero is the background, and it is non-zero and generally significant in the foreground
of moving objects. This observation was the ground for the a contrario detection
method in [17, 51]. The scheme proceeds from two independent preliminary steps.
In one step, a working set R of meaningful regions is extracted which have high
contrast isophotes as boundaries [52]. The assumption is that the moving object
boundaries have high contrast against the background, which would justify looking
for them among the regions of R.

In the other preliminary step, the viewing system motion, called the dominant
motion, is represented by a linear model, affine for instance,

Wθ (x) =
(

a1 + a2x + a3 y
a4 + a5x + a6 y

)
, (4.89)

where x, y are the coordinates of x and θ = (a1, . . . , a6) is the vector of model
parameters, and estimated by minimizing the following objective function [53]:
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E (θ) =
∑

x

DFDθ (x), (4.90)

where DFDθ is the displaced frame difference function corresponding to θ between
the current two consecutive images:

DFD(θ, x) = I2(x +Wθ (x))− I1(x) (4.91)

The DFD residual on which detection is based is then the magnitude of the DFD
scaled by the image gradient in the first image:

W ∗θ =
|DFDθ |
‖∇I1‖ (4.92)

Alternatively, one can look at the smaller of the two residuals computed from two
successive sets of three consecutive images [17, 51].

Following the initial steps of estimating the image motion due to the viewing
system movement and determining a set of relevant regions to focus the analysis on,
detection proceeds according to an explicit a contrario argument within regions of R.
The basis of this argument is that the residuals in the background are essentially due to
white noise while in the foreground they generally have higher spatially correlated
values. Therefore, the probability of the event that at least k of the n points in a
foreground region R have each a residual larger that a value μ will be, for properly
chosenμ, very low according to the a contrario hypothesis that these residuals come
from the background. For practical application, a bound on this binomial probability
and a set of thresholds are used to approximate the number of readings in the region
that are consistent with the background (“false alarms”). This number serves to decide
whether a region is part of the foreground [17, 51].

Note that the objective functional Eq. (4.8) can be looked at as an a contrario
functional because the first integral, over region Rc, is evaluated according to the
distribution of the background image and the second, over the foreground region,
is evaluated according to a threshold on this distribution. A similar remark can be
made about functional Eqs. (4.19) and (4.41), where the background differences and
image differences in the background region are assumed normally distributed with
zero mean and unit variance. A similar remark can be can be made also about the
optical flow based functional Eq. (4.62). However, the method of [17, 51] remains
unique in its general problem statement adapted to actual application to real images,
as in the following example (courtesy of Dr Patrick Bouthemy, IRISA, Rennes,
France).

The left column of Fig. 4.17 displays images from road traffic scenes imaged from
a helicopter. These are difficult sequences to process because of the large extent
movement of the airborne camera and the lack of definite texture on the moving
vehicles. In each image, the motion in the foreground of the moving vehicles is due
to both the camera movement and the vehicles own motion. In the background it is
due to camera motion. The estimated image motion due to camera movement for
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Fig. 4.17 Left column: images of two road traffic sequences acquired by an airborne camera. The
vehicles are moving. Therefore, the motion in the foreground is due to both the camera movement and
the vehicles own motion. In the background it is due to camera motion. Middle column: illustration
of the estimated image motion due to camera movement. Right column: the detected motion regions
by a contrario analysis

each sequence is illustrated graphically in the middle column. The detected motion
regions are shown in the last column.

4.7 Selective Detection

The formulations of detection discussed in the preceding sections used motion to
separate the image domain into a foreground of moving objects and its complement
called the background. However, one may be interested not in all of the foreground
objects but in a particular object or class of objects. This is selective detection. For
instance, one may be interested in the human figures among the moving objects
because the application is to monitor a site of human activity. There are two basic
ways of determining the desired objects. One possibility is to do motion detection
followed by connected component analysis to extract the moving objects individually
and then perform a detailed examination of each component to determine if it fits
a model description of the desired objects based on various distinguishing cues.
The other possibility is to integrate a model description into the detection process.
The fundamental cues are photometric descriptors, such as luminance or color, and
geometric, such as the object aspect ratio or, more accurately, the object contour
shape. However, motion cues describing object mobility behavior are also possible.
The use of color is common in detection and general motion models have been
investigated principally in motion segmentation (Sect. 4.8). There have been a few
investigations of the use of object boundary shape [45, 54–61] but these generally
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consider classes of relatively simple shapes or relatively simple settings such as
single object detection and proximity to the targeted object. The methods have not
been specifically tested on important classes of objects such as humans and vehicles
which are of particular interest in motion detection applications.

4.7.1 Connected Component Analysis

The distinction between the pixels of the foreground and the background is readily
available in the level set implementation because the level set is of a different sign
in the foreground than in the background. Therefore, a level set motion detection
algorithm provides a binary image where the pixels in the foreground have a label,
say 1, and those in the background a different label, say 0. A connected component
analysis can then determine, by a single pass though the image, all of the connected
regions of the foreground, each presumably corresponding to a different moving
object. A simple algorithm is as follows:

1. Scan the image from left to right, top to bottom until reaching a row containing 1’s. For
every run of 1s of this row, assign a distinct label.

2. For each subsequent row:

a. If a run of 1’s is adjacent to a single run of 1s in the preceding row, assign it the
label of this preceding adjacent run.

b. If a run is adjacent to several runs in the preceding row, assign it a new (unused)
label and replace the labels of all the preceding adjacent runs of 1’s by this new
label.

At step 2b, one does not, of course, actually go back to the runs of the preceding
rows to change labels. Instead, a table of label equivalence is maintained. When the
algorithm terminates (when reaching the last row of the image), all of the distinct
labels point to distinct connected component objects. This algorithm was reported
in [25, 62]. Before applying this algorithm, it is common to do low level “cleaning”
operations such as gap filling where runs of horizontal or vertical 0’s of less than a
threshold length are replaced by 1’s.

Human figures have been of particular interest in various motion detection appli-
cations. Several descriptive features have been considered to determine if a moving
image object corresponds to a human figure. The most often included feature is the
size or aspect ratio of the object bounding box. Also often used is skin colour detec-
tion within the isolated object using the (Y,C1,C2) color basis for better skin color
representation [63]. In general, if a human figure in the image sequence has a distin-
guishing photometric cue, i.e., a model that shows a typical photometric appearance,
say in the form of a model color histogram, the observed object photometric descrip-
tion is matched against this model to determine whether it is close enough to be
from a human figure. Also, if the outline of the human figure, which is available via
the active curve evolution algorithms described previously in this chapter, can be
characterized by a few model outlines, then these models can serve to identify which
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isolated moving objects, obtained by connected component analysis, correspond to
human figures. Finally, motion features, related to movement direction or extent, can
be used if the application is such that the human figure motions of interest are dis-
tinctive in either direction or speed. Some of these features can be integrated directly
in the motion detection process via some of their statistics, such as histograms, by
adding a proper term in one of the motion-based objective functionals we have seen
previously. This is discussed in the next section.

4.7.2 Variational Integration of Object Features in Motion
Detection

We will give examples of how to integrate object distinctive cues in active curve
motion detection. This can be done via feature densities. A feature density (a feature
histogram in general practice) can be viewed as a marginal density of the object image
or boundary it is intended to describe. As such, it can be a powerful cue when the
feature is appropriately chosen. However, specific applications may involve specific
cues, different from feature densities.

As alluded to in the discussion of the preceding section, cues are of three basic
types, namely photometric, geometric, and motion based.

Photometric cues: Let F be a photometric feature distinctive of the image inside
the region covered by the object of interest, a human figure for instance, and let MF

be a reference distribution of F . Model MF can be learned a priori from learning
examples of the desired object. Let PF be a kernel estimate of the distribution of F
inside a region Rγ . Then to account for the model description as a distinctive cue
in motion detection, one can add the following properly weighed region term to the
motion-based detection functional:

F (γ ) = D(PF ,MF ) (4.93)

whereD is a measure of the separation between distributions, such as the Bhattacharia
or the Kullback-Leibler. This functional has been proposed and investigated in [26]
and has been shown to be powerful enough to use for tracking. Therefore, rather than
expounding on it here, as an additional term in a motion-based detection objective
functional, we will defer its description until Chap. 5 on tracking for which the
functional is more fitting.

Geometric cues: It is possible, via a shape prior [45, 54–60], to include a description
of the shape of a desired object contour in a motion detection functional. In general,
shape priors require an initial curve placed in the vicinity of the target object and
each such prior is dedicated to the detection of a single instance in the image of the
desired object.

An alternative to shape priors which can be useful when used in conjunction with
a geodesic active contour has been studied in [61]. The method assumes that the

http://dx.doi.org/10.1007/978-3-319-00711-3_5


4.7 Selective Detection 135

desired object contour can be distinctively described against the background of other
moving objects by the distribution of curvature along its delineating contour; to apply
to human figures, for instance, the description requires that the human figures in the
image sequence can be thus modelled.

Let I : Ω ⊂ R
2 → R be an image function, γ : [0, 1] → Ω a simple closed

plane parametric curve, and F : Ω ⊂ R
2 → F ⊂ R a feature function from the

image domain Ω to a feature space F . Let Pγ be a kernel density estimate of the
distribution of F along γ ,

∀ f ∈ F Pγ ( f ) =
∮
γ

K ( f − Fγ )ds

Lγ

, (4.94)

where Fγ is the restriction of F to γ , Lγ is the length of γ ,

Lγ =
∫
γ

ds, (4.95)

and K is the estimation kernel. For instance, K is the Gaussian kernel of width h:

K (z) = 1√
2πh2

exp
− z2

2h2 . (4.96)

Given a model feature distribution M , let D(Pγ ,M ) be a similarity function
between Pγ and M . The purpose is to determine γ̃ such that

γ̃ = arg min
γ

D(Pγ ,M ). (4.97)

To apply this formulation we need to specify the feature function, the model, the
similarity function, and a scheme to conduct the objective functional minimization
in Eq. (4.97).

Let D be the Kulback-Leibler divergence, a similarity function between dis-
tributions which has been effective in several image segmentation formulations
[26, 64–66].

D(Pγ ,M ) = KL(Pγ ,M ) =
∫
F

M ( f ) log
M ( f )

Pγ ( f )
d f . (4.98)

Higher values of the Kullback-Leibler divergence indicate smaller overlaps between
the distributions and, therefore, less similarity.

Let the feature be the curvature on γ . This geometric feature is remarkable in the
sense that it can be estimated from the image under the assumption that the region
boundary normals coincide with the isophote normals:
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F = κI = div

( ∇I

‖∇I‖
)
. (4.99)

The fact that curvature along γ can be expressed as a function of the image is
important in implementation because this means that it needs to be estimated only
once, at the onset. However, although it is expressed in terms of the image, it remains
intrinsically descriptive of the boundary geometry. Curvature, which is the rate of
change of the tangent angle along the contour [67], is invariant to translation and
rotation but varies with scale. However, an affine transformation of the measured
values which would normalize them to map to a preset ensemble of bins, will, for
all practical means, make the histogram unaffected by scale. Also, with a geometric
feature such as curvature, detection can be expedited by using an edge map of the
image rather than the image directly [61]. Using a working edge map will speed up
processing significantly.

Let γ be embedded in a one-parameter family of curves indexed by (algorithmic)
time τ :γ (s, τ ) : [0, 1]×R

+ → Ω , and deriving the Euler-Lagrange descent equation

∂γ

∂τ
= −∂D

∂γ
. (4.100)

This gives [61]

∂γ

∂τ
= (

GKL(Pγ ,M , Fγ )κ −∇GKL(Pγ ,M , Fγ ) · n
)

n, (4.101)

where

GKL(Pγ ,M , Fγ ) = 1

Lγ

(
1−

∫
F

M ( f )

Pγ ( f )
K ( f − Fγ ) d f

)
. (4.102)

The use of D(Pγ ,M ) in conjunction with a common geodesic active contour func-
tional [61]:

E (γ,M ) = KL(Pγ ,M )+ λ
∫
γ

g (‖∇I‖) ds (4.103)

will seek to detect all instances of contrasted object contours in the image which are
of the class of shapes described by model distribution M . The active curve must be
initialized wide out to include all the moving objects.

The behavior of Eq. (4.101) can be examined according to three cases; the first
two cases assume GKL is positive.

Case 1: The curve is in the vicinity of the target object boundary. When close to the
boundary, nearly adhering to it, the curve has a feature density close to the model
density, i.e., P(Fγ (x)) ≈M (Fγ (x)) and, therefore, GKL ≈ 0. As a result, the curve
movement is predominantly governed by the gradient term which guides it to adhere
to the desired boundary because it constrains it to move so as to coincide with local
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highs of the similarity between the curve feature distribution and that of the model,
just as the gradient term of the common geodesic active contour drives the curve
toward local highs in image gradient magnitude [39].

Case 2: The curve is not in the vicinity of the target boundary. Away from the bound-
ary it is seeking, the active curve has, in general, a shape that is different from the
model, and its feature distribution will have little overlap with the model distribution.
Therefore, for most points x on the curve, keeping in mind that Eq. (4.101) refers
to points on the curve, not on the model, we have P(Fγ (x)) > M (Fγ (x)) and, as a
result, we have GKL > 0, which means a stable evolution of γ [68].

Case 3: In the event GKL at some point evaluates to negative at some time during
curve evolution, the gradient term ∇GKL · n acts as a stabilizer of the curvature term
because it constrains the curve to move along its normal to fit highs in the similarity
between its feature distribution and the model distribution.

The most serious hindrance to the application of Eq. (4.103) in practice is the presence
of non-targeted objects with strongly contrasted boundaries which would retain the
image-based geodesic. Coefficient λ in Eq. (4.103) must be properly adjusted in such
cases.

Motion cues: Motion cue integration can be handled as with photometric cues. Let
F be a motion feature, the direction of motion, for instance, or the speed, and let
MF be the model distribution of F for the target object. To include this model in
detection, a functional of the form Eq. (4.93) can be added to the objective functional.

Example : The test image is shown in Fig. 4.18a. The bottle is the target of detection.
Therefore, the purpose is to detect the bottle by moving an active contour to adhere
to its boundary while ignoring other boundaries in the image. The initial curve is
shown in Fig. 4.18a, superimposed on the test image. Figure 4.18b shows the final
position of the active contour, which coincides with the bottle boundary and only with
that boundary. The feature used is curvature, computed by Eq. (4.99). Figure 4.18c
displays the working edge map. The model of bottle contour on which the model
histogram of curvature is learned is displayed in Fig. 4.18d. This is the outline of
another bottle. Other examples can be found in [61, 69].

4.8 Motion Segmentation

Whereas motion detection partitions the image domain Ω into a foreground and
a background, where the foreground corresponds to all the moving environmental
objects, regardless of their motions relative to each other, motion segmentation parti-
tionsΩ into regions associated to differently moving objects. If there are N moving
objects, segmentation seeks N + 1 regions, namely N regions {Ri }N1 corresponding
to the moving objects and one region RN+1 assigned to the background, namely the
complement in Ω of ∪N

1 Ri . A region may correspond to several distinct moving
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objects if these have the same motion according to the model description of this
motion.

Motion-based segmentation of an image into an N−region partition can be stated
as an active curve/level set functional minimization problem using N − 1 closed
regular plane curves and a model of motion to describe the motion in each region.
If the motions are all described by the same parametric model, which is the case in
most current studies, then the assumption is that the regions differ by the parameters
of this model. Segmentation can also be done via motion detection and connected
component analysis followed by an analysis of the motion within each component.
This may be a more effective scheme of segmentation in applications where the
number of objects is not known beforehand and the motion of objects is difficult
to ascertain. This is generally the case in applications such as surveillance of site
of human activity where the number of people varies in time and is not known in
advance, and the human motion may be difficult to characterize by mathematically
and numerically convenient descriptions such as linear parametric models [44].

There have been very few studies to investigate the problem of processing an
unknown or varying number of regions in variational image segmentation. Although
there are active contour schemes which include the number of regions among the

Fig. 4.18 Selective detection: a The bottle is the targeted object, shown with the initial active
contour; b the contour closes on the targeted object and only on that object; c the working edge
map; d the model contour which served to learn the model curvature histogram
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unknowns to determine [22], either during curve evolution [70] or as a process
external to curve evolution optimization [41, 71, 72], these have not been applied to
motion segmentation.

Chapter 3 has reviewed parametric motion estimation and concurrent segmenta-
tion by variational active contour/level set schemes and Chap. 6 will review motion
segmentation based on the movement of real objects. Although useful, these mod-
els are not always applicable. For instance, they may not be appropriate to human
motion, an application where a simple linear parametric model may fail to charac-
terize the human walk because the arms have each a different motion, as do the legs,
the limbs motion being different from the motion of the rest of the body. Also the
number of people in most applications may be impossible to predict and must be
considered a problem variable to determine.

We will not discuss motion segmentation further; we refer the reader to Chaps. 3
and 6 of this book and to the cited literature for current variational and level set
motion-based image partitioning methods, and examples of results these can pro-
duce [44, 73–80].

References

1. R. Jain, W.N. Martin, J.K. Aggarwal, Segmentation through the detection of changes due to
motion. Comput. Vis. Graph. Image Process. 11, 13–34 (1979)

2. S. Yalamanchili, J.K. Aggarwal, Segmentation through the detection of changes due to motion.
Comput. Vis. Graph. Image Process. 18, 188–201 (1981)

3. L. Wang, W. Hu, T. Tan, Recent developments in human motion analysis. Pattern Recogn.
36(3), 585–601 (2003)

4. C. Sminchisescu, 3D human motion analysis in monocular video techniques and challenges,
in AVSS (2006), p. 76

5. R. Poppe, Vision-based human motion analysis: an overview. Comput. Vis. Image Underst.
108(1–2), 4–18 (2007)

6. X. Ji, H. Liu, Advances in view-invariant human motion analysis: a review. IEEE Trans. Syst.
Man Cybern. Part C 40(1), 13–24 (2010)

7. T.B. Moeslund, A. Hilton, V. Krüger, A survey of advances in vision-based human motion
capture and analysis. Comput. Vis. Image Underst. 104(2–3), 90–126 (2006)

8. Z. Sun, G. Bebis, R. Miller, On-road vehicle detection: a review. IEEE Trans. Pattern Anal.
Mach. Intell. 28(5), 694–711 (2006)

9. M. Enzweiler, D.M. Gavrila, Monocular pedestrian detection: survey and experiments. IEEE
Trans. Pattern Anal. Mach. Intell. 31(12), 2179–2195 (2009)

10. R.J. Radke, S. Andra, O. Al-Kofahi, B. Roysam, Image change detection algorithms: a sys-
tematic survey. IEEE Trans. Image Process. 14(3), 294–307 (2005)

11. T. Bouwmans, F.E. Baf, B. Vachon, Background modelling using mixture of gaussians for
foreground detection. IEEE Trans. Image Process. 1(3), 219–237 (2008). Recent Patents on
Computer Science

12. S. Jehan-Besson, M. Barlaud, G. Aubert, Detection and tracking of moving objects using a
new level set based method, in ICPR (2000), pp. 7112–7117

13. A. Mitiche, R. Feghali, A. Mansouri, Motion tracking as spatio-temporal motion boundary
detection. J. Robot. Auton. Syst. 43, 39–50 (2003)

14. F. Ranchin, A. Chambolle, F. Dibos, Total variation minimization and graph cuts for moving
objects segmentation. CoRR abs/cs/0609100 (2006)

http://dx.doi.org/10.1007/978-3-319-00711-3_3
http://dx.doi.org/10.1007/978-3-319-00711-3_6
http://dx.doi.org/10.1007/978-3-319-00711-3_3
http://dx.doi.org/10.1007/978-3-319-00711-3_6


140 4 Motion Detection

15. F. Ranchin, A. Chambolle, F. Dibos, Total variation minimization and graph cuts for moving
objects segmentation, in SSVM, vol. 4485, LNCS, ed. by F. Sgallari, A. Murli, N. Paragios
(Springer, Heidelberg, 2007), pp. 743–753

16. N. Paragios, R. Deriche, Geodesic active contours and level sets for the detection and tracking
of moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 22(3), 266–280 (2000)

17. T. Veit, F. Cao, P. Bouthemy, An contrario decision framework for region-based motion detec-
tion. Int. J. Comput. Vis. 68(2), 163–178 (2006)

18. T. Crivelli, P. Bouthemy, B. Cernuschi-Frías, J.-F. Yao, Simultaneous motion detection and
background reconstruction with a conditional mixed-state markov random field. Int. J. Comput.
Vis. 94(3), 295–316 (2011)

19. S. Solimini, J.M. Morel, Variational Methods in Image Segmentation (Springer, New York,
2003)

20. G. Aubert, P. Kornpbrost, Mathematical Problems in Image Processing: Partial Differential
Equations and the Calculus of Variations (Springer, New York, 2006)

21. S. Osher, N. Paragios, Geometric Level Set Methods in Imaging, Vision, and Graphics
(Birkhauser, Boston, 1995)

22. A. Mitiche, I. Ben Ayed, Variational and Level Set Methods in Image Segmentation (Springer,
New York, 2010)

23. C.R. Wren, A. Azarbayejani, T. Darrell, A. Pentland, Pfinder: real-time tracking of the human
body. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 780–785 (1997)

24. C. Stauffer, W.E.L. Grimson, Adaptive background mixture models for real-time tracking, in
CVPR (1999), pp. 2246–2252

25. A. Rosenfeld, A. Kak, Digital Picture Processing, 2nd edn. (Academic, New York, 1982)
26. D. Freedman, T. Zhang, Active contours for tracking distributions. IEEE Trans. Image Process.

13(4), 518–526 (2004)
27. S.C. Zhu, D. Mumford, Prior learning and gibbs reaction-diffusion. IEEE Trans. Pattern Anal.

Mach. Intell. 19(11), 1236–1250 (1997)
28. Y. Sheikh, M. Shah, Bayesian modeling of dynamic scenes for object detection. IEEE Trans.

Pattern Anal. Mach. Intell. 27(11), 1778–1792 (2005)
29. S. Mahamud, Comparing belief propagation and graph cuts for novelty detection, in CVPR,

vol. 1 (2006), pp. 1154–1159
30. A. Bugeau, P. Pérez, Track and cut: Simultaneous tracking and segmentation of multiple objects

with graph cuts. EURASIP J. Image Video Process. 2008, (2008)
31. D. Mumford, J. Shah, Boundary detection by using functionals. Comput. Vis. Image Underst.

90, 19–43 (1989)
32. Y.G. Leclerc, Constructing simple stable descriptions for image partitioning. Int. J. Comput.

Vis. 3(1), 73–102 (1989)
33. T. Chan, L. Vese, An active contour model without edges, in International Conference on

Scale-Space Theories in Computer Vision, Greece, Corfu (1999), pp. 141–151
34. Y. Boykov, O. Veksler, R. Zabih, Fast approximate energy minimization via graph cuts. IEEE

Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)
35. Y. Boykov, O. Veksler, Graph cuts in vision and graphics: theories and applications, in Workshop

on Mathematical Methods in Computer Vision (2005), pp. 79–96
36. T. Chan, L. Vese, Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277

(2001)
37. O. Amadieu, E. Debreuve, M. Barlaud, G. Aubert, Inward and outward curve evolution using

level set method, in ICIP, vol. 3 (1999), pp. 188–192
38. J.A. Sethian, Level Set Methods and Fast Marching Methods (Cambridge University Press,

Cambridge, 1999)
39. V. Caselles, R. Kimmel, G. Sapiro, Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79

(1997)
40. S. Kichenassamy, A. Kumar, P.J. Olver, A. Tannenbaum, A.J. Yezzi, Gradient flows and geo-

metric active contour models, in ICCV (1995), pp. 810–815



References 141

41. S. Zhu, A. Yuille, Region competition: unifying snakes, region growing, and bayes/mdl for
multiband image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 118(9), 884–900 (1996)

42. M. Kass, A.P. Witkin, D. Terzopoulos, Snakes: active contour models. Int. J. Comput. Vis.
1(4), 321–331 (1988)

43. B. Horn, B. Schunck, Determining optical flow. Artif. Intell. 17, 185–203 (1981)
44. C. Vazquez, A. Mitiche, R. Laganiere, Joint segmentation and parametric estimation of image

motion by curve evolution and level sets. IEEE Trans. Pattern Anal. Mach. Intell. 28(5), 782–
793 (2006)

45. D. Cremers, M. Rousson, R. Deriche, A review of statistical approaches to level set segmenta-
tion: integrating color, texture, motion and shape. Int. J. Comput. Vis. 62(3), 249–265 (2007)

46. A. Mitiche, A. Mansouri, On convergence of the Horn and Schunck optical flow estimation
method. IEEE Trans. Image Process. 13(6), 848–852 (2004)

47. G. Aubert, G. Deriche, P. Kornprobst, Computing optical flow via variational thechniques.
SIAM J. Appl. Math. 60(1), 156–182 (1999)

48. R. Deriche, P. Kornprobst, G. Aubert, Optical-flow estimation while preserving its discontinu-
ities: a variational approach, in Asian Conference on Computer Vision (1995), pp. 71–80

49. R. El-Feghali, A. Mitiche, Spatiotemporal motion boundary detection and motion bound-
ary velocity estimation for tracking moving objects with a moving camera: a level sets pdes
approach with concurrent camera motion compensation. IEEE Trans. Image Process. 13(11),
1473–1490 (2004)

50. I. Cohen, G.G. Medioni, Detecting and tracking moving objects for video surveillance, in CVPR
(1999), pp. 2319–2325

51. T. Veit, F. Cao, P. Bouthemy, Probabilistic parameter-free motion detection, in CVPR vol. 1
(2004), pp. 715–721

52. A. Desolneux, L. Moisan, J.-M. Morel, Edge detection by Helmholtz principle. J. Math. Imaging
Vis. 14(3), 271–284 (2001)

53. J.M. Odobez, P. Bouthemy, Robust multiresolution estimation of parametric motion models.
Vis. Commun. Image Represent. 6(4), 348–365 (1995)

54. M.E. Leventon, W.E.L. Grimson, O. Faugeras, Statistical shape influence in geodesic active
contours. IEEE Conf. Comput. Vis. Pattern Recogn. 1, 316–323 (2000)

55. Y. Chen, H. Tagare, S.R. Thiruvenkadam, F. Huang, D.C. Wilson, K.S. Gopinath, R.W. Briggs,
E.A. Geiser, Using prior shapes in geometric active contours in a variational framework. Int.
J. Comput. Vis. 50(3), 315–328 (2002)

56. M. Rousson, N. Paragios, Shape priors for level set representations, in European Conference
on Computer Vision (2002), pp. 416–418

57. A. Tsai, A.J. Yezzi, W.M.W. III, C.M. Tempany, D. Tucker, A.C. Fan, W.E.L. Grimson, A.S.
Willsky, A shape-based approach to the segmentation of medical imagery using level sets.
IEEE Trans. Med. Imaging 22(2), 137–154 (2003)

58. D. Cremers, Nonlinear dynamical shape priors for level set segmentation, in IEEE Conference
on Computer Vision and, Pattern Recognition (2007), pp. 1–7

59. D. Freedman, T. Zhang, Interactive graph cut based segmentation with shape priors. IEEE
Conf. Comput. Vis. Pattern Recogn. 1, 755–762 (2005)

60. T.F. Chan, W. Zhu, Level set based shape prior segmentation, in IEEE Conference on Computer
Vision and, Pattern Recognition (2005), pp. 1164–1170

61. M. Ben Salah, I. Ben Ayed, A. Mitiche, Active curve recovery of region boundary patterns.
IEEE Trans. Pattern Anal. Mach. Intell. 34(5), 834–849 (2012)

62. D.H. Ballard, C.M. Brown, Computer Vision (Prentice Hall, New Jersey, 1982). http://
homepages.inf.ed.ac.uk/rbf/BOOKS/BANDB/bandb.htm

63. Y. Dai, Y. Nakano, Face-texture model based on sgld and its application in face detection in a
color scene. Pattern Recogn. 29(6), 1007–1017 (1996)

64. A. Mansouri, A. Mitiche, Region tracking via local statistics and level set pdes, in IEEE
International Conference on Image Processing, vol. III, Rochester, New York (2002), pp. 605–
608

http://homepages.inf.ed.ac.uk/rbf/BOOKS/BANDB/bandb.htm
http://homepages.inf.ed.ac.uk/rbf/BOOKS/BANDB/bandb.htm


142 4 Motion Detection

65. A. Myronenko, X. Song, Global active contour-based image segmentation via probability
alignment, in Computer Vision and, Pattern Recognition (2009), pp. 2798–2804

66. F. Lecellier, S. Jehan-Besson, J. Fadili, G. Aubert, M. Revenu, Optimization of divergences
within the exponential family for image segmentation, in SSVM (2009), pp. 137–149

67. M.P. Do Carmo, Differential Geometry of Curves and Surfaces (Prentice Hall, Upper Saddle
River, 1976)

68. F. Guichard, J. M. Morel, Image Analysis and PDEs (IPAM-GBM Tutorials, 2001). http://
www.ipam.ucla.edu/publications/gbm2001/gbmtut-jmorel.pdf

69. M. Ben Salah, Fonctions noyaux et a priori de forme pour la segmentation d’images et le suivi
d’objets. Ph.D. dissertation, Institut national de la recherche scientifique, INRS-EMT (2011)

70. I. Ben Ayed, A. Mitiche, A region merging prior for variational level set image segmentation.
IEEE Trans. Image Process. 17(12), 2301–2313 (2008)

71. T. Kadir, M. Brady, Unsupervised non-parametric region segmentation using level sets, in
International Conference on Computer Vision (2003), pp. 1267–1274

72. T. Brox, J. Weickert, Level set segmentation with multiple regions. IEEE Trans. Image Process.
15(10), 3213–3218 (2006)

73. D. Cremers, C. Schnorr, Motion competition: variational integration of motion segmentation
and shape regularization, in DAGM Symposium on, Pattern Recognition (2002), pp. 472–480

74. D. Cremers, A multiphase level set framework for motion segmentation, in Scale Space Theories
in Computer Vision, ed. by L. Griffin, M. Lillholm, Isle of Skye, June 2003, pp. 599–614

75. A. Mansouri, J. Konrad, Multiple motion segmentation with level sets. IEEE Trans. Image
Process. 12(2), 201–220 (2003)

76. D. Cremers, S. Soatto, Motion competition: a variational approach to piecewise parametric
motion segmentation. Int. J. Comput. Vis. 62(3), 249–265 (2005)

77. T. Brox, A. Bruhn, J. Weickert, Variational motion segmentation with level sets, in European
Conference on Computer Vision, vol. 1, (2006) pp. 471–483

78. H. Sekkati, A. Mitiche, Joint optical flow estimation, segmentation, and 3D interpretation with
level sets. Comput. Vis. Image Underst. 103(2), 89–100 (2006)

79. H. Sekkati, A. Mitiche, Concurrent 3D motion segmentation and 3D interpretation of temporal
sequences of monocular images. IEEE Trans. Image Process. 15(3), 641–653 (2006)

80. A. Mitiche, H. Sekkati, Optical flow 3D segmentation and interpretation: a variational method
with active curve evolution and level sets. IEEE Trans. Pattern Anal. Mach. Intell. 28(11),
1818–1829 (2006)

http://www.ipam.ucla.edu/publications/gbm2001/gbmtut-jmorel.pdf
http://www.ipam.ucla.edu/publications/gbm2001/gbmtut-jmorel.pdf


Chapter 5
Tracking

5.1 Introduction

Tracking is the process of following objects through an image sequence. In general,
one may track the projected surface of an object or its outline, a patch of this surface
or a set of points lying on it. Regardless of what target a tracking algorithm pursues,
it must be able to characterize it so that it can seek it from one image to the next.
There are three basic types of characterizations tracking can resort to: photometric,
geometric, and kinematic. Photometric characterizations describe particular traits of
the image created by the light reflected from the object, such as the distribution of
color and textural properties. Color has been used often [1–5], probably because it
is sensed rather than computed, in addition to being a distinctive object attribute.
Texture, which refers to the spatial arrangement of image intensity giving rise to
properties such as regularity, coarseness, contrast, roughness, and directionality [6],
has also served tracking frequently, for instance in [7–10].

Geometric characterizations describe shape. When the purpose of tracking is to
follow an image patch or an object grossly placed about a center position, it is
sufficient to use a bounding figure such as a rectangle or an ellipse, as in [4, 11] for
example. When tracking focuses on specific moving objects, it can use their shape
when available to assist in locating them. This has been done in [12] using shape
priors [13–15] with active contour representations [16].

Kinematic characterizations pertain to motion. Motion can serve tracking in two
fundamental ways. First, motion can predict the position of moving objects and,
therefore, assist in following them through an image sequence [17–23]. Second,
motion can be used to detect moving objects and, therefore, trigger tracking. Detec-
tion of the foreground of moving objects has been investigated in Chap. 4. When
tracking pursues a point set rather than a foreground region, the Harris [24], the KLT
[25], and the SIFT [26] schemes have been the major methods used to detect the
points.

Given an image object, which can be a point set, a patch, or a region, and its
characterization, that can be photometric, geometric, or kinematic, tracking sets out
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to follow it in its course through time. With a digital image sequence, this consists
of locating the object in every frame. Of course, it is not sufficient to detect the
collection of moving objects in each frame because, by definition, tracking requires
some form of correspondence which ties each object in one frame to the same object
in the subsequent frames. This correspondence is generally embedded in the tracking
process so that one does not detect a set of objects in one frame each to be matched
uniquely to an object in a set of objects detected in the next frame. Instead, each
moving object is followed from the current frame by positioning it in subsequent
frames without having to reference other moving objects.

The earliest methods were focussed on following the trajectory of a few feature
points [27–31] but, by and large, tracking has been investigated from two distinct
major perspectives: discrete-time dynamic systems theory and energy minimization.

Dynamic Systems Methods

Dynamic systems methods of tracking, sometimes called data association methods
[32, 33], describe the material information about a target evolution by a sequence of

states {xk}k produced according to state transition equations xk = fk({xk}k−1
1 ,μk),

where {μk}k is an i.i.d noise sequence, describing a Markov process of order one, i.e.,
xk = fk(xk−1,μk). The states xk are hidden states to infer indirectly via measure-
ments {zk}k to which they relate by observation equations zk = hk(xk, vk), where
{vk}k is another i.i.d noise sequence. In probabilistic form, an optimal estimate of the
measurement-conditional pdf p(xk |{zk}k1)which tracking aims at in the general case,
can be obtained by Bayes recursive estimation. At each instant k, this consists of two
steps, one of prediction to estimate p(xk |{zk}k−1

1 ) using the model state-transition
pdf p(xk |xk−1) and the pdf estimate at the previous instant p(xk−1|{zk}k−1

1 ), fol-
lowed by an update, in light of the new data zk , to estimate p(xk |{zk}k1) using the
likelihood p(xk |zk). The process is started at an initial state whose pdf is given by
the prior p(x0).

The prediction part of these dynamic state prediction-correction iterations can be
seen directly in the (Chapman-Kolmogorov) equation:

p(xk |{zk}k−1
1 ) =

∫
p(xk |xk−1)p(xk−1|{zk}k−1

1 )dxk−1 (5.1)

The first term in the integrand (simplified by the first-order Markov property of the
state transition pdf: p(xk |xk−1, {z}k−1

1 ) = p(xk |xk−1)) of this integral expression
of the prediction estimate uses the state-transition density. The second term is the
previous posterior density estimate.

As to the correction part, it can been seen in the Bayes formula:

p(xk |{zk}k1) =
p(zk |xk)p(xk |{zk}k−1

1 )

p(zk |{zk}k−1
1 )

, (5.2)
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where the partition function is given by:

p(zk |{zk}k−1
1 ) =

∫
p(zk |xk)p(xk |{zk}k−1

1 )dxk (5.3)

The first term in the numerator uses the observation pdf and the second term is
the one computed at the prediction step. Theoretically, one can generate the desired
estimates about the target from p(xk)|{zk}k1), e.g., by minimum mean squared error
x̃k = E(xk |{zk}k1) =

∫
xk p(xk |{zk}k1)dxk or by maximum a posteriori criterion

x̃k = arg maxxk p(xk |{zk}k1). However, the optimal solution is intractable in general,
and is sought only in restrictive cases. The most studied restriction is the case of
Gaussian noise (μk’s and vk’s), and linear state-transition/observation equations (fk’s
and hk’s), which leads to the Kalman filter. The formulation can be generalized to
the extended Kalman filter [32] by a local linear expansion of the nonlinear state-
transition functions about current states. Several of the earliest studies of object
tracking in vision recognized the relevance of Kalman filtering in incorporating
motion models and measurement uncertainties [34–41].

The assumptions underlying the Kalman filter are not applicable in general-
purpose tracking and extending the filter to nonlinear state-transition and obser-
vation functions by local linear representation is fitting only to the extent that the
higher-order terms are negligible. This justifies the use of practicable approximate
solutions that reflect reality better. For that purpose, particle filtering is a general
scheme that has been used for dynamic state estimation which represents the pos-
terior pdf p(xk |{zk}k1) by an appropriately sampled set of states with corresponding
density values. These states/probabilities, called particles, can be used directly to
estimate the most probable state or posterior mean properties E(g(x)|z) relevant to
an application, e.g., the mean and variance.

Essentially, particle filtering is a general method to implement nonlinear non-
Gaussian Bayesian state estimation by MonteCarlo importance sampling [42]. It
has been investigated under different names in various fields [43]. For instance,
the condensention algorithm [44] used the factored sampling scheme of [45] to
devise a general purpose yet simple estimation process which it applied to visual
target tracking in video sequences. The condensation algorithm interprets the density
multiplication in the prediction equation (5.1) as choosing with replacement a state
S from the particles at the previous time step k − 1 and then sampling from the
state transition p(xk |xk−1 = S), giving a new particle S′ for the current time step k.
These two operations are called drift and diffusion, a borrowing from physics. Now,
the density multiplication in the numerator of the Bayes/correction rule Eq. (5.2) is
interpreted as using state S′, which came from the drift-diffusion interpretation of the
left-hand side of Eq. (5.1), to evaluate the observation density, i.e., p(zk |xk = S′).
These three consecutive operations, drift, diffusion, and evaluation, are done as many
times as there are particles in the density representation to yield the current set of
particles (from drift and diffusion) and an estimate of the corresponding density
values (evaluation).
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There have been many investigations of particle filtering variants. In particular,
importance sampling has been used instead of the less efficient factored sampling of
the condensation filter. A tutorial on particle filtering is offered in [43]. In general,
practitioners of dynamic system tracking in vision have reported difficulties of two
sorts. One difficulty relates to the objects dynamics definition. Such models generally
have parameters to learn from training data while the objects are in typical motions
[44]. Accurate learning may not always be practicable in general situations. Obser-
vation models may be difficult to define and to learn from data and are thus often
given a tractable analytic form. Another difficulty concerns the reference density of
importance sampling. It is critical that it be suited for the density being sampled in a
particular application [43]. In general, a good reference density is close to the density
to be sampled, and it should be easy to evaluate and simulate values from it [46].

The description of dynamic tracking above applies to a single object. When there
are several objects to track, additional problems arise regarding the separation of the
different dynamical objects [47, 48] , which can involve the association of measure-
ments to current targets by multiple hypothesis evaluation and maintenance.

Energy Minimization Methods

Energy minimization methods address tracking from a quite different perspective
than dynamic systems methods. The emphasis is no longer on the target dynamics
but on its description so as to detect it from one instant to the next by minimizing
an energy functional that embodies all of the knowledge one might have about the
target, be it photometric, geometric, or kinematic. Therefore, such methods track a
description, and do so by determining the image domain region in the next image
which has a description that is closest to the description of the current target. This
characterization gives an essential role to this region covered by the target and it is
referenced explicitly in the formulation. In some methods it is a region of a typical
shape, such as a rectangle or an ellipse, and in others it is of an arbitrary shape, that of
the target occluding contour in the image, for instance. In the latter case, the contour
can be represented by a regular closed plane curve γ which enters the problem
formulation as a variable. Other variables can appear in the problem statement, for
instance kinematic parameters describing the movement of the target in the interior
Rγ of γ .

Let F be a feature characterizing the target. From a probabilistic standpoint, the
target can be described by the distribution of this characteristic in the image domain
region it covers. In this case, let q be a model density of F . This model plays the role
of a prototype and can be learned a priori from training data or estimated from the
feature values on the target where detected at the instant immediately preceding the
current time at which we want to locate it. Let p be the density of a candidate object
at the current instant. The purpose is to locate the object by minimizing a distance
d(p, q) between the model and candidate densities. It is clear that both the object
description, via characteristic features, and the region it covers, which is where this
description is evaluated, come to the forefront of the formulation. This contrasts with
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dynamic systems descriptions which bring the target dynamics at the foreground of
processing. Also important is the choice of a distance function between the feature
densities p and q or, more generally, the similarity function between the model and
candidate descriptions. The choice of the similarity function often prescribes the
minimization tool.

There have been several methods of tracking by energy minimization. Using ellip-
soidal object regions, the study in [4] investigated a formulation which minimizes
a distance between model and candidate discrete distributions of RGB color based
on the Bhattacharryya coefficient. The minimization of this distance with respect to
candidate objects is performed via the mean-shift algorithm [49]. Target variations
in scale can be processed via pixel location normalization and variable bandwidth
kernel estimate of the target density. Rather than using a fixed-shape target represen-
tation, the investigation in [50] tracks an object of arbitrary boundary represented
by a regular active curve γ in the plane. The region Rγ enclosed by the curve is
characterized by the distribution of a photometric feature. Locating the target at a
time instant is done as in [4] by minimizing a distance between model and candi-
date densities. Here, however, the active contour formalism applies [51], leading to
a continuous objective functional minimized by Euler-Lagrange equations via active
curve evolution, and a level-set implementation for numerical efficiency [16]. Along
the same vein, but using a general similarity functional rather than a distance between
densities, the investigation in [52] looks for the target in the current image using reg-
ularized neighborhood matching of the target image located in the previous image.
Neighborhood matching is used in a way that allows a variety of similarity functions,
including probabilistic [53]. Minimization of the active curve objective functional is
carried out by Euler-Lagrange equations via level sets.

Tracking by energy minimization has also been investigated from the viewpoint
of motion detection. The scheme in [22], for instance, uses a geodesic active contour
functional [54] with a detection term driven by temporal information, namely, the
distribution of the difference at motion boundaries between consecutive images.
This distribution is learned at each instant by statistical analysis of the difference
image. The functional contains also a tracking term to complement detection. The
tracking step, which takes over at the completion of detection, is the classical geodesic
algorithm for high image gradient boundary detection. Because geodesics move in
a single direction, either inward or outward, they must be placed so as to contain
the target at each instant. This problem has been avoided in [55] by a region-based
detection term driven by background model differencing [56, 57].

When a model of the moving object boundary shape is available, it can serves
tracking. In [12] for instance, a geometric shape description of the moving object is
learned from examples and embedded in a shape prior of an active curve/level set
formulation. A shape prior within the active contour framework has also been used
in [9] for multi-object contour tracking. Color and texture, modelled as Gaussian
mixtures, assist moving object detection when there is no occlusion. The shape
information, via a shape prior, is instantiated when an occlusion, detected by an
external process, starts occurring.
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The methods reviewed above do not use motion information about the target.
However, motion can help tracking by predicting the position of a moving target,
for instance according to a scheme as in [58, 59]. This can be particularly useful
when occlusion, which deprives tracking of the target photometric information, starts
occurring.

The remainder of this chapter offers an extended synopsis of methods which
implement the fundamental driving concepts of variational tracking which we have
reviewed above, namely the kernel-based formulation of [4] and mean-shift optimiza-
tion which supports it (Sect. 5.2), the distribution tracking scheme of [50] (Sect. 5.3),
and the temporal matching pursuit of [52] and its extensions in [53, 59] (Sect. 5.4). In
one extension we will see how motion can be implicated in tracking (Sect. 5.4.3). The
chapter concludes with a description of how variational tracking can be formulated
as a spatiotemporal process (Sect. 5.5).

5.2 Kernel-Based Tracking

Kernel-based tracking [4] follows a standard paradigm: It uses a feature description
of the target, an objective function to serve the purpose of positioning the target
from one instant of observation to the next, and the minimization of this objective
function. At each instant of observation, the goal is to determine the position of the
target where it best fits a target model in the neighborhood of its previous position.
The kernel-based tracking of [4] is characteristic in that it measures the fit of a target
to the model via the Bhattacharyya distance between the feature distributions of
target and model, the minimization of which reduces to the mean-shift procedure for
density mode estimation, which we describe next.

5.2.1 Mean-Shift Density Mode Estimation

The mean shift procedure is an iterative scheme to determine a local maximum of
a density function. It is developed from kernel density estimation as follows. Let x
be a d−dimensional random variable with density function f . Let V = hd be the
volume of the d−dimensional hypercube of radius h. Let X = {xi }n1 be a set of n
samples of x. The density f can be approximated from X by the Parzen window
estimate [60, 61] :

f̃ (x) = 1

n

n∑
i=1

1

V
K

(
x − xi

h

)
(5.4)

Function K is called a window function and satisfies the conditions K (u) ≥ 0 and∫
K (u)du = 1 so that the estimate f̃ is a legitimate density function. When K is the

unit hypercube window function:
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K (u) =
{

1 for ‖u j‖ < 1
2 j = 1, ..., d

0 otherwise,
(5.5)

then the interpretation and justification of f̃ (x) is quite clear because it is the fraction
of samples per unit volume falling in the window centered at x. In the more general
case, the estimate f̃ (x) is an average of functions of x and the samples {xi }n1 where
K is used as an interpolation function determining the contribution of each sample xi

according to its distance from x. The window function is generally called a kernel in
computer vision applications and the window width is referred to as the bandwidth.
The choice of the window function is not as crucial as the choice of the window
width which mainly governs the estimate [62], so that the Gaussian kernel:

K (u) = (2π)−d/2 exp

(
−‖u‖

2

2

)
(5.6)

and the Epanechnikov kernel:

K (u) =
{ 1

2Vu
(d + 2)(1− ‖u‖2) for ‖u‖2 < 1

0 otherwise,
(5.7)

where Vu is the volume of the unit hypersphere Su , have been used often and without
concomitant justification.

Let us take the density gradient estimate ∇̃ f to be the gradient of the density
estimate ∇ f̃ . For the Epanechnikov window function, the density gradient estimate
can be developed as [63]:

∇̃ f (x) ≡ ∇ f̃ (x) = 1

V
∇K

(
x − xi

h

)
= nh

n(hd Vu)

d + 2

h2

⎛
⎝ 1

nh

∑
xi∈Sh(x)

(xi − x)

⎞
⎠ ,
(5.8)

where Sh(x) is the hypersphere of radius h centered at x and nh the number of
samples in it. The term in the parenthesis on the right-hand side of Eq. (5.8) is the
displacement between x and the average of the samples in Sh(x) and is accordingly
called the sample mean shift. The term nh

n(hd Vu)
is the Parzen window estimate f̃ of f

when the window is the hypersphere of radius h. If the mean shift vector at x, using
the window width h, is denoted Mh(x), then:

∇̃ f (x) = α(x)Mh(x), (5.9)

where α(x) = d+2
h2 f̃ (x). This plainly shows that this estimate of the density gradient

is in the direction of the mean shift vector which, therefore, can be used to find a
mode of the density given samples from it. The mean shift procedure for this purpose
consists of starting at an initial position y0 and following the path determined by the
mean shift vector, i.e., compute the path y0, y1, y2, ... recursively by:
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y j+1 = 1

nh

∑
xi∈Sh(y j )

xi , j = 0, 1, 2, ... (5.10)

The sequence thus defined has been shown to converge [49, 64]. The scheme has been
generalized to a class of circularly symmetric window functions such as the Gaussian
kernel [4, 65]. For such kernels, let k be the real function defined on [0,∞[ such that
K (u) = k(‖u‖2) (called the profile of K in [4, 65]). Assuming k is differentiable, let
g = −k′. Proceeding as with the Epanechnikov kernel one shows that the estimate
of the density gradient is in the direction of the sample mean shift vector which now
takes the form:

Mh(x) =
∑n

i=1 xi g
(‖ x−xi

h ‖2
)

∑n
i=1 g

(‖ x−xi
h ‖2

) − x, (5.11)

giving the recursive mean shift procedure:

y j+1 =
∑n

i=1 xi g
(
‖ y j−xi

h ‖2
)

∑n
i=1 g

(
‖ y j−xi

h ‖2
) j = 0, 1, 2, ... (5.12)

Although the analysis in [4] is given in this more general case, its experimental
validation suggests to use the Epanechnikov kernel rather than others. This recom-
mendation is concordant with our earlier remark that the choice of kernel is not as
crucial as that of the bandwidth [62].

5.2.2 Tracking

Targets are described by the distribution of a feature, color for instance, or a vector
of filters response, in an elliptical image region R. Primitive geometric shapes other
than ellipses may be used. Targets are compared via a similarity function of their
feature densities, the Bhattacharyya coefficient, for example. Tracking seeks in the
neighborhood of the previous position of the target the position that yields the largest
such similarity between the target placed at that position and a model target. The
initial target serves as model. This model is then updated, if necessary, while tracking
progresses.

5.2.2.1 Target Description

A target is represented by the density function p of a feature z in the region it covers
in the image. The model of the target is represented by density q. The target fit to the
model can then be measured by a similarity function of the densities. For instance,
one can use the negative of the Bhattacharyya coefficient ρ, as often done in image
segmentation [51, 66]:
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B(p, q) = −ρ(p, q) = −
∫ √

p(z)q(z)dz, (5.13)

The study [4] suggested the following (Bhattacharyya) distance:

d(p, q) = √1− ρ(p, q), (5.14)

the minimization of which, one can notice, corresponds to maximizing the Bhat-
tacharyya coefficient ρ, so that the coefficient, rather than the distance, can be used
because it simplifies the analysis. In practice, z is quantized to m values z1, ..., zm ,
with corresponding probabilities p̃1, ..., p̃m and q̃1, ..., q̃m of the target and model.
The discrete Bhattacharyya coefficient is then written as:

ρ( p̃, q̃) =
m∑

j=1

√
p̃ j q̃ j . (5.15)

The m-bin histogram frequencies to estimate the target probabilities are:

p̃ j = 1

n

∑
x∈R

δ(Z(x)− z j ), (5.16)

where R is the elliptical region covered by the target and n = card(R), and Z :
x ∈ D→ Z(x) ∈ Z is the feature value mapping on the discrete image domain D.
Alternatively, one can use weighed frequencies as in [4] to give less importance to
points away from the region center which are more vulnerable to occlusion:

p̃ j = c
∑
x∈R

K

(∥∥∥∥y− x
h

∥∥∥∥
)
δ(Z(x)− z j ), (5.17)

where δ(0) = 1, and 0 otherwise, K is a window function of width h, y is the center
of R, and c is the normalizing constant so that the frequencies sum to 1. The target
model, centered at a fixed location, has similarly expressed density estimates.

5.2.2.2 Mean-Shift Tracking

A linear expansion of the Bhattacharyya coefficient in the neighborhood of y0 gives:

ρ( p̃(y), q̃) =
m∑

j=1

√
p̃ j (y)q̃ j ≈ 1

2
ρ( p̃(y0), q̃)+ 1

2

m∑
j=1

p̃ j (y)

√
q̃ j

p̃ j (y0)
(5.18)

The maximization with respect to y of the sum on the righthand side of the≈ sign
in Eq. (5.18) involves only the second term which, using Eq. (5.17), can be written:
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c

2

∑
x∈R

α(x)K
(∥∥∥∥y− x

h

∥∥∥∥
)
, (5.19)

where the coefficients α(x) are given by:

α(x) =
m∑

j=1

√
q̃ j

p̃ j (y0)
· δ(Z(x)− z j ) (5.20)

We see that expression Eq. (5.19) resembles the righthand side of the Parzen
window estimate in Eq. (5.4), although the window function K in Eq. (5.19) refers to
image positions rather than random variables. The coefficients being independent of
the running variable y, the sample mean shift analysis remains valid and, therefore,
the mean shift procedure can be applied to Eq. (5.19) by computing the sequence:

y j+1 =
∑

x∈R xα(x)g
(∥∥∥ y j−x

h

∥∥∥2
)

∑
x∈R α(x)g

(∥∥∥ y j−x
h

∥∥∥2
) j = 0, 1, 2, ... (5.21)

In practice, one must check that the sequence is properly stepped to converge.
A scheme must also be used for scale adaption when the target moves in depth.
These and other details are explained in [4].

Example: There are several examples of the kernel-based mean-shift tracking in [4].
Figure 5.1 (Courtesy of D. Comaniciu, reproduced with IEEE permission) shows the
results with the Mug sequence of one of the examples. The object to track is a mug
using an ellipsoid. The RGB color is the feature to describe the target, with values
quantized into 16 × 16 × 16 bins. The Epanechnikov profile is used for histogram
computations and the mean shift iterations are based on weighted averages. The
sequence is about 1,000 frames long. The target model is the image of a mug in
one of the frames (frame 60). The algorithm was tested with fast motion (frame
150), abrupt appearance variation (frame 270), target rotation (frame 270), and scale
change (frames 360–960). Tracking has kept the ellipsoid with the target until the
end of the sequence.

5.3 Active Curve Density Tracking

In kernel-based tracking which we examined in the previous section, the target had a
fixed primitive shape modulo scale. The target in [4] was an elliptical region. At each
instant of observation the object of tracking was to locate a region of the same shape
in which the density of a feature closely matches a model density. This matching
minimized the Bhattacharyya distance between model and target region densities and
the minimization was done via the mean-shift procedure thanks to a window function
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Fig. 5.1 Kernel/mean shift tracking [4]: results are shown for frames 60, 150, 240, 270, 360, 960

weighed expression of the target feature histogram (Eq. 5.17). The method we will
now examine [50, 67] also uses a feature density description of model and target,
and the paradigm of tracking by locating at each instant of observation the region
in which the feature density is most similar to the model density. However, there
are two major differences in that the target region is no longer constrained to have a
fixed shape and tracking is done by an active curve which moves to coincide with the
target boundary. This active curve is a variable in the formulation and its movement
is governed by the Euler-Lagrange equations corresponding to the minimization of
the model and target density similarity.

Let I : x, t ∈ Ω × T → I (x, t) be an image sequence, where Ω is the image
domain and T the sequence duration interval. Let z ∈ Z be a descriptive image
feature of the target and Z : x ∈ Ω → Z(x) ∈ Z the feature function. As with
other active curve formulations in other chapters of this book, let γ (s) : [0, 1]→ Ω

be a closed simple parametric curve of the plane and Rγ its interior. Finally, let p, q
be the densities of z for the target and the model, respectively.

5.3.1 The Bhattacharyya Flow

To determine a region R ∈ Ω in which the density of z resembles most the model
density, one determines the curve γ which maximizes the Bhattacharyya coefficient
ρ of p and q, p being a function of γ . The Bhattacharyya coefficient ρ is written, in
this context of active curve representation of target boundaries:

ρ(p, q) = ρ(p(γ ), q)) =
∫
Z

√
p(z, γ )q(z)dz (5.22)
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A Parzen window estimate of density p can be written in continuous form as:

p(z, γ ) =
∫

Rγ
K
(

z−Z(x)
h

)
dx∫

Rγ
dx

=
∫

Rγ
K
(

z−Z(x)
h

)
dx

A(Rγ )
, (5.23)

A(Rγ ) being the area of Rγ . Note that kernel K here applies to the feature variable
as in Eq. (5.4) and not to image position as in Eq. (5.17).

The maximization of the objective functional Eq. (5.22), with p expressed in
Eq. (5.23), is done as is usual with active contours by embedding γ : [0, 1] → R

2

into a one-parameter family of closed regular plane curves indexed by algorithmic
time τ : γ : [0, 1]×R

+ → R
2. The curve evolution equation to maximize Eq. (5.22)

with respect to γ is then given by the functional derivative of ρ with respect to γ :

∂γ

∂τ
= ∂ρ

∂γ
, (5.24)

which is derived as follows:

∂ρ

∂γ
= 1

2

∫
Z

√
q(z)

p(z, γ )
∂p(z, γ )
∂γ

dz, (5.25)

with:

∂p

∂γ
(z, γ ) =

A(Rγ )
∂
∫

Rγ
K
(

z−Z(x)
h

)
dx

∂γ
− ∂A(Rγ )

∂γ

∫
Rγ

K
(

z−Z(x)
h

)
dx

A(R)2

= 1

A(Rγ )

(
K

(
z− Z(γ )

h

)
− p(z, γ )

)
n, (5.26)

where n is the outward unit normal function of γ . Substitution of Eq. (5.26) in
Eq. (5.25) gives:

∂γ

∂τ
= Vρn, (5.27)

where the velocity Vρ is:

Vρ = 1

2A(Rγ )

(∫
Z

K

(
z− Z(γ )

h

)√
q(z)

p(z, γ )
dz− ρ(p(γ ), q)

)
. (5.28)

When K is the Dirac delta function we can write:

Vρ = 1

2A(Rγ )

(√
q(Z(γ ))

p(Z(γ ))
− ρ(p(γ ), q)

)
(5.29)
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We will now develop the Kullback-Leibler flow equations by adopting similar
manipulations. We will then follow with an intuitive interpretation of both the Bhat-
tacharyya and the Kullback-Leibler flows.

5.3.2 The Kullback-Leibler Flow

The formulation can use other density similarity functions, the Kullback-Leibler
divergence, for instance:

KL(p, q) = KL(p(γ ), q) =
∫
Z

q(z) log
q(z)

p(z, γ )
dz (5.30)

The corresponding curve evolution equation to minimize the objective functional
can be written:

∂γ

∂t
= −∂KL

∂γ
, (5.31)

with
∂KL

∂γ
= −

∫
Z

q(z)
p(z, γ )

∂p(z, γ )
∂γ

dz (5.32)

Substitution of Eq. (5.26) in Eq. (5.32) gives:

∂γ

∂τ
= VKLn (5.33)

with:

VKL = 1

A(Rγ )

(∫
Z

K

(
z− Z(γ )

h

)
q(z)

p(z, γ )
dz− 1

)
. (5.34)

When K is the Dirac function we can write:

VKL = 1

A(Rγ )

(
q(Z(γ ))

p(Z(γ ))
− 1

)
. (5.35)

Velocity Eqs. (5.29) and (5.35) hint at the behaviour of the Bhattacharyya and the
Kulback-Leibler curve evolution equations. The Kulback-Leibler velocity Eq. (5.35)
amounts to a likelihood ratio test to evaluate the hypothesis that the feature value at
a point x ∈ γ is drawn from model q against the hypothesis that it is drawn from
the p in Rγ . If q(Z(x)) > p(Z(x)), the likelihood ratio q(Z(x))

p(Z(x)) is greater than 1,
causing the velocity to be positive. Therefore, the movement of the curve at x will
be in the direction of its outward unit normal and it will expand to include x in Rγ ,
thereby drawing p closer to q at Z(x). If, instead, q(Z(x)) ≤ p(Z(x)), the curve will
retract from x which will, therefore, be in Rc

γ . Examining velocity Eq. (5.29) reveals
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a similar behaviour of the Bhattacharyya flow. The difference is that the likelihood
ratio hypothesis threshold is the current Bhattacharyya coefficient at the feature value
measured at x, Z(x), rather that being fixed at 1 as for the Kullback-Leibler flow.

5.3.3 Level Set Equations

As with other active curve formulations in other chapters of this book, curve γ is
represented implicitly as the level set zero of a functionφ, called the level set function,
φ : R2 → R, i.e., γ is the set {φ = 0}. Recall that when a curve moves according to
dγ
dτ = V n, its level set function evolves according to [16]

∂φ

∂τ
(τ ) = V ‖∇φ‖. (5.36)

We also recall that by evolving φ rather than γ , the topological variations of the
curve occur automatically and its position can be recovered as the level zero of φ at
any time. Would the curve be evolved directly, via an explicit representation as a set
of points, its topological changes would not be implementable in general. We have
reviewed the level set representation in Chap. 2 and there are extensive explanations
in [16] on effective numerical algorithms to implement level set evolution equations.

In our case, velocity V is given by Eq. (5.28) for the Bhachattaryya flow and by
Eq. (5.34) for the Kullback-Leibler flow. i.e., the corresponding level set function
evolution equations are given by Eq. (5.36), where V = VB for the Bhachattaryya
flow and V = VKL for the Kullback-Leibler flow.

Although the curve evolution equations Eq. (5.27) and Eq. (5.33) refer to the points
on γ , the velocity can be computed everywhere inΩ . Therefore, the level set equation
can be generalized so as to evolve the level set function everywhere in Ω . Free
implementations can also be found on the web.

Example: This example shows an application of tracking by the Kullback-Leibler
flow of the distribution matching scheme of [50]. It uses a sequence showing a person
walking (Fig. 5.2). The intensity profile corresponding to the person contrasts well
with that of its background and is well defined. The target intensity distribution
model is learned from the first frame using a manual segmentation (top image of
Fig. 5.2). Using this model, tracking was able to follow well its initial target through
the sequence.

The methods we described in the previous two sections used a model feature
distribution to pursue the target from one instant of observation to the next. The
model is normally learned off-line but could possibly be acquired from the target in
the previous image. The region-based matching scheme we will now describe [52]
and its extensions [53, 59] do not use a target model learned a priori, but take the
image of the target in the previous frame as the reference to match in the frame of
the current instant.

http://dx.doi.org/10.1007/978-3-319-00711-3_2
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Fig. 5.2 Tracking distributions [50] algorithm using the Kullback-Leibler flow: the person is fol-
lowed throughout the sequence by matching the intensity distribution on the target from one image
to the next. The image labelled (0) is the first frame of the sequence and it displays the manual
segmentation used to learn the target image statistics and start tracking. The other images are frames
toward the end of the sequence (as numbered below the images) showing the results of tracking

5.4 Tracking by Region-Based Matching

Let I k−1 and I k be two images with common domainΩ at two consecutive instants
of observation k − 1 and k. Let R0 be the target region at the previous instant k − 1
and R1 its corresponding unknown region at the current instant k. Region R1 is the
object of tracking. The following analysis [52] is given for scalar images but can be
rewritten for multivalued images such as color or vectors of filter responses.

5.4.1 Basic Formulation

Assume that R0 can be mapped onto R1 and Rc
0 onto Rc

1 and that the corresponding
images differ by noise. Specifically, assume that there exists ψ ∈ Ψ such that

I k(ψ(x)) = I k−1(x)+ μ(x) ∀x ∈ Ω, (5.37)

whereΨ is a set of allowable mapings andμ is stationary zero-mean Gaussian white
noise of standard deviation σ . This image model does not actually apply to parts
of Ω which are covered/uncovered by the target motion or occlusion. However, it
is a useful model to formulate the problem so as to arrive at a practicable effective
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algorithm. Using this model and some mild probabilistic assumptions, the study in
[52] converts the MAP estimation of R1:

R̃1 = arg max
R∈Ω P(R1 = R|I k−1, I k, R0) (5.38)

into a functional minimization problem:

γ̃ = arg min
γ

E (γ |I k−1, I k, R0), (5.39)

where

E (γ |I k−1, I k, R0) =
∫

Rγ
ξ1(x)dx +

∫
Rc
γ

ξ2(x)dx + λ
∫
γ

ds (5.40)

with functions ξ1 and ξ2 are given by:

⎧⎪⎨
⎪⎩
ξ1(x) = inf{z:‖z‖≤α,x+z∈R0}

(I k (x)−I k−1(x+z))2

2σ 2

ξ2(x) = inf{z:‖z‖≤α,x+z∈Rc
0}
(I k (x)−I k−1(x+z))2

2σ 2 ,

(5.41)

and γ : s ∈ [0, 1] → γ (s) ∈ Ω is closed simple plane curve representation of R1
parametrized by arc length and Rγ is its interior.

The length term, the third on the righthand side of the Eq. (5.40), imposes a smooth
boundary on the solution. The image model Eq. (5.37) manifests in the inf argument
of the objective functional data terms ξ1, ξ2 which result from taking −log of the
matching error probability according to a zero-mean Gaussian of σ 2 variance. There
also is in these data terms the tacit assumption which limits to α the extent of the
motion between the images at the previous and current instants k−1 and k. However,
we will see that the formulation can gain from basic motion information such as an
estimate of the target global motion (Sect. 5.4.3).

By embedding γ into a one-parameter family of closed simple plane curves
indexed by algorithmic time τ : γ : [0, 1]×R

+ → R
2, the curve evolution equation

to minimize Eq. (5.40) with respect to γ is given by:

∂γ

∂τ
= − (ξ1 − ξ2 + λκ)n, (5.42)

where κ is the curvature function of γ and n its outward unit normal function. The
evaluations are, of course done on the curve at each instant, i.e.,

∂γ

∂τ
(s, τ ) = − (ξ1(γ (s, τ ))− ξ2(γ (s, τ ))+ λκ(s, τ ))n(s, τ ) (5.43)

The corresponding level set equation, generalized to apply at all x ∈ Ω , is:
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∂φ

∂τ
(x, τ ) = − (ξ1(x)− ξ2(x))+ λκ(x, τ ))‖∇φ(x, τ )‖ (5.44)

Recall that the curvature function can be written in terms of the level set function as
the divergence of its unit gradient:

κ = ∇ · ∇φ‖∇φ‖ , (5.45)

when φ is positive inside γ , negative outside, and the normal n of γ is oriented
outward.

The basic formulation of [52] described above can be generalized by extending
the definition of the data terms ξ1, ξ2 in Eq. (5.41) to account for local image statistics
[53] and for the target shape and motion [59]. We will present these extensions in
the next two sections. First, we give an illustrative example of the behavior of the
model-distribution tracking scheme we have just described.

Example: This example uses the same sequence as the previous one for the model-
density tracking scheme. It implements the basic region-based matching scheme
of [52]. The results are shown in (Fig. 5.3). The same initialization is used in this
example as in the previous. The matching scheme, aided by the good image contrast
at the walker image boundary, allowed tracking to adhere to its target through the
sequence. The good performance compared to the model-density matching scheme
of the previous example is mainly due to the use of the previously detected target,
rather than a fixed target model, as the target instance to look for in the current frame.

Fig. 5.3 Tracking by the basic region-based matching: This is the same sequence as in the previous
example of tracking distributions of Fig. 5.2. The same initialization is used. The active contour
delineates well the silhouette of the person mainly thanks to the good contrast at the walker image
boundary
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5.4.2 Matching Local Statistics

Let pI,x designate the probability density function of I at x. The data terms ξ1, ξ2
can be generalized so that the level set evolution equation (5.44) takes the form:

∂φ

∂τ
(x, τ ) =− { inf{z:‖z‖≤α,x+z∈R0}

D
(

pI k ,x, pI k−1,x+z
)

− inf
{z:‖z‖≤α,x+z∈Rc

0}
D
(

pI k ,x, pI k−1,x+z
)

+ λκ(x, τ )} ‖∇φ(x, τ )‖, (5.46)

where D(p, q) designates a density separation function, for instance the Kullback-
Leibler divergence or the Bhattacharyya coefficient which we used previously. The
densities pI k ,x and pI k+1,x+z appearing in Eq. (5.46) can be approximated in a neigh-
borhood of x and x+z, respectively, for instance by a nonparametric kernel estimate
such as a histogram, or by assuming a parametric form and estimating the parameters.
These densities reflect local image statistics.

Let us for a moment put aside the length term of the functional and examine the
behaviour of the level set evolution at a specific point x in the current image k at
time τ . If the local statistics of I k at x are closer to the local statistics of I k−1 at a
point in R0 than at a point in Rc

0, i.e.,

inf{z:‖z‖≤α,x+z∈R0}
D
(

pI k ,x, pI k−1,x+z
)− inf
{z:‖z‖≤α,x+z∈Rc

0}
D
(

pI k ,x, pI k−1,x+z
) ≤ 0,

(5.47)
then ∂φ

∂τ
(x, τ ) ≥ 0 and φ monotonically increases to become eventually positive, in

which case x is claimed by R1 as it should, where R1 is the estimate of the tracked
region at the current instant k. If, instead, the local statistics of I k at x are closer to
the local statistics of I k−1 at a point in Rc

0 than at a point in R0, then ∂φ
∂τ
(x, τ ) ≤ 0

and point x will eventually go to Rc
1 as it should.

As an application, consider the case when pI k ,x is normally distributed with mean

μ1,x =
∫
B(x,β) I k(y)dy∫

B(x,β) dy
, (5.48)

where B(x, β) is the ball of radius β centered at x, and variance

σ 2
1,x =

∫
B(x,β)(I

k(y)− μ1,x)
2dy∫

B(x,β) dy
, (5.49)

and, similarly, consider that pI k−1,x+z is normally distributed with mean
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μ2,x+z =
∫
B(x+z,β) I k−1(y)dy∫

B(x+z,β) dy
(5.50)

and variance

σ 2
2,x+z =

∫
B(x+z,β)(I

k−1(y)− μ2,x+z)
2dy∫

B(x+z,β) dy
, (5.51)

then the Kullback-Leibler divergence between pI k ,x and pI k−1,x+z is given by:

KL(pI k ,x, pI k−1,x+z) =
1

2

(
log

σ 2
2,x+z

σ 2
1,x

+( σ
2
1,x

σ 2
2,x+z

−1
)+ (μ1,x − μ2,x+z)

2

σ 2
2,x+z

)
(5.52)

Rather than using a parametric form of the intensity densities pI k ,x and pI k−1,x+z,
one can use nonparametric approximations by kernel estimates. For instance:

pI k ,x(u) =
∫
B(x,ε) δ(I

k(y)− u)dy∫
B(x,ε) dy

(5.53)

and,

pI k−1,x+z(u) =
∫
B(x+z,ε) δ(I

k−1(y)− u)dy∫
B(x+z,ε) dy

, (5.54)

where δ is the delta functional. In practice, the image will be discretized to m values
u j , j = 1, ...,m, and Eq. (5.53) and Eq. (5.54) will give m-bin histograms. One
then uses a discrete expression of the Kullback-Leibler divergence (or other density
separation function).

Next, we will see how the target shape and motion can be made to intervene to
enhance tracking.

5.4.3 Using Shape and Motion

When a model of the target shape is available, it can assist tracking, particularly
when occlusion occurs. The inclusion of this model into tracking can be done via
an additional term in the objective functional called a shape prior. Shape priors in
image segmentation have been investigated in several studies [13–15, 68–71] but their
application to tracking is scarse [9, 12]. The usefulness of shape priors in tracking
was first shown in [9]. The scheme processed multiple targets and allowed targets to
occlude each other. A photometric functional was used to detect the targets when there
is no occlusion. When an occlusion occurs between targets, an independent external
process detects it and a shape functional is consequently instantiated. In [12] a model
was learned by viewing the target from different perspectives and determining class-
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descriptive principal components which were embedded in a shape prior. Tracking
was mostly driven by the shape prior in a functional which also contains a photometric
data term playing a secondary role. The intensity of the target and its background
were modelled by Gaussians.

Functional Eq. (5.40) can be augmented with a shape term that uses the target
shape at the previous instant of observation k − 1 to assist tracking at instant k.
As with the photometric appearance, the shape at one instant serves as a model to
locate the target at the next instant. This forgoes the need to learn models beforehand
as in [12]. Such prior learning may not be possible or practicable because training
data is not always available or accessible. Also, the target profile variations due to
motion and occlusion may be too complex to circumscribe in a single model. Using
the target shape at the previous instant as a model decomposes a possibly significant
cumulative target shape variation into a sequence of in-between instants deformations
generally simpler to process, affording a better resilience to occlusion and arbitrary
shape deformation.

