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Chapter 1
Introduction

The subject of this monograph is a study of buckling and postbuckling behaviour
of thin plates and thin-walled structures with flat walls, subjected to static and
dynamic load. The investigations have been carried out in the elastic range. The
presented method of solutions as well as the exemplary results of calculations with
some conclusions based on the conducted analysis have been the results of
author’s investigations carried out for the last 10 years.

Buckling and postbuckling behaviour of different structures subjected to static
load are very well described in the worldwide literature. In the case of dynamic
load – when the dynamic buckling problem is considered – there are numerous
papers dealing with shells, some dealing with single plates made of different
materials and with different boundary conditions, but still there is a lack of papers
describing the behaviour of thin-walled complex structures consisting of flat plates.
Some papers dealing with dynamic buckling of thin-walled plate structures have
been written by scientists from the Lodz University of Technology [42, 43, 85, 92,
97–101, 108–119, 133–136] and the Lublin University of Technology [89, 106,
181]. This gap in the literature devoted to complex thin-walled structures was the
main reason why the author of this monograph has decided to survey the problem of
dynamic buckling of thin-walled plate structures.

The basic assumptions, a review of the thin plate theory, the methods used to
determine the buckling load and a postbuckling analysis of thin-walled structures
subjected to static and dynamic load are presented in this study. Two methods
employed for static and dynamic buckling investigations are introduced. The
ANSYS commercial software based on the finite element method and own
analytical–numerical method developed for about twenty years in the Department
of Strength of Materials of the Lodz University of Technology have been used.

The application of two different methods allows for wider understanding of the
phenomenon. Two different methods can also enable one to uncouple the
phenomena occurring at the same time and to attempt to estimate their impact on
the final result.

A general mathematical model, adopted in the proposed analytical–numerical
method, enables the consideration of all types of stability loss, i.e. local, global
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(flexural, torsional, flexural–torsional, lateral and distortional) and interactive
forms of buckling. The applied analytical–numerical method includes adjacent
walls, a shear-lag phenomenon and a deplanation of cross-sections.

The chapter which discusses the finite element method presents both some
theoretical as well as practical aspects that have been applied in resolving the
issues of stability and dynamic buckling of thin-walled structures with flat walls.
The ANSYS software [206], like other commercial programs based on the finite
element method, is a closed code. It is almost impossible or very difficult to
include own procedures in it. However, the ANSYS software allows one to prepare
and include some user’s routines, but generally this type of software is used for
numerical experiments confirming the theoretical investigations or the results
obtained using own software. It should be noted that a good interpretation of
results of the analysis requires wide knowledge of the theoretical and analytical
solution. In this publication, this is highlighted in chaps 6 to 9 by comparing the
calculation results obtained with an application of both the aforementioned
methods.

The thin-walled structure is a structure which consists of one or several thin
plates or shells connected together at their common edges. Among thin-walled
structures, plates, girders, beams, columns and shells are included. It is almost
impossible to draw precisely the borderline between thin-walled elements and
elements with average thickness. In the literature, one can find the information that
the thin-walled rod is the one in which the wall thickness is at least 10 times
smaller than the smallest cross-sectional dimension. This monograph presents
computational examples of structures fulfilling the above definition of thin-walled
structures.

Thin-walled structures have an ability to form freely the cross-section and, thus,
to maximize mechanical properties of the material. Therefore, they have been
more and more often used in many industries. Thin plates or thin-walled structures
are used in sport and automotive industry, aerospace and civil engineering. As an
example of such structural elements, a snowboard, a ski or poles can be mentioned,
as well as all kinds of crane girders, structural components of automobiles (a car
body sheathing and all longitudinal members), aircraft fuselages and wings, sup-
porting structures of walls and roofs of large halls and warehouses.

As it is apparent from the above-mentioned applications, this type of structures
can be made of isotropic materials (for example: steel, aluminium), as well as
anisotropic and orthotropic ones (different kinds of composite materials, for
example: a multilayered fibre composite, a sandwich composite, a functionally
graded material, etc.). thin-walled structural elements have several advantages,
such as:

• high dimensional accuracy;
• ease of installation;
• dimensional diversity;
• dimensional stability;
• relatively simple manufacturing technology;
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• optimal distribution of the material in the cross-section due to the freedom of its
formation;

• use of the mechanical properties of the material - lightweight and material
savings;

• aesthetic appearance.

All the above structures, as well as many others which can be regarded as the
thin-walled ones, exhaust their carrying capacity not by exceeding allowable
stresses but by a stability loss. Therefore, not only the critical load but also the
postbuckling behaviour of thin-walled structures subjected to static and dynamic
load provides essential knowledge for designers. The use of more accurate
mathematical models allows them to explore the phenomena occurring after a loss
of stability and to describe more precisely their quick and easy software to be used
to analyse the behaviour of thin-walled structures. Therefore, it has been decided
to explore this issue, propose a mathematical model and a method of analysis of
orthotropic thin-walled structures subjected to static and dynamic load.

1.1 Static Buckling and Postbuckling Behaviour

A stability loss or buckling is a system transition from one equilibrium state to
another (the bifurcation point), or a jump from the stable to unstable equilibrium
path (the limit point). The load resulting in a loss of stability is referred to as the
critical load. The behaviour of the structure subjected to load higher than the
critical one can be described by a stable (the growth of displacement is caused by
increased load - see Fig. 1.1a) or unstable (displacements grow with a decrease in
load) postbuckling equilibrium path (Fig. 1.1 b). Typical postbuckling equilibrium
paths for such structures like columns (rods), plates, girders and shells are pre-
sented in Fig. 1.1.

The postbuckling behaviour of structures depends on their type. For example,
cylindrical shells subjected to axial compression change their equilibrium stage
(buckling) by the unstable bifurcation point or the limit point (Fig. 1.1e). Long
rods or columns subjected to axial compression have usually sudden global
buckling (the bifurcation point of the passage to a new postbuckling equilibrium
path - Fig. 1.1d). Thin plates supported on all edges lose their stability having the
local buckling mode and the stable postbuckling equilibrium path (Fig. 1.1d). The
recalled types of buckling and postbuckling behaviour for given thin-walled
structures are the same for ideal structures as for structures with geometrical
imperfections. Columns made of thin prismatic plates can have the local buckling
mode, the global (flexural, torsional or distortional) or coupled one.

In order to acquaint the reader with an application scope of the solution method
and the results of calculations, a typical graph presenting the behaviour of thin
plates or plated structures with a stable postbuckling equilibrium path is shown in
Fig. 1.2.
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The first range (Fig. 1.2) is the prebuckling state. The structures after local
buckling (point A – Fig. 1.2) are able to sustain further load (range II – Fig. 1.2)
because the displacement increase is only possible by increasing the load value
(stable postbuckling equilibrium path). A further increase in load leads to plasticity
(point B – Fig. 1.2) or reaching a new, this time unstable, bifurcation point (global
buckling). The range III is a postbuckling phase in the elastic–plastic range. The
maximal load (point C – Fig. 1.2) is referred to as load carrying capacity after
which the failure phase begins (range IV in Fig. 1.2).

Fig. 1.1 Typical postbuckling equilibrium paths

Fig. 1.2 Diagram of
behaviour of a thin-walled
structure with a flat wall
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The most dangerous form of a stability loss is the interactive buckling (coupled
buckling) which usually causes the structure transition to the unstable equilibrium
path, which leads to destruction of the structure with the load lower than the
critical load corresponding to each mode separately. An interaction of different
buckling modes occurs when the critical loads corresponding to different buckling
modes are close to each other.

Generally, the buckling mode depends on the slenderness of compressed col-
umns. It also depends on the type of structures, initial geometrical imperfections
and also a type of load. Taking into account the length (parameter of the slen-
derness) of the compressed column, the buckling load can be divided into a local
and global mode in the elastic and elastic–plastic range. Fig. 1.3 presents exem-
plary relations between buckling load and length for the compressed rod (Fig. 1.3
a) and the compressed thin-walled column (Fig. 1.3 b).

For a simple rod, the global buckling mode may be only taken into consider-
ation. For a long and thin column, buckling takes place in the elastic range
(slenderness of the rod is higher than the slenderness limit) and the buckling load
is determined from the Euler formulae [22]. In the case when the rod is short, i.e.,
the rod slenderness is less than the limit of slenderness, buckling occurs in the
elastic–plastic range and the buckling load may be determined using the well-
known Jonson-Ostenfeld, Tetmajer-Jasinski or Rankine-Gordon formulae. For
thin-walled columns, the situation is slightly more complicated – depending on
length of the column, a different buckling mode may occur (Fig. 1.3b). For very
short columns, the local buckling mode in the elastic–plastic range occurs (range I
- Fig. 1.3b). For relatively short columns, different local buckling in the elastic
range takes place (range II - Fig. 1.3b). For a long compressed column, a different
global buckling mode (flexural, torsional, distortional) and their interaction with
the local mode may occur (range III - Fig. 1.3b). Finally, for a very long column,
the global mode takes place (range IV - Fig. 1.3b).

Fig. 1.3 Buckling load vs. slenderness or length of the compressed rod (a) and columns (b)
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1.2 Dynamic Buckling

Real structures are not only subjected to static load but also to the dynamic one.
The character of the phenomena that occur in the case of dynamic loads is
determined by the duration of pulse load and its amplitude. In the literature, a
quantity of ‘‘pulse intensity’’ [8] or ‘‘pulse velocity’’ [37] is introduced. In the
case when the pulse duration is very short and the magnitude of load amplitude is
relatively high, an impact phenomenon is observed. If the pulse duration corre-
sponds to the period of natural vibrations and the magnitude of amplitude has an
average value, the dynamic buckling occurs, whereas for a long period of the pulse
duration, load is quasi-static.

It should be noted that during a short pulse duration, the dynamic critical load
can be higher than the static buckling load.

In the literature, the dynamic buckling problem is analysed mainly for structures
subjected to compression loads acting along the axis of the structure. Therefore, the
present study has been limited only to the analysis of structures loaded in the plane
of plates (walls of the beam-column under analysis), completely without the
transverse load. Pulse loads are variable in time and act on the structure immedi-
ately, may be of a finite or infinite duration. A time diagram of dynamic loads with a
finite duration (pulse loading) may take a parabolic, sinusoidal, rectangular,
triangular, exponential or irregular shape [61]. There is a variety of pulses due to
attempts to model the real load of the dynamic character. For example, pressure
from a wave of the sea hitting a side of the ship or the boat is a sinusoidal pulse. The
rectangular pulse models a hitting of bottom of the high-speed motor boat over the
surface of water or a mass hitting the structure and then rebounded. Sudden and
abrupt manoeuvres of flying objects generate dynamic loads of a trapezoidal shape.
The exponential course describes the load caused by explosion, whereas the pulse
with a triangular-step shape load describes load changes during a nuclear explosion.
The above-mentioned examples have been confirmed by the experimental results
which are presented, for example, in [63, 72, 196].

As mentioned above, the dynamic buckling occurs when the loading process is
of intermediate amplitude and the pulse duration is close to the period of funda-
mental natural flexural vibrations (in a range of milliseconds) with a mode cor-
responding to the static buckling mode. In such a case, the effects of dumping can
be neglected according to [96] – an influence of the damping effect on the dynamic
response is not greater than 1 %. As shown in [133], the damping effect can be
neglected only in the case when the problem is solved in the elastic range.

It should be noted that a dynamic stability loss may occur only for structures
with initial geometric imperfections; therefore, the dynamic bifurcation load does
not exist. For ideal structures (without geometrical imperfections), the critical
buckling amplitude of pulse loading tends to infinity [25]. The dynamic buckling
can be considered as strengthening the imperfections - the initial displacement of
the structure. The critical dynamic buckling load should be defined on the basis of
the assumed criterion.
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The precise mathematical criteria were formulated for structures having the
unstable postcritical equilibrium path or having the limit point [25, 168]. But for
the structures having the stable postbuckling equilibrium path (thin plates, thin-
walled beam-columns with the minimal critical load corresponding to local
buckling), the precise mathematical criteria have not been defined till now.
Therefore, Simitses [168] suggested not defining the dynamic buckling for
structures with the stable postbuckling behaviour but rather defining it as a
dynamic response to pulse loads. However, many scientists want to have a ‘‘tool’’
allowing them to define the critical amplitude of pulse load causing a loss of
stability. Therefore, many authors adopted the criterion formulated for thin shells
by Budiansky and Hutchinson [70]. Other scientists solving the dynamic buckling
problem of thin plates proposed their own criteria. The oldest and probably the
easiest to use is the dynamic stability criterion formulated by Volmir [195]. Other
popular criteria are Ari-Gur and Simonetta criteria 8 and the failure criterion
proposed by Petry and Fahlbush [147]. With the arrival of new papers [181]
dealing with dynamic buckling, new criteria allowing to determine the critical
amplitude of the pulse load have appeared - including a new criterion proposed by
the author [115] of this publication (see Sect. 5.5).

In the analysis of the behaviour of the structure subjected to pulse loads, the
concept of the dynamic load factor DLF defined as a ratio of the pulse amplitude to
the static buckling load for the perfect structure is introduced. The critical value of
the dynamic load factor DLFcr, according to the above-mentioned reason, is
determined on the basis of established criteria. The value of DLFcr determines the
ability of a structure to sustain dynamic loads. The author of this publication has
proposed a new approach for determining the dynamic load factor [119] (see
Sect. 5.8).

1.3 Literature Review

The literature overview presented below is focused only on main papers dealing
with the elastic static buckling, the postbuckling behaviour and the dynamic
buckling of thin-walled plates or structures composed of flat plate (walls).
However, some of the most important publications dealing with other thin-walled
structures, especially in the case of pulse load, are mentioned as well.

1.3.1 Buckling and Postbuckling Behaviour

Buckling and postbuckling of thin-walled structures subjected to static load have
been investigated by many authors for more than one hundred years. The fol-
lowing scientists: Bernoulli and Euler [22], Timoshenko [186] and Volmir [194]
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should be included in the group of precursors of the investigations on stability of
the thin-walled structure problem.

In the worldwide literature, there are numerous papers dealing with linear and
nonlinear stability of thin-walled structures subjected to load of different kinds.
Nowadays, numerous software packages usually based on the FEM, allowing to
one calculate the critical load for most practical structures subjected to any type of
load and to analyse their postbuckling behaviour, are available.

The widest development of research on stability of thin-walled isotropic
structures took place in the 1970s and the 1980s. The exemplary papers dealing
with local buckling of thin-walled structures are papers written by Davis and
Hancock [44], Graves-Smith [58] or Mulligan and Pekoz [141]. Buckling and the
postbuckling behaviour of isotropic thin-walled structures were analysed, for
example, by Graves-Smith [59], Grimaldi and Pignataro [60], Koiter [78] Krolak
[102]. Many works are devoted to multimodal (interactive) buckling and some of
them are mentioned below. Koiter and Pignataro [80] presented a theoretical basis
for the interaction of local and global buckling. Byskov and Hutchinson [29] dealt
with the interactive buckling of cylindrical shells. An analysis of the interaction
between the global mode and two local buckling modes was proposed by Koiter
and van der Neut [81]. A more comprehensive review of the literature concerning
the interactive buckling analysis of an isotropic structure can be found, for
example, in Ali and Sridharan [5], Benito and Sridharan [21], Byskov [30], Koiter
and Pignataro [79], Kolakowski [82–84], Manevich [132], Moellmann and Gol-
termann [139], Pignataro et al. [148], Pignataro and Luongo [149, 150], Sridharan
and Ali [174, 175]. The interactive buckling of orthotropic structures has been
discussed, for instance, in [89, 92].

In the wide world literature, works dealing with nonlinear problems of stability
of thin-walled structures made of orthotropic materials can be found easily. The
oldest work on this subject was published almost 80 years ago. Seydel [160],
Smith [169] and Chang [34] dealt with orthotropic plate buckling. Reissner and
Stavsky [152] published a study on the critical stress for anisotropic laminated
plates with arbitrarily stacked layers. The theoretical background for buckling of
composite and anisotropic plates was published by Lekhnitskii [120], Ambart-
sumyan [6], Ashton and Whitney [9] or Vinson and Chou [192]. In the literature,
there are many works on anisotropic plates - among them, March’s [137] and
Thielmann’s [185] works are worth mentioning. Fraser and Miller [53] established
the critical load for orthotropic plates using the Ritz method. Mandell [131] pre-
sented the results of experimental studies on buckling of anisotropic rectangular
plates with simply supported or clamped edges. Chailleux et al. [32] delivered the
results of experimental studies on the stability of columns and square laminate
plates. Noor [143] in his work presented a comparison between the classical theory
of plates, the theory of linear shear and a 3-D theory for elastic stability of
orthotropic laminated plates. Chandra and Raju [33] published a study on the
postbuckling behaviour of orthotropic rectangular plates with simply supported
edges. They analysed plates subjected to load causing uniform shortening of edges.
They compared the results of their study with the previously published works.
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A similar problem was solved by Prahakara and Chia [151]. They carried out a
theoretical analysis of the postbuckling behaviour of orthotropic, rectangular
plates with simply supported edges and subjected to biaxial compression. To
describe the deformation, a double Fourier series was used. Massey [138] and
Brunelle and Oyibo [24] looked for areas of instability for orthotropic plates
subjected to pure shear. Libove [123] and Ting with co-authors [187] analysed the
unstable behaviour of orthotropic plates under biaxial load.

In the 1980’s and the 1990’s, scientists widely used analytical–numerical and
numerical methods to solve the stability problem. The finite strip method as well as
the finite element method started to be used. Dawe and others [45, 46] analysed the
postbuckling behaviour of geometrically nonlinear elastic plates and thin-walled
prismatic layered composite laminates subjected to load causing uniform edges
close-up. They used the finite strip method based on the classical plate theory and
the first order deformation theory. Kasagi and Sridharan [75] used the finite strip
method to study the stability and the postbuckling behaviour of multilayered
composite plates subjected to shear. The authors employed a trigonometric
function to describe deflection along the plate and assumed very long plates to
decrease the boundary conditions influence. The finite element method was used
by Hu and Tzeng [65] to analyse the stability of rectangular plates with elastic
fibrous composite laminates with different arrangement of layers. The simply
supported or clamped plates subjected to eccentric compressive load were ana-
lysed. They employed the commercial software – ABAQUS. Bao et al. [14] used
the FEM to analyse the critical stress for flat rectangular orthotropic thin plates
with different boundary conditions. Not only plates but also beam-columns made
of anisotropic materials were investigated. Barbero and Tomblin [15] dealt with a
loss of global stability of thin-walled I-section beam-columns made of various
fibre composites. To determine the critical stress, the Southwell method was used.
They compared the experimental results with the theoretical ones receiving a very
good agreement – the percentage difference between both the methods was less
than 6.2 %. Gupta and Rao [62] studied the stability of a thin cantilever beam with
a Z-cross-section made of two (45/-45) or three- (0/45/0) layered laminates. The
authors employed the finite element method and used two-node beam elements
with three degrees of freedom at each node to build a discrete model of the beam
under analysis.

In the last decade, Awrejcewicz and co-authors have published monographs
[10–13] devoted to dynamics and statics of plates and shells made of iso- and

orthotropic materials. They have presented a broad spectrum of analytical and
numerical methods applied to solve problems of static stability and vibration of
thin-walled structures.

Despite the fact that since the first work on stability of the compressed rod [22]
and then other thin-walled structures, more than a century has passed, stability and
load carrying capacity of thin-walled structures is still a current topic. Below there
are quoted papers published during the last five years and dealing with stability and
load carrying capacity of thin-walled structures.
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Among the work of Polish authors on this subject, the papers published by
Szymczak and Chroscielewski from the Gdansk University of Technology,
Tomski and others from the Czestochowa University of Technology, Teter from
the Lublin University of Technology, Garstecki, Magnucki and Zielnica from the
Poznan University of Technology should be mentioned.

Szymczak [176] deals with stability of the construction of halls modelled as
thin-walled frames. It has been proven that the obtained bifurcation point is
unsymmetrical and unstable, which can lead to a reduction of critical loads due to
some geometrical and loading imperfections.

Chroscielewski et al. in [36] discusses the effect of initial deflection on torsional
buckling load of the thin-walled I-beam column. The numerical results obtained
using the theory of thin-walled members and the non-linear 6-parameter theory of
shells are compared. The authors have observed and analysed the localisation of
local buckling modes.

Tomski et al. in their papers [188–190] present results of theoretical and
numerical studies on the slender geometrically nonlinear system subjected to non-
conservative loading.

Thin-walled beam-columns with intermediate stiffeners have been investigated
by Teter and Kolakowski [182, 183]. They have analysed an interaction between
global and local buckling and an influence of this interaction on buckling load.

The linear and non-linear stability analyses of double sigma members in the
elastic range are analysed by Rzeszut and Garstecki [156, 157]. They use the finite
element method to illustrate the importance of proper modelling of structures with
slotted connections accounting for initial imperfections. The authors have also
modelled the imperfections measured in situ [156] and have analysed their
influence on the postbuckling behaviour of structures.

Magnucki with his team have published a few papers [128–130] devoted to
global and local stability of cold-formed thin-walled channel beams with open or
closed flanges. Papers [128, 130] present a simple analytical description and
calculations, the numerical FEM analysis and the laboratory tests of selected
beams. The numerical investigations of the optimization problem have been car-
ried out by Magnucki and Paczos [129]. The authors have defined the optimization
criterion and the dimensionless objective function as a quality measure.

The main area of Zielnica’s interest are sandwich conical and cylindrical shells.
In the latest papers, Zielnica et al. present a derivation of the stability equation and
the method of solution for an elastic–plastic open conical shell made of orthotropic
materials [145]. They take into consideration a bilayered open conical shell
subjected to longitudinal force and lateral pressure. The solutions for a freely
supported sandwich cylindrical shell with unsymmetrical faces, loaded by longi-
tudinal forces, transversal pressure and shear, can be found in [73]. Paper [205]
presents a buckling analysis and equilibrium stability paths of the sandwich
conical shell with unsymmetrical faces subjected to combined load.

Kolakowski et al. [88, 90] have analysed the interactive buckling and the
postbuckling behaviour of thin-walled columns with different cross-sections using
the asymptotic Koiter theory for conservative systems. In [88], Kolakowski and
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Kowal-Michalska analyse an influence of the axial extension mode on the inter-
active buckling of a thin-walled channel subjected to uniform compression.

Krolak with co-workers have performed experimental investigations and a
numerical analysis of stability and load carrying capacity of multi-cell thin-walled
columns of triangular and rectangular cross-sections [103–105]. The results of
FEM calculations have been compared to the theoretical and experimental
investigations.

Thin-walled beam-columns with open and closed cross-sections subjected to
compression or pure bending have been analysed across the whole world.

Loughlan et al. have conducted a numerical analysis and experimental tests on
lipped cross-section [125], I-section and box-section [124] struts. In the numerical
analysis, the ANSYS software based on the finite element method has been
employed. They have examined buckling, a postbuckled response and the failure
mode of thin-walled struts assuming the elastic–plastic material behaviour. They
have proposed FEM models and procedures for the determination of the coupled
local-distortional interactive response of thin-walled lipped channel sections [125].
Ovesy et al. have employed the finite strip method [144] to carry out a numerical
analysis and have compared the obtained results with the FEM and the experiments.

The postbuckling behaviour, the load carrying capacity estimation and the
failure mode of stainless steel stub columns [126] and multilayered plate structures
[94] have been analysed by Kotelko, Kowal-Michalska, Rhodes and others.
Kotelko in cooperation with Dubina and others [191] has made an inventory and
classified geometrical and analytical models for local-plastic mechanisms aiming
to characterize the ultimate capacity of cold-formed steel sections.

A summary of the recent research on stability, postbuckling behaviour and load
carrying capacity of cold-formed steel members and structures is presented in
papers written by Rhodes and Macdonald [127, 153]. In [127] they discuss an
influence of various aspects on the behaviour of thin-walled members under
various loadings. The paper presents the investigation results carried out by stu-
dents during their short duration programmes. Rhodes in his paper [153] presents
the effects of end fixity on the plain channel column behaviour, the effects of
transverse impact on struts and the damaged strut capacity and the large deflection
behaviour of slender rings under diametrically opposed point loads. Paper [127]
deals with cold-formed steel members and discusses the particular characteristics
affecting their design.

The progress in computational methods has allowed for development and
improvement of original programs useful for the buckling and postbuckling
analysis of thin-walled structures. In recent years, two competitive software codes
allowing the determination of critical load for uncoupled and coupled buckling
have been developed. They enable also analysing the postbuckling behaviour of
thin-walled beam-columns. One of them, called GBT [56], has been developed at
the Technical University of Lisbon and is based on the generalized beam theory.
The second one is called cFSM and is based on the constrained finite strip method.
The cFSM software has been developed by Schafer [161] from Johns Hopkins
University. The authors of the mentioned software in collaboration with each other
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[2] and with other scientists have issued numerous publications explaining the
behaviour of thin-walled beam-columns [3, 31, 48, 50, 57, 158, 166]. The
developed software has been validated by a comparison of the calculation results
with the experimental tests [51, 202] and other analyses using the commercial
software based on the finite element method [3, 4, 31, 49, 50, 140, 166, 177].

For many years, the University of Sydney has been a recognized centre in
which the experimental studies of long thin-walled beam-columns were carried
out. Rasmussen et al. published the results of their experimental investigations on
steel lipped channels [20, 155] and I-section columns [18] under axial compres-
sion. The interactions of local and overall buckling were considered. On the basis
of the obtained test results, the FEM model incorporating the non-linear stress-
strain behaviour, anisotropy, enhanced corner properties and initial imperfections
was prepared and used in further investigations [17, 19]. The ABAQUS software
was employed.

Rasmussen used also the isoparametric spline finite strip method to carry out an
elastic buckling analysis of perforated thin-walled structures [52] and inelastic
buckling of perforated plates [201]. In the case of study in the inelastic range,
several material models were included in the analysis - elastic perfectly-plastic,
linear hardening models and models with nonlinear yielding and isotropic
hardening.

1.3.2 Dynamic Buckling

In the world literature, the topic of dynamic buckling has been known since the
1930s. The first known papers [93, 178] dealt with Euler buckling of columns
subjected to compressive pulse with a finite duration. Those works did not take
into account axial inertia forces. The authors noted that the rod took the dynamic
load with amplitude higher than the static critical load. A further work carried out
by Sevin [159] showed that the effect of axial inertia forces could be neglected as
long as the column was in the elastic range.

A faster development of research and analysis of dynamic buckling dates at the
1960s and the early 1970s and is associated with the papers written by Budiansky
[25–28, 70] dealing with shells and Volmir’s publications [194, 195] devoted to
the dynamic stability of thin plates and shells. In contrary to the articles published
in the 1930s, the aforementioned works formulates the criteria allowing one to
determine the critical value of amplitude of the dynamic load. The criterion
allowing for determining the critical dynamic pressure was given by Budiansky
and Roth [28]. They studied the response segment of a spherical shell loaded with
pulse pressure. The critical pressure is defined as the one that causes a rapid
change in strain. For pulse compression, a shell dynamic stability criterion was
formulated by Hutchinson and Budiansky [70]. This work is often cited in the
literature and concerns the dynamic stability of cylindrical shells with initial
geometrical imperfections subjected to rectangular and triangular shape pulse load
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of a finite duration. The critical value of the amplitude of the pulse is based on the
analysis of the system response to dynamic load, saying that the amplitude of pulse
load causing unlimited growth of deflection is accepted as the critical load.
Budiansky-Hutchinson criterion is adapted by many authors to determine critical
loads of thin plates. It has been widely discussed in Sect. 5.2.

Volmir [194, 195] analysed simply supported rectangular plates and shells
subjected to compressive pulse and shear pulse load. He proposed a very simple but
time consuming method for dynamic buckling load determination (see Sect. 5.1).

The largest group of papers dealing with dynamic buckling is dedicated to
shells. The most important are papers written by Budianky et al. [25–28, 70],
Schokker, Sridharan and Kasagi [162], Huyan and Simitses [69], Sofiyev [170]
Yaffe and Abramovich [200], Bisagni [23] and Virelli, Godoy and Suarez [193].

Another relatively large group of publications are papers related to thin col-
umns with full- or thin-walled cross-sections, but taking into account only buck-
ling in the Euler sense. Cui et al. [37–41, 64] were involved in experimental
investigations. They tested columns with different dimensions of rectangular cross-
sections and of various lengths. They assumed that the dynamic buckling occurred
when the initial deflection and/or the initial speed of deflection were amplified to
such a level that it began to grow to infinity. Zhanga and Taheri [204] analysed a
dynamic response of composite beam-columns subjected to compression pulse
load. The results of theoretical investigations and a comparison with experimental
tests of rods impacted with high velocity are presented by Karagiozova and Jones
[74]. Anwen and Wenying [7] used the finite strip method to analyse the dynamic
buckling of thin rods in the elastic–plastic range. Kenny, Pegg and Taheri [76]
used the finite difference method and the finite element method to analyse a
dynamic response of rods subjected to pulse load with relative high pulse
amplitude and short time of its duration. The results of studies on the influence of
accidental geometrical imperfections on dynamic buckling are verified with the
experimental tests [77].

The non-linear dynamic buckling analysis of the compressed rod modelled as a
series of weightless rods connected one by one by a spring-damper system are
presented by Kounadis, Gantes and Simitses [96]. For the assumed discrete model,
the Lagrange equation was determined and solved. They defined the critical load
as the one that leads to unrestricted movement or large jumps to remote stable
equilibrium paths. The use of a damper in the model allowed for analysing the
damping influence. The presented example showed that the difference in the
results for the structure with viscous Rayleigh damping and without damping was
only 0.2 %.

An isolated plate with different boundary conditions can be treated as a single
wall of thin-walled structures. Knowing the behaviour of the plate, the local static
and dynamic buckling load for beam-columns can be determined. Therefore,
numerous publications dealing with the dynamic buckling of thin plates appear in
the world literature. The most important are papers written by Volmir [194, 195],
Weller, Abramovich and Yaffe [197], Abramovich and Grunwald [1], Ari-Gur and
Simonetta [8], Petry and Fahlbush [147]. In the above-mentioned papers, the
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results of research and analysis of thin plates subjected to dynamic load are pre-
sented. An influence of the initial imperfection, different pulse shapes (sine,
rectangle) and the pulse duration on a dynamic response of plates were presented.
It was noted that dynamic buckling loads were usually greater than the static one
but that relationship might be reversed for relatively large initial geometrical
imperfections. Abramovich and Grunwald [1] conducted experimental investiga-
tions of composite plates with simply supported or clamped edges. Ari-Gur and
Simonetta [8] used the finite difference method to solve the problem. Taking into
account the inertial forces in the plane of the plate, they analysed the behaviour of
isotropic and composite plates subjected to pulse load. On the basis of the results,
four criteria of dynamic buckling were formulated (see Sect. 5.3). Taking into
account the inertia forces in the plane of the plate, they analysed the behaviour of
isotropic and composite plates subjected to pulse load. Petry and Fahlbusch [147]
conducted a very comprehensive study examining an impact of the pulse duration
to the maximum deflection, comparing different types of pulses – triangular,
rectangular and sinusoidal. They also analyzed an influence of the size and the
distribution (different number of halfwaves) of the geometry of the imperfection
on the value of the dynamic critical load. On the basis of the results, a failure
criterion was proposed, stating that the dynamic load is critical when at any point
of the structure the equivalent stress was equal to the yield limit (see Sect. 5.7).

Cui, Cheong and Hao in their papers [35, 39] presented the results of experi-
mental results for 15 rectangular plates clamped on loaded edges and with different
boundary conditions (clamped - clamped, clamped - simply support, clamped - free
edge) on longitudinal edges. All the above-mentioned plates were subjected to
pulse load. The authors analysed different failure modes and proposed their own
dynamic plastic failure criterion. They also performed a numerical analysis [40, 41]
using the ABAQUS commercial software based on the finite element method. For
the numerical analysis, they assumed an elastic–plastic model of the material with
different coefficients of strengthening, noting that the dynamic critical load in the
elastic–plastic range increased with an increasing material strengthening curve in
the elastic–plastic state. Cui et al. studied an impact of the damping effect on the
dynamic critical load, stating that the damping effect depended on the duration of
the pulse and could be omitted when the pulse duration was close or less than the
period of natural vibration of the structure under analysis.

The results of the dynamic buckling of the thin composite plate can be found in
[43, 54, 97, 107, 108, 110, 146, 154].

In papers written by Papazouglou and Tsouvalis [146] and also Kowal-Michalska,
Kolakowski and Czechowski [43, 98], the Galerkin method was used to derive the
equation of motion, which was solved using the Runge–Kutta method.

Among the publications on dynamic buckling, there are papers which present
an analysis of structures subjected to the simultaneous mechanical and thermal
pulse load [55, 67, 68].

One- and bi-axial compression of rectangular plates was considered by Batra
and Wei [16]. They studied the dynamic stability of orthotropic rectangular plates
with elastic–plastic material models assuming the Hill’s criterion of plasticity.

14 1 Introduction

http://dx.doi.org/10.1007/978-3-319-00654-3_5
http://dx.doi.org/10.1007/978-3-319-00654-3_5
http://dx.doi.org/10.1007/978-3-319-00654-3_5
http://dx.doi.org/10.1007/978-3-319-00654-3_5


Plates with longitudinal stiffeners were the subject of paper [203] in which the
authors present a theoretical analysis of the plates subjected to sinusoidal com-
pression pulse with a duration equal to the period of fundamental natural vibra-
tions. The problem was solved by an analytical–numerical method. To determine
the dynamic buckling load, the Budiansky-Roth criterion was applied.

An extensive list of works dealing with dynamic buckling can be found, for
example, in the book edited by Kowal-Michalska [99], written by Simitses [167]
or Grybos [61]. Grybos’ book [61] is the first synthetic scientific description
dealing with the dynamic buckling of thin-walled structures subjected to pulse
loading. The author presents the investigation results for bars, plates and shells.

Simitses in his work [168] presented the dynamic stability problems depending
on the type of structure and its response to static loads. For the structures with
‘‘sudden’’ buckling (called snap-through buckling), he formulated concepts and
methodologies to determine dynamic critical conditions. In the case of the struc-
ture with stable postbuckling equilibrium path, Simitses proposed that there was
not any precise the critical dynamic buckling criterion. For the pulse load, we
should rather speak about a dynamic response of the structure than about the
dynamic buckling.

