
Chapter 6
Thin Plates

The chapter is devoted to buckling, postbuckling behaviour and dynamic buckling
of thin plates made of metals or composites modelled as orthotropic materials. The
considered plates are simply supported on loaded edges and different boundary
condition on longitudinal edges. They are subjected to uniform compression.

All calculations were performed assuming elastic homogenous material prop-
erties. Isotropic and orthotropic materials were considered (Table 6.1).

All materials mentioned in Table 6.1 are isotropic, hence, the Kirchhoff’s
modulus can be calculated according to following well known equation:

G ¼ E

2ð1� mÞ : ð6:1Þ

The fibre composite material was modelled as orthotropic but for components
(resin and fibre), isotropic material properties (Table 6.1) were assumed. Neces-
sary equations for material properties homogenization based on the theory of
mixture [2, 3] are as follows:
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where Em and Ef are the Young’s modulus of elasticity for matrix and fibre,
respectively, Gm and Gf are the shear modulus for matrix (subscript m) and fibre
(subscript f), mm and mf are Poisson’s ratios for matrix and fibre, and f = Vf/
(Vm ? Vf) is the fibre volume fraction.

It should be noticed that taking into account (6.2) and the volume fibre fraction
f from the range 0.2 to 0.7, the coefficient of orthotropy defined as Ex/Ey var-
ies from 2.9 to 3.6. Moreover, in real, industrially produced structures, the
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above-mentioned volume fibre fraction f ranges from 0.4 to 0.6, so in our case the
coefficient of orthotropy varies from 3.4 to 3.6. Figure 6.1 shows a relation
between the volume fibre fraction and the coefficient of orthotropy for glass fibre
in epoxy resin with the material data presented in Table 8.1.

Rectangular thin plates simply supported on loaded edges with different
boundary conditions along the unloaded edges were considered (Fig. 6.2). On the
longitudinal edges, five different boundary condition cases were taken into
account. The following notations are used in Fig. 6.2: s—simply supported edge,
c—clamped edge, e—free edge.

Plates with constant and variable material properties were considered. Com-
posite plates with the widthwise variable volume fibre fraction were modelled by
dividing the plate into strips (Fig. 6.3) with constant material properties assigned
to the assumed volume fibre fraction f. Its value was determined on the basis of the
arbitrary adopted sine function:

f ¼ fav þ A � cos
2py

b

� �

; ð6:3Þ

where: fav = 0.5—arbitrary assumed average value of the fibre volume fraction;
A = \ -0.4; 0.4 [—amplitude of sine describing the change of material prop-
erties along the plate width. The range of the amplitude is assumed in such a way
that the volume fibre fraction f varies from 0.1 to 0.9 or from about 10 % to 90 %
of reinforcing fibres in the composite structure. However, the proposed method
allows one to analyse any function describing a widthwise variation of material
properties, not necessarily that one defined by changes in the volume fibre fraction
content f [6, 7].
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Fig. 6.1 Volume fibre
fraction influence on
coefficients of orthotropy for
fibre glass epoxy resin

Table 6.1 Assumed material
properties

Material type E (GPa) m q (kg/m3)

Steel 200 0.3 7,850
Aluminium 70 0.33 2,950
Epoxy resin 3.5 0.33 1,249
Glass fibre 71 0.22 2,450
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The results presented further were obtained using the analytical-numerical
method (MAN) and the finite element method (FEM) software.

In the dynamic buckling analysis, load is defined as a dynamic load factor, i.e.,
an amplitude of the pulse load divided by the static buckling load. Therefore, the
static buckling load and the corresponding buckling mode should be determined.
The buckling mode is used to map an initial imperfection on the plate midplane.
The time of pulse duration is assumed as corresponding to a period of natural
vibrations. It means that the eigenvalue modal analysis and the eigenbuckling
analysis should be performed in the first stage.

The natural frequencies and the buckling load for composite and steel square
plates (a/b = 1) with the thickness ratio b/h = 100 for different boundary con-
dition cases are presented in Table 6.2.

Fig. 6.2 Analysed plates with different boundary conditions

Fig. 6.3 Model of the plate with widthwise sinusoidally variable material properties (volume
fibre fraction)
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The natural frequencies and the buckling load for the square composite plate
(a/b = 1, b/h = 100) with the widthwise variable volume fibre fraction (6.3) for
different amplitudes A (describing the volume fibre fraction distribution) are
presented in Figs. 6.4 and 6.5, respectively. For all boundary condition cases, both
the employed methods of calculations give similar results, which confirms the
correctness of the calculations.

