
Chapter 4
Finite Element Method

The finite element method is used here to validate the analytical–numerical
method presented in Chap. 3. The basic assumption and the used equations for thin
plates in both the methods (ANM—the analytical–numerical method, FEM—the
finite element method) are identical, but the way of solution is different. To apply a
program based on the finite element method as a numerical experiment, confirming
or validating the theoretical analysis or the analysis based on the analytical–
numerical method, it is important to create an appropriate model. A properly
chosen finite element type, a rational mesh density and appropriate boundary
conditions play a significant role in obtaining the calculation results close to the
reality.

In the proposed analytical–numerical method, the solution is based on the
assumed deflection in the form of the sine function (3.21) in the longitudinal
direction and is calculated using the numerical transition matrix method in the
transverse direction. In the finite element method, the deflection function is called
a shape function and it is usually assumed for each element as the first or second
order polynomial. The final deflection of the whole structure is the effect of dis-
placement of each element.

For the analysed thin-walled structures, finite shell elements seem to be the best
choice. Their size and number (mesh) have to be chosen so as to map smoothly
deformations. Assuming the number of elements for a dynamic buckling problem
analysis, one should be aware that the map of deflection could be different than for
static buckling—a number of sine halfwaves in the longitudinal direction could be
greater than in the case of static load.

It seems that an application of the finite element method to replace the
experiment is an easier and much cheaper option. However, please note that
boundary conditions have a significant impact on the results obtained and must be
the same (or similar) in all the test methods compared.

The finite element method becomes more and more popular and it represents
one of the most significant developments in the history of computational methods.
The finite element method has transformed much of theoretical mechanics and
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abstract science into practical and essential tools for a multitude of technologi-
cal developments which effect many facets of our life.

It is difficult to document the exact origin of the FEM but it can be said that the
basic concept has evolved over a period of one hundred years or more.

The FEM theory started in the 1940s. The first formulations were developed as
matrix methods for structural analysis. This led to the idea to approximate solids
and Courant [4] introduced it as an assembly of triangular elements and the
minimum of potential energy to torsion problems. Shortly thereafter, Clough [26]
introduced the term ‘‘finite element’’ in the paper published together with Turner,
Martin and Topp. Their paper focused on the ‘‘stiffness and deflection of complex
structures’’. The finite element method was further enhanced during the 1960s and
1970s by such scientists as Zienkiewicz [28, 30], Hinton and Owen [10].
Zienkiewicz and Cheung [29] applied the technology to general problems
described by Laplace and Poisson’s equations. The major contributor among
mathematicians who were developing better solution algorithms and carried out
the modelling and solution of nonlinear problems was Crisfield [5]. Starting since
the 1970s also Polish scientists have been concerned with the FEM—the leader
was Szmelter [23, 24]. In the 1990s a rapid increase in the computing power
contributed to a sudden expansion and propagated the finite element method. This
method was applied to different software, which can be used in many disciplines.

Nowadays the finite element analysis is used not only for solving engineering
problems but it is also used by scientists as a numerical experiment. By introducing
new elements and mathematical techniques, the method has been still developing.

4.1 Dynamic Buckling

To solve the dynamic buckling problem, a response of the structure subjected to
pulse load should be known. To describe the above-mentioned behaviour, the
equations of motion should be solved. In the finite element method, exactly the
same as in the analytical-numerical method, the differential equations of motion of
the plate are derived on the basis of the Hamilton’s principle (2.48):

dW ¼ d
Zt1

t0

Kdt ¼ d
Zt1

t0

ðK �PÞdt ¼ 0; ð4:1Þ

where K is a kinetic energy of the system and P is a total potential energy of the
system.

Similarly to the derivation presented in Sect. 2.5, the kinetic energy is:

K ¼ 1
2
q
Z

X

_U
� �2

dX; ð4:2Þ
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and its variation, taking into consideration identity (2.60), can be written as
follows:

dK ¼
Z

X

q dUf gT _U
� �

dX; ð4:3Þ

where {U} is a vector of the displacement function which contains the following
elements: u(x,y,z,t), v(x,y,z,t), w(x,y,z,t)—functions describing displacements of a
given point in three perpendicular directions in the given moment of time.

Integrating the kinetic energy variation over time, the following relation is
obtained:

Zt1

t0

dKdt ¼
Zt1

t0

Z

X

q dUf gT _U
� �

dXdt

¼
Z

X

q dUf gT _U
� �

dX
��t2
t1

dX�
Zt1

t0

Z

X

q dUf gT €U
� �

dXdt; ð4:4Þ

where the first term vanishes because the displacement variation {dU} equals zero
for t = t0 and t = t1.

The total potential energy variation dP can be written in the form:

dP ¼ dQ� dW ; ð4:5Þ

where dQ is a variation of the internal elastic strain energy:

dQ ¼
Z

X

fdegTfrgdX; ð4:6Þ

and dW is a variation of work of the external forces {F}:

dW ¼
Z

X

dUf gfFgdX: ð4:7Þ

Substituting (4.4) and (4.5) into (4.1), the Hamilton’s principle can be written in
the form:

Zt1

t0

Z

X

½q dUf gT €U
� �

� def gT rf g þ dUf gT Ff g�dXdt ¼ 0: ð4:8Þ

In the finite element method, the displacement {U} for any point of the
structure should be related to the nodal displacements {u} using an arbitrary
assumed shape function [Nu]:
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Uf g ¼ Nu½ � uf g: ð4:9Þ

The shape function of the element applied to discretize the structure is also used
to express:

• strains {e} by the vector of nodal displacements {u} and derivatives of the shape
function called the geometrical matrix [Bu]:

ef g ¼ ½D� Nu½ � uf g ¼ Bu½ � uf g; ð4:10Þ

where:

D½ � ¼

ox 0 0
0 oy 0
0 0 oz

0 oz oy

oz 0 ox

oy ox 0

2
6666664

3
7777775
; ox ¼

o

ox
; oy ¼

o

oy
; oz ¼

o

oz
; ð4:11Þ

• stress {r} by the vector of nodal displacements {u}, the geometrical matrix [Bu]
and the material properties matrix [Q]:

frg ¼ ½Q� ef g ¼ ½Q� Bu½ � uf g: ð4:12Þ

Substituting (4.9)–(4.12) to the Hamilton’s principle, i.e., to (4.8), the following
form is obtained:

duf gT
Z

X

½q½Nu�T ½Nu�dX €uf g � duf gT
Z

X

½B�T ½Q�½B�dXfug þ duf gT
Z

X

½Nu�T Ff gdX

¼ 0;

ð4:13Þ

where the integration over time is omitted for simplicity. The integration requires a
numerical procedure which is carried out in discretized moments with the estab-
lished time step of integration. The Newmark method [1, 2] is a very popular
procedure also used in the ANSYS software.

Equation (4.13) must be satisfied for any variation of displacements (weight
functions) in any moment of time from t0 to t1 and fulfil the relevant boundary
conditions. This is a weak (variation) formulation of finite element method
equations, where the generalized Galerkin method [3, 21, 27] has been used.
Equating to zero the coefficients standing by the variations of displacements, the
following equation is obtained in the matrix form:
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Pf g ¼ M½ � � €uf g þ K½ � � uf g; ð4:14Þ

where:

½M� ¼
R
X
½q½Nu�T ½Nu�dX is a mass matrix of the structure,

½K� ¼
R
X
½B�T ½Q�½B�dX is a structural stiffness matrix,

fPg ¼
R
X
½Nu�T Ff gdX is a vector of generalized nodal forces.

After replacing the time derivatives of displacements {ü} by the displacement
differences {u} in successive discrete moments of time t, a new static equilibrium
equation for the each time step is obtained. It contains the inertia forces [M] {ü}
and, therefore, it is possible to apply the algorithms used in the static analysis. The
time integration in the ANSYS program is conducted using the Newmark method
[2] and a solution to equations in successive time steps is obtained with the
Newton-Raphson algorithm [7].

Equation (4.14) does not take into account the material-dependent damping,
which according to [13] can be neglected in the dynamic buckling analysis of thin-
walled structures subjected to uniform compression. However, the recent paper
[14] has shown a significant role of dumping in the case when the viscoelastic
material model with the strain rate effect is taken into account and/or the analysed
structures are subjected to torsion or combined load (bending and torsion). In this
case, the damping related to the speed of displacement should be added to (4.14),
which takes the form:

Pf g¼ M½ � � €uf gþ C½ � � _uf gþ K½ � � uf g; ð4:15Þ

where [C] is a damping matrix, which according to the ANSYS manual [1]
depends on the mass matrix of structures [M] and the structural stiffness matrix
[K]. The relation is as follows:

½C� ¼ a½M� þ b½K�; ð4:16Þ

where a and b are damping coefficients specified as decimal numbers. The values
of a and b [1] are not generally known directly, but can be calculated from the
modal damping ratio wi, which is the ratio of actual damping to critical damping
for the i-th mode of vibration. Denoting the natural circular frequency of the i-th
mode by xi, the coefficients a and b satisfy the relation:

wi ¼
a

2xi
þ bxi

2
: ð4:17Þ

In many practical structural problems, the alpha damping (or the mass damping)
may be ignored (a = 0). In such cases, the beta damping b can be evaluated from
known values of wi and xi as:

4.1 Dynamic Buckling 71



b ¼ 2wi

xi
; ð4:18Þ

and then the damping matrix can be expressed as follows:

½C� ¼ b½K�: ð4:19Þ

It should be noted that (in the ANSYS software [1]):

• in the transient harmonic response analysis, the material-dependent damping
can be only specified as the beta damping (b), using the command defining
material properties;

• only one b can be input in each load step, so the most dominant frequency xi

should be chosen to calculate the beta damping coefficient.

The dynamic buckling analysis or the response analysis of the structure sub-
jected to pulse load requires the following assumptions:

• shape and amplitude of imperfection,
• shape and amplitude (defined as DLF) of pulse load,
• time of pulse duration.

Therefore, before attempting to solve the dynamic buckling problem, the ei-
genbuckling solution (Sect. 4.3) should be achieved to determine the critical load
and the corresponding buckling mode. The buckling mode corresponding to the
lowest critical load is used to map the shape of geometrical imperfections with
the assumed amplitude, usually equal to 1/100 thickness of the plate or the wall of
the column. The modal analysis (Sect. 4.4) is performed to calculate the natural
frequencies of the structure which are used to determine the duration of pulse load.
The pulse duration Tp is usually assumed as a half or one period of the natural
vibration T.

The above discussed analysis has been carried out using the ANSYS software
[1] based on the finite element method.

4.2 Nonlinear Buckling Analysis

A nonlinear buckling analysis is in fact a static analysis with geometrical non-
linearities (large deflections included into the analysis). This kind of analysis
allows one to find the buckling load, to analyse the postbuckling behaviour of
structures, to estimate the load carrying capacity and a mode of failure.

For the structures which are subject to perfectly in-plane load (uniformly
compressed plates or columns), small out-of-plane perturbations are necessary to
initiate the buckling response. These perturbations can be applied as a modest
temporary force or a specified displacement. It should be noted that the failure load
is very sensitive to initial imperfections, therefore, these initial perturbations
should be as small as possible. Usually, at the beginning the eigenbuckling
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analysis is performed to calculate the buckling load and the corresponding
buckling mode. The shape of the buckling mode allows one to predict the place
where the force as the initial perturbation should be applied. In the case of the
initial displacement, the buckling mode is used as the perturbation to map it into
the finite element model.

In other cases of load, i.e., out-of-plane load or in-plane load but with eccen-
tricity, the initial perturbation is not necessary.

Having the proper model, the following equation is solved:

½K� � fug ¼ fPg; ð4:20Þ

where the stiffness matrix ½K� is dependent on the nodal displacement, which
means that the static problem is no longer geometrically linear—it is a nonlinear
problem (in the ANSYS software, the nonlinear geometry procedure should be
switched on). From the theoretical point of view, this nonlinear static problem can
be treated as a large strain or large rotation problem. In the first case (i.e., large
strain), strains in the material exceed more than a few percent—it usually happens
when a hyperelastic problem or an elastic-plastic problem is solved. In the second
case (large rotation), rotations are large and mechanical strains are small. The
second case describes situations similar to the postbuckling analysis in an elastic
range, especially when the deflections of thin-walled structures are less than 5
thicknesses of the plate or girder wall—the results are similar to the one obtained
from the analytical-numerical method described in Chap. 3.

The stiffness matrix ½K� should be treated as the tangent stiffness matrix for the
i-th increment of displacement and it is usually denoted as ½KT

i �. Depending on the
type of geometric nonlinearity, the tangent stiffness matrix ½KT

i � and the vector of
restoring forces for the i-th iteration fPr

ig are formulated in a different way.
According to the notation used in (4.20), the vector of restoring force (at each
iteration) is a part of the vector {P}, which can be expressed as:

Pf g ¼ Paf g � Pr
i

� �
; ð4:21Þ

where {Pa} is a vector of applied nodal forces.
For a large strain problem formulation, the tangent stiffness matrix is as

follows:

KT
i

� �
¼ ½Ki� þ

Z

X

½Gi�T ½si�½Gi�dX; ð4:22Þ

where [Ki] is an elemental stiffness matrix (well known from the static linear
problem formulation), [Gi] is a matrix of shape function derivatives and [si] is a
matrix of the current Cauchy (true) stresses {ri}.

The vector of restoring forces corresponding to the element internal loads for
the i-th iteration Pr

i

� �
in the large strain problem formulation is:

4.2 Nonlinear Buckling Analysis 73

http://dx.doi.org/10.1007/978-3-319-00654-3_3


Pr
i

� �
¼
Z

X

½Bi�frigdX: ð4:23Þ

For the large rotation problem formulation, the tangent stiffness matrix is as
follows:

KT
i

� �
¼
Z

X

½Tn�T ½BV �T ½D�½BV �½Tn�dX; ð4:24aÞ

where [Bv] is a small strain-displacement relationship in the original (virgin—non-
deformed) element coordinate system and [Tn] is an orthogonal transformation
relating the original element coordinates to the converted (or rotated) element
coordinates. The rotated element coordinate system differs from the original
coordinate system by the amount of rigid body rotation. Hence, the transformation
matrix [Tn] is computed by separating the rigid body rotation from the total
deformation {un} using the polar decomposition theorem (the deformation of the
object could be decomposed as the rotation plus stretching).

The vector of restoring forces for the i-th iteration Pr
i

� �
in the large rotation

problem formulation is:

Pr
i

� �
¼
Z

X

½Tn�T ½BV �T ½D�½BV � udf gdX; ð4:24bÞ

where {ud} is the element deformation which causes straining [1].
The Newton-Raphson method, which is graphically presented in Fig. 4.1, is

most popular for solving nonlinear problems with the iterative method. For a
single iteration, (4.20) has the form [2]:

KT
i

� �
Duif g ¼ Paf g � Pr

i

� �
; ð4:25Þ

where the increment of displacement {Dui} is assumed and fulfils the following
relation:

uiþ1f g ¼ uif g þ Duif g: ð4:26Þ

The general algorithm for the Newton-Raphson procedure (Fig. 4.1) can be
described as the general algorithm and proceeds as follows:

1. Assume an initial displacement vector {u0}. In the first time step, the initial
displacement vector is assumed as zero {u0} = {0} and for next time steps,
{u0} is assumed as the displacement vector from the previous time step con-
verged solution.

2. Compute the updated tangent matrix ½KT
i � and the restoring load vector Pr

i

� �
for

the displacement vector {ui} for the i-th iteration.
3. Calculate a vector of the displacement increment {Dui} from (4.25).
4. Find the next approximation {ui+1} from (4.26).
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5. Repeat steps 2–4 until a convergence is obtained.

In practice, more than one iteration is needed to obtain a converged solution. In
order to improve and speed up the procedure, the incremental Newton-Raphson
procedure (Fig. 4.2a) or the initial-stiffness Newton-Raphson procedure
(Fig. 4.2b) is used. In the incremental procedure, the applied load is divided in a
few substeps (Fig. 4.2a). Using the initial-stiffness Newton-Raphson procedure,
the tangent stiffness matrices are the same during each iteration, which requires
fewer matrix reformulations and inversions than in the full Newton-Raphson
procedure. It should be also mentioned that due to numerous iterations, the initial-
stiffness Newton-Raphson procedure converges more slowly than the full Newton-
Raphson procedure.

The main disadvantage of the Newton-Raphson method is such that it stops the
procedure when the determinant of the tangent stiffness matrix is equal to zero
(point A in Fig. 4.1).

Therefore, the arc-length technique (Riks method) is used. The Riks method
[22] is suitable for nonlinear static equilibrium solutions to unstable problems,
allows for finding the load carrying capacity and for analysing a failure mode. The
arc-length method in the ANSYS software uses the explicit spherical iterations to
maintain the orthogonality between the arc-length radius and orthogonal directions
as described by Forde and Stiemer [6]. A graphical representation is shown in
Fig. 4.3. It is assumed that all load magnitudes in (4.25) are controlled by the total
load factor k, which is in the range h-1,1i. Then, in the arc-length method, (4.25)
has the form:

KT
i

� �
Duif g ¼ k Paf g � Pr

i

� �
: ð4:27Þ

Fig. 4.1 Graphical representation of the Newton-Raphson algorithm

4.2 Nonlinear Buckling Analysis 75



Equation (4.27) in the incremental form for the intermediary step (i.e., at the
substep n and the iteration i) has the following form:

KT
i

� �
Duif g � Dk Paf g ¼ ðkn þ kiÞ Paf g � Pr

i

� �
; ð4:28Þ

where Dk is an incremental load factor (Fig. 4.3).
On the basis of (4.28), the relation describing the vector of incremental dis-

placement {Dui} can be written as follows:

Fig. 4.2 Graphical representation of the incremental Newton-Raphson procedure (a) and the
initial-stiffness Newton-Raphson procedure (b)

Fig. 4.3 Graphical representation of the arc-length method

76 4 Finite Element Method



Duif g ¼ Dk Du1
i

� �
þ DuNR

i

� �
; ð4:29Þ

where fDu1
i g is the vector of incremental displacement corresponding to a unit

load factor and fDuNR
i g is the vector of incremental displacement taken from the

conventional Newton-Raphson method (4.25). Both the vectors of incremental
displacement are defined by:

Du1
i

� �
¼ ½KT

i �
�1fPag; ð4:30Þ

DuNR
i

� �
¼ ½KT

i �
�1 ðkn þ kiÞ Paf g � Pn

i

� �� �
; ð4:31Þ

and both of them should be determined in each arc-length iteration. Then, the
incremental load factor Dk is determined by the arc-length li equation, which at the
i-th iteration can be written as (Fig. 4.3):

l2i ¼ Dk2
i þ b2 Dunf gT Dunf g; ð4:32Þ

where b is a scaling factor, Dun is a sum of all the displacement increments Dui of
this iteration.

Finally, the arc-length load increment factor Dk is determined by the formula:

Dk ¼
ri � Dunf gT DuNR

i

� �
b2ki þ Dunf gT Du1

if g
; ð4:33Þ

where ri is a residual parameter (a scalar) obtained by multiplication of the normal
and tangential vectors.

The arc-length method has also disadvantages and the main one is the
requirement to adjust the arc-length radius by trial-and-error in a series of man-
ually directed reanalyses.

4.3 Linear Static Buckling Analysis

The linear buckling analysis of the structure subjected to static load is called the
eigenbuckling problem. The eigenbuckling is used for bifurcation buckling of
the linearized model of elastic stability. This type of analysis allows for calculating
the buckling load with the corresponding buckling mode. The term ‘‘eigenbuck-
ling’’ comes from the method of formulation of the problem, so the eigenvalue
equation for buckling problem take the form:

½K� þ ki½S�ð Þfwgi ¼ f0g; ð4:34Þ

where [K] is a structural stiffness matrix, [S] is a stress stiffness matrix, ki is the i-
th eigenvalue and wi is the i-th eigenvector of displacement.
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It should be added that the eigenvalue ki is a load multiplier that allows one to
find the i-th buckling load. The i-th buckling load is calculated as the applied load
multiplied by the i-th eigenvalue ki.

The stress stiffness matrix [S] is determined in the static analysis. It means that
before the eigenbuckling analysis, the static analysis should be performed.

Equality (4.34) is satisfied if the eigenvector of displacement is equal to zero or
if the determinant of the term in brackets is equal to zero. The {w}i = 0—a trivial
solution to (4.34)—is out of interest. It means that the structure does not change
the ‘‘shape’’—the structure remains in the initial state of equilibrium. Thus, the
term in brackets in (4.34) gives the following solution:

½K� þ ki½S�j j ¼ 0: ð4:35Þ

Equation (4.35) represents the eigenvalue problem which allows for finding
n values of the buckling load multiplier k and the corresponding buckling mode
shape. The number n depends on the number of DOFs assumed in the finite
element model (n = DOF number).

It should be noted that in the FEM software as well as in the ANSYS software,
the eigenvectors are normalized so that the largest component is 1.0. Thus, stresses
may be interpreted only as a distribution of relative stresses.

4.4 Modal Analysis

The modal analysis is used to find natural frequencies and the corresponding
modal modes. The solution to the problem is based on equation of motion (4.14)
for an undamped system in which the left-hand side is equal to zero and which can
be expressed in the form:

M½ � � €uf g þ K½ � � uf g ¼ 0f g: ð4:36Þ

The vector of the nodal displacement for free vibrations of a linear system is
assumed as a harmonic of the following form:

u ¼ /f gicos xit; ð4:37Þ

where {/}i is an eigenvector representing the mode shape of the i-th natural
frequency, xi is the i-th natural circular frequency, and t denotes time.

Substituting the assumed vector of the nodal displacement (4.37) into equation
of motion (4.36), the following relation is obtained:

�x2
i ½M� þ ½K�

� �
f/gi ¼ f0g: ð4:38Þ

Equality (4.38) is satisfied if the eigenvector representing the mode shape {/}i

is equal to zero or if the determinant of the term in brackets is equal to zero. The
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{/}i = 0 is a trivial solution to (4.38), which is out of interest. Thus, the following
solution is obtained:

�x2
i ½M� þ ½K�

�� �� ¼ 0: ð4:39Þ

Equation (4.39) represents the eigenvalue problem, which allows for finding
n values of natural circular frequencies x and the corresponding eigenvectors,
which allow one to describe the modal mode. The number n equals to the number
of DOFs assumed in the finite element model.

4.5 Element Type

The most suitable element for plated thin-walled structures is a shell element. An
exemplary four-node shell element with six degrees of freedom at each node is
presented in Fig. 4.4. In the case when the layered plate is modelled, a multilayer
shell element can be used for which the material properties as well as orientations
are defined for each layer.

Shell elements have only five independent degrees of freedom at each node
(three perpendicular displacements and two rotations around the axis lying in the
plane of the element). The sixth degree of freedom (a rotation around the axis
normal to the plane of element) is not independent. Two different and possible
shapes of displacements (a relation between rotations hz for each node in one
element) are presented in Fig. 4.5. The relations between rotations are controlled
for each element using the concept proposed by MacNeal and Harder [20].

The shape function for the presented element is assumed as the first order
(linear) polynomial and has the following form:

Ne ¼
1
4

uI 1� sð Þ 1� tð Þ þ uJ 1þ sð Þ 1� tð Þ þ uK 1þ sð Þ 1þ tð Þ þ uL 1� sð Þ 1þ tð Þ½ �:

ð4:40Þ

Fig. 4.4 Quadrilateral, four
nodal shell element [1]
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4.6 Discretization

As is very well known, the number of elements has a significant influence on the
results of calculation. In all cases of the FEM calculations presented in this book, the
number of elements has been assumed on the basis of experience [11, 12, 15–18].
The model discretized with a not enough number of elements is stiffer than the real
structure and the results are not correct. The opposite case, i.e., too many elements
used for discretization, leads to time-consuming calculations. The number of ele-
ments (the density of elements) should be chosen on the basis of the solution
convergence analysis. An exemplary analysis of the solution convergence for the
buckling problem is presented in Table 4.1. This analysis was performed for a
square plate subjected to uniform compression. The plate thickness defined as
thickness to length of the plate is equal to 1/100. The plate was simply supported on
loaded edges and fixed on longitudinal edges. The use of four-node shell elements to
represent the form of buckling needs the plate to be meshed into at least five
elements along each sine halfwave. An increase in the number of elements increases
the number of nodes and degrees of freedom for the model, which allows for
mapping the highest buckling mode (the mode with more than one halfwave of
sine). The 10 lowest buckling loads with the corresponding modes for different mesh
densities (the number of elements in the longitudinal and transverse direction) have
been determined and presented in Table 4.1.

It is well known that for the isotropic square plate fixed on the longitudinal
edges and simply supported on the loaded edges, the mode corresponding to the
lowest buckling has two halfwaves in the longitudinal direction (m = 2) and one
halfwave in the transverse direction (n = 1). As presented in the exemplary results
of calculation, the worst assumed mesh density (three elements in the longitudinal
and transverse directions) did not give proper results—the lowest value was
obtained for the buckling mode with one halfwave in both directions (m = 1,
n = 1). Some buckling modes, which were found for a denser mesh, were not
determined for the 3 by 3 elements mesh. An increase in the number of elements
(from 3 9 3 to 5 9 5) by almost three times allows one to determine the same
buckling mode (i.e., m = 2, n = 1) as is well known from the literature [25], but
still not all buckling modes could be found (Table 4.1). Once again, an increased

Fig. 4.5 Possible rotation
around the axis normal to the
plane of the element [1].
Spurious Mode (a),
Hourglass Mode (b)
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number of elements in the longitudinal and transverse directions (10 9 10) has
resulted in further improvement of buckling loads value—the percentage change
of the buckling load corresponding to all determined modes is in the range from 11
to 74 %. A 10 9 10 mesh allows one to determine nine from ten first modes which
could be found using a denser mesh. A further increase in the number of elements
(20 9 20) allows one to find all first ten modes and leads to a percentage change of
the buckling load from 3 to 29 % in comparison with a less dense mesh. If the
criterion that the improvement of the result by less than 5 % does not require a
further increase of the mesh density is assumed, then it can be said that the
appointment of the two lowest critical power density distributions of 20 9 20 is
correct. Moreover, it can be noticed that the mesh improvement to receive 40 by
40 elements does not change first seven buckling loads by more than 5 % com-
pared to the 20 9 20 mesh.

To be sure that the mesh density is correct not only for the static buckling
analysis but also for the dynamic buckling analysis, the dynamic response for
different amplitudes of the rectangular pulse load was checked. It is necessary
because during and after the pulse load duration, the shape of deflection can
change rapidly with an increase in the pulse amplitude.

For exemplary calculations, a rectangular pulse shape was chosen. The pulse
duration is assumed to be equal to the period of natural vibrations for the analysed
plate Tp = T. Two different mesh densities were considered—it was a 5 9 5
element mesh and a 20 9 20 element mesh in two orthogonal directions. Because
the first modal mode has one halfwave of sine in the longitudinal direction (m = 1)
and the first buckling mode has two halfwaves of sine, it was decided to conduct
the analysis for both mode cases. For the case denoted as m = 1, the initial
imperfection corresponded to the modal mode with the amplitude equal to 1/100 of
the plate thickness, the pulse duration was equal to the period of natural vibrations
for the mode with one halfwave of sine. The dynamic load factor DLF was

Table 4.1 Influence of the mesh density on the buckling load [kN]

Modea 3 9 3 Change
(%)b

5 9 5 Change
(%)b

10 9 10 Change
(%)b

20 9 20 Change
(%)b

40 9 40

m n

2 1 28.2 40 16.8 14 14.5 3 14.0 1 13.9
1 1 26.0 30 18.1 11 16.1 3 15.7 1 15.5
3 1 – 39.8 39 24.3 9 22.1 2 21.6
4 1 – 164.8 74 43.1 18 35.5 4 34.0
3 2 – – 44.7 8 41.3 2 40.5
2 2 719.3 91 62.8 28 45.2 7 42.2 2 41.5
4 2 – 190.9 69 60.0 14 51.5 3 49.7
5 1 – – 76.6 29 54.3 7 50.4
5 2 – – 91.9 25 68.8 6 64.7
6 1 – – – 79.4 11 71.1
a m, n—number of halfwaves in longitudinal and transverse directions, correspondingly
b percentage change in the critical value relative to the result for the worse mesh
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calculated as the pulse amplitude divided by the buckling load for the mode m = 1
of the value corresponding to the assumed mesh density (Table 4.1). The similar
assumptions were made for the case denoted as m = 2: the amplitude of initial
imperfections equals 1/100 of the plate thickness and the initial imperfection shape
corresponded to the first buckling mode (m = 2), the pulse duration equalled the
period of natural vibrations for the mode m = 2 and the dynamic load factor DLF
determined as the pulse amplitude divided by the buckling load for the mode
m = 2.

The results are shown in Fig. 4.6 in the form of curves presenting the depen-
dence of the maximum dimensionless deflection n as a function of the dynamic
load factor DLF (Dynamic Load Factor—amplitude of the pulse load to the static
buckling load). For the case denoted as m = 2, the curves n(DLF) presented in
Fig. 4.6 for both mesh densities 5 9 5 and 20 9 20 are relatively close to each
over. However, for the case of m = 1, the curves n(DLF) for both densities of the
mesh taken into account overlap only for DLF B 1.6 but for higher DLF values,
the curves n(DLF) differ—see Fig. 4.6.

If the nodal displacement for DLF = 3 and for two mesh densities is compared
(Fig. 4.7), it is clear that the model divided into a smaller number of elements
(Fig. 4.7a) cannot present smoothly the shape of the deformed plate.

This example shows that the assumption of the finite element mesh density
chosen in such a way that each square part of the column wall or the single plate is
divided into 20 9 20 elements is correct and it should yield proper results.

4.7 Load and Boundary Conditions

Boundary conditions assumed on loaded edges depend on the analysed structure
(a plate, a beam-column with an open and closed cross-section) and a type of load
(uniform compression, eccentricity compression, pure bending). To obtain the
results of the FEM analysis as close as possible to the experimental test or the
numerical analysis made with another method, the assumed boundary conditions
should be defined the same or similar in both compared tests/methods.
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The boundary conditions in the FEM are determined defining nodal generalized
displacements (displacements, rotations) and/or a coupled displacement for a
group of nodes.

For all the analysed plates, the boundary conditions on longitudinal (unloaded)
edges are set as follows (notation according to Fig. 4.8):

• simple supported: v = constant and w = 0,
• clamped: v = constant and w = 0 and hx = 0,
• free edge—any constrains on the nodal displacement not set.

The boundary conditions set on loaded edges correspond to simply supported
and, depending on a type of load, they are as follows:

• uniform compression: u = constant and w = 0,
• pure in-plane bending or eccentricity compression: hz = constant and w = 0

and for one edge node lying on the neutral axis (middle node) u = 0.

To determine only the local buckling mode for the compressed column or
girder, the boundary conditions assumed on loaded edges on the girder wall can be
exactly the same as for the simply supported plate under uniform compression. In
the case of pure bending or eccentricity compression of beam-columns or girders,
the planes on which the loaded edges lie can rotate due to the assumed type of
loading. Taking the above into account, the proper boundary condition should be
considered. An exemplary way of finding the proper boundary condition for the
girder with a closed cross-section is presented below [19].

The boundary conditions assumed in the analytical-numerical method in the
prebuckling state in comparison to the buckling and postbuckling state are different.
The above-mentioned differences were noticed and used in the FEM modelling of
the compressed tube by Guarracino [8, 9]. It should be noted that also in the case of
the girder with a closed cross-section subjected to pure bending, the boundary
conditions in prebuckling and postbuckling states are different. That was the reason

Fig. 4.7 Map of deflection
for DLF = 3 and the element
mesh equal to 5 9 5 (a) or
20 9 20 (b)
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to suggest and test different boundary condition models [18]. Three of them,
denoted as A, B and C, respectively, are presented in Figs. 4.9, 4.10 and 4.11.

The proposed type A of boundary conditions (Fig. 4.9) ensures that the loaded
edges remain straight—the nodal displacement for all nodes lying on wall edges in
the direction normal to the wall was set to zero. In the next boundary condition
model (type B—Fig. 4.10), the beam element was additionally applied as a stiff-
ener on all loaded edges. The added stiffeners—the beam element—should be
rigid for bending, compression and tension (the edges on which beam elements lie
should stay straight after loading) and flexible for twisting (allow to rotate the plate
or the wall around ending edges). To fulfil rigidity, the height of the beam is
assumed to be 10 times greater than the thickness of the plate. To fulfil flexibility

Fig. 4.9 Type A of boundary conditions—zero value of the nodal displacement

Fig. 4.8 Nodal displacement for the plate
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Fig. 4.10 Type B of boundary conditions—zero value of the nodal displacement and beam
stiffeners

Fig. 4.11 Type C of boundary conditions—zero value of the nodal displacement and coupled
boundary conditions
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allowing rotations, the orthotropic material properties with the low Kirchhoff’s
modulus were assumed. Additionally, beam elements lying near the corner (red
elements—Fig. 4.10) have much lower stiffness, so the corners will be not too stiff
and will allow changes in the shape of the cross section as it happens during
bending.

In the last presented here model of the assumed boundary conditions—type C
(Fig. 4.11), not only zero value of the displacement but also of the coupled degree
of freedom was used. For walls of girders or beam-columns which are uniformly
compressed or tensioned, for all nodes lying on edges in longitudinal and normal
to the wall directions, the constant displacement was set. For all nodes lying on the
edges of the wall which were subjected to in-plane bending, the constant dis-
placement in normal to the wall direction and a constant rotation around the
bending neutral axis was set.

All three above-mentioned types of boundary conditions were tested in static
buckling and dynamic responses during the pulse load numerical analysis. To
choose ‘‘the proper’’ boundary conditions, a criterion was used which aimed at
obtaining the results of calculations as closest as possible in both the methods—the
FEM and the ANM.

Buckling modes and buckling loads for girders with a square cross-section
made of a composite material with the volume fibre fraction f = 0.5 are presented
in Fig. 4.12 and Table 4.2. The nondimensional value of the critical bending
moment Mcr/McrANM is determined by dividing the FEM critical moment by the
critical moment obtained from the analytical-numerical method.

The assumed criterion and the results (Table 4.2) obtained from the stability
analysis have shown that all the proposed boundary conditions can be considered
to be correct—the differences between the results are less than 1 %. In all the
analysed cases the buckling modes were the same (Fig. 4.12). None of the pro-
posed models of boundary conditions could be disqualified. Therefore, for each of
them, the analysis of the dynamic response to the pulse bending moment was
carried out. A rectangular pulse with duration equal to the period of natural
vibration of the analysed structure was assumed. The results are presented

Fig. 4.12 Buckling mode obtained from the analytical-numerical method (a) and the finite
element method with boundary conditions of types A (b), B (c) and C (d)
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(Fig. 4.13) in the form of the maximum deflection of the compressed wall of the
girder as a function of the dynamic load factor DLF = Ma/Mcr, defined as a pulse
amplitude of the applied loading divided by the static buckling load Mcr.

As can be seen from the curves presented in Fig. 4.13, considerable discrep-
ancies in the results have been obtained with both methods. The differences
increase with an increasing dynamic load factor value, which for a higher load lead
to larger deformations. The applied boundary conditions are much more significant
than for small deformations. Differences in the obtained results mean that the
boundary conditions were not properly chosen, which can be confirmed after a
closer examination of possible displacements of loaded girder edges. The end
section of the bent girder rotates around the neutral axis, and therefore the edges of
the upper and lower walls cannot only move along the beam axis but also in the
direction normal to the surface of the flanges. Such movements are allowed in the
prebuckling state in the analytical-numerical method, however are not possible in
the finite element model (Fig. 4.9). Accordingly, the boundary conditions A are
disqualified and a further analysis was performed for comparison of the two other
ways of support (case B—Fig. 4.10 and case C—Fig. 4.11). As is well visible in
Figs. 4.10 and 4.11, the boundary conditions B and C allow for the necessary
movement of ends of the girder subjected to the bending moment.

Analysing the results presented in Fig. 4.13, one can conclude that the best
boundary conditions allowing to map and verify the model assumed in the ana-
lytical-numerical method are conditions C (Fig. 4.11).

Comparing the results of the ANM and the FEM with A boundary conditions, it
can be seen that the deflection differences increase with an increasing DLF, which
means that the boundary conditions make the model stiffer, especially for large
deformations. Also, the curve obtained for the B-type boundary conditions is far

Table 4.2 Nondimensional buckling load comparison

ANM FEM

Type A Type B Type C

Mcr/McrANM 1 0.991 1.001 0.991
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from the curve of the analytical-numerical method. Beam elements in the model
B do not have an infinite stiffness and, therefore, cannot ensure that the ending
cross-section remains flat and the loaded edges of the walls remain straight. The C-
type boundary conditions allow for free rotation of the final section (which remains
flat) around the neutral axis. Thus, for a further finite element analysis (numerical
experiment) of girders subjected to bending, the C-type boundary conditions are
adopted (Fig. 4.11).

Therefore, for all columns with closed cross-sections subject to compression, in
which the global mode was taken into consideration, the boundary conditions
analogical to the C-type were assumed. A similar analysis as the one described
above may be carried out for the beam-column with an open cross-section for
which the boundary conditions in loaded ends were assumed according to the
description presented in Fig. 4.14.

Figure 4.14 shows one example of a column with an open cross-section. For
other types of open cross-sections, the boundary conditions were assumed by
analogy. It was assumed that bending (the flexural buckling mode) occurred
around the axis for which the second moment of area is the smallest, thus the FEM
model was prepared in such a way that nodes in which the displacement in the
y direction was set to zero (Fig. 4.14) were on the neutral axis of ending sections.
Straightness of the loaded edges of the considered beam-column is provided by
requiring equal displacements of all nodes lying on the edge of the beam-column
in the direction normal to its walls. To ensure that deformations are compatible
with the deflection in bending (the global flexural buckling mode), the edges
normal to the neutral axis remained straight in the plane containing the wall of the
column. In addition, for all nodes lying on those edges, the constant rotation
around the axis parallel to the axis of the neutral section was presupposed.

When the compressed column was analysed, a compression force or a uniform
stress distribution with additional conditions for the uniform edge displacement
was assumed. In other cases of load (pure bending or bending with compression),

Fig. 4.14 Assumed boundary conditions—an example for a channel cross-section
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the stress distribution corresponding to a given load was assumed. The stress
distribution was modelled in the form of the pressure distribution acting along the
loaded edges of the structure. An exemplary model of load corresponding to pure
bending is presented in Fig. 4.15.

It should be noted that the assumed load is nonconservative—pressure is always
perpendicular to the area to which it is applied. Let us check what an influence of
the assumed model, i.e., the load and the boundary condition, on the results of
calculations is. As an example, the channel-shape cross-section profile subjected to
pure bending was computed. Four different models denoted as BC-1 to BC-4 were
considered, and they are as follows:
BC-1 part (with a length l) of the beam-column between two neighbouring

diaphragms, the load is a pressure modelling the bending stress
distribution; the boundary condition (displacement set to zero) assumed
in neutral axes; in loaded edges of the beam-column, a constant value of
displacement in the normal direction to its wall is assumed—Fig. 4.16a;

BC-2 BC-1 model with added constant displacement in the longitudinal
direction of the beam-column loaded edges of the web—Fig. 4.16b;

BC-3 considered part of the beam of a length l modelled together with a handle
subjected to four-point bending (Fig. 4.17);

BC-4 model three times longer than the considered part of the beam with a
diaphragm (Fig. 4.18) and a handle, the whole subjected to four-point
bending.

For all the above-mentioned models of static buckling, a modal and nonlinear
static analysis was performed. The results of these calculations are presented in
Tables 4.3 and 4.4 and in Figs. 4.19 and 4.20.

Fig. 4.15 Exemplary load model for a segment of the girder subjected to pure bending
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Fig. 4.16 BC-1 (a) and BC-2 (b) models of channel-shape beam-columns subjected to pure
bending

Fig. 4.17 BC-3 model of channel-shape beam-columns subjected to pure bending

Fig. 4.18 BC-4 model of channel-shape beam-columns subjected to pure bending
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Examining the results from the eigenvector analysis (the modal analysis—
Table 4.3 and the buckling analysis—Table 4.4), it is well visible that all four
considered models of boundary conditions and loads do not play a significant role
in the results of calculations—the highest differences are less than 5 %. It means
that the simplest models (BC-1 and BC-2) are accurate enough for the static linear
analysis. It should be noted that the lowest natural frequencies and the corre-
sponding modal modes for the model denoted as BC-4 are different than for BC-1
and BC-2. The modal mode differences are shown in Fig. 4.19. As can be seen in
Fig. 4.19, the first modal mode obtained using the BC-4 model has a global
character (Fig 4.19b). Due to these differences, in Table 4.3 only the corre-
sponding modal modes are compared (for example, the first from BC-1 presented
in Fig. 4.19a with the third one from BC-4 presented in Fig. 4.19c).

Comparing the results of the nonlinear buckling analysis, it is clear that the
considered models of boundary conditions and loads have a significant impact on
the structure work in the postbuckling state (Figs. 4.20 and 4.21). Some similar-
ities can be seen when the postbuckling behaviour for the models denoted as BC-2
and BC-4 is compared. The first model denoted as BC-1 is too ‘weak’. The lack of
the straightness assumption for the loaded web edge leads to a reduction in its
stiffness. The model designated as BC-3 is too ‘stiff’ due to the close box
neighbourhood to the considered beam-column part and a much stiffer handle. To
be sure which model of load and boundary conditions is correct, experimental tests
should be performed.

The next considered case is a girder subjected to torsion. To introduce the load
causing twist, one end of the girder was restrained (for all nodes, three perpen-
dicular displacements were set to zero) and two pairs of forces were applied to the
second end (Fig. 4.22). Such an assumption leads to a deformation on the not
restrained end of the girder and to a not natural stress concentration in the places
where the forces are applied (Fig. 4.23).

Table 4.3 Natural frequencies for different models of load and boundary conditions

Length l (mm) Natural frequencies f (Hz) Differencesa

(%)
BC-1 BC-2 BC-3 BC-4

40 1,117 1,117 1,118 1,135 1
50 836 836 836 850 2
60 678 678 678 690 2
70 579.4 579.4 580 573 1
80 513 513 513 516 1
90 466 466 466 469 1
100 431.3 431.3 431 434 1
150 343.8 343.8 344 345 0
200 310 310 311 310 0
250 293.5 293.5 295 287 3

a Differences calculated between the minimal and maximal value divided by the maximal value
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To prevent a stress concentration at loaded points and a deformation of the
shape of the one end of the girder, the front panel 10 times thicker than the girder
wall thickness (Fig. 4.24) was introduced.

The proposed model can be employed in the analysis of girders subjected to
torsion because there are no unexpected deformations—both ends of the girder
after loading remain the same square shape (Fig. 4.25).

The most difficult arrangement of the boundary condition was for the girders
subjected to a combined load—a simultaneously applied bending moment and a

Fig. 4.19 First modal mode for BC-2 (a) and BC-4 (b) models of the beam-column with the
length l = 50 mm
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Table 4.4 Critical bending moment for different models of boundary conditions

Length
l (mm)

Buckling mode
(m)

Critical bending moment Mcr (Nm) Differencesa

(%)
BC-1 BC-2 BC-3 BC-4

40 1 52 52 51 53 4
50 1 55 55 55 57 3
60 1 63 63 62 65 4

2 57 57 58 58 3
70 1 73 74 73 76 3

2 53 53 53 54 2
80 1 86 86 87 88 2

2 52 52 53 53 3
90 1 101 101 102 104 2

2 53 53 54 54 2
100 1 118 118 120 121 2

3 54 54 55 55 2
150 1 226 226 233 233 3

4 52 52 53 54 3
200 1 359 360 372 374 4

5 52 52 53 53 2
250 1 493 495 516 514 4

6 52 52 53 55 5

a Differences calculated between the minimal and maximal value divided by the maximal value
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torque. The assumed boundary condition cannot block displacements corre-
sponding to a given type of load and prevent unexpected stress concentrations (i.e.,
the stress concentration in the corners on the plane where the loads are applied).
Two different models were considered (Fig. 4.26). In order to assure the linearity
of loaded edges, in the first model two plates of relatively high stiffness were
added to the ends of the girder (Fig. 4.26a). In the second model, the same line-
arity of the loaded edges was obtained by an application of beam elements
(Fig. 4.26b).

Fig. 4.23 Deformation and the equivalent stress distribution for the first model

Fig. 4.24 Models with a
solution preventing
deformation and stress
concentrations
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