Among the wide literature dealing with the dynamic interactive buckling of
columns (Euler buckling), only the papers written by Sridharan and Benito [173]
and Kolakowski [85] have been found. Sridharan and Benito draw attention to the
possibility of an interaction of local and global buckling. Kolakowski focuses on
an interaction of various forms of global buckling. Other works on interactive
buckling of thin-walled columns have been published by the author of this
monograph [112, 113] and in cooperation with Kolakowski [91, 92].

The case of dynamic buckling in the elastic–plastic range, including the
viscoplastic effect, has been investigated by Mania and Kowal-Michalska [133,
135, 136]. In [134] Mania has proven a significant impact of the strain rate effect
on the dynamic buckling load of short columns. In the world literature, it is also
possible to find a paper dealing with dynamic buckling of thin-walled structures
subjected to combined load [106]. Czechowski [42] modelled a girder subjected to
twisting and bending, considering only one plate subjected to shear and com-
pression. A general summary showing which parameters have an influence on
dynamic buckling of plated structures can be found in [100, 101].

Since the time a problem of dynamic stability started to be considered in the
world literature, the majority of works has been devoted to shell structures and this
trend is still present. During the last five years, numerous publications dealing with
dynamic buckling of shells structures have been issued. Some of them to be
mentioned are the papers written by Sofiyev with different co-authors [47, 142,
171, 172], Huang and Han [66] and Xu et al. [198, 199]. The latest papers written
by Sofiyev are devoted to nonlinear dynamic buckling of cylindrical [172] and
truncated conical shells [47, 142, 171] made of functionally graded materials.
A similar problem, i.e., nonlinear dynamic buckling of composite cylindrical
shells, made of ceramic–metal functionally graded materials, was discussed by
Huang and Han [66]. Xu et al. in their papers present the local buckling problem of
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the cylindrical shell under torsion [199] and the local and global buckling problem
of cylindrical shells under axial compression [198].

The theory allowing one to analyse dynamic axial-torsion buckling of structural
frames was proposed by Leung [121, 122]. A nonlinear dynamic response of a
sandwich plates was analyzed by Shariyat et al. [163–165]. They take into con-
sideration the sandwich beam with SMA hybrid composite face sheets and a
flexible core. Shariyat also analysed dynamic buckling of thin plates, paying
attention to sandwich or composite structures. He used a finite element formulation
based on a higher-order shear deformation theory of vibration and dynamic
buckling of the FGM rectangular plate investigation. Paper [163] deals with plates
with piezoelectric sensors and actuators subjected to thermo-electro-mechanical
loads. The latest papers by Shariyat [164, 165] deal with dynamic buckling of
imperfect viscoelastic sandwich plates. He analyses the nonlinear dynamic
thermo-mechanical buckling and the postbuckling problem taking into consider-
ation imperfect viscoelastic composite laminated/sandwich plates.

Currently two centres (i.e., the Lodz University of Technology and the Lublin
University of Technology) are involved in the dynamic buckling problem of thin-
walled structures with flat walls – with the plate model of beam-columns. Among
the papers which have not been mentioned yet but have been published in the latest
five years, there are publications by Teter [179, 180, 184], Kolakowski [86, 87],
Kotelko and Mania [95] and Jankowski [71].

Kolakowski and Teter [86, 179, 180, 184] have investigated the interactive
static and dynamic buckling of thin-walled columns with stiffeners subjected to
axial compression. They have checked different dynamic buckling criteria, among
them one proposed by Teter [179], which is based on phase-plane portraits.

Kotelko and Mania [95] have focused their attention on top hat section and plain
channel section columns subjected to uniaxial uniform compression. They have
made numerical and experimental investigations of an influence of loading velocity
on the structural behaviour of TWCF members. The analysis has been performed
using the FEM and the analytical solution based on the plastic yield-line analysis.

Jankowski [71] has used the finite element method software to analyse the
dynamic buckling problem of thin-walled girders subjected to pulse loading. He
has considered short columns (girders) with open (channel) and closed (rectan-
gular and trapezoidal) cross-sections.
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Chapter 2
Theory of Thin Plates for Laminates

Thin isotropic, orthotropic or laminate plates with constant or widthwise variable
material properties are considered in this monograph. Thin-walled beam-columns
or girders composed of the above-mentioned plates are also analysed. In order to
take into account all buckling modes (global, local and their interaction), the plate
two-dimensional theory has been adopted to model the structures under analysis.

2.1 Basic Assumptions

Basic assumptions for thin plates were given by Kirchhoff for the linear classical
thin plate theory (CPT) and by von Kármán and Marquerre for the nonlinear CPT.
They made their assumptions for isotropic materials. Numerous authors have
extended those assumptions for orthotropic or even for composite multilayer thin
plates [1, 5]. The assumptions are as follows:

• the plate is homogeneous (for example, orthotropic homogenisation is made for
a fibre composite—resin matrix and fibre-reinforcement);

• the plate is thin—other dimensions (length and width) are at least 10 times
higher than the plate thickness;

• the material of the plate is deformable and it is subjected to Hooke’s law;
• the plane stress state is considered for the plate—the stress acting in the plate

plane dominates the plate behaviour, stresses acting in the direction normal to
the plate plane are assumed to be zero;

• all strains (normal and shear) in the plate plane are low compared to unity and
they are linear;

• the strains normal to the plate mid-surface are neglected (the plate thickness
does not change after deformation)—this assumption is made according to
Kirchhoff-Love;

T. Kubiak, Static and Dynamic Buckling of Thin-Walled Plate Structures,
DOI: 10.1007/978-3-319-00654-3_2,
� Springer International Publishing Switzerland 2013
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• the straight lines normal to the mid-surface of the plate remain straight and
normal to the mid-surface after deformation;

• there are no interactions in the normal direction between layers parallel to the
middle surface;

• deflections of the plate can be considered in terms of nonlinear geometrical
relations.

Additionally, it is assumed that the principal axes of orthotropy do not need to
be parallel to the edges of analysed structures (a plate, a beam, column, a beam-
column or a girder).

2.2 Geometrical Equations for Thin Plates

A two dimensional model of the plate has been assumed for thin plates and thin-
walled beam-columns or girders. For a simpler description, a single plate
(Fig. 2.1a) or each i-th strip (Fig. 2.1b) of the plate (or a wall of the girder) or each
i-th wall of the girder (Fig. 2.1c) is referred to as a plate [3, 4].

To describe the middle surface strains for each plate, a complete strain tensor,
i.e., with all nonlinear terms, has been assumed [1, 2]:

Fig. 2.1 2D plate model for plates and girders with the assumed coordinate system
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or in a shorter form:
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ð2:2Þ

where: ui, vi, wi are displacements parallel to the respective axes xi, yi, zi of the
local Cartesian system of co-ordinates, whose plane xiyi coincides with the middle
surface of the i-th plate before its buckling (Fig. 2.1).

In the majority of publications devoted to the structure stability, the
termsðu2

i;x þ v2
i;xÞ, ðu2

i;y þ v2
i;yÞ and ðui;xui;y þ vi;xvi;yÞ, i.e., the strain tensor compo-

nents in (2.2), in general are neglected for eix, eiy, cixy, respectively.
The changes in the bending and twisting curvatures of the middle surface are

assumed according to [6, 7] as follows:
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The geometrical relationships given by Eqs. (2.2) and (2.3) allow one to con-
sider both out-of-plane and in-plane bending of the plate.

For the laminated plate (Fig. 2.2), where there is a p number of plies, the strains
of the k-th ply can be related to the strains and the curvatures of the middle surface
of the laminate at z = 0 in the form [1]:
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:
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jix
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where zk-1 B z B zk (Fig. 2.2) and for k = p = 1, z0 = –h/2, z1 = h/2.
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2.3 Constitutive Equations for Laminates

Let us consider one rectangular ply of the laminate with principal axes of ortho-
tropy 1 and 2 parallel to ply edges (Fig. 2.3).

Similarly as in the previous paragraph, let us consider an i-th plate or strip of
the structure under analysis. The stress-strain relationship for such a plate is the
same as for an orthotropic plate and can be written in the following form [1]:

Fig. 2.2 Assumed coordinate system for the layered plate

Fig. 2.3 Principal axes of orthotropy for lamina
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ri1 ¼
Ei1

1� mi12mi21
ðei1 þ mi21ei2Þ;

ri2 ¼
Ei2

1� mi12mi21
ðmi12ei1 þ ei2Þ;

si12 ¼Gi12ci12 ¼ 2Gi12ei12;

ð2:5Þ

where Ei1, Ei2 is the Young’s modulus in longitudinal 1 and transverse 2 direction,
correspondingly; mi12 is the Poisson’s ratio for which strains are in longitudinal
direction 1 and stress in transverse direction 2, Gi12 is the shear modulus (Kir-
chhoff’s modulus) in plane 12.

In further equations in this section, the subscript i denoting an i-th plate or strip
is omitted because all the equations presented correspond to one plate or strip only.

Equations (2.5) written in a matrix form are as follows:
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0 0 Q66
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or in a more convenient form:

rf g ¼ Q½ � ef g; ð2:7Þ

where:

Q11 ¼
E1

1� m12m21
;

Q12 ¼Q21 ¼ m21
E1

1� m12m21
¼ m12

E2

1� m12m21
;

Q22 ¼
E2

1� m12m21
;

Q66 ¼G12:

ð2:8Þ

The Young’s modulus and Poisson’s ratios occurring in (2.5) and (2.8)
according to the Betty-Maxwell theorem or according to the symmetry condition
of the stress tensor (Q12 = Q21) should fulfil the following relation:

E1m21 ¼ E2m12: ð2:9Þ

Fibres in individual plies of laminates are arranged at different angles to the
plate edges. It means that the principal axes of orthotropy are rotated at an angle h
in relation to the coordinate system adopted for the entire plate (Fig. 2.4).

For the plate presented in Fig. 2.4, stress-strain relationship (2.5) should be
transformed from the local 1-2 coordinate system to the global xy one. The con-
stitutive equations in the local coordinate system are given by (2.6), and in the
global coordinates, they can be written as follows:

2.3 Constitutive Equations for Laminates 31



rx

ry

sxy

8<
:

9=
; ¼

Q11 Q12 Q16

Q21 Q22 Q26

Q61 Q62 Q66

2
4

3
5 ex

ey

cxy

8<
:

9=
;; ð2:10Þ

or shorter:

rf g ¼ Q
� �

ef g; ð2:11Þ

where the elements of the elasticity matrix ½Q�are expressed by material properties
(E1, E2 m12 and G12) and the angle of the declination h between the global and local
coordinate systems. The relation between the elasticity matrix in local [Q] and
global ½Q� coordinate systems can be derived taking into account the relation
between stresses in both coordinate systems and strains in both the systems. The
stress transformation equations are as follows:

r1 ¼ rx cos2 hþ ry sin2 hþ 2sx cos h sin h;

r2 ¼ rx sin2 hþ ry cos2 h� 2sx cos h sin h;

s12 ¼ �rx cos h sin hþ ry cos h sin hþ sxðcos2 h� sin2 hÞ;
ð2:12Þ

or in the matrix form:
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or shorter:

rf g ¼ T½ � rf g; ð2:14Þ

where: rf g; rf g are vectors of stresses in the local and global coordinate systems,
correspondingly, c = cosh, s = sinh and [T] is the transformation matrix. To find
the stress in the global coordinate system having the stress in the coordinate system
corresponding to the principle axes of orthotropy, the following relation should be
used:

rf g ¼ T½ ��1 rf g; ð2:15Þ

Fig. 2.4 Fibre orientation in
the composite ply
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For strains, the transformation equations can be written as follows:

e1 ¼ ex cos2 hþ ey sin2 hþ 2exy cos h sin h;
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e12 ¼ �
c12

2
¼ �ex cos h sin hþ ey cos h sin hþ exyðcos2 h� sin2 hÞ;

ð2:16Þ

or in the matrix form:
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or
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From the theory of elasticity, it is well known that strain and stress transfor-
mations are made in the same way—the transformation matrix [T] is the same (see
(2.13) and (2.17)). It should be noted that in (2.16)–(2.18), the shear strains e12, exy

in the strain vectors appear instead of the shear angles c12, cxy, which are used in
constitutive equations (2.6) and (2.10). The relation between strain vectors
including the shear strain or the shear angle can be written as follows:
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Now, using (2.18) and (2.19), the strain transformation can be written as
follows:

feg ¼ ½R�
e1
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e12
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9=
; ¼ ½R�½T �
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ey
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:

9=
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However, [R][T][R]-1 can be shown to be [T]-T, then (2.20) has the form:

feg ¼ ½T ��Tfeg: ð2:21Þ

Substituting the constitutive equations in local coordinate system (2.7) into
stress transformation equations (2.15), the following is obtained:
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rf g ¼ T½ ��1½Q�feg: ð2:22Þ

After substituting the strain transformation, i.e., (2.21) into (2.22), we obtain the
following relation:

rf g ¼ T½ ��1½Q�½T ��Tfeg; ð2:23Þ

which is a constitutive equation in the global coordinate system. Comparing (2.23)
and (2.11), one obtains the elasticity matrix transformation:

½Q� ¼ T½ ��1½Q�½T ��T ; ð2:24Þ

or in the full form:
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Taking into account (2.25), all elements of the elasticity matrix ½�Q� in the global
coordinate system can be calculated and they are as follows:

Q11 ¼ Q11c4 þ 2ðQ12 þ 2Q66Þc2s2 þ Q22s4;

Q12 ¼ Q21 ¼ ðQ11 þ Q22 � 4Q66Þc2s2 þ Q12ðc4 þ s4Þ;
Q22 ¼ Q11s4 þ 2ðQ12 þ 2Q66Þc2s2 þ Q22c4;

Q16 ¼ Q61 ¼ ðQ11 � Q12 � 2Q66Þc3sþ ðQ12 � Q22 þ 2Q66Þcs3;

Q26 ¼ Q62 ¼ ðQ11 � Q12 � 2Q66Þcs3 þ ðQ12 � Q22 þ 2Q66Þc3s;

Q66 ¼ ðQ11 þ Q22 � 2Q12 � 2Q66Þc2s2 þ Q66ðc4 þ s4Þ:

ð2:26Þ

Summing the above, the constitutive equations can be rewritten as follows:

• for the k-th ply of laminates:
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It should be noted that for each ply, the elasticity matrix ½Q�k can be different,
then the stress can vary through the thickness of the laminate, not necessarily
linearly, as it is in the case of strain (if all plies are in the elastic range).
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• for the orthotropic plate with the principal axes of orthotropy parallel to the plate
(strip) edges:
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• for the isotropic plate (wall of beam-columns):
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2.4 Generalized Sectional Forces

By generalized sectional forces are meant here sectional forces and moments
(Fig. 2.5) dependent on the stress in the section under consideration.

Fig. 2.5 Sectional forces and strains and a stress distribution in laminates
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In the case of an isotropic plate or an orthotropic plate with the principal axes of
orthotropy parallel to plate edges, the resultant moments and forces can be cal-
culated as follows:
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where Nxy = Nyx and Mxy = Myx.
Substituting the stress-strain relations from the previous sections (Sect. 2.3), the

sectional moments and forces:

• for the i-th isotropic strip or wall of the beam-column are expressed by:
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where: D ¼ Eh3

12 1�m2ð Þ
• for the i-th orthotropic strip or wall, they are:
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where: Dx ¼ Exh3

12 1�mxymyxð Þ ; Dy ¼ Eyh3

12 1�mxymyxð Þ ; Dxy ¼ Gxyh3

6 :

For laminates which are composed of many plies with different orientation and/
or different material properties, stress tensors for each layer can be different. Due
to the above-mentioned differences, the resultant moments and forces acting on the
laminate should be calculated as a sum of integrals of the stress for all laminate
plies, taken in the following manner:
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In the above equations, the stiffness matrices ½Q�k are outside the integral over
each layer because their elements are constant across the thickness of every
particular layer.

As we know, all strains e and all curvatures j are not functions of z, but they
refer to the middle surface, so they can be drawn outside the summation signs.
Thus, (2.33) and (2.34) can be written as:
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>>>>>>:

9>>>>>>=
>>>>>>;
; ð2:35Þ

or in a more convenient form:

fNg
fMg

� 	
¼ ½A� ½B�
½B� ½D�


 �
femg
fjg

� 	
; ð2:36Þ

where:

Apq ¼
Xn

k¼1

Qpq

� �
k

zk � zk�1ð Þ;

Bpq ¼
1
2

Xn

k¼1

Qpq

� �
k

z2
k � z2

k�1

� �
;

Dpq ¼
1
3

Xn

k¼1

Qpq

� �
k

z3
k � z3

k�1

� �
;

ð2:37Þ
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and

Apq ¼ Aqp; Bpq ¼ Bqp; Dpq ¼ Dqp: ð2:38Þ

In (2.36), the sub-matrix [A] is an extensional stiffness matrix, [D] is a bending
stiffness matrix, and [B] is a bending-extension coupling the stiffness matrix. If all
elements of the sub-matrix [B] are not equal to zero, then, for example, the
deformation of the laminate subjected to tension load is not only extension but also
bending and/or twisting (Fig. 2.6a). Another example for non-zero sub-matrix [B]
elements is such that during bending the laminate is bent and also suffers from
extension of the middle surface (Fig. 2.6b).

The laminates can represent a few special cases of layers alignment and these
are:

• symmetrical structure—the laminate consists of an even number of layers
arranged symmetrically about the middle surface. Thus, the following stiffness
matrix elements are equal to zero:

Bpq ¼ A16 ¼ A61 ¼ A26 ¼ A62 ¼ D16 ¼ D61 ¼ D26 ¼ D62 ¼ 0; ð2:39Þ

• regular symmetric cross-ply laminate—called a quasi-orthotropic material—the
laminate consists of an odd number of layers arranged symmetrically with
respect to the middle surface and the lamina pairs are oriented in such a way that
the principal material direction corresponds to plate edges (plies are oriented at
0 or 90 degrees to the longitudinal direction of the considered plate). For such a
laminate, the following elements of the stiffness matrix are equal to zero:

Bpq ¼ A16 ¼ A61 ¼ A26 ¼ A62 ¼ D16 ¼ D61 ¼ D26 ¼ D62 ¼ 0; ð2:40Þ

Fig. 2.6 Possible deflection of non-quasi-isotropic laminates
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• regular symmetric angle-ply laminate—the laminate consists of an odd number
of plies with equal thickness and principal material properties of each layers are
arranged with opposite signs of the angle of orientation (for example, [+ h/-h/
+ h]). In this case, the following elements of the stiffness matrix diminish:

Bpq ¼ 0; ð2:41Þ

• antisymmetric cross-ply laminate—the laminate consists of an even number of
layers of the same thickness, laid on each other with the principal axes of
orthotropy alternating at 0 and 90 degrees to the laminate axes. The known
information about elements of the stiffness matrix is as follows:

A16 ¼ A61 ¼ A26 ¼ A62 ¼ 0;

D16 ¼ D61 ¼ D26 ¼ D62 ¼ 0;

B12 ¼ B21 ¼ B16 ¼ B61 ¼ B26 ¼ B62 ¼ B66 ¼ 0;

B11 ¼ �B22 6¼ 0;

ð2:42Þ

• antisymmetric angle-ply laminate—the laminate consists of an even number of
layers of the same thickness and its plies are arranged in pairs at an angle +h and
-h, respectively. The elements of the stiffness matrix with the zero value are as
follows:

A16 ¼ A61 ¼ A26 ¼ A62 ¼ 0;

D16 ¼ D61 ¼ D26 ¼ D62 ¼ 0;

B11 ¼ B12 ¼ B21 ¼ B22 ¼ B66 ¼ 0:

ð2:43Þ

The examples taken for calculation and presented in this study are obtained
only for isotropic structures, orthotropic structures with the principal axes of or-
thotropy parallel to edges of structures and laminates with a symmetrical
arrangement of the layers. For all above-mentioned cases, the expression
describing sectional moments and forces can be written as:
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ð2:44Þ

where all Apq and Dpq should fulfil (2.38) and for:

• symmetric laminates, are described by (2.37),
• orthotropic plates (or strips), they are:
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A11 ¼
Exh

1� mxymyx
; D11 ¼

Exh3

12 1� mxymyx

� � ;
A12 ¼ A21 ¼

myxExh

1� mxymyx
¼ mxyEyh

1� mxymyx
; D12 ¼ D21 ¼

myxExh3

12 1� mxymyx

� � ¼ mxyEyh3

12 1� mxymyx

� � ;
A22 ¼

Eyh

1� mxymyx
; D22 ¼

Eyh3

12 1� mxymyx

� � ;
A66 ¼ Gxyh; D66 ¼

Gxyh3

6
:

ð2:45Þ

• isotropic plates, they are as follows:

A11 ¼ A22 ¼
Eh

1� m2
; D11 ¼ D22 ¼

Eh3

12 1� m2ð Þ ;

A12 ¼ A21 ¼
mEh

1� m2
; D12 ¼ D21 ¼

mEh3

12 1� m2ð Þ ;

A66 ¼ Gh ¼ Eh

2 1þ mð Þ ; D66 ¼
Gh3

6
¼ Eh3

12 1þ mð Þ :

ð2:46Þ

2.5 Dynamic Equations of Stability for Thin Orthotropic
Plates

Differential equations of motion of the plate have been derived on the basis of the
Hamilton’s principle. It states that the dynamics of a physical system is determined
by a variation problem for the functional based on a single function, the
Lagrangian, which contains all physical information concerning the system and the
forces acting on it. In the dynamic buckling problem, the motion should be
understood as the time dependent deflection.

The Hamilton’s principle for conservative systems states that the true evolution
(compatible with constrains) of the system between two specific states in a specific
time range (t0, t1) is a stationary point (a point where the variation is zero) of the
action functional W. The action functional W is described by the following
equation:

W ¼
Zt1

t0

Kdt ¼
Zt1

t0

ðK �PÞdt; ð2:47Þ

where K is the Lagrangian function for the system, K is a kinetic energy of the
system, and P is a total potential energy of the system.
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Taking the action functional W in form (2.47), the Hamilton’s principle can be
written as:

dW ¼ d
Zt1

t0

Kdt ¼ d
Zt1

t0

ðK �PÞdt ¼ 0: ð2:48Þ

The total potential energy variation dP for the i-th thin plate (or strip) can be
written in the form:

dP ¼ dQ� dW ; ð2:49Þ

where dQ is a variation of the internal elastic strain energy:

dQ ¼
Z
X

ðrxdex þ rydey þ sxydcxyÞdX; ð2:50Þ

where X is a volume of the plate and S is its area, thus the volume can be expressed
as X = l�b�h or X = S�h.

The variation of the internal elastic strain energy for the i-th plate or strip could
be expressed by strain and sectional forces and moments in a following way:

dQ ¼dQm þ dQb

¼
Z
S

ðNxdex þ Nydey þ NxydcxyÞdS�
Z
S

ðMxdw;xx þMydw;yy þ 2Mxydw;xyÞdS:

ð2:51Þ

The work W of external forces done on the i-th plate can be expressed as:

W ¼
Zb

0

h½p0ðyÞuþ s0
xyðyÞv�dyþ

Z‘

o

h½p0ðxÞvþ s0
xyðxÞu�dxþ

Z
qwdS; ð2:52Þ

if the load perpendicular to the plane of the plate (strip) is neglected, (2.52) can be
written as:

W ¼
Zb

0

h½p0ðyÞuþ s0
xyðyÞv�dyþ

Z‘

o

h½p0ðxÞvþ s0
xyðxÞu�dx; ð2:53Þ

where: p0 xð Þ; p0 yð Þ; s0
xy xð Þ; s0

xy yð Þ are pre-buckling loads applied to the middle
surface of the plate (wall or strip) under consideration.

For thin plates, it is assumed that the displacements u and v do not depend on
the rotations w,x and w,y and, therefore, do not depend on the coordinate z. This
approach results in the exclusion of the rotational inertia [7] from the equation for
kinetic energy which for the i-th thin plate (strip) can be written as:
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K ¼ 1
2
q
Z
X

ðu: Þ2 þ ðv: Þ2 þ ðw: Þ2
� 


dX; ð2:54Þ

where the dot denotes differentiation with respect to time.
The Hamilton’s principle, it is a variation of the action functional dW (2.48) for

the i-th thin plate (strip or wall) after taking into consideration from (2.49) to
(2.54) and assuming a constant density for all layers (q = qk = const), can be
written as:

dW ¼
Zt1

t0

�dK þ dQm þ dQb � dW
� �

dt ¼ 0 ð2:55Þ

where:
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þ
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Zt1

t0

dQbdt ¼�
Zt1

t0

Zb

0

Mxdwxdydtjx¼const �
Zt1

t0

Zb

0

Mx;xdwdydtjx¼const þ 2
Zt1

t0

Z
S

Mx;xxdwdSdt

�
Zt1

t0

Z l

0

Mydwydxdtjy¼const �
Zt1

t0

Z l

0

My;ydwdxdtjy¼const þ 2
Zt1

t0

Z
S

My;yydwdSdt

� 2
Zt1

t0

Mxydw
� �

;xydtj

x ¼ const
y ¼ const

� 2
Zt1

t0

Z l

0

Mxy;xdwdxdtjy¼const � 2
Zt1

t0

Zb

0

Mxy;ydwdydtjx¼const

þ 2
Zt1

t0

Z
S

Mxy;xydwdSdt: ð2:57Þ
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dKdt ¼
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Z
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qh u
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dudSdt þ

Zt1

t0

Z
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ð2:58Þ

Zt1

t0

dWdt ¼
Zt1

t0

Zb

0

hp0ðyÞdudydtjx¼const þ
Zt1

t0

Zb

0

hs0
xyðyÞdvdydtjx¼const

þ
Zt1
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o

hp0ðxÞdvdxdtjy¼const þ
Zt1
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Z‘

o

hs0
xyðxÞdudxdtjy¼const:

ð2:59Þ
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The Lagrangian function for the whole system is equal to the sum of the
Lagrangian functions of all n plates the system is composed of. To determine the
variation of action dW for the i-th plate, the following identity:

X dY ¼ dðXYÞ � YdX ð2:60Þ

is used.
In the obtained equation, the terms with the same variation have been grouped

and then each of the obtained group of terms (due to the mutual independence of
variations) has been equated to zero, giving:

• equilibrium equations:

Zt1

t0

Z
S

f½Nx;x þ Nxy;y þ ðNxu;xÞ;x þ ðNyu;yÞ;y þ ðNxyu;xÞ;y þ ðNxyu;yÞ;x� � hq u
::gdudSdt ¼ 0;

Zt1

t0

Z
S

f½Nxy;x þ Ny;y þ ðNxv;xÞ;x þ ðNyv;yÞ;y þ ðNxyv;xÞ;y þ ðNxyv;yÞ;x� � hq v
::gdvdSdt ¼ 0;

Zt1

t0

Z
S

f½Mx;xx þMy;yy þ 2Mxy;xy þ ðNxw;xÞ;x þ ðNyw;yÞ;y þ ðNxyw;xÞ;y þ ðNxyw;yÞ;x�

� hq w
::gdwdSdt ¼ 0;

ð2:61Þ

• boundary conditions for lateral edges of the plate (x = const):

Zt1

t0

Zb

0

½Nx þ Nxu;x þ Nxyu;y � hp0ðyÞ�dudydt x¼const ¼ 0j ;

Zt1

t0

Zb

0

½Nxy þ Nxv;x þ Nxyv;y � hs0
xyðyÞ�dvdydt x¼const ¼ 0j ;

Zt1

t0

Zb

0

Mxdw;xdydt x¼const ¼ 0j ;

Zt1

t0

Zb

0

ðMx;x þ 2Mxy;y þ Nxw;x þ Nxyw;yÞdwdydt x¼const ¼ 0j ;

ð2:62Þ

• boundary conditions for longitudinal edges of the plate (y = const):
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Zt1

t0

Z‘

0

½Ny þ Nyv;y þ Nxyv;x � hp0ðxÞ�dvdxdt y¼const ¼ 0
�� ;

Zt1

t0

Z‘

0

½Nxy þ Nyu;y þ Nxyu;x � hs0
xyðxÞ�dudxdt y¼const ¼ 0

�� ;

Zt1

t0

Z‘

0

Mydw;ydxdt y¼const ¼ 0
�� ;

Zt1

t0

Z‘

0

ðMy;y þ 2Mxy;x þ Nyw;y þ Nxyw;xÞdwdxdt y¼const ¼ 0
�� ;

ð2:63Þ

• boundary conditions for the plate corners (x = const and y = const):

Zt1

t0

2Mxydwdt x¼constj y¼const ¼ 0
�� ; ð2:64Þ

• initial conditions for t = const:
Z
S

hq _ududS t¼constj ¼ 0;

Z
S

hq _vdvdS t¼constj ¼ 0;

Z
S

hq _wdwdS t¼constj ¼ 0;

ð2:65Þ

which are fulfilled for the entire structure, so if one applies the restrictions at an
instant of the initial t0 and at an instant of the final t1, then the displacement
variations are zero at all points of the structure. Then, system of equations (2.65)
vanishes,

• the already used relationship between deformations and internal forces and
moments (2.31) or further, up to (2.34) for the orthotropic model of material can
be written as follows:
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Zt1

t0

Z
S

Exhex � Nx þ mxyNy

� �
dNxdSdt ¼ 0;

Zt1

t0

Z
S

Eyhey þ myxNx � Ny

� �
dNydSdt ¼ 0;

Zt1

t0

Z
S

2Ghexy � Nxy

� �
dNxydSdt ¼ 0;

ð2:66Þ

Zt1

t0

Z
S

Exh3

12
jx �Mx þ mxyMy

� �
dMxdSdt ¼ 0;

Zt1

t0

Z
S

Eyh3

12
jy þ myxMx �My

� �
dMydSdt ¼ 0;

Zt1

t0

Z
S

Gh3

6
jxy �Mxy

� �
dMxydSdt ¼ 0:

ð2:67Þ
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Chapter 3
Analytical–Numerical Method

The method proposed and explained below allows one to determine critical loads,
natural frequencies and coefficients of the equation describing the postbuckling
equilibrium path for thin orthotropic plates or girders, columns and beams com-
posed of flat orthotropic plates (walls). This method also allows one to analyse a
dynamic response of the plate structure subjected to pulse loading. Taking the
deflections as a function of time and applying the relevant dynamic buckling
criteria, it is possible to determine the dynamic critical load.

The analytical–numerical method [9–11, 13, 15, 16, 20–22, 24, 26, 27]
developed for many years in the Department of Strength of Materials has been
used to solve static and dynamic buckling problems and to analyse the post-
buckling behaviour of thin-walled composite structures. The proposed method is
based on the asymptotic Koiter [4, 5], Byskov and Hutchinson [2] theory for
conservative systems.

The way to find the postbuckling behaviour of plates, girders and beam-col-
umns made of composite materials (multilayered composites) using the asymptotic
Koiter theory was explained in [12, 17]. The semi-analytical method proposed by
Kolakowski and enabling an approximate analysis of the postbuckling behaviour
in terms of the second order nonlinear approximation regarding only a linear
analysis consists in the determination of the coefficients describing the post-
buckling equilibrium path.

This aim of this monograph is limited to present a method of solution for
structures made of iso- or orthotropic materials only.

The most important advantage of this method is that it enables one to describe a
complete range of behaviour of thin-walled structures from all global (i.e., flexural,
flexural-torsional, lateral, distortional buckling and their combinations) to the local
dynamic stability. In the solution obtained, the shear lag phenomenon, the effect of
cross-sectional distortions and also the interaction between all walls of the
structure are included.

In the previous chapter, the equations describing relations for isotropic,
orthotropic and layered composite plates have been derived. The method of

T. Kubiak, Static and Dynamic Buckling of Thin-Walled Plate Structures,
DOI: 10.1007/978-3-319-00654-3_3,
� Springer International Publishing Switzerland 2013
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solution presented here allows for finding buckling load with the corresponding
mode for all the above-mentioned types of materials.

The differential equations of equilibrium for the orthotropic plate or strip can be
derived directly from (2.61) and have the form:

Nx;x þ Nxy;y þ fðNxu;xÞ;x þ ðNyu;yÞ;y þ ðNxyu;xÞ;y þ ðNxyu;yÞ;xg � hq€u ¼ 0;

Nxy;x þ Ny;y þ fðNxv;xÞ;x þ ðNyv;yÞ;y þ ðNxyv;xÞ;y þ ðNxyv;yÞ;xg � hq€v ¼ 0;

Mx;xx þMy;yy þ 2Mxy;xy þ ðNxw;xÞ;x þ ðNyw;yÞ;y þ ðNxyw;xÞ;y þ ðNxyw;yÞ;x � hq€w ¼ 0:

ð3:1Þ

The presented above equilibrium equations, after omitting the inertia forces
hq u

::
, hq v

::
and hq w

::
, become the static equilibrium equations for thin plates

allowing for analysis of both local and global buckling modes.
As the wave propagation effects have been neglected, the boundary conditions

referring to the column simply supported at its both ends, i.e., x = 0 and x = l,
according to (2.62), are assumed to be:

1
bi

Z
Nix xi ¼ 0; yi; tð Þdyi ¼

1
bi

Z
Nix xi ¼ l; yi; tð Þdyi ¼ Nð0Þix ;

vi xi ¼ 0; yi; tð Þ ¼ vi xi ¼ l; yi; tð Þ ¼ 0;

wi xi ¼ 0; yi; tð Þ ¼ wi xi ¼ l; yi; tð Þ ¼ 0;

Mix xi ¼ 0; yi; tð Þ ¼ Miy xi ¼ l; yi; tð Þ ¼ 0:

ð3:2Þ

The condition written as the first one in (3.2) is satisfied for the prebuckling
state and the first order approximation, condition (3.2) for the deflection v is
satisfied for the first and second order approximations, whereas the other two
conditions are met for the prebuckling state as well as for the first and second order
approximation. The condition of displacement in the y direction in the prebuckling
state can be found for example in [26]. This approach allows for taking into
account the impact of the Poisson effect on the edges of column walls. The
boundary conditions described by (3.2) assume a lack of displacement in the
transverse v and normal w directions to the surface of points lying at the loaded
edges of a single plate or a wall of the column. Furthermore, it is assumed that the
moments Mix (as a vector parallel to the edge of the plate or the end edge of the
column walls) are zero.