Let the level set function corresponding to a closed regular plane curve be its
signed distance function (SDF), taken positive in its interior by convention. Let Φ0
be the SDF level set function of the boundary of R0 at time k. The squared displaced
SDF difference can evaluate the distance between the boundary of a region R and
that of R0 and, therefore serve as a shape tracking term:

d2(Φ,Φ0) =
∫
Ω

(
H(Φ(x))− H(Φ0(x + h))

)2
dx, (5.55)

where Φ is the SDF level set of R, H is the Heaviside step function, and h is the
motion field between k − 1 and k. This field can be taken to be an unknown variable
in the objective functional. For the purpose of tracking, however, it is sufficient to
approximate h by the average SDF difference because minimizing the functional with
respect to the level set, using both the photometric and the shape tracking terms, will
iteratively seek adjustments to bring the evolving SDF to coincide with the SDF of
R0 which serves as the current prior. With Eq. (5.55) as a shape tracking term, the
objective functional Eq. (5.40) becomes, after rewriting it in terms of Φ to make it
consistent with the writing of Eq. (5.55):

E (Φ|I k−1, I k, Φ0) =
∫
Ω

H(Φ) ξ1(x)dx

+
∫
Ω

(1− H(Φ)) ξ2(x)dx

+ λ
∫
Ω

|∇H(Φ)|dx

+ β
2

∫
Ω

(H(Φ(x))− H(Φ0(x + h)))2dx, (5.56)
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where λ, β are positive weighing constants. The third term on the righthand side
above is the usual length regularization term. The corresponding level set evolution
equation is:

∂Φ

∂τ
(x, τ ) =− δ(Φ(x, τ ))[ξ1(x)− ξ2(x)+ λ ∇ · ∇Φ‖∇Φ‖ (x, τ )

+ β (H(Φ(x, τ ))− H(Φ0(x + h, τ )
))]
, (5.57)

The equation applies on γ but can be extended to apply onΩ by replacing δ by ‖∇Φ‖
[72], giving the expression of Eq. (5.36). Alternatively, one can use a regularized
approximation Hε of H [73], which would give:

∂Φ

∂τ
(x, τ ) =− δε(Φ(x, τ )

)[
ξ1(x)− ξ2(x)+ λ ∇ · ∇Φ‖∇Φ‖ (x, τ )

+ β (Hε(Φ(x, τ ))− Hε(Φ0(x + h, τ )
))]
, (5.58)

where δε = H ′ε and τ is the algorithmic time. For instance, one can use the following
bounded support approximation [73] for a narrow-band implementation [16]:

Hε(z) =

⎧⎪⎨
⎪⎩

1, z > ε

0, z < ε
1
2

(
1+ z

ε
+ 1

π
sin(π z

ε
)
)
, |z| ≤ ε

(5.59)

Algorithm behavior during occlusion: In essence, the shape tracking term com-
plements the photometric tracking term by constraining the active contour at any
instant to have a shape as close as possible to the shape of the curve at the preceding
instant. This is particularly relevant during occlusion. The algorithm behaves as fol-
lows when an occlusion occurs. Suppose the object is visible at some instant and is
partially occluded at the next. In the occluded part of the target, the competition for
points between the target and the background happens as follows: for a point in this
part, the term ξ1 − ξ2 will most likely be negative because the intensity will most
likely be closer to that of a background point than of a target point. H(Φ)− H(Φ0)

will be equal to 1 in this case and the shape term will evaluate to β. Therefore, for β
sufficiently large, the velocity will be positive and the point will be assigned to the
target as it should. When an occlusion is properly resolved, the occluding background
segment becomes “part” of the target. It will “move out” of the target only when the
occluded part of the target reappears. The behaviour of the algorithm is similar when
the occluded part of the target is progressively uncovered. A good value of β to have
the algorithm behave in this desired way can be determined experimentally and, in
general, remains valid within a given application. In spite of its occlusion accommo-
dation capability, the algorithm has no means to recover the target portions lost to
tracking, i.e., which are visible but not recorded as part of the target by the tracking
process. Also, as a general purpose tracker, the scheme can be defeated by a sudden
onset of significant occlusion.
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Fig. 5.4 Car sequence: The car moves at about constant speed. Partial and total occlusion occur in
the sequence. Top three rows: Tracking using a shape tracking term. During total occlusion, contour
evolution is mainly driven by the shape tracking term. After total occlusion (third row) the curve is
still on the target although the detected silhouette is inaccurate. Fourth row: Tracking with the basic
method [52], which does not use shape. Last row: Tracking by the tracking distribution method [50]
which also does not use shape

Example: The following example [58] illustrates the algorithm during occlusion. It
uses the Car sequence, where a car has been filmed moving at about constant speed
on a road behind a row of trees. There is repeated partial occlusion as well as a
moment of total occlusion. The results of tracking with a shape term (Sect. 5.4.3) are
depicted in the top three rows of Fig. 5.4. The outcome when not using the shape term
[53] (Sect. 5.4.1) is shown in the fourth row. The results with the scheme that tracks
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model densities of targets [50] (Sect. 5.3), and which also uses no shape information
or motion, are in the last row. These results show that shape information and motion
were able to assist in keeping track of the target while occlusion occurred.

There are current applications, such as human activity understanding in image
sequences, which benefit from processing spatiotemporal information [74, 75].
Along the same vein, one can view tracking as a spatiotemporal process which
detects the surface generated by the target occluding contour in the x − y − t spa-
tiotemporal domain, rather than a temporally repetitive process, i.e., looking at the
problem from the standard viewpoint of locating a target successively from one frame
of a sequence to the next. The problem then centers upon a good characterization of
the moving target boundaries, which are no other than motion boundaries. In the next
section, we will describe a tracking method which generalizes the motion residual
subtraction scheme of Sect. 4.6.1, Chap. 4, to the spatiotemporal domain and moving
viewing system and objects.

5.5 Tracking in the Spatiotemporal Domain

When objects move in an image sequence, their boundaries carve surfaces in the
spatiotemporal domain. The points within the moving objects image regions are
animated by motion and thus form the spatiotemporal motion foreground. Therefore,
tracking can be viewed as motion detection in the spatiotemporal domain [76–78].
Rather than following the target from one instant of observation to the next as we
have described so far, the observations in a time interval are all taken together and the
spatiotemporal region corresponding to the foreground of moving objects is detected.
The moving objects outline can be recovered at any instant t by intersecting this
foreground by the plane π(x, y, t) = t .

The MAP image differencing method in Sect. 4.4.2 of Chap. 4 and its extension
to the case of a moving viewing system in Sect. 4.6.1 of the same chapter can be
formulated in the spatiotemporal domain [76, 77] by evolving an active surface
so that it is brought to coincide with the foreground of moving objects boundary.
Here following is the spatiotemporal formulation of the motion residual subtraction
method of Sect. 4.6.1, Chap. 4, for tracking in the presence of a moving viewing
system. The original spatial formulation and its spatiotemporal extension are obtained
in the same manner, have the same structure, and similar equations. The differences
are that the spatiotemporal scheme evolves a closed regular surface in 3D space rather
than a closed regular plane curve, and the generic derivation of the Euler-Lagrange
equations, which deal with surface and volume integrals of scalar functions are more
elaborate than for those dealing with the curve and region integrals we have been
concerned with so far. These derivations have been described in Chap. 2.

Let I : (x, y, t) ∈ D = Ω×]0, T [→I (x, y, t) ∈ R
+ be an image sequence with

open domain Ω ⊂ R
2 and time interval of observation ]0, T [. Let S be a closed

regular surface in D to symbolize the boundary of the foreground of moving objects,
RS its interior and RS = {RS, Rc

S} the corresponding partition of D. As usual, the

http://dx.doi.org/10.1007/978-3-319-00711-3_4
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http://dx.doi.org/10.1007/978-3-319-00711-3_4
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complement of the foreground will be called the background. We will allow the
viewing system to move and assume that this induces a background motion which
can be fully characterized by a vector of parameters θ . Let m be a motion feature.
The MAP estimate (S̃, θ̃) of (S, θ) using feature m is:

(S̃, θ̃) = arg max
S,θ

P(RS, θ |m)

= arg max
S,θ

P(m|RS, θ)P(RS, θ)

P(m)
. (5.60)

P(m) is independent of θ and S and can be ignored. P(m|RS, θ) is the data term,
and P(RS, θ) the prior. Assuming conditional independence of the motion feature
for x �= y, we have:

P(m|(RS, θ)) =
∏

x∈RS

P(m(x)|RS, θ)
∏

y∈Rc
S

P(m(y)|RS, θ) (5.61)

Maximizing this probability is equivalent to minimizing the negative of its log, which
comes to minimizing the functional:

E (S, θ) =−
∫

RS

log P (m(x)|(RS, θ)) dx

−
∫

Rc
S

log P (m(x)|(RS, θ)) dx (5.62)

− log P(RS, θ)

The first two terms on the right of Eq. (5.62) can be specified by a data model and
the last by a prior.

Data model: Let the residual normal motion be the normal component of optical
flow from which the normal component of the flow due to viewing system movement
has been subtracted:

W⊥∗ = W⊥ −W⊥c , (5.63)

The following data model will constrain the residual to be high inside the spatiotem-
poral surface generated by the moving objects and low outside, i.e, it will favor high
motion activity in the foreground of moving objects and low in the background.

P(m(x)|RS, θ) ∝
{

e−αe−(W⊥∗ (θ))2 for x ∈ RS

e−β(W⊥∗ (θ))2 for x ∈ Rc
S,

(5.64)

where ∝ is the proportional-to symbol and α and β are positive real constants.

Prior: To bias the foreground surfaces to be smooth, an area-related prior can be
used, independent of θ :
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P(RS, θ)) ∝ e−λ
∫

S dσ (5.65)

These models give the following energy functional to minimize:

E (S, θ) =α
∫

RS

e−(W⊥∗ (θ))
2

dρ +β
∫

Rc
S

(W⊥∗ (θ))
2
dρ + λ

∫
S

dσ (5.66)

This functional involves surface and volume integrals. The Euler-Lagrange equations
corresponding to such integrals was derived in Chap. 2.

Describing the image motion induced by the viewing system movement as a
translation (a, b), we have, from Eq. (5.63),

W⊥∗ = −
Ix a + Iyb + It

‖∇I‖
Using this expression, the Euler-Lagrange descent equations to minimize objective
functional Eq. (5.66) are given by:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂a
∂τ
= α ∫RS

2Ix‖∇I‖ (
It+aIx+bIy
‖∇I‖ )e−(

It+aIx+bIy
‖∇I‖ )2 dρ

−β ∫Rc
S

2Ix‖∇I‖ (
It+aIx+bIy
‖∇I‖ )dρ

∂b
∂τ
= α ∫RS

2Iy
‖∇I‖ (

It+aIx+bIy
‖∇I‖ )e−(

It+aIx+bIy
‖∇I‖ )2 dρ

−β ∫Rc
S

2Iy
‖∇I‖ (

It+aIx+bIy
‖∇I‖ )dρ

∂S
δτ
= −(2λκ + αe−(W⊥∗ (a,b))2 − β(W⊥∗ (a, b))2)n,

(5.67)

where n is the unit normal function of S and κ its curvature function. The descent
equation for the surface, the last equation in Eq. (5.67), was derived using the calculus
for surface and volume integrals in Chap. 2 and assuming that the motion parameters
a and b are independent of the active surface S. The corresponding level set equation
has the usual form except that the level set function is a function of both space and
time and, therefore, S is represented implicitly as the zero level of a one-parameter
family of functions φ, indexed by algorithmic time τ :

(∀τ) φ(x(τ ), y(τ ), t (τ ), τ ) = 0, (5.68)

where x , y, and t are the spatiotemporal coordinates, and the level set evolution
equation is given by:

∂φ

∂τ
= −(2λκ + αe−(W⊥∗ (a,b))2 − β(W⊥∗ (a, b))2))‖∇φ‖ (5.69)

The initial position S0 of active surface S is chosen so as to subsume the volume
generated by the moving objects. Some practical rules on how to chose the coefficients
α, β, and λ are given in [77]. With the proper choice of these, the surface evolves as
follows. In the background, we will have W⊥∗ ≈ 0 and the speed V of the movement

http://dx.doi.org/10.1007/978-3-319-00711-3_2
http://dx.doi.org/10.1007/978-3-319-00711-3_2
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Fig. 5.5 Tracking through the Car-and-pedestrian sequence by spatiotemporal motion detection,
one frame interval from upper-left to lower-right. The car depicted in this figure drives by a walking
pedestrian. The camera moves and induces an approximately translational motion of the image from
one frame to the next. The motion boundary englobes initially both the car and the pedestrian it
occludes; when the occlusion ends, this boundary splits into two distinct boundaries, one each for
the car and pedestrian

of S the direction of its normal will be approximately V ≈ (−2λκ − α)n and,
therefore, S will move inward. When it reaches the foreground boundary, we will
have V ≈ (−2λκ + β(W⊥∗ (a, b))2)n. The term β|W⊥∗ | acts to prevent the surface
from penetrating into the foreground where motion occurs. The term −2λκ has a
spatiotemporal smoothing effect on the active surface S.

Example: The following example [79] uses the Car-and-pedestrian sequence of a
car driving by a walking pedestrian. The camera moves to cause an approximately
translational image motion. Figure 5.5 presents the results of tracking. Note how
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Fig. 5.6 The surface spatiotemporal evolution for the Car-and-pedestrian sequence. A cut at time
t of the spatiotemporal surface perpendicular to the time axis gives the foreground of the moving
objects at time t

the motion boundary which initially encompasses both the pedestrian and the car
which occludes it, later splits into two distinct boundaries, one each for the car
and pedestrian, when the occlusion ends. The spatiotemporal surface evolution is
illustrated in Fig. 5.6.
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Chapter 6
Optical Flow Three-Dimensional Interpretation

6.1 Introduction

Optical flow is the field of optical velocity vectors of the projected environmental
surfaces whenever a viewing system moves relative to the viewed environment.
Therefore, optical flow carries information about the imaged surfaces and their move-
ment [1–3]. The object of three-dimensional (3D) interpretation of optical flow is to
recover the structure and motion of these surfaces and segment the environment into
differently moving objects.

Sparse interpretation is usually distinguished from dense. Sparse interpretation
recovers the 3D variables, namely depth and motion, for a few points. These cor-
respond to characteristic image points, points that can easily and consistently be
identified in distinct views of the environment. Dense methods, by contrast, seek to
infer depth and 3D motion for all the points on the visible surfaces. Sparse methods
were investigated first (see [4–6] for bibliographies and [7] for reprints of early papers
on structure from point correspondences [8, 9]) because the fundamental point-wise
projective relationships between the environment and its image had to be discerned
before dense interpretation could be addressed.

Interpretation is also often referred to as direct or indirect. It is indirect when
optical flow is estimated and used explicitly as data by the 3D recovery process.
Optical flow can be estimated independently of 3D interpretation but can also be
done concurrently. Direct recovery originated with [10], followed by [11, 12]. By
substituting the variables of a 3D model for optical flow, for instance the Longuet-
Higgins and Prazdny rigid-motion model which we will discuss in the next section
[13–15], optical velocities will no longer appear explicitly in the recovery process
and the interpretation is called direct. The question of whether interpretation is direct
or indirect has been asked about the human visual system and there is evidence that
environmental motion perception is an indirect process involving two separate steps,
retinal motion evaluation and 3D interpretation [16].

Dense interpretation is considerably more complex than sparse, but the
Longuet-Higgins and Prazdny model, the work of Horn and Shuck on optical flow
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estimation [17], and recent variational and level set statements of fundamental vision
problems [18–21] have opened up the possibility of effective processing.

Several investigations of dense interpretation have addressed the case of a viewing
system moving in an otherwise static environment [12, 22–33]. This case simplifies
the problem significantly because the single 3D motion to recover is that of the
viewing system. Also, segmentation of the environment with respect to motion is not
an issue and this simplifies the problem further.

When the environmental objects and the viewing system are allowed to move inde-
pendently, it is essential that motion boundaries be included in the interpretation so
that the moving objects can be delineated accurately. Motion boundary preservation
is a central issue in 3D interpretation of optical flow.

The simultaneous movement of the viewing system and the viewed objects in
dense interpretation has been addressed in several studies [34–41]. The investigations
in [34–36] are non variational methods which assume that optical flow is given before
interpretation. They address motion segmentation by grouping processes such as
region growing by 3D motion [36], clustering of 3D motion via mixture models
[34], and clustering via oriented projections of optical flow [35]. By assuming that
optical flow is available before interpretation, the methods put the burden on optical
flow estimation to place motion boundaries accurately.

The methods investigated in [37–41] are variational methods. Their functionals
all contain a data term which uses the Longuet-Higgins and Prazdny rigid motion
model and all have a provision for preserving 3D motion and depth boundaries.
As described briefly in the following, they differ in the way these boundaries are
described.

The minimum description length (MDL) discrete scheme of [37] is a transcription
to optical flow 3D interpretation of the MDL piecewise constant image segmenta-
tion of Leclerc [42]. MDL encoding refers to local edges rather than boundaries as
curves. This lack of explicit global region boundary information generally leads to
fragmented segmentation.

In a continuous formulation, 3D interpretation boundaries can be preserved via a
length regularization term which would allow smoothing along the boundaries and
inhibit it across, very much like what have done some of the optical flow estima-
tion methods we studied in Chap. 3. In such a framework, the formulation of [38]
minimizes an integral over the image domain containing a data term, based on the
Longuet-Higgins and Prazdny rigid motion model, and a term of regularization by
anisotropic diffusion to preserve depth discontinuities. Motion segmentation is not
addressed explicitly.

