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Preface

This book describes the research and development of a fluid level measurement
system for dynamic environments. The measurement system is based on a single
ultrasonic sensor. A Support Vector Machines (SVM)-based signal characteriza-
tion and processing system has been developed to compensate for the effects of
slosh and temperature variation in fluid level measurement systems used in
dynamic environments including automotive applications. It has been demon-
strated that a simple m-SVM model with Radial Basis Function (RBF) Kernel with
the inclusion of a Moving Median filter could be used to achieve the high levels of
accuracy required for fluid level measurement in dynamic environments.
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Chapter 1
Introduction

1.1 Overview

This book documents a research program undertaken to design and develop an
ultrasonic sensor based fluid level measurement system for dynamic environments,
in particular automotive applications. This research is a subset of an overall
research program titled ‘‘Smart Sensor for Fluid Level Measurement in Hazardous
and Dynamic Environments.’’ The research work presented herein is based on the
use of an ultrasonic sensors coupled with a support vector machines-based signal
processing system for accurately determining the fluid level in dynamic environ-
ments. The objective of this research project is to design and develop a fluid level
measurement system based on a nonmechanical and contactless sensor to
accurately determine the level of fluid in a dynamic environment, especially in
vehicular fuel tanks. The motivation for this research is the automotive industry’s
requirement for a robust and accurate fuel level measurement system that would
function reliably in the presence of slosh and temperature variations.

This chapter provides a background to the research project and an overview of
the problems experienced in fluid level measurement. The objectives of the project
and the outline of this book are also contained in this chapter.

1.2 Background

Modern automotive vehicles are equipped with digital gauges as well as with
additional functionalities that inform drivers about their vehicle’s fuel consump-
tion and the remaining distance that the vehicle can travel without refueling.
However, the high precision digital displays and additional utilities have to rely on
the accuracy of the fuel level measurement sensor itself. The reliability and
accuracy of the fluid level measurement system in the context of a dynamic
environment, which primarily depends on the level sensor, is increasingly
becoming a concern for automotive industries as well as everyday vehicle users.

J. Terzic et al., Ultrasonic Fluid Quantity Measurement
in Dynamic Vehicular Applications, DOI: 10.1007/978-3-319-00633-8_1,
� Springer International Publishing Switzerland 2013
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A fluid level sensor is a device that measures the level of fluid from a reference
point and produces an electrical signal at the output. The existing fluid level sensor
technology is mainly based on resistive type potentiometers. Such sensors deter-
mine fuel levels by considering the resistance value of the potentiometer, such that
a float interconnected with the potentiometer changes the position of the terminals
forming contacts with the resistive track [1]. As the fluid level rises from empty to
full, the contacts on the resistive track slide from one end to the other, forming a
complete swing. The resistive type level sensors are mechanical devices that are
prone to wear and corrosion [2]; therefore, they have a limited functional life. The
rubbing of the contacts across the resistive track creates wear, which leads to a
reduction in the accuracy of the level sensing mechanism over a short period of
time. Apart from the mechanical issues of the sensor, there are electrical problems
with resistive potentiometers. The changes in the contact resistance generate noise
and spikes at the output voltage, which can become significant with the influence
of dust, humidity, and oxidation [1].

These conventional level sensor systems used in automotive applications also
occupy a significant amount of space because of the mechanical design that is
associated with them. The importance of level sensor reliability in hostile envi-
ronments over long periods of time has lead to the investigation of various forms
of motionless level sensors. The ultrasonic sensor is one such example of a
compact as well as contactless displacement sensor that is investigated in this
research for accurate fluid level measurements in automotive fuel tanks under
dynamic conditions. Ultrasonic sensors have been used in a variety of different
applications that range from process monitoring [3, 4], control systems, sonog-
raphy [5], and distance measurement [6]. According to Dunn [7], ultrasonic
devices can be used in containers with pressures up to 2 mega Pascal (MPa),
temperatures up to 100 �C, and depths up to 30 m, with an accuracy of approxi-
mately 2 % [6]. With the advancements in ultrasonic sensor technology, specifi-
cally the improvements in electronics and new piezoelectric materials, the
applications of ultrasonic sensors requiring more accurate signal analysis methods
have expanded significantly [4].

An ultrasonic level sensor determines the fluid level by transmitting high
frequency sound waves as echoes or pulses and then measures the return time of
the reflected echoes. If the speed of sound in the medium is known, then the fluid
level can be calculated using:

level ¼ levelref �
1
2

v � s ð1:1Þ

where levelref is the height of the tank, v is the speed of the sound, and s is the
time-of-flight of the ultrasonic echo (Fig. 1.1).

However, in real-life situations, the speed of sound is influenced by the
temperature of the medium through which the sound waves travel [8]. Therefore,
because of the changes in the ambient temperature, the usage of ultrasound in fluid
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level measurement applications will lead to incorrect level readings. The speed of
sound in terms of temperature can be approximated as:

vðTÞ ¼ 331:3þ kT m=s ð1:2Þ

where, T is the ambient temperature in degree Celsius, k is the rate at which the
speed changes with respect to the temperature, which is approximately 0.607 m/s
at every change of 1 �C in temperature [9].

Ultrasonic sensors are normally combined with a temperature sensor to
compensate for the effects of temperature variations [10–13]. Apart from the
accuracy of the level sensor itself, the fluid level measurement system in dynamic
environments, for instance in an automotive fuel tank, is influenced by the sloshing
effects caused by acceleration. In automotive fuel tanks, vehicle acceleration
induces slosh waves having natural frequencies whose wave patterns are depen-
dent on the magnitude of the acceleration, geometry of the tank, and the amount of
fluid contained in the tank [14].

To compensate for the effects of sloshing in fluid level measurement systems,
various mechanical dampening methods consisting of baffles, electrical dampening
techniques, and statistical averaging methods have been used in the past [15, 16].
However, all these methods follow approaches that lead to higher production cost.
The accuracy of these approaches under sloshing conditions is also very limited.
The electrical dampening techniques and the statistical averaging methods
primarily perform averaging on the raw sensor signals over some period of time.
Averaging over a variable time frame has also been used in the past [17–19] to
improve the level sensor accuracy under sloshing conditions by determining the
running state of the vehicle using the vehicle speed data from a speed sensor. For
example, fluid measurement systems described by Kobayashi et al. [18] employ a
vehicle speed sensor to determine the running state of the vehicle. When the
vehicle is operating at low speed (i.e., near static condition), the averaging period
is reduced to small values typically in the range from 5 to 25 s, and when the
vehicle is operating at a higher speed, the averaging period is prolonged up to 90 s
[18]. Despite the dependence of the measurement system on the speed sensor, after
analyzing the raw sensor data from a resistive type fuel level sensor in a moving
vehicle, it can be observed that the averaging method still produces significant
errors after averaging the raw sensor signal over a longer period of time.

levelref
Fluid

Ultrasonic 
Sensor

Level

Fig. 1.1 Fluid level
measurement using ultrasonic
transducer
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Figure 1.2 illustrates the raw volume signal obtained from a driven vehicle, and
two averaged signals calculated after averaging the raw signal over 20 s, which is
the typical averaging time used in an automotive instrument cluster; and the
second is an averaged signal over 90 s, which is a reasonably long period of time.

Therefore, even after performing averaging methods to reduce the effects of
sloshing in level readings, the level reading error under dynamic conditions is still
significant. Hence, to provide a solution to this problem, the research conducted
here takes a different approach that is based on Support Vector Machines (SVM),
which characterizes the slosh patterns at different tank volumes and then deter-
mines the actual fluid volume based on the prediction from the SVM. Although
there are other methods, apart from SVM, such as Artificial Neural Network
(ANN), K-means, and Principle Component Analysis (PCA) that could also be
used to develop a system for slosh pattern characterization and recognition, after
conducting the literature review (Chap. 2), it was observed that the SVM has better
advantages due to its flexibility and signal processing speed; hence, it was chosen
as the appropriate method for signal classification.

Support Vector Machines (SVM) is a newly developed machine learning algo-
rithm [20]. SVM is based on Statistical Learning Theory and has the ability to
recognize patterns [21]. SVM represents novel learning techniques in the framework
of structural risk minimization (SRM) and in the theory of Vapnik–Chervonenkis
[22] (VC) bounds [23–25]. SVM has been successfully used in various applications
for solving classification, regression, time series prediction, and function estimation
problems [26]. Meyer et al. [27] conducted a benchmark test in which SVM and
several other types of classification techniques were benchmarked. Their findings
[27] revealed that the performance of the SVM classification and regression was in
general better than other investigated classification and regression techniques [27].
SVM has quickly found its place in many applications of pattern recognition
requiring an artificial intelligence approach such as handwritten character recogni-
tion [28], speech recognition [29], image classification [21, 30], face detection [31],
signal processing [32], and commerce [33] etc.

SVM has also the potential to be used in combination with an ultrasonic sensor
to predict the fluid level in a dynamic environment, especially considering the

Fig. 1.2 Fuel level signal observed by the level sensor and the calculated average signal in a
sample drive trial
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variations in temperature and the vehicle movement creating slosh waves. The
implementation of SVM is carried out using LIBSVM [34] software, which is a
popular SVM classification and regression software available [35]. The approach
to sensing developed in this research is also applicable to nonacoustic sensors such
as capacitive and hall-effect sensors.

Additionally, prior to classifying the sensor signals with SVM, the signals from
the sensor should be clean from unwanted noise. Hence, the systems approach
described in this book performs signal smoothing on raw sensor signals to filter out
unnecessary range of noise frequencies. Three commonly used signal smoothing
filters have been investigated through experimentation. The investigated filters
consist of Moving Mean, Moving Median, and Wavelet filters. These filters
provide the following enhancements [36]:

• Remove impulse noise,
• Smooth the signal,
• They can be taken over a wider interval so that the filter removes transients

longer than a time instant in duration, and
• Preserve sharp edges of the signal curve.

In this research, various configurations of ultrasonic sensors have been inves-
tigated to determine the most appropriate, yet cost effective setup of the ultrasonic
type level measurement system. Various limitations of ultrasonic sensors when
operating in dynamic environments have been identified to develop a robust
system that will perform to an acceptable level of accuracy. The experimental
program for this research has been designed and conducted using the Design of
Experiments (DOE) methodology. The DOE consists of creating different sce-
narios of combinations of input factors to test the effects of those combinations on
the outcome (response factor) [37]. DOE is the most appropriate way to measure
‘main effects and interactions’ of the factors that influence the accuracy of a fluid
level measurement system [37]. To determine the most appropriate configuration
of the support vector machines (SVM), experiments have been performed to
compare the performance of various commonly used SVM kernel functions,
namely, linear, polynomial, radial basis function (RBF), and Sigmoid type kernel
functions. The SVM training technique uses the one-against-all technique that
provides a better performance while considering the trade-off of classification
error, speed, and memory usage [38]. Further experiments have been conducted to
compare the performance of the three investigated signal smoothing filters,
namely, moving mean, moving median, and wavelet filter. Finally, based on the
experimental results, a robust fluid level measurement system with high accuracy
is developed and analyzed using an extensive field trial program. To investigate
the performance of the proposed system, several field trials are carried out by
actually driving a vehicle on suburban roads. This book also includes details of
comparisons of the developed fuel level measurement system with that used
currently. The results indicate that the proposed system is able to determine fluid
levels in dynamic environments with high accuracy and is superior in performance
to existing systems.

1.2 Background 5



1.3 Aims and Objectives

The purpose of this research is to investigate the use of artificial intelligence
techniques in combination with acoustic type ultrasonic sensor technology to
achieve accurate fluid level measurement in dynamic environments. The research
involves the design, development, and validation of a fluid level measurement
methodology and system that is applicable in the context of potentially hazardous
fluids and dynamic environments.

The research aims to develop a robust fluid level sensor that maintains its
performance and preserves its accuracy over a long period of time. The sensor
system is required to accurately determine the fluid level under dynamic operating
conditions especially, temperature variation, and slosh. To validate the artificial
intelligence based fluid level measurement system under dynamic environments;
several field trials are carried out experimentally on a running vehicle, where the
goal is to accurately determine the fuel level in the vehicle fuel tank under
dynamic and sloshing conditions. It is aimed that the harshness of ambient
environments would not adversely affect the accuracy of the final sensor system.

In summary, the research addresses the following aims:

• To obtain an understanding of the possible weaknesses and drawbacks of using
an ultrasonic sensor as a fluid level measurement sensor,

• To understand the effects of liquid sloshing, and temperature variations on the
sensor response,

• To understand the effectiveness of using support vector machines as a signal
processing technique to overcome the effects that sloshing and other environ-
mental changes consisting of temperature variation might have on the level
sensor readings, and

• To understand the enhancement of the accuracy of the measurement system by
using different preprocessing filters on the sensor signal.

It is intended that the knowledge gained through this project will have the
broadest possible application in intelligent sensor design.

1.4 Methodology and Approach

To achieve the aforementioned research objectives, an approach is undertaken that
consists of the following steps:

• Examining the relationship between the ultrasonic sensor output and the
influential factors such as temperature, slosh, and contamination that may cause
false echoes to occur, by adopting the DOE methodology,

• Understanding the characteristics of slosh waves at different levels of the fluid in
a storage tank,

• Understanding the patterns of the ultrasonic sensor output under dynamic
conditions in both time and frequency domains,
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• Determining the effectiveness of the support vector machines (SVM)-based
signal processing technique in improving the accuracy of the ultrasonic sensor
based measurement system,

• Determining the most suitable SVM configuration by developing and validating
different types of SVM kernel functions using slosh and temperature data sets,

• Developing and training the selected SVM configuration with sample data
obtained from field trials experiments and investigating the accuracy of the
ultrasonic sensor based measuring system in a real-life application, and

• Investigating the influence of different signal filtration methods in improving the
performance of the SVM based signal processing system under dynamic
conditions.

1.5 Outline of the Book

The outline of the book provides an overview layout of the different topics covered
in this research. The book is comprised of eight chapters that are briefly introduced
below:

Chapter 1—Introduction provides an introduction to the background problem
and the project. An overview of the research program, covering the objectives of
this research, and the methodology, are detailed in this chapter.

Chapter 2—Ultrasonic Sensing Technology provides a review of ultrasonic
sensor technology, details of ultrasonic type measurement sensors and their
application in industrial environments, and describes limitations of ultrasonic
sensors in the context of industrial applications.

Chapter 3—Support Vector Machine-Based Intelligent Level Sensing focuses
on signal processing and classification aspects of Support Vector Machines in the
level sensing application. A background to various signal classification approaches
is also provided in this chapter. Furthermore, Chap. 3 particularly focuses on
Support Vector Machines basics and its variants, kernel functions, and its use in
industrial applications.

Chapter 4—Methodology introduces the innovative concept of having an
ultrasonic sensor combined with Support Vector Machines based signal processing
for accurate and reliable fluid level measurement in dynamic environments. The
methodology underpinning the proposed system is detailed in this chapter.

Chapter 5—Experimental Program describes the experimental setup for the
research work. The Design of Experiments approach and the equipment used for
the experiments are described in Chap. 5. In brief, it covers all major experiments
that were performed:

1. To analyze the sensor response under dynamic conditions;
2. To determine the performance of different SVM configurations on the

ultrasonic sensor signals under dynamic conditions;
3. To understand the improvements provided by the three signal smoothing

functions (moving mean, moving median, and wavelet filter).
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Chapter 6—Results presents the experimental results for the three major sets of
experiments performed using the proposed system. It details experimentation
results of the three experiments in the presentation of main effects plots, inter-
action plot, observed sensors signals, frequency coefficients plot, SVM Validation,
and validation error plot.

Chapter 7—Discussion provides detailed discussion of the experimental results.
The influence of two main factors (temperature, and slosh) on the response of the
ultrasonic sensor is discussed. The performance of different SVM configurations is
also analyzed. The influence of signal filtration on the performance of the SVM
based signal classifier is described and the results are compared with existing
methods.

Chapter 8—Conclusions and Future Work provides the final conclusions of the
research investigation. The summary of the findings of this research and details of
possible future improvements to the proposed system presented here.
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Chapter 2
Ultrasonic Sensing Technology

2.1 Overview

This chapter describes the basic properties of ultrasonic technologies and their
associated use in various ranges of sensors in industrial applications. Physical
properties as well as the limitations of the piezoelectric devices used in ultrasonic
sensors are described here. Particularly, the usage of ultrasonic sensors in fluid
level measurement systems is discussed. Various configurations of ultrasonic
sensors used with hazardous fluids, particularly gasoline-based fuels, in the
application of level measurement have also been described in this section. In
summary, this chapter provides the detailed background to ultrasonic type sensors
and their application in dynamic environments.

2.2 Principles of Ultrasonic Sensing

2.2.1 Overview

Fundamentals of ultrasonic transducers are discussed in this section. The nature of
the ultrasound waves and their associated parameters such as ultrasound velocity
and range are described.

2.2.2 Ultrasound Waves

Ultrasound waves are similar to sound waves, where both travel through a med-
ium. Ultrasound waves consist of high-frequency sound waves that are inaudible to
human beings. The frequency of the ultrasound waves is normally above 20 kHz.
However, some creatures such as bats can hear as well as generate the high-
frequency ultrasound waves [1, 2].

J. Terzic et al., Ultrasonic Fluid Quantity Measurement
in Dynamic Vehicular Applications, DOI: 10.1007/978-3-319-00633-8_2,
� Springer International Publishing Switzerland 2013
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As the sound waves travel through the air, they produce vibration in the air
particles which changes the density and pressure of the air particles along the
direction of motion of the wave. If a sound wave is moving from left to right
through air, particles of air will be displaced both rightward and leftward as the
energy of the sound wave passes through it. If the source of the sound waves
vibrates sinusoidally, the pressure variations are also sinusoidal. Figure 2.1 illus-
trates the propagation of the sound waves produced by a fork. Patterns of high and
low pressure points will be created in the air by the vibration of the fork. These
patterns of varying pressure points can be observed using a sound wave detector [3].

Ultrasound can be thought of as analogous to ultraviolet light in that it char-
acterizes that region of acoustical phenomena which is not accessible to human
perception [4]. Some creatures such as bats, dolphins, and whales are able to hear
and generate ultrasonic waves. Figure 2.2 shows a graph of different hearing
ranges in animals and humans.

2.2.3 Sound Velocity

The sound velocity is defined by the rate of change of particle displacement with
respect to time. Sound or ultrasound waves can only be propagated in a material
medium. Different characteristics of different materials will influence the velocity

Fig. 2.1 Sound waves
produced by a fork [3]
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of the sound differently. The characteristics of the material medium have effects
on the velocity and the attenuation of ultrasound waves. The speed of sound waves
in a medium depends on the compressibility and density of the medium [5]. If the
medium is a liquid or a gas and has a bulk modulus K and density q, the speed of
sound waves in that medium or fluid is given by Cheeke and David [6]:

cfluid ¼
ffiffiffiffi

K

q

s

ð2:1Þ

The general expression of the speed of all mechanical waves in a given material
is expressed as [5]:

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

elastic properties
inertial properties

s

ð2:2Þ

The speed of sound changes according to the surrounding temperature. The
speed of sound in atmosphere reaches 331.45 m/s at 0 �C. The speed of sound in
terms of temperature can be determined with the following equation:

cairðtÞ ¼ C0 þ kt ð2:3Þ

where, cair is the speed (m/s) of the sound in air,
t is the air temperature in degree Celsius, and
k is the rate at which the speed changes with respect to the temperature, which

is approximately 0.607 m/s at every change of 1 �C in temperature.
Table 2.1 lists some materials and their characteristics that relate to the speed of

ultrasonic waves. The characteristic impedance factor (Ns/m3) represents the
resistance to propagation of ultrasonic sound in a given material.

Fig. 2.2 Hearing range threshold in different living beings, courtesy Microsoft Encarta 2008
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2.2.4 Ultrasonic Wave Generation

The generation of ultrasonic waves is similar to the generation of an audible sound
wave using a speaker. The diaphragm of the speaker is electronically driven to
move back and forth, which produces low pressure and high pressure points in the
air. For ultrasonic wave generation, the diaphragm needs to move back and forth at
a much greater rate than for an audible sound wave.

The frequency and amplitude of sound waves can be measured by measuring
the fluctuations and the pressure difference in air particles propagating sound
waves through air. The diaphragm of the microphone, shown in Fig. 2.3, produces
electrical signals which are a replica of the sound pressure experienced by the
diaphragm. The vibration of the diaphragm and the pressure on it reflects the
frequency and amplitude of the sound waves.

2.2.5 Piezoelectric Effect

Since ultrasonic waves are high-frequency waves, sensitivity of a device to detect
high-frequency waves plays an important role in ultrasonic wave detection. The
piezoelectric effect can be used to detect as well as generate ultrasonic waves.

Table 2.1 Sound velocity and characteristic impedance of gases and liquids [4]

Material Temperature
(�C)

Density
(kg/m3)

Sound
velocity (m/s)

Characteristic
impedance (Ns/m3)

Gases
Air 0 1.293 331.45 429
Argon 0 1.783 319 569
Helium 0 0.178 965 172
Oxygen 0 1.429 316 452
Nitrogen 0 1.251 334 418
Ammonia 0 0.771 415 320

Liquids (106 Ns/m3)
Water 20 998 1483 1.48
Diesel oil 20 800 1250 1.0
Mercury 20 13500 1451 19.6
Methyl alcohol 20 720 1120 0.89
Ethyl alcohol 20 790 1159 0.92
Ethyl ether 20 714 1006 0.72
Glycerine 20 1228 1895 2.33
Acetone 20 794 1189 0.94
Transformer oil 20 890 1425 1.27
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These days, most practical ultrasound sources are based on the piezoelectric
principle of transconduction [4]. Piezoelectric sources have the advantage of
simple construction and operation, which makes them suitable for a variety of
applications.

A piezoelectric ultrasound generator consists of a layer of piezoelectric material
with thin metal electrodes on both its sides. If an alternating electrical voltage is
applied to these electrodes, the thickness of the layer will vary according to the
variations of the electrical field [4], thus fluctuations in the air or a medium will be
produced. Alternatively, the piezoelectric effect can be reversed to detect ultra-
sonic waves and to transform waves into an electrical signal. Figure 2.4 illustrates
the piezoelectric effect, where the induced voltage is increased as the applied
pressure increases.

v

t

Sound waves

Microphone 
Output signal 

Diaphragm 

Fig. 2.3 Sound detection using microphone

V
Piezoelectric 
material 

Induced voltage 

Applied 
pressure 

Fig. 2.4 Piezoelectric effects
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2.2.6 Characteristics of Ultrasonic Waves

2.2.6.1 Overview

This section discusses some characteristics and physical factors that influence
the propagation of ultrasonic waves. Phenomena such Reflection, Refraction,
Diffraction, and Absorption of the ultrasonic wave during its propagation are
described in the following subsections.

2.2.6.2 Reflection

When a wave is traveling through one material and impinges on a boundary
between it and a second medium, part of the energy travels forward as one wave
through the second medium while a part is reflected back into the first medium,
usually with a phase change [7]. Specific acoustic impedance is the characteristic
that determines the amount of reflection and it is the product of the density and
velocity. The amplitude of the reflected wave is given as:

Ar ¼
R1 � R2

R1 þ R2
ð2:4Þ

where, R1 = q1c1,
R2 = q2c2,
q is the density of each material,
c is the speed of the source, and
Ar is the ratio between reflected and incident amplitudes.

2.2.6.3 Refraction

A wave traveling from one material into another material can experience a change
in its course. A wave at h1 in medium A can end up traveling at h2, as illustrated
below (Fig. 2.5).

Incident ray

MEDIUM 1 MEDIUM 2

Refracted  ray

Fig. 2.5 Refraction of
mechanical waves in different
media
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The ratio of the two angles is proportional to the ratio of the speed in both
media, and it is given by:

sinðh1Þ
sinðh2Þ

¼ c1

c2
ð2:5Þ

The principles of refraction can cause a ray traveling at a critical angle to
disappear as total refraction. The critical angle hc can be determined by the
following equation. For liquids and solids, hc is about 15� [7].

hc ¼ h1 ¼ sin�1 c1

c2
ð2:6Þ

2.2.6.4 Diffraction

Ultrasonic waves do not always propagate in a rectilinear manner. For example, a
wave passing near the edge of an object has a tendency to become bent toward and
around it. This bending of the wave, as shown in Fig. 2.6, is called diffraction.

Ultrasonic signals that would normally be received at a certain point may be
diverted by diffraction and received at some other position [7]. If the object is
small compared to the wavelength there will be no noticeable shadow behind it at
all since the sound is strongly deflected by the object [4].

2.2.6.5 Absorption

The existence of sound waves is always restricted to a material medium, the nature
and the structure of which determines the particular parameters of their propa-
gation. Ultrasonic waves may lose energy and get absorbed depending on the type
of material and distance it traveled. The loss of sound energy is caused by the fact
that any kind of matter consists of small but finite components such as atoms,

Travelling waves

Fig. 2.6 Diffraction
phenomenon in mechanical
waves
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molecules, and ions, which interact with each other [4]. Sound absorption in a
plane harmonic sound wave is characterized by an exponential decrease of
amplitude with traveling distance as [4]:

p̂ðxÞ ¼ p̂0e�ax ð2:7Þ

where p̂ is the amplitude of the fluctuating sound pressure at distance x, p̂0 is the
initial pressure, and the quantity a is the absorption constant. Its magnitude
depends on the kind of wave medium and on the sound frequency and is the
reciprocal of the distance along which the amplitude falls by 1

e of its initial value
[4]. The attenuation constant D may be derived from the absorption constant a.

D ¼ 20a � log 10e � 8:69a dB=m ð2:8Þ

2.2.7 Ultrasonic Measurement Principles

The ultrasonic wave detection and measurement principle is primarily the reverse
operation of ultrasonic wave generation. During ultrasonic wave generation, the
transducer element (i.e., piezoelectric) is excited by applying an electrical signal
across it. But during ultrasonic wave detection, an electrical voltage signal across
the piezoelectric element is monitored. As soon as an ultrasonic wave strikes the
transducer, the piezoelectric element vibrates accordingly; thus it generates a
voltage signal across its terminals.

Figure 2.7 shows a simple configuration of an ultrasonic sensor in a level
sensing application. An ultrasonic wave reflector (obstacle) floats on the liquid
surface. A transducer is mounted at the bottom of the tank and transmits a signal. It
determines the fluid level by detecting and measuring the time-of-flight of the
reflected ultrasonic wave.

Reflector 

Transducer 

US pulses 

Fig. 2.7 A simple
configuration of an ultrasonic
level sensor system

18 2 Ultrasonic Sensing Technology



A technique known as Interferometry can be used with an ultrasonic sensor to
determine fluid level. Interferometry consists of diagnosing the properties of two
or more waves by studying the pattern of interference created by their superpo-
sition. In interferometry, a wave of some specific shape is transmitted and then
incoming waves that have the same pattern (i.e., frequencies) are detected. The
difference between the two waves (transmitted wave and received wave) is
identified. In ultrasonic level sensing systems, the same principle of interferometry
can be applied. Figure 2.8a shows a simple circuit that can be used to generate a
pulse of an ultrasonic wave signal (shown in Fig. 2.8b). After transmitting a
pulse signal, the circuit listens for any incoming reflected echo pulse that has
similar features (i.e., frequency) as the transmitted echo. The time difference or
time-of-flight is calculated based on the times of transmission and reception of the
pulse wave.

Paulsen [8] has used the same method for detecting fluid levels as described
above, in which an ultrasonic transducer driver generates a voltage proportional to
the resonant frequency of the ultrasonic transducer. A reference voltage is then
generated and the reference voltage and the first voltage are monitored and
compared, and a surface detect signal is generated when the first voltage drops
below the reference voltage [8].
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Fig. 2.8 Example of an
ultrasound interferometer
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Wang [9] also developed a system based on the principle described above. But
instead of a simple pulse, a switch-mode ultrasonic Radio Frequency (RF) burst
emission circuit was used, which is based on the optimum transient response
formed between a series resonance network of a piezoelectric crystal oscillator of
an ultrasonic transducer and an active switch device (transistor). Wang [9] has
claimed that the circuit produces a highly efficient emission of an ultrasonic RF
burst. Figure 2.9 illustrates a basic setup of the ultrasonic RF burst emission
generator designed by Wang [9]. The circuit consists of a transistor T, two diodes
D1, D2, and a load network of piezoelectric oscillator TD. The function of diodes
D1 and D2 is to form an isolating stage between the switch transistor and receiver
amplifier.

Suzuki [10] described a method of generating and receiving ultrasonic waves
using a single ultrasonic transducer. Suzuki [10] has used a negative immittance
converter in the circuitry in order to cancel components which impede the
damping characteristics of the ultrasonic transducer. This provides the benefits of
receiving an ultrasonic wave having good receiving response and sensitivity
without using any mechanical damping method [10].

2.3 Level Measurement Using Ultrasonic Sensors

Ultrasonic transducers transmit ultrasonic waves and then receive those ultrasonic
waves reflected from an object. The time delay between transmission and recep-
tion of the ultrasonic waves is used to detect the position of the object. This
technique can be used to determine the height or vertical distance of an object from
the ultrasonic sensor. Thus ultrasonic transducers can be used to determine the
height or level of fluid in a container (Fig. 2.10).

Durkee [11] described an aircraft fuel gauging and battle damage detection
system that comprises an ultrasonic transducer incorporable in the fuel tank of the
aircraft. An electrical circuit excites the ultrasonic transducer to transmit an
acoustic pulse toward the surface of fuel in the tank. Then the ultrasonic transducer
receives the ultrasonic echo pulses reflected from the fuel surface, which is then

Fig. 2.9 A typical switch-
mode ultrasonic RF burst
emission circuit [9]
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converted from ultrasonic echo pulses to electrical echo pulses. The system uses
another electrical circuit to receive and process the electrical echo pulses from the
ultrasonic transducer. The second circuit performs fuel quantity measurements
using the electrical echo pulses and also performs battle damage detection using
the electrical compression wavefront pulses.

Koblasz et al. [12] described an ultrasound liquid level detection system for
automatically controlling the dispensing of a post-mix beverage. The design uses
microprocessor-controlled circuitry for monitoring and implementing the auto-
matic dispensing process. The microprocessor is interfaced with an ultrasonic
transducer that transmits ultrasonic waves toward the target container that needs to
be filled. It receives the reflected ultrasonic wave and then analyzes the charac-
teristics of the received wave. Then, when required, it uses the microprocessor to
implement control functions of the automatic dispensing process. The system also
has additional safeguards programmed into the microprocessor to preclude oper-
ator errors such as triggering of the dispenser system by devices other than the
container to be filled [12].

Ellinger et al. [13] described a method that determines the quantity and density
of fuels stored in aircraft fuel containers using an ultrasonic transducer. Multiple
ultrasonic sensors were used for the application. The ultrasonic sensors, including
an altitude sensor, were controlled by a computer. Each ultrasonic transducer was
supported within the stillwell by the container. Sensors in the fuel tanks were
multiplexed by two redundant synchronized processors; so that failure of a sensor
interface of one processor will not affect input to the other processor. An ultrasonic
signal was transmitted and received from the transducer within the stillwell. The
round-trip time period from sending to receiving the signal is measured. The
quantity of fuel in the container is determined from the round-trip time period and
data stored on the container volume in the central processing unit. The electrical
wiring and sensor are mounted outside of the tank, which not only makes it

Ultrasonic 
Transducer 
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Varying 
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Fig. 2.10 Fluid level measurement using ultrasonic transducer
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intrinsically safe but also avoids the possibility of performance degradation due to
the contamination in the liquid [13].

Palmer et al. [14] described an ultrasonic sensor based liquid level sensor
system that comprises a tubular probe having a peripheral wall and suspended in a
liquid container. An ultrasonic signal is transmitted around the wall from a
transmitting transducer that is embedded in a block, which is bonded to the inner
surface of the wall, to a receiving transducer that is also embedded in the same
block. A detector circuit discriminates between the signal levels when the
ultrasonic probe is immersed outside of liquid and when the probe is immersed in
liquid, hence it provides a corresponding switched output [14].

Getman et al. [15] described a liquid level sensing system that uses the pulse
transit time technique to sense the level of liquid in a vessel. An ultrasonic
transducer is mounted above the highest permissible level in the vessel, where it
emits ultrasonic transmission pulses to the surface of the liquid and receives the
ultrasonic echo pulses reflected from the liquid surface. The level in the vessel is
established from the transit time of the ultrasonic pulses. To detect an overfill
when the ultrasonic transducer is immersed in the liquid, the decaying output
signal of the ultrasonic transducer generated by the ringing of the ultrasonic
transducer following the end of the each ultrasonic transmission pulse is analyzed.
With this arrangement, Getman et al. [15] claim that due to the better coupling of
the ultrasonic transducer to the liquid than to air, the ringing duration is shorter
when the ultrasonic transducer is covered by the liquid.

Lichte [16] described a fluid volume measurement system, where an ultrasonic
sensor is mounted at the bottom of the tank. Echo pulses are transmitted from the
sensor and travel through the fluid and reflect back, as shown in Fig. 2.11.

Ultrasonic 
Transducer 

Transmitted 
Pulses 

Reflected 
Pulses 

Fig. 2.11 An ultrasonic
sensor based volume sensing
system [16]
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Marini et al. [17] described a method that determines the ratio of the volume of
the gas present in an enclosure containing a diphase liquid–gas mixture to the total
volume of the enclosure. The undissolved gas in the liquid is assumed to be in the
form of a layer surmounting the liquid. This method requires an extremely rapid
determination of the void coefficient. The time delay between the first frequency
and the second frequency is used to determine the form of gas in the enclosure.
Thereafter, the void coefficient is determined from the propagation velocities of
the ultrasound in the gas and the liquid and from the measured propagation time
of the ultrasonic waves. Ultrasonic waves at different frequencies are propagated
through the fluid filling the enclosure. The propagation times of the waves are
measured and the difference between these propagation times is calculated. If the
propagation times are identical, it is deduced that all the gas is in the form of a
layer surmounting the liquid. The void coefficient is determined from the propa-
gation velocities of the ultrasound in the gas and the liquid and from the measured
propagation time. If the propagation times are different, a part of the gas is in the
form of bubbles in the liquid, the void coefficient due to the gas surmounting the
liquid and the void coefficient due to the gas bubbles in the liquid are determined
separately. The total void coefficient is determined by adding the two values
obtained. The void coefficient due to the gas surmounting the liquid may be
determined by virtue of the waves reflected by the gas–liquid interface. The void
coefficient due to the gas bubbles is determined by virtue of the relationships
existing between the velocity of the ultrasound and the frequency of the waves,
according to the pressure and the void coefficient. This invention was used in the
measurement of the void coefficient in a pressurized water nuclear reactor after an
accident [17].

2.4 Ultrasonic Sensor Based Level Measurement
in Dynamic Environments

2.4.1 Overview

Any kind of sound—in contrast to electromagnetic waves—can only be
propagated in a material medium, and is strongly influenced by that medium, the
velocity of sound, as well as its attenuation, depend in a characteristic way on the
nature of the medium [4]. As described in Sect. 2.2.3, any change in temperature
will alter the velocity of the ultrasonic wave. Since the velocity of sound varies
with temperature, if the measurement system assumes the sound velocity to be
constant, such a system will produce unreliable results and measurement accuracy
will deteriorate. Apart from the temperature factor affecting fluid level measure-
ment systems, contamination could be another factor that acts as a barrier, by
reflecting the echo pulse back sooner than it should normally do, thus deceiving
the system and creating errors. This section discusses the issues of ultrasonic level
sensing in dynamic environments.
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2.4.2 Effects of Temperature Variations

As discussed earlier, the variation in the ambient temperature influences the speed of
sound. Since the variation in ambient temperature is continuous, the speed of the
ultrasonic wave should not be considered constant. In vehicular fuel tanks, the
temperature can vary from -40 to 110 �C. To improve the reliability of ultrasonic
sensing systems, generally a temperature sensor is included in the system design to
adjust the speed of ultrasonic waves used in the level calculation by using Eq. (1.1),
which describes the relationship between the speed of the ultrasonic wave and
temperature.

Crayton et al. [18] described a way to determine the fuel level in a storage tank
using an ultrasonic sensor by controlling a Motorola’s 68HC05 type microcon-
troller. This system is designed to perform calculations and produce fuel level
output signals. The microprocessor is programmed to consider the effects of
temperature variations on the speed of sound. For this, a temperature sensor is
implanted in the tank that feeds temperature values into the microprocessor, which
then compensates for the effects of temperature and reduces the output error.
Crayton et al. [18] have claimed that the performance of the level sensing system
is not degraded by the effects of temperature and rugged terrain that may cause the
storage tank to tilt up to 45� in any direction [18].

Forgue [19] described a fluid level sensor that is able determine the ultrasonic
velocity for the purpose of calibration of the fluid level measurement that is
compensated for temperature, fluid composition, and other velocity affecting
factors. It generally consists of a single ultrasonic transceiver and a housing
component. The ultrasonic transceiver has a measurement section and a reference
section that are separated by an insulating section, while the housing component
has a reference element and an aperture that are located at the axial end. The
measurement section transmits ultrasonic measurement signals that pass through
the aperture and reflect off a fluid surface. The ultrasonic transceiver includes a
disk-shaped measurement section and a ring-shaped reference section. An
impedance layer is located adjacent to the ultrasonic transceiver such that ultra-
sonic signals pass through the impedance layer. The sensors signals are fed into an
electronic controller to determine a signal velocity calibrated measurement of the
fluid level that is compensated for temperature, fluid composition, and other
velocity affecting factors [19].

Combs et al. [20] described an ultrasonic liquid level measurement device used to
measure the depth of a flowing liquid in a channel using an ultrasonic transducer. An
ultrasonic burst is directed toward the channel and the reflected echo from the
surface of the liquid is returned and sensed by the transducer. The transit time of
ultrasonic transmission and echo return is indicative of the liquid level. An
adjustable discriminator is provided to specify a maximum liquid level in the
channel and a minimum liquid level, which, typically is the floor of the channel. The
maximum and minimum levels are adjustable to accommodate variable channel
configurations and transducer mounting arrangements. Automatic adjustment is
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provided to compensate for different cable lengths which may be used to connect the
ultrasonic transducer to the transducer driver and receiving section. Temperature
compensation is provided to accommodate changes in ultrasonic transmission
propagation through ambient air with temperature, and time variable gain amplifi-
cation is provided to compensate for geometric spreading of reflected ultrasonic
energy echo pulses and for air path absorption [20].

Durkee [21] described an ultrasonic based fluid quantity measurement system
that takes the effects of liquid temperature into consideration. The method does
this by measuring the temperature of the liquid at at least two different heights.
The method then determines the velocity of sound in the liquid at at least two
different predetermined heights. It then establishes an approximation of a velocity
of sound versus temperature profile for the liquid and determining an approxi-
mation of a velocity of sound versus height profile for each of at least two height
regions based on the temperature measurements [21].

Crayton et al. [18] described a measuring system that determines the height of
liquid contained in a storage tank. A tube is placed inside the tank which contains a
float that is buoyed on the surface of the liquid. An ultrasonic transducer is placed
inside the tube. The ultrasonic transducer emits ultrasonic pulses directed at the
float, receives the reflected ultrasonic pulses, and responsively produces an echo
signal. The float has a top portion and a bottom portion separated by a cylindrical
portion. The bottom portion including a spherical surface which receives the
ultrasonic pulses. The spherical surface has a predetermined radius which is a
function of the inside diameter of the tube, the height of the cylindrical portion of
the float, and the outside diameter of the cylindrical portion of the float. A
temperature sensor monitors the temperature of the liquid and produces a
thermometric signal in response to the liquid temperature. A microprocessor
receives the echo and thermometric signals, determines the speed of the ultrasonic
pulse traveling in the liquid, and responsively determines the liquid height [18].

2.4.3 Electromagnetic Interference

Birkett [22] has described a method of fluid level measurement that reduces the
effects of electromagnetic interference (EMI) that can adversely affect the
measurements obtained by the device. For providing better shielding from EMI,
the piezoelectric crystal and other electrical components are enclosed in a tube.
The piezoelectric device is positioned at the end of the tube so as to direct the
ultrasonic pulse along the axis of the stillwell. The interior walls of the enclosure
are provided with a metallic layer to block electromagnetic interference from the
interior space [22].
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2.4.4 Effects of Contaminants and Obstacles

Puttmer et al. [23] introduced a low noise ultrasonic density sensor configuration
with high accuracy, long-term stability, and robustness by taking into account
significant effects such as: drift of the piezoceramic transducer and electronic
system; chemical, geometric, and acoustic properties of the reference material;
reduction of signal amplitude or signal-to-noise-ratio (SNR) by the acoustic
reference path; and the acoustic field. The sensor consists of a transducer with a
piezoceramic disk mounted between two reference rods of quartz glass.
Additionally, a second transducer is used as an ultrasound receiver. The density is
obtained from the reflection coefficient of ultrasound at the interface between the
quartz glass rod and the liquid and the transit time of sound between this interface
and the second transducer. The reference signal is generated using the sound
radiated from the rear side of the piezoceramic disk [23].

Borenstein et al. [24] categorized different types of noise and discussed
methods for eliminating effects of each type of noise. Borenstein et al. [24]
introduced a method called error eliminating rapid ultrasonic firing (EERUF),
which combines different noise rejection techniques and optimizes them for rapid
firing. EERUF almost completely eliminates crosstalk. Its unique noise rejection
capability allows multiple mobile robots to collaborate in the same environment,
even if their ultrasonic sensors operate at the same frequencies. For each noise
category, methods are described to identify and reject the resulting errors. These
individual rejection measures were combined into one error rejection method
which was then combined with a fast firing algorithm. The resulting combination
was EERUF. The EERUF method was implemented on a mobile robot; as a result,
a mobile robot was able to traverse an obstacle course of densely spaced,
pencil-thin poles at speeds of up to 1 m/s.

Soltz [25] described an ultrasonic liquid level measurement gauge that can
determine true ultrasonic echo pulses from false parasitic pulses originating from
reflecting wall surfaces and other obstacles in the vicinity of the tank. The parasitic
pulses may be confused with the main echo pulses and can result in an erroneous
reading [25].

Durkee [26] described an ultrasonic liquid gauging systems that is generally
related to improving the detection of valid echoes under low liquid level and echo
drop out conditions to improve the accuracy of the measured liquid quantity. A
particular problem that can arise at low liquid levels is the detection of secondary
and tertiary echoes from multiple or harmonic reflections at the liquid surface of
the transmitted ultrasonic energy. The effects can cause echoes to be lost or
missed, including echoes from the surface as well as from the target.

Kumar [27] has described an ultrasonic liquid level gauging system that can
discriminate true echoes from false echoes. The device uses echo energy as a
factor to distinguish a true echo from a false echo [27].
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2.5 Effects of Liquid Sloshing

2.5.1 Overview

In mobile fluid tanks such as automotive fuel tanks, acceleration will induce waves
in the storage tank. This phenomenon of fluid fluctuation is called sloshing. The
magnitude of sloshing is dependent on the value of the acceleration or deceleration
that may be caused by braking, speeding, and irregular terrain. A level measure-
ment device observing the fluid level under sloshing conditions will produce
erroneous level readings.

The sloshing phenomenon in moving rectangular tanks (e.g., automotive fuel
tanks) can be usually described by considering only two-dimensional fluid flow, if
the width of the tank is much less than its breadth [28]. The main factors
contributing to the sloshing phenomenon are the acceleration exerted on the tank,
amount of existing fluid, internal baffles, and the geometry of the tank [29, 31]. A
detailed analysis of liquid sloshing using the numerical approach for various tank
configurations has been provided in the literature [29–39].

Different designs of fluid level measurement systems have used different
techniques to compensate for the erroneous reading of liquid level due to the
effects of sloshing. This section of the literature review focuses on some level
sensing devices that attempt to operate effectively in both static and dynamic
environments.

2.5.2 Slosh Compensation by Dampening Methods

Fluid sloshing can be physically and electrically dampened to compensate for the
sloshing effects. The following diagram shows a basic geometrical dampening
method. The sensor is placed inside a vessel, where fluid can enter from the bottom
of the vessel. The fluid stored in the vessel will experience less slosh than the fluid
outside the vessel. Therefore, the fluid inside the vessel will be stable relative to
the outside level. Various methods have been investigated that generally follow a
similar principle (Fig. 2.12).

Capacitive 

Sensor Tube

Slosh Waves

Dampening 

Vessel

Stable Level

Fig. 2.12 Geometrically
dampening the slosh waves
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Kikuta et al. [40] described an ultrasonic level gauge that measures the level of
a test surface inside a tank. It can measure the level of a test surface even when the
distance between the test surface and the ultrasonic transceiver is very small. The
level gauge includes a guiding pipe that guides the ultrasonic wave transmitted by
an ultrasonic transceiver to the test surface, and guides the ultrasonic wave
reflected by the test surface back to the ultrasonic transceiver. The gauge is capable
of having an extended portion at the base of the guiding pipe that extends the
propagation distance of the ultrasonic wave guided by this guiding pipe. A helical
portion or a slanting portion may be provided in the guiding pipe to make the
ultrasonic wave transmitted by the ultrasonic transceiver enter the test surface in a
slanting direction. Since the ultrasonic wave making a round trip between ultra-
sonic transceiver and the liquid surface is guided by the guiding pipe, reflection of
the ultrasonic wave by any of the inner walls of the tank does not occur. As a
result, any measurement error due to the reflection by the inner walls of the tank,
other than the liquid surface, can be prevented. It can also minimize the
measurement error of the liquid level of the test surface even when the liquid is
shaken, as in a fuel tank inside a car, while the car is moving.

2.5.3 Use of Tilt Sensors

Tiltmeters or inclinometers can be used in situations where the fluid tank can
experience sloppy surfaces such as rough roads in hilly areas. Nawrocki [41]
described a method that incorporates an inclinometer into a fuel gauging device.
The level signal from the fuel level sensor can be transmitted to the fuel gauge
only when the vehicle is tilted less than a predetermined degree. To accomplish
this, a signal from the fuel sensor is passed through to the display by a micro-
processor only when the vehicle is substantially level and not accelerating or
decelerating. When the level condition is met, the signal indicative of the amount
of fuel left in the tank is stored in the microprocessor memory and displayed on the
fuel gauge, and is updated again when the vehicle reaches the next level condition.
Alternatively, a correction factor matrix stored in the memory can be applied to
the signal received from the fuel sensor to calculate a corrected signal indicative
of the amount of fuel remaining in the fuel tank. Figure 2.13 shows an overview of
the method described by Nawrocki [41].

Breed et al. [42] described a fuel level measurement system that measures the
quantity of fuel in a tank using one or more load cells or fuel level measuring
devices and other sensors to measure the pitch or roll angle of the vehicle. A
processor and algorithm, which may be a look-up table or formulae, are combined
to correct for the inaccuracies arising from the pitch and roll angles of the vehicle,
other external forces, or from variations in fuel density. This method supports a
variety of different fuel measuring transducers which by themselves give an
inaccurate measurement of the quantity of fuel in the tank, but when combined
with an empirically derived algorithm results in a highly accurate fuel quantity
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measurement system. These transducers can be weight measuring load cells,
vehicle angle measuring transducers, or fuel level measuring devices based on
either float, ultrasonic, or capacitive measurement devices.

The method described by Breed et al. [42] comprises steps of: generating an
algorithm for use on the vehicle by placing a known quantity of fuel into the tank.
It then collects reflected wave patterns from ultrasonic transducers arranged on the
bottom of the tank at discrete locations. It then compares the wave patterns from
the ultrasonic transducers reflected under various conditions from an at rest
position to a driving state over a variety of road surfaces. The wave patterns are
inputted into a neural network generating program to classify different wave
patterns [42].

Figure 2.14 shows an ultrasonic filling level sensor described by Voss [43],
which has an elongated measuring chamber that is provided with an opening at
each of its two ends. The sensor includes an ultrasonic transceiver, which is
associated with one end of the measuring chamber and the emitted sound signals
which are reflected at the surface of the liquid and at a calibrating reflector and
received by the ultrasonic transceiver, in order to determine the filling level from
the relationship between the transit times of the two signals. It is ensured that the
cross-section of the measuring chamber and the nature of a wall of the measuring
chamber are made to suit the properties of the liquid in such a way that, even in a
tilted position of the measuring chamber, the surface of the liquid forms a
meniscus which forms a reflection portion directed toward the ultrasonic trans-
ceiver. When elongated measuring chambers are used, the sound waves are
emitted by a transceiver disposed at the bottom of the measuring chamber. They
pass through the elongated measuring chamber substantially without being
reflected at the walls of the measuring chamber, to be reflected at the surface of the
liquid. Only the portion of the reflected sound signals that is reflected precisely in
its direction reaches the transceiver. Such a filling level sensor only functions
when the reflection area is directed toward the ultrasonic transceiver, that is to say

Fig. 2.13 Fuel level measurement system having an inclinometer [41]
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extends substantially transversely to the longitudinal direction of the measuring
chamber. For this reason, the known ultrasonic filling level sensors can only be
used in a vertical position. This invention is therefore based on the object of
developing an ultrasonic filling level sensor of the generic type which is simpler in
terms of production engineering and advantageous in use [43].

2.5.4 Averaging Methods

Averaging method is another method besides the mechanical dampening that can
compensate for the sloshing effects and produce better level readings. This sta-
tistical method generally collects the past sample values and determines the future
level reading by using different calculation techniques. There have been a few
different averaging techniques applied in the past that include a simple Arithmetic
Mean, Weighted Average, and Variable Averaging Interval.

2.5.4.1 Arithmetic Mean

Arithmetic mean or simply mean is the traditional method of averaging the level
sensor readings. The mean value of the sampled signal x = [x1, x2, x3 ,…, xn] for n
number of samples is calculated using:

meanðxÞ ¼ �x ¼ 1
n

X

n

i¼1

xi ð2:9Þ

The downside of averaging is that it produces a significant error for a
momentarily large spike or an abnormal data entry in the elements of x. For
example, if a sampled signal is given as:

x ¼ ½1:21; 1:30; 1:25; 1:27; 1:23; 1:91� ð2:10Þ

�x ¼ 1:21þ 1:30þ 1:25þ 1:27þ 1:23þ 1:91
6

¼ 1:36 ð2:11Þ

Measuring 
chamber 

Ultrasonic 
transceiver 

Cable duct 

Fig. 2.14 Oil pump dipstick used in motorcycle engines [43]
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�x ¼ 1:21þ 1:30þ 1:25þ 1:27þ 1:23
5

¼ 1:25 ð2:12Þ

The average value obtained in the presence of an abnormal entry ‘1.91’ in
signal x is given in (2.11), which is significantly larger than the average value
when obtained without ‘1.91’ element in x (2.12).

Gazis et al. [44] described an ultrasonic liquid level gauge design, in which one
or more high-frequency ultrasonic transducers are used to measure the liquid level
of tanks containing any type of fluid. The invention relates specifically to tanks that
are subject to movement and vibration which generally makes the use of ultrasonic
echoes unreliable for obtaining accurate level measurements. A special algorithm is
used to obtain the temporal center of the distribution of echo arrival times over a
preset time interval. From this temporal center of an echo distribution, the liquid
level is readily obtained through the acoustic velocity, time, and distance rela-
tionship. An annular piezoelectric plate, independently driven at low ultrasonic
frequencies (kHz range), mounted on the tank bottom surrounds the high-frequency
ultrasonic transducer. The function of the piezoelectric plate is to send out prop-
agating ultrasonic waves (essentially longitudinal) to maintain the tank area in the
immediate region of the high-frequency transducer free from debris and sediment
deposits at the bottom of the tank thereby avoiding the uncertainty in the
measurement that is introduced by debris on the tank bottom. The device uses a
continuous or quasi-continuous signal averaging technique to present a distribution
of echo signals as a function of time from which liquid levels can be accurately
determined and monitored on a continuous or quasi-continuous basis. Several
averaging methods are described from which the temporal center of the distribution
can be determined. One or more ultrasonic transducers are firmly mounted on the
bottom of a fuel tank to transmit and receive acoustic pulses. The received echo
pulses are rectified and filtered before a channel analyzer processes it. Signal
processing is used to determine the center of the echo time. This time is then used
by a computer to obtain the level of the fluid in the tank [44].

An improved version of averaging is described by Tsuchida et al. [45]. Their
method determines the center value of the past sensor readings. The center value is
assumed to be the accurate level reading. The method repeatedly reads the amount
of fuel remaining in the fuel tank of a vehicle and then it determines a center value
from the past fuel quantity readings. A microcontroller is used to determine limit
values for the center value by a predetermined margin. A subsequent value that
exceeds the limit values is set as a new limit value. The method then determines an
average value out of the predetermined number of detected sampling values. The
method also performs the function of discriminating and eliminating any sudden
changes or abnormal values that may be caused by the sudden changes in the
attitude of the vehicle or by the acceleration to provided stable values of the
remaining fuel quantity [45].
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2.5.4.2 Weighted Average

Weighted average is similar to the simple averaging method, except that there are
additional weights (w) assigned to each element in the sample signal x = [x1, x2,
x3,…,xn]. In the absence of the weights, all data elements in x contribute equally to
the final average value. But, with the usage of the additional weights (w), the final
average can be controlled. If all the weights are equal, then the weighted mean is the
same as the arithmetic mean. The weighted average of a signal x = [x1, x2, x3,…,xn]
and the weights w = [w1,w2,w3, …,wn] for n number of sampled points can be
calculated using:

WmeanðxÞ ¼ �x ¼
Pn

i¼1 wixi
Pn

i¼1 wi
; wi [ 0 ð2:13Þ

2.5.4.3 Variable Averaging Interval

In the variable averaging method, raw sensor readings are averaged at different
time intervals depending on the state or motion of the vehicle. During static
conditions, when the vehicle is stationary or when the vehicle is operating at a low
speed, the averaging time is reduced to a small interval to quickly update the
sensor readings by assuming that there will be negligible slosh. During the
dynamic conditions, the averaging period is increased for averaging the sensor
readings over a longer period of time. Normally, a speed sensor is used to
determine the running state of the vehicle.

Kobayashi et al. [46] described a sensor that uses digital signals as opposed to
analog signals to determine the fluid volume in a fuel storage tank. The digital fuel
volume measuring system can indicate the amount of fuel within a fuel tank
precisely in the unit of 1.0 or 0.1 l. The volume detection signals are simply
averaged during a relatively short averaging time period at regular measuring
cycles when the vehicle is being refueled, and further weight-averaged or moving-
averaged at regular measuring cycles when the vehicle is running. Therefore, fuel
volume can be indicated quickly at a short response speed when the vehicle is
being refueled and additionally fluctuations in the fuel volume reading can be
minimized when the vehicle is running. Further, the system discloses the method
of detecting the state where the vehicle is being refueled on the basis of the fact
that the difference between at least one of the current data signal indicative of fuel
volume and at least one of the preceding data signal indicative of fuel volume
exceeds a predetermined value [46].

Guertler et al. [47] described a process that determines the quantity of a liquid
contained in a largely closed system. The liquid fluctuations in a dynamic or a
moving vehicle can produce erroneous results. These fluctuations can be calcu-
lated out as the result of the predetermined dependence of the liquid level and
therefore of the amount of fluid from the driving condition and, in addition, can be
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statistically averaged out because of the continuous obtaining of measuring values.
This permits the reliable determination of the fluid quantity whose level fluctuates
as a function of the driving condition by way of level measurements not only when
the vehicle is stopped and the engine is switched-off, but also in the continuous
driving operation.

Kobayashi et al. [48] utilize the information about the various different states of
the vehicle, such as ignition ON–OFF, idle state, and up and down speeding. The
fuel level readings are averaged over time intervals which vary according to
whether the liquid level of the fuel in the tank is stable or unstable. A fuel quantity
is calculated and displayed according to the averaged value. The stable or unstable
condition of the fuel level is discriminated in accordance with vehicle speed, the
‘‘on’’ or ‘‘off’’ position of an ignition switch. Accordingly, when the fuel level is
unstable, the signal value is averaged over a time interval which is longer than that
used when the fuel level is stable so that the response of display to variation of the
fuel level is improved [48].

2.6 Summary

A detailed investigation of ultrasonic sensing technology described in this chapter
reveals the fact that ultrasonic technology is increasingly being used in a broad
range of applications due to its nonmechanical and contactless nature; robustness
in harsh environments; its ability to work with a wide range of chemical sub-
stances; compact and flexible size; longer functional life; and lower manufacturing
cost.

Even though the uses of ultrasonic sensing technology in fluid level measure-
ment systems has produced satisfactory outcomes in a broad range of applications,
the literature review has highlighted some of the weaknesses of ultrasonic sensing
technology in relation to its accuracy in level measurement particularly in dynamic
environments. Level sensing in dynamic environments is characterized by three
factors:

• Slosh
• Temperature variation
• Contamination (obstacles and dust)

Solutions to each of these three above mentioned factors have been reviewed in
this chapter. However, all these solutions entail either higher production cost
because of the requirement for additional sensors, or they provide only marginal
improvement in terms of accuracy compared to current systems [46–48].

To provide a practical and compact solution to the above mentioned problems
pertaining to the inaccuracy of ultrasonic level sensing systems in dynamic
environments, an intelligent ultrasonic sensor system is to be developed for fluid
level sensing with the incorporation of a Support Vector Machine (SMV) based
signal characterization and classification methodology.
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Chapter 3
Ultrasonic Sensor Based Fluid Level
Sensing Using Support Vector Machines

3.1 Overview

The characteristics, principles, and applications of ultrasonic type sensors, including
some issues of the ultrasonic type level sensing applications in dynamic environ-
ments, were discussed in Chap. 2. In this chapter, first, the fundamental principles of
signal classification and processing are discussed. Then the background and appli-
cation of Support Vector Machines (SVM) in the context of this research are
described. Finally, the use of SVM in providing solutions to the problems
encountered in fluid-level measurement in dynamic environments is described.

3.2 Signal Processing and Classification

3.2.1 Overview

Signal processing and signal classification plays a crucial role in the improvement
of the accuracy of any fluid-level measurement system, particularly, in dynamic
environments. This section broadly focuses on various aspects of signal processing
and classification. Various components of signal preprocessing such as Data
collection methods, Feature extraction methods, and Signal filtration methods are
discussed. Thereafter, a diverse range of signal classification techniques are
described in this section (Fig. 3.1).

3.2.2 Data Collection

Typically, the output from a fluid level sensor is in the form of a continuous
voltage over time. However, to digitally process the sensor’s analog signal, the
signal needs to be converted into a discrete signal by sampling it at some constant

J. Terzic et al., Ultrasonic Fluid Quantity Measurement
in Dynamic Vehicular Applications, DOI: 10.1007/978-3-319-00633-8_3,
� Springer International Publishing Switzerland 2013
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sampling frequency fs [1]. The sampling interval Ts is the time between two
sampled points, which is simply equal to:

Ts ¼
1
fs

ð3:1Þ

Figure 3.2 shows a continuous analog signal and its sampled version when
sampled at a sampling frequency of 20 Hz. If x(t) is the analog sensor output
signal, the discrete sampled signal x[n] at sampling frequency fs can be described
as [2]:

x½n� ¼ xðnTsÞ ¼ x
n

fs

� �

; where n ¼ 0; 1; 2; 3; . . . ð3:2Þ

3.2.3 Signal Filtration

The signal values obtained from the level sensor are processed with different signal
filtration functions to enhance the performance of the signal classification system
before the signal is interpreted [3]. The signal feature coefficients from a noisy
signal can weaken the performance of signal classification [3, 4]. Noisy signals can
be filtered using different approaches, such as low-pass filter, high-pass filter, or
band-pass filter. A low-pass filter can be used to eliminate high-frequency noise,

Fig. 3.2 Illustration of an
analog waveform and its
sampled digital signal

Signal Processing Unit 

Level 
Sensor 

Signal Pre-
processing 

Signal 
Classification 

Accurate 
Output 

Fig. 3.1 Overview of sensor
signal processing
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especially when the level sensor signal consists of low-frequency content (i.e.,
slosh waves). Band-pass filters can be very useful if the range of effective
frequency of interest is known.

Variable filters such as adaptive filter can be very useful for the reduction of
white-noise [5].

3.2.4 Feature Extraction

Apart from signal filtration, another operation performed in signal preprocessing is
the selection of features and reduction of the size of the input signal, while at the
same time trying to preserve the information contained in the input signal. The
reduction in the signal size will reduce the input size of the classification network,
if one is used, as well as increase the network performance [4]. Trunk [6] has
demonstrated that use of large quantities of data may be detrimental to classifi-
cation, especially if the additional data is highly correlated with previous data [4].
The following methods are commonly used to extract and reduce the number of
feature from the input signal [4]:

• Fast Fourier Transform (FFT)
• Discrete Cosine Transform (DCT) [7]
• Wavelet Transform (WT)
• Principle Component Analysis (PCA)
• Fisher Discriminant Analysis (FDA)
• Independent Component Analysis (ICA).

3.2.4.1 Fast Fourier Transform

The Fast Fourier Transform (FFT) algorithm is widely used to transform a time
domain signal into the frequency domain [8]. The Fourier transform of a signal
involves decomposing the waveform into a sum of sinusoids of various frequen-
cies. A time domain signal y(t) can be transformed into the frequency domain as
Y(x) [9]:

YðxÞ ¼
Z

1

�1

yðtÞe�jxtdt ð3:3Þ

Discrete Fourier Transform (DFT) is used where the input signal is discrete or
sampled at fixed intervals. The DFT rule is described by the following equation,
where Y(k) is the transformed function of y(t) for frequency k [10].

YðkÞ ¼ 1
N

X

N

n¼1

yðnÞe�j2pðk�1Þ n�1
Nð Þ; 1� k�N ð3:4Þ
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Once a signal has been transformed into a form that contains discrete frequency
coefficients using the FFT function, feature selection can be applied by selecting
only the desired range of frequency components. In fuel level sensing systems, the
slosh waves produced in the tank consist of low-frequency components. Therefore,
only the lower frequency range (0–10 Hz) can be selected and fed into the signal
classification unit (i.e., neural network).

3.2.4.2 Discrete Cosine and Sine Transforms

A sequence of finite data points can be expressed in terms of a sum of cosine
functions oscillating at different frequencies using the Discrete Cosine Transform
(DCT) function. The DCT has been used in numerous applications in the fields of
science and engineering, from digital compression of images and audio, to spectral
methods for the numerical solution of partial differential equations. DCT plays a
vital role in JPEG [11] and MPEG [12] type still images and multimedia
compression.

In principle, the Discrete Cosine Transform (DCT) is related to Fourier
Transformation (FT), however, DCT only operates on the real data with even
symmetry. Discrete Cosine Transform (DCT) of a sample signal x(0),
x(1),…, x(N-1) consisting of N number of samples is defined as [13]:

yðkÞ ¼ aðkÞ
X

N� 1

n¼ 0

xðnÞ cos
pð2nþ 1Þk

2N

� �

; k ¼ 0; 1; . . .; N � 1 ð3:5Þ

The Inverse Discrete Cosine Transform (IDCT) function can be given as:

xðnÞ ¼
X

N� 1

k¼ 0

aðkÞyðkÞ cos
pð2nþ 1Þk

2N

� �

; n ¼ 0; 1; . . .;N � 1 ð3:6Þ

where,

aðkÞ ¼

ffiffiffiffiffi

1
N ;

q

k ¼ 0
ffiffiffiffiffi

2
N ;

q

k 6¼ 0

8

>

<

>

:

The transformation in vector form is written as [13]:

y ¼ CT x; ð3:7Þ

where, the elements of the matrix C are given by:

Cðn; kÞ ¼ 1
ffiffiffiffi

N
p ; k ¼ 0; 0� n�N � 1 ð3:8Þ
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Cðn; kÞ ¼
ffiffiffiffi

2
N

r

cos
pð2nþ 1Þk

2N

� �

; 1� k�N � 1; 0� n�N � 1 ð3:9Þ

The Discrete Sine Transform (DST) is similar to DCT, however, it operates on
the real-odd portions of the DFT. Discrete Sine Transform (DST) is defined via the
transform matrix [13]:

Sðk; nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

2
N þ 1

r

sin
pðk þ 1Þðnþ 1Þ

N þ 1

� �

; k; n ¼ 0; 1; . . .;N � 1 ð3:10Þ

The DCT and DST belong to the family of transforms that can be computed via
a fast logarithmic method in [14]. The Discrete Cosine Transform (DCT) [7] is a
real transform that has great advantages in energy compaction [15]. The use of
DCT rather than DST is critical in data compression applications, since the cosine
functions (used in DCT) are much more efficient in transformation and require
fewer data points to approximate a typical signal.

3.2.4.3 Wavelet Transform

The Wavelet Transform is similar in concept to FFT, however, with the exception
that WT not only provides the frequency representation of the signal but also
retains the time information [16]. It uses the windowing technique with variable
sized regions to provide a time–frequency representation of the input signal. It is
useful for analyzing nonstationary signals, where the frequency varies over time
[16]. Therefore, local analysis can be performed using the WT method. Wavelet
Transform of a continuous signal yðtÞ can be defined as:

Cðs; pÞ ¼
Z

1

�1

yðtÞwðs; p; tÞdt ð3:11Þ

where wðs; p; tÞ is the mother wavelet with s as the scale and p the position at
time t.

To transform signals that are discontinuous (sampled signals), Discrete Wavelet
Transform (DWT) algorithm is used to analyze signals at different frequency
bands by decomposing them into coarse information and detail information sets
[17]. The coarse information set contains the low frequencies, whereas, the
detailed information contains the high-frequency components of the input signal.
To decompose an input signal into high-frequency and low-frequency components,
DWT employs two sets of functions known as the scaling functions and wavelet
functions, where the functions can be viewed as low-pass and high-pass filters,
respectively [17].

Figure 3.3 shows the input signal S, consisting of 1,000 sample points, being
decomposed and down-sampled into high-frequency (cD) and low-frequency (cA)
components. Down-sampling is useful in compressing the signal by discarding the
higher frequency component, which is usually the noise [17]. The coefficients cA
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and cD represent the features of the original signal. After performing DWT on the
input signal, the cA coefficients can be fed into the signal classification unit.

3.2.5 Signal Classification Techniques

Pattern classification methods are divided into two classes [18]:

• Supervised Classification
• Data Clustering (unsupervised classification).

Supervised classification methods require both the input and the target output
data. It consists of the assignment of labels to the test pattern based on the training
patterns. There are two phases in supervised classification methods: learning and
classification. The pattern classifier system learns the system based on the training
data, and after training, it can be used to classify the test patterns. There are several
different data classification methods, each method has different advantages and
disadvantages. Table 3.1 lists common classification methods and provides a
comparison of their performance, computational cost, and other factors [4].

In data clustering (unsupervised classification), the target value is not used
while training. The clustering method clusters the sample data points according to
their correlation with different cluster centers so as to attain a good partition of the
data. There are many different types of data clustering methods available, some
famous methods are listed below [4]:

• K-means [19]
• Fuzzy k-means [20]
• Kohonen maps [21]
• Competitive learning [22].

Supervised classification methods such as SVM and Neural Networks are more
flexible and can yield much better results when compared with the data clustering
methods such as K-means [23].

~ 500 coefs

~ 500 coefs

S

cD

cA

1000 
Samples

High-Pass

Low-Pass

Fig. 3.3 Decomposition of
signal S into high- and
low-frequency portions [17]
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3.3 Support Vector Machines

3.3.1 Overview

Support Vector Machines (SVM) is a learning method used for data classification
and regression purposes. SVM is related to supervised learning methods, where
sample data or training points are used by the SVM system for training and
regression analysis purposes. The advantage of SVM to classify linearly separable
and nonlinearly separable data has quickly introduced SVM in many scientific and
engineering applications [24]. This section describes the theory of SVM and its
various configurations and applications in dynamic environments.

3.3.2 Two-Class Support Vector Machines

The basic idea behind the SVM is to create a distinction between two or more data
classes. The explanation of the SVM theory is best described using a binary (two)-
class solution that is provided in this section. For a given set of training samples,
SVM constructs a system model to predict the output based on the training samples
and a set of given input samples. In principle, SVM constructs a hyperplane
between two classes of data and then optimizes the separation distance between
the two classes to provided optimal classification for a given set of data points D
containing N number of data points such that:

D ¼ ðx1; y1Þ; ðx2; y2Þ; . . .; ðxN ; yