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Scholarly writing in the broad area of experimental biomedicine is a genre that has
a rhetorical style that exhibits some easily identifiable stylistic features: division of
the paper into well-defined sections (Introduction, Methods, Results, Discussion),
and the use of tables and figures to organize and express important results. Tables
and figures have stylistic features, as well: titles, captions, content.

In addition to these common stylistic features, the community-accepted rhetori-
cal style for authors of scientific papers is to publish their experimental findings in
a tabular form, because the quantity of experimental data is large and the tabular ar-
rangement allows for a concise presentation of the relationships among the data and
for a rapid understanding of the results. Thus, tables are one of the most important
sources of information.

The rapid advancement of knowledge in the biomedical field [1] has led to sig-
nificant efforts to extract information from papers and interpret it automatically. Our
contribution to this effort is a general approach not only to access and extract infor-
mation from tables, but also to understand the information contained in tables by
semantically grounding it with the appropriate concepts in an ontology, and to make
it available for further use.

We report here our phenotype-genotype table understanding undertaking. To
summarize: We have curated papers from the domain of genetics that discuss pheno-
type, genotype, mutation, and gene, and their relationships, syndrome (constellation
of phenotypes), and disease, to design an ontology that captures the concepts needed
to understand these tables and to engineer a tool which populates this ontology with
data reported in these tables.
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Table 1: Clinical features and size of deletion of the 12 patients with 13q monosomy.
patients 1 2 3 4 5 6 7 8 9
deleted segment 13q13.3- 13q21.1- 13q21.32- 13q31.1- 13q31.1-13qter 13q31.1- 13q31.3- 13q31.3- 13q32.1-

13qter 13q31.1 13qter 13q33.3 13qter 13q31.1 13q34 13qter
size of deletion 70 mb 30 mb 47 mb 28 mb 34 mb 30 mb 10 mb 20 mb 18 mb
sex f m m f f m m m m
child(c)/foetus(f) f(33wg) c(13m) f(25wg) f(24wg) f(25wg) f(26wg) f(32wg) f(23wg) f(21wg)
iugr + nk + - + + - - +
growth retardation nk + nk nk nk nk nk nk nk
microcephaly + - - - + + - + +
mental retardation nk + nk nk nk nk nk nk nk
brain anomalies
corpus callosum - - + - + nk nk
agenesis
holoprosencephaly - - - - + + + +
cerebellar vermis + - + - - nk nk
hypoplasia

nk: not known, m: months, wg: weeks of gestation, f: female, m: male

Fig. 1 A (horizontal) table from the development set corpus, modified to fit the page

1 Contributions to Table Information Understanding

As an example of what needs to be done to extract information from a table, the
table in Fig. 1 shows the three types of information: title, caption (or footnotes),
and content. The content is contained in cells. The table information understanding
problem can be seen as extracting and providing a semantics for this information.

Our contributions are a phenotype-genotype table ontology, a reading of the ta-
ble cells that maintains relationships among the cells, and a tool that populates the
ontology with the information extracted from the phenotype-genotype tables found
in scholarly biomedical articles. Details of the first two contributions follow.

The Phenotype-Genotype Table Ontology. The process of building a phenotype-
genotype table ontology required the curation of a sufficient number of texts con-
taining a variety of tables in order to provide credence for our ontology. Using 107
tables found in 50 papers curated from our selected domain as our development set,
we have engineered a table ontology that extends a subpart of the UMLS ontology
with new concepts that are present in these tables (e.g. subjects have an age) as well
as other fundamental concepts. This ontology, a portion is shown in Fig. 2, provides
a semantics for the table data. In addition to storing the table data, the relationship
among the cells (shown by the red lines), which is important information conveyed
by the table structure can also be maintained.

Our ontology reproduces appropriate pieces of the UMLS ontology. These parts
of our ontology are verified simply by the acceptance of the UMLS ontology. For
concepts like genotype and phenotype, which are not in the UMLS ontology we
have used an expert’s knowledge to assist us. For example, we have added a con-
cept named ORGANISM to accommodate certain important classes, like PATIENT

and FAMILY, and certain important attributes for them, like AGE, GENDER, BIRTH

WEIGHT, etc. To accommodate cell values that act as an identifier for the data in a
column or row (e.g. PATIENTS, as in Fig. 1), we designed a generic concept named
IDENTIFICATION ENTITY.