Along a different vein of thought, motion boundaries can be accounted for by an
active curves functional for joint optical flow 3D segmentation and 3D interpretation,
in which case the segmentation will refer explicitly to the active curves as the 3D
interpretation boundaries. Such an approach was investigated in [39]. The objective
functional contained a data term for each segmentation region and terms of regularity
of the regions boundary and depth. Minimization of the objective functional led
to segmentation by curve evolution and concurrent nonlinear estimation of relative
depth. Along the same vein, concurrent optical flow estimation and 3D interpretation

http://dx.doi.org/10.1007/978-3-319-00711-3_3
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has been addressed within the active curve segmentation framework in [40, 41]. Joint
estimation allowed the linearized expression of the Longuet-Higgins and Prazdny
rigid motion model in the data term, leading to linear 3D motion estimation within
the segmentation regions. Segmentation was based on 3D motion in [40] and on
optical flow in [41].

Finally, 3D interpretation of optical flow can be done via scene flow estimation,
where no model of motion, rigid or other, need to be assumed. Scene flow is the field
of 3D velocities of the visible environmental surfaces. Scene flow has been studied
mainly in stereoscopy [43–47], although it stands independent of stereoscopy. In
(Sect. 6.5) we will describe how it can be recovered independently of stereoscopy
by a scheme reminiscent of the Horn-and-Schunck optical flow estimation method.

The purpose of this chapter is to address dense 3D interpretation of optical flow
with an emphasis on its central issues, specifically motion boundary preservation and
motion segmentation. We will start (Sect. 6.2) by specifying the imaging model we
will be using, namely central projection in a Cartesian reference system, for which
we will write the 3D-to-2D equations of projection. We will also write the equations
which relate optical flow to the variables of 3D rigid structure and motion, particularly
the Longuet-Higgins and Prazdny fundamental model. All of these basic equations
will be used repeatedly in subsequent discussions. We will follow (Sect. 6.3) with the
study of 3D interpretation for a viewing system moving in a static environment. In
this case, the movement of the viewing system is the only motion to recover, which
simplifies the problem significantly. The case where the environmental objects can
also move introduces not only the unknowns of structure and motion of each moving
object but also the problem of segmenting the environment into differently moving
objects. In this context, point-wise as well as region-based dense variational methods
will be described (Sect. 6.4). The chapter will conclude with scene flow estimation
(Sect. 6.5).

Before we set out to describe methods, we must to point out that 3D interpreta-
tion of optical flow has intrinsic limitations: (a) An obvious limitation is that depth
cannot be recovered for surfaces which do not move relative to the viewing system.
Also, depth of untextured surfaces cannot be recovered, unless by some form of
regularization; (b) to a 3D interpretation consistent with a sequence spatiotemporal
variations corresponds a family of scaled interpretations; (c) reference to optical flow
implies small-range image motion. For long-range motion, multiresolution/multigrid
processing must support the interpretation.

6.2 Projection Models

The viewing system will be modelled by a direct orthonormal reference system
S = (O; I, J,K), where I, J, K are the unit vectors on the X-, Y - and Z-axes, and
central projection through the origin O. The Z-axis is the axis of depth. The image
planeπ is perpendicular to the Z -axis at distance f (the focal length) from the origin.
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Fig. 6.1 The viewing system is symbolized by an orthonormal direct reference system S =
(O; I, J,K) and central projection through the origin O on image plane π parallel to plane PIJ and
at focal distance f from O. Point P in space has coordinates X, Y, Z . Its projection, or image, has
coordinates x = f X

Z and y = f Y
Z . If P is a point of a rigid body, its velocity P′, i.e., the derivative

of its position with respect to time dP
dt , has instantaneous translational and rotational components

T = (τ1, τ2, τ3), ω = (ω1, ω2, ω3) according to the fundamental formula of rigid body motion:
P′ = T+ ω ×OP

The configuration is drawn in Fig. 6.1. Let P be a point on an environmental surface,
(X,Y, Z) its coordinates in S , and x, y, f the coordinates of its projection p on π .

Points P, p, and O are aligned. Therefore:

X − 0

x − 0
= Y − 0

y − 0
= Z − 0

f − 0
, (6.1)

which gives the coordinate projection equations:

x = f
X

Z

y = f
Y

Z
.

(6.2)

When P moves relative to the viewing system, its coordinates and those of its projec-
tion p are functions of time. Differentiation of both sides of the coordinate projection
equations Eq. (6.2) gives the equations connecting optical flow to 3D motion and
depth:

u = f
U − xW

Z

v = f
V − yW

Z
,

(6.3)

where U = d X
dt , V = dY

dt ,W = d Z
dt are the coordinates of the velocity of P, i.e.,

of 3D motion, and u, v are those of the velocity of the projection p of P, i.e., of
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optical flow at p. When the surface on which P lies is a rigid body, the 3D motion
takes the particular form of a kinematic screw in space, i.e., the composition of a
translation and a rotation about an axis through an arbitrary point. When this point
is the reference system origin, O, the 3D velocity separates into the constituent
instantaneous translational and rotational parts, T and ω, respectively, according to
the fundamental formula:

dP
dt
= T+ ω ×OP, (6.4)

which expands as:

U = τ1 + Zω2 − Yω3

V = τ2 + Xω3 − Zω1 (6.5)

W = τ3 + Yω1 − Xω2,

where τ1, τ2, τ3 are the components of T and ω1, ω2, ω3 are those of ω. If we sub-
stitute the coordinates projection relations Eq. (6.2) in Eq. (6.5) and the resulting
expressions in Eq. (6.3), we obtain the Longuet-Higgins and Prazdny model equa-
tions which connect optical flow to depth and rigid body motion in space:

u = − xy
f ω1 + f 2+x2

f ω2 − yω3 + f τ1−xτ3
Z

v = − f 2+y2

f ω1 + xy
f ω2 + xω3 + f τ2−yτ3

Z .
(6.6)

If rigid motion (T, ω) and scalar field Z verify these rigid motion equations then
αT, ω, αZ , α ∈ R

+, also verify them. This uncertainty of scale in 3D rigid body
motion interpretation is manifest in the more general expressions Eq. (6.3) which are
verified only up to a multiplication of the 3D velocity and depth by a (same) scale
factor. Sparse methods of optical flow 3D interpretation which use the Longuet-
Higgins and Prazdny model equations generally “fix” this scale by fixing the norm
of the rigid body translational component, ‖T‖, say equal to 1, which means that only
the direction of translation can be recovered. Scale can also be fixed by arbitrarily
fixing the depth of one of the rigid body points.

A count of unknowns and equations in Eq. (6.6) shows that sparse methods require
the observation of at least five points on the same rigid body and their optical flow
values. Five points would give 10 equations, and 5 unknowns of depth, 6 unknowns
for the screw of motion, minus 1 unknown for fixing scale, for a total of 10 unknowns.
Any distinct additional point on the rigid body adds two equations and one unknown
of depth.

The rigid body motion equations Eq. (6.6), which are nonlinear in Z , can be
linearized by eliminating depth. This can be done by pulling depth out of each of these
equations, equating the resulting expressions to get an equation in the components
of translation and rotation, and making the following change of variables:

e1 = −(ω3τ3 + ω2τ2)
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e2 = −(ω3τ3 + ω1τ1)

e3 = −(ω2τ2 + ω1τ1) (6.7)

e4 = ω2τ1 + ω1τ2

e5 = ω3τ1 + ω1τ3

e6 = ω3τ2 + ω2τ3,

and:

e7 = τ1

e8 = τ2 (6.8)

e9 = τ3,

leading to the homogeneous linear equation:

< d, e > = 0, (6.9)

where e = (e1, e2, . . . , e9)
T and d is the data vector, which is a function of image

position and optical flow:

d = (x2, y2, f 2, xy, f x, f y,− f ν, f u,−yu + xv)T . (6.10)

Vector e characterizes the 3D motion of a rigid body, i.e., it applies to all the points
of the same rigid body. It is called the vector of essential parameters of the rigid
body. The homogeneity of Eq. (6.9) reflects the uncertainty of scale we mentioned
previously. A count of unknowns and equations, accounting for scale, shows that
sparse methods of 3D interpretation which use Eq. (6.9) require the observation of
at least 8 points on the same rigid body and their optical flow values. Recovery of
the essential parameter vector e uniquely determines the original variables T, ω.

The relations between 3D interpretation and image variables we have so far writ-
ten, namely Eq. (6.3); the Longuet-Higgins and Prazdny model Eq. (6.6); and the
linearized version Eq. (6.9); all involve image position and optical flow but not the
image sequence itself explicitly. However, optical flow is not a sensed variable and
must be estimated using the image sequence, for instance by one of the methods
described in Chap. 3. To obtain a 3D interpretation equation in which the image
sequence function appears, via its spatiotemporal derivatives, but not optical flow,
one can substitute for optical flow in the Horn and Schunck equation [17]:

Ix u + Iyv + It = 0, (6.11)

its expression in terms of the 3D variables of an interpretation model, for instance
one of the model equations we have just mentioned. For example, if we write u and v
according to the Longuet-Higgins and Prazdny model, we obtain the Negahdaripour
3D rigid motion constraint [11]:

http://dx.doi.org/10.1007/978-3-319-00711-3_3
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1

Z
< s,T > + < q, ω > +It = 0, (6.12)

where vectors s, and q are given by

s =
⎡
⎣ f Ix

f Iy

−x Ix − y Iy

⎤
⎦ , q =

⎡
⎢⎢⎣
− f Iy − y

f (x Ix + y Iy)

f Ix + x
f (x Ix + y Iy)

−y Ix + x Iy

⎤
⎥⎥⎦ (6.13)

In the upcoming sections we will see how 3D interpretation model equations can
be used in a variational formulation of dense 3D interpretation of optical flow. We
will begin with ego-motion in a static environment, the simplest case, and then treat
relative motion of viewing system and viewed objects.

6.3 Ego-Motion in a Static Environment

Ego-motion is the movement of the observer, in our case the viewing system, or cam-
era. Ego-motion in a static environment presents 3D interpretation with the simplest
problem because the viewing system rigid movement is the only motion to recover.
In spite of this simple presentation, the subject has received a considerable attention.
The depth scalar field is the other variable to recover. Keith Price’s bibliography
(http://iris.usc.edu/vision-notes/bibliography/contents.html) contains many impor-
tant pointers to the literature and there are additional ones in [48]. The literature
on the subject is disparate because studies have addressed wide-ranging aspects of
the problem, including problem statements, computational and algorithmic consid-
erations, formal questions, applications, special cases, and enhancement strategies.
This disparateness shows in the review [48] which identified, in a repertory of about
seventy studies, several distinct constraints used to formulate ego-motion interpre-
tation as an optimization problem and which fan onto an array of about a dozen
optimization strategies.

From a conceptual standpoint, ego-motion interpretation can be divided into
sharply different categories by the 3D interpretation model used to state the prob-
lem, and by distinguishing direct processing from indirect, and dense interpretation
from sparse. In each category of this division the optimization scheme is generally
dictated by the specificities and assumptions proper to the category. Here, we will
discuss dense variational methods. The formulations in these methods minimize an
objective functional where the 3D variables of interpretation are referenced over the
image domain rather than just at a few points.

http://iris.usc.edu/vision-notes/bibliography/contents.html
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6.3.1 Indirect Interpretation

Indirect interpretation of ego-motion assumes optical flow estimated and given as
input. In a stationary environment the problem can be addressed using the Longuet-
Higgins and Prazdny rigid motion model Eq. (6.6) in a functional of the form:

E (ω,T, Z) =
∫
Ω

(
(u − ξu)

2 + (v − ξv)
2 + g(‖∇Z‖)

)
dxdy, (6.14)

where g is a function modifying the norm of the gradient of depth as a means of
regularization as discussed in previous chapters, and ξu, ξv are given by the righthand
side of Eq. (6.6):

ξu = − xy

f
ω1 + f 2 + x2

f
ω2 − yω3 + f τ1 − xτ3

Z

ξv = − f 2 + y2

f
ω1 + xy

f
ω2 + xω3 + f τ2 − yτ3

Z
,

Differentiation under the integral sign with respect to ω and T and the Euler-
Lagrange equations with respect to Z lead to a greedy algorithm which, following
initialization of the environment as a frontoparallel plane, i.e., constant depth, iter-
ates two consecutive steps: 3D motion estimation by linear least squares assuming
depth fixed, and depth computation by gradient descent assuming motion fixed. The
estimation of the translational component of motion and depth is, of course, subject
to the uncertainty of scale discussed earlier. The minimization equations are simple
to write using the basic formulas in Chap. 2 and we leave it as an exercise to the
reader.

The study in [22] used a functional similar to Eq. (6.14) but without regularization,
and which it minimized by first solving analytically for depth as a function of motion,
and then substituting the solution into the functional and minimizing the resulting
depth-free functional via a system of nonlinear equations. This procedure essentially
performed arg minT,ω (arg minZ E (T, ω, Z)). A modification which used a result
from [25] and auxiliary variables to linearize the motion estimation part of this
scheme has been investigated in [49].

Rather than using the Longuet-Higgins and Prazdny model, the problem can
be expedited using its linearized version Eq. (6.9), i.e., by minimizing, first, the
functional:

E (e) =
∫
Ω

(< d, e >)2 dxdy (6.15)

to solve by least squares, up to scale, for the essential parameter vector e, from which
the rigid motion screw parameters can be recovered uniquely by Eqs. (6.7–6.8),
followed by the recovery of depth by the Longuet-Higgins and Prazdny model equa-
tions. One can determine e simply by writing Eq. (6.9) for every pixel of the digital
image and solving the resulting overdetermined homogeneous system of linear equa-

http://dx.doi.org/10.1007/978-3-319-00711-3_2
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tions by least squares using, for instance, the singular value decomposition (SVD)
method [6, 50].

6.3.2 Direct Interpretation

Optical flow does not appear in the objective functional of direct interpretation. Such
a functional can be written using the 3D rigid motion constraint Eq. (6.12):

E (ω,T, Z) =
∫
Ω

ξ2dxdy +
∫
Ω

g(‖∇Z‖)dxdy, (6.16)

where ξ = ξ(x, y) is defined in terms of the lefthand side of the 3D rigid body
motion constraint model (Eqs. 6.12–6.13):

ξ = 1

Z
< s,T > + < q, ω > +It (6.17)

The formulation of [11, 51] was along this vein but applied to a planar scene, with
an extension to quadratic patches in [52]. A similar formulation in [12] was applied
to the special cases of known depth, pure rotational motion, pure translational motion
or rigid motion with known rotational component.

In general, the minimization of Eq. (6.16) can be done as in the indirect formula-
tion by a greedy algorithm which, following an initialization of depth, say to that of
a frontoparallel plane, iterates two consecutive steps: minimization with respect to
motion by linear least squares assuming depth is fixed, followed by the minimization
with respect to depth by gradient descent assuming motion fixed. When Z is con-
sidered fixed, the minimization with respect to T, ω reduces to linear least squares
because ξ is a linear function of these parameters. Specifically, let

ρ = (T, ω)T = (τ1, τ2, τ3, ω1, ω2, ω3)
T , (6.18)

and

a =
(

q1, q2, q3,
s1

Z
,

s2

Z
,

s3

Z

)
, (6.19)

where s1, s2, s3 are the coordinates of s defined in Eq. (6.13) and q1, q2, q3 are those
of q. By differentiation of the objective functional with respect to the rigid motion
parameters ρ j , j = 1, . . . , 6, we obtain the normal equations of minimization:

< b j , ρ >= r j j = 1, . . . , 6, (6.20)

where r j is

r j = −
∫
Ω

a j It dxdy, (6.21)
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and component i of b j is:

bi
j =

∫
Ω

a j ai dxdy, i = 1, . . . , 6. (6.22)

With digital images, the estimation can be expedited by setting up an overdeter-
mined system of linear equations as follows and solving it by an efficient routine
such as the SVD method. Writing the 3D rigid body constraint Eq. (6.12) for each
xi we obtain an overdetermined system of linear equations:

A ρ = c, (6.23)

where A and c are defined by:

A =
⎡
⎣ a(x1)

...
a(xn)

⎤
⎦ c =

⎡
⎣−It (x1)

...−It (xn)

⎤
⎦ ,

with n being the number of pixels. This overdetermined homogeneous linear system
is then solved up to scale for least squares 3D motion, by the SVD method for
instance.

6.4 Non-Stationary Environment

We will now study the case where environmental objects and the viewing system
can move simultaneously and independently. We will assume that the objects are
rigid. The purpose of 3D interpretation would be to recover 3D structure and motion
of each object that moves relative to the viewing system. Therefore, by motion we
will mean motion relative to the viewing system, that the viewing system moves or
not. Three-dimensional interpretation is now faced with the problem of recovering
not the single viewing system motion as in ego-motion in a static environment but,
instead, the relative motion of each object moving independently. This complicates
the problem significantly because 3D interpretation is now tied to the notion of
motion-based image segmentation, where regions correspond to differently moving
objects in space, relative to the viewing system, or to the dual notion of motion
boundaries, which correspond to transitions in the image from one motion to another
significantly different. This is so because the 3D motion of an object is to be estimated
with the image data corresponding to the projection of the object which, therefore,
must be delineated. This delineation can be done by region-based interpretation and
explicit 3D motion region processing, or by point-wise interpretation via motion
boundary preserving regularization of the type we have discussed for optical flow
estimation in Chap. 3, via the Aubert function for instance [53]. We will treat both
cases in the following sections.

http://dx.doi.org/10.1007/978-3-319-00711-3_3
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6.4.1 Point-Wise Interpretation

Point-wise interpretation has been addressed in [38, 54] and [55]. It views motion and
depth as functions of image position, i.e., are allowed to vary from point to point. The
3D interpretation is computed by minimizing an objective functional which contains
a data term of conformity of the interpretation to the image spatiotemporal variations
and a regularization term which preserves 3D motion boundaries so as to account
for the various differently moving objects in the viewed environment.

