
Chapter 6
From Hardware Security Tokens to Trusted
Computing and Trusted Systems

Apostolos P. Fournaris and Georgios Keramidas

Abstract As security attacks are becoming an everyday real-life scenario, security
engineers must invent more intricate countermeasures to deal with them. Infusion of
strong security to a computer system by recruiting specialized hardware tokens has
already an established foothold in the modern information technology (IT) world.
However, these tokens nowadays must be appropriately adapted to ensure not only
strong security but also trust. Modern security specialists believe that the ultimate
security goal is not only to provide a strong security shield but also to guarantee in
an undeniable way that a system is trusted (the system always performs its intended
functionality).

In this chapter, we elaborate on the IT world’s transition from security to trust
and describe the trusted computing approach to provide trusted systems. Current
trends are presented and tools like trusted virtualization approaches are analyzed.
The trusted computing technology features are discussed and our critical view on
what the trusted computing future will be like is offered.

6.1 Introduction

Information technology (IT) applications whether on smart phones, tablets, desk-
top, notebooks, netbooks, PCs have penetrated in our everyday life and handle a
large number of our daily data transactions including personal, business, social, or
governmental type of communications. A great deal of sensitive data are involved
in those transactions and if these data fall in the wrong hand they can cause criti-
cal security damage. In parallel to this evolution, security threats have also become
smarter, leading into significant risks. Such threats include [1]:
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• Vulnerable programs (coding bugs, buffer overflows, parsing errors)
• Malicious programs (spyware, Trojans)
• Misconfigured programs (security features not turned on)
• Social engineering (phishing/pharming attacks)
• Physical theft (laptops, smart phones)
• Electronic eavesdropping (capturing email)

Most of above threads are completely transparent to the computer system user as
well as other associated systems (e.g., operators). Every transaction with a computer
system can potentially lead to unauthorized security data leakage. In other words,
during operation, the computer system is considered untrusted. The associated risk
with such system usage is not always affordable, especially when it comes to transac-
tions involving sensitive data. In such cases, the user must be confident that his system
can be trusted. As a result, trust is a very important and desirable feature of modern
computer systems and considerable effort has been invested in the development of
trusted systems.

In this chapter, we offer a brief overview of the approaches followed over time
to protect a computing system from security threads, starting from simple tokens,
e.g., magnetic cards, and moving toward the design of a fully trusted system. Since
software can always be tampered and manipulated, the realization of a trusted system
can only be achieved through dedicated hardware components that offer untampered,
secure areas, an attacker cannot reach or violate. So, we base our analysis on how
hardware structures can be utilized to provide trust. Moreover, the notion of trust is
thoroughly defined and trust models that lead to trusted systems are discussed. Our fo-
cus is directed around well-established trusted system hardware approaches (Trusted
Computing Group (TCG), specifications) and how they can enhance software tools
like virtualization to achieve trust.

The rest of the chapter is structured as follows. In Sect. 6.2, a brief analysis of the
security enhancement history through hardware means is discussed. In Sect. 6.3, the
notion of trust is defined, various trust establishment models are discussed, and how
those models can be used for trusted system establishment is analyzed. In Sect. 6.4,
dominant hardware-oriented trusted computing methodologies (based on the trusted
platform module (TPM)) are presented. In Sect. 6.5, virtualization technology and its
combination with hardware trusted computing are discussed. Section 6.6 concludes
the chapter and suggests future directions on trusted system development.

6.2 Hardware Security Modules

IT strong security can be achieved by enhancing existing applications or developing
new ones with appropriate built-in secure software or hardware fences. However, the
vulnerability of software solutions on malicious manipulation that can bypass soft-
ware security as well as the slow response of software solutions to security requests
have convinced IT security experts that hardware solutions are more appropriate for
high security demanding applications like those in financial, military, or govern-
mental environments. This belief led to the development of a wide range of special
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purpose hardware token devices that act as security arbiters and/or user authentication
tools (validating a user’s identity by providing a token that only the user possesses).
These tokens are based on dedicated hardware processing units consisting of phys-
ically tamper-resistant embedded cryptographic processors that communicate with
the conventional general purpose system processor in order to offer a predefined set
of cryptographic and security services [2].

The first commercial uses of cryptographic processors or hardware security
modules (HSM) were made for financial transactions. In such applications HSMs
enforced a policy on key usage along with a variety of key protection measures. Elec-
tronic payment systems use the HSMs for secure communication between the banks
and the customers and for secure storage of all authentication information. The cus-
tomer is provided with a cheap autonomous HSM (smart card) along with a personal
identification number (PIN) for authentication. This smart card solution guarantees
end-to-end security in the communication between the bank and its clients.