For structures with material properties varying widthwise, the strip model
which imposes the boundary conditions modification in the second order
approximation (see Sect. 6.2) [26] has been adopted. The modification consists in
changing the first condition of (3.2) into the following form:

XJ

i¼1

1
bi

Zbi

0

Nð2Þix dyi

���
x¼0;l
¼ 0: ð3:3Þ
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The summation is performed only for the J number of the strips between which
the angle ui,i+1 (Fig. 3.1) is equal to zero.

To determine the boundary conditions on longitudinal edges of plates or free
edges of columns with open cross-sections, Eq. (2.63) have been used. Directly
from (2.65), the following initial conditions result:

ui
: ðxi; yi; t ¼ t0Þ ¼ ui

�ðxi; yiÞ and uiðxi; yi; t ¼ t0Þ ¼ uiðxi; yiÞ;
vi
: ðxi; yi; t ¼ t0Þ ¼ vi

�ðxi; yiÞ and viðxi; yi; t ¼ t0Þ ¼ viðxi; yiÞ;
wi
: ðxi; yi; t ¼ t0Þ ¼ wi

� ðxi; yiÞ and wiðxi; yi; t ¼ t0Þ ¼ wiðxi; yiÞ;

ð3:4Þ

where the following functions ui; vi; wi; eui ; evi ;fwi are given for the initial moment
t = t0.

Static and kinematic junction conditions on the longitudinal edges of adjacent
plates (Fig. 3.1), according to (2.63), can be written as:

uiþ1jyiþ1¼0¼ uijyi¼bi
;

wiþ1jyiþ1¼0¼ wijyi¼bi
� cosðui;iþ1Þ � vijyi¼bi

� sinðui;iþ1Þ;
viþ1jyiþ1¼0¼ wijyi¼bi

sinðui;iþ1Þ þ vijyi¼bi
� cosðui;iþ1Þ;

wiþ1;y

��
yiþ1¼0

¼ wi;y

��
yi¼bi

;

Mðiþ1Þy
��
yiþ1¼0

¼ Miy

��
yi¼bi

;

N�ðiþ1Þy

���
yiþ1¼0

�N�iy

���
yi¼bi

� cosðui;iþ1Þ � Q�iy

���
yi¼bi

� sinðui;iþ1Þ ¼ 0;

Q�ðiþ1Þy

���
yiþ1¼0

þN�iy

���
yi¼bi

� sinðui;iþ1Þ � Q�iy

���
yi¼bi

� cosðui;iþ1Þ ¼ 0;

N�ðiþ1Þxy

���
yiþ1¼0

¼ N�ixy

���
yi¼bi

;

ð3:5Þ

Fig. 3.1 Geometrical dimensions and local coordinate systems of adjacent plates
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where:

N�iy ¼ Niy þ Niyvi;y þ Nixyvi;x;

N�ixy ¼ Nixy þ Nixyui;x þ Niyui;y;

Miy ¼ �giDiðwi;yy þ miwi;xxÞ;
Q�iy ¼ �giDiwi;yyy � ðmigiDi þ 2D1iÞwi;xxy þ Niywi;y þ Nixywi;x:

ð3:6Þ

According to the Koiter [4], Byskov and Hutchinson [2] theory, the fields of
displacements Ui and the sectional forces Ni have been expanded into power series
with respect to the parameter nj, i.e., the linear eigenvector amplitude of buckling
(normalised with the equality condition between the maximum deflection and the
thickness of the first plate h1):

Ui ¼ kU
ð0Þ
i þ njU

ðjÞ
i þ njnkU

ðjkÞ
i þ . . .;

Ni ¼ kN
ð0Þ
i þ njN

ðjÞ
i þ njnkN

ðjkÞ
i þ . . .;

ð3:7Þ

where k is a load parameter, U
ð0Þ
i ;N

ð0Þ
i are displacement and sectional force fields

of the zero approximation (the pre-buckling state), U
ðjÞ
i ;N

ðjÞ
i are displacement and

sectional force fields of the first order approximation (the buckling state),

U
ðjkÞ
i ;N

ðjkÞ
i are second order approximation fields (the post-buckling state). The

summation rule after repeating the indices j and k (j = 1, …, s and k = 1, …, s,
where s is a number of coupled buckling modes) has been assumed.

By substituting expansions (3.7) into equations of equilibrium (3.1) with
neglected inertia terms (the static buckling problem), junction conditions (3.5) and
boundary conditions (3.2) with modification (3.3), the boundary problem of the
zero, first and second order has been obtained (see, for example: [4, 10, 21, 25, 27,
41]). The zero approximation describes the prebuckling state, whereas the first
order approximation allows for determination of critical loads and the buckling
modes corresponding to them, taking into account minimisation with respect to the
number of halfwaves m in the lengthwise direction. The second order approxi-
mation is reduced to a linear system of differential heterogeneous equations, whose
right-hand sides depend on the force field and the first order displacements only.

In the current investigations, only the first nonlinear approximation, in which
the system characteristics depends on eigenvectors only, is taken into consider-
ation. According to (3.7) and the s-th number of coupled buckling modes, the
displacement of the i-th wall (strip) has been assumed in the form:

ui ¼ kuð0Þi þ nju
ðjÞ
i þ njnkuðjkÞi þ . . .;

vi ¼ kvð0Þi þ njv
ðjÞ
i þ njnkvðjkÞi þ . . .;

wi ¼ njw
ðjÞ
i þ njnkwðjkÞi þ . . .

ð3:8Þ
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According to the explanation given by Kolakowski in [20] and the solution
presented in [10], the mixed part njnk (j = k) can be neglected. Thus, after taking
into account only the zero, first and second order approximation, (3.8) have the
form:

ui ¼ kuð0Þi þ nju
ðjÞ
i þ n2

j uðjjÞi ;

vi ¼ kvð0Þi þ njv
ðjÞ
i þ n2

j vðjjÞi ;

wi ¼ njw
ðjÞ
i þ n2

j wðjjÞi :

ð3:9Þ

In the presented analytical–numerical method, it has been decided—according
to the nonlinear von Kármán and Marquerre plate theory—to take only the fol-
lowing form of geometrical relations:

eix ¼ ui;x þ 1
2
w2

i;x þ
1
2
v2

i;x;

eiy ¼ vi;y þ 1
2
w2

i;y þ
1
2
u2

i;x;

2eixy ¼ cixy ¼ ui;y þ vi;x þ wi;xwi;y:

ð3:10Þ

The above simplification has been proven by other authors [6–10, 13–16, 21–23,
29, 30, 32, 33, 35–39] dealing with buckling and the postbuckling behaviour of
thin-walled structures subjected to compression or/and bending. Moreover, after a
wide range of numerical analyses in the first order approximation [10, 25], it has
been noticed that taking into account geometrical relations (2.2) in simplified form
(3.10) has no significant influence on the results of calculations. Differences appear
only when the global buckling loads are calculated and these differences are in the
range of 2–3 %.

The linearly distributed in-plane load (pure bending or eccentricity compres-
sion) applied to plates or girder walls has been discretized in such a way that the
plate has been divided into strips for which the shortening (load in the longitudinal
direction) has a constant value, i.e., each strip under analysis is uniformly com-
pressed (Fig. 3.2). The above explained method of load distribution is necessary in
order to apply the transition matrix method which allows for finding the deflection
function in the perpendicular direction.

In the pre-buckling state, the displacement for the zero order approximation is
assumed as:

Fig. 3.2 Linear discretization for load as displacement (pure bending) for the prebuckling state
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uð0Þi ¼
l

2
� xi

� �
Di;

vð0Þi ¼
A12i

A22i
yiDi;

wð0Þi ¼ 0;

ð3:11Þ

where Di is an actual load, which is specified as a product of the unit loading
system and the scalar load factor. The parameter A12i and A22i are defined by
material properties (2.37).

According to the assumed relation from (3.9) to (3.11) and (2.35), the defor-
mation fields for the zero, first and second order can be written as:

em
ix ¼ kuð0Þi;x þ nju

ðjÞ
i;x þ n2

j uðjjÞi;x þ
1
2

vðjÞi;x

� �2
þ 1

2
wðjÞi;x

� �2
� �

;

em
iy ¼ kvð0Þi;y þ njv

ðjÞ
i;y þ n2

j vðjjÞi;y þ
1
2

uðjÞi;y

� �2
þ 1

2
wðjÞi;y

� �2
� �

;

cm
ixy ¼ nj uðjÞi;y þ vðjÞi;x

� �
þ n2

j uðjjÞi;y þ vðjjÞi;x þ wðjÞi;xwðjÞi;y

� �
;

ð3:12Þ

and the change of bending and twisting curvatures of the middle surface are:

jix ¼� njw
ðjÞ
i;xx þ n2

j wðjjÞi;xx

� �
;

jiy ¼� njw
ðjÞ
i;yy þ n2

j wðjjÞi;yy

� �
;

jixy ¼� njw
ðjÞ
i;xy þ n2

j wðjjÞi;xy

� �
:

ð3:13Þ

After assuming relations (3.12), (3.13) and (2.35), the generalized (forces and
moments) sectional force fields for the zero, first and second order have the form:

Nix ¼ A11i k uð0Þi;x þ
A12i

A11i
vð0Þi;y

� �
þ nj uðjÞi;x þ

A12i

A11i
vðjÞi;y

� �	

þn2
j uðjjÞi;x þ

1
2

vðjÞi;x

� �2
þ 1

2
wðjÞi;x

� �2
þA12i

A11i
vðjjÞi;y þ

1
2

uðjÞi;y

� �2
þ 1

2
wðjÞi;y

� �2
� �� �


;

Niy ¼ A22i nj vðjÞi;y þ
A12i

A22i
uðjÞi;x

� �	

þn2
j vðjjÞi;y þ

1
2

uðjÞi;y

� �2
þ 1

2
wðjÞi;y

� �2
þA12i

A22i
uðjjÞi;x þ

1
2

vðjÞi;x

� �2
þ 1

2
wðjÞi;x

� �2
� �� �


;

Nixy ¼ A66i nj uðjÞi;y þ vðjÞi;x

� �
þ

h
n2

j uðjjÞi;y þ vðjjÞi;x þ wðjÞi;xwðjÞi;y

� �i
;

ð3:14Þ
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Mix ¼ �D11i nj wðjÞi;xx þ
D12i

D11i
wðjÞi;yy

� �
þ n2

j
wðjjÞi;xx þ

D12i

D11i
wðjjÞi;yy

� �� �
;

Miy ¼ �D22i nj wðjÞi;yy þ
D12i

D22i
wðjÞi;xx

� �
þ n2

j
wðjjÞi;yy þ

D12i

D22i
wðjjÞi;xx

� �� �
;

Mixy ¼ �D66i njw
ðjÞ
i;xy þ n2

j
wðjjÞi;xy

� �
:

ð3:15Þ

3.1 Static Buckling and Postbuckling Behaviour

The equilibrium equations for the i-th thin composite plate or strip subjected to
static load for solving the buckling and postbuckling behaviour according to (3.1)
have the form:

Nx;x þ Nxy;y þ ðNyu;yÞ;y ¼ 0;

Nxy;x þ Ny;y þ ðNxv;xÞ;x ¼ 0;

Mx;xx þMy;yy þ 2Mxy;xy þ ðNxw;xÞ;x þ ðNyw;yÞ;y þ ðNxyw;xÞ;y þ ðNxyw;yÞ;x ¼ 0:

ð3:16Þ

In all equations in this section, the index i denoting the i-th plate or strip will be
omitted.

Taking into account relations (2.44) and (3.12) to (3.15), equilibrium equations
(3.16) can be transformed into the equilibrium equations expressed in terms of
displacements. The displacement equilibrium equations for the first order can be
written as follows:

uðjÞ;xx þ
A12

A11
vðjÞ;xy þ

A66

A11
uðjÞ;yy þ vðjÞ;xy

� �
¼ 0;

vðjÞ;yy þ
A12

A22
uðjÞ;xy þ

A66

A22
uðjÞ;xy þ vðjÞ;xx

� �
þ A11

A22
k uð0Þ;x þ

A12

A11
vð0Þ;y

� �
vðjÞ;xx ¼ 0;

k uð0Þ;x þ
A12

A11
vð0Þ;y

� �
wðjÞ;xx

� D11

A11
wðjÞ;xxxx þ

D12

D11
wðjÞ;xxyy

� �
þ D22

A11
wðjÞ;yyyy þ

D12

D22
wðjÞ;xxyy

� �
þ 4

D66

A11
wðjÞ;xxyy

��
¼ 0:

ð3:17Þ

In order to simplify the solution, the dimensionless coordinates dependent on
the width of the i-th plate are introduced in the following form:

f ¼ x

b
; v ¼ y

b
: ð3:18Þ
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Numerical aspects of solution convergences for the problem being solved for
the first order fields have resulted in an introduction of orthogonal functions in the
sense of boundary conditions for two longitudinal edges (2.63). These new
orthogonal functions are as follows:

�a ¼ vðjÞ;v þ
A12

A22
uðjÞ;f ;

�b ¼ uðjÞ;v þ vðjÞ;f ;

�c ¼ uðjÞ; �d ¼ vðjÞ;

�e ¼ wðjÞ; �f ¼ wðjÞ;v

�g ¼ wðjÞ;vv þ
D12

D22
wðjÞ;ff;

�h ¼ D22

D66
wðjÞ;vvv þ

D12

D22
wðjÞ;ffv

� �
þ 4wðjÞ;ffv;

ð3:19Þ

where relations (3.18) have been implemented.
The functions a, b, g, h correspond to generalized sectional forces (3.14) and

(3.15) for the first order approximation.
Taking into account introduced orthogonal functions (3.19) in (3.17), the fol-

lowing homogeneous system of differential equations is obtained:

�a;v ¼ � A66
A22

�b;f þ kD A11
A22

1� A12
A11

A12
A22

� �
�d;ff;

�b;v ¼ � A11
A66

�c;ff þ A12
A11

�d;fv
� �

;

�c;v ¼ �b� �d;f;
�d;v ¼ �a� A12

A22
�c;f;

�e;v ¼ �f ;
�f;v ¼ �g� D12

D22
�e;ff;

�g;v ¼ D66
D22

�h� 4�f;ff
� �

;

�h;v ¼ A11
D66
�kD 1� A12

A11

A12
A22

� �
�e;ff � D11

A11
�e;ffff � D12

A11
�f;ffv

h i
;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð3:20Þ

The solution to differential equations (3.20) is predicted in the form:

a ¼ A vð Þ sin
mpb

l
f; b ¼ B vð Þ cos

mpb

l
f;

c ¼ C vð Þ cos
mpb

l
f; d ¼ D vð Þ sin

mpb

l
f;

e ¼ E vð Þ sin
mpb

l
f; f ¼ F vð Þ sin

mpb

l
f;

g ¼ G vð Þ sin
mpb

l
f; h ¼ H vð Þ sin

mpb

l
f;

ð3:21Þ

where A;B;C;D;E;F;G;H are initially unknown functions (with the m-harmonics)
defining deflection in the transverse direction. These functions are numerically
designated using the modified numerical transition matrix method.

Substituting the assumed solutions (3.21) into (3.20), the following system of
ordinary differential equations has been obtained:
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A;v ¼
A66

A22

mpb

l

� �
B� kD

A11

A22
1� A12

A11

A12

A22

� �
m

l

� �2
D;

B;v ¼
A11

A66

mpb

l

� �2

C � A12

A11

mpb

l

� �
D;v

" #
;

C;v ¼ B� mpb

l

� �
D;

D;v ¼ Aþ A12

A22

mpb

l

� �
C;

E;v ¼ F;

F;v ¼ Gþ D12

D22

mpb

l

� �2

E;

G;v ¼
D66

D22
H þ 4

mpb

l

� �2

F

" #
;

H;v ¼
A11

D66

mpb

l

� �2

kD 1� A12

A11

A12

A22

� �
� D11

A11

mpb

l

� �2
" #

E þ D12

A11

mpb

l

� �2

F;v:

ð3:22Þ

Equilibrium equations, expressed in terms of displacements, for the second
order approximation have been obtained after substituting (2.44) and (3.12) to
(3.15) into (3.16) and they can be written in the following form:

uðjjÞ;xx þ
A12

A11
vðjjÞ;xy þ

A66

A11
uðjjÞ;yy þ vðjjÞ;xy

� �
¼ �R1;

vðjjÞ;yy þ
A12

A22
uðjjÞ;xy þ

A66

A22
uðjjÞ;xy þ vðjjÞ;xx

� �
þ A11

A22
k uð0Þ;x þ

A12

A11
vð0Þ;y

� �
vðjjÞ;xx ¼ �R2;

k uð0Þ;x þ
A12

A11
vð0Þ;y

� �
wðjjÞ;xxþ

� D11

A11
wðjjÞ;xxxx þ

D12

D11
wðjjÞ;xxyy

� �
þ D22

A11
wðjjÞ;yyyy þ

D12

D22
wðjjÞ;xxyy

� �
þ 4

D66

A11
wðjjÞ;xxyy

��
¼ �R3;

ð3:23Þ
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where the right-hand sides of (3.23) (called ‘‘loading’’ terms by some authors
[10]), denoted as R1, R2 and R3, are functions of the first order displacement. They
are as follows:

R1 ¼ vðjÞ;x vðjÞ;xx þ wðjÞ;x wðjÞ;xx þ
A12

A11
uðjÞ;y uðjÞ;xy þ wðjÞ;y wðjÞ;xy

� �
þ A66

A11
wðjÞ;x wðjÞ;y

� �
;y

þ A22

A11
vðjÞ;y þ

A12

A22
uðjÞ;x

� �
uðjÞ;y

� �
;y

;

R2 ¼ uðjÞ;y uðjÞ;yy þ wðjÞ;y wðjÞ;yy þ
A12

A22
vðjÞ;x vðjÞ;xy þ wðjÞ;x wðjÞ;xy

� �
þ A66

A22
wðjÞ;x wðjÞ;y

� �
;x

þ A11

A22
uðjÞ;x þ

A12

A11
vðjÞ;y

� �
vðjÞ;x

� �
;x

;

R3 ¼ A11 uðjÞ;x þ
A12

A11
vðjÞ;y

� �
wðjjÞ;xx þ A22 vðjÞ;y þ

A12

A22
uðjÞ;x

� �
wðjjÞ;yy

þ 2A66 uðjÞ;y þ vðjÞ;x

� �
wðjjÞ;xy � A11k uð0Þ;x þ

A12

A11
vð0Þ;y

� �
vðjÞ;xxwðjÞ;y :

ð3:24Þ

New orthogonal functions for the second order fields are also introduced in the
same way as for the first order and they are:

â ¼ vðjjÞ;v þ
A12

A22
uðjjÞ;f ; b̂ ¼ uðjjÞ;v þ vðjjÞ;f ;

ĉ ¼ uðjjÞ; d̂ ¼ vðjjÞ;

ê ¼ wðjjÞ; f̂ ¼ wðjjÞ;v ;

ĝ ¼ wðjjÞ;vv þ
D12

D22
wðjjÞ;ff ; ĥ ¼ D22

D66
wðjjÞ;vvv þ

D12

D22
wðjjÞ;ffv

� �
þ 4wðjjÞ;ffv:

ð3:25Þ

Substituting the functions of the first (3.19) and second (3.25) order approxi-
mations to equilibrium equations (3.23), the following linear system of differential
equations for the second order approximation is obtained:
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â;v ¼ �
A66

A22
b̂;f þ kD

A11

A22
1� A12

A11

A12

A22

� �
d̂;ff � �c;v�c;vv � �f�f;v �

A66

A22
�e;ff�f þ �e;f�f;f
� �

�A12

A22
2�d;f�d;fv þ �e;f�f;f þ �d;v�d;ff
� �

� A11

A22
�c;ff�d;f þ �c;f�d;ff
� �

;

b̂;v ¼ �
A11

A66
ĉ;ff þ

A12

A11
d̂;fv

� �
� �d;f�d;ff � �e;f�e;ff �

A12

A11
�c;fv�c;v �

A12 þ A66

A11

�f�f;f

��e;f�f;v �
A22

A11
�a�c;v
� �

;v;

ĉ;v ¼ b̂� d̂;f;
d̂;v ¼ â� A12

A22
ĉ;f;

ê;v ¼ f̂ ;
f̂;v ¼ ĝ� D12

D22
ê;ff;

ĝ;v ¼ D66
D22

ĥ� 4f̂;ff
� �

;

ĥ;v ¼
A11

D66
�kD 1� A12

A11

A12

A22

� �
ê;ff �

D11

A11
ê;ffff �

D12

A11
f̂;ffv

� �

� A11 þ A12
A12

A22

� �
�c;f�e;ff � A12�a�e;ff � A22�a�f;v � 2A66

�b�f;f

� A11 1� A12

A11

A12

A22

� �
kD�d;ff�f :

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð3:26Þ

The solution to (3.26) for the second order approximations has been adopted in
the following form:

â ¼
X

n

Ân vð Þ sin
npb

l
fþ A�; b̂ ¼

X
n

B̂n vð Þ cos
npb

l
f;

ĉ ¼
X

n

Ĉn vð Þ cos
npb

l
fþ C�

l

2
� fb

� �
; d̂ ¼

X
n

D̂n vð Þ sin
npb

l
f;

ê ¼
X

n

Ên vð Þ sin
npb

l
f; f̂ ¼

X
n

F̂n vð Þ sin
npb

l
f;

ĝ ¼
X

n

Ĝn vð Þ sin
npb

l
f; ĥ ¼

X
n

Ĥn vð Þ sin
npb

l
f;

ð3:27Þ

where: Ân; B̂n; Ĉn; D̂n; Ên; F̂n; Ĝn; Ĥn are unknown functions, which are determined
during the numerical calculations in the second order approximation using the
transition matrix method; A�;C�—constant values designated for boundary con-
ditions for second order approximation (3.2) with modification (3.3) [26].

The simplicity of orthogonality conditions is one of the main reasons to select
the way of solution to the second order approximation by employing the form of
series. The orthogonality condition of the fields of the first and second order shows
a change in the amplitude of only one harmonic for the second order.
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After substituting the expected solution (3.27) to (3.26) and taking into account:

sin 2
mpb

l
f ¼

X
an cos

npb

l
f;

1 ¼
X

bn sin
npb

l
f;

cos 2
mpb

l
f ¼

X
dn sin

npb

l
f;

ð3:28Þ

where:

an ¼
2
p

1
2mþ n

þ 1
2m� n

� �
;

bn ¼
4
pn
;

dn ¼
2
p

1
nþ 2m

þ 1
n� 2m

� �
;

n ¼ 1; 3; 5; 7; . . . ; ð3:29Þ

the following system of ordinary differential equations is obtained:

Ân;v ¼
A66

A22

mpb

l

� �
B̂n � kD

A11

A22
1� A12

A11

A12

A22

� �
m

l

� �2
D̂n

� 1
2b

bnf g �C;v �C;vv þ �F�F;v þ 2
A66

A22
þ A12

A22

� �
mpb

l

� �2
�E�F þ 3

A12

A22

mpb

l

� �2
�D�D;v

" #

� 1
2b

dnf g �C;v �C;vv � �F�F;v þ 2
A66

A22
þ A12

A22

� �
mpb

l

� �2
�E�F þ 3

A12

A22

mpb

l

� �2
�D�D;v

"

� A11

A22

mpb

l

� �3
�C �D

#
;

B̂n;v ¼ A11
A66

mpb
l

� �2
Ĉn � A12

A11

mpb
l

� �
D̂n;v

h i
þ

þ 1
2b anf g mpb

l

� �3 �D2 þ m
l

� �3 �E2 þ A12
A11

mpb
l

� �
�C;v
� �2� mpb

l

� �
�E�F

h
� A12þA66

A11

mpb
l

� �
�F2 � A22

A11
�A�C;v
� �

;v

i
;

Ĉn;v ¼ B̂n � mpb
l

� �
D̂n;

ð3:30Þ
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D̂n;v ¼Ân þ
A12

A22

mpb

l

� �
Ĉn;

Ên;v ¼F̂n;

F̂n;v ¼Ĝn þ
D12

D22

mpb

l

� �2

Ên;

Ĝn;v ¼
D66

D22
Ĥn þ 4

mpb

l

� �2

F̂n

" #
;

Ĥn;v ¼
A11

D66

m

l

� �2
kD 1� A12

A11

A12

A22

� �
� D11

A11

mpb

l

� �2
" #

Ên þ
D12

A11

m

l

� �2
F̂n;v

þ 1
2b

bnf g A11 þ A12
A12

A22

� �
mpb

l

� �3
�C�E � A12

mpb

l

� �2
�A�E þ A22

�A�F;v

"

þ2A66
mpb

l

� �
�B�F � A11 1� A12

A11

A12

A22

� �
kD

mpb

l

� �2
�D�F

#

� 1
2b

dnf g A11 þ A12
A12

A22

� �
mpb

l

� �3
�C�E � A12

mpb

l

� �2
�A�E þ A22

�A�F;v

"

�2A66
mpb

l

� �
�B�F � A11 1� A12

A11

A12

A22

� �
kD

mpb

l

� �2
�D�F

#
:

Having found the solutions to the first and second order of the boundary
problem and taking into consideration (3.9), the coefficients aijs, bssss have been
determined [2, 21, 25, 26]:

aijs ¼
rðiÞ � L11ðUðjÞ;UðsÞÞ þ 0:5rðsÞ � L11ðUðiÞ;UðjÞÞ

�ksrð0Þ � L2ðUðsÞÞ
;

bssss ¼
2rðsÞ � L11ðUðssÞ;UðsÞÞ þ rðssÞ � L11ðUðsÞ;UðsÞÞ

�ksrð0Þ � L2ðUðsÞÞ
;

ð3:31Þ

where: ks—is the critical load corresponding to the s-th mode, L11 is a bilinear
operator, L2 is a quadratic operator, and r(i), r(ij) are stress field tensors in the first
and second order.

The postbuckling static equilibrium paths for coupled buckling can be descri-
bed by the equation:

1� k
ks

� �
ns þ aijsninj þ bssssn

3
s ¼

k
ks

n�s ; s ¼ 1; . . .; Nð Þ; ð3:32Þ

which for the uncoupled problem has the form:

1� k
kcr

� �
nþ a111n

2 þ b1111n
3 ¼ n�

k
kcr

; ð3:33Þ
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where kcr is a critical load value and ns
*, n* are dimensionless initial imperfections

corresponding to the s-th or first buckling mode (an amplitude of the initial
imperfection divided by the plate thickness).

In a special case, i.e., for the so-called ideal structure without initial imper-
fections (n* = 0) and when the equilibrium path (a111) is symmetrical, the post-
buckling equilibrium path is defined by the equation:

k
kcr
¼ 1þ b1111n

2: ð3:34Þ

3.2 Natural Frequencies

The determination of natural frequencies is similar to the determination of critical
buckling load and it requires the eigenvalue problem to be solved.

Natural frequencies of thin-walled structures were determined by solving the
dynamic problem, which uses the approach proposed by Koiter in his asymptotic
stability theory of conservative systems in the first order approximation [4].

To determine natural frequencies [40] of the structure, the equilibrium equa-
tions are in the following form:

Nx;x þ Nxy;y þ ðNyu;yÞ;y � hq u
:: ¼ 0;

Nxy;x þ Ny;y þ ðNxv;xÞ;x � hq v
:: ¼ 0;

Mx;xx þMy;yy þ 2Mxy;xy þ ðNxw;xÞ;x þ ðNyw;yÞ;y þ ðNxyw;xÞ;y þ ðNxyw;yÞ;x � hq w
:: ¼ 0:

ð3:35Þ

They contain cross-sectional inertia forces acting in the direction normal to the
middle surface of the plate (column wall) and in the middle plane of the plate (i.e.,
hq u

:: 6¼ 0 and hq v
:: 6¼ 0).

In all equations in this section, the index i denoting the i-th plate or strip is
omitted.

Similarly as in the analysis of stability (Sect. 3.1), relations (2.44) and (3.12) to
(3.15) have been taken into account in equilibrium equations (3.35). Therefore, the
linear equations of motion expressed in terms of displacement have the form:

60 3 Analytical–Numerical Method

http://dx.doi.org/10.1007/978-3-319-00654-3_2


uðjÞ;xx þ
A12

A11
vðjÞ;xy þ

A66

A11
uðjÞ;yy þ vðjÞ;xy

� �
� hq€uðjÞ ¼ 0;

vðjÞ;yy þ
A12

A22
uðjÞ;xy þ

A66

A22
uðjÞ;xy þ vðjÞ;xx

� �
þ A11

A22
k uð0Þ;x þ

A12

A11
vð0Þ;y

� �
vðjÞ;xx � hq€vðjÞ ¼ 0;

k uð0Þ;x þ
A12

A11
vð0Þ;y

� �
wðjÞ;xxþ

� D11

A11
wðjÞ;xxxx þ

D12

D11
wðjÞ;xxyy

� �
þ D22

A11
wðjÞ;yyyy þ

D12

D22
wðjÞ;xxyy

� �
þ 4

D66

A11
wðjÞ;xxyy

��
� hq€wðjÞ ¼ 0:

ð3:36Þ

The new orthogonal functions in the sense of boundary conditions for two
longitudinal edges (2.63) are introduced and they are as follows:

�a ¼ vðjÞ;v þ
A12

A22
uðjÞ;f ;

�b ¼ uðjÞ;v þ vðjÞ;f ;

�c ¼ uðjÞ; �d ¼ vðjÞ;

�e ¼ wðjÞ; �f ¼ wðjÞ;v ;

�g ¼ wðjÞ;vv þ
D12

D22
wðjÞ;ff;

�h ¼ D22

D66
wðjÞ;vvv þ

D12

D22
wðjÞ;ffv

� �
þ 4wðjÞ;ffv;

ð3:37Þ

where

f ¼ x

b
; v ¼ y

b
ð3:38Þ

The functions a, b, g, h are related to sectional generalized forces (3.14) and
(3.15) for the first order approximation.

After taking into account relations (3.37) into (3.36), the following homoge-
neous system of differential equations is obtained:

�a;v ¼ � A66
A22

�b;f þ kD A11
A22

1� A12
A11

A12
A22

� �
�d;ff þ hq€�d;

�b;v ¼ � A11
A66

�c;ff þ A12
A11

�d;fv
� �

þ hq A11
A66

€�c;

�c;v ¼ �b� �d;f;
�d;v ¼ �a� A12

A22
�c;f;

�e;v ¼ �f ;
�f;v ¼ �g� D12

D22
�e;ff;

�g;v ¼ D66
D22

�h� 4�f;ff
� �

;

�h;v ¼ A11
D66
�kD 1� A12

A11

A12
A22

� �
�e;ff � D11

A11
�e;ffff � D12

A11

�f;ffv
h i

þ hq A11
D66

€�e:

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð3:39Þ

The solution to (3.39) consistent with boundary conditions (3.2) has been
adopted in the form of the following series of functions:
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ai ¼ TmðtÞ�Ai við Þ sin mpbi
l fi; bi ¼ TmðtÞBi við Þ cos mpbi

l fi;

ci ¼ TmðtÞCiðviÞ cos mpbi
l fi; di ¼ TmðtÞDi við Þ sin mpbi

l fi;

ei ¼ TmðtÞEi við Þ sin mpbi
l fi; f i ¼ TmðtÞFi við Þ sin mpbi

l fi;

gi ¼ TmðtÞGi við Þ sin mpbi
l fi; hi ¼ TmðtÞHi við Þ sin mpbi

l fi;

ð3:40Þ

where Tm(t) is an unknown function of time, and the functions
Ai;Bi;Ci;Di;Ei;Fi;Gi;Hi are unknown functions of y in the transverse direction.
These functions are determined during the numerical calculations in the first order
approximation by the modified numerical transition matrix method, taking into
consideration the Godunov orthogonalization method [1, 18, 19], which assumes
that the functions correspond to the modes of undamped natural frequencies.

An adoption of expected solution (3.40) as a function of time:

TmðtÞ ¼ ejxmt; ð3:41Þ

where j ¼
ffiffiffiffiffiffiffi
�1
p

and xm are natural frequencies for an m number of halfwaves in
the longitudinal direction, allows for a modal analysis including an influence of
external load on the frequency of vibration [40].

The further solution is identical to the buckling problem solution described in
Sect. 3.1.

It should be noted that many authors in the world literature (for example, [41])
have not taken into account inertia forces in the plane of the wall (i.e., hq u

::
and

hq v
::
) in differential equilibrium Eq. (3.35). Such an approach may lead to differ-

ences in results.
Differences in the natural frequency corresponding to the flexural buckling mode

with a single halfwave (m = 1) change with the length of the column (Fig. 3.3). For
relatively long columns (length to width of the widest wall l/bmax C 15), these
differences reach even more than 42 % (Fig. 3.4). Thus, it should be said that
neglecting tangential inertia leads to considerable errors for long thin-walled col-
umns. However, the natural frequencies corresponding to local buckling modes
show almost no differences (a percentage difference is about 0.1 %). Therefore, in
the analysis of the natural frequency corresponding to the local mode, the inertial
force acting in the plane of the plate or the wall of the column can be omitted [31].
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3.3 Dynamic Buckling

In the dynamic analysis (while finding the frequency of natural vibrations [40]),
the independent nondimensional displacement n and the load factor k become
functions dependent on time, and dynamic terms are added to the equations
describing the postbuckling equilibrium path. Neglecting the forces associated
with the inertia terms of the prebuckling state and the second order approximation
and taking into account the orthogonality conditions for the displacement field in
the first �UðjÞand second order approximation �UðjjÞ, the Lagrange equations can be
written as [28]:

1
x2

s

n
::

s
þ 1� k

ks

� �
ns þ aijsninj þ bssssn

3
s ¼ n�s

k
ks

; s ¼ 1; 2; . . .; Nð Þ; ð3:42Þ

where xs is a natural frequency with the mode corresponding to the buckling
mode; aijs and bssss are coefficients (3.31) describing the postbuckling behaviour of
the structure (independent of time); however, parameters of the load k and the
displacement n are functions of time t.