Table Information Understanding. To understand the table information, we begin
with Hurst’s concept of a reading path [2] to associate the access cells and the data
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Fig. 2 A portion of the proposed ontology generated from the curated tables

cells. Data cells are characterized as cells where data appears in a terminating role.
Access cells, which can be conceptualized as descriptors of the data cells, are the
remaining cells. The reading of a table is the reading of all of the data cells.

Hurst views table data cells as independent entities. We realize that for the type
of tables that are in our corpus, the data cells are connected (for instance, a col-
umn or row represents data about a single patient). These connections need to be
maintained in the ontology in order to have a complete interpretation of the table.
Hurst’s concept of reading path is modified to maintain these relationships. In some
cases to achieve the correct interpretation of the data cell values in our corpus, the
primary relationship among the access cells may need to be changed from a verti-
cal (column) relationship to a horizontal (row) relationship. To accomplish this, we
change the order of the sequence of the reading path. For example, for Fig. 4, the
primary headings are in columns and the data are distributed for the subjects down
the columns. However, for Fig. 1, the primary headings are in the rows and the data
are distributed across the rows. We refer to the previous column-oriented table as a
vertical table and the latter row-oriented table as a horizontal table.

Heuristics are required to distinguish horizontal and vertical tables automatically.
After observing our collection of tables, we designed the following heuristics: hori-
zontal tables usually have many more columns than vertical tables; the first column
heading starts with the Family or Patient ID followed by Age/Gender/Weight/Height
attributes of the patient as row headings; and the remaining column headings contain
attributes such as patient numbers or Identification numbers rather than alphabetic
attributes (see Fig. 1). Very often, the data cell values are expressed as symbols.

Using the reading path concept we can reach a particular data cell. For example,
considering the table in Fig. 4 the reading path for the data cell in row 2 column
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access cell c00 access cell c01 access cell c02 · · · access cell c0n
(column/row heading 0) (column heading 1) (column heading 2) · · · (column heading n)
access cell c10 data cell c11 data cell c12 · · · data cell c1n
(row heading 1)
· · ·
· · ·
· · ·
· · ·
access cell cm0 data cell cm1 data cell cm2 · · · data cell cmn
(row heading m)

Fig. 3 Abstract table indicating access cells and data cells (m rows, n columns)

Table 1: HLXB9 Mutations Identified in the Study and Associated Phenotypes
Mutation Mutation Nucleotide Amino Acid Clinical Family or
Class Position Change Change Phenotype Patient No.
Missense Homeobox C→G, nt 4171 R247G Hemisacrum, ARM, presacral mass, 3

perianal abcess
Splice Site Homeobox A→G, nt 4889 NA Hemisacrum, ARM, presacral mass, 16

nonpenetrance
Frameshift Exon 1 Ins C, nt 125-30 NA Hemisacrum, ARM, presacral mass, 20

neurogenic bladder, nonpenetrance

Fig. 4 Example of a vertical table (reduced in size) from the corpus of 115 phenotype-
genotype tables

2 (containing value Homeobox) is: Mutation Class → Missense → Mutation Posi-
tion → Homeobox. Using this simple reading path, we are able to insert the values
Missense and Homeobox and the relation between them in the ontology. However,
using the reading path concept for each data cell, it would not be possible to retain
the relation between Homeobox and the other cells in the row. Instead, we combine
all of the reading paths of all cells in a row, taking common terms only once.

According to our revised reading path, the reading path for the second row of the
table in Fig. 3 is: cell c00 → cell c10 → cell c01 → cell c11 → cell c02 → cell c12 →
. . . cell c0n → cell c1n. If we apply this to the table in Fig. 4 we get: Mutation Class
→ Missense → Mutation Position → Homeobox → Nucleotide Change → C→G,
nt 4171 → amino acid change → R247G → Clinical Phenotype → Hemisacrum,
ARM, presacral mass, perianal abcess → Family or Patient No. → 3.

Now we search for the first term MUTATION CLASS in the ontology and once we
find it we insert the second value “Missense” under the class MUTATION CLASS.
Similarly, we enter other concept-value pairs from the reading path. In this way we
can populate our ontology appropriately. Moreover, from the reading path we know
how data cells are connected with each other. We reflect this connection into our
ontology by creating a relationship and connect data cells with it. As an example,
to preserve the relationship between data cells under MUTATION CLASS and MU-
TATION POSITION we build a relationship named “mClassmPos” and connect data
cells with it, which is illustrated in Fig. 2.

For a horizontal table we need to change the order of the reading path: cell c00

→ cell c01 → cell c10 → cell c11 → cell c02 → cell c12 → . . . cell c0n → cell c1n.
Considering the horizontal table in Fig. 1, the reading path for row 3 is: Patients →
1 → Size of deletion → 70 Mb → 2 → 30 Mb → 3 → 47 Mb → 4 → 28 Mb → 5
→ 34 Mb → 6 → 30 Mb → 7 → 10 Mb → 8 → 20 Mb → 9 → 18 Mb Now we can
populate the ontology as we did for Fig. 4.
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To solve the problem of missing column headings, we take the caption of the table
as a source of the appropriate heading. To confirm this choice we check whether the
values of that column fall under this concept. In the future, this will be performed
automatically, but here, these two steps were performed manually.

We have observed column (or row) heading that have values like “Classes of
Mutation” or “Position of Mutation”, instead of directly matching the name of the
concept in our ontology (Mutation Class and Mutation Postion). In these cases we
check the possible word variations and further confirm our choice by observing the
often highly stylized form of the data associated with that heading, making certain
that it corresponds to the ontology concept that we have chosen.

2 Evaluation

The system correctly populates the ontology with the information contained in the
development set of 107 genotype-phenotype tables.1 The proposed ontology and
population method are further verified by populating the ontology with the data from
31 previously unseen vertical tables, curated from 17 papers using the same keyword
search, comprising 150 columns in total.1 Column headings should map to concepts
in the ontology. To calculate the accuracy of our system we consider the number of
columns that successfully map into the table ontology, success being marked by the
software finding a concept to map to and correctness of the concept being verified
by human judgement. According to this criteria, the 120 correctly mapped columns
gives the following accuracy: 120

150 ∗100% = 80%. The causes of missed or incorrect
interpretations for the 30 columns by our current system are summarized below.

Headings in 18 columns representing 10 distinct concepts do not map to a concept
in our current ontology. In 5 cases the column header refers to a concept, but the
values in the column belong to an aspect or property of the concept or a different
concept. For 5 cases the column heading synonym list is inadequate for the mapping
to the correct concept that exists in the ontology. In two other cases we found one
column missing a column heading and one column heading which is actually a
combination of two concepts joined by “and”.

The first problem, finding concepts in tables that are not in our ontology, has
been anticipated: the ontology is meant to evolve, especially in its gestation period.
Most of the mapping problems encountered by our system will be overcome with
appropriate updates to the ontology, which include having a good base of linguistic
synonyms that map to the same ontological concept. We are currently investigating
automatic and semi-automatic methods for adding concepts to the ontology. The
second problem is much rarer. We already have procedures in place to confirm the
mapping of column/row headers using the data values in the column/row (for in-
stance, we do this for the missing column header problem).

1 http://www.csd.uwo.ca/~mercer/PhenGenTable-corpus-bibliography

provides a bibliography of the 67 papers and
http://www.csd.uwo.ca/~mercer/PhenGenTable-corpus, the corpus of 138 tables.
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3 Related Work

Wong et al. [4] provides an automated system to extract information about muta-
tions (gene, exon, mutation, codon and related statistics) from tables. They classify
the table data to map the column/row values to a relevant entity, and then extract mu-
tation information from these data. Mulwad et al. [3] introduces a domain indepen-
dent framework for the intended semantics of tables. Column headers are mapped
to class labels from an ontology; relationships between columns are discovered; cell
values are linked to Linked Open Data entities and appropriate linked data.

In comparison, our work provides a domain-based ontology to store not only
the data from the table but also the relationships that hold among the data cells.
Furthermore, we are interested in a broader range of concepts for our ontology than
the first work: mutation, gene, exon, phenotype, genotype, disease, syndrome.

4 Conclusions and Future Work

This paper reports on a table ontology designed to represent the tabular information
in phenotype-genotype tables in scholarly biomedical papers. We extend the reading
path concept to make it functional for our concept of table orientation, to populate
the ontology with data and to preserve the various relationships among the table
data. The populated ontology represents the semantics of each piece of information
and preserves the relationship among cells in the table.

For future work, adding concepts automatically or semi-automatically to the in-
complete ontology needs investigation. Unanticipated complications encountered
during evaluation need to be addressed. As well, two issues arose that address as-
pects of the design and population of ontologies in a more general way. Firstly, we
discovered in our evaluation phase, one table that referred to the lack of a muta-
tion. Secondly, our biomedical expert has pointed out that knowledge changes over
time and this is reflected in how the data is reported (e.g. epigenetic changes are
not understood as well as sequence-based or structural chromosomal changes; and
uncertainty in interpretation will be communicated in inconsistent ways). Our ontol-
ogy will have to address this temporal aspect to record information of these types.
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