The direct scheme of interpretation in [38, 54] uses the rigid 3D motion constraint
Eq. (6.12) to define the data term. It also uses a regularization that preserves 3D
interpretation discontinuities. More, precisely, let TZ = T/Z; ρ = (ω,TZ ), and
r = (q, s). With this notation, Eq. (6.12) is rewritten:

r · ρ + It = 0. (6.24)

The 3D interpretation is sought by minimizing the following functional:

E (ρ) =
∫
Ω

(r · ρ + It )
2 + λ

6∑
j=1

∫
Ω

g(‖∇ρ j‖) dx dy (6.25)

The Euler-Lagrange equations corresponding to the minimization of this functional
are:

λ div

(
g′(‖∇ρ j‖)
‖∇ρ j‖ ∇ρ j

)
= 2r j (r · ρ + It ) j = 1, . . . , 6 (6.26)

A discretization of Eq.( 6.26) gives a large system of nonlinear equations. Rather
than solving this system, the study [38, 54] minimized the objective functional using
the half-quadratic algorithm of [53, 56] which we described in Chap. 3. Functional
Eq. (6.25) is minimized via the minimization of the following other functional defined
through a vector field of auxiliary variables b = (b1, b2, . . . , b6):

E ∗(ρ,b) =
∫
Ω

(r · ρ + It )
2 + λC∗(ρ,b) dx dy, (6.27)

where

C∗(ρ,b) =
6∑

j=1

(
b j‖∇ρ j‖2 + ψ(b j )

)
, (6.28)

and ψ is a strictly decreasing convex function implicitly related to g and the explicit
expression of which is not needed by the algorithm execution. Details of the imple-
mentation and concomitant discretization are given in [38].

http://dx.doi.org/10.1007/978-3-319-00711-3_3
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A direct method along the vein of [38, 54] has been investigated in [55] with a
generalization of the data term as an approximate L1 metric of the displaced frame
difference, i.e., the data term is:

ED(ρ) =
∫
Ω

g
(
I (x + u(ρ), y + v(ρ), t + 1)− I (x, y, t)

)
dxdxy, (6.29)

where g = √z2 + ε2 for small ε realizes an approximate L1 metric, and the image
displacements (u, v) between views are given linearly in terms of the 3D variables
of interpretation ρ = (TZ , ω):

u(ρ) = − xy

f
ρ1 + f 2 + x2

f
ρ2 − yρ3 + fρ4 − xρ6 (6.30)

v(ρ) = − f 2 + y2

f
ρ1 + xy

f
ρ2 + xρ3 + fρ5 − yρ6. (6.31)

Details of a multiresolution implementation of the Euler-Lagrange equations cor-
responding to Eq. (6.29) are given in [55].

Once ρ is computed, depth can be recovered when T �= 0 from TZ = T/Z =
(ρ1, ρ2, ρ3) by:

1

Z
=

√
ρ2

1 + ρ2
2 + ρ2

3 , (6.32)

which effectively amounts to resolving the uncertainty of scale by imposing unit
length translational velocity ‖T‖ = 1, i.e., recovering the direction of the transla-
tional velocity vector.

The methods in [38, 54] and [55] are direct insomuch as they substitute a para-
metric model of optical flow in terms of 3D variables directly in the objective func-
tional. Using constraint Eq. (6.9), rather than Eq. (6.12), one can formulate an indirect
scheme, where optical flow is used as data, by minimizing an objective functional of
the form:

E (e) =
∫
Ω

(< d, e >)2 dxdy + λ
6∑

j=1

∫
Ω

g(‖∇e j‖) dxdy (6.33)

The corresponding Euler-Lagrange equations, subject to the uncertainty of scale,
are given by:

2d j < d, e > +λ div

(
g′(‖∇e j‖)
‖∇e j‖ ∇e j

)
= 0 j = 1, . . . , 6 (6.34)

Algorithms as in [38] and [55] can be used to solve these equations.

Example: Here following is an example for the purpose of showing what kind of
results one can expect with point-wise direct 3D interpretation. The results shown



6.4 Non-Stationary Environment 187

Fig. 6.2 Point-wise direct interpretation: a the first of the two consecutive images of the Marbled
blocks sequence used and, b the ground truth optical flow between the two views

were produced by the method of [38]. The example uses the Marbled block synthetic
sequence (KOGS/IAKS laboratory image database) which consists of images of two
moving blocks in a static environment. The first of the two consecutive images used
is displayed in Fig. 6.2a. The larger block moves to the left in depth and the smaller
forward to the left. Figure. 6.2b shows the ground truth displacements between the
two views used (KOGS/IAKS laboratory image database).

The Marbled block sequence is interesting because it has aspects that challenge
3D reconstruction. First the blocks texture is composed of weak intensity contrast
textons. At the top, and particularly for the larger block, this texture is the same
as of the background, causing the corresponding intensity boundaries to be faint
and, therefore, ambiguous. Second, the blocks sides hidden from the light source
are significantly shadowed. Finally, there are occlusion boundaries with sharp depth
discontinuities.

The focal length was set to f = 600 pixels. This corresponds approximately to
the focal length of an 8.5 mm camera with inter-pixel distance of 0.015 mm. Varying
the focal length about 600 pixels did not have a noticeable effect on the recovered
structure, a behaviour that is consistent with a remark in [57] citing the literature on
self calibration [58].

The recovered structure is displayed by grey level rendering and by an anaglyph.
Anaglyphs are generated using a stereoscopic image constructed from the first image
used and the estimated depth [59]. Depth computed from the 3D interpretation is
shown in Fig. 6.3a and a corresponding anaglyph in Fig. 6.3b. Note that the boundary-
preserving regularization of the 3D interpretation has preserved the occluding edges
of each block as well as the edges between their visible facets. However, the faces
are not as flat as they should be probably due to the presence of patches of signif-
icantly weak intensity contrast where depth could not be sufficiently corrected by
the point-wise process of regularization. The image motion reconstructed from the
3D interpretation is displayed in Fig. 6.4a and the Horn and Schunck optical flow is
shown in Fig. 6.4b, showing that the algorithm has done a decent job at recovering
3D motion.
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Fig. 6.3 Point-wise direct interpretation: a Grey level rendering of the estimated depth and, b an
anaglyph of the scene, to be viewed with red-cyan glasses

(a) (b)

Fig. 6.4 Point-wise direct interpretation: a Optical flow estimated from the 3D interpretation and
b optical flow by the Horn and Schunck method

6.4.2 Region-Based Interpretation

Region-based interpretation will reference and seek to determine maximal regions
corresponding to the moving environmental objects which, as in the previous discus-
sions, we will assume are rigid. This amounts to image segmentation according to the
movement of real objects, which necessarily brings in the 3D interpretation formu-
lation variables related to the motion and structure of the objects. Then, obviously,
segmentation and 3D motion and structure recovery are interdependent processes:
the segmentation needs the 3D variables of each object region and the estimation of
the objects 3D variables must be performed exclusively within each object region.
Therefore, it would be advantageous to perform segmentation and recovery of 3D
variables concurrently.
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Active contours and the level set representation have been quite effective in image
segmentation at large [20, 60] and we have seen in the preceding chapters that they
can be productive tools in optical flow estimation, and motion detection and tracking.
For 3D interpretation as well, we will show in the subsequent sections that they can
afford efficient algorithms by allowing encoding of 3D interpretation, 3D-motion
segmentation, and optical flow estimation in a single objective functional which
yields to effective optimization.

Under the assumption that moving environmental objects are rigid, region-based
3D interpretation methods can use, as with point-wise processing methods, the
Longuet-Higgins and Prazdny optical flow rigid body model Eq. (6.6), or its lin-
earized expression Eq. (6.9), or the Negahdaripour 3D rigid motion constraint
Eq. (6.12), to construct a data term which evaluates the fidelity of the 3D variables
to the image data within each segmentation region. Image data is either optical flow
evaluated beforehand or concurrently with the 3D variables, or the image sequence
spatiotemporal variations. In active contour formulations, regions are defined from
closed simple plane curves as we have seen many times in preceding chapters.

Here following are region-based formulations of active contour/level set methods
of 3D interpretation and segmentation of image sequences: (1) a 3D rigid motion
constraint formulation which uses a data fidelity term based on Eq. (6.12) to state
joint 3D-motion segmentation and estimation of depth and 3D motion and, (2) a
depth-free formulation where depth is eliminated from the objective functional via
the use of a data term based on Eq. (6.9), which brings in 3D rigid motion essentials
parameters and optical flow in the problem statement but not depth. Optical flow does
not appear in the objective functional of the first formulation, which implies that the
method is direct. Optical flow appears in the second formulation, which means that
both direct and indirect versions can be considered.

For a clearer presentation of the formulations, we will treat the case of two-region
segmentation before multiregion partitioning.

Let I : (x, y, t) ∈ Ω×]0, T [	→ I (x, y, t) ∈ R+ be an image sequence with
common domainΩ and duration T, possibly acquired by a moving viewing system.
We will investigate the problem of dividingΩ into two regions, R1 and R2 = Rc

1, on
the basis of 3D motion, and for each region determine the corresponding 3D structure
and motion. For the purpose of describing the boundary of R1, let R1 = Rγ , where
γ is a closed simple plane curve and Rγ its interior. Then R2 = Rc

γ .

6.4.2.1 3D Rigid Motion Constraint Formulation

Let Z designate the depth function over Ω and ωk,Tk, k = 1, 2 the rigid motion
parameter vectors assigned respectively to R1 and R2. Consider the following
objective functional of direct interpretation [39] which involves all of the unknowns,
i.e., depth, the parameters of the screws of 3D rigid motion, and the active curve γ :
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E
(
γ, {ωk,Tk}2k=1, Z

)
=

2∑
k=1

∫
Rk

(
ξ2

k + μ‖∇Z‖2
)

dxdy + λ
∮
γ

ds, (6.35)

where μ and λ are positive real constants to modulate the contribution of the terms
they multiply, and the ξk’s are given by the lefthand side of the 3D rigid motion
constraint Eq. (6.12):

ξk = s · Tk

Z
+ q · ωk + It , (6.36)

with data vectors s and q defined in Eq. (6.13). For each region Rk , k = 1, 2, the
first of the two terms in the first integral of Eq. (6.35), ξ2

k , is a data function of
image position to evaluate the conformity of the 3D motion parameters ωk,Tk to the
image sequence spatiotemporal derivatives via the Negahdaripour 3D rigid motion
constraint. The other function regularizes depth by smoothness within each region.
The second integral is the usual length term to bias the segmentation to have a smooth
boundary γ .

Minimizing the functional with respect to all its arguments, namely, depth, the
3D motion parameters within each of the two regions R1 and R2, and curve γ
which defines these regions, will partition the image into two regions separated by
a smooth boundary and give for each the smooth rigid structure and corresponding
motion that best explain the image brightness spatiotemporal variations, namely, its
spatiotemporal derivatives, in conformity with the 3D rigid body constraint Eq. (6.12)
and the viewing system model depicted in Fig. 6.1.

The minimization of Eq. (6.35) can be done by a greedy scheme which iterates
three consecutive steps until convergence, A. computation of motions parameters
considering the curve and depth fixed, B. computation of depth with the curve and
motion fixed and, C. curve evolution with depth and motion fixed. The initialization
starts the process with a curve, say a circular contour placed so as to cover about
half the image with its interior, and the constant depth of a frontoparallel plane. The
three steps of the algorithm are as follows, in the order of instantiation:

A. Update of motion:
With Z and γ fixed, i.e., taken for known and used as data at this step, the energy

to minimize is:

EMotion

(
{Tk, ωk}2k=1

)
=

2∑
k=1

∫
Rk

ξ2
k dxdy (6.37)

Each ξk being linear in Tk, ω j , the minimization amounts to linear least-squares
estimation of the parameters in each region. For a digital image, this is done by
solving, say by the SVD method, an overdetermined system of linear equations for
each of the two current regions R1 = Rγ and R2 = Rc

γ :

Ak ρk = ck, k = 1, 2 (6.38)
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where ρk = (ωk,Tk)
T , matrix Ak and vector ck are constructed from pixels

x1, . . . , xnk of region R j :

Ak =
⎡
⎢⎣

a(x1)
...

a(xnk )

⎤
⎥⎦ ck =

⎡
⎢⎣
−It (x1)

...

−It (xnk )

⎤
⎥⎦ ,

and the expression of a is given in Eq. (6.19).

B. Update of depth:
Taking the current motion and curve to be fixed and useable as data, depth is

updated by minimizing:

EDepth(Z) =
2∑

k=1

∫
R j

[
ξ2

k + μg(‖∇Z‖)
]

dxdy (6.39)

=
∫
Ω

2∑
k=1

χk

[
ξ2

k + μg(‖∇Z‖)
]

dxdy, (6.40)

where χk is the characteristic function of region Rk and g is a function to preserve
boundaries. The corresponding Euler-Lagrange descent equation to update depth is:

∂Z

∂τ
= −∂EDepth

∂Z
=

2∑
k=1

χk

[
2

s · Tk

Z2 ξk + μ div

(
g′(‖∇Z‖)
‖∇Z‖ ∇Z

)]
, (6.41)

where τ is the algorithmic time. Rather than using a discontinuity-preserving func-
tion, one can expedite processing by using the quadratic function g(z) = z2 in
which case the divergence term in Eq. (6.41) becomes the Laplacian of depth, ∇2 Z ,
and evaluate this Laplacian along the boundary curve γ according to an ad hoc
discontinuity-preserving approximation [61].

C. Update evolution of γ :
To evolve γ : [0, 1] → Ω , we embed it in a one-parameter family γ : [0, 1] ×

R+ → Ω of closed regular curves indexed by algorithmic time τ and move it
according to the Euler-Lagrange descent equation dγ

dt = − δEδγ (refer to Chap. 2).
Assuming both current motion and depth are fixed at this step, useable as data, this
equation is:

dγ

dτ
= −∂E

∂γ
= − (η1 − η2 + λκ)n, (6.42)

where n is the outward unit normal function of γ and κ its curvature function, and
η1, η2 are given by:

ηk = ξ2
k + μg(‖∇Z‖), k = 1, 2 (6.43)

http://dx.doi.org/10.1007/978-3-319-00711-3_2
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The corresponding level set evolution equation (see Chap. 2) is:

dφ

dτ
= − (η1 − η2 + λκ) ‖∇φ‖, (6.44)

where φ is the level set function of which γ is the zero level, positive inside γ and
negative outside. Curvature is written in terms of the level set function as:

κ = div

( ∇φ
‖∇φ‖

)
, (6.45)

where n is oriented outward:

n = − ∇φ‖∇φ‖ (6.46)

Interpretation up to Scale

Let {R1 = Rγ , R2 = Rc
γ } be the segmentation at convergence and ({ωk,Tk}2k=1, Z)

the corresponding 3D interpretation. This interpretation satisfies the normal equa-
tions Eq. (6.20) in each region. Any interpretation ({ωk, αTk}2k=1, αZ), α ∈ R

+ in
the same segmentation also satisfies them. Therefore, only the direction of the trans-
lational component of 3D motion, and relative depth thereof, can be determined.

Multiregion Extension

Multiregion segmentation, or image partitioning into N regions, N > 2, requires
at least two active curves. The functional data term can be written as a sum of the
regions individual data terms:

D =
N∑

k=1

∫
Rk

ψk(x, y) dxdy, (6.47)

where regions {Rk}N1 are defined from the active curves. This definition must ensure
that the objective functional minimization yields a set of regions that form a partition,
i.e., cover the image domain Ω and do not overlap. Various definitions of regions
from closed regular plane curves which result in partitions have been reviewed briefly
in Chap. 3 and in more detail in [21].

Example: This is an example of the type of 3D interpretation and motion segmen-
tation results which can be obtained by minimizing the 3D rigid motion constraint
functional Eq. (6.35). The scene in Fig. 6.5 is the same as in the preceding example.
The goal of segmentation here is to determine three distinct regions of 3D motion,
two of them corresponding to the two moving blocks and the third to their back-

http://dx.doi.org/10.1007/978-3-319-00711-3_2
http://dx.doi.org/10.1007/978-3-319-00711-3_3
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Fig. 6.5 Region-based direct 3D interpretation and 3D motion segmentation by minimizing the 3D
rigid motion functional Eq. (6.35): a the first of the two consecutive images used in the experiment
and the initial curves; b the final 3D motion segmentation. The final curves have closely adhered
to the two moving blocks

ground. Therefore, we use two active curves γ1 and γ2. The initial position of these
two curves is shown in Fig. 6.5a and their final position, produced by the algorithm
at convergence, is displayed in Fig. 6.5b. Both moving blocks have been delineated
correctly. The reconstructed depth of the blocks, triangulated and shaded according
to a local light source, is shown in Fig. 6.6. The structure of both blocks has been
correctly determined. The recovered structures have sharply delineated occluding
boundaries thanks to the fact that the segmentation process has correctly delineated
them.

6.4.2.2 Depth-Free Formulation

Depth can be eliminated from the 3D interpretation formulation by using a data
fidelity term based on the homogeneous linear constraint Eq. (6.9) rather than the
Negahdaripour rigid 3D motion constraint Eq. (6.12) as in the previous objective
function Eq. (6.35). This will bring optical flow in the formulation functional and, as
a result, indirect and direct statements of the problem can be considered.

Indirect Formulation

If optical flow is known beforehand, joint 3D-motion segmentation and 3D inter-
pretation can be done by minimizing the following functional, in the case of two
regions:
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Fig. 6.6 Region-based direct 3D interpretation and 3D motion segmentation by minimizing the
3D rigid motion constraint functional Eq. (6.35): a, b triangulation-based surface rendering of the
recovered blocks structure. The recovered structures have sharp occluding boundaries due to the
fact that the segmentation process has correctly delineated them

E
(
γ, {ek}2k=1

) =
2∑

k=1

∫
Rk

(d · ek)
2 + λ

∫
γ

ds, (6.48)

where, as before, R1 = Rγ and R2 = Rc
1. The first term evaluates the conformity of

the 3D motions, via their essential parameters, to the data, namely optical flow.
The minimization of this functional can be done by a greedy descent which iterates

two steps until convergence, computation of the essential parameters in each region
with γ fixed, and evolution of γ with the motion parameters fixed. The initialization
places a starting curve in Ω .

A. Essential parameters update:
The minimization equations with respect to the essential parameters comes to

a least squares expression of these in each of the two current regions Rγ and Rc
γ .

Computations consist of solving, in each region, an overdetermined system of linear
equations, by the singular value method, for instance:
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Dkek = 0, k = 1, 2, (6.49)

where, for k = 1, 2, the rows of matrix Dk correspond to the data vector d defined
by Eq. (6.10) evaluated at the points of region Rk . The equations are homogeneous.
The solution is obtained up to a scale factor, for instance the unit norm solution:
‖ek‖ = 1.

B. Curve evolution:
Curve γ is embedded in a one-parameter family γ : [0, 1] × R+ → Ω of closed

regular curves indexed by algorithmic time τ and evolved according to the Euler-
Lagrange descent equation:

dγ

dτ
= −δE

δγ
= −(

(< d, e1 >)
2 − (< d, e2 >)

2 + λκ)n, (6.50)

where e1, e2 are the essential parameters obtained at the parameter update step and
considered fixed for this step of curve evolution. The corresponding level set equation
is:

dφ

dτ
= −

(
(< d, e1 >)

2 − (< d, e2 >)
2 + λκ

)
‖∇φ‖ (6.51)

Direct Formulation

When optical flow is not known beforehand, it can still be estimated concurrently
with the segmentation and the essential parameters by minimizing a functional which
includes terms for its estimation [40]:

E
(
γ, {ek}2k=1, u, v

)
=

2∑
k=1

∫
Rk

(< d, ek >)
2 dxdy

+
2∑

k=1

∫
Rk

μ(∇ I · w + It )
2 + ν(g(‖∇u‖)+ g(‖∇v‖)) dxdy

+ λ
∮
γ

ds (6.52)

The terms for the estimation of optical flow are in the middle line of Eq. (6.52).
These are common terms, namely a data term of optical flow conformity to the image
spatiotemporal derivatives and terms of smoothness via a regularization function
g. The minimization of Eq. (6.52) can be done by iterative greedy descent here
also, but with three consecutive steps instead of two as for Eq. (6.48): optical flow
computation, essential parameter computation, and curve evolution. The last two
steps are identical to those of the minimization of Eq. (6.48): essential parameter
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vectors update governed by Eq. (6.49) assuming γ and optical flow u, v fixed, and
evolution of γ , governed by Eq. (6.50), assuming the motion parameters and optical
flow fixed.

For the first step, the Euler-Lagrange equations corresponding to the minimization
with respect to optical flow within each region Rk, k = 1, 2, assuming γ and the
motion parameters fixed, are:

( f ek,8 − yek,9) < d, ek > +μIx (∇ I · w + It )− ν div

(
g′(| ∇u |)
| ∇u | ∇u

)
= 0

(− f ek,7 + xek,9) < d, ek > +μIy(∇ I · w + It )− ν div

(
g′(| ∇v |)
| ∇v | ∇v

)
= 0

(6.53)

If one assumes that optical flow boundaries occur only at region boundaries, i.e.,
along γ , then the flow estimation can be expedited by using the quadratic function
g(z) = z2, in which case the divergence term is the Laplacian and Eq. (6.53) results in
a large sparse system of linear equations which can be solved efficiently by iterative
methods [62, 63].

Recovery of Relative Depth

The translational and rotational components of rigid 3D motion can be recovered
analytically and uniquely from the essential parameters, for each region separately.
The translational component T = (t1, t2, t3) is given by Eq. (6.8) up to a sign and
a positive scale factor: t1 = e7, t2 = e8, t3 = e9. The rotational component is
computed from Eq. (6.7). When T �= 0, depth can be pulled out of the Longuet-
Higgins and Pradzny rigid motion equations (6.6) and computed as:

Z =
√√√√√

( f t1 − xt3)2 + ( f t2 − yt3)2(
u + xy

f ω1 − f 2+x2

f ω2 + yω3

)2 +
(

v + f 2+y2

f ω1 − xy
f ω2 − xω3

)2 .

(6.54)
Since the components of T appear in a ratio with depth in the Longuet-Higgins

and Prazdny model and translation is recovered up to a scale factor, only relative
depth up to the same scale factor is recovered. This factor is determined when the
essential parameters are computed in each region under a fixed norm constraint. Once
depth is computed, the sign of T is adjusted if necessary to correspond to positive
depth [6, 15].

The fact that only the direction of translation, and relative depth thereof, can be
recovered implies two things: (1) 3D motions with the same rotational component
and the same direction of translational components cannot be distinguished, although
this does not affect the recovery of depth and, (2) the depth in one segmented region
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is relative to the depth in another in the ratio of the norm of their actual translational
components of motion.

Multiregion Extension

Multiregion segmentation into N regions, N > 2, is done exactly as we described it
for the preceding method: The functional data term can be written as a sum of the
regions individual data terms:

D =
N∑

i=1

∫
Ri

ψi (x, y) dxdy, (6.55)

where regions {Ri }N1 are defined from the active curves. We again refer the reader to
the review in Chap. 3 and to [21] for more details.

Example: This example illustrates the type of direct 3D interpretation results that can
be obtained by minimizing the region-based, depth-free functional Eq. (6.52). The
scene, shown in Fig. 6.7a, contains three moving real objects (courtesy of Debrunner
and Ahuja [64]). There is a cylindrical surface moving laterally to the right at an
image velocity of about 0.15 pixel per frame and also rotating approximately one
degree per frame about its axis. There also is a box moving to the right at about
0.30 pixel per frame and a flat background moving right at approximately 0.15 pixel
per frame. For the purpose of 3D-motion segmentation, the box and background
are considered a single object because they move according to parallel translations
(for which only the direction can be recovered as we have seen). An anaglyph of
the recovered scene is depicted in Fig. 6.7b. Figs. 6.8a and b show the recovered
structure of the cylindrical object and of the box-and-background as projections of
their triangulated surfaces wrapped with the original image.

Next, we will estimate scene flow as a direct means of describing 3D motion
without assuming that moving environmental objects are rigid.

6.5 Scene Flow

Scene flow is the 3D velocity field of the visible environmental points, i.e., it is the
3D vector field over the image domain which consists at each point of the velocity
of the corresponding surface point in space. Using the notation in Eq. (6.3), it is the
field (U, V,W ) over the image domain Ω .

Scene flow can be recovered by methods such as those we have described in the
preceding sections, which use a monocular image sequence and a parametric form
for the flow, for instance by interpreting the flow to be the velocity of a rigid body
as shown in Eq. (6.5). The constraints on the flow are then the constraints on its

http://dx.doi.org/10.1007/978-3-319-00711-3_3
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Fig. 6.7 Direct 3D interpretation and motion segmentation by minimizing the region-based, depth-
free functional Eq. (6.52): a the scene contains three moving objects: to the left there is a cylindrical
surface moving laterally to the right and rotating about its axis; to the right there is a box moving
to the right; and in the back there is a flat background also moving right. For the purpose of
3D-motion segmentation, the box and background are considered a single object because they move
according to parallel translations, for which only the direction can be recovered; b an anaglyph of
the recovered scene (to be viewed with red/blue glasses)

representation parameters and the flow is recovered a posteriori from its parametric
expression.

Because scene flow is related to optical flow and depth, as Eq. (6.3) in monocular
imaging reveals, nonparametric scene flow recovery has been investigated in the
context of stereoscopy [43–47], in which case constraints on depth and optical flow
by correspondence become available [65, 66]. However, nonparametric scene flow
estimation can be stated using a monocular image sequence, i.e., without requiring
stereoscopy. A linear formulation is as follows [67]:

By substitution of Eq. (6.3) in the Horn and Schunck optical flow constraint
Eq. (6.11) and multiplication by Z give the following linear equation in the variables
of scene flow and depth:

f IxU + f Iy V − (x Ix + y Iy)W + It Z = 0 (6.56)

Multiplication of motion and depth by the same constant maintains the equation.
One can remove this uncertainty of scale by choosing depth to be relative to the
frontoparallel plane Z = Z0 > 0 for some Z0 > f , giving the equation:

f IxU + f Iy V − (x Ix + y Iy)W + It (Z − Z0)+ It Z0 = 0 (6.57)

For notational simplicity and economy, we reuse the symbol Z to designate relative
depth, i.e., relative to plane Z = Z0, and write Eq. (6.57) as:

f IxU + f Iy V − (x Ix + y Iy)W + It Z + It Z0 = 0 (6.58)



6.5 Scene Flow 199

Fig. 6.8 Direct 3D interpretation and motion segmentation by minimizing the region-based, depth-
free functional Eq. (6.52): a The recovered structure of the box-and-background. The box and the
background planar surfaces are taken as a single object because they have parallel translations; b the
recovered structure of the cylindrical object. The displays are projections of the recovered objects
triangulated surfaces wrapped with the original image

Scene flow and relative depth can now be estimated by minimizing the following
functional [67]:

E (U, V,W, Z |I ) = 1
2

∫
Ω
( f IxU + f Iy V − (x Ix + y Iy)W + It Z + It Z0)

2dxdy

+ λ
2

∫
Ω
(g(‖∇U‖)+ g(‖∇V ‖)+ g(‖∇W‖)+ g(‖∇Z‖))dxdy,

(6.59)

where λ is a positive constant to weigh the relative contribution of the two terms of
the functional. With the L2 regularization, g(z) = z2, we have:

E (U, V,W, Z |I ) = 1
2

∫
Ω
( f IxU + f Iy V − (x Ix + y Iy)W + It Z + It Z0)

2dxdy

+λ2
∫
Ω
(‖∇U‖2 + ‖∇V ‖2 + ‖∇W‖2 + ‖∇Z‖2)dxdy

(6.60)
The corresponding Euler-Lagrange equations are:
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f Ix ( f IxU + f Iy V + (−x Ix − y Iy)W + It Z + It Z0)− λ∇2U = 0

f Iy( f IxU + f Iy V + (−x Ix − y Iy)W + It Z + It Z0)− λ∇2V = 0

(−x Ix − y Iy)( f IxU + f Iy V + (−x Ix − y Iy)W + It Z + It Z0)− λ∇2W = 0

It ( f IxU + f Iy V + (−x Ix − y Iy)W + It Z + It Z0)− λ∇2 Z = 0,
(6.61)

with the Neumann boundary conditions:

∂U

∂n
= 0,

∂V

∂n
= 0,

∂W

∂n
= 0,

∂Z

∂n
= 0, (6.62)

where ∂
∂n indicates differentiation in the direction of the normal n of the boundary

∂Ω of the image domain Ω .
Let D be a unit-spacing grid over Ω and let the grid points be indexed by

{1, 2, ..., N } in lexicographical order. Let a = f Ix , b = f Iy , c = −(x Ix + y Iy),
d = It . For ∀i ∈ {1, 2, ..., N }, a discrete approximation of the Euler-Lagrange
equations Eq. (6.61) is:

a2
i Ui + ai bi Vi + ai ci Wi + ai di Zi + ai di Z0 − λ

∑
j∈Ni

(U j −Ui ) = 0

bi aiUi + b2
i Vi + bi ci Wi + bi di Zi + bi di Z0 − λ

∑
j∈Ni

(Vj − Vi ) = 0

ci aiUi + ci bi Vi + c2
i Wi + ci di Zi + ci di Z0 − λ

∑
j∈Ni

(W j −Wi ) = 0

di aiUi + di bi Vi + di ci Wi + d2
i Zi + d2

i Z0 − λ
∑
j∈Ni

(Z j − Zi ) = 0,

(6.63)

where (Ui , Vi ,Wi , Zi ) = (U, V,W, Z)i is the scene flow vector at grid point i ;
ai , bi , ci , di are the values at i of a, b, c, d, and Ni is the set of indices of the
neighbors of i . The Laplacian ∇2 Q, Q ∈ {U, V,W, Z} has been discretized using
the 4-neighborhood as 1

4

∑
j∈Ni

(Q j − Qi ), with the factor 1/4 absorbed by λ.
One can show that the matrix A of the resultant system of linear equations written

for all grid points i = 1, ..., N , in this order, is positive definite [67], which means
that the point-wise and block-wise Gauss-Seidel iterations converge [62, 63]. This
is akin to optical flow estimation by the Horn and Schunck algorithm [68]. For a
4× 4 block division of matrix A, the Gauss-Seidel iterations consist of solving, for
each i ∈ {1, ..., N }, the following 4 × 4 linear system of equations, where k is the
iteration number:
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(a2
i + λni )U

k+1
i + ai bi V k+1

i + ai ci W k+1
i + ai di Zk+1

i = rk+1
U

bi aiU
k+1
i + (b2

i + λni )V
k+1
i + bi ci W k+1

i + bi di Zk+1
i = rk+1

V

ci aiU
k+1
i + ci bi V k+1

i + (c2
i + λni )W

k+1
i + ci di Zk+1

i = rk+1
W (6.64)

di aiU
k+1
i + di bi V k+1

i + di ci W k+1
i + (d2

i + λni )Z
k+1
i = rk+1

Z ,

where the righthand side is defined by:

rk+1
U = −ai di Z0 + λ

⎛
⎝ ∑

j∈Ni ; j<i

U k+1
j +

∑
j∈Ni ; j>i

U k
j

⎞
⎠

rk+1
V = −bi di Z0 + λ

⎛
⎝ ∑

j∈Ni ; j<i

V k+1
j +

∑
j∈Ni ; j>i

V k
j

⎞
⎠ (6.65)

rk+1
W = −ci di Z0 + λ

⎛
⎝ ∑

j∈Ni ; j<i

W k+1
j +

∑
j∈Ni ; j>i

W k
j

⎞
⎠

rk+1
Z = −d2

i Z0 + λ
⎛
⎝ ∑

j∈Ni ; j<i

Zk+1
j +

∑
j∈Ni ; j>i

Zk
j

⎞
⎠.

The resolution of this 4 × 4 system can be done efficiently by the singular value
decomposition method [50].

Example: This example uses the Unmarked rocks sequence from the CMU VASC
image database (http://vasc.ri.cmu.edu//idb/html/motion/). The scene is static and

Fig. 6.9 Unmarked rocks sequence: a Optical flow reconstructed from the computed scene flow
and depth; b an anaglyph of the Unmarked rocks scene constructed from the computed depth

http://vasc.ri.cmu.edu//idb/html/motion/
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the camera slides horizontally to the right, which means that the actual optical veloc-
ities over the image domain are approximately horizontal, directed to the left, and
of about constant magnitude. There is no ground truth but we can indirectly assess
the results via optical flow reconstructed from the scheme’s scene flow and depth
output. In this case, optical flow is computed using Eq. (6.3). The results are shown in
Fig. 6.9a. A visual inspection and a comparison to the Horn and Schunck algorithm
output in [67] confirms that the scene flow estimation scheme is valid and reliable.
The results can also be judged by viewing the anaglyph of Fig. 6.9b. This anaglyph,
to be viewed with red/blue glasses, gives a good impression of the scene structure.
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3D motion segmentation, 189
3D rigid motion constraint, 180
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Aperture problem, 46
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Background template subtraction

boundary based, 109
region based, 107
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Connected component analysis, 133
Continuation method, 65
Cremers method, 75
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of implicit curve, 15
of parametric curve, 14
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active, 35
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curvature, 13

evolution equation, 35
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parametric, 13
regular, 13
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Density tracking
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Kullback-Leibler flow, 155
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integral functional, 32
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Differentiation under the integral sign, 31
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Displaced frame difference, 130
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direct, 183
indirect, 182

Essential parameters, 180, 194
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Foreground, 95
Functional derivative, 22
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Gauss theorem, 29
Geodesic active contour

balloon velocity, 111
functional, 109
velocity interpretation, 111

Gibson’s optical flow, 2
Gradient equation, 118
Green’s theorem, 23
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Half quadratic algorithm, 57, 58
Helmhotz, 2
Horn and Schunck algorithm, 42, 48
Horn and Schunck equation, 3
Human activity analysis, 6
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image differencing motion detection

boundary based, 117
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region based, 114

Image registration, 41
Image segmentation, 5
Isophote, 114
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Kineopsis, 2
Kinetic depth effect, 2
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Laplacian approximation, 52
Level sets

evolution equation, 35
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narrow banding, 36
shocks, 36
velocity, 37

Longuet-Higgins and Prazdny model, 4, 179
Lucas-Kanade algorithm, 42, 47
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Mean shift procedure, 148
Motion

contrast, 119
visible, 114
normal component, 114

Motion detection, 8, 95
a contrario, 130
background template subtraction, 109
feature integration, 134
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image differencing, 113
moving camera, 125
optical flow based, 121
selective, 132
geometric cue, 134
normal component residuals, 125
optical flow residuals, 128
photometric cue, 95, 138
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Motion tracking, 9
Multigrid processing, 70
Multiregion segmentation, 80
Multiresolution processing, 70
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Narrow banding, 38
Normal vector, 14, 15

O
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3D interpretation, 175
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Horn and Schunck algorithm, 42
image driven smoothing, 42
Jacobi iterations, 50
joint estimation and segmentation (Cre-
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length penalty term, 43
Lucas-Kanade algorithm, 42
outliers, 43
residual, 128
minimum description length (MDL), 63
motion boundary preservation, 42, 84
multigrid processing, 70
multiresolution processing, 70
oriented smoothness constraint, 61
parametric estimation, 67
selective image diffusion, 61
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Pattern vision, 5
Projection equations, 178
Projection models, 177
Prolongation, 72, 73

R
Refinement term, 111
Region-based matching

basic method, 157
local statistics, 160
motion, 162
shape, 161

Restriction, 73
Rigid body motion, 179
Robotics, 5
Robust statistics, 42

S
Scene flow, 4, 198
Signed distance function, 161
Spatiotemporal derivatives, 51
Stereokinematic constraint, 83
Stopping function, 111
Structure-from-motion, 2

T
Tangent vector, 13, 15
Target characterization

geometric, 143

kinematic, 143
photometric, 143

Three-dimensional interpretation, 11
Tracking, 5, 143

density tracking, 152
dynamic systems, 144
energy minimization, 146
kernel based, 148
mean shift, 151
occlusion, 163
particle filtering, 145
region-based matching, 157
spatiotemporal, 165
target description, 150

U
Ullman’s rotating cylinder, 2

V
Video compression, 6
Video description, 6

W
Warped image, 47
Warping, 72
Window function

Epanechnikov, 149
Gaussian, 149
Parzen, 149
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