The introduction of Internet banking brought new dynamics in the field of financial
transactions since the customer has no physical presence in a prearranged place to use
the bank services. To access bank services ubiquitously through internet banking, the
user-customer needs to build and maintain a secure, trusted environment, irrespective
of his physical location. Banks currently address this challenge by providing to
their customers tamper-resistant authentication, i.e., authorization devices (e.g., the
RSA SecurID) that can generate time-dependent or random passwords based on
unique registered key in the device. However, the customer is not provided with
any safeguards of validating his internet banking access device (laptop, desktop,
tablet). Customers must apply their own additional security measures (e.g., firewall,
antivirus, antimalware software) in order to trust their access devices while the bank
itself always considers these devices untrusted.

HSMs are widely used in military–government applications. Military crypto-
graphic processors have been used from the Cold War era for encrypting sensitive
communications and for authorizing people as well as for protecting high-importance
military operations. Some of these technologies have been replicated in crisis
management situations where civil protection agencies (police, fire brigade, and
ambulance staff) need to communicate over secure channels. Proprietary secure com-
munication channels have been used in such scenarios (TETRA, Tetrapol, etc.[3]) that
strongly rely on dedicated HSMs in an attempt to create a secure communication en-
vironment over an untrusted infrastructure (wireless links, telephone network, etc.).

6.3 Trust

While security might be the dominant term when it comes to protection of sensitive
data, trust is a much stronger concept that goes beyond confidentiality, availability,
integrity, and nonrepudiation (the basic security pillars). Trust tries to formulate a
good-faith relationship between computing machines as well as between their users.
The realization of trusting an entity B by an entity A is based on the belief that B
will always behave honorably, reliably, and securely under a specific context [4].
From IT perspective, trust is not only about securing the communication channel
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or authenticating the data sender but also on trusting that the sent information are
legitimate, they do not include malicious codes (e.g., malicious, virus, or trojan
code) and they will not harm the receiver in an unforeseen way. In other words, trust
extends to the sender itself (not just its messages) by believing that he will obey to
specific communication rules (dictated by the communication protocol or policy)
and will not abuse communication by nonresponsiveness or selfish behavior.

6.3.1 Trust Establishment Models

Establishing trust in computer systems must involve both the user and the computing
device at hand. This can be achieved by using a “hard evidence” approach where
(1) the device always complies with specific rules thus becoming predictable and (2)
the device user behavior conforms to prescribed rules favoring a behavior pattern
(or series of patterns) that can be considered legitimate. The series of device rules
constitute a specific trust policy which can be also extended to a user behavior policy.
To achieve this, appropriate monitoring mechanisms are required so as to validate
the computer system (device and user) compliance to the trust policy. The system
is considered trusted when the policy is followed and the user behaves in a trusted
manner. Under this view, however, it has to be considered that the enforcement of
the trust policy to all involved parties necessitates a trust mechanism that is hard to
implement especially when users are involved. Thus, alternative approaches must
be adopted, which are based on “trust reputation evidence.” Reputation monitoring
mechanisms are focused on assessing the trust level of an entity (the computer user
and device) based on the entity’s interaction and behavior history within a given
context. More specifically, this history, constituting the entity’s reputation, is built
from the reports and observations collected by other entities (a single entity acts as
evaluator or a group of entities act as trusted third parties).

In a trust model dictated by the above directives (i.e., policy and reputation),
the communication channel between a sender and a receiver is always considered
secure using strong security mechanisms as well as penetration-resistant means. Both
sender and receiver gain value in trusting each other which exceed the performance
cost of communication. Value is derived when the involved parties have a need
for communication. For example, when the receiver needs to use the communicated
information to invest on computer resources or when the sender is obliged to respond
to a receiver data request. The level of trust that an involved entity A has to another
entity B has a communication cost which is translated into the risk generated when
entity B behaves in a malicious, unforeseen way. High trust benefit (i.e., high value)
comes when entity A trusts B, meaning that the cost associated with communication
with B is smaller than the value of the communication outcome (e.g., the message
transmission) [5].

To minimize the risk associated with trust relationships, each involved entity
can adopt an isolation mechanism to increase the communication value. Isolation
is based on the adoption of trust verification mechanisms during communication.
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Instead of blindly trusting the sender, a receiver can follow approaches based on pol-
icy and/or reputation in order to protect it from malicious or incompetent senders.
The approaches extend not only to message verification but also on noncompliance
with a communication protocol or nonresponsiveness of protocol participants. As
can be derived from the previous analysis, the trust verification and isolation mecha-
nisms can be categorized in policy-based trust approaches and reputation-based trust
approaches.

Policy-based trust establishment is focused on the enforcement of a specific pol-
icy capable of guaranteeing trust relationships between communicating participants.
Strong isolation and high value for each such participant is maintained by collection,
management, and verification of policy-related credentials. Such credentials are
meant to be provided and verified by a trusted third party (TTP) authority. Collecting
enough credentials by a receiver entity constitutes a proof that the sender can be
trusted, thus the receiver no longer remains isolated from this sender. Gathered trust
information about an entity can be considered such credentials. Policy-based trust
establishment includes trust negotiation protocols with requests for trust credentials,
TTP credential verification, and generation of trust assurances. During the execution
of a negotiation protocol, an entity usually must provide private content information.
Sensitive trust-associated data must be handled appropriately so as to protect the
entity computer system’s and user’s privacy. So it is obvious that trust has a tight
interdependence with strong security (although it serves different purposes) since
trust negotiation as well as credential handling follows security-related approaches
based on cryptographic primitives and well-known security protocols. However,
trust policies have a well-specified “language” that is associated with the employed
trust credentials. Trust relationship representation can have many forms depending
on the trust standard that is adopted. The representation language involves software
structures, like Web services [4], but requires a hardware base using HSM (trust
anchor), acting as trust policy arbiter on the associated computer [6].

In the reputation-based trust establishment, the trust experience of a community
of other entities is used in order to make trust decisions about a single entity. In this
approach, when a receiver wants to know if he can trust a sender, then he “asks”
the opinion of a third party to attest the sender’s trust level. Based on the collected
replies, the receiver infers if the sender is trusted or not [4, 5]. If the third party is
a single trusted authority, then the system is decomposed into a policy-based one.
Instead of obtaining trustworthiness-related information from a centralized trusted
third party, the reputation-based model collected knowledge of many entities that
have prior experience with the evaluated entity. The reliability of the above approach
is maintained by a trust reputation-recommendation system. Such system relies on
the opinion of a series of recommenders and evaluators of trust that are collecting
and analyzing behavior patterns of involved entities. The larger the numbers of
recommenders, the more reliable are the trust decisions that can be made. Of course,
the recommenders themselves must also be trusted if their opinion is to be of any
real value.

Reputation systems usually work in decentralized manner and can be applied to
networks that favor data collection and distribution such as the IP networks (the



104 A. P. Fournaris and G. Keramidas

Internet), p2p networks, and grids [4]. Reputation collection is achieved using
software tools (agents) roaming the network, collecting trust reputation data from
network entities or other agents. Delivering such information to a requesting entity
can lead to an appropriate trust decision. In this notion, reputation can be defined as a
measure of trust that each entity maintains and shares with other entities thus forming
a “Web Of Trust” (WOT). Transferring trust in a WOT approach is based on trust
metrics and trust transitivity rules. Entities that have achieved a level of trust have a
WOT link thus forming WOT graphs while entities that have no collected trust repu-
tation data follow trust transitivity rules to form a link. Such rules can be expressed
in a simplified matter as “if A entity trusts B entity and B entity trusts C entity then A
can trust C.” Thus traversing the created WOT trust graphs and collecting reputation
data (through the trust metrics system) the various agents of WOT can make trust
decisions on a system entities. It must be noted that reputation-based model is a fully
software solution (a software service) located at the application stack of a computing
system (on top of operating system (OS) kernels and hardware structures).

In general, the reputation-based model is primarily used in network security as a
means of providing trust to nodes and network resources (network trust) while the
policy-based model can more directly be applied to each computer system individ-
ually (computer system trust). The focus of this chapter is on ways of providing
computer system trust.

6.3.2 Trusted Systems

By defining the notion of trust and formulating models to achieve it, a toolbox to
build trusted systems is provided to computer security experts. A system can be
considered trusted when its functionality is fully predictable or in other words when
it always works the way it was designed to work. Breaking this rule will result into
critical security problems, since trusted systems are relied upon serious security
actions. Therefore, a trusted system is a system that can be trusted not to fail (if
it fails the whole security policy collapses). Note that this should be discriminated
from trustworthy systems which are systems that cannot fail (it is impossible to fail).

Since trustworthy systems are very difficult (if not impossible) to design, trust
and not trustworthiness, is extended to a wide variety of systems covering even
nontraditional security (military, business) applications. However, such systems
consist of components that are not considered secure (nonsecure hard disk storage,
networks, OSs, legacy components, etc.). Replacing those components with secure
ones or redesigning them from scratch in an effort to guarantee trust is a very costly
operation and is not usually followed. Affordable trusted system security can be
achieved by following the policy-based model where trust metrics and rules are
managed for all system’s components and trusted applications, services, and re-
sources are strongly isolated from untrusted ones. Similar to isolation from external
environment mentioned in the previous subsection, computer system component
isolation involves hardware/software codesign in an effort to create a trusted section
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Fig. 6.1 Isolation in trusted systems

within the computer system that is fully reliable for critical applications. Trusted
and nontrusted applications are strongly separated between the trusted and untrusted
system’s zones while their data exchange follows strict security rules (based on the
system’s policy). This approach can be viewed as an extension of the HSM concept
where an HSM is attached externally to a computer system in an effort to provide
strong security. In a trusted system, the HSM becomes an integral part of the system’s
hardware and low-level software, and is assigned the additional role of managing the
system’s isolation. A common practice on how to achieve this is described in Fig. 6.1.

As described in Fig. 6.1, the system’s hardware does not communicate directly
with the OS kernel but is rather managed by a trusted computing base (TCB). TCB
is a collection of hardware, firmware, and/or software components critical for the
reliable functionality of a computer system [7]. As the term suggests, TCB must be
trusted since it has the highest OS privilege level and is responsible for the system’s
security policy enforcement. It includes security validation as well as domain
separation mechanisms so as to fully control the information flow of the computer
system, provide access control and resource management. The TCB assets and its
sensitive data and services must be protected even from itself. To achieve this, the
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TCB has special hardware and software protection mechanisms such as protected
storage, protected memory, special memory managements units (MMU), TCB
software security checkers, and validators in an effort to guarantee trust. On the
other hand, for a practical implementation, the TCB must be small enough in order
not to burden the system’s functionality, to be manageable, and to be efficiently
checked periodically from certification organizations, such as Common Criteria [8]
for trust (formal security verification). It must be noted, however, that TCBs are
considered “trusted” and not fully trustworthy. Security bugs related with the OS
kernel (which in some cases is part of the TCB) cannot always be detected thus
leading to TCB security risks compromising its trustworthiness.

The isolation between the trusted and untrusted zone is handled by a specialized
level consisting of a collection of software tools that use the TCB services for split-
ting OS resources, services, and applications into trusted and untrusted ones and of
controlling/managing all transactions between the two zones. This control is vital
for the computer system trust. Trusted subjects (application services) and objects
(resources) of the computer system are securely handled in the system’s trusted zone
and calls or data exchanges with untrusted subjects and objects are not done di-
rectly. All such activities must be evaluated and validated by the isolation handling
environment acting as a security arbiter between zones. Virtualization is a widely
used technology for such isolation handling. Each zone is executed in a different
virtual machine environment in order to remain totally autonomous. Alternatively,
microkernels [9] are used to achieve the same goal.

A similar solution is offered by ARM in its latest processors (ARMTrustZone
technology). ARMTrustZone [10, 11] offers a trust zone environment within the
processor structure and not the computer system in general, by splitting processor
functionality between a secure and nonsecure operation section, thus making pos-
sible the realization of a secure and trusted anchor within its hardware core. So,
a designer is able to use the secure part of the processor for implementing trusted
services. However, when using the ARMTrustZone or software-based isolation han-
dling environment, it is hard to determine whether such implementations provide
fully shielded-secure locations or protected capabilities.

The above approaches are focused on the computer system side and not on the user
side. They follow the policy-based trust model but do not involve the user’s behavior.
This fact can be a security risk for the system as a whole since a malicious insider
user can still compromise the system by deactivating trusted services or hacking the
software arbitrating the trust enforcement.

6.4 Trusted Computing

In order to cope with the growing need for highly reliable trust enforcement that in-
volves both the computer system and its user, Trusted Computing Platform Alliance
(TCPA), an industry alliance was formed in October 1999 in an effort to develop and
standardize trusted platform technology. TCPA and its successor, the TCG consor-
tium (established in 2003), are responsible for formalizing, applying, and extending
the trusted computing ideas to established computer systems either by introducing
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new hardware and software modules or by proposing appropriate protocols and di-
rectives. Trusted Computing can be viewed as a collection of technologies capable
of constantly monitoring the behavior of a given computer system and its user for
uncovering a possible compromise and an unexpected behavior. The TCG’s view
on trusted computing focuses on protecting the system from malicious entities even
from its own user. As a result of its work, the TCG consortium has devised a series
of specifications for new structures within a computer system that can provide reli-
able trust establishment. TCG goal is to enforce trust on a system by prohibiting the
execution of malicious code, by protecting sensitive data (mainly private keys), and
by attesting the system’s trust level to other entities. This is achieved by a constant
evaluation of the computer system’s security from boot time. Since software-based
security validation is not fully protected from malicious code injection and hacking
attacks, TCG solution is based on hardware protection mechanisms along with soft-
ware tools to establish trust. Embodiment of this approach is the specification of an
HSM structure denoted as Trusted Platform Module (TPM) that is capable of acting
as trust anchor within a computer system [1, 12].

6.4.1 Trusted Platform Module

The TPM is a smart-card like HSM chip bound to the computer system (usually
soldered on the system motherboard). It acts as a hardware trust anchor (extending
the trust zone concept) in order to enforce a trust policy by providing secure stor-
age, public key authentication functionality, integrity measurements for all computer
system resources/services as well as trust attestation. TPM functionality plays a key
role in at least 16 special purpose platform configuration registers (PCRs) designed
to store trust configuration measurements associated with specific computer system
resources. PCRs cannot be directly written, they can only store an extended ver-
sion of their previous value (a hashing of their previous value). Collecting a new
trust-related measurement about a specific computer resource (e.g., service, private
key) associated with a specific PCR leads to an update of the PCR value (extend
operation) based on Eq. 6.1, where H (SHA−1)() is the SHA-1 Hash function and (+)
refers to concatenation.