As can be seen in Figs. 6.4 and 6.5, the buckling loads as well as the natural
frequencies grow with an increasing value of the amplitude A describing the
volume fibre fraction in the plate widthwise direction. This means that plates with
stiffer longitudinal strips near the plate edges are stiffer as a whole (a higher
buckling load and higher natural frequencies) than plates with a stiffer central
longitudinal strip.
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Fig. 6.4 Static buckling load Pcr as a function of the amplitude A describing the distribution of
the volume fibre fraction
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Fig. 6.5 Natural frequencies as a function of the amplitude A describing the distribution of the
volume fibre fraction
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6.1 Postbuckling Behaviour

The postbuckling behaviour analysis allows one to describe the behaviour of the
plate subjected to a load higher than the buckling load. Postbuckling equilibrium
paths for a steel square plate with different boundary conditions on longitudinal
edges subjected to uniform compression (uniform shortening—see Fig. 6.11) are
presented in Fig. 6.6. Equilibrium paths for an ideal flat plate are presented in
Fig. 6.6a and for a plate with geometrical imperfections with the amplitude
n* = 0.01—in Fig. 6.6b, correspondingly.

For an ideal plate structure, the critical load can be determined from the
eigenvalue analysis but for structures with imperfections, the buckling load may be
determined on the basis of the pre- and post- buckling behaviour. Two well-known
methods for identification of the critical load were employed. They are usually
applied to the results of experimental investigations. The inflection point method
(P-w), which is very similar to the ‘‘top of the knee’’ method and the alternative
(P-w2) method were used.

An influence of initial imperfection amplitudes n* on postbuckling equilibrium
paths for epoxy glass composite (fibre volume factor f = 0.5) square plates simply
supported on all edges was investigated. The obtained results in the form of
postbuckling curves presented as the nondimensional load P/Pcr versus nondi-
mensional displacement n = w/h (where h is the plate thickness) are shown in
Fig. 6.7. Using the inflection point and alternative methods, the buckling load
Pcr

* /Pcr (where Pcr
* —buckling compressive force for an imperfect plate and Pcr—

bifurcation load) for a plate with geometrical imperfections was found and is
presented in Table 6.3.

The results shown in Table 6.3 allow one to conclude that lower values of Pcr
*

were obtained using the P-w2 method and the differences between the results of
both the methods grow with an increase in the imperfection amplitude value. It can
also be noted that the higher initial imperfection amplitude, the lower critical
buckling load.
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Fig. 6.6 Postbuckling equilibrium paths for square ideal plates (a) and plates with imperfections
(b) with different boundary conditions on non-loaded edges
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An influence of the initial imperfection amplitude on the critical buckling load
and the postbuckling behaviour was checked for the rest of the assumed boundary
conditions (Fig. 6.2). Some exemplary postbuckling equilibrium paths obtained
with MAN for rectangular composite (volume fibre fraction f = 0.5) plates are
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Fig. 6.7 Dimensionless load P/Pcr versus dimensionless deflection (a) or square of dimension-
less deflection (b)

Table 6.3 Pcr
* /Pcr for

different amplitudes of initial
imperfections

Determination method: P-w P-w2

initial imperfection amplitude n* Pcr
* /Pcr Pcr

* /Pcr

0.001 0.999 0.999
0.005 0.998 0.994
0.01 0.995 0.986
0.02 0.990 0.968
0.05 0.968 0.925
0.1 0.925 0.863
0.2 0.834 0.751
0.5 0.589 0.494
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presented in Figs. 6.8 and 6.9. The results for an ideal plate are presented in
Fig. 6.8 and for a plate with the initial imperfection amplitude n* = 0.1—in
Fig. 6.9. The relations between the critical load for the plate with imperfections
and the ideal flat plate for different initial imperfection amplitudes n* are presented
in Tables 6.4 and 6.5, correspondingly.

Comparing the results presented in Tables 6.4 and 6.5, a similar conclusion to
those based on the results in Table 6.3 can be drawn, i.e., differences between the
results of both the methods grow with an increase in the imperfection amplitude
value and the higher initial imperfection amplitude, the lower critical buckling load.

Let us compare postbuckling equilibrium paths for a plate made of steel and
composite with all simply supported edges (the case denoted by ‘‘ss’’ in Fig. 6.2)
and with one free edge (the case denoted by ‘‘se’’ in Fig. 6.2). A comparison of the
results is presented in Fig. 6.10.

The results presented in Fig. 6.10 show that the plate made of a composite
material is stiffer due to its orthotropic character than the plate made of steel. It
should be emphasized that the results presented are nondimensional so for a
dimensional value of the buckling load, the steel plate has a higher value than the
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Fig. 6.9 Postbuckling equilibrium paths for plates with imperfections n* = 0.1 obtained from
P-w (a) and P-w2 (b) methods

Table 6.4 Pcr
* /Pcr

determined with the ‘‘top of
the knee’’ method—P-w
method

n* = boundary conditions 0.01 0.1 0.5

se 0.99 0.87 0.42
ce 0.99 0.86 0.39
ss 1 0.93 0.59
sc 1 0.93 0.59
cc 1 0.93 0.62

Table 6.5 Pcr
* /Pcr

determined with the
alternative method—P-w2

method

n* = boundary conditions 0.01 0.1 0.5

se 0.97 0.77 0.38
ce 0.97 0.76 0.37
ss 0.97 0.79 0.43
sc 0.97 0.79 0.43
cc 0.97 0.79 0.44
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composite one due to differences in their Young’s modulus. A comparison of the
boundary conditions (compare the curve denoted as ‘‘ss’’ and ‘‘se’’ in Fig. 6.10 for
the chosen material), which do not depend on material properties (relations for the
steel plate and the composite plate are the same), is very interesting—in the case
when one longitudinal edge is free, the plates are stiffer than in the case when all
edges are simply supported. The stiffness relation describe above seems to be
unrealistic, but as will be shown below, the above-mentioned relation depends on
the assumed boundary conditions at the loaded edge. In the model under inves-
tigation, the boundary conditions on loaded edges were assumed in such a way that
the edges were straight and remained parallel during loading (Fig. 6.11).

A comparison between compressed simply supported plates with one longitu-
dinal edge free for two different assumptions can be found in [5] and is presented
in Fig. 6.12. The curve denoted by ‘1’ was obtained on the assumption that the
loaded edges were straight and remained parallel during loading. The curve
denoted as ‘2’ was obtained on the assumption that the loaded edges were straight
and could rotate about normal to the middle surface plane. Comparing the post-
buckling equilibrium paths denoted as 1 and 2 in Fig. 6.11, an influence of the
assumed boundary conditions is very well visible. Additionally, in Fig. 6.11, a
postbuckling path for the plate with all simply supported edges is presented and
denoted as ‘3’.

6.2 Dynamic Buckling

Having determined the natural vibration frequency, the static buckling load with the
corresponding buckling mode and postbuckling equilibrium paths for plates with
initial geometrical imperfections, a dynamic response analysis can be performed for
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Fig. 6.10 Postbuckling
equilibrium paths for steel
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plates subjected to the pulse load (Fig. 6.12) of a rectangular (P), three triangular type
(descending T1, equilateral T2 and T3 growing) and sinusoidal (S) shape.

In order to verify the analytical-numerical method, the finite element analysis
was performed and the obtained results were compared to the results presented by
Petry and Fahlbusch [12]. Figure 6.13 shows a dimensionless maximum deflection
as a function of the dynamic load factor DLF for the aluminium square plate
(a/b = 1 and b/h = 200) simply supported on all edges and subjected to com-
pression with a sinusoidally shaped pulse load. The duration of the pulse corre-
sponds to the period of natural vibrations for the plate under consideration. The
amplitude of initial imperfections was assumed to be equal to 5/100 of the plate
thickness.

Fig. 6.11 Postbuckling equilibrium paths for plates with different assumptions on loaded edges

Fig. 6.12 Pulse load shapes denoted as: a T1, b T2, c T3, d P, e S
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The analytical-numerical method presented in Chap. 3 gives a slightly higher
deflection value than the results presented in the literature [12] and obtained from
the finite element method. The higher differences of the DLF value increase from
about 2 % for the DLF = 1.2 up to 14 % for the DLF = 4. The discrepancies for
the growing pulse load amplitude may be due to a more accurate model adopted by
Petry and Fahlbusch [12], who took a relatively larger number of terms in the series
function describing the plate deflection in the solution. It should be noted that the
proposed approach allows one to determine well enough the critical value of the
dynamic load factor DLFcr according to the Volmir or Budiansky-Hutchinson
criterion (see Table 6.6).

Other examples which confirm the correctness of the applied methods of
computations can be found in the monograph edited by Kowal-Michalska [4].
Therefore, in the following part of the study, the results obtained only with the two
employed methods of calculations, i.e., the finite element method (FEM) and the
analytical-numerical method (MAN), will be compared.

Dynamic buckling of thin plates, as shown in the literature overview (Sect.
1.3.2), is the subject of many papers and has appeared in the literature for more
than 50 years. The author of this monograph in his previous works [4, 8–10]
analysed different shapes of pulse loading, an influence of material properties and
boundary conditions on unloaded edges of plates. Below, a summary of the results
contained in those works is presented. The results are compared to the results
obtained with methods known from experimental investigations, i.e., the inflection
point and alternative method (see Sect. 5.8).
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Table 6.6 Critical value of
DLF obtained with different
methods

Criterion/method Budiansky-Hutchinson Volmir n = 1

MAN 1.5–1.8 1.48
FEM 1.5–1.8 1.53
Petry-Fahlbusch 1.5–1.8 1.52
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A different shape of the pulse loading influence on dynamic responses of the
plate is shown in Figs. 6.14 and 6.15 and in Table 6.7. Figure 6.14 presents some
exemplary results obtained from the analytical-numerical method for the plate
made of a composite with the volume fibre fraction equal to f = 0.5 and clamped
on longitudinal edges (‘cc’). In Fig. 6.15, a comparison of the results obtained with
the analytical-numerical method (MAN) and the finite element method (FEM) for
triangularly (T1) and rectangularly (R) shaped pulses is presented. The curves in
Fig. 6.15 present the results for the simply supported plate made of an epoxy-glass
composite with the volume fibre fraction equal to f = 0.5. The results obtained
from both the methods are consistent.

The Budiansky-Hutchinson and Volmir criteria were compared for a square
plate with the fibre volume fraction f = 0.8, for all the boundary conditions and
impulses under analysis. The obtained critical value of dynamic load factors DLFcr

are presented in Table 6.7.
The dimensionless critical value of the dynamic load factor DLFcr determined

according to the Budiansky-Hutchinson criterion, the Volmir criterion, author’s
modification of the Kleiber-Kotula-Saran criterion and the methods known from
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experimental studies (i.e., inflection point and alternative methods) for steel and
composite plates subjected to a rectangularly shaped pulse load (with a duration
corresponding to the period of natural vibrations) are summarized in Tables 6.8
and 6.9. The results were obtained with the analytical-numerical method on
the assumption that the amplitude of initial geometrical imperfections was equal to
n* = 0.01.

The dimensionless critical dynamic load factor values presented in Tables 6.8
and 6.9 confirm a compliance of the new criterion and the new approach with the
well-known Budiansky-Hutchinson and Volmir criteria. However, the alternative
method used to determine the critical dynamic buckling amplitude yields the
results about twice lower than the other applied methods. This means that the
alternative method should rather not be used to determine the critical value of
DLF, so in the further part of the presentation of the results, it will not be used. In
the case of plates with boundary conditions denoted as ‘‘se’’ and ‘‘ce’’, the results

Table 6.8 DLFcr comparison for steel plates

Boundary
condition

Mode
m

Critical value of the dynamic load factor DLFcr

Budiansky-
Hutchinson

Volmir
n = 1

Author’s criterion
rmax = 1

P-w P-w2

ss 1 1.5–1.6 1.43 1.51 1.67 0.76
cc 2 1.4–1.5 1.51 1.38 1.50 0.69
se 1 1.5–1.6 1.55 1.35 1.22 0.59
ce 1 1.3–1.4 1.58 1.35 1.22 0.59
sc 1 1.4–1.8 1.46 1.58 1.70 0.76

Table 6.9 DLFcr comparison for epoxy-glass composite plates

Volume fibre
fraction f

Boundary
condition

Mode
m

Critical value of the dynamic load factor DLFcr

Budiansky-
Hutchinson

Volmir
n = 1

Author’s
criterion
rmax = 1

P-w P-w2

0.2 ss 1 1.45–1.6 1.46 1.46 1.52 0.69
cc 1 1.45–1.6 1.44 1.49 1.53 0.72
se 1 1.3–1.45 1.65 1.31 1.15 0.55
ce 1 1.3–1.45 1.68 1.30 1.10 0.52
sc 1 1.6–1.75 1.45 1.46 1.52 0.70

0.5 ss 1 1.45–1.5 1.46 1.45 1.45 0.69
cc 1 1.45–1.6 1.45 1.48 1.52 0.71
se 1 1.3–1.45 1.64 1.31 1.14 0.54
ce 1 1.3–1.45 1.71 1.30 1.10 0.52
sc 1 1.3–1.45 1.46 1.44 1.45 0.69

0.7 ss 1 1.3–1.45 1.34 1.32 1.43 0.66
cc 1 1.45–1.6 1.44 1.49 1.53 0.72
se 1 1.3–1.45 1.61 1.31 1.15 0.55
ce 1 1.3–1.45 1.70 1.30 1.10 0.52
sc 1 1.45–1.6 1.46 1.46 1.46 0.70
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obtained with author’s criterion differ by about 10 % and by 15 % when the
inflection point method is used. In other cases (excluding the alternative method),
they are between the values of the criteria designated by Budiansky-Hutchinson
and Volmir. The best agreement of the results was achieved for plates with sup-
ported edges (i.e., the boundary condition denoted as ‘ss’, ‘sc’, ‘cc’) between the
following two pairs: author’s criterion—the Volmir criterion and the Budiansky-
Hutchinson criterion—the inflection point method.

In the literature [1, 13–15], the dynamic buckling occurs when the pulse
duration is close to a period of fundamental vibrations or to half a period of
fundamental vibrations [1] and the initial deflection is very small in relation to the
thickness of the plate. Therefore, the simply supported composite plate made of an
epoxy-glass composite with the volume fibre fraction f = 0.5 subjected to rect-
angular pulse load was taken as an example to analyse an influence of pulse
duration and the assumed initial imperfection amplitude on the dynamic response.
The results are shown in Figs. 6.16 and 6.17 and are summarized in Tables 6.10
and 6.11, respectively.
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Fig. 6.16 Influence of the initial imperfection amplitude on the course of the curves n (DLF) and
rmax (DLF) for the simply supported composite plate
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In Fig. 6.16, a postbuckling static equilibrium path for the ideal flat plate is also
presented. The curves n (DLF) for a large amplitude of initial imperfections do not
cross the postbuckling equilibrium path, which would suggest that for such large
initial imperfections, the critical dynamic load factor is equal or even less than the
static buckling load. However, the results summarized in Table 6.10 show that this
is not entirely true and a decrease in DLFcr with an increase in the amplitude of
initial imperfections is observed.
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Fig. 6.17 Influence of the pulse duration on the course of the curves n (DLF) and rmax (DLF) for
the simply supported composite (f = 0.5) plate

Table 6.10 Influence of the amplitude of initial imperfections on DLFcr

Amplitude of initial
imperfections n*

Critical value of the dynamic load factor DLFcr

Budiansky-
Hutchinson

Volmir
n = 1

Author’s criterion
rmax = 1

Inflection point
method P-w

0.001 2.35–2.5 2.23 2.00 2.40
0.005 1.75–1.9 1.66 1.67 1.68
0.01 1.45–1.5 1.46 1.45 1.52
0.02 1.2–1.3 1.30 1.25 1.31
0.05 1.0–1.1 1.15 1.05 1.14
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Figure 6.17 shows the curves n (DLF) for different pulse durations. Addition-
ally, a postbuckling static equilibrium path for the ideal flat plate is depicted. The
presented curves (excluding the postbuckling equilibrium path) were calculated
with the assumed amplitude of initial imperfections n* = 0.01. Similarly as in the
case of the curves presented in Fig. 6.16a, only a few curves in Fig. 6.17a intersect
the postbuckling equilibrium path—it takes place for the curves calculated with a
pulse duration less than 1.25T (where T is a period of the natural frequency of
vibrations). Analysing the results presented in Table 6.11, one can see that an
extension of the pulse duration leads to DLFcr = 1, i.e., to the same results as for
the static buckling load.

As has been stated previously, on the basis of the results summarized in
Tables 6.8 and 6.9, it can be said that the critical dynamic load factor DLFcr

resulting from the proposed criterion can be found between the results obtained
with application of the Volmir criterion and the Budiansky-Hutchinson criterion.
The inflection point method gives similar results as for the Budiansky-Hutchinson
criterion. This fact is also confirmed by the majority of the results shown in
Figs. 6.16 and 6.17 and Tables 6.10 and 6.11. An advantage of the inflection point
method over the Budiansky-Hutchinson criterion is a possibility to determine a
specific value, and not a range of DLF’s in which DLFcr can be found.

An exact analysis of the course of the curves presented in Figs. 6.16b and 6.17b
shows that all the curves are ‘‘based’’ on two straight lines, one descending (for
DLF \ 1) and the other growing (for DLF [ 1). Each of the curves rmax (DLF) has
also a non-linear range, which begins after ‘‘leaving’’ the aforementioned straight
lines. Comparing the curves and the obtained critical values DLFcr for the pulse
duration Tp \ 0.75 T, it can be easily seen that all these curves intersect the line for
rmax = 1 in the point with the same DLF value. Thus, the criterion proposed by the
author has a limit of applicability, because of which it cannot give the critical
value of DLF properly for pulse durations less than 0.75 T in this case. Generally,
it can be said that the criterion does not provide the correct value of DLFcr if the
curve rmax (DLF) intersects the line rmax = 1 in its linear part (for example, the
curve indicated as ‘0.001’ in Fig. 6.16b or ‘0.5T’ in Fig. 6.17b).

Table 6.11 Influence of the pulse duration on DLFcr

Pulse duration
Tp

Critical value of the dynamic load factor DLFcr

Budiansky-
Hutchinson

Volmir
n = 1

Author’s criterion
rmax = 1

Inflection point method
P-w

0.5T 3.3–3.5 3.1 2.00 4.26
0.65T 2.3–2.5 2.24 2.00 n/a
0.7T 2.3–2.5 2.06 2.00 n/a
0.75T 2.1–2.25 1.9 1.96 n/a
1T 1.45–1.5 1.46 1.45 1.52
1.25T 1.05–1.2 1.29 1.24 n/a
1.5T 1.05–1.2 1.24 1.17 n/a
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Additionally to the orthotropic plates with constant properties, some plates with
material properties varying along the width of the plate were also considered. As
has been presented in previous author’s papers [6, 7] on static buckling and the
postbuckling behaviour of structures with widthwise variable material properties, a
suitable fibre distribution can lead to an increasing or decreasing buckling load.

Therefore, it was decided to repeat the buckling investigations for plates with
widthwise variable material properties but now subjected to the pulse load. An
impact of changes in the amplitude A describing the fibre volume fraction f (6.3)
along the width of the plate on the course of the curves n (DLF) and on the critical
value of the dynamic load factor DLFcr was investigated. A dynamic response of
plates with variable material properties subjected to rectangular pulse with a
period of duration equal to a period of fundamental vibrations is shown in
Figs. 6.18 and 6.19. The analysed plates are simply supported on all edges (results
in Fig. 6.18) and clamped on longitudinal edges (results in Fig. 6.19). The
amplitude of initial imperfection n* = 0.01 was assumed. The results were
obtained with the analytical-numerical method.
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It can be noticed that the nature of the curves n (DLF) for all the boundary
conditions taken into consideration is similar, and for small values of the dynamic
load factor, i.e., DLF \ 1.5, the course of the curves defined as the maximum
deflection as a function of the dynamic load factor overlap. Only for the case in
which the longitudinal plate edges are clamped (Fig. 6.19), the curve for A = 0.4
is different from the others. The reason of different behaviour is a different
buckling mode (m = 2) in this case (A = 0.4). To check that all the calculations
were correct for that case (A = 0.4, clamped longitudinal edges of plate), a
comparative analysis was performed—the time courses of the maximum deflection
were determined with the analytical-numerical method (MAN) and the finite
element method (FEM) and are presented in Fig. 6.20.

The curves shown in Fig. 6.20 were determined for four values of the dynamic
load factor DLF = 1.0, 2.0, 3.0 and 4.0. The results of both the methods employed
are similar for DLF = 1.0, and are in accordance to the time when the deflection
reached the maximum value for the remaining values of the dynamic load factor.
The differences between the results obtained with both the methods became
apparent for higher dynamic loads (greater DLF), i.e., for DLF = 3 or 4, and for
the pulse time t/Tp [ 0.7 (after reaching the first maximum deflection). For those
DLFs, the buckling mode takes place, and it can be analysed with the finite
element method only. Despite these differences, the critical dynamic load factor,
determined by displacement criteria (Budiansky-Hutchinson or Volmir) based on
the time courses of the maximum plate deflection, obtained with both the methods
(MAN and FEM), are almost identical.

On the basis of the Budiansky-Hutchinson criterion, the Volmir criterion and
the proposed modified Kleiber-Kotula-Saran criterion (author’s criterion), the
critical dynamic load factor DLFcr for the composite square plate with its longi-
tudinal edges simply supported or clamped was determined. The results are
summarized in Tables 6.12 and 6.13 and they also confirm that the proposed
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Fig. 6.20 Time courses of the maximum deflection for the plate clamped on longitudinal edges
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criterion gives good results for plates with a relatively small amplitude of initial
imperfections and subjected to pulse loading with a period of duration equal to a
period of natural vibrations. The results presented in Tables 6.12 and 6.13 confirm
the previously noticed rule that the critical values of the dynamic load factor DLFcr

determined by the proposed criterion are between the critical values obtained from
the two well-known criteria (i.e., Budiansky-Hutchinson and Volmir criteria).

Analyzing exactly the results presented in Tables 6.12 and 6.13, one can also
notice that the distribution of fibres along the width of the plate has no significant
effect on the DLFcr value (the maximum change for the same buckling mode is less
than 8 %). If we exclude the case of the clamped plate with A = 0.4 due to a
different buckling mode, a certain regularity in the value of DLFcr can be
observed—the critical value of DLF for the simply supported plate obtained from
the Volmir criterion increases with increasing values of A from A = -0.4 to
A = 0.3, and for the plate clamped along its longitudinal edges, the critical value
of DLFcr rises for the amplitude A approaching zero (A = 0 plate made of a

Table 6.12 DLFcr for simply supported plates with a widthwise variable f

Amplitude of sine describing the volume fibre
fraction distribution A

Critical value of the dynamic load factor DLFcr

Budiansky-
Hutchinson

Volmir
n = 1

Author’s criterion
rmax = 1

-0.4 1.6–1.75 1.42 1.58
-0.3 1.45–1.6 1.44 1.52
-0.2 1.6–1.75 1.44 1.49
-0.1 1.45–1.6 1.46 1.47

0.0 1.3–1.45 1.45 1.44
0.1 1.3–1.45 1.47 1.44
0.2 1.45–1.6 1.47 1.43
0.3 1.3–1.45 1.47 1.45
0.4 1.45–1.6 1.45 1.47

Table 6.13 DLFcr for plates clamped on longitudinal edges with a widthwise variable f

Amplitude of sine describing the volume fibre
fraction distribution A

Critical value of the dynamic load factor DLFcr

Budiansky-
Hutchinson

Volmir
n = 1

Author’s criterion
rmax = 1

-0.4 1.6–1.75 1.42 1.57
-0.3 1.45–1.6 1.43 1.53
-0.2 1.45–1.6 1.44 1.50
-0.1 1.6–1.75 1.44 1.48

0.0 1.45–1.6 1.45 1.48
0.1 1.45–1.6 1.45 1.48
0.2 1.45–1.6 1.44 1.49
0.3 1.45–1.6 1.44 1.51
0.4 1.3–1.45 1.53 1.37
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material of constant properties). The DLFcr value determined with author’s cri-
terion as well as the Budiansky-Hutchinson criterion for simply supported and
clamped plates behave conversely—the critical value of DLF decreases for the
plate with a more uniform distribution of fibres. Strengthening the middle part of
the plate (A = -0.4) is followed by an increase in a value of the critical dynamic
load factor. This is a reverse phenomenon than in the static load case (Fig. 6.4)—
the largest amount of the buckling load is for the plate with A = 0.4 (reinforced
edges).

In the majority of publications dealing with dynamic buckling problems,
including the present one, the amplitude of initial imperfections n* = 0.01 has
been assumed. Such assumption is made only from the numerical point of view.
Assuming such a low amplitude of initial imperfections, researchers treat the
analysed structures as an almost ideal flat plate. It has been confirmed above by the
earlier calculations (Tables 6.3 to 6.5) that the differences between the buckling
load for the plate with a low amplitude of initial imperfections Pcr

* and the buckling
load for an ideal flat plate Pcr are very small and less than 1 %.

The dynamic load factor DLF is defined as a ratio of an amplitude of the pulse
load to the critical static buckling load for ideal structures. The calculations pre-
sented below were conducted to check how the way DLF is estimated influences
the critical amplitude of the pulse load leading to the dynamic buckling. The
author proposes to introduce a dynamic load factor DLF* = P/Pcr

* —a pulse load
amplitude divided by the static buckling load for imperfect structures. As pre-
sented in [11], such an approach is very important, especially in the case when the
amplitude of initial geometrical imperfections reaches a value equal or higher than
n* = 0.05.

Some exemplary calculations showing the differences in results according to the
way of the DLF definition, were performed for the simply supported square plate
made of an epoxy-glass composite with the volume fibre fraction f = 0.5. Two
different periods of pulse duration Tp = T and Tp = 0.5T (where T—period of
natural fundament flexural vibrations of the plate, for the given material properties
and the geometry T = 0.59 ms) were assumed.

To show an influence of the assumed amplitude of initial geometrical imper-
fections and the way of the DLF definition on the critical value of the dynamic
load factor DLFcr, a dynamic response analysis was performed with the analytical-
numerical method. In Tables 6.14 and 6.15, the critical dynamic load factors
DLFcr (determined in the conventional way) and DLF�cr (determined from
the DLF� w=hð Þ relations, where the amplitude of pulse loading is divided by the
buckling load for the plate with initial imperfections), calculated according to
the Budiansky-Hutchinson criterion, the Volmir criterion and the inflection point
method, are presented.

Analysing the results presented in Tables 6.14 and 6.15, one can say that for
low values of the imperfection amplitude (in a range of hundredth parts of the plate
thickness), the differences between the critical value of the dynamic load factor
known as DLFcr (a ratio of the critical pulse load amplitude to the static
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bifurcational load) and the proposed definition of the critical value of the dynamic
load factor DLF�cr (a ratio of the critical pulse load amplitude to the static buckling
load for the imperfect plate) are less than 1 % and the curves are practically
identical (see Figs. 6.21, 6.22 and 6.23). However, for the initial imperfection
amplitude n* C 0.05, the differences between DLFcr and DLF�cr grow with an
increasing amplitude of initial geometrical imperfections. The calculations with a
new definition of the dynamic load factor DLF* were carried out once again. The
results obtained with the analytical-numerical method for the plate with all types
of boundary conditions (Fig. 6.2) subjected to the rectangularly shaped pulse load
with the time duration Tp = T or Tp = 0.5T are presented in Tables 6.16 and 6.17.

To make the differences between the results obtained on the assumption of
various definitions of the dynamic load factor more visible, the courses of DLF (n)
and DLF* (n) for three values of imperfection amplitudes and two pulse durations
(Tp = 1T and Tp = 0.5T) are presented in Figs. 6.21, 6.22 and 6.23. In these
figures, the static postbuckling curves P/Pcr (for the flat plate) and P/Pcr

* (for the
imperfect plate) are also drawn.

It can be noticed that for a relatively small imperfection amplitude n* = 0.01
(Fig. 6.21), the curves DLF (n) and DLF* (n) cover each other for the given pulse

Table 6.14 DLFcr and DLFcr
* for different amplitudes of initial imperfections and Tp = T

Assumed criterion:
initial imperfection
amplitude n*

Volmir
criterion
ncr = 1

Budiansky-
Hutchinson
criterion

Inflection
point
method
P-w

Volmir
criterion
ncr = 1

Budiansky-
Hutchinson
criterion

Inflection
point
method
P-w

DLFcr DLFcr DLFcr DLF�cr DLF�cr DLF�cr

0.01 1.49 1.4–1.6 1.52 1.49 1.4–1.6 1.53
0.02 1.31 1.2–1.3 1.31 1.32 1.2–1.3 1.32
0.05 1.17 0.8–0.9 1.14 1.21 0.9–1.1 1.18
0.1 1.07 0.8–0.9 1.06 1.15 0.9–1.0 1.14
0.2 1.13 0.7–0.8 0.65 1.10 0.84–0.96 1.10
0.5 0.63 0.4–0.5 0.49 1.08 0.7–0.85 0.83

Table 6.15 DLFcr and DLFcr
* for different amplitudes of initial imperfections and Tp = 0.5T

Assumed criterion:
initial imperfection
amplitude n*

Volmir
criterion
ncr = 1

Budiansky-
Hutchinson
criterion

Inflection
point
method
P-w

Volmir
criterion
ncr = 1

Budiansky-
Hutchinson
criterion

Inflection
point
method
P-w

DLFcr DLFcr DLFcr DLF�cr DLF�cr DLF�cr

0.01 3.07 4.4–4.6 4.26 3.08 4.4–4.6 4.27
0.02 2.47 3.4–3.6 3.57 2.49 3.4–3.6 3.61
0.05 1.89 2.0–2.8 2.04 1.86 2.5–2.9 2.56
0.1 1.40 1.6–1.8 1.81 1.51 1.7–1.9 1.95
0.2 1.01 1.0–1.2 1.17 1.21 1.2–1.4 1.41
0.5 0.62 0.4–0.6 – 1.01 0.7–1.0 –
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duration Tp. Also the static postbuckling curves overlap (excluding the initial
range of deflections). In this case, the character of dynamic responses strongly
depends on the assumed pulse duration—for a shorter pulse, the deflections are
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Fig. 6.21 Static and dynamic responses versus dimensionless deflection for n* = 0.01
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Fig. 6.22 Static and dynamic responses versus dimensionless deflection for n* = 0.1
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Fig. 6.23 Static and dynamic responses versus dimensionless deflection for n* = 0.5
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Table 6.16 DLFcr
* determined using different methods/criteria for Tp = 1T

Amplitude of initial
imperfections n*

Boundary
conditions

Method/criteria

Inflection point
method

Volmir
criterion

Budiansky-
Hutchinson

P-w ncr = 1/
ncr = 0.5

0.01 se 1.14 1.71/1.16 1.2–1.4
0.1 0.38 1.39/0.80 0.8–1.0
0.5 0.27 0.82/0.39 0.2–0.3

0.01 ce 1.10 1.78/1.18 1.2–1.4
0.1 0.33 1.46/0.82 0.8–1.0
0.5 0.24 0.87/0.40 0.2–0.3

0.01 ss 1.45 1.40/1.06 1.4–1.6
0.1 0.68 1.04/0.70 0.8–1.0
0.5 0.43 0.63/0.35 0.4–0.5

0.01 sc 1.45 1.40/1.06 1.4–1.6
0.1 0.67 1.04/0.71 0.8–1.0
0.5 0.43 0.63/0.34 0.4–0.5

0.01 cc 1.52 1.36/1.04 1.4–1.6
0.1 0.72 0.99/0.69 0.8–1.0
0.5 0.51 0.61/0.34 0.5–0.6

Table 6.17 DLFcr
* determined using different methods/criteria for Tp = 0.5T

Amplitude of initial
imperfections n*

Boundary
conditions

Method/criteria

Inflection point
method

Volmir
criterion

Budiansky-
Hutchinson

P-w ncr = 1/
ncr = 0.5

0.01 se 3.92 3.32/2.36 3.8–4.2
0.1 1.10 1.52/0.93 1.2–1.4
0.5 0.29 0.82/0.39 0.3–0.4

0.01 ce 3.84 3.34/2.39 3.8–4.2
0.1 0.99 1.57/0.94 1.2–1.4
0.5 0.26 0.87/0.40 0.2–0.3

0.01 ss 4.51 3.08/2.12 4.6–5.0
0.1 1.75 1.36/0.91 1.6–1.8
0.5 0.50 0.64/0.35 0.5–0.6

0.01 sc 4.52 3.08/2.12 4.6–5.0
0.1 1.76 1.36/0.91 1.6–1.8
0.5 0.50 0.64/0.35 0.5–0.6

0.01 cc 4.56 3.01/2.07 4.6–5.0
0.1 1.87 1.34/0.90 1.8–2.0
0.5 0.59 0.62/0.35 0.5–0.6
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small and the dynamic buckling load is at least three times greater (compare the
results in Tables 6.14 and 6.15 or in Tables 6.16 and 6.17).

When the amplitude of imperfections grows up to the value n* = 0.1
(Fig. 6.22), the differences between the DLF and DLF* curves are clearly visible
for both pulse durations and the static postbuckling curves P/Pcr (for the flat plate)
and P/Pcr

* differ as well. The character of dynamic responses for the pulse dura-
tions Tp = 1T and Tp = 0.5T is similar but the dynamic buckling load for a shorter
pulse is twice as high as for Tp = 1T.

For small values of the imperfection amplitude (in a range of hundredth parts of
the plate thickness), the pulse load duration time strongly affects the dynamic
buckling load value and the character of the dynamic response of the plate under
consideration.

For a relatively large value of amplitude of initial geometrical imperfections n*

(the imperfection amplitude equals half of the plate thickness), the results show
(Fig. 6.23) that dynamic responses of the plate do not depend on the pulse load
duration—the relations DLF (n) for both the assumed periods of the pulse duration
(i.e., Tp = 1T and Tp = 0.5T) overlap and the curves DLF* (n) for both the
assumed pulses overlap as well. Moreover, the courses of DLF* (n) are almost
identical as the static postbuckling curve P/Pcr

* . It should be underlined that the
differences between the courses of DLF and DLF* are clearly visible.

One can conclude from the above mentioned observations that for considerably
large values of the imperfection amplitude (n* [ 0.1), an influence of the pulse
duration on the courses of DLF (n) and DLF* (n) has shown to be negligible.
However, the dynamic responses presented as DLF (n) and DLF* (n) differ sig-
nificantly. Additionally, it should be strongly underlined that the proposed rela-
tions DLF* (n) calculated for two considered values of pulse load durations are
almost identical with the static postbuckling curve P/Pcr

* , which means that the
static and dynamic behaviour of the plate is practically the same for a high
amplitude of initial geometrical imperfections. This fact can be only observed if
the proposed definition for DLF* is applied in the calculations.
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