For the uncoupled buckling, i.e., the single-mode buckling (where index
s = N = 1), the equations of motion may be written in the form:

1

x2
1

n1

::

þ 1� k
k1

� �
n1 þ a111n

2
1 þ b1111n

3
1 ¼ n�1

k
k1
: ð3:43Þ

It is assumed that in the initial moment of time t = 0, the nondimensional
displacements n, as well as displacement velocities, are equal to zero, i.e.:

n t ¼ 0ð Þ ¼ 0and _nðt ¼ 0Þ ¼ 0: ð3:44Þ

The Runge-Kutta method [34] for solving (3.43) requires the following
substitutions:
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n
:

¼CðtÞ;

C
:

¼� x2
1 1� kðtÞ

k1

� �
n� x2

1b111n
2
1 � x2

1b1111n
3
1 þ x2

1
kðtÞ
k1

n�;
ð3:45Þ

which lead to a system of two differential equations. ‘‘Complete’’ equations of
motion (3.45) are solved with the numerical Runge-Kutta method. In order to
obtain a result with a fixed precision and speed up the computational algorithm, the
Dormad-Prince eighth order method [34] with the Hairer and Wanner [3] modi-
fication for determining the integration step has been employed. In the procedure
proposed by Hairer and Wanner, the fifth-order Runge–Kutta method was used and
to assess the accuracy—the third order method.
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Chapter 4
Finite Element Method

The finite element method is used here to validate the analytical–numerical
method presented in Chap. 3. The basic assumption and the used equations for thin
plates in both the methods (ANM—the analytical–numerical method, FEM—the
finite element method) are identical, but the way of solution is different. To apply a
program based on the finite element method as a numerical experiment, confirming
or validating the theoretical analysis or the analysis based on the analytical–
numerical method, it is important to create an appropriate model. A properly
chosen finite element type, a rational mesh density and appropriate boundary
conditions play a significant role in obtaining the calculation results close to the
reality.

In the proposed analytical–numerical method, the solution is based on the
assumed deflection in the form of the sine function (3.21) in the longitudinal
direction and is calculated using the numerical transition matrix method in the
transverse direction. In the finite element method, the deflection function is called
a shape function and it is usually assumed for each element as the first or second
order polynomial. The final deflection of the whole structure is the effect of dis-
placement of each element.

For the analysed thin-walled structures, finite shell elements seem to be the best
choice. Their size and number (mesh) have to be chosen so as to map smoothly
deformations. Assuming the number of elements for a dynamic buckling problem
analysis, one should be aware that the map of deflection could be different than for
static buckling—a number of sine halfwaves in the longitudinal direction could be
greater than in the case of static load.

It seems that an application of the finite element method to replace the
experiment is an easier and much cheaper option. However, please note that
boundary conditions have a significant impact on the results obtained and must be
the same (or similar) in all the test methods compared.

The finite element method becomes more and more popular and it represents
one of the most significant developments in the history of computational methods.
The finite element method has transformed much of theoretical mechanics and
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abstract science into practical and essential tools for a multitude of technologi-
cal developments which effect many facets of our life.

It is difficult to document the exact origin of the FEM but it can be said that the
basic concept has evolved over a period of one hundred years or more.

The FEM theory started in the 1940s. The first formulations were developed as
matrix methods for structural analysis. This led to the idea to approximate solids
and Courant [4] introduced it as an assembly of triangular elements and the
minimum of potential energy to torsion problems. Shortly thereafter, Clough [26]
introduced the term ‘‘finite element’’ in the paper published together with Turner,
Martin and Topp. Their paper focused on the ‘‘stiffness and deflection of complex
structures’’. The finite element method was further enhanced during the 1960s and
1970s by such scientists as Zienkiewicz [28, 30], Hinton and Owen [10].
Zienkiewicz and Cheung [29] applied the technology to general problems
described by Laplace and Poisson’s equations. The major contributor among
mathematicians who were developing better solution algorithms and carried out
the modelling and solution of nonlinear problems was Crisfield [5]. Starting since
the 1970s also Polish scientists have been concerned with the FEM—the leader
was Szmelter [23, 24]. In the 1990s a rapid increase in the computing power
contributed to a sudden expansion and propagated the finite element method. This
method was applied to different software, which can be used in many disciplines.

Nowadays the finite element analysis is used not only for solving engineering
problems but it is also used by scientists as a numerical experiment. By introducing
new elements and mathematical techniques, the method has been still developing.

4.1 Dynamic Buckling

To solve the dynamic buckling problem, a response of the structure subjected to
pulse load should be known. To describe the above-mentioned behaviour, the
equations of motion should be solved. In the finite element method, exactly the
same as in the analytical-numerical method, the differential equations of motion of
the plate are derived on the basis of the Hamilton’s principle (2.48):

dW ¼ d
Zt1

t0

Kdt ¼ d
Zt1

t0

ðK �PÞdt ¼ 0; ð4:1Þ

where K is a kinetic energy of the system and P is a total potential energy of the
system.

Similarly to the derivation presented in Sect. 2.5, the kinetic energy is:

K ¼ 1
2
q
Z
X

_U
� �2

dX; ð4:2Þ
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and its variation, taking into consideration identity (2.60), can be written as
follows:

dK ¼
Z
X

q dUf gT _U
� �

dX; ð4:3Þ

where {U} is a vector of the displacement function which contains the following
elements: u(x,y,z,t), v(x,y,z,t), w(x,y,z,t)—functions describing displacements of a
given point in three perpendicular directions in the given moment of time.

Integrating the kinetic energy variation over time, the following relation is
obtained:

Zt1

t0

dKdt ¼
Zt1

t0

Z
X

q dUf gT _U
� �

dXdt

¼
Z
X

q dUf gT _U
� �

dX
��t2
t1

dX�
Zt1

t0

Z
X

q dUf gT €U
� �

dXdt; ð4:4Þ

where the first term vanishes because the displacement variation {dU} equals zero
for t = t0 and t = t1.

The total potential energy variation dP can be written in the form:

dP ¼ dQ� dW ; ð4:5Þ

where dQ is a variation of the internal elastic strain energy:

dQ ¼
Z
X

fdegTfrgdX; ð4:6Þ

and dW is a variation of work of the external forces {F}:

dW ¼
Z
X

dUf gfFgdX: ð4:7Þ

Substituting (4.4) and (4.5) into (4.1), the Hamilton’s principle can be written in
the form:

Zt1

t0

Z
X

½q dUf gT €U
� �

� def gT rf g þ dUf gT Ff g�dXdt ¼ 0: ð4:8Þ

In the finite element method, the displacement {U} for any point of the
structure should be related to the nodal displacements {u} using an arbitrary
assumed shape function [Nu]:
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Uf g ¼ Nu½ � uf g: ð4:9Þ

The shape function of the element applied to discretize the structure is also used
to express:

• strains {e} by the vector of nodal displacements {u} and derivatives of the shape
function called the geometrical matrix [Bu]:

ef g ¼ ½D� Nu½ � uf g ¼ Bu½ � uf g; ð4:10Þ

where:

D½ � ¼

ox 0 0
0 oy 0
0 0 oz

0 oz oy

oz 0 ox

oy ox 0

2
6666664

3
7777775
; ox ¼

o

ox
; oy ¼

o

oy
; oz ¼

o

oz
; ð4:11Þ

• stress {r} by the vector of nodal displacements {u}, the geometrical matrix [Bu]
and the material properties matrix [Q]:

frg ¼ ½Q� ef g ¼ ½Q� Bu½ � uf g: ð4:12Þ

Substituting (4.9)–(4.12) to the Hamilton’s principle, i.e., to (4.8), the following
form is obtained:

duf gT
Z
X

½q½Nu�T ½Nu�dX €uf g � duf gT
Z
X

½B�T ½Q�½B�dXfug þ duf gT
Z
X

½Nu�T Ff gdX

¼ 0;

ð4:13Þ

where the integration over time is omitted for simplicity. The integration requires a
numerical procedure which is carried out in discretized moments with the estab-
lished time step of integration. The Newmark method [1, 2] is a very popular
procedure also used in the ANSYS software.

Equation (4.13) must be satisfied for any variation of displacements (weight
functions) in any moment of time from t0 to t1 and fulfil the relevant boundary
conditions. This is a weak (variation) formulation of finite element method
equations, where the generalized Galerkin method [3, 21, 27] has been used.
Equating to zero the coefficients standing by the variations of displacements, the
following equation is obtained in the matrix form:
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Pf g ¼ M½ � � €uf g þ K½ � � uf g; ð4:14Þ

where:

½M� ¼
R
X
½q½Nu�T ½Nu�dX is a mass matrix of the structure,

½K� ¼
R
X
½B�T ½Q�½B�dX is a structural stiffness matrix,

fPg ¼
R
X
½Nu�T Ff gdX is a vector of generalized nodal forces.

After replacing the time derivatives of displacements {ü} by the displacement
differences {u} in successive discrete moments of time t, a new static equilibrium
equation for the each time step is obtained. It contains the inertia forces [M] {ü}
and, therefore, it is possible to apply the algorithms used in the static analysis. The
time integration in the ANSYS program is conducted using the Newmark method
[2] and a solution to equations in successive time steps is obtained with the
Newton-Raphson algorithm [7].

Equation (4.14) does not take into account the material-dependent damping,
which according to [13] can be neglected in the dynamic buckling analysis of thin-
walled structures subjected to uniform compression. However, the recent paper
[14] has shown a significant role of dumping in the case when the viscoelastic
material model with the strain rate effect is taken into account and/or the analysed
structures are subjected to torsion or combined load (bending and torsion). In this
case, the damping related to the speed of displacement should be added to (4.14),
which takes the form:

Pf g¼ M½ � � €uf gþ C½ � � _uf gþ K½ � � uf g; ð4:15Þ

where [C] is a damping matrix, which according to the ANSYS manual [1]
depends on the mass matrix of structures [M] and the structural stiffness matrix
[K]. The relation is as follows:

½C� ¼ a½M� þ b½K�; ð4:16Þ

where a and b are damping coefficients specified as decimal numbers. The values
of a and b [1] are not generally known directly, but can be calculated from the
modal damping ratio wi, which is the ratio of actual damping to critical damping
for the i-th mode of vibration. Denoting the natural circular frequency of the i-th
mode by xi, the coefficients a and b satisfy the relation:

wi ¼
a

2xi
þ bxi

2
: ð4:17Þ

In many practical structural problems, the alpha damping (or the mass damping)
may be ignored (a = 0). In such cases, the beta damping b can be evaluated from
known values of wi and xi as:
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b ¼ 2wi

xi
; ð4:18Þ

and then the damping matrix can be expressed as follows:

½C� ¼ b½K�: ð4:19Þ

It should be noted that (in the ANSYS software [1]):

• in the transient harmonic response analysis, the material-dependent damping
can be only specified as the beta damping (b), using the command defining
material properties;

• only one b can be input in each load step, so the most dominant frequency xi

should be chosen to calculate the beta damping coefficient.

The dynamic buckling analysis or the response analysis of the structure sub-
jected to pulse load requires the following assumptions:

• shape and amplitude of imperfection,
• shape and amplitude (defined as DLF) of pulse load,
• time of pulse duration.

Therefore, before attempting to solve the dynamic buckling problem, the ei-
genbuckling solution (Sect. 4.3) should be achieved to determine the critical load
and the corresponding buckling mode. The buckling mode corresponding to the
lowest critical load is used to map the shape of geometrical imperfections with
the assumed amplitude, usually equal to 1/100 thickness of the plate or the wall of
the column. The modal analysis (Sect. 4.4) is performed to calculate the natural
frequencies of the structure which are used to determine the duration of pulse load.
The pulse duration Tp is usually assumed as a half or one period of the natural
vibration T.

The above discussed analysis has been carried out using the ANSYS software
[1] based on the finite element method.

4.2 Nonlinear Buckling Analysis

A nonlinear buckling analysis is in fact a static analysis with geometrical non-
linearities (large deflections included into the analysis). This kind of analysis
allows one to find the buckling load, to analyse the postbuckling behaviour of
structures, to estimate the load carrying capacity and a mode of failure.

For the structures which are subject to perfectly in-plane load (uniformly
compressed plates or columns), small out-of-plane perturbations are necessary to
initiate the buckling response. These perturbations can be applied as a modest
temporary force or a specified displacement. It should be noted that the failure load
is very sensitive to initial imperfections, therefore, these initial perturbations
should be as small as possible. Usually, at the beginning the eigenbuckling
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analysis is performed to calculate the buckling load and the corresponding
buckling mode. The shape of the buckling mode allows one to predict the place
where the force as the initial perturbation should be applied. In the case of the
initial displacement, the buckling mode is used as the perturbation to map it into
the finite element model.

In other cases of load, i.e., out-of-plane load or in-plane load but with eccen-
tricity, the initial perturbation is not necessary.

Having the proper model, the following equation is solved:

½K� � fug ¼ fPg; ð4:20Þ

where the stiffness matrix ½K� is dependent on the nodal displacement, which
means that the static problem is no longer geometrically linear—it is a nonlinear
problem (in the ANSYS software, the nonlinear geometry procedure should be
switched on). From the theoretical point of view, this nonlinear static problem can
be treated as a large strain or large rotation problem. In the first case (i.e., large
strain), strains in the material exceed more than a few percent—it usually happens
when a hyperelastic problem or an elastic-plastic problem is solved. In the second
case (large rotation), rotations are large and mechanical strains are small. The
second case describes situations similar to the postbuckling analysis in an elastic
range, especially when the deflections of thin-walled structures are less than 5
thicknesses of the plate or girder wall—the results are similar to the one obtained
from the analytical-numerical method described in Chap. 3.

The stiffness matrix ½K� should be treated as the tangent stiffness matrix for the
i-th increment of displacement and it is usually denoted as ½KT

i �. Depending on the
type of geometric nonlinearity, the tangent stiffness matrix ½KT

i � and the vector of
restoring forces for the i-th iteration fPr

ig are formulated in a different way.
According to the notation used in (4.20), the vector of restoring force (at each
iteration) is a part of the vector {P}, which can be expressed as:

Pf g ¼ Paf g � Pr
i

� �
; ð4:21Þ

where {Pa} is a vector of applied nodal forces.
For a large strain problem formulation, the tangent stiffness matrix is as

follows:

KT
i

� �
¼ ½Ki� þ

Z
X

½Gi�T ½si�½Gi�dX; ð4:22Þ

where [Ki] is an elemental stiffness matrix (well known from the static linear
problem formulation), [Gi] is a matrix of shape function derivatives and [si] is a
matrix of the current Cauchy (true) stresses {ri}.

The vector of restoring forces corresponding to the element internal loads for
the i-th iteration Pr

i

� �
in the large strain problem formulation is:
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Pr
i

� �
¼
Z
X

½Bi�frigdX: ð4:23Þ

For the large rotation problem formulation, the tangent stiffness matrix is as
follows:

KT
i

� �
¼
Z
X

½Tn�T ½BV �T ½D�½BV �½Tn�dX; ð4:24aÞ

where [Bv] is a small strain-displacement relationship in the original (virgin—non-
deformed) element coordinate system and [Tn] is an orthogonal transformation
relating the original element coordinates to the converted (or rotated) element
coordinates. The rotated element coordinate system differs from the original
coordinate system by the amount of rigid body rotation. Hence, the transformation
matrix [Tn] is computed by separating the rigid body rotation from the total
deformation {un} using the polar decomposition theorem (the deformation of the
object could be decomposed as the rotation plus stretching).

The vector of restoring forces for the i-th iteration Pr
i

� �
in the large rotation

problem formulation is:

Pr
i

� �
¼
Z
X

½Tn�T ½BV �T ½D�½BV � udf gdX; ð4:24bÞ

where {ud} is the element deformation which causes straining [1].
The Newton-Raphson method, which is graphically presented in Fig. 4.1, is

most popular for solving nonlinear problems with the iterative method. For a
single iteration, (4.20) has the form [2]:

KT
i

� �
Duif g ¼ Paf g � Pr

i

� �
; ð4:25Þ

where the increment of displacement {Dui} is assumed and fulfils the following
relation:

uiþ1f g ¼ uif g þ Duif g: ð4:26Þ

The general algorithm for the Newton-Raphson procedure (Fig. 4.1) can be
described as the general algorithm and proceeds as follows:

1. Assume an initial displacement vector {u0}. In the first time step, the initial
displacement vector is assumed as zero {u0} = {0} and for next time steps,
{u0} is assumed as the displacement vector from the previous time step con-
verged solution.

2. Compute the updated tangent matrix ½KT
i � and the restoring load vector Pr

i

� �
for

the displacement vector {ui} for the i-th iteration.
3. Calculate a vector of the displacement increment {Dui} from (4.25).
4. Find the next approximation {ui+1} from (4.26).
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5. Repeat steps 2–4 until a convergence is obtained.

In practice, more than one iteration is needed to obtain a converged solution. In
order to improve and speed up the procedure, the incremental Newton-Raphson
procedure (Fig. 4.2a) or the initial-stiffness Newton-Raphson procedure
(Fig. 4.2b) is used. In the incremental procedure, the applied load is divided in a
few substeps (Fig. 4.2a). Using the initial-stiffness Newton-Raphson procedure,
the tangent stiffness matrices are the same during each iteration, which requires
fewer matrix reformulations and inversions than in the full Newton-Raphson
procedure. It should be also mentioned that due to numerous iterations, the initial-
stiffness Newton-Raphson procedure converges more slowly than the full Newton-
Raphson procedure.

The main disadvantage of the Newton-Raphson method is such that it stops the
procedure when the determinant of the tangent stiffness matrix is equal to zero
(point A in Fig. 4.1).

Therefore, the arc-length technique (Riks method) is used. The Riks method
[22] is suitable for nonlinear static equilibrium solutions to unstable problems,
allows for finding the load carrying capacity and for analysing a failure mode. The
arc-length method in the ANSYS software uses the explicit spherical iterations to
maintain the orthogonality between the arc-length radius and orthogonal directions
as described by Forde and Stiemer [6]. A graphical representation is shown in
Fig. 4.3. It is assumed that all load magnitudes in (4.25) are controlled by the total
load factor k, which is in the range h-1,1i. Then, in the arc-length method, (4.25)
has the form:

KT
i

� �
Duif g ¼ k Paf g � Pr

i

� �
: ð4:27Þ

Fig. 4.1 Graphical representation of the Newton-Raphson algorithm
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Equation (4.27) in the incremental form for the intermediary step (i.e., at the
substep n and the iteration i) has the following form:

KT
i

� �
Duif g � Dk Paf g ¼ ðkn þ kiÞ Paf g � Pr

i

� �
; ð4:28Þ

where Dk is an incremental load factor (Fig. 4.3).
On the basis of (4.28), the relation describing the vector of incremental dis-

placement {Dui} can be written as follows:

Fig. 4.2 Graphical representation of the incremental Newton-Raphson procedure (a) and the
initial-stiffness Newton-Raphson procedure (b)

Fig. 4.3 Graphical representation of the arc-length method
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Duif g ¼ Dk Du1
i

� �
þ DuNR

i

� �
; ð4:29Þ

where fDu1
i g is the vector of incremental displacement corresponding to a unit

load factor and fDuNR
i g is the vector of incremental displacement taken from the

conventional Newton-Raphson method (4.25). Both the vectors of incremental
displacement are defined by:

Du1
i

� �
¼ ½KT

i �
�1fPag; ð4:30Þ

DuNR
i

� �
¼ ½KT

i �
�1 ðkn þ kiÞ Paf g � Pn

i

� �� �
; ð4:31Þ

and both of them should be determined in each arc-length iteration. Then, the
incremental load factor Dk is determined by the arc-length li equation, which at the
i-th iteration can be written as (Fig. 4.3):

l2i ¼ Dk2
i þ b2 Dunf gT Dunf g; ð4:32Þ

where b is a scaling factor, Dun is a sum of all the displacement increments Dui of
this iteration.

Finally, the arc-length load increment factor Dk is determined by the formula:

Dk ¼
ri � Dunf gT DuNR

i

� �
b2ki þ Dunf gT Du1

if g
; ð4:33Þ

where ri is a residual parameter (a scalar) obtained by multiplication of the normal
and tangential vectors.

The arc-length method has also disadvantages and the main one is the
requirement to adjust the arc-length radius by trial-and-error in a series of man-
ually directed reanalyses.

4.3 Linear Static Buckling Analysis

The linear buckling analysis of the structure subjected to static load is called the
eigenbuckling problem. The eigenbuckling is used for bifurcation buckling of
the linearized model of elastic stability. This type of analysis allows for calculating
the buckling load with the corresponding buckling mode. The term ‘‘eigenbuck-
ling’’ comes from the method of formulation of the problem, so the eigenvalue
equation for buckling problem take the form:

½K� þ ki½S�ð Þfwgi ¼ f0g; ð4:34Þ

where [K] is a structural stiffness matrix, [S] is a stress stiffness matrix, ki is the i-
th eigenvalue and wi is the i-th eigenvector of displacement.
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It should be added that the eigenvalue ki is a load multiplier that allows one to
find the i-th buckling load. The i-th buckling load is calculated as the applied load
multiplied by the i-th eigenvalue ki.

The stress stiffness matrix [S] is determined in the static analysis. It means that
before the eigenbuckling analysis, the static analysis should be performed.

Equality (4.34) is satisfied if the eigenvector of displacement is equal to zero or
if the determinant of the term in brackets is equal to zero. The {w}i = 0—a trivial
solution to (4.34)—is out of interest. It means that the structure does not change
the ‘‘shape’’—the structure remains in the initial state of equilibrium. Thus, the
term in brackets in (4.34) gives the following solution:

½K� þ ki½S�j j ¼ 0: ð4:35Þ

Equation (4.35) represents the eigenvalue problem which allows for finding
n values of the buckling load multiplier k and the corresponding buckling mode
shape. The number n depends on the number of DOFs assumed in the finite
element model (n = DOF number).

It should be noted that in the FEM software as well as in the ANSYS software,
the eigenvectors are normalized so that the largest component is 1.0. Thus, stresses
may be interpreted only as a distribution of relative stresses.

4.4 Modal Analysis

The modal analysis is used to find natural frequencies and the corresponding
modal modes. The solution to the problem is based on equation of motion (4.14)
for an undamped system in which the left-hand side is equal to zero and which can
be expressed in the form:

M½ � � €uf g þ K½ � � uf g ¼ 0f g: ð4:36Þ

The vector of the nodal displacement for free vibrations of a linear system is
assumed as a harmonic of the following form:

u ¼ /f gicos xit; ð4:37Þ

where {/}i is an eigenvector representing the mode shape of the i-th natural
frequency, xi is the i-th natural circular frequency, and t denotes time.

Substituting the assumed vector of the nodal displacement (4.37) into equation
of motion (4.36), the following relation is obtained:

�x2
i ½M� þ ½K�

� �
f/gi ¼ f0g: ð4:38Þ

Equality (4.38) is satisfied if the eigenvector representing the mode shape {/}i

is equal to zero or if the determinant of the term in brackets is equal to zero. The
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{/}i = 0 is a trivial solution to (4.38), which is out of interest. Thus, the following
solution is obtained:

�x2
i ½M� þ ½K�

�� �� ¼ 0: ð4:39Þ

Equation (4.39) represents the eigenvalue problem, which allows for finding
n values of natural circular frequencies x and the corresponding eigenvectors,
which allow one to describe the modal mode. The number n equals to the number
of DOFs assumed in the finite element model.

4.5 Element Type

The most suitable element for plated thin-walled structures is a shell element. An
exemplary four-node shell element with six degrees of freedom at each node is
presented in Fig. 4.4. In the case when the layered plate is modelled, a multilayer
shell element can be used for which the material properties as well as orientations
are defined for each layer.

Shell elements have only five independent degrees of freedom at each node
(three perpendicular displacements and two rotations around the axis lying in the
plane of the element). The sixth degree of freedom (a rotation around the axis
normal to the plane of element) is not independent. Two different and possible
shapes of displacements (a relation between rotations hz for each node in one
element) are presented in Fig. 4.5. The relations between rotations are controlled
for each element using the concept proposed by MacNeal and Harder [20].

The shape function for the presented element is assumed as the first order
(linear) polynomial and has the following form:

Ne ¼
1
4

uI 1� sð Þ 1� tð Þ þ uJ 1þ sð Þ 1� tð Þ þ uK 1þ sð Þ 1þ tð Þ þ uL 1� sð Þ 1þ tð Þ½ �:

ð4:40Þ

Fig. 4.4 Quadrilateral, four
nodal shell element [1]

4.4 Modal Analysis 79



4.6 Discretization

As is very well known, the number of elements has a significant influence on the
results of calculation. In all cases of the FEM calculations presented in this book, the
number of elements has been assumed on the basis of experience [11, 12, 15–18].
The model discretized with a not enough number of elements is stiffer than the real
structure and the results are not correct. The opposite case, i.e., too many elements
used for discretization, leads to time-consuming calculations. The number of ele-
ments (the density of elements) should be chosen on the basis of the solution
convergence analysis. An exemplary analysis of the solution convergence for the
buckling problem is presented in Table 4.1. This analysis was performed for a
square plate subjected to uniform compression. The plate thickness defined as
thickness to length of the plate is equal to 1/100. The plate was simply supported on
loaded edges and fixed on longitudinal edges. The use of four-node shell elements to
represent the form of buckling needs the plate to be meshed into at least five
elements along each sine halfwave. An increase in the number of elements increases
the number of nodes and degrees of freedom for the model, which allows for
mapping the highest buckling mode (the mode with more than one halfwave of
sine). The 10 lowest buckling loads with the corresponding modes for different mesh
densities (the number of elements in the longitudinal and transverse direction) have
been determined and presented in Table 4.1.

It is well known that for the isotropic square plate fixed on the longitudinal
edges and simply supported on the loaded edges, the mode corresponding to the
lowest buckling has two halfwaves in the longitudinal direction (m = 2) and one
halfwave in the transverse direction (n = 1). As presented in the exemplary results
of calculation, the worst assumed mesh density (three elements in the longitudinal
and transverse directions) did not give proper results—the lowest value was
obtained for the buckling mode with one halfwave in both directions (m = 1,
n = 1). Some buckling modes, which were found for a denser mesh, were not
determined for the 3 by 3 elements mesh. An increase in the number of elements
(from 3 9 3 to 5 9 5) by almost three times allows one to determine the same
buckling mode (i.e., m = 2, n = 1) as is well known from the literature [25], but
still not all buckling modes could be found (Table 4.1). Once again, an increased

Fig. 4.5 Possible rotation
around the axis normal to the
plane of the element [1].
Spurious Mode (a),
Hourglass Mode (b)
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number of elements in the longitudinal and transverse directions (10 9 10) has
resulted in further improvement of buckling loads value—the percentage change
of the buckling load corresponding to all determined modes is in the range from 11
to 74 %. A 10 9 10 mesh allows one to determine nine from ten first modes which
could be found using a denser mesh. A further increase in the number of elements
(20 9 20) allows one to find all first ten modes and leads to a percentage change of
the buckling load from 3 to 29 % in comparison with a less dense mesh. If the
criterion that the improvement of the result by less than 5 % does not require a
further increase of the mesh density is assumed, then it can be said that the
appointment of the two lowest critical power density distributions of 20 9 20 is
correct. Moreover, it can be noticed that the mesh improvement to receive 40 by
40 elements does not change first seven buckling loads by more than 5 % com-
pared to the 20 9 20 mesh.

To be sure that the mesh density is correct not only for the static buckling
analysis but also for the dynamic buckling analysis, the dynamic response for
different amplitudes of the rectangular pulse load was checked. It is necessary
because during and after the pulse load duration, the shape of deflection can
change rapidly with an increase in the pulse amplitude.

For exemplary calculations, a rectangular pulse shape was chosen. The pulse
duration is assumed to be equal to the period of natural vibrations for the analysed
plate Tp = T. Two different mesh densities were considered—it was a 5 9 5
element mesh and a 20 9 20 element mesh in two orthogonal directions. Because
the first modal mode has one halfwave of sine in the longitudinal direction (m = 1)
and the first buckling mode has two halfwaves of sine, it was decided to conduct
the analysis for both mode cases. For the case denoted as m = 1, the initial
imperfection corresponded to the modal mode with the amplitude equal to 1/100 of
the plate thickness, the pulse duration was equal to the period of natural vibrations
for the mode with one halfwave of sine. The dynamic load factor DLF was

Table 4.1 Influence of the mesh density on the buckling load [kN]

Modea 3 9 3 Change
(%)b

5 9 5 Change
(%)b

10 9 10 Change
(%)b

20 9 20 Change
(%)b

40 9 40

m n

2 1 28.2 40 16.8 14 14.5 3 14.0 1 13.9
1 1 26.0 30 18.1 11 16.1 3 15.7 1 15.5
3 1 – 39.8 39 24.3 9 22.1 2 21.6
4 1 – 164.8 74 43.1 18 35.5 4 34.0
3 2 – – 44.7 8 41.3 2 40.5
2 2 719.3 91 62.8 28 45.2 7 42.2 2 41.5
4 2 – 190.9 69 60.0 14 51.5 3 49.7
5 1 – – 76.6 29 54.3 7 50.4
5 2 – – 91.9 25 68.8 6 64.7
6 1 – – – 79.4 11 71.1
a m, n—number of halfwaves in longitudinal and transverse directions, correspondingly
b percentage change in the critical value relative to the result for the worse mesh
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calculated as the pulse amplitude divided by the buckling load for the mode m = 1
of the value corresponding to the assumed mesh density (Table 4.1). The similar
assumptions were made for the case denoted as m = 2: the amplitude of initial
imperfections equals 1/100 of the plate thickness and the initial imperfection shape
corresponded to the first buckling mode (m = 2), the pulse duration equalled the
period of natural vibrations for the mode m = 2 and the dynamic load factor DLF
determined as the pulse amplitude divided by the buckling load for the mode
m = 2.

The results are shown in Fig. 4.6 in the form of curves presenting the depen-
dence of the maximum dimensionless deflection n as a function of the dynamic
load factor DLF (Dynamic Load Factor—amplitude of the pulse load to the static
buckling load). For the case denoted as m = 2, the curves n(DLF) presented in
Fig. 4.6 for both mesh densities 5 9 5 and 20 9 20 are relatively close to each
over. However, for the case of m = 1, the curves n(DLF) for both densities of the
mesh taken into account overlap only for DLF B 1.6 but for higher DLF values,
the curves n(DLF) differ—see Fig. 4.6.

If the nodal displacement for DLF = 3 and for two mesh densities is compared
(Fig. 4.7), it is clear that the model divided into a smaller number of elements
(Fig. 4.7a) cannot present smoothly the shape of the deformed plate.

This example shows that the assumption of the finite element mesh density
chosen in such a way that each square part of the column wall or the single plate is
divided into 20 9 20 elements is correct and it should yield proper results.

4.7 Load and Boundary Conditions

Boundary conditions assumed on loaded edges depend on the analysed structure
(a plate, a beam-column with an open and closed cross-section) and a type of load
(uniform compression, eccentricity compression, pure bending). To obtain the
results of the FEM analysis as close as possible to the experimental test or the
numerical analysis made with another method, the assumed boundary conditions
should be defined the same or similar in both compared tests/methods.
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The boundary conditions in the FEM are determined defining nodal generalized
displacements (displacements, rotations) and/or a coupled displacement for a
group of nodes.

For all the analysed plates, the boundary conditions on longitudinal (unloaded)
edges are set as follows (notation according to Fig. 4.8):

• simple supported: v = constant and w = 0,
• clamped: v = constant and w = 0 and hx = 0,
• free edge—any constrains on the nodal displacement not set.

The boundary conditions set on loaded edges correspond to simply supported
and, depending on a type of load, they are as follows:

• uniform compression: u = constant and w = 0,
• pure in-plane bending or eccentricity compression: hz = constant and w = 0

and for one edge node lying on the neutral axis (middle node) u = 0.

To determine only the local buckling mode for the compressed column or
girder, the boundary conditions assumed on loaded edges on the girder wall can be
exactly the same as for the simply supported plate under uniform compression. In
the case of pure bending or eccentricity compression of beam-columns or girders,
the planes on which the loaded edges lie can rotate due to the assumed type of
loading. Taking the above into account, the proper boundary condition should be
considered. An exemplary way of finding the proper boundary condition for the
girder with a closed cross-section is presented below [19].

The boundary conditions assumed in the analytical-numerical method in the
prebuckling state in comparison to the buckling and postbuckling state are different.
The above-mentioned differences were noticed and used in the FEM modelling of
the compressed tube by Guarracino [8, 9]. It should be noted that also in the case of
the girder with a closed cross-section subjected to pure bending, the boundary
conditions in prebuckling and postbuckling states are different. That was the reason

Fig. 4.7 Map of deflection
for DLF = 3 and the element
mesh equal to 5 9 5 (a) or
20 9 20 (b)
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to suggest and test different boundary condition models [18]. Three of them,
denoted as A, B and C, respectively, are presented in Figs. 4.9, 4.10 and 4.11.

The proposed type A of boundary conditions (Fig. 4.9) ensures that the loaded
edges remain straight—the nodal displacement for all nodes lying on wall edges in
the direction normal to the wall was set to zero. In the next boundary condition
model (type B—Fig. 4.10), the beam element was additionally applied as a stiff-
ener on all loaded edges. The added stiffeners—the beam element—should be
rigid for bending, compression and tension (the edges on which beam elements lie
should stay straight after loading) and flexible for twisting (allow to rotate the plate
or the wall around ending edges). To fulfil rigidity, the height of the beam is
assumed to be 10 times greater than the thickness of the plate. To fulfil flexibility

Fig. 4.9 Type A of boundary conditions—zero value of the nodal displacement

Fig. 4.8 Nodal displacement for the plate
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Fig. 4.10 Type B of boundary conditions—zero value of the nodal displacement and beam
stiffeners

Fig. 4.11 Type C of boundary conditions—zero value of the nodal displacement and coupled
boundary conditions
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allowing rotations, the orthotropic material properties with the low Kirchhoff’s
modulus were assumed. Additionally, beam elements lying near the corner (red
elements—Fig. 4.10) have much lower stiffness, so the corners will be not too stiff
and will allow changes in the shape of the cross section as it happens during
bending.

In the last presented here model of the assumed boundary conditions—type C
(Fig. 4.11), not only zero value of the displacement but also of the coupled degree
of freedom was used. For walls of girders or beam-columns which are uniformly
compressed or tensioned, for all nodes lying on edges in longitudinal and normal
to the wall directions, the constant displacement was set. For all nodes lying on the
edges of the wall which were subjected to in-plane bending, the constant dis-
placement in normal to the wall direction and a constant rotation around the
bending neutral axis was set.

All three above-mentioned types of boundary conditions were tested in static
buckling and dynamic responses during the pulse load numerical analysis. To
choose ‘‘the proper’’ boundary conditions, a criterion was used which aimed at
obtaining the results of calculations as closest as possible in both the methods—the
FEM and the ANM.

