

M. Ali et al. (Eds.): Contemporary Challenges & Solutions in Applied AI, SCI 489, pp. 19–25.
DOI: 10.1007/978-3-319-00651-2_3 © Springer International Publishing Switzerland 2013

Using Agents for Dynamic Components
Redeployment and Replication
in Distributed Systems

Nadim Obeid and Samih Al-Areqi

Abstract. Availability is one of the important criteria that affect the usefulness and
efficiency of a distributed system. It mainly depends on how the components are deployed
on the available hosts. In this paper, we present a generic agent-based monitor ap-
proach that supports the dynamic component redeployment and replication me-
chanisms which were presented in Avala and E-Avala. Avala and E-Avala were
proposed to improve availability in large and distributed component-based sys-
tems via redeployment and replication. By reifying the interaction between the
system and components, agents can detect when it is necessary to change the con-
figuration and whether redeployment or replication is more appropriate.

Keywords: Distributed Systems, Agents, Availability, Redeployment.

1 Introduction

Distributed Systems (DS) have to face the problem of disconnected operations. In
addition to the fact that the initial deployment architecture may not be very suita-
ble, it is difficult to predict, at design time, the applications which the DS has to
deal with. Therefore, finding and maintaining a desirable (e.g. availability) dep-
loyment architecture that satisfies a given set of constraints is a challenging prob-
lem. This is due to the facts that (1) there are many parameters which influence the
selection of an appropriate deployment architecture (2) the space of possible
architectures is large and (3) there may be constant need to change locations of
components to meet changing requirements. This leads to some problems such as
availability, dependency management [15]], and dynamic configuration. Hence,

Nadim Obeid ⋅ Samih Al-Areqi
Department of Computer Information Systems,
King Abdullah II School for Information Technology, The University of Jordan
e-mail: obein@ju.edu.jo

20 N. Obeid and S. Al-Areqi

mechanisms such as components replication and redeployment may be necessary
in order to improve availability and reliability [1, 2, 10, 12, 5].

In this paper, we present a generic agent-based monitor approach that supports
the dynamic component redeployment and replication mechanisms which were
presented in Avala [12] and E-Avala [3]. E-Avala improves on Avala by (1) con-
sidering positive and negative dependencies among components and (2) imple-
menting replication taking into consideration negative dependencies. By reifying
the interaction between the system and application components, agents can detect
when it is necessary to change the configuration and whether redeployment or
replication is more appropriate.

 In section 2 we discuss Avala and E-Avala. In section 3 we present the agent-
based redeployment approach. In Section 4 we discuss previous approaches to
replication and redeployment.

2 Avala and E-Avala

In this section we give a brief presentation of Avala [6] and E-Avala [2]. Let h1,
h2, …, hk (1 ≤ k) stands for hosts, MEM(hi) be the memory of hi. C1, …, Cn (1 ≤ n)
stands for components, MEM(Ci) be the memory of Ci and FREQ(Ci, Cj) be the
frequency between components Ci and Cj. The Avala algorithm [6] starts by rank-
ing all hardware nodes and software components as follows:

=

+=
k

j ihMEMjhihREL
1

))(),(iIHR (1)

The ranking of software components is performed as follows:

)(

n

1 j
)jC ,iFREQ(C *d ICRi

iCMEM

E
+

=
=

 (2)

Where d denotes contributions of host memory and E contributions of event size
of interactions between Ci and Cj.

The next software component to be assigned to h, is the one with the smallest
memory requirement and which would contribute maximally to the availability
function if placed on h. The Component Rank (CR) is calculated as follows:

CR(Ci, h) = D1(Ci, h,n) + D2(Ci, h) (3)

where)jMC(,(*
n

1 j
)jMC ,iFREQ(C *d n) h, ,i(C1D fhREL

=
=

and)(
 n)h, ,i(C2D

iCMEM

E
=

and MCj is a shorthand for mapped Cj, f(MCj) is a function that determines the
hosts of mapped components, REL(h, f(MCj) is a function that determines the
reliability between selected host h, and hosts of mapped components.

Host Rank (HR) is calculated as follows:

)()j(,(
m

1 j
)iHR(h ihMEMhMHihREL +

=
= (4)

where m is number of hosts that are already selected.

Using Agents for Dynamic Components Redeployment and Replication 21

E-Avala [2] employs the notion Depend(Ci, Cj), not present in Avala, as follows:

=

Cion depends Cj if 1-

Cjon depends Ci if 1
),(jCiCDepend (5)

Furthermore, E-Avala takes into considration whether or not is a need for data
consistancy check regarding a Ci as shown below in (6):

=

Otherwise

yconsistenc data requires does Ci if

 0

 1
)(iCConsis (6)

Let h be the selected host, l is the level of dependency for system configuration,
determined by the designer, and nm be number of mapped components (i.e., al-
ready been assigned to selected hosts), E-Avala uses the same equations of Avala
to calculate the intial ranking and distribution. It improves on Avala by employing
two additional functions: RCR (resp. Consis-RCR) that compute Replicate Com-
ponent Rank without (resp. with) consideration for data consistency.

RCR(Ci, h, n, nm) = D3(Ci, h, n) + D1((Ci, h, nm) (7)

where
)(

2n

1 p
)iC ,pDepend(C n) h, ,i(C3D

iCMEM

El +
+

=
=

Consis-RCR(Ci, h,n,nm) = D3(Ci, h, n)*(1-Consis(Ci) + D1(Ci, h, nm) (8)

E-Avala makes a comparison between the selected components for redeployment
determined by CR (cf. (3)) and those to be replicated determined by RCR (cf. (5)).
The selected component will be the one with the highest value of CR and RCR
and that satisfies the constraints of memory, Loc, and Colloc with respect to the
current host h and components which are already assigned. This process is be
repeated until h is saturated. The performance of Avala and E-Avala is discussed
in [2].

3 Agent-Based Redeployment

Agents are specialized autonomous problem solving entities that are suitable for
problem solving in DS [6, 8, 9, 10, 11, 12]. The use of agents enables us (1) to
keep track of the communication cost, (2) to mange dynamic reconfiguration
while the system is operational and (3) to choose the better mechanism (e.g., re-
deployment or repplication) to maintain availability at minimal cost.

Let HR (resp. HT) stands for the host of the requesting component, CR, (resp.
target component CT). We employ two kinds of Agents: (1) Comp-Agent (CPA),
which has the required information about its host’s components and has the ability
to monitor any frequent interactions between a component on its host and compo-
nents on other hosts and (2) Comm-Agent (CMA), which manages the communi-
cations with the other Host’s CMAs. Let Cor(CR, CT) stand for the cost of request
between CR and CT. When Cor(CR, CT) becomes high (e.g., above a certain thre-
shold), CPA of HT will negotiate with the CPA of HR (through CMAs of HT
and HR) in order to agree on one of the following options : (1) redeploying CR in

22 N. Obeid and S. Al-Areqi

HT, (2) redeploying CT in HR, (3) replicating CR in HT, (4) replicating CT in HR or
(5) no change. Assuming HR ≠ HT, Cor(CR, CT) can be defined as follows:

Cor(CR, CT) = freq(CR, CT)*eventsize(CR, CT)/reliable(HR, HT) (9)

where freq(CR, CT) represents the frequency of interaction between CR and CT,
eventsize(CR, CT) denotes the size of interactions between CR and CT, relia-
ble(HR, HT) is the reliability between HR and HT. Fig. 1 and Fig. 2 show the agents
and negotiations algorithms.

Fig. 1 Agent Algorithm Fig. 2 Agent Negotiation

We have made some improvement on the DeSi simulator [6] in order to simu-
late interactions between any two components on different hosts. We generate a
deployment architecture that consists of 10 components, 3 hosts with their soft-
ware agents and with availability=.8122 distributed as follows:

Host0 = {0,4,7}, Host1 ={2,6,3,8} and Host3 = {0,5,1,9}

the input value are as in Table 1.

Table 1 Input Values

Input Parameter Value Input Parameter Value
Number of Component 10 Min host reliability 0
No. of hosts 3 Max host reliability 1
Min comp memory (in KB) 2 Min comp event size (in KB) .01
Max comp memory (in KB) 8 Max comp event size (in KB) 10
Min host memory (in KB) 15 Min host bandwidth (in KB/S) 30
Max host memory (in KB) 30 Max host bandwidth (in KB/S) 100
Min comp frequency (in events/s) 0 Level of dependency 3
Max comp frequency (in events/s) 10

Using Agents for Dynamic Components Redeployment and Replication 23

Let Ci
R where 0 ≤ i ≤ 9 and Cj

T where 0 ≤ j ≤ 9 be two operating components
and let Rep(i) (resp. Red(i)) denote replicating Ci

R (resp. redploying) on host of
Cj

T. To test the viability of the algorithms, we execute several scenarios.
The values, as generated by the simulator (of an E-deployment architecture),

which effect the agents' negotiation results, are shown below: frequency values
between components and their memory size in Fig. 3, dependency values in Fig. 4
and reliability values between hosts and their memory size in Table 2.

We now consider two Scenarios. In the first, C4 makes requests frequently to
C6 (cf.Table 3). The result (cf. Fig. 5) is to replicate C4 as there are many compo-
nents dependent on it, and it provides better availability. We could not replicate
C6 because there is a need for data consistency and it depends on two components
in its host. In the second, C3 makes frequents requests to C9 (Table 4). The result
(cf. Fig. 6) is that either mechanism is possible. Redeploying C3 will improve
availability because it has more interaction and both positive and negation depen-
dency relations with components in the host of C9.

Fig. 3 Components Frequency Fig. 4 Component Dependency

Table 2 Host Reliablity/Memory Table 3 Component properties

Host No. 0 1 2 Comp. properties Comp (4) Comp (6)
0 1 .49 .38 Comp. memory size 7,6kb 3,8

1 .49 1 .94 Free host size 4,5 kb 12.5 kb
 3 .38 .94 1 Positive dependency 0,3 0,2,3

Host MEM 21 27 22 Data Consistency 0 1

Fig. 5 Senario 1 Results Fig. 6 Senario 2 Results

24 N. Obeid and S. Al-Areqi

Table 4 Scenario 1 Component properties

Component Properties Component (3) Component (9)
Component memory size 4.8 kb 6.8
Free Host size 4.5kb 12.5kb
Positive dependency 0,1,2 4,5,8
Negative dependency 4,6,8,9
Data consistency 0 0

4 Previous Work and Concluding Remark

Several approaches that support the replication of components in DSs have been
proposed. However, only a few address redeployment. In [4], Dock is proposed. It
employs mobile agents to perform deployment tasks among hosts. It differs from
our approach in that it is more concerned with the practical issues of implementing
deployment rather than extracting parameters and evaluating deployment architec-
tures. In [5], a constraint-based deployment approach is presented. It addresses the
deployment of hierarchical components on heterogeneous dynamic networks. In
[3], MARP employs mobile agents to coordinate the updates made to replications
maintained at different servers to ensure consistency.

In this paper, we present a generic agent-based monitor approach that supports
the dynamic component redeployment and replication mechanisms which were
presented in Avala [6] and improved in E-Avala [2]. Some of the issues that need
to be addressed include: (1) dealing with functional consistency among compo-
nents, (2) expanding the solution to include additional parameters such as compo-
nents structure representation.

References

1. Achmad, I., Graham, M., Santosh, K., Mark, C.: Component Replication in Distributed
Systems, A Case Study Using Enterprise Java Beans. In: SRDS, pp. 89–98 (2003)

2. Al-Areqi, S., Hudaib, A., Obeid, N.: Improving Availability in Distributed Compo-
nent-Based Systems via Replication. In: ACCIDS 2011, pp. 43–52 (2011)

3. Cao, J., Chan, A., Wu, J.: Achieving Replication Consistency Using Cooperating Mo-
bile Agents. In: ICPP Workshops, pp. 453–458 (2001)

4. Hall, R., Heimbigner, D., Wolf, A.: A Cooperative Approach to Support Software
Deployment Using the Software Dock. In: ICSE 1999, pp. 174–183 (1999)

5. Hoareau, D., Mahéo, Y.: Constraint-Based Deployment of Distributed Components in
a Dynamic Network. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006.
LNCS, vol. 3894, pp. 450–464. Springer, Heidelberg (2006)

6. Mikic-Rakic, M., Malek, S., Medvidovíc, N.: Improving Availability in Large, Distrib-
uted Component-Based Systems Via Redeployment. In: Dearle, A., Savani, R. (eds.)
CD 2005. LNCS, vol. 3798, pp. 83–98. Springer, Heidelberg (2005)

7. Moubaiddin, A., Obeid, N.: The Role of Dialogue in Remote Diagnostics. In: 20th Int.
Conf. on COMADEM (2007)

Using Agents for Dynamic Components Redeployment and Replication 25

8. Moubaiddin, A., Obeid, N.: Dialogue and Argumentation in Multi-Agent Diagnosis.
In: Nguyen, N.T., Katarzyniak, R. (eds.) New Chall. in Appl. Intel. Tech. SCI,
vol. 134, pp. 13–22. Springer, Heidelberg (2008)

9. Moubaiddin, A., Obeid, N.: Partial Information Basis for Agent-Based Collaborative
Dialogue. Applied Intelligence 30(2), 142–167 (2009)

10. Moubaiddin, A., Obeid, N.: On Formalizing Social Commitments in Dialogue and Ar-
gumentation Models Using Temporal Defeasible Logic. Knowledge and Information
Systems (2012), doi:10.1007/s10115-012-0578-6

11. Obeid, N., Moubaiddin, A.: On the Role of Dialogue and Argumentation in Collabora-
tive Problem Solving. In: ISDA, pp. 1202–1208 (2009)

12. Obeid, N., Moubaiddin, A.: Towards a Formal Model of Knowledge Sharing in Com-
plex Systems. In: Szczerbicki, E., Nguyen, N.T. (eds.) Smart Information and Know-
ledge Management. SCI, vol. 260, pp. 53–82. Springer, Heidelberg (2010)

13. Osrael, J., Froihofer, L., Goeschka, K.: What service replication middleware can learn
from object replication middleware. In: MW4SOC, pp. 18–23 (2006)

	Using Agents for Dynamic ComponentsRedeployment and Replicationin Distributed Systems
	1 Introduction
	2 Avala and E-Avala
	3 Agent-Based Redeployment
	4 Previous Work and Concluding Remark
	References