PCR ← H (SHA-1)(PCR + trust measurement) (6.1)

The extend operation inherits the benefits of hash functions. There are no two iden-
tical PCR values coming from different measurements. The operation also provides
indication of the order in which measurements were taken and hashed (a hash chain
approach). The number of measurements is unlimited since the outcome will always
be of the same bit-length. Currently, the TPM 1.2 version uses SHA-1 function and
the PCR length is 160 bits.

The TPM is characterized and identified by a set of asymmetric cryptography keys
denoted as endorsement key (EK) along with a certificate from the manufacturer.
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This set of keys are securely stored in the TPM during manufacturing, they are
unique for each TPM chip and are very restrictively accessed (private key cannot
be released outside the TPM chip, it is nonmigratable). The EK is associated with
three credentials provided usually by the TPM manufacturer and a third-party testing
laboratory attesting that the current TPM conforms to TCG specifications, that the
TPM is genuine and that the host system is an instantiation of a TPM equipped
platform. The EK is used when a user wants to prove TPM generated keys have been
produced by a genuine TPM. Therefore, the EK is utilized for certificate decryption
of other TPM-generated keys, and this can only take place upon the request of the
owner of the TPM cooperating with a certificate authority (CA).

The TPM generates a variety of different asymmetric and symmetric cryptography
keys in order to realize its various functions. Such keys are Attestation Integrity
Keys (AIK), the storage root key (SRK), and consecutive storage keys stemming
from the SRK. All such keys can be either migratable or nonmigratable. Migratable
keys can be moved to other TPM chips if there is some problem with a host TPM.
Nonmigratable keys cannot be moved to another TPM chip. In TPM 1.2 version, all
asymmetric cryptography keys are 2048 bit RSA keys.

Communication with the TPM is typically handled by the TCG device driver
library (TDDL) whose interface is described in the TCG software stack (TSS) spec-
ification [13]. This software library installed on the TPM host computer system
communicates with a device driver inside the TPM kernel. The device driver is re-
sponsible for the actual transaction with the TPM hardware device and its functions.
The TSS library has all the tools (services, commands) for an application architect
to use the TPM for adding strong security features to a software application. TSS
functionality can be divided into three logical components: the TDDL, the TCG
core service (TCS), and the TCG service provider (TSP). The TDDL provides an
API for interfacing the TPM functions. The TCS, being the main user of the TDDL,
manages the TPM resources, converts API request to TPM byte streams in order to
be recognized by the hardware, and provides system-level key storage (outsize the
TPM) while synchronizing application-specific calls coming from the TSP. The TSP
is the interface with which applications communicate to the TPM. It offers access
to the TPM services transparently for the application, acting as a shared object or a
dynamic linked library (dll).

In its current version (TPM 1.2), the TPM chip is equipped with all the neces-
sary hardware components in order to support strong security features. Apart from
the I/O interface, necessary for the TPM communication with the external world,
inside the TPM there are a series of cryptographic hardware components includ-
ing a true random generator unit, an asymmetric key cryptography digital signature
and authentication-authorization unit, and a hash function unit. Currently, the TPM
adopts the RSA algorithm with 2048 bit keys and 160 bit hashing through SHA-1
and HMAC algorithm. The TPM also supports the secure storage of sensitive val-
ues (such as asymmetric and symmetric cryptography keys or measurement states)
in special storage elements. Those elements include nonvolatile and secure volatile
memory as well as a series of at least 16 PCRs [12].
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6.4.2 Trusted Computing Functions and Services

TCG has specified a number of innovative ideas capable of setting up a fully con-
trollable and trusted computer system environment for the system’s user. TCG also
describes a mechanism of providing evidence of trust to third parties as well as authen-
tication/authorization. In this section, the basic TPM-TSS functions for achieving
the above concepts are described.

6.4.2.1 Authenticated—Secure Boot

Through the TCG TPM mechanisms, the trust state of a system can be reliably mea-
sured and recorded. To achieve that, every part of the computer system from hardware
level to application level is measured from boot time. This authenticated boot se-
quence measurement provides the guarantee that the system is not compromised and
can be trusted. The TPM PCRs play an important role in the above boot sequence.
The outcome of each system’s component measurement is stored in a PCR register,
according to Eq. 6.1. A recording of this process is stored in a history file denoted as
Stored Measurement Log (SML), which is maintained outside the TPM structure.

The authenticated boot measurement follows a daisy chain approach, meaning
that each component is measured and compared with existing known good value on
the SML. In that way, measurement integrity is retained and the boot sequence can
be trusted, meaning that no system component has been tampered. For this approach
to work correctly, the boot sequence control must be given to a trusted source. Thus
at computer system power-on, control is given to a TPM small root of trust module
(a subset of the BIOS) before loading the BIOS. The root of trust takes the first
measurement (BIOS measurement), compresses it (creating a digest), and compares
it with the stored value inside the history file (SML). If the two values match, then the
BIOS component is considered trusted and is executed, a specific PCR (PCR0) value
is extended with the collected measurement and the next component is evaluated in
a similar way. The history file’s integrity can be guaranteed by comparing it with the
PCR values (that cannot be tampered). An overview of the above procedure, denoted
as TPM static root of trust, is presented in Fig. 6.2. Note, that every component of
the computer system is measured and evaluated in the above fashion including all
executable code (i.e., system applications).

Static root of trust has some drawbacks associated with the need for chain trust
measurement of every computer system software structure (inclusivity problem). The
size of the executable code to be checked can be overwhelming and in a complex
system can render its security properties unverifiable (no scalability). Executing a
software code using a configuration file or processing data that has not been already
measured can break the trust chain and harm the system’s trust especially if such
code is tampered at the time interval between trust measurements (scalability and
measurement time problem). For this reason, static root of trust is used in contained,
well-structured computer systems with well-defined operations. Instead, in complex
systems requiring hundreds or thousands of measurements in a static root of trust
chain, the dynamic root of trust chain approach is used which can dramatically
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Fig. 6.2 Trusted platform module (TPM) static chain of trust overview

reduced measurement number. Dynamic root of trust (DRT) uses a sophisticated
measurement mechanism in order to evaluate the computer system trust level that
can be initiated at any point in time and can be repeated as often as necessary. DRT
measurement is initiated by a specialized processor instruction creating a secure,
attested execution environment [1, 14]. This environment is completely isolated
from the rest of the system (e.g., Direct Memory Access is inhibited, interrupts, and
virtual memory are disabled) and guarantees untampered execution of a secure loader
that initiates the trust measurement process of any executed code. Each processor
manufacturer uses a different approach on how to implement the DRT measurement
instructions [15, 16].

6.4.2.2 Secure Storage

The TPM chip is capable of storing a wide variety of information in a secure way.
Such information can be divided into asymmetric cryptography keys and symmetric
cryptography keys or data. Secure storage follows a protected object hierarchy where
higher-level keys are used for signing-protecting lower-level keys within this hierar-
chy. The root of the key hierarchy is the SRK which is an asymmetric key pair (2048
bit keys RSA keys) generated using the EK at the first TPM power-on. The private
key of SRK must never leave the TPM and is therefore nonmigratable. Then, the SRK
can be used along with the TPM random number generator in order to create storage
keys for each piece of information needed to be securely stored. The storage keys
are located into the key hierarchy and are protected by higher level keys. In addition,
the TPM key generation mechanism can provide keys that are used only by the TPM
that generated them (applies to private keys) and/or when the TPM’s host platform
is in a specified state. Securely storing keys or data is done using asymmetric key
cryptography for confidentiality-integrity and can be associated with a 160-bit string
of data in order to provide authentication before encryption.

The TPM can be used in order to provide secure sealing functionality. The en-
crypted information can be sealed so that they can only be decrypted by the TPM
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used for their encryption and only when the TPM Host platform is in a specified
state. Practically, this can be done by performing asymmetric cryptography encryp-
tion/decryption using the SRK (that is unique for each TPM chip) and associating
the encryption/decryption with specified values of some PCR.

6.4.2.3 Platform Remote Attestation

A very important TPM feature is the ability to provide TPM host system trust
attestation reports to external third parties thus proving that the system can be
trusted. The attestation operation should be unique for each TPM host computer
system and undeniable. The TPM can be uniquely identified using the EK values.
However, the need of protecting the TPM identity and its host’s anonymity dictates
that this approach cannot be used in practice. When the TPM host, denoted as
Trusted Platform (TP), must provide attestation of its trust level to a third party, its
anonymity must be retained so that its activities cannot be tracked. For this reason,
the TPM generates a series of pseudonyms in the form of asymmetric cryptography
key pairs, denoted as attestation identity keys (AIK), in association with the host
system and a Certificate Authority (privacy certificate authority (PCA)) that provides
AIK credentials. To achieve that, the TP provides the EK credentials and AIKs to the
PCA, the PCA verifies that these credentials are legitimate thus the TP is genuine, and
then generates an AIK credential by digitally signing (binding) the AIK public key
with the description of the TP [1, 14]. In this process, the identity of the TP and the
TPM (i.e., the EK) should not be revealed by the PCA. For this reason, the TCG has
specified the DirectAnonymousAttestation protocol using provable security features
and zero knowledge protocol cryptographic approaches to retain privacy [13, 17].

The attestation process, denoted as remote attestation, involves a specific AIK key
pair, a TPM-specific state (denoted TPM quote) that provides a captured instant of the
PCRs values and a series of nonce numbers. When an entity wants to have insurances
about the trust level of the TP, it sends a request to the TP along with a nonce. In
return the TPM sends back a digitally signed by the AIK private key, concatenation
of the nonce and the TPM quote along with the appropriate AIK credential and a
section of the SML. The requesting entity verifies the AIK credentials and digital
signature as well as the nonce value that it originally sent to the TP and acquires
the TPM quote. It then compares the TPM quote and the metrics provided from the
SML with trusted known good values stored in trusted third-party database and if
the values match then the TP is considered trusted.

6.4.2.4 Trusted System Realization with Trusted Computing Group
Specifications

The trusted system concept, as described in Sect. 6.3.2, applies to the TCG speci-
fications about trust. The hardware TPM structure provides an untampered, secure
environment for supporting a TCB. Such TCB can be measured for trust and remain
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trusted at all times, thus, providing the basis for isolation. The TPM and TSS not
only provide the means for evaluating trust for a computer system but also indirectly
for the system user. They can guard the TP even from its own user since they do
not allow malicious behavior (code injection, illegitimate software modifications)
through the “secure boot” feature. The TCG approach can effectively enforce a TCG
specified policy on the computer system and its user by hardware means and through
measurement provide, in a way, a “reputation” collection system stored in the PCRs
and SML. This system collects trust “reputation” locally about the various system
components. This local reputation can be transmitted to other entities through remote
attestation. This function requires that a TPM TP’s “reputation” data (TP trust mea-
surements) is being stored in trusted third parties within a computer network (e.g.,
using Internet) thus structuring and retaining “reputation” databases. This approach
can be viewed as a form of static reputation collection mechanism following the
reputation-based trust model. The TCG has specified ways of enhancing this direc-
tion through the TCG network connect (TNC) scheme which is beyond the scope of
this chapter. Furthermore, several researchers have proposed ways of using TPMs
for securing mobile agents roaming a network for data collection that also can be
used for reputation collection [18–22].

TCG tries to provide a trust establishment solution that uses concepts from both
the policy-based trust model and the reputation-based model, infusing them to an
HSM (the TPM) characterizing the computer system (since it is soldiered to it) as
well as creating all the HSM necessary supported software.

The TCG solution has guided the implementation by top hardware vendors (cur-
rently Intel and AMD only) of an isolated execution environment (IEE) (through
processor instruction) to be used originally for DRT measurement. This environment
offers isolation at hardware level and is inline with Fig. 6.1 concept. Setting up one
independent IEE for each application or group of applications can provide strong
isolation since the TPM and TSS can guarantee trusted communication between
environments and the external world.

6.5 Virtualization Environment for Trust

Virtualization is a technology with high potentials in securing the computing world
and providing trust. It provides an abstraction of one computer system level to another
higher level. Virtualization can be found in many forms from network systems to
storage or process virtualization. However, from security perspective, it is especially
interesting to view these technology actors as reference monitor mediators of access
to system resources and communication between abstraction environments within
the system. These types of actors are referred as virtual machine monitors (VMM)
or hypervisors while the abstraction environments are denoted as virtual machines
(VM). A Hypervisor can be a small software code, positioned between the hardware
and the OS kernel computer system levels in a similar way as the Isolation Handling
Environment presented in Fig. 6.1. By introducing aVM environment where not only
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Fig. 6.3 Computer system architecture featuring hypervisors

programs but also OSs can run as if executed on hardware, hypervisors can achieve
strong isolation. Thus, logical or network attacks on an OS application executed on
top of a VM can be contained there and won’t spread to the rest of the system. Further
security advantages of hypervisor systems can be the ability to cryptographically
protect data under a contained environment (cryptographic separation), the running
of workloads at different time periods (temporal separation), and the assignment of
specified hardware resources to different VMs (physical separation) [23]. Figure 6.3
describes generic approaches on security-oriented hypervisor-based systems.

Hypervisors can be used in cooperation with the TPM chip in order to take advan-
tage of TCG trust functionality. Virtualization gives further dynamic to TPM trusted
systems since it sponsors strong isolation beyond the TPM. On the other hand, TPM
can be used to provide a secure hardware virtualization interface, practically forming
a virtualization enabled TCB. However, the TPM cannot directly be used from VMs
since it was designed for a single host platform. Only one such platform can have
access to the TPM hardware structures and especially the PCRs. In a virtualization
scenario, each VM can act as an independent platform and can potentially change
the PCR of the single TPM attached to the host system. In that case, there is a serious
security danger since VM trust states assigned to a PCR can be changed by a different
VM. Several researchers have suggested solutions to this problem by adopting the
concept of a software virtual TPM (vTPM) instance residing in each VM (as de-
picted in Fig. 6.4a) and communicating with the TPM structure in a manageable way
through the hypervisor. Terra [24] was one of the first systems to introduce trusted
computing to hypervisors (although without the use of TPMs) and has been followed
by several other works [25–27] that employ the vTPM concept. Another approach
introduced in sHype hypervisor [28] is presented in Fig. 6.4b. In this approach the
vTPM is running on a dedicated VM and communicates through the hypervisor with
a hardware TPM. The rest of the VMs have only vTPM drivers in order to commu-
nicate with the hypervisor trust interface. sHype also supports a dedicated VM for
the system’s security policy management and an access control mechanism inside
the hypervisor [23].

Other approaches related to virtualization include the employment of microkernels
such as the L4 [29] or seL4 [30, 31] or microvisors such as OKL4 [32] instead of
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hypervisors for achieving isolation. In such cases, the microkernel/microvisor must
be an extension of the TCB in order to be trusted and executes security critical
operations.

Virtualization has also been introduced in processor architecture level, as briefly
mentioned in the previous section (DRT measurement), by extending the processor
instruction set with special virtualization instructions in Intel or AMD processors
through the trusted execution technology (TXT) [15, 33] and secure virtual machine
(SVM) [16, 34] technology, respectively. The two approaches are implemented in a
different way but both provide the means of creating VMs through totally hardware
measures. The collaboration of the TXT or SVM technology with the TCG TPM
enables DRT measurement and provides IEE as described in previous sections.

Using any of the above virtualization approaches, a system security designer
can create trusted areas of virtual machines running on virtualizated hardware and
direct sensitive applications and data toward those virtual machines. Extending this
logic, trusted OS can be run on such VM and as long as access is controlled by
a TCB program on the processor, the OS remains isolated and protected from the
rest of the system’s untrusted VMs. Trusted virtualization technology is still on an
early stage, since several practical implementation problems still exist (hardware
constrains, system real-time behavior, scheduling, access control rights). However,
virtualization opens the road for unlimited hardware/software codesigned structures
that through HSMs like the TCG TPM, can lead to very high trust-level systems.

6.6 Conclusions and Future Directions

In this chapter, the road toward designing hardware-based trusted system was
described, beginning from monolithic implementations of HSM for specific applica-
tions and moving toward very dynamic solutions like the TPM offering sophisticated
functionality to associated software. Parallel to this approach, virtualization was
evolved over time into a very useful security enhancement tool. Thus, the merging of
the hardware security world with software virtualization has resulted in very strong
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isolation mechanisms capable of providing high trust level. In the future, this ap-
proach is bound to be expanded and further adopted. TPM chips will migrate from
the desktop, notebook, and server computer domain to the mobile world enabling us
to, ultimately, trust our mobile devices (smart phones, tablets) for security-sensitive
transactions. The TCG has moved toward this direction by providing specifications
for a mobile TPM version (Mobile Trusted Module, MTM) but these specs have
not led to a market product yet. Furthermore, the growing adoption of embedded
computing systems in everyday devices has stemmed the need for strong security
and trust. Trusted computing will play a very dynamic role in securing the embed-
ded system world and TPM structures along with virtualization will, eventually, be
infused into embedded systems.

On the other hand, the current TCG specifications (TPM v1.2) on the TPM have
several shortcomings since they lack flexibility and diversity. Already, TCG is work-
ing on changing that by providing a TPM v2.0 (a preliminary draft was released
in October 2012). From cryptographic perspective, designers need to put behind
the aging cryptographic infrastructure of the existing TPM and adopt more efficient
cryptographic schemes. Researchers point to Elliptic Curve cryptography (ECC) as
the most suitable candidate for a public key scheme and to SHA-256 or the upcoming
SHA-3 as the most suitable Hash function scheme [35, 36]. The presence of an ECC
framework can provide additional TPM features such as ECC pairing-based cryptog-
raphy (PBC) (using Weil pairing, Tate pairing, Eta pairing, Ate pairing, etc.) capable
of supporting advanced security services such as short signatures, identity-based
encryption and signature, identity-based authenticated key agreement, Tripartite
Diffie-Hellman or self-blindable credentials [37]. The DirectAnonymousAttestation
(DAA) mechanism, adopted by TCG, that is currently based on symmetric pairings
can be more efficiently realized using ECC asymmetric pairings [38].

Finally, the wide adoption of multicore processors will have a profound impact
on trusted computing and virtualization. Apart from high-speed implementations,
dynamic use of multiple cores will enable better hardware protection patterns. Hy-
pervisors will be able to assign whole VMs to specified cores and provide hardware
virtualization on processor core level.
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