Buckling modes and buckling loads for girders with a square cross-section
made of a composite material with the volume fibre fraction f = 0.5 are presented
in Fig. 4.12 and Table 4.2. The nondimensional value of the critical bending
moment Mcr/McrANM is determined by dividing the FEM critical moment by the
critical moment obtained from the analytical-numerical method.

The assumed criterion and the results (Table 4.2) obtained from the stability
analysis have shown that all the proposed boundary conditions can be considered
to be correct—the differences between the results are less than 1 %. In all the
analysed cases the buckling modes were the same (Fig. 4.12). None of the pro-
posed models of boundary conditions could be disqualified. Therefore, for each of
them, the analysis of the dynamic response to the pulse bending moment was
carried out. A rectangular pulse with duration equal to the period of natural
vibration of the analysed structure was assumed. The results are presented

Fig. 4.12 Buckling mode obtained from the analytical-numerical method (a) and the finite
element method with boundary conditions of types A (b), B (c) and C (d)
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(Fig. 4.13) in the form of the maximum deflection of the compressed wall of the
girder as a function of the dynamic load factor DLF = Ma/Mcr, defined as a pulse
amplitude of the applied loading divided by the static buckling load Mcr.

As can be seen from the curves presented in Fig. 4.13, considerable discrep-
ancies in the results have been obtained with both methods. The differences
increase with an increasing dynamic load factor value, which for a higher load lead
to larger deformations. The applied boundary conditions are much more significant
than for small deformations. Differences in the obtained results mean that the
boundary conditions were not properly chosen, which can be confirmed after a
closer examination of possible displacements of loaded girder edges. The end
section of the bent girder rotates around the neutral axis, and therefore the edges of
the upper and lower walls cannot only move along the beam axis but also in the
direction normal to the surface of the flanges. Such movements are allowed in the
prebuckling state in the analytical-numerical method, however are not possible in
the finite element model (Fig. 4.9). Accordingly, the boundary conditions A are
disqualified and a further analysis was performed for comparison of the two other
ways of support (case B—Fig. 4.10 and case C—Fig. 4.11). As is well visible in
Figs. 4.10 and 4.11, the boundary conditions B and C allow for the necessary
movement of ends of the girder subjected to the bending moment.

Analysing the results presented in Fig. 4.13, one can conclude that the best
boundary conditions allowing to map and verify the model assumed in the ana-
lytical-numerical method are conditions C (Fig. 4.11).

Comparing the results of the ANM and the FEM with A boundary conditions, it
can be seen that the deflection differences increase with an increasing DLF, which
means that the boundary conditions make the model stiffer, especially for large
deformations. Also, the curve obtained for the B-type boundary conditions is far

Table 4.2 Nondimensional buckling load comparison

ANM FEM

Type A Type B Type C

Mcr/McrANM 1 0.991 1.001 0.991
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from the curve of the analytical-numerical method. Beam elements in the model
B do not have an infinite stiffness and, therefore, cannot ensure that the ending
cross-section remains flat and the loaded edges of the walls remain straight. The C-
type boundary conditions allow for free rotation of the final section (which remains
flat) around the neutral axis. Thus, for a further finite element analysis (numerical
experiment) of girders subjected to bending, the C-type boundary conditions are
adopted (Fig. 4.11).

Therefore, for all columns with closed cross-sections subject to compression, in
which the global mode was taken into consideration, the boundary conditions
analogical to the C-type were assumed. A similar analysis as the one described
above may be carried out for the beam-column with an open cross-section for
which the boundary conditions in loaded ends were assumed according to the
description presented in Fig. 4.14.

Figure 4.14 shows one example of a column with an open cross-section. For
other types of open cross-sections, the boundary conditions were assumed by
analogy. It was assumed that bending (the flexural buckling mode) occurred
around the axis for which the second moment of area is the smallest, thus the FEM
model was prepared in such a way that nodes in which the displacement in the
y direction was set to zero (Fig. 4.14) were on the neutral axis of ending sections.
Straightness of the loaded edges of the considered beam-column is provided by
requiring equal displacements of all nodes lying on the edge of the beam-column
in the direction normal to its walls. To ensure that deformations are compatible
with the deflection in bending (the global flexural buckling mode), the edges
normal to the neutral axis remained straight in the plane containing the wall of the
column. In addition, for all nodes lying on those edges, the constant rotation
around the axis parallel to the axis of the neutral section was presupposed.

When the compressed column was analysed, a compression force or a uniform
stress distribution with additional conditions for the uniform edge displacement
was assumed. In other cases of load (pure bending or bending with compression),

Fig. 4.14 Assumed boundary conditions—an example for a channel cross-section
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the stress distribution corresponding to a given load was assumed. The stress
distribution was modelled in the form of the pressure distribution acting along the
loaded edges of the structure. An exemplary model of load corresponding to pure
bending is presented in Fig. 4.15.

It should be noted that the assumed load is nonconservative—pressure is always
perpendicular to the area to which it is applied. Let us check what an influence of
the assumed model, i.e., the load and the boundary condition, on the results of
calculations is. As an example, the channel-shape cross-section profile subjected to
pure bending was computed. Four different models denoted as BC-1 to BC-4 were
considered, and they are as follows:
BC-1 part (with a length l) of the beam-column between two neighbouring

diaphragms, the load is a pressure modelling the bending stress
distribution; the boundary condition (displacement set to zero) assumed
in neutral axes; in loaded edges of the beam-column, a constant value of
displacement in the normal direction to its wall is assumed—Fig. 4.16a;

BC-2 BC-1 model with added constant displacement in the longitudinal
direction of the beam-column loaded edges of the web—Fig. 4.16b;

BC-3 considered part of the beam of a length l modelled together with a handle
subjected to four-point bending (Fig. 4.17);

BC-4 model three times longer than the considered part of the beam with a
diaphragm (Fig. 4.18) and a handle, the whole subjected to four-point
bending.

For all the above-mentioned models of static buckling, a modal and nonlinear
static analysis was performed. The results of these calculations are presented in
Tables 4.3 and 4.4 and in Figs. 4.19 and 4.20.

Fig. 4.15 Exemplary load model for a segment of the girder subjected to pure bending
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Fig. 4.16 BC-1 (a) and BC-2 (b) models of channel-shape beam-columns subjected to pure
bending

Fig. 4.17 BC-3 model of channel-shape beam-columns subjected to pure bending

Fig. 4.18 BC-4 model of channel-shape beam-columns subjected to pure bending
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Examining the results from the eigenvector analysis (the modal analysis—
Table 4.3 and the buckling analysis—Table 4.4), it is well visible that all four
considered models of boundary conditions and loads do not play a significant role
in the results of calculations—the highest differences are less than 5 %. It means
that the simplest models (BC-1 and BC-2) are accurate enough for the static linear
analysis. It should be noted that the lowest natural frequencies and the corre-
sponding modal modes for the model denoted as BC-4 are different than for BC-1
and BC-2. The modal mode differences are shown in Fig. 4.19. As can be seen in
Fig. 4.19, the first modal mode obtained using the BC-4 model has a global
character (Fig 4.19b). Due to these differences, in Table 4.3 only the corre-
sponding modal modes are compared (for example, the first from BC-1 presented
in Fig. 4.19a with the third one from BC-4 presented in Fig. 4.19c).

Comparing the results of the nonlinear buckling analysis, it is clear that the
considered models of boundary conditions and loads have a significant impact on
the structure work in the postbuckling state (Figs. 4.20 and 4.21). Some similar-
ities can be seen when the postbuckling behaviour for the models denoted as BC-2
and BC-4 is compared. The first model denoted as BC-1 is too ‘weak’. The lack of
the straightness assumption for the loaded web edge leads to a reduction in its
stiffness. The model designated as BC-3 is too ‘stiff’ due to the close box
neighbourhood to the considered beam-column part and a much stiffer handle. To
be sure which model of load and boundary conditions is correct, experimental tests
should be performed.

The next considered case is a girder subjected to torsion. To introduce the load
causing twist, one end of the girder was restrained (for all nodes, three perpen-
dicular displacements were set to zero) and two pairs of forces were applied to the
second end (Fig. 4.22). Such an assumption leads to a deformation on the not
restrained end of the girder and to a not natural stress concentration in the places
where the forces are applied (Fig. 4.23).

Table 4.3 Natural frequencies for different models of load and boundary conditions

Length l (mm) Natural frequencies f (Hz) Differencesa

(%)
BC-1 BC-2 BC-3 BC-4

40 1,117 1,117 1,118 1,135 1
50 836 836 836 850 2
60 678 678 678 690 2
70 579.4 579.4 580 573 1
80 513 513 513 516 1
90 466 466 466 469 1
100 431.3 431.3 431 434 1
150 343.8 343.8 344 345 0
200 310 310 311 310 0
250 293.5 293.5 295 287 3

a Differences calculated between the minimal and maximal value divided by the maximal value
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To prevent a stress concentration at loaded points and a deformation of the
shape of the one end of the girder, the front panel 10 times thicker than the girder
wall thickness (Fig. 4.24) was introduced.

The proposed model can be employed in the analysis of girders subjected to
torsion because there are no unexpected deformations—both ends of the girder
after loading remain the same square shape (Fig. 4.25).

The most difficult arrangement of the boundary condition was for the girders
subjected to a combined load—a simultaneously applied bending moment and a

Fig. 4.19 First modal mode for BC-2 (a) and BC-4 (b) models of the beam-column with the
length l = 50 mm
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Table 4.4 Critical bending moment for different models of boundary conditions

Length
l (mm)

Buckling mode
(m)

Critical bending moment Mcr (Nm) Differencesa

(%)
BC-1 BC-2 BC-3 BC-4

40 1 52 52 51 53 4
50 1 55 55 55 57 3
60 1 63 63 62 65 4

2 57 57 58 58 3
70 1 73 74 73 76 3

2 53 53 53 54 2
80 1 86 86 87 88 2

2 52 52 53 53 3
90 1 101 101 102 104 2

2 53 53 54 54 2
100 1 118 118 120 121 2

3 54 54 55 55 2
150 1 226 226 233 233 3

4 52 52 53 54 3
200 1 359 360 372 374 4

5 52 52 53 53 2
250 1 493 495 516 514 4

6 52 52 53 55 5

a Differences calculated between the minimal and maximal value divided by the maximal value
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torque. The assumed boundary condition cannot block displacements corre-
sponding to a given type of load and prevent unexpected stress concentrations (i.e.,
the stress concentration in the corners on the plane where the loads are applied).
Two different models were considered (Fig. 4.26). In order to assure the linearity
of loaded edges, in the first model two plates of relatively high stiffness were
added to the ends of the girder (Fig. 4.26a). In the second model, the same line-
arity of the loaded edges was obtained by an application of beam elements
(Fig. 4.26b).

Fig. 4.23 Deformation and the equivalent stress distribution for the first model

Fig. 4.24 Models with a
solution preventing
deformation and stress
concentrations

94 4 Finite Element Method



References

1. ANSYS 11.1 html online documentation, SAS IP, Inc, 2007
2. Bathe KJ (1996) Finite element procedures. Prentice-Hall, Englewood Cliffs
3. Chroscielewski J, Makowski J, Pietraszkiewicz W (2004) Statyka i dynamika powlok

wieloplatowych: nieliniowa teoria i metoda elementow skonczonych. IPPT PAN, Warsaw
4. Courant R (1943) Variational methods for the solution of problems of equilibrium and

vibrations. Bull Am Math Soc 49:1–23
5. Crisfield MA (1997) Non-linear finite element analysis of solids and structures. John Wiley &

Sons, Inc, New York
6. Forde WRB, Stiemer SF (1987) Improved arc length orthogonality methods for nonlinear

finite element analysis. Comput Struct 27(5):625–630
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Chapter 5
Dynamic Buckling Criteria

Dynamic stability, or better, dynamic buckling (sometimes referred to as a
dynamic response) means a loss of stability of the structure subjected to pulse load.
Especially, it can act along the axis of the column or in the plane of the plate. It
should be mentioned that for the ideal uniformy compressed structures (without
any geometrical imperfection) the critical buckling amplitude of pulse loading
leads to infinity. Therefore, the dynamic buckling can be analysed only for
structures with initial geometrical imperfections. In such a case, the critical value
of dynamic load does not have a bifurcation character, thus it has to be determined
on the basis of the assumed criterion. Some the most popular and some new
criterion allowing to determine dynamic buckling is presented in this chapter.

There are authors (e.g. [22]) who claim that for the thin-walled structures with
flat walls (structures with stable postbuckling equilibrium path) dynamic buckling
does not occur—the dynamic response can be analyse only.

Raftoyiannis and Kounadis [20] divided the criteria into the geometric and
energetic ones. Geometric criteria are those in which a loss of dynamic stability
refers usually to deflection or shortening, whereas the energy criterion is the one in
which the critical value is determined by the potential and/or kinetic energy of the
system.

Another division of criteria distinguishes the criteria for structures with a stable
postbuckling equilibrium path (plate structures) and the criteria for structures with
an unstable postbuckling equilibrium path or having a limit point (shells, rods). For
structures with an unstable postbuckling equilibrium path, it is possible to derive
mathematically the relation allowing for finding the critical value, describing the
dynamic buckling load [11]. However, for plate structures the mathematical der-
ivation is not possible and the criteria have been formulated from observations of
behaviour of such structures [2] or on the basis of experiments [1, 6, 8]. Therefore,
from the moment when the dynamic buckling problem appears in the literature, a
number of dynamic stability criteria has been developed.

In the literature, in addition to displacement and energy criteria, failure criteria
can be found. Such a criterion has been formulated by Petry and Fahlbusch [19]. In
failure criteria for the dynamic buckling stability, proper hypotheses to determine
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the equivalent stress state are needed. The equivalent stress state can be compared
with the following material properties: yield limit or ultimate stress for tension or
compression. It should be noted that in the majority of works (also here), the
assumed material properties were obtained from static tests.

5.1 Volmir Criterion

Volmir in his work [28] presented the behaviour of a simply supported rectangular
plate subjected to different pulse loads. He analysed the pulse of infinite duration,
linearly increasing load and pulses of finite duration. The pulses taken into con-
sideration had rectangular and exponentially decreasing shapes. Volmir solved the
dynamic buckling problem using the Bubnov-Galerkin method for determining the
buckling and postbuckling state for statically loaded structures. Then, after setting
the deflections and load as a function of time, the equations of motion were
obtained. The equations of motion are solved using the Runge-Kutta method.
During his analysis, Volmir took into consideration not only tensile load pulses but
also the shear type. Probably due to computational difficulties, Volmir proposed a
very simple but time-consuming method for determining the ‘‘critical’’ dynamic
load. This method consists in assuming the buckling mode and dynamic response
analysis. This assumed buckling mode (a number of sine halfwaves describing out-
of-plane deflection) was taken as the critical one for uncoupled dynamic buckling
if the dynamic response of the plate subjected to a given amplitude of pulse
resulted in an increase of deflection in the shortest time. Volmir considered the
buckling problem which can be described by a theoretical system with one degree
of freedom. For the critical mode, ‘‘a factor of dynamism KD’’ (further referred to
as the Dynamic Load Factor—DLF) was determined. The KD factor was defined as
a ratio of the pulse amplitude of the critical load to the static critical load. On the
basis of his study, Volmir suggested a very simple criterion for the dynamic
stability loss, assuming that a loss of stability of the plate subjected to pulse load
occurs when the maximum deflection of the plate is equal to the assumed constant
value. Usually the critical deflection value was assumed to be equal to the
thickness of the plate or half of its thickness.

5.2 Budiansky–Hutchinson Criterion

One of the first displacement criteria was formulated by Budiansky and Hutchinson
[4, 11]. This criterion involves structures with geometrical imperfections and an
unstable postbuckling equilibrium path or a limit point. The authors of that criterion
analysed cylindrical shells and axially loaded rods. A similar criterion was formu-
lated for cylindrical shells loaded transversely by Budiansky and Roth [5]. They
considered pulse load of finite or infinite duration and derived the relationship which
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allows for determining the critical load. It has been noted that the critical load
corresponds to the inflection point on the curve presenting the load as a function of
deflection (Fig. 5.1). Budiansky and Hutchinson defined their criterion in the fol-
lowing form:

A loss of stability of structures subjected to pulse loading occurs when there is an
unlimited increase of deflection for small increments of load.

Many authors have adopted the above criterion for plated structures.
On the basis of the time history of the structure deflection, for a given pulse

shape and its duration, a graph of the maximum deflection amplitude as a function
of the load is built (Fig. 5.2). The Budiansky-Hutchinson criterion adopted for
plated structures states:

A dynamic stability loss occurs when the maximum plate deflection grows rapidly with a
small variation of the load amplitude.

5.3 Ari–Gur and Simonetta’s Criterion

Ari-Gur and Simonetta [2] conducted a series of experiments and theoretical
analyses of thin plates clamped on all edges and subjected to pulse load with a
halfwave of sine shape (with finite duration). They noted that for a perfectly flat
plate, the pulse load intensity L (the force F or the shortening U), which would
result in a loss of stability, was infinitely large. The Ari-Gur and Simonetta’s
critical load value was set as depending on the following parameters:

• deflection—measured in the middle of the length and the width of the plate,
• load intensity Lm defined as the force pulse amplitude Fm or the shortening Um.

Fig. 5.1 Equilibrium paths for pulse loaded structures with large (a) and small (b) initial
geometrical imperfections

5.2 Budiansky–Hutchinson Criterion 99



On the basis of the analytical and numerical study, four dynamic buckling
criteria are proposed in [2]. The first one (Fig. 5.4a) is based on the observation of
the deflection wm (Fig. 5.3) and the intensity of the pulse load Lm. It was formu-
lated as follows:

Dynamic buckling occurs when a small increase in the intensity of the pulse load Lm

causes a significant increase in the value of the deflection wm.

The above criterion is analogous to the criterion defined by Budiansky and
Hutchinson (Sect. 5.2). Ari-Gur and Simonetta have noticed that the criterion can
be used for loads in the form of a force or a displacement and for different pulse
load durations. However, for a very short period of the pulse duration, a very high
amplitude value in deflections is required (a large amplitude in comparison to the
static critical load) to obtain a rapid increase, which—as is known—can cause a
change in the mode of deflections during the pulse load. These observations have
led to the formulation of the second criterion which is based on the analysis of the
maximum value of the pulse load Lm and the deflection value wm (Fig. 5.4b). This
criterion is as follows:

Dynamic buckling occurs when a small increase in the amplitude of the pulse load Lm

causes a decrease in the value of the deflection wm.

The next two criteria are failure criteria which are based on a response of the
loaded edge of the considered plate, namely shortening (for a force as a pulse) or

Fig. 5.2 Typical curves representing deflections as a function of load for the local (a) or global
(b) buckling mode

Fig. 5.3 Analysed pulse load
and measured parameters
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reaction (for a displacement as a pulse load) on loaded edges. In the case of the
shortening analysis, a similarity to the increasing deflection analysis (the first Ari-
Gur and Simonetta’s criterion) can be noticed. The third criterion (Fig. 5.4c) was
formulated as follows:

Dynamic buckling occurs when a small increase in the amplitude of the force pulse Fm

causes a sudden increase in the shortening um of loaded edges of the plate.

A significant increase in deflection of the plate will reduce its stiffness, so the
load which causes a significant increase in the shortening is defined as the critical
load (Fig. 5.4c).

The last criterion applies to the case when the load is defined not by a force but
by an impulse of displacement (shortening of loaded edges) and defines the critical
Um displacement pulse intensity. The fourth criterion (Fig. 5.4d) given by Ari-Gur
and Simonetta is:

Dynamic buckling occurs when a small increase in the pulse displacement intensity Um of
the loaded edge causes a change in the sign of the value of the reaction Rm at the edge of
the plate.

As is well known for the deflected plate, the reaction distribution on the loaded
edge has a sinusoidal shape (Fig. 5.5), thus in the case of large deflections, the
tension appears in the middle of the loaded edge which maintains the straightness
of the edge under load. The value of the resultant tensile force can be greater than
the compressive forces that occur outside the central part of the edge under load.

Fig. 5.4 Graphs presenting Ari-Gur and Simonetta’s dynamic buckling criteria

5.3 Ari–Gur and Simonetta’s Criterion 101



5.4 Kleiber–Kotula–Saran Criterion

Kleiber, Kotula and Saran in their work [13] presented the problem of dynamic
stability for rod systems. The problem was solved with the finite element method.
The paper quoted the criterion of stability in the Lyapunov sense, which requires
disturbing the initial conditions and the analysis of the system behaviour. The aim
of the mentioned work [13] was to formulate such a criterion that would allow the
dynamic stability analysis based only on solving basic equations. It is well known
that FEM solutions for static loaded structures are unstable when the tangent
stiffness matrix is singular. Kleiber, Kotula and Saran began to analyse the tangent
stiffness matrix for a system of rods subjected to pulse load with infinite duration
(Heaviside pulse loading). First, they defined the critical pulse duration tcr. For the
time t less than the critical one, structural deflections are very small and oscillate
around the position of equilibrium. When the time is longer than the critical tcr,
deflections of the structure begin to grow. This growth of deflections can be
limited or unlimited. Then, they noticed that for every moment of time t less than
the critical time tcr, the tangent stiffness matrix [30] was positively defined. The
above allows for formulating the following eigenvalue problem:

ðKT � vMÞ# ¼ 0; ð5:1Þ

where KT is the tangent stiffness matrix, M is the mass matrix of the structure, v is
an eigenvalue and 0 is the vector of eigenvalues.

Analysing (5.1) for the time t equal to the critical value tcr, it is found that the
smallest eigenvalue vmin tcrð Þ changes its sign from positive to negative, which
corresponds to the growth of the structure deflection. The above analysis shows
that the zero eigenvalue corresponds to singularity of the tangent stiffness matrix.
In order to formulate the stability criterion, it should be determined whether an
increase in the deflection at the time t [ tcr is limited or unlimited. On the basis of
the examples presented in [13], it has been noted that the smallest eigenvalue for
the times t [ tcr reaches the minimum value of v0min and then begins to rise and
again changes its sign to the positive one and reaches the maximum value v00min.

Fig. 5.5 Force distribution along loaded edges of the plate with initial imperfections
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On this basis, Kleiber, Kotula and Saran defined a quasi-bifurcation criterion of
dynamic stability for the structures subjected to pulse loading. It says that the
structure loses its stability (deflection begins to grow indefinitely) when for t = tcr

the determinant of the tangent stiffness matrix is equal to zero and the absolute
value of the smallest eigenvalue v0min of (5.1) is greater than the maximum absolute
value of the next smallest eigenvalue v00min(Fig. 5.6), i.e., v0min

�� ��[ v00min.
In summary, in order to consider the load as critical (causing an infinite

deflection growth) for the given time t = tcr, the two following conditions have to
be simultaneously satisfied:

KT ¼ 0 ^ jv0minj[ v
00

min: ð5:2Þ

The tangent stiffness matrix in the stability theory of dynamical systems [12]
corresponds to the Jacobi matrix.

5.5 Author’s Criterion

The above-discussed criteria can be applied to plates, shells or beam-columns and
they have been formulated for the non-coupled buckling mode. In complex thin-
walled structures, the stability loss has often a coupled form—one buckling mode
enhances or accelerates the creation of another one and, as a result, a new buckling
mode appears. Such multi-modal modes of the stability loss should also be taken
into account in the analysis of thin-walled structures subjected to pulse load. As is
well known from the dynamic buckling literature, the pulse duration equal to the
period or half a period of natural vibrations with the mode corresponding to the
buckling mode is considered.

Coupling of various buckling modes is associated with different vibration fre-
quencies (and, thus, periods of vibration) corresponding to different buckling
modes. This often leads to situations where for one buckling mode, the established
pulse duration corresponds to the dynamic load and for another one, the period of
vibration is so long that the pulse load should be treated as quasi-static. In the
global buckling mode case, the deflection of the structure grows to infinity. Taking
above into account, the following questions appear:

Fig. 5.6 Exemplary time
history for the minimum
eigenvalue
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• how to determine the pulse duration in the case of interactive buckling?
• which value should be taken as the critical one in the global buckling mode—the

deflection asymptote or the deflection for which the theory is no longer valid?

To answer the first question, numerous calculations and simulations have been
performed. It has led to the conclusion that the worst case is when the pulse
duration corresponds to the first flexural vibration mode—for short beam-columns
it corresponds to the local mode. For longer structures, the first flexural vibration
mode corresponds to the global mode, which finally appears when different
buckling modes interact.

While answering the second question and taking the above-mentioned into
account, one should note that the new dynamic buckling criterion could be for-
mulated especially for all cases when the deflection grows rapidly to infinity.
However, this new criterion could also work for the remaining buckling modes.

The equations of motion solution for the multi-mode (3.42) or single-mode
(3.43) buckling allow for determining the deflection change of the analysed
structure in time and, thus, the function that describes the behaviour of the system
subjected to pulse load. Similar equations are solved in problems of stability of
motion. Therefore, it has been decided to look for an analogy in determining the
critical value describing dynamic buckling. The quasi-bifurcation criterion of
dynamic stability for pulse load (Heaviside type) proposed by Kleiber, Kotula and
Saran [13] seemed to be close to the dynamic buckling (impact) problem. The
direct application of this criterion for estimation of the critical amplitude of pulse
loading (of finite duration) for analysed thin-walled structures did not give
expected results. The obtained dynamic critical load values were smaller than the
results obtained from other well-known criteria [11, 28]. The discrepancies can be
explained by different structures and different pulse types.

The further analysis concentrated on the Jacobi matrix calculation in a similar
way as it is done in the dynamic stability problem for the periodical solution [12],
where the values of the characteristic roots of the Jacobi matrix were checked. On
the basis of numerous examples and many studies (the results are presented in
Chap. 6.2), it was noticed that for the thin-walled structures subjected to pulse
loading, which lose their stability according to the Budiansky-Hutchinson criterion
or the Volmir criterion, the maximal radius rmax calculated from the characteristic
root v = a ? jb (where j ¼

ffiffiffiffiffiffiffi
�1
p

) of the Jacobi matrix was equal or greater than
unity in the complex plane (Fig. 5.7). It was also noted that it is was sufficient to
analyse the eigenvalues at any time between 0 and 1.5�Tp. Therefore, the dynamic
buckling criterion for thin-walled structures can be formulated as follows:

Thin-walled structures subjected to pulse loading of finite duration lose their stability even
if one characteristic root v = a ? jb of the Jacobi matrix found for every time moment
from 0 to 1.5Tp lies in the complex plane outside the circle with the radius equal to unity.

The developed criterion has some limitation in application. The limitation was
found during the dynamic buckling analysis of the plate subjected to rectangular
pulse load [16]. For the mentioned case, it was observed that for pulse duration less
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than 0.75Tp (Tp period of natural vibration), the results were independent of the
pulse duration, thus for this case, it could be used only for pulse load with duration
no longer than 0.75Tp.

5.6 Teter Criteria

A similar way to find a dynamic buckling criterion as described in previous
Section 5.5 was used by Teter [26]. Teter analysed the behaviour of thin-walled

columns with stiffened open cross-sections subjected to pulse loading. The coupled
buckling was analysed. As found out by Teter, the criterion proposed by the author
of this monograph is not sufficient to estimate the critical amplitude of pulse load
for long columns with stiffened open cross-sections [26], particularly if the
duration of the pulse is equal to half a period of the vibration in the considered
structure. Taking above into account, he attempted again to modify the Kotula-
Kleiber-Saran criterion and formulated the following one:

A dynamic stability loss occurs when during the tracing time of solutions all eigenvalues
of the Jacobi matrix are not positive simultaneously and at any moment one can find two
negative eigenvalues.

The main disadvantage of this criterion is the same as in the previous one
(Sect. 5.5)—a need to determine the Jacobi matrix (the tangent stiffness matrix)
and its eigenvalues. This possibility exists for analytical-numerical methods or
other open source software. Therefore, Teter decided to propose a new phase plane
criterion. It is based on the results of numerical calculations obtained from any
software to determine the displacement and the velocity. This criterion states:

The dynamic buckling load for the tracing time of solutions has been defined as the
minimum value of pulse load such that the phase portrait is an open curve.

Fig. 5.7 Geometric
representation of the
proposed criterion
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The criterion for dynamic buckling structures subjected to unbounded pulse
load based on the phase plane was used by Schokker et al. [21], Hutchinson and
Budiansky [11] and Hsu [10]. More details can be found in [3].

5.7 Petry–Fahlbusch Criterion

Petry and Fahlbusch [19] have noted that the Budiansky-Hutchinson criterion
originally formulated for shells, widely used by many authors in the analysis of the
dynamic behaviour of plates, does not allow one to use fully the capacity of the
plate structure. In practice, this leads to a conservative determination of the critical
dynamic load for the plate. These authors believe that the critical dynamic load
should be based on the stress state analysis for the structures with a stable post-
buckling equilibrium path. Analysing the stress state in any moment of time for the
structures subjected to pulse load, it is possible to determine the dynamic load
leading to a failure. On the basis of this approach, Petry and Fahlbusch have
formulated the following criterion of dynamic buckling:

A dynamic response of the structure subjected to pulse load is dynamically stable if the
condition that the equivalent stress is less than or equal to the assumed limit of stress is
satisfied at any time and any point of the structure.

In the case when a deformable body is taken into consideration, they suggest
assuming the yield limit as a limit of stress in the proposed criterion. Petry and
Fahlbusch have redefined also the dynamic load factor to the following form:

DLFf ¼
Ndyn

F

Nstat
F

; ð5:3Þ

where the dynamic failure load Ndyn
F and the static failure load Nstat

F in the sense of
the limit stress are introduced. Petry and Fahlbusch in their work present results for
the structures made of isotropic materials, in which, as is well known, the
equivalent stress is calculated according to the Huber-Mises hypothesis. Nowa-
days, composite materials with orthotropic or even anisotropic material properties
are very often used for different structures, so the Petry-Fahlbusch approach should
be modified by an application of proper failure criteria for such materials.

5.8 A New Approach to Dynamic Buckling Load
Estimation

Examining typical curves of the dynamic buckling problem (Fig. 5.8b) and the
postbuckling behaviour of thin-walled structures subjected to static load (Fig. 5.8a),
one can notice some similarity.
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The curves shown in Fig. 5.9 (i.e., the nondimensional static load P/Pcr
* and the

nondimensional dynamic load DLF as a function of nondimensional displacement)
are similar, especially when the states are changed from prebuckling to post-
buckling. Taking into account this similarity, it has been decided to check the
suitability of the well-known methods for determining critical static loads, based
on the results of experimental tests. The most popular methods are:

• Soutwell method [3, 18, 23, 24, 29].
• mean-strain (P-em) method [7, 23, 24, 27];
• method of straight-lines intersection in the plot of mean strains [7, 23, 24, 27];
• alternative method P-w2 [7, 23, 24, 27];
• P-w curve inflection point method [7];
• ‘‘top of the knee’’ method [15];
• Tereszkowski method [25];
• Koiter method [9, 14].
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Fig. 5.8 Postbuckling equilibrium paths (a) and nondimensional displacement as a function of
the dynamic load factor (b)
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Kubiak and Kowal-Michalska [17] have decided to employ two well-known
methods for identification of the critical load that are usually applied to the results
of experimental investigations. The inflection point method (P-w), which is very
similar to the ‘‘top of the knee’’ method, and the alternative (P-w2) method have
been used.

To find the inflection point, the approximation equations are found. The post-
buckling equilibrium paths for structures with initial imperfections are the third
order polynomial. It has been decided to adopt the same order function to fit the
curve on the basis of points (Fig. 5.10) received from the numerical calculations.
Thus, this function has the following form:

DLF ¼ a3
w

h

� �3
þ a2

w

h

� �2
þ a1

w

h

� �
þ a0: ð5:4Þ

Approximating DLF(w/h) with function (5.4), it is very easy to find the
inflection point and its coordinates:

w

h

� �
cr
¼ �2a2

6a3
;

DLFcr ¼ a3
w

h

� �3

cr
þ a2

w

h

� �2

cr
þ a1

w

h

� �
cr
þ a0:

ð5:5Þ

As presented in Fig. 5.10, there are two different approximation curves (trend
lines) and their equations—the first curve (the red one, bottom equation in
Fig. 5.10) is obtained including all points from the numerical calculations and the
second one (green, upper equation—Fig. 5.10) is based on points for DLF equal or
higher than 1. The obtained results based on the above-mentioned curves are
presented in Table 5.1.

Comparing the results presented in Table 5.1, it can be said that the critical
values of DLF do not depend on the number of points taken into consideration for
determining the trend line equation—it is enough to take all points for DLF C 1.
More results obtained employing this approach and comparisons with other criteria
will be presented in Sect. 6.2.

y = 0.4665x 3 - 1.5693x 2 + 2.0071x + 0.5877
R 2  = 0.9849

y = 0.1751x 3 - 0.5972x 2 + 1.0765x + 0.8139
R 2 = 0.9997

0.0

0.5

1.0

1.5

2.0

2.5

0 0.5 1 1.5 2
x = w/h

y 
=

 D
LF

Fig. 5.10 Trend lines
received from the results
(points) of the numerical
calculations
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To use the alternative (P-w2) method, the relation between the dynamic load
factor and dimensionless deflections should be changed into a curve or an equation
describing the relation of DLF versus the square of the dimensionless deflection,
and next, the point of intersection of the straight line representing the postbuckling
state with the vertical axis can be found (Fig. 5.11). For exemplary results
obtained for a simply supported compressed plate with the initial geometrical
imperfection equal to 1/100 of the plate thickness (Fig. 5.11), the critical value of
DLFcr is equal to 1.14, according to the proposed alternative method (P-w2).

The next suggestion concluded in [17] is to calculate the dynamic load factor as
a relation between the amplitude of the pulse load and the critical load for an
imperfect structure. According to the obtained results [17] (also presented in
Sect. 6.2), it can be said that for small imperfections (i.e., less than or equal to
1/100 of the plate or wall thickness), there are no differences in the results after
assuming the traditional definition of the dynamic load factor DLF. However, for
higher imperfections (i.e., greater than 1/10 of the plate thickness), the relations
between the nondimensional deflection and the dynamic load factor are similar to
static postbuckling equilibrium paths, which could mean that for highly imperfect
structures the dynamic responses are similar to deflection for statically loaded
structures. More examples are presented in Sect. 6.2.

Table 5.1 An influence of taken approximate equations on critical value of DLF

Case Constant in (5.4) DLFcr

a3 a2 a1 a0

1) All points from the numerical
calculations taken to obtain an approximate
equation

0.4665 -1.5693 2.0071 0.5877 1.523

2) Points with DLF C 0.7 0.3252 -1.1071 1.5800 0.6832 1.526
3) Points with DLF C 0.8 0.2655 -0.9081 1.3899 0.7291 1.527
4) Points with DLF C 0.9 0.2159 -0.7396 1.2236 0.7722 1.527
5) Points with DLF C 1.0 0.1751 -0.5972 1.0765 0.8139 1.523
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Fig. 5.11 Linear trend line
for the alternative method
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Chapter 6
Thin Plates

The chapter is devoted to buckling, postbuckling behaviour and dynamic buckling
of thin plates made of metals or composites modelled as orthotropic materials. The
considered plates are simply supported on loaded edges and different boundary
condition on longitudinal edges. They are subjected to uniform compression.

All calculations were performed assuming elastic homogenous material prop-
erties. Isotropic and orthotropic materials were considered (Table 6.1).

All materials mentioned in Table 6.1 are isotropic, hence, the Kirchhoff’s
modulus can be calculated according to following well known equation:

G ¼ E

2ð1� mÞ : ð6:1Þ

The fibre composite material was modelled as orthotropic but for components
(resin and fibre), isotropic material properties (Table 6.1) were assumed. Neces-
sary equations for material properties homogenization based on the theory of
mixture [2, 3] are as follows:

Ex ¼ Em 1� fð Þ þ Ef f ;

Ey ¼ Em
Em 1�

ffiffiffi
f
p

ð Þ þ Ef
ffiffiffi
f
p

Em 1�
ffiffiffi
f
p

1�
ffiffiffi
f
p

ð Þ½ �þEf
ffiffiffi
f
p

1�
ffiffiffi
f
p

ð Þ ;

myx ¼ mm 1�
ffiffiffi
f

p� �
þ mf

ffiffiffi
f

p
;

G ¼ Gm
Gm

ffiffiffi
f
p

1�
ffiffiffi
f
p

ð Þ þ Gf 1�
ffiffiffi
f
p

1�
ffiffiffi
f
p

ð Þ½ �
Gm

ffiffiffi
f
p
þ Gf 1�

ffiffiffi
f
p

ð Þ ;

ð6:2Þ

where Em and Ef are the Young’s modulus of elasticity for matrix and fibre,
respectively, Gm and Gf are the shear modulus for matrix (subscript m) and fibre
(subscript f), mm and mf are Poisson’s ratios for matrix and fibre, and f = Vf/
(Vm ? Vf) is the fibre volume fraction.

It should be noticed that taking into account (6.2) and the volume fibre fraction
f from the range 0.2 to 0.7, the coefficient of orthotropy defined as Ex/Ey var-
ies from 2.9 to 3.6. Moreover, in real, industrially produced structures, the
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above-mentioned volume fibre fraction f ranges from 0.4 to 0.6, so in our case the
coefficient of orthotropy varies from 3.4 to 3.6. Figure 6.1 shows a relation
between the volume fibre fraction and the coefficient of orthotropy for glass fibre
in epoxy resin with the material data presented in Table 8.1.

Rectangular thin plates simply supported on loaded edges with different
boundary conditions along the unloaded edges were considered (Fig. 6.2). On the
longitudinal edges, five different boundary condition cases were taken into
account. The following notations are used in Fig. 6.2: s—simply supported edge,
c—clamped edge, e—free edge.

Plates with constant and variable material properties were considered. Com-
posite plates with the widthwise variable volume fibre fraction were modelled by
dividing the plate into strips (Fig. 6.3) with constant material properties assigned
to the assumed volume fibre fraction f. Its value was determined on the basis of the
arbitrary adopted sine function:

f ¼ fav þ A � cos
2py

b

� �
; ð6:3Þ

where: fav = 0.5—arbitrary assumed average value of the fibre volume fraction;
A = \ -0.4; 0.4 [—amplitude of sine describing the change of material prop-
erties along the plate width. The range of the amplitude is assumed in such a way
that the volume fibre fraction f varies from 0.1 to 0.9 or from about 10 % to 90 %
of reinforcing fibres in the composite structure. However, the proposed method
allows one to analyse any function describing a widthwise variation of material
properties, not necessarily that one defined by changes in the volume fibre fraction
content f [6, 7].
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Fig. 6.1 Volume fibre
fraction influence on
coefficients of orthotropy for
fibre glass epoxy resin

Table 6.1 Assumed material
properties

Material type E (GPa) m q (kg/m3)

Steel 200 0.3 7,850
Aluminium 70 0.33 2,950
Epoxy resin 3.5 0.33 1,249
Glass fibre 71 0.22 2,450
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The results presented further were obtained using the analytical-numerical
method (MAN) and the finite element method (FEM) software.

In the dynamic buckling analysis, load is defined as a dynamic load factor, i.e.,
an amplitude of the pulse load divided by the static buckling load. Therefore, the
static buckling load and the corresponding buckling mode should be determined.
The buckling mode is used to map an initial imperfection on the plate midplane.
The time of pulse duration is assumed as corresponding to a period of natural
vibrations. It means that the eigenvalue modal analysis and the eigenbuckling
analysis should be performed in the first stage.

The natural frequencies and the buckling load for composite and steel square
plates (a/b = 1) with the thickness ratio b/h = 100 for different boundary con-
dition cases are presented in Table 6.2.

Fig. 6.2 Analysed plates with different boundary conditions

Fig. 6.3 Model of the plate with widthwise sinusoidally variable material properties (volume
fibre fraction)
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The natural frequencies and the buckling load for the square composite plate
(a/b = 1, b/h = 100) with the widthwise variable volume fibre fraction (6.3) for
different amplitudes A (describing the volume fibre fraction distribution) are
presented in Figs. 6.4 and 6.5, respectively. For all boundary condition cases, both
the employed methods of calculations give similar results, which confirms the
correctness of the calculations.

As can be seen in Figs. 6.4 and 6.5, the buckling loads as well as the natural
frequencies grow with an increasing value of the amplitude A describing the
volume fibre fraction in the plate widthwise direction. This means that plates with
stiffer longitudinal strips near the plate edges are stiffer as a whole (a higher
buckling load and higher natural frequencies) than plates with a stiffer central
longitudinal strip.
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Fig. 6.4 Static buckling load Pcr as a function of the amplitude A describing the distribution of
the volume fibre fraction
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Fig. 6.5 Natural frequencies as a function of the amplitude A describing the distribution of the
volume fibre fraction
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6.1 Postbuckling Behaviour

The postbuckling behaviour analysis allows one to describe the behaviour of the
plate subjected to a load higher than the buckling load. Postbuckling equilibrium
paths for a steel square plate with different boundary conditions on longitudinal
edges subjected to uniform compression (uniform shortening—see Fig. 6.11) are
presented in Fig. 6.6. Equilibrium paths for an ideal flat plate are presented in
Fig. 6.6a and for a plate with geometrical imperfections with the amplitude
n* = 0.01—in Fig. 6.6b, correspondingly.

For an ideal plate structure, the critical load can be determined from the
eigenvalue analysis but for structures with imperfections, the buckling load may be
determined on the basis of the pre- and post- buckling behaviour. Two well-known
methods for identification of the critical load were employed. They are usually
applied to the results of experimental investigations. The inflection point method
(P-w), which is very similar to the ‘‘top of the knee’’ method and the alternative
(P-w2) method were used.

An influence of initial imperfection amplitudes n* on postbuckling equilibrium
paths for epoxy glass composite (fibre volume factor f = 0.5) square plates simply
supported on all edges was investigated. The obtained results in the form of
postbuckling curves presented as the nondimensional load P/Pcr versus nondi-
mensional displacement n = w/h (where h is the plate thickness) are shown in
Fig. 6.7. Using the inflection point and alternative methods, the buckling load
Pcr

* /Pcr (where Pcr
* —buckling compressive force for an imperfect plate and Pcr—

bifurcation load) for a plate with geometrical imperfections was found and is
presented in Table 6.3.

The results shown in Table 6.3 allow one to conclude that lower values of Pcr
*

were obtained using the P-w2 method and the differences between the results of
both the methods grow with an increase in the imperfection amplitude value. It can
also be noted that the higher initial imperfection amplitude, the lower critical
buckling load.
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Fig. 6.6 Postbuckling equilibrium paths for square ideal plates (a) and plates with imperfections
(b) with different boundary conditions on non-loaded edges
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An influence of the initial imperfection amplitude on the critical buckling load
and the postbuckling behaviour was checked for the rest of the assumed boundary
conditions (Fig. 6.2). Some exemplary postbuckling equilibrium paths obtained
with MAN for rectangular composite (volume fibre fraction f = 0.5) plates are
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Fig. 6.7 Dimensionless load P/Pcr versus dimensionless deflection (a) or square of dimension-
less deflection (b)

Table 6.3 Pcr
* /Pcr for

different amplitudes of initial
imperfections

Determination method: P-w P-w2

initial imperfection amplitude n* Pcr
* /Pcr Pcr

* /Pcr

0.001 0.999 0.999
0.005 0.998 0.994
0.01 0.995 0.986
0.02 0.990 0.968
0.05 0.968 0.925
0.1 0.925 0.863
0.2 0.834 0.751
0.5 0.589 0.494
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presented in Figs. 6.8 and 6.9. The results for an ideal plate are presented in
Fig. 6.8 and for a plate with the initial imperfection amplitude n* = 0.1—in
Fig. 6.9. The relations between the critical load for the plate with imperfections
and the ideal flat plate for different initial imperfection amplitudes n* are presented
in Tables 6.4 and 6.5, correspondingly.

Comparing the results presented in Tables 6.4 and 6.5, a similar conclusion to
those based on the results in Table 6.3 can be drawn, i.e., differences between the
results of both the methods grow with an increase in the imperfection amplitude
value and the higher initial imperfection amplitude, the lower critical buckling load.

Let us compare postbuckling equilibrium paths for a plate made of steel and
composite with all simply supported edges (the case denoted by ‘‘ss’’ in Fig. 6.2)
and with one free edge (the case denoted by ‘‘se’’ in Fig. 6.2). A comparison of the
results is presented in Fig. 6.10.

The results presented in Fig. 6.10 show that the plate made of a composite
material is stiffer due to its orthotropic character than the plate made of steel. It
should be emphasized that the results presented are nondimensional so for a
dimensional value of the buckling load, the steel plate has a higher value than the
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(a) and P-w2 (b) methods
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Fig. 6.9 Postbuckling equilibrium paths for plates with imperfections n* = 0.1 obtained from
P-w (a) and P-w2 (b) methods

Table 6.4 Pcr
* /Pcr

determined with the ‘‘top of
the knee’’ method—P-w
method

n* = boundary conditions 0.01 0.1 0.5

se 0.99 0.87 0.42
ce 0.99 0.86 0.39
ss 1 0.93 0.59
sc 1 0.93 0.59
cc 1 0.93 0.62

Table 6.5 Pcr
* /Pcr

determined with the
alternative method—P-w2

method

n* = boundary conditions 0.01 0.1 0.5

se 0.97 0.77 0.38
ce 0.97 0.76 0.37
ss 0.97 0.79 0.43
sc 0.97 0.79 0.43
cc 0.97 0.79 0.44
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composite one due to differences in their Young’s modulus. A comparison of the
boundary conditions (compare the curve denoted as ‘‘ss’’ and ‘‘se’’ in Fig. 6.10 for
the chosen material), which do not depend on material properties (relations for the
steel plate and the composite plate are the same), is very interesting—in the case
when one longitudinal edge is free, the plates are stiffer than in the case when all
edges are simply supported. The stiffness relation describe above seems to be
unrealistic, but as will be shown below, the above-mentioned relation depends on
the assumed boundary conditions at the loaded edge. In the model under inves-
tigation, the boundary conditions on loaded edges were assumed in such a way that
the edges were straight and remained parallel during loading (Fig. 6.11).

A comparison between compressed simply supported plates with one longitu-
dinal edge free for two different assumptions can be found in [5] and is presented
in Fig. 6.12. The curve denoted by ‘1’ was obtained on the assumption that the
loaded edges were straight and remained parallel during loading. The curve
denoted as ‘2’ was obtained on the assumption that the loaded edges were straight
and could rotate about normal to the middle surface plane. Comparing the post-
buckling equilibrium paths denoted as 1 and 2 in Fig. 6.11, an influence of the
assumed boundary conditions is very well visible. Additionally, in Fig. 6.11, a
postbuckling path for the plate with all simply supported edges is presented and
denoted as ‘3’.

6.2 Dynamic Buckling

Having determined the natural vibration frequency, the static buckling load with the
corresponding buckling mode and postbuckling equilibrium paths for plates with
initial geometrical imperfections, a dynamic response analysis can be performed for
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Fig. 6.10 Postbuckling
equilibrium paths for steel
and composite plates
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plates subjected to the pulse load (Fig. 6.12) of a rectangular (P), three triangular type
(descending T1, equilateral T2 and T3 growing) and sinusoidal (S) shape.

In order to verify the analytical-numerical method, the finite element analysis
was performed and the obtained results were compared to the results presented by
Petry and Fahlbusch [12]. Figure 6.13 shows a dimensionless maximum deflection
as a function of the dynamic load factor DLF for the aluminium square plate
(a/b = 1 and b/h = 200) simply supported on all edges and subjected to com-
pression with a sinusoidally shaped pulse load. The duration of the pulse corre-
sponds to the period of natural vibrations for the plate under consideration. The
amplitude of initial imperfections was assumed to be equal to 5/100 of the plate
thickness.

Fig. 6.11 Postbuckling equilibrium paths for plates with different assumptions on loaded edges

Fig. 6.12 Pulse load shapes denoted as: a T1, b T2, c T3, d P, e S
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The analytical-numerical method presented in Chap. 3 gives a slightly higher
deflection value than the results presented in the literature [12] and obtained from
the finite element method. The higher differences of the DLF value increase from
about 2 % for the DLF = 1.2 up to 14 % for the DLF = 4. The discrepancies for
the growing pulse load amplitude may be due to a more accurate model adopted by
Petry and Fahlbusch [12], who took a relatively larger number of terms in the series
function describing the plate deflection in the solution. It should be noted that the
proposed approach allows one to determine well enough the critical value of the
dynamic load factor DLFcr according to the Volmir or Budiansky-Hutchinson
criterion (see Table 6.6).

Other examples which confirm the correctness of the applied methods of
computations can be found in the monograph edited by Kowal-Michalska [4].
Therefore, in the following part of the study, the results obtained only with the two
employed methods of calculations, i.e., the finite element method (FEM) and the
analytical-numerical method (MAN), will be compared.

Dynamic buckling of thin plates, as shown in the literature overview (Sect.
1.3.2), is the subject of many papers and has appeared in the literature for more
than 50 years. The author of this monograph in his previous works [4, 8–10]
analysed different shapes of pulse loading, an influence of material properties and
boundary conditions on unloaded edges of plates. Below, a summary of the results
contained in those works is presented. The results are compared to the results
obtained with methods known from experimental investigations, i.e., the inflection
point and alternative method (see Sect. 5.8).
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Fig. 6.13 Curves n (DLF)
for the aluminium plate—a
comparison of the results

Table 6.6 Critical value of
DLF obtained with different
methods

Criterion/method Budiansky-Hutchinson Volmir n = 1

MAN 1.5–1.8 1.48
FEM 1.5–1.8 1.53
Petry-Fahlbusch 1.5–1.8 1.52
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A different shape of the pulse loading influence on dynamic responses of the
plate is shown in Figs. 6.14 and 6.15 and in Table 6.7. Figure 6.14 presents some
exemplary results obtained from the analytical-numerical method for the plate
made of a composite with the volume fibre fraction equal to f = 0.5 and clamped
on longitudinal edges (‘cc’). In Fig. 6.15, a comparison of the results obtained with
the analytical-numerical method (MAN) and the finite element method (FEM) for
triangularly (T1) and rectangularly (R) shaped pulses is presented. The curves in
Fig. 6.15 present the results for the simply supported plate made of an epoxy-glass
composite with the volume fibre fraction equal to f = 0.5. The results obtained
from both the methods are consistent.

The Budiansky-Hutchinson and Volmir criteria were compared for a square
plate with the fibre volume fraction f = 0.8, for all the boundary conditions and
impulses under analysis. The obtained critical value of dynamic load factors DLFcr

are presented in Table 6.7.
The dimensionless critical value of the dynamic load factor DLFcr determined

according to the Budiansky-Hutchinson criterion, the Volmir criterion, author’s
modification of the Kleiber-Kotula-Saran criterion and the methods known from
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experimental studies (i.e., inflection point and alternative methods) for steel and
composite plates subjected to a rectangularly shaped pulse load (with a duration
corresponding to the period of natural vibrations) are summarized in Tables 6.8
and 6.9. The results were obtained with the analytical-numerical method on
the assumption that the amplitude of initial geometrical imperfections was equal to
n* = 0.01.

The dimensionless critical dynamic load factor values presented in Tables 6.8
and 6.9 confirm a compliance of the new criterion and the new approach with the
well-known Budiansky-Hutchinson and Volmir criteria. However, the alternative
method used to determine the critical dynamic buckling amplitude yields the
results about twice lower than the other applied methods. This means that the
alternative method should rather not be used to determine the critical value of
DLF, so in the further part of the presentation of the results, it will not be used. In
the case of plates with boundary conditions denoted as ‘‘se’’ and ‘‘ce’’, the results

Table 6.8 DLFcr comparison for steel plates

Boundary
condition

Mode
m

Critical value of the dynamic load factor DLFcr

Budiansky-
Hutchinson

Volmir
n = 1

Author’s criterion
rmax = 1

P-w P-w2

ss 1 1.5–1.6 1.43 1.51 1.67 0.76
cc 2 1.4–1.5 1.51 1.38 1.50 0.69
se 1 1.5–1.6 1.55 1.35 1.22 0.59
ce 1 1.3–1.4 1.58 1.35 1.22 0.59
sc 1 1.4–1.8 1.46 1.58 1.70 0.76

Table 6.9 DLFcr comparison for epoxy-glass composite plates

Volume fibre
fraction f

Boundary
condition

Mode
m

Critical value of the dynamic load factor DLFcr

Budiansky-
Hutchinson

Volmir
n = 1

Author’s
criterion
rmax = 1

P-w P-w2

0.2 ss 1 1.45–1.6 1.46 1.46 1.52 0.69
cc 1 1.45–1.6 1.44 1.49 1.53 0.72
se 1 1.3–1.45 1.65 1.31 1.15 0.55
ce 1 1.3–1.45 1.68 1.30 1.10 0.52
sc 1 1.6–1.75 1.45 1.46 1.52 0.70

0.5 ss 1 1.45–1.5 1.46 1.45 1.45 0.69
cc 1 1.45–1.6 1.45 1.48 1.52 0.71
se 1 1.3–1.45 1.64 1.31 1.14 0.54
ce 1 1.3–1.45 1.71 1.30 1.10 0.52
sc 1 1.3–1.45 1.46 1.44 1.45 0.69

0.7 ss 1 1.3–1.45 1.34 1.32 1.43 0.66
cc 1 1.45–1.6 1.44 1.49 1.53 0.72
se 1 1.3–1.45 1.61 1.31 1.15 0.55
ce 1 1.3–1.45 1.70 1.30 1.10 0.52
sc 1 1.45–1.6 1.46 1.46 1.46 0.70
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obtained with author’s criterion differ by about 10 % and by 15 % when the
inflection point method is used. In other cases (excluding the alternative method),
they are between the values of the criteria designated by Budiansky-Hutchinson
and Volmir. The best agreement of the results was achieved for plates with sup-
ported edges (i.e., the boundary condition denoted as ‘ss’, ‘sc’, ‘cc’) between the
following two pairs: author’s criterion—the Volmir criterion and the Budiansky-
Hutchinson criterion—the inflection point method.

In the literature [1, 13–15], the dynamic buckling occurs when the pulse
duration is close to a period of fundamental vibrations or to half a period of
fundamental vibrations [1] and the initial deflection is very small in relation to the
thickness of the plate. Therefore, the simply supported composite plate made of an
epoxy-glass composite with the volume fibre fraction f = 0.5 subjected to rect-
angular pulse load was taken as an example to analyse an influence of pulse
duration and the assumed initial imperfection amplitude on the dynamic response.
The results are shown in Figs. 6.16 and 6.17 and are summarized in Tables 6.10
and 6.11, respectively.
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Fig. 6.16 Influence of the initial imperfection amplitude on the course of the curves n (DLF) and
rmax (DLF) for the simply supported composite plate
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In Fig. 6.16, a postbuckling static equilibrium path for the ideal flat plate is also
presented. The curves n (DLF) for a large amplitude of initial imperfections do not
cross the postbuckling equilibrium path, which would suggest that for such large
initial imperfections, the critical dynamic load factor is equal or even less than the
static buckling load. However, the results summarized in Table 6.10 show that this
is not entirely true and a decrease in DLFcr with an increase in the amplitude of
initial imperfections is observed.
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Fig. 6.17 Influence of the pulse duration on the course of the curves n (DLF) and rmax (DLF) for
the simply supported composite (f = 0.5) plate

Table 6.10 Influence of the amplitude of initial imperfections on DLFcr

Amplitude of initial
imperfections n*

Critical value of the dynamic load factor DLFcr

Budiansky-
Hutchinson

Volmir
n = 1

Author’s criterion
rmax = 1

Inflection point
method P-w

0.001 2.35–2.5 2.23 2.00 2.40
0.005 1.75–1.9 1.66 1.67 1.68
0.01 1.45–1.5 1.46 1.45 1.52
0.02 1.2–1.3 1.30 1.25 1.31
0.05 1.0–1.1 1.15 1.05 1.14
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Figure 6.17 shows the curves n (DLF) for different pulse durations. Addition-
ally, a postbuckling static equilibrium path for the ideal flat plate is depicted. The
presented curves (excluding the postbuckling equilibrium path) were calculated
with the assumed amplitude of initial imperfections n* = 0.01. Similarly as in the
case of the curves presented in Fig. 6.16a, only a few curves in Fig. 6.17a intersect
the postbuckling equilibrium path—it takes place for the curves calculated with a
pulse duration less than 1.25T (where T is a period of the natural frequency of
vibrations). Analysing the results presented in Table 6.11, one can see that an
extension of the pulse duration leads to DLFcr = 1, i.e., to the same results as for
the static buckling load.

As has been stated previously, on the basis of the results summarized in
Tables 6.8 and 6.9, it can be said that the critical dynamic load factor DLFcr

resulting from the proposed criterion can be found between the results obtained
with application of the Volmir criterion and the Budiansky-Hutchinson criterion.
The inflection point method gives similar results as for the Budiansky-Hutchinson
criterion. This fact is also confirmed by the majority of the results shown in
Figs. 6.16 and 6.17 and Tables 6.10 and 6.11. An advantage of the inflection point
method over the Budiansky-Hutchinson criterion is a possibility to determine a
specific value, and not a range of DLF’s in which DLFcr can be found.

An exact analysis of the course of the curves presented in Figs. 6.16b and 6.17b
shows that all the curves are ‘‘based’’ on two straight lines, one descending (for
DLF \ 1) and the other growing (for DLF [ 1). Each of the curves rmax (DLF) has
also a non-linear range, which begins after ‘‘leaving’’ the aforementioned straight
lines. Comparing the curves and the obtained critical values DLFcr for the pulse
duration Tp \ 0.75 T, it can be easily seen that all these curves intersect the line for
rmax = 1 in the point with the same DLF value. Thus, the criterion proposed by the
author has a limit of applicability, because of which it cannot give the critical
value of DLF properly for pulse durations less than 0.75 T in this case. Generally,
it can be said that the criterion does not provide the correct value of DLFcr if the
curve rmax (DLF) intersects the line rmax = 1 in its linear part (for example, the
curve indicated as ‘0.001’ in Fig. 6.16b or ‘0.5T’ in Fig. 6.17b).

Table 6.11 Influence of the pulse duration on DLFcr

Pulse duration
Tp

Critical value of the dynamic load factor DLFcr

Budiansky-
Hutchinson

Volmir
n = 1

Author’s criterion
rmax = 1

Inflection point method
P-w

0.5T 3.3–3.5 3.1 2.00 4.26
0.65T 2.3–2.5 2.24 2.00 n/a
0.7T 2.3–2.5 2.06 2.00 n/a
0.75T 2.1–2.25 1.9 1.96 n/a
1T 1.45–1.5 1.46 1.45 1.52
1.25T 1.05–1.2 1.29 1.24 n/a
1.5T 1.05–1.2 1.24 1.17 n/a
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Additionally to the orthotropic plates with constant properties, some plates with
material properties varying along the width of the plate were also considered. As
has been presented in previous author’s papers [6, 7] on static buckling and the
postbuckling behaviour of structures with widthwise variable material properties, a
suitable fibre distribution can lead to an increasing or decreasing buckling load.

Therefore, it was decided to repeat the buckling investigations for plates with
widthwise variable material properties but now subjected to the pulse load. An
impact of changes in the amplitude A describing the fibre volume fraction f (6.3)
along the width of the plate on the course of the curves n (DLF) and on the critical
value of the dynamic load factor DLFcr was investigated. A dynamic response of
plates with variable material properties subjected to rectangular pulse with a
period of duration equal to a period of fundamental vibrations is shown in
Figs. 6.18 and 6.19. The analysed plates are simply supported on all edges (results
in Fig. 6.18) and clamped on longitudinal edges (results in Fig. 6.19). The
amplitude of initial imperfection n* = 0.01 was assumed. The results were
obtained with the analytical-numerical method.
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It can be noticed that the nature of the curves n (DLF) for all the boundary
conditions taken into consideration is similar, and for small values of the dynamic
load factor, i.e., DLF \ 1.5, the course of the curves defined as the maximum
deflection as a function of the dynamic load factor overlap. Only for the case in
which the longitudinal plate edges are clamped (Fig. 6.19), the curve for A = 0.4
is different from the others. The reason of different behaviour is a different
buckling mode (m = 2) in this case (A = 0.4). To check that all the calculations
were correct for that case (A = 0.4, clamped longitudinal edges of plate), a
comparative analysis was performed—the time courses of the maximum deflection
were determined with the analytical-numerical method (MAN) and the finite
element method (FEM) and are presented in Fig. 6.20.

The curves shown in Fig. 6.20 were determined for four values of the dynamic
load factor DLF = 1.0, 2.0, 3.0 and 4.0. The results of both the methods employed
are similar for DLF = 1.0, and are in accordance to the time when the deflection
reached the maximum value for the remaining values of the dynamic load factor.
The differences between the results obtained with both the methods became
apparent for higher dynamic loads (greater DLF), i.e., for DLF = 3 or 4, and for
the pulse time t/Tp [ 0.7 (after reaching the first maximum deflection). For those
DLFs, the buckling mode takes place, and it can be analysed with the finite
element method only. Despite these differences, the critical dynamic load factor,
determined by displacement criteria (Budiansky-Hutchinson or Volmir) based on
the time courses of the maximum plate deflection, obtained with both the methods
(MAN and FEM), are almost identical.

On the basis of the Budiansky-Hutchinson criterion, the Volmir criterion and
the proposed modified Kleiber-Kotula-Saran criterion (author’s criterion), the
critical dynamic load factor DLFcr for the composite square plate with its longi-
tudinal edges simply supported or clamped was determined. The results are
summarized in Tables 6.12 and 6.13 and they also confirm that the proposed
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Fig. 6.20 Time courses of the maximum deflection for the plate clamped on longitudinal edges
and subjected to different DLFs—a comparison of calculation methods
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criterion gives good results for plates with a relatively small amplitude of initial
imperfections and subjected to pulse loading with a period of duration equal to a
period of natural vibrations. The results presented in Tables 6.12 and 6.13 confirm
the previously noticed rule that the critical values of the dynamic load factor DLFcr

determined by the proposed criterion are between the critical values obtained from
the two well-known criteria (i.e., Budiansky-Hutchinson and Volmir criteria).

Analyzing exactly the results presented in Tables 6.12 and 6.13, one can also
notice that the distribution of fibres along the width of the plate has no significant
effect on the DLFcr value (the maximum change for the same buckling mode is less
than 8 %). If we exclude the case of the clamped plate with A = 0.4 due to a
different buckling mode, a certain regularity in the value of DLFcr can be
observed—the critical value of DLF for the simply supported plate obtained from
the Volmir criterion increases with increasing values of A from A = -0.4 to
A = 0.3, and for the plate clamped along its longitudinal edges, the critical value
of DLFcr rises for the amplitude A approaching zero (A = 0 plate made of a

Table 6.12 DLFcr for simply supported plates with a widthwise variable f

Amplitude of sine describing the volume fibre
fraction distribution A

Critical value of the dynamic load factor DLFcr

Budiansky-
Hutchinson

Volmir
n = 1

Author’s criterion
rmax = 1

-0.4 1.6–1.75 1.42 1.58
-0.3 1.45–1.6 1.44 1.52
-0.2 1.6–1.75 1.44 1.49
-0.1 1.45–1.6 1.46 1.47

0.0 1.3–1.45 1.45 1.44
0.1 1.3–1.45 1.47 1.44
0.2 1.45–1.6 1.47 1.43
0.3 1.3–1.45 1.47 1.45
0.4 1.45–1.6 1.45 1.47

Table 6.13 DLFcr for plates clamped on longitudinal edges with a widthwise variable f

Amplitude of sine describing the volume fibre
fraction distribution A

Critical value of the dynamic load factor DLFcr

Budiansky-
Hutchinson

Volmir
n = 1

Author’s criterion
rmax = 1

-0.4 1.6–1.75 1.42 1.57
-0.3 1.45–1.6 1.43 1.53
-0.2 1.45–1.6 1.44 1.50
-0.1 1.6–1.75 1.44 1.48

0.0 1.45–1.6 1.45 1.48
0.1 1.45–1.6 1.45 1.48
0.2 1.45–1.6 1.44 1.49
0.3 1.45–1.6 1.44 1.51
0.4 1.3–1.45 1.53 1.37

6.2 Dynamic Buckling 133



material of constant properties). The DLFcr value determined with author’s cri-
terion as well as the Budiansky-Hutchinson criterion for simply supported and
clamped plates behave conversely—the critical value of DLF decreases for the
plate with a more uniform distribution of fibres. Strengthening the middle part of
the plate (A = -0.4) is followed by an increase in a value of the critical dynamic
load factor. This is a reverse phenomenon than in the static load case (Fig. 6.4)—
the largest amount of the buckling load is for the plate with A = 0.4 (reinforced
edges).

In the majority of publications dealing with dynamic buckling problems,
including the present one, the amplitude of initial imperfections n* = 0.01 has
been assumed. Such assumption is made only from the numerical point of view.
Assuming such a low amplitude of initial imperfections, researchers treat the
analysed structures as an almost ideal flat plate. It has been confirmed above by the
earlier calculations (Tables 6.3 to 6.5) that the differences between the buckling
load for the plate with a low amplitude of initial imperfections Pcr

* and the buckling
load for an ideal flat plate Pcr are very small and less than 1 %.

The dynamic load factor DLF is defined as a ratio of an amplitude of the pulse
load to the critical static buckling load for ideal structures. The calculations pre-
sented below were conducted to check how the way DLF is estimated influences
the critical amplitude of the pulse load leading to the dynamic buckling. The
author proposes to introduce a dynamic load factor DLF* = P/Pcr

* —a pulse load
amplitude divided by the static buckling load for imperfect structures. As pre-
sented in [11], such an approach is very important, especially in the case when the
amplitude of initial geometrical imperfections reaches a value equal or higher than
n* = 0.05.

Some exemplary calculations showing the differences in results according to the
way of the DLF definition, were performed for the simply supported square plate
made of an epoxy-glass composite with the volume fibre fraction f = 0.5. Two
different periods of pulse duration Tp = T and Tp = 0.5T (where T—period of
natural fundament flexural vibrations of the plate, for the given material properties
and the geometry T = 0.59 ms) were assumed.

To show an influence of the assumed amplitude of initial geometrical imper-
fections and the way of the DLF definition on the critical value of the dynamic
load factor DLFcr, a dynamic response analysis was performed with the analytical-
numerical method. In Tables 6.14 and 6.15, the critical dynamic load factors
DLFcr (determined in the conventional way) and DLF�cr (determined from
the DLF� w=hð Þ relations, where the amplitude of pulse loading is divided by the
buckling load for the plate with initial imperfections), calculated according to
the Budiansky-Hutchinson criterion, the Volmir criterion and the inflection point
method, are presented.

Analysing the results presented in Tables 6.14 and 6.15, one can say that for
low values of the imperfection amplitude (in a range of hundredth parts of the plate
thickness), the differences between the critical value of the dynamic load factor
known as DLFcr (a ratio of the critical pulse load amplitude to the static
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bifurcational load) and the proposed definition of the critical value of the dynamic
load factor DLF�cr (a ratio of the critical pulse load amplitude to the static buckling
load for the imperfect plate) are less than 1 % and the curves are practically
identical (see Figs. 6.21, 6.22 and 6.23). However, for the initial imperfection
amplitude n* C 0.05, the differences between DLFcr and DLF�cr grow with an
increasing amplitude of initial geometrical imperfections. The calculations with a
new definition of the dynamic load factor DLF* were carried out once again. The
results obtained with the analytical-numerical method for the plate with all types
of boundary conditions (Fig. 6.2) subjected to the rectangularly shaped pulse load
with the time duration Tp = T or Tp = 0.5T are presented in Tables 6.16 and 6.17.

To make the differences between the results obtained on the assumption of
various definitions of the dynamic load factor more visible, the courses of DLF (n)
and DLF* (n) for three values of imperfection amplitudes and two pulse durations
(Tp = 1T and Tp = 0.5T) are presented in Figs. 6.21, 6.22 and 6.23. In these
figures, the static postbuckling curves P/Pcr (for the flat plate) and P/Pcr

* (for the
imperfect plate) are also drawn.

It can be noticed that for a relatively small imperfection amplitude n* = 0.01
(Fig. 6.21), the curves DLF (n) and DLF* (n) cover each other for the given pulse

Table 6.14 DLFcr and DLFcr
* for different amplitudes of initial imperfections and Tp = T

Assumed criterion:
initial imperfection
amplitude n*

Volmir
criterion
ncr = 1

Budiansky-
Hutchinson
criterion

Inflection
point
method
P-w

Volmir
criterion
ncr = 1

Budiansky-
Hutchinson
criterion

Inflection
point
method
P-w

DLFcr DLFcr DLFcr DLF�cr DLF�cr DLF�cr

0.01 1.49 1.4–1.6 1.52 1.49 1.4–1.6 1.53
0.02 1.31 1.2–1.3 1.31 1.32 1.2–1.3 1.32
0.05 1.17 0.8–0.9 1.14 1.21 0.9–1.1 1.18
0.1 1.07 0.8–0.9 1.06 1.15 0.9–1.0 1.14
0.2 1.13 0.7–0.8 0.65 1.10 0.84–0.96 1.10
0.5 0.63 0.4–0.5 0.49 1.08 0.7–0.85 0.83

Table 6.15 DLFcr and DLFcr
* for different amplitudes of initial imperfections and Tp = 0.5T

Assumed criterion:
initial imperfection
amplitude n*

Volmir
criterion
ncr = 1

Budiansky-
Hutchinson
criterion

Inflection
point
method
P-w

Volmir
criterion
ncr = 1

Budiansky-
Hutchinson
criterion

Inflection
point
method
P-w

DLFcr DLFcr DLFcr DLF�cr DLF�cr DLF�cr

0.01 3.07 4.4–4.6 4.26 3.08 4.4–4.6 4.27
0.02 2.47 3.4–3.6 3.57 2.49 3.4–3.6 3.61
0.05 1.89 2.0–2.8 2.04 1.86 2.5–2.9 2.56
0.1 1.40 1.6–1.8 1.81 1.51 1.7–1.9 1.95
0.2 1.01 1.0–1.2 1.17 1.21 1.2–1.4 1.41
0.5 0.62 0.4–0.6 – 1.01 0.7–1.0 –
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duration Tp. Also the static postbuckling curves overlap (excluding the initial
range of deflections). In this case, the character of dynamic responses strongly
depends on the assumed pulse duration—for a shorter pulse, the deflections are
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Fig. 6.21 Static and dynamic responses versus dimensionless deflection for n* = 0.01
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Fig. 6.22 Static and dynamic responses versus dimensionless deflection for n* = 0.1
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Fig. 6.23 Static and dynamic responses versus dimensionless deflection for n* = 0.5
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Table 6.16 DLFcr
* determined using different methods/criteria for Tp = 1T

Amplitude of initial
imperfections n*

Boundary
conditions

Method/criteria

Inflection point
method

Volmir
criterion

Budiansky-
Hutchinson

P-w ncr = 1/
ncr = 0.5

0.01 se 1.14 1.71/1.16 1.2–1.4
0.1 0.38 1.39/0.80 0.8–1.0
0.5 0.27 0.82/0.39 0.2–0.3

0.01 ce 1.10 1.78/1.18 1.2–1.4
0.1 0.33 1.46/0.82 0.8–1.0
0.5 0.24 0.87/0.40 0.2–0.3

0.01 ss 1.45 1.40/1.06 1.4–1.6
0.1 0.68 1.04/0.70 0.8–1.0
0.5 0.43 0.63/0.35 0.4–0.5

0.01 sc 1.45 1.40/1.06 1.4–1.6
0.1 0.67 1.04/0.71 0.8–1.0
0.5 0.43 0.63/0.34 0.4–0.5

0.01 cc 1.52 1.36/1.04 1.4–1.6
0.1 0.72 0.99/0.69 0.8–1.0
0.5 0.51 0.61/0.34 0.5–0.6

Table 6.17 DLFcr
* determined using different methods/criteria for Tp = 0.5T

Amplitude of initial
imperfections n*

Boundary
conditions

Method/criteria

Inflection point
method

Volmir
criterion

Budiansky-
Hutchinson

P-w ncr = 1/
ncr = 0.5

0.01 se 3.92 3.32/2.36 3.8–4.2
0.1 1.10 1.52/0.93 1.2–1.4
0.5 0.29 0.82/0.39 0.3–0.4

0.01 ce 3.84 3.34/2.39 3.8–4.2
0.1 0.99 1.57/0.94 1.2–1.4
0.5 0.26 0.87/0.40 0.2–0.3

0.01 ss 4.51 3.08/2.12 4.6–5.0
0.1 1.75 1.36/0.91 1.6–1.8
0.5 0.50 0.64/0.35 0.5–0.6

0.01 sc 4.52 3.08/2.12 4.6–5.0
0.1 1.76 1.36/0.91 1.6–1.8
0.5 0.50 0.64/0.35 0.5–0.6

0.01 cc 4.56 3.01/2.07 4.6–5.0
0.1 1.87 1.34/0.90 1.8–2.0
0.5 0.59 0.62/0.35 0.5–0.6
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small and the dynamic buckling load is at least three times greater (compare the
results in Tables 6.14 and 6.15 or in Tables 6.16 and 6.17).

When the amplitude of imperfections grows up to the value n* = 0.1
(Fig. 6.22), the differences between the DLF and DLF* curves are clearly visible
for both pulse durations and the static postbuckling curves P/Pcr (for the flat plate)
and P/Pcr

* differ as well. The character of dynamic responses for the pulse dura-
tions Tp = 1T and Tp = 0.5T is similar but the dynamic buckling load for a shorter
pulse is twice as high as for Tp = 1T.

For small values of the imperfection amplitude (in a range of hundredth parts of
the plate thickness), the pulse load duration time strongly affects the dynamic
buckling load value and the character of the dynamic response of the plate under
consideration.

For a relatively large value of amplitude of initial geometrical imperfections n*

(the imperfection amplitude equals half of the plate thickness), the results show
(Fig. 6.23) that dynamic responses of the plate do not depend on the pulse load
duration—the relations DLF (n) for both the assumed periods of the pulse duration
(i.e., Tp = 1T and Tp = 0.5T) overlap and the curves DLF* (n) for both the
assumed pulses overlap as well. Moreover, the courses of DLF* (n) are almost
identical as the static postbuckling curve P/Pcr

* . It should be underlined that the
differences between the courses of DLF and DLF* are clearly visible.

One can conclude from the above mentioned observations that for considerably
large values of the imperfection amplitude (n* [ 0.1), an influence of the pulse
duration on the courses of DLF (n) and DLF* (n) has shown to be negligible.
However, the dynamic responses presented as DLF (n) and DLF* (n) differ sig-
nificantly. Additionally, it should be strongly underlined that the proposed rela-
tions DLF* (n) calculated for two considered values of pulse load durations are
almost identical with the static postbuckling curve P/Pcr

* , which means that the
static and dynamic behaviour of the plate is practically the same for a high
amplitude of initial geometrical imperfections. This fact can be only observed if
the proposed definition for DLF* is applied in the calculations.
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Chapter 7
Thin-Walled Columns

The chapter deals with static buckling, postbuckling behaviour and dynamic
buckling of thin-walled column with open cross-section made of isotropic and
orthotropic material. The analysed columns were subjected to compressed load.
The results was obtained using finite element method and analytical-numerical
method.

7.1 Local Buckling of Columns with Open Cross-Section

The static and dynamic buckling of composite (epoxy glass composite with dif-
ferent volume fibre fractions f) columns with open cross-sections (Fig. 7.1) is
presented in the following chapter. The assumed boundary conditions on loaded
edges correspond to a simple support. The exemplary calculations were carried out
for short columns with the length to web width ratio l/b1 = 1 and for the following
dimensions of the cross-section: b1/h = 50, b2/h = 25 and b3/h = 12.5.

The geometrical imperfection was assumed in the shape corresponding to the
static buckling mode with the amplitude n* = 0.01.

The static buckling load and the fundamental flexural natural frequency
obtained with the analytical-numerical method for columns made of a composite
with different fibre fractions f are presented in Tables 7.1 and 7.2. The static
postbuckling equilibrium paths for columns with a few cross-sections under
consideration (Fig. 7.1), with different fibre volume fractions, are presented in
Figs. 7.2 and 7.3. The postbuckling equilibrium paths are calculated for columns
with ideal flat walls (Fig. 7.2a) and for columns with the initial imperfection
corresponding to the buckling mode with an imperfection amplitude equal to 1/100
of the column wall thickness (Figs. 7.2b and 7.3)

The buckling load and the natural frequency for the hat column section and the
lipped column section are similar—it is true only for the local buckling case.
Buckling for the channel section column was caused by flanges—this is a reason
why for this cross-section the buckling load and the natural frequency are smaller

T. Kubiak, Static and Dynamic Buckling of Thin-Walled Plate Structures,
DOI: 10.1007/978-3-319-00654-3_7,
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than for two other analysed cross-sections. Looking at the obtained results
(Tables 7.1 and 7.2), one can see that an increase in the volume fibre fraction
f leads to an increase in buckling loads as well as in natural frequencies. Post-
buckling equilibrium paths for the lipped channel section and the hat channel
section overlap. The postbuckling path for the channel section lies below the
equilibrium paths of columns with stiffened cross-sections—it is obvious because
columns with stiffened cross-sections have similar stiffness and channel section
columns are more flexible.

Postbuckling equilibrium paths for columns with different volume fibre frac-
tions f almost overlap (see Fig. 7.3). However, the curves representing the columns
with f = 0.7 lie slightly below the others. The above observation could be
explained by differences in coefficients of orthotropy, calculated as Young’s
modulus in the longitudinal direction divided by Young’s modulus in the trans-
verse direction, which are as follow: 3.4 for f = 0.3; 3.6 for f = 0.5 and 3.1 for
f = 0.7. If one makes a zoom on the results presented in Fig. 7.3a (Fig. 7.4) it is
well visible that the course of postbuckling curves depends on the coefficient of
orthotropy.

The dimensionless deflections n = w/h (the maximum displacement divided by
the segment wall thickness) as a function of DLF (dynamic load factor) for dif-
ferent shapes of pulses are presented in Figs. 7.6, 7.7, 7.8, 7.9 and 7.10. The results
presented in these figures are obtained for:

• the pulse loading duration Tp equal to the period of natural vibrations corre-
sponding to the mode m = 1;

• the shape imperfection corresponding to the local buckling mode with an
amplitude equal to 1/100 of the segment wall thickness (n* = 0.01);

• different shapes of the pulse loading—they are presented in Fig. 7.5.

Table 7.1 Buckling load Pcr (N) for different cross-sections and volume fibre fractions

Volume fibre fraction f: cross-section 0.2 0.4 0.6 0.8

Channel section (Fig. 7.1a) 920 1526 2281 3484
Hat channel section (Fig. 7.1b) 1796 2819 4214 6753
Lipped channel section (Fig. 7.1c) 1797 2821 4217 6762

Fig. 7.1 Cross-sections of the columns under consideration

142 7 Thin-Walled Columns



Table 7.2 Natural frequency (Hz) for different cross-sections and volume fibre fractions

Volume fibre fraction f:cross-section 0.2 0.4 0.6 0.8

Channel section (Fig. 7.1a) 786 940 1076 1256
Hat channel section (Fig. 7.1b) 982 1142 1308 1563
Lipped channel section (Fig. 7.1c) 983 1142 1308 1564
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The results presented in Fig. 7.6 were obtained with the analytical-numerical
method (MAN) and compared with FEM computations. They are similar for both
assumed shapes of pulse loading (Fig. 7.5): rectangular (R) and sinusoidal (S).
Nevertheless, for the rectangularly shaped pulse loading, some small differences in
deflections are visible for DLF greater than 2. It should be noted that the obtained
curves from both methods allow one to find the same critical dynamic load factor
DLFcr values using the Budiansky-Hutchinson [2] or Volmir [7] criterion—for the
rectangular pulse loading: DLFcr & 1.4 (both criteria) and for the sinusoidal pulse
loading: DLFcr & 2.1 according to the Budiansky-Hutchinson criterion or
DLFcr & 2.3—the Volmir criterion.

Similarly as for static load (Fig. 7.3), an influence of the volume fibre fraction
of the dynamic response was checked also for dynamic load. The results for hat
channel section columns made of a composite material with different volume fibre
fractions subjected to the rectangularly shaped pulse loading are presented in
Fig. 7.7. All curves presented in Fig. 7.7a lie very close to each other, and the
curves overlap for DLF less than 1.8. The above observation leads to a conclusion
that the Budiansky-Hutchinson or Volmir criterion for all the analysed volume

Fig. 7.5 Shapes of pulse loading: three triangular impulses T1 (a), T2 (b), T3 (c), rectangular R
(d) and sinusoidal S (e)
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fibre fractions (Fig. 7.7a) has yielded almost the same value of the critical dynamic
load factor DLFcr. But it should be noted that the same DLFcr does not mean the
same critical amplitude of the applied pulse (compare Figs. 7.7a and 7.7b).
Concluding the above, one can say that given channel section columns with dif-
ferent volume fibre fractions behave similarly during the dynamic response as the
column under static load during its postbuckling behaviour (compare the results
presented in Figs. 7.4 and 7.7a).

In Fig. 7.8, a comparison of the dynamic response of columns made of a
composite material (f = 0.5) with different cross-sections subjected to the trian-
gular T3 pulse is presented. The curves for the hat channel section and the lipped
channel section cover each other. These results are similar to the postbuckling
behaviour for the same column subjected to static load—compare the curves
presented in Figs. 7.2 and 7.8.

Summing up the above-mentioned, it can be said that the relations observed in
the postbuckling analysis and based on postbuckling equilibrium paths are similar
to the dynamic response analysis based on the dimensionless deflection versus the
dynamic load factor.

For other shapes of the pulse load (Fig. 7.9), the courses of curves are similar to
that presented in Fig. 7.8 for the triangular T3 shape pulse load. In Fig. 7.9, a
comparison of the dynamic response of columns made of a composite material
(f = 0.5) with different cross-sections subjected to the triangular T1 and T3 pulse
is presented.

Dynamic responses for lipped channel section columns for different pulse loads
are presented in Fig. 7.10. The curves denoted by S = R were obtained for the
sinusoidal pulse loading with the same area as the rectangular pulse loading (for
the same pulse duration, the amplitude was higher for the sinusoidal pulse). The
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highest deflection was obtained for the pulse denoted by S = R because that pulse
has the highest amplitude. The rest of the compared pulses have the same
amplitude and the same duration. Analysing the curves n (DLF) for rectangular,
sinusoidal and three triangular impulses, it can be seen that the highest increment
of deflections for the smallest DLF takes place for the rectangular pulse loading.

A comparison of DLFcr obtained using the Budiansky-Hutchinson criterion for
columns with different cross-sections made of composite materials with the
volume fibre fraction f = 0.5 is presented in Table 7.3. Only average values from
the obtained critical ranges are presented. The dynamic load factors for different
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cross-sections are in the same relation as buckling loads (Table 7.1)—the same or
similar DLFcr for cross-sections with stiffeners (hat channel section and lipped
channel section).

7.2 Interactive Buckling of Columns with Open
Cross-Sections

In this section, the interactive dynamic buckling of short and medium length
columns is presented. All the results presented in this section were obtained for
structures made of steel with material properties data given in Table 6.1.

First, short columns with channel sections (Fig. 7.1a) and hat channel sections
(Fig. 7.1b) subjected to the rectangular pulse loading (Fig. 7.5d) are considered.
A short column is defined as a column for which the primary buckling mode
m = 1 is the local mode (longitudinal edges of the column are straight) and the
shape ratio (the length of walls to their width) for the widest wall is greater than 2
[6]. A range of length for such defined columns depends on their cross-section. For
the case under analysis, the length of ‘‘short columns’’ can be very easily found by
means of the curves presented in Fig. 7.11, where the curves denoted by ‘‘m = 1’’
were obtained for the buckling mode corresponding to one halfwave of the
sinusoid, and the curves denoted by ‘‘m [ 1’’ were obtained for the local buckling
mode (number of halfwaves of the sinusoid is greater than one). Taking into
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Table 7.3 DLFcr value according to the Budiansky-Hutchinson criterion for different shapes of
applied pulses

Analysed cross-section: type of
pulse

Channel
section

Hat channel
section

Lipped channel
section

S 2.0 2.1 2.1
R 1.6 1.6 1.6
S = R 1.4 1.4 1.4
T1 3.1 3.1 3.1
T2 2.3 2.5 2.5
T3 2.4 2.5 2.5
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consideration the curves presented in Fig. 7.7, it can be said that ‘‘short columns’’
have the length to width ratio in the range 2 \ l/b1 \ 10 for channel section
columns and 2 \ l/b1 \ 14 for hat channel section columns.

As follows from other calculations [5], the multimodal buckling analysis should
be carried out not only for long but also for short columns subjected to pulse
loading.

The dimension parameters of the exemplary column taken into consideration
are as follows: b1/h = 100, b2/h = 50, b3/h = 25 and l/b1 = 4. The problem was
calculated with the analytical-numerical method and the finite element method [8].

To explain why an interaction of different buckling modes should be taken into
account in the dynamic response analysis of short channel section columns, the
results obtained with the finite element method are presented first.

It was observed that during the analysis of deformation of the channel section
column, the edge between the web and the flange was also deformed—the edges
do not remain straight as it is in the case of the local buckling mode (see
Fig. 7.12).

The results presented in Fig. 7.12 were obtained on the following assumptions:

• the shape of initial imperfections corresponded to the local buckling mode
m = 3;

• the amplitude of initial imperfections was equal to 1/100 of the column wall
thickness;

• the pulse duration was equal to a period of natural vibrations with the modal
mode corresponding to the local buckling mode, i.e., Tp = T3 = 1.6 ms.

During the pulse load, the edge deflection (curve 2—Fig. 7.12) is greater than
the deflection of the middle point of the web (curve 1—Fig. 7.12). The above
observation means that not only the local but also global buckling mode appeared
in the case of pulse loading. Taking the above into account, a graph representing
dimensionless deflection as a function of the dynamic load factor has been pre-
pared employing the deflection calculated in points 1 and 2 (Fig. 7.12)—the results
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are presented in Fig. 7.13. The course of the curve denoted by 1 has the character
corresponding to the local dynamic buckling mode and the character of curve 2 has
the course corresponding to the global buckling mode. The channel section column
behaviour means that an interaction between different modes appeared and it
should be taken into account in the analytical-numerical method.

The results obtained from FEM give the information on the interactive dynamic
buckling of the short channel section column. In order to find a possible mode
included in the interaction, a linear buckling analysis and a modal analysis were
performed. The obtained results are summarized in Table 7.4 and presented in
Fig. 7.14.

Taking into account all four buckling modes (presented in Table 7.4 and in
Fig. 7.14) in the analytical-numerical method allows one to obtain results similar
to those obtained with FEM. A comparison between the results obtained with the
analytical-numerical method and the finite element method on the plots presenting
dimensionless deflections versus the dynamic load factor for the channel section
column are shown in Fig. 7.15. Some differences appear because the model has
only a few degrees of freedom in the employed analytical-numerical method. The
curves presented in Fig. 7.15 are different but the critical dynamic load factor
obtained from these curves with the Budiansky-Hutchinson criterion is similar.
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Table 7.4 Buckling stress and natural vibrations for the channel column

Mode rcr (MPa) n (Hz)

Local mode m = 3 53 614
Primary local mode m = 1 123 312
Secondary local mode m = 1’ 972 880
Global mode m = 1’’ 5,122 2,001

Fig. 7.14 Buckling modes for the channel section column
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From the analytical-numerical method, DLFcr = 2.7 and from the FEM,
DLFcr = 2.6.

If not all buckling modes presented in Table 7.4 are not taken into account in
the analytical-numerical some wrong results can be obtained—the character of the
global buckling mode did not appear (see Fig. 7.16)

As presented in Fig. 7.16, a channel section column deflection with the char-
acter corresponding to the global buckling mode could be obtained in the ana-
lytical-numerical calculation if the global mode ‘‘m = 1’’ (Fig. 7.14) is taken into
consideration together with local modes.

It should be noted that the finite element method gives results even in the case when
only one buckling mode as the initial imperfection (for example, the local buckling
mode m = 3) is taken into account. This gives an advantage of the finite element
method, however, the use of analytical-numerical methods allows one to specify
which modes should be taken into consideration (dynamic interactive buckling) in the
calculation to obtain satisfactory results (similar for both the methods).

Thin-walled plated structures subjected to static load can work after a local loss
of stability. Because this is valid also for the structures subjected to the pulse load
for which the first local buckling occurs, it is necessary to analyze the behaviour of
structures at dynamic loads larger than the critical amplitude of the pulse causing a
local loss of stability. As has been demonstrated in the example shown above, the
global dynamic buckling mode appears for the dynamic load factor DLF about
twice as high as DLFcr for the local dynamic buckling mode (for static loads, this
relationship in the present case is about 100—see Table 7.4).

It should be also noted that:

• the DLF coefficient is referred to the lowest buckling load values (the buckling
load for the local mode m = 3);

• the critical stress for the global mode (m = 1’ and m = 1’’) taken into account
in the multimodal analysis is approximately 18 and 100 times greater than the
minimum local buckling mode.

This observation demonstrates a need to select the appropriate buckling mode of
the theoretical analysis of the interactive buckling (multimodal), following not only
the knowledge of the interactive buckling of structures under static loads. As
demonstrated by the results presented here, not only natural frequencies with the
mode corresponding to the buckling mode but also the ratios of natural frequencies
should be taken into account in the interactive buckling analysis. In the present
case, the ratio of periods of vibrations with the mode corresponding to the following
buckling modes m = 3, m = 1, m = 1’ and m = 1’’ can be written as 2:1:2.8:6.4.

Let us examine the behaviour of the considered channel section steel column
subjected to a rectangular pulse load with twice as long duration than previously,
i.e., for a period of natural vibrations with a mode corresponding to the mode
m = 1-Tp = T1 = 3.2 ms. The graphs presenting the dimensionless maximum
deflection of the column edge (point ‘‘2’’ in Fig. 7.12) and the column web (point
‘‘1’’ in Fig. 7.12) as a function of the dynamic load factor are shown in Figs. 7.17
and 7.18. DLF is defined in relation to the lowest static local buckling load.
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Also in this case, when the global buckling mode is analysed (Fig. 7.17), the
rising character of the dimensionless deflection resulting from the two employed
methods is different, but the critical values of dynamic load factors, obtained after
applying the Budiansky-Hutchinson criterion, are similar—DLFcr = 2.1 obtained
with the FEM and DLFcr = 1.9 from the analytical and numerical method.

Analysing the results shown in Fig. 7.18, it can be concluded that the desig-
nation of the critical load factor is sufficient to take only two modes into the
interactive analysis, for which the critical dynamic load factor DLFcr according to
the Budiansky-Hutchinson criterion, is about 1.1 and is consistent with the results
obtained from the analytical-numerical interactive analysis with four modes taken
into account and with the results obtained with FEM.

To show that not all short columns with open cross-sections require an inter-
active buckling analysis, some exemplary FEM calculations of the hat channel
section column (Fig. 7.1.b) with the cross-section dimension b1/h = 100,
b2/h = 50, b3/h = 25 and the length parameter equal to l/b1 = 4 are presented
below.

The calculations were performed on the following assumptions:

• the shape of initial imperfections corresponded to the local buckling mode
m = 5;

• the amplitude of initial imperfections was equal to 1/100 of the column wall
thickness;

• the pulse duration was equal to a period of natural vibrations with the modal
mode corresponding to the local buckling mode, i.e., Tp = T5 = 1.6 ms.
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The dimensionless deflection n (the deflection divided by the wall thickness for
the characteristic point of the middle column cross-section) as a function of
dimensionless time (time divided by pulse duration) for the hat channel section
column is presented in Fig. 7.19. The characteristic points are located in the
middle cross-section of the column and they are (see Fig. 7.19) in the middle of
the web (point 1), on the edge between the web and the flange (point 2) and on the
free edge of the flange stiffener (point 3).

Comparing the results presented in Fig. 7.19, it can be seen easily that only
local buckling occurs—the deflections in points 2 and 3 are negligibly small in
comparison with the deflection in point 1. The edge (point 2) deflection higher than
two thicknesses of the column wall appears for DLF greater than 6.5 (see curve 2
in Fig. 7.21). An example showing that a deflection of the edge is similar to the
web deflection even for DLF = 6 is presented in Fig. 7.20.

Dimensionless deflections n as a function of the dynamic load factor DLF of the
hat channel section column established for characteristic points (see Fig. 7.19) are
presented in Fig. 7.21. These curves allow one to determine the dynamic buckling
load (the critical dynamic load factor—DLFcr) with a particular dynamic buckling
criterion. Due to the local buckling character of column deflections, curve 2 was
taken into account for determining DLFcr. According to the Volmir criterion, the
critical value of the dynamic load factor equals 1.5, using the Budiansky-Hutchinson
criterion, the DLFcr for local buckling is in the range from 1.5 to 1.6.

Taking into consideration curve 2 in Fig. 7.21, it can be seen that for DLF = 5,
deflections are smaller than for DLF = 4. It means that the buckling mode
changed at an increasing DLF (see Fig. 7.22. It follows that the Ari-Gur [1]
criterion can be used. DLFcr determined with the Ari-Gur criterion is equal to 4.

Let us consider a slightly longer column, i.e., a column with intermediate
length. This type of column could be defined as a column whose buckling mode
with the number of halfwaves equal to 1 (m = 1) corresponds to the global mode
and differences between the local and global buckling load are less than 4
(Plocal

cr =Pglobal
cr \4), with the lowest buckling load corresponding to the local mode.
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pulse loading at DLF = 1.6
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For such a column, an interactive buckling analysis is necessary and more than two
buckling modes should be considered in numerical calculations [3, 4].

Exemplary results of the interactive dynamic buckling analysis performed with
FEM and the analytical-numerical method (MAN) for a simply supported steel
channel section (Fig. 7.1a) column with the following dimension parameters b1/
h = 50; b2/h = 25, l/b1 = 8 are presented below. The considered column was
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subjected to uniform compression in the form of the rectangularly shaped pulse
loading.

The lowest static buckling load corresponding to the local mode (m = 6) is
equal to Pcr6 = 21.0 kN and the buckling load corresponding to the global flexural
mode (m = 1) is equal to Pcr1 = 71.3 kN. The above value is useful for calcu-
lating the dynamic load factor which in this case is calculated as an amplitude of
the pulse load divided by the local buckling load Pcr6.

The modal analysis allows one to calculate natural frequencies for the mode
corresponding to the buckling mode, and they are n1 = 385 Hz and n6 = 1258 Hz
for local (m = 6) and global (m = 1) modes, correspondingly. The above results
allow one to determine a period of the assumed pulse duration which could be
T1 = 1/n1 = 2.59 ms or T6 = 1/n6 = 0.79 ms.

In the case when the pulse load duration is more than 1.5–2 times longer than
the free vibration period corresponding to the given mode, then such a load can be
treated as a quasi-static load. Because for the considered column T1/T6 = 3.25,
then under the pulse duration assumed as Tp = T1, the applied load should be
treated as the dynamic one for the global buckling mode, and as the quasi-static
one for the lowest local buckling mode (m = 6).

In Fig. 7.23, results of the uncoupled buckling analysis performed with the
analytical-numerical method (MAN) are presented as plots of maximum dynamic
dimensionless deflections as a function of the dynamic load factor. It refers to two
buckling modes under consideration, that is to say, for m = 1 and m = 6. The
period of the pulse duration was set as Tp = T6 = 0.79 ms.

According to the dynamic stability criterion, proposed by Budiansky and
Hutchinson for uncoupled dynamic buckling, from the graphs in Fig. 7.23, the
critical value of the dynamic load factor can be established as DLFcr = 1.2 for the
local buckling mode and DLFcr = 4.8 for the global buckling mode.

Next, the dynamic analysis of coupled buckling of three buckling modes (the
global one and the two local ones—the primary and secondary local modes for
m = 6) was conducted using the analytical-numerical method. The dynamic load
factor was defined as a multiplication of the local buckling load for the mode
m = 6. The initial imperfection amplitudes of interactive modes in the analytical-
numerical method are assumed as follows: n1

* = 0.05 for the global mode,
n6

* = 0.05 for the primary local mode, and n6’
* = 0 for the secondary modal mode.
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During FEM computations, the initial imperfection was assumed only with the
shape corresponding to the local buckling mode with the amplitude n6

* = 0.05. To
be sure that the global mode during dynamic load decides about the column
deflection, the pulse duration was set as a period of natural frequencies with the
mode corresponding to the global buckling load Tp = T1 = 2.59 ms.

A comparison of the results obtained with FEM and the analytical-numerical
method (MAN) is presented in Figs. 7.24 and 7.25. These graphs show dimen-
sionless dynamic deflections in the point lying on the web along the symmetry axis
of the column with dimensionless coordinates equal to x/l = 1/12, 5/12 and 1/2.
The dynamic response (the column dimensionless deflection n) of the impacted
channel section column subjected to a rectangularly shaped pulse with the
dynamic load factor DLF = 1.2 is presented in Fig. 7.24 and with DLF = 1.5—in
Fig. 7.25. The results obtained with the analytical-numerical method, which is
based on the plate theory, are valid only when the deflection is less than 10 times
the thickness of the plate. For that reason, the graphs presented in Figs. 7.24 and
7.25 are scaled for n from 0 to 10.

From the comparison of the curves in Figs. 7.23 and 7.24, a rapid increase in
deflections in the case of the interactive dynamic buckling analysis is visible,
whereas from the analogous comparison of Figs. 7.23 and 7.25, a dramatic
increase in deflections leading to failure of the structure (Fig. 7.26) can be
observed.

Figure 7.26 shows a dynamic displacement of coupled buckling of the channel
section column subjected to the pulse compression load for four different moments
of time defined as t/T1 and for the dynamic load factor DLF = 1.5.

As can be seen in Fig. 7.26c for the dimensionless time value t/T1 = 1, the
maximum dimensionless deflection reaches the value n = 50, and for t/T1 = 1.5
(Fig. 7.26d) n = 135.

Comparing the results obtained with the finite element method (FEM) and the
analytical-numerical method (MAN), it can be said that a good agreement is
achieved. This suggests that the analytical-numerical method MAN presented in
Chap. 3 allows one to analyse thin-walled plate structures not only for uncoupled

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

ξ
FEM 1/12

FEM 5/12

FEM 1/2

MAN 1/12

MAN 5/12

MAN 1/2

Fig. 7.24 Dimensionless deflection versus dimensionless time for DLF = 1.2

156 7 Thin-Walled Columns

http://dx.doi.org/10.1007/978-3-319-00654-3_3


buckling (as reported earlier—Sect. 7.1), but also for the interactive dynamic
buckling. On the basis of the Budiansky-Hutchinson criterion, the critical dynamic
load factor, which is in the range 1.2 \ DLFcr \ 1.5 for the above presented
example, can be determined.

During the last forty years in the world literature, many papers have been
published on the interactive buckling of thin-walled structures under static load.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0 0.2 0.4 0.6 0.8 .21 1 1.4 1.6

ξ

FEM 1/12

FEM 5/12

FEM 1/2

MAN 1/12

MAN 5/12

MAN 1/2

Fig. 7.25 Dimensionless deflection versus dimensionless time for DLF = 1.5

Fig. 7.26 Maps of displacements vector sum for DLF = 1.5 and for t/T1 = 0.3 (a); 0.6 (b); 1.0
(c); 1.5 (d)
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A wide analysis has allowed us to draw general conclusions for this interaction of
various buckling modes for structures subjected to static load. However, there is a
lack of such an analysis for the interactive dynamic buckling.

During the first analysis of the interactive dynamic buckling, the finite element
method was used as a numerical experiment which ‘‘was telling’’ unexpected
coupled effects of various buckling modes, never before described in the literature.
To sum up, it can be concluded that the FEM package allows one, as shown above,
to verify the analytical-numerical method (MAN) used for the non-linear dynamic
analysis. Thus, the use of two different methods allows a peer review analysis
enabling clarification of the obtained results.
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Chapter 8
Girders, Beams Subjected
to Pure Bending

In this chapter, the behaviour of girders or beams subjected to pulse load causing
pure bending is presented. Girders with square cross-sections and beams with
channel sections are considered. The part of multi-segment girders between
two diaphragms is taken into account. The structures under analysis are made of
isotropic or orthotropic material. The calculations were made with finite element
method software and analytical-numerical method—the obtained results were
compared.

The analysed girder and beams with assumed dimensions are depicted in
Fig. 8.1.

All results of the numerical calculations presented in this chapter were obtained
with the analytical-numerical method and the finite element method (ANSYS

�

software [13]). Girders with square cross-sections and of different length were
considered. Elastic isotropic or orthotropic material properties were assumed in all
the calculations. The material property data are presented in Table 6.1 (Chap. 6).

The analysed girders were subjected to a rectangularly shaped pulse load
(Fig. 8.2) with the time duration Tp corresponding to the period of natural vibra-
tions T of the structures under analysis.

The paper dealing with buckling analysis of beams subjected to pure bending
can be easily found in word literature (e.g. [1, 2, 7–10]). However, there are lack of
the papers presenting dynamic buckling of thin-walled structures subjected to pure
bending.

8.1 Girders with Square Cross-Sections

It is assumed that the loaded edges of walls meet the plane section condition, and the
loaded ends of girder segments are simply supported. The adopted boundary
conditions and the FEM calculation models were discussed in more detail in Chap. 4
and presented in Figs. 4.11 and 4.15. The assumed model of load and the boundary
conditions correspond to the analytical-numerical model [5, 6].

T. Kubiak, Static and Dynamic Buckling of Thin-Walled Plate Structures,
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� Springer International Publishing Switzerland 2013

159

http://dx.doi.org/10.1007/978-3-319-00654-3_6
http://dx.doi.org/10.1007/978-3-319-00654-3_4


The results of calculations for the assumed and above-mentioned material
property data, a type of load and boundary conditions are presented below.

The girder taken into consideration with a load distribution is presented in
Fig. 8.3.

The buckling mode for girders made of a glass fibre epoxy resin composite with
different volume fibre fractions f as well as girders made of steel are similar and
shown Fig. 8.4. The critical moments Mcr for all above-mentioned cases are
presented in Table 8.1.

Fig. 8.2 Shape of the pulse
load

Fig. 8.1 Girder and beams under analysis

Fig. 8.3 Load distributions for the girder under analysis versus space (a) and time (b)
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The results obtained with both the employed methods of calculation are almost
the same. The highest differences are 2 % only. It is noted that the larger the
coefficient of orthotropy, the smaller the differences in the buckling bending
moment Mcr (see Table 8.1).

In order to determine the pulse duration, periods of natural vibrations of the
considered girders were calculated. The calculations were performed for the
unloaded girders and the results are summarized in Table 8.2.

As it is well known, the initial imperfection should be assumed in order to
perform a dynamic buckling analysis. In the case of a compressed segment of
girders with the analysed length, the fundamental modal mode and the buckling
mode are the same. However, in the case of bending, there are not such similarities
(Fig. 8.5). It is not possible to find the corresponding buckling and modal mode.
Thus, an influence of the shape of initial imperfections on dynamic buckling was
analysed. Different amplitudes of initial geometrical imperfections of girder walls
and two different durations of pulse loading were analysed as well.

The results of calculations are presented in a graph showing the dimensionless
deflection n as a function of the Dynamic Load Factor—DLF defined as amplitude
of the applied pulse loading to the static buckling load.

Fig. 8.4 Buckling mode
obtained from FEM (a) and
the analytical-numerical
method (b)

Table 8.1 Buckling bending moment Mcr (Nm) for the girders under analysis

Method Steel (Ex/Ey = 1) Fibre glass epoxy resin

f = 0.2 (Ex/Ey = 2.9) f = 0.5 (Ex/Ey = 3.6) f = 0.7 (Ex/Ey = 3.1)

FEM 653 46.8 90.4 136.5
MAN 667 47.3 91.2 138.0

Differencesa 2 % 1 % [1 % 1 %

a Percentage difference relative to the results of the analytical-numerical method (MAN)

Table 8.2 Frequencies and periods of natural vibrations of the girders under consideration

Steel Fibre glass epoxy resign

f = 0.2 f = 0.5 f = 0.7

n1 (Hz) 482 215 271 310
T1 (ms) 2.1 4.7 3.7 3.2
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Analysing the dynamic response of steel girders subjected to bending pulse
loading with different shapes of initial imperfections (cases FEM1 and FEM2 in
Fig. 8.6), it can be seen that the shape of imperfections has a significant influence
on the critical dynamic load factor DLFcr obtained using the Budiansky-
Hutchinson [3] or Volmir [12] criterion. For the case with the initial imperfection
corresponding to the modal mode (FEM2), DLFcr is in the range 1.1–1.2 but for
the case FEM1 (the initial imperfection corresponds to the buckling mode), DLFcr

is in the range 1.7–1.8.
In Fig. 8.6, a comparison of the results obtained from FEM and the analytical-

numerical method is presented (curves denoted as FEM1 and MAN, respectively).
The curves obtained from the two methods used do not lie close to each other but
DLFcr determined from these curves using the Budiansky-Hutchinson criterion is
in the same range DLFcr = 1.7–1.8.

The next two graphs present an influence of the pulse duration and the
amplitude of initial imperfections corresponding to the buckling load. The

Fig. 8.5 Buckling (FEM1)
and modal (FEM2) mode
obtained from FEM
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influence of the amplitude on the critical dynamic load factor and the dynamic
behaviour of steel girders subjected to pulse loading, which is pure bending, are
the same as for compressed girders [4]. For higher amplitudes, the critical value of
the dynamic load factor obtained from the Budiansky-Hutchinson or Volmir
criterion decreases—DLFcr leads to unity. The described effect does not depend on
the pulse duration (compare Figs. 8.8 and 8.9).

Figures 8.7 and 8.8 present dimensionless deflection of girder walls as a
function of the dynamic load factor for various amplitudes of the initial imper-
fections n* with the shape corresponding to the buckling mode. Comparing the
results presented in Figs. 8.7 and 8.8, one can see an influence of the pulse
duration. For the pulse duration equal half a period of natural vibrations, DLFcrs
are higher than for the pulse duration corresponding to the period of natural
vibrations. In Table 8.3, values of DLFcr obtained from the curves presented in
Figs. 8.7 and 8.8 using the Budiansky-Hutchinson criterion are given together.

Let us compare an influence of material properties on the dynamic response and
the critical value of the dynamic load factor DLFcr. Dimensionless deflection of
girder walls as a function of the dynamic load factor for a steel girder and com-
posite girders with different volume fibre fractions is presented in Fig. 8.9. The
results of calculations were obtained using FEM with the assumed time of pulse
duration equal to a period of the natural frequency Tp = T1 and a shape of the
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initial imperfection corresponding to the buckling mode with an amplitude equal
1/100 thickness of the girder wall. A comparison between the results from FEM
and MAN (analytical-numerical method) are presented in Fig. 8.10.

Comparing the course of the curves in Fig. 8.9, one can see that the coefficient
of orthotropy exerts the main influence on the dynamic response. The curves for
composite girders with the volume fibre fraction f = 0.2 and f = 0.7 are almost
identical—the coefficients of orthotropy Ex/Ey for the above-mentioned materials
are equal to 2.9 and 3.1. The curve denoted by ‘‘composite f = 0.5’’ has a slightly
different course than the one previously mentioned—for a composite with f = 0.5,
the coefficient of orthotropy equals 3.6. The relation between the dimensionless
deflection as a function of the dynamic load factor for steel girders is completely
different than for composite girders because these girders are made of an isotropic
material with the coefficient of orthotropy Ex/Ey equal to 1.

Table 8.3 Influence of the pulse duration and the amplitude of initial imperfections on DLFcr

n* = pulse duration Tp= 0.001 0.01 0.02 0.03 0.05 0.1

T1 2.4–2.5 1.7–1.8 1.3–1.5 1.1–1.2 0.9–1.1 0.9–1
0.5T1 [9 5.5–6.0 4.5–5 3.8–4.2 2.6–3.0 2.2–2.4
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Comparing the results for composite girders with different volume fibre fractions
obtained with FEM and MAN, one can see that the critical dynamic load factor
according to the Budiansky-Hutchinson or Volmir criterion is exactly the same. The
differences appear for a higher DLF value. The deflections obtained from FEM are
slightly higher than those obtained from the analytical-numerical method. Such
behaviour can be explained by stiffness of the model—the analytical-numerical
model is stiffer than the finite element model which has many more degrees of
freedom.

8.2 Channel Section Beams

The calculations were performed with FEM only. It is assumed that the loaded
edges of walls meet the plane section condition, and the loaded ends of girder
segments are simply supported [11]. The adopted boundary conditions and the
FEM calculation model were discussed in more detail in Chap. 4 and presented in
Fig. 4.16 (case BC-2).

Channel cross-section beams are made of steel with the material property data
given in Table 6.1. The assumed load cases are presented in Fig. 8.11.

Pure bending in the plane normal to the web of the channel section beam is
denoted by case 1 (see Fig. 8.11a)—the web is compressed and the flanges are

Fig. 8.11 Load distribution cases: case 1 (a) and case 2 (b)
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under plane bending. Pure bending in the plane parallel to the web of the con-
sidered channel section beam is denoted by case 2 (Fig. 8.11b)—the web is under
plane bending, the upper flange is under tension, whereas the bottom flange is
compressed. The finite element models for both the load cases taken into account
are presented in Fig. 8.12.

For load case 1, the calculations were performed for two thicknesses of the
beam walls h = 1 mm and h = 0.5 mm (see Fig. 8.1). The calculations for load
case 2 were performed only for the beam with the wall thickness h = 1 mm.

The modal analysis was performed to find frequencies of first fundamental
natural vibrations for all channel beams taken into account. The frequencies and
the corresponding periods of natural vibrations are presented in Table 8.4.

The modal modes which correspond to the frequencies for the short
(l = 50 mm) and long (l = 150 mm) beam presented in Table 8.4 are shown in
Fig. 8.13.

For the long (l = 150 mm) beam, the modal mode does not correspond to the
buckling mode (see Figs. 8.15 and 8.16). Therefore, for the long beam with the
wall thickness h = 1 mm, the highest modes, which are similar to the buckling
mode for load case 1, were calculated and are presented in Fig. 8.14. The fre-
quencies of the ninth and thirteenth modes (Fig. 8.14a) are equal to n9 = 2442 Hz
and n13 = 3161 Hz, respectively. The corresponding periods of natural vibrations
are then T9 = 0.41 ms and T13 = 0.32 ms, correspondingly.

The linear static buckling analysis allows one to find the critical bending
moment and the corresponding buckling mode. The critical bending moments for
all cases under analysis are listed in Table 8.5. The corresponding buckling modes

Fig. 8.12 Finite element models for load case 1 (a) and load case 2 (b)

Table 8.4 Frequencies and periods of natural vibrations of the girders under consideration

Length l = 50 mm Length l = 150 mm

Wall thickness Wall thickness Wall thickness Wall thickness
h = 0.5 mm h = 1 mm h = 0.5 mm h = 1 mm

n1 (Hz) 836 1666 344 685
T1 (ms) 1.2 0.6 2.9 1.5
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are shown for the short (l = 50 mm) beam in Fig. 8.15 and for the long
(l = 150 mm) beam in Fig. 8.16.

First, the results of the dynamic response of short (l = 50 mm) beams subjected
to load case 1 and load case 2 are discussed. The time of pulse duration was equal
to the period of natural vibrations T1 (see Table 8.4). The results are presented as a
relation between the dimensionless deflection n = w/h versus the dynamic load

Fig. 8.13 First modes of natural vibrations for a C-shape beam of the length l = 50 mm (a) and
l = 150 mm (b)

Fig. 8.14 Ninth (a) and thirteenth (b) modal mode

Table 8.5 Critical bending moment Mcr (Nm) for the analysed channel section beams

Length l = 50 mm Length l = 150 mm

Wall thickness Wall thickness Wall thickness Wall thickness
h = 0.5 mm h = 1 mm h = 0.5 mm h = 1 mm

Load case 1 57 (m = 1)a 449 (m = 1) 54 (m = 4) 427 (m = 4)
1565 (m = 1)

Load case 2 – 440 (m = 1) – 442 (m = 3)

a m is a number of halfwaves along the beam
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Fig. 8.15 Buckling mode
m=1 for the short beams
subjected to two considered
load cases: load case 1
(a) and load case 2 (b)

Fig. 8.16 Buckling mode for
the medium length beams
subjected to two considered
load cases: load case 1
(a) and load case 2 (b)
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factor DLF. The initial imperfection corresponding to the buckling mode with the
amplitude equal to 1/100 thickness of the beam wall was assumed. The dynamic
response for channel beams with two different wall thicknesses h subjected to
bending pulse loading are presented in Fig. 8.17 for load case 1 and in Fig. 8.18
for load case 2, respectively.

In both the assumed load cases and both the wall thicknesses, the courses of
curves n (DLF) suggest that a local loss of stability occurred in all the above-
mentioned cases. The critical value of dynamic load factors DLFcr was determined
according the Volmir and Budiansky-Hutchinson criteria. The critical value of
dynamic load factors DLFcr for channel section beams subjected to bending are
less than for the same structures subjected to uniform compression. Using the
Volmir criterion, DLFcrs are approximately equal to 0.48 and 0.88 for beams with
the wall thickness h = 0.5 mm and h = 1 mm, respectively. The value of DLFcr

according to the Budiansky-Hutchinson criterion for beams with two above-
mentioned wall thicknesses are DLFcr = 0.45–0.5 for h = 0.5 mm and
DLFcr = 1.0–1.2 for h = 1 mm. Such a low value of the critical dynamic load
factor could be explained by very low bending stiffness for channel section beams
subjected to bending in the plane perpendicular to the beam web. Taking into
account load case 2, the channel section beam is subjected to bending in plane with
its highest moment of inertia. Changing the plane of load leads to an
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inconsiderable increase in DLFcr, which according to the Volmir criterion is equal
1.15 and according to the Budiansky-Hutchinson criterion, is in the range 1.1–1.2
(Fig. 8.18).

Completely different results were obtained for beams with the length
l = 150 mm and the wall thickness h = 1 mm subjected to the pulse bending
moment—load case 1. The results are shown in Fig. 8.18 and the curves are
denoted as follows:

1. the initial imperfection shape corresponds to the first modal mode (Fig. 8.13b),
the amplitude of initial imperfections equals 1/100 of the wall thickness, the
pulse duration is equal to the period of the first modal mode Tp = T1 = 1.5 ms
(Table 8.4);

2. the initial imperfection shape corresponds to the thirteenth modal mode
(Fig. 8.14b), the amplitude of initial imperfections equals 1/100 of the wall
thickness, the pulse duration is equal to the period of the thirteenth modal mode
Tp = T13 = 0.32 ms;

3. the initial imperfection shape corresponds to the ninth modal mode
(Fig. 8.14a), the amplitude of initial imperfections equals 1/100 of the wall
thickness, the pulse duration is equal to the period of the ninth modal mode
Tp = T9 = 0.41 ms;

4. the initial imperfection shape corresponds to the local buckling mode
(Fig. 8.15a), the amplitude of initial imperfection equals 1/100 of the wall
thickness, the pulse duration is equal to the period of the ninth modal mode
Tp = T9 = 0.41 ms;

5. the initial imperfection shape corresponds to the local buckling mode
(Fig. 8.15a), the amplitude of initial imperfections equals 1/10 of the wall
thickness, the pulse duration is equal to the period of the ninth modal mode
Tp = T9 = 0.41 ms;

6. the initial imperfection shape corresponds to the buckling mode with m = 1
(Fig. 8.15b), the amplitude of initial imperfections equals 1/100 of the wall
thickness, the pulse duration is equal to the period of the ninth modal mode
Tp = T9 = 0.41 ms.

The relation between the dimensionless deflection and the dynamic load factor
is almost linear, which could mean that the buckling phenomena did not occur.
The calculations were repeated with different assumptions for the period of pulse
duration and the initial imperfection map. For all the cases presented in Fig. 8.19,
the results are similar—this may mean that beams with open cross-sections have
too small stiffness and it is bending, and stability loss does not occur.

Similarly as has been presented in Chap. 7.2 (the interactive dynamic buckling
of open cross-section columns subjected to compression), in the case of bending
load, the channel section beams behave in a different way under static and dynamic
load—the beam with open cross-sections with the length three or more times
greater than the highest dimension of the cross-section does not lose its stability
under dynamic bending load as it can be observed if load is static.
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After rotating the cross-section (load case 2), the stiffness of the beam grows
and the dynamic buckling phenomena can be observed (Fig. 8.20).

Using the course of the curve presented in Fig. 8.20, it is possible to determine
the critical value of the dynamic load factor, which is equal to 1.45 according to
the Volmir criterion and is in the range 1.55–1.6 according to the Budiansky-
Hutchinson criterion.
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Chapter 9
Thin-Walled Girders Subjected to Torsion

The results of the dynamic buckling analysis of girders subjected to torsion are
presented in this chapter. All the results of numerical calculations to be discussed
further were obtained with finite element method commercial software. Girders
with square cross-sections and different lengths were considered. A little attention
is paid to thin-walled structures with flat wall subjected to bending or torsion.
It was therefore decided to fill this gap by conducting an analysis of thin-walled
girders with closed cross-section and behaviour of such structures subjected to
torsion impulse of finite duration.

The assumed dimensions of the analysed girders are presented in Fig. 9.1.
Three different girders length l were taken into account (l = 100, 200 and
400 mm). All calculations were performed on the assumption of elastic isotropic
material properties, which are as follows:

• Young’s modulus: E = 2�105 MPa;
• Poisson’s ratio: m = 0.3;
• density: q = 7853 kg/m3.

The influence of material damping was also considered.
The Ansys� software [7] has been employed to model and analyse dynamic

behaviour of thin-walled girders.
To introduce the load causing twist, one end of the girder was restrained (for all

nodes of the FEM model, three perpendicular displacements were set to zero) and
two pairs of forces were applied (Fig. 4.22) to the second end, creating a resultant
torque. The assumed boundary conditions were the same as presented in Fig. 4.24.

It was assumed that the girders were subjected to pulse load of a rectangular
shape (Fig. 9.2). The duration time of the pulse torque Tp corresponds to the
fundamental natural vibration period T = 1/f, where f is the first natural frequency.
Table 9.1 shows the results of eigenvalue calculations (i.e., the frequency and the
period of natural vibrations) for different lengths of the girders considered.

Linear stability analyses which determined the critical load and the corre-
sponding buckling mode were carried out as well. The critical values of torque that

T. Kubiak, Static and Dynamic Buckling of Thin-Walled Plate Structures,
DOI: 10.1007/978-3-319-00654-3_9,
� Springer International Publishing Switzerland 2013
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were taken to determine the DLF value for each analysed girders are shown in
Table 9.2.

In the dynamic buckling analysis, the initial geometrical imperfection should be
assumed [5]. For compressed structures, the assumed shape of initial imperfection
corresponds to the buckling mode which is identical with the modal mode of the
frequency taken to determine the pulse duration. In the case of structures subjected
to torque, there is no possibility to find the modal mode (with the independent
vibration frequency) corresponding to the buckling mode of girders subjected to
torsion (Fig. 9.3).

Fig. 9.2 Shape of the
torsional pulse loading

Fig. 9.1 Girders under
analysis

Table 9.1 Frequency and the period of natural vibrations for the girders under analysis

Girder length l (mm) 100 200 400

Frequency of natural vibrations f (Hz) 574 314 257
Period of natural vibrations T (ms) 1.7 3.2 3.9

Table 9.2 Critical torque for the girders under analysis

Girder length l (mm) 100 200 400

Critical torque (Mt)cr (Nm) 4.313 2.576 2.105

174 9 Thin-Walled Girders Subjected to Torsion



Let us see what an influence of the shape and the amplitude (w* = w0/h, where
w0 is the assumed initial deflection and h is the girder wall thickness) of initial
geometrical imperfections on the dynamic response of the girder subjected to pulse
torsion is. In Fig. 9.4, dimensionless deflection versus the dynamic load factor for
the girder with the length l = 200 mm and different shapes (corresponding to the
modal mode or to the buckling mode) of geometrical imperfections with the
amplitude w* = 0.01 is presented.

In Fig. 9.5, dimensionless deflection versus the dynamic load factor for the
girder with the length l = 100 mm and different amplitudes w* of geometrical
imperfections with the shape corresponding to the buckling mode is presented.

Analysing the results presented in Figs. 9.4 and 9.5, one can say that the
amplitude of initial imperfections has almost no impact on the course of the
curves. It means that the amplitude of initial imperfections with the shape corre-
sponding to the buckling mode does not influence the critical value of the dynamic
load factor. The results of the analysis presented further were obtained on the
assumption of no initial geometrical imperfections.

Fig. 9.3 Modal (a) and buckling (b) mode in the girder subjected to torsion
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Nevertheless, according to the results presented in Fig. 9.4, it should be noted
that assuming the initial imperfection shape corresponding to the modal mode,
higher deflection is obtained than for the girder with initial imperfections corre-
sponding to the buckling mode. To conclude, it can be said that the initial
imperfection corresponding to the modal mode assumed for the girders subjected
to the torsional pulse loading with the pulse duration equal to the period of natural
vibrations leads to higher deflection than in the shape of initial imperfections.

Another problem corresponding to the load case and the corresponding
deflection is a question how to measure or to calculate deflection of the wall of the
girder subjected to torsion. Each point belonging to the thin-walled girder trans-
lates (has displacements) in two perpendicular directions—if it is assumed that the
longitudinal displacement can be neglected. The first possibility is to take the
displacements uOx, uOy of the given point in x and y directions, respectively, and
then to calculate the resulting displacement wabs of the given point in the plane
perpendicular to the girder axis according to the following formula [4]:

wabs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

Ox þ u2
Oy

q
: ð9:1Þ

The next possibility is to separate the displacement corresponding to twist from
those corresponding to buckling. The proposed solution is based on an analysis of
movements of three nodes located in the plane of the selected cross-section of the
girder in a single line on the same wall (from edge to edge). The value of the
dynamic deflection w corresponding to a loss of stability (to enlarge the initial
deflection) is determined from the following formula [4]:

w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uOx � uav xð Þ2þ uOy � uav y

� �2
q

: ð9:2Þ

where uOx, uOy are two perpendicular displacements of point O (Fig. 9.6) and the
average displacements uav_x, uav_y are calculated as follows:

uav x ¼ 1
2

uLx þ uRxð Þ; uav y ¼ 1
2

uLy þ uRy

� �
: ð9:3Þ

where uLx, uLy and uRx, uRy are two perpendicular displacements of points L and R
lying on the ends of the selected line (Fig. 9.6).
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To check an influence of the way of collecting deflections on results of the
dynamic response, four different cases were taken into account. In all the cases, the
displacement was measured in the middle of the length and the width of the upper
wall of the girder. The following notation was used:

• wimp presents the maximal displacement obtained during the pulse duration
(0 \ t \ Tp) for each applied DLF and calculated using (9.2);

• w—displacement calculated using (9.2) but the maximum value was taken from
the whole period of tracking the dynamic impulse response (0 \ t \ 1.5Tp);

• wabs_imp—normal maximal displacement to the girder wall without any recal-
culation, obtained during the pulse duration (0 \ t \ Tp) for each applied DLF;

• wabs—normal maximal displacement to the girder wall without any recalcula-
tion, taken from the whole period of tracking the dynamic impulse response
(0 \ t \ 1.5Tp).

An influence of different measurements way of deflection on the dynamic
response is presented in Fig. 9.7, which shows dimensional deflection versus the
dynamic load factor for the 200 mm length girder subjected to pulse torsion. The
dynamic load factor was calculated dividing the pulse amplitude (Mt)a by the static
critical torque (Mt)cr.
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In the literature, it can be found that the angle of twist instead of the wall
deflection is taken into consideration for girders or other structures subjected to
torsion [2, 4]. To check which relations: deflection versus DLF or an angle of twist
versus DLF is more useful, the curves obtained for exactly the same case
(l = 200 m, Tp = T, the girder without imperfection) are prepared and presented
in Fig. 9.8. Comparing the course of the curves presented in Fig. 9.8, one can see
that it is possible to find the critical value of the dynamic load factor according to
the Volmir criterion [6], the Budiansky-Hutchinson criterion [3] and the criterion
proposed by Ari-Gur and Simonetta [1] from the curve representing a relation
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between the girder wall deflection and the dynamic load factor. From the
curve representing an angle of twist as a function of DLF, only the Budiansky-
Hutchinson criterion can be used. To summarise the above, deflection as a function
of DLF is more useful to apply different criteria of dynamic buckling.

Figures 9.9 and 9.10 present the same curves as in Fig. 9.8 obtained for the
same girder but with arbitrary assumed material damping equal to 2 % and 5 %,
respectively.

Considering the results of calculations presented in Figs. 9.7, 9.8 and 9.10, it
could be said that it will be enough to take the curves denoted by w_ = w_abs_imp
to analyse dynamic buckling and determine the critical amplitude of the pulse load
(DLFcr).

To analyse the damping influence, the relation wabs_imp/h (denoted w/h) versus
DLF was chosen, as suggested above. The results for different damping ratios are
presented in Fig. 9.11. Comparing these results, it can be said that in contrast to
the compressed girders, damping has an influence on the critical value of DLFcr.
For damped girders, DLFcr is lower than for the undamped ones. Values of DLFcr

for damped and undamped girders obtained with the above-mentioned criteria are
presented in Table 9.3.

Analysing the results presented in Fig. 9.11, one can notice that the displace-
ments for the damped girder are higher than for the undamped one. Such a rela-
tionship seems to be unpredictable. To explain it, let us see the time dependent
displacement curves (Fig. 9.12) and the girder displacement map (Fig. 9.13) for
DLF = 1.4. The girder displacement map has been prepared for the time at which
the displacements achieve their maximum value.
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Table 9.3 Critical value of DLF obtained with different criteria

Volmir Budiansky-Hutchinson Ari-Gur and Simonetta

Undamped 1.2 1.4 7 1.5 1.6
Damping ratio 2 % 1.1 1.2 7 1.3 1.3
Damping ratio 5 % 1.1 1.2 7 1.3 1.5
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Comparing the time dependent displacement and the mode (or the deflection
shape) of the upper wall of girders under analysis, one can say that damping exerts
an influence on the girder dynamic behaviour in the case of torsion. First of all,
completely different shapes of deflection appear for damped and undamped
girders. As can be seen for the undamped case, about three halfwaves appear in the
longitudinal direction and about two halfwaves in the transverse direction on the
upper wall of the analysed girder. In both the damped cases, two halfwaves appear:
one low and one high (the amplitudes differ approximately three times). Con-
cluding, it can be said that the previously unpredictable differences in the dis-
placements are the results of completely different shapes of displacements. If the
obtained displacement is multiplied by a number of halfwaves to recalculate
the displacement for one halfwave only, the results of the maximum displacement
will be as follows: w = 1.45 9 3 = 4.35 for the undamped girder and
w = 2.86 9 1.33 = 3.8. Now the relations look correct. The displacements are
higher for the undamped girder than for the damped one.

The same way as the above-described one can be used to explain the difference
in dynamic responses between the girder with the damping ratio equal to 2 % and
5 %. In addition, the maximum deflection of the girder with the damping ratio 5 %
lies closer to the reference measurement point than for the girder with the damping
ratio of 2 %.
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Fig. 9.12 Time dependent displacement measured in the middle of the length and the width on
the upper wall of the girder for DLF = 1.4

Fig. 9.13 Normal to upper wall displacement map for the undamped (a) and damped girder with
the ratio 2 % (b) and 5 % (c)
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To conclude the above considerations, it should be said that the damping ratio
has a great influence on the results of calculations for the girder subjected to the
torsional pulse loading. Nevertheless, the true damping ratio value is dependent on
many parameters and is impossible to be designated precisely. Therefore, the
author has decided to neglect damping in the further calculations checking an
influence of time of pulse duration and the length of girders on differences in the
critical value of the dynamic load factor.

Talking about dynamic buckling compressed structures, the pulse duration
should be set close to the period of natural vibrations. Let us check an influence of
the pulse duration on deflection—DLF curves in the case of the dynamic torque
pulse. The results of calculations for the pulse duration changing from 0.5T to
2T (where T is the period of natural vibrations) are presented in Fig. 9.14.
According to the Volmir criterion, the relation between the pulse duration and the
critical value of the dynamic load factor is as follows: the longer pulse duration,
the lower DLFcr. Taking into account the Budiansky-Hutchinson criterion, the
lowest range of DLFcr is obtained for the pulse duration equal to the period of
natural vibrations (Tp = T). The Ari-Gur and Simonetta criterion cannot be used
for all cases presented in Fig. 9.14—for the curve representing the pulse duration
equal to half a period of natural vibrations—Tp = 0.5T, this criterion cannot be
used. Taking into account other cases, the lowest DLFcr according to the Ari-Gur
and Simonetta criterion was obtained for Tp = T and it is equal to DLFcr = 1.6.
Summing up the above, it can be said that the most dangerous period of the pulse
duration is the one close to the period of natural vibrations (Tp = T) not only for
compression but also for the torsional pulse load.

Figure 9.15 presents a relation between the dimensionless deflection and the
dynamic load factor for perfect (without any imperfections) girders with different
lengths (l = 100 mm, 200 mm and 400 mm), subjected to the torsional pulse
loading with the pulse duration equal to the period of natural vibrations (Tp = T).
The critical value of the dynamic load factor estimated on the basis of the above-
mentioned criteria is presented in Table 9.4.
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Comparing the results presented in Fig. 9.15 and in Table 9.4, it can be said
that the critical values of DLF for different lengths (in the calculated range) are
similar. Here, it should be mentioned that DLF is a dimensionless value, i.e., the
absolute critical amplitude for pulse load is different. Taking it into account, it
could be stated that the longer girder, the lower critical amplitude of pulse loading.
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Table 9.4 Critical value of DLF and the pulse amplitude (Mt)cr for different girder lengths

Volmir Budiansky-Hutchinson Ari-Gur and Simonetta

l = 100 mm DLFcr = 1 DLFcr = 1.4 7 1.5 –
(Ma)cr = 4,313 Nm (Ma)cr = 6,038 7 6,470 Nm

l = 200 mm DLFcr = 1.2 DLFcr = 1.4 7 1.5 DLFcr = 1.6
(Ma)cr = 3,091 Nm (Ma)cr = 3,606 7 3,864 Nm (Ma)cr = 4,121 Nm

l = 400 mm DLFcr = 1.15 DLFcr = 1.2 7 1.3 DLFcr = 1.5
(Ma)cr = 2,420 Nm (Ma)cr = 2,526 7 2,736 Nm (Ma)cr = 3,158 Nm
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Chapter 10
Thin-Walled Girders Subjected
to Combined Load

This chapter deals with dynamic response of thin-walled girders subjected to
combined load (bending and/or twisting). The load was assumed as stepped
dynamic pulse of finite duration. Numerical analysis was conducted with finite
element method (FEM). Analysis has concentrated on thin-walled girders of length
200 mm and squared cross-section (100 9 100 mm) with 1 mm wall thickness.
Different numerical models were compared and investigation of dynamic response
of the structure under combined load was performed for different boundary con-
ditions. The critical values of load were determined according to well-known
criteria (Volmir, Budiansky-Hutchinson and Ari-Gur-Simonetta criterion).

The dynamic buckling analysis of thin-walled structures subjected to combined
load was conducted with the finite element method [1] only. Till now, the ana-
lytical-numerical method presented in Chap. 3 is not prepared for solving girders
subjected to simultaneous bending moment and torque. In order to obtain results
comparable to the real structure, two numerical models were checked. Preparing a
discrete model of the analysed girders, special care was taken not to generate stress
concentration regions. Different models of load and boundary conditions were
considered.

The dynamic buckling of girders subjected to combined pulse loading is ana-
lysed [2]. A thin-walled girder of the length l = 200 mm and a square cross-
section (a = 100, b = 100 mm) with 1 mm wall thickness was taken into account.
The considered structure was subjected to the pulse of bending moment and tor-
sion—the load scheme is shown in Fig. 10.1. It was assumed that the analysed
girders were made of an isotropic material (steel) with the following material
properties: E = 2�105 MPa and m = 0.3.

Two taken into consideration FEM models are presented in Fig. 10.2. In order
to assure the linearity of loaded edges, two plates of relatively high stiffness were
added to the ends of the girder in the first example (Model 1—Fig. 10.2a). In the
second example, the same linearity of the loaded edges was obtained with beam
elements (Model 2—Fig. 10.2b). These stiff plates and beams were added to the
model for better load modelling.
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The main difficulty is to assume a relation between the bending moment and
torque which should be taken in further calculations, i.e., in the dynamic buckling
analysis. First, the eigenbuckling problem for different bending to torsional
moment ratios was solved. The obtained buckling mode for two models under
consideration is presented in Fig. 10.3. The figure shows that both the models yield
similar results—the buckling modes were the same for both the models. Critical
values of bending and torsional moments are listed in Table 10.1.

Depending on the bending moment and torque relation, combined buckling
loads differ for both the models under consideration. The relations of the bending
moment versus torque for the combined buckling load are presented in Fig. 10.4.

After the preliminary tests, the beam model was dismissed because of the
difficulties with convergence of the dynamic solution. It was caused by a formation
of the stress concentration at the corners, which was mainly due to the modelling
method of boundary conditions. The pulse duration Tp was obtained on the basis of
the modal analysis as equal to the period of natural vibrations and set to

Fig. 10.1 Dimensions and a loading scheme of the girder under analysis

Fig. 10.2 FEM models with a stiff plate (a) and with beams (b)
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Fig. 10.3 Shape of the local buckling modes: a Mt/Mb = 0, b Mb/Mt = 1, c Mb/Mt = 0

Table 10.1 Critical values of the bending moment and torsion for both the models under
consideration

Mb/Mt Model 1 Model 2

Mbcr Mtcr Mbcr Mtcr

(Nm) (Nm) (Nm) (Nm)

? 0.725 0 0.732 0
3 0.710 0.237 0.711 0.237
1 0.621 0.621 0.604 0.604
0.333 0.377 1.132 0.348 1.045
0 0 1.512 0 1.335
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Fig. 10.4 Comparison of the
results obtained for different
models
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Tp = 0.003 sec. Deflection of the middle node of the upper plate of the given
girder versus time for different values of DLF is presented in Fig. 10.5. It can be
noted that for DLF higher than 2.4, a change of the buckling mode occurred.

A dynamic response of the structure presented as a relation between the
dimensionless deflection n and the dynamic load factor DLF is shown in Fig. 10.6.

Two approaches to obtain the solution were assumed. One of the curves cor-
responds to the values of the dimensionless deflection measured in the middle of
the upper plate of the girder (middle node) and the second one is related to the
maximum values of the dimensionless deflection in the whole structure (maximum
deflection). The courses of the curves are similar, however, the deflections mea-
sured in the middle point do not have the maximum value. Additionally, it should
be noticed that the critical value of the dynamic load factor received according to
the Volmir criterion [3] differs due to the deflection value obtained from both the
curves. The critical values of the dynamic load factor obtained on the basis of
different criteria [3–5] are compared in Table 10.2.

Comparing the curves in Fig. 10.6 and the critical values in Table 10.2, one can
conclude that deflection depends strictly on the chosen point and it is very difficult
to choose the proper criterion to determine DLFcr for combined loads. It is sug-
gested that for combined loads, the dynamic response should be analysed. Because
the obtained results are different for each chosen point in the upper wall of the
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Fig. 10.5 Displacement
versus time for the middle
node of the girder upper wall
for different values of DLF
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girder, it is proposed to analyse deflection versus time along the diagonal of the
girder wall. The proposed way of analysis is presented in Fig. 10.7. Such a rep-
resentation of deflection versus time allows one to find the maximal deflection as a
function of time on the wall under consideration.

Analysing the results presented in Fig. 10.7, a change in the mode shape with
an increase in the dynamic load factor can be found. This phenomenon is shown in
Fig. 10.8, where deflection with respect to the position along the diagonal of the

Table 10.2 Critical values of dynamic load factors

Middle node Maximum deflection

Volmir criterion 1.7 1.3
Budiansky-Hutchinson criterion 1.5–1.7 1.5–1.7
Ari-Gur-Simonetta criterion 1.8 2

Fig. 10.7 Dimensionless deflection versus time along the wall diagonal
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upper wall for different DLF values is presented. A change in the mode shape
appears between DLF = 1 and DLF = 1.2.

To conclude, one should emphasize the fact that the behaviour of structures (in
the presented case—the girder) subjected to the combined pulse load is different
than for the case when structures are subjected to a single type of load. Analysing
the results of calculations presented above, it can be said that a criterion checking a
change in the displacement mode, i.e., the Ari-Gur and Simonetta criterion [4], is
the most suitable criterion for structures under combined pulse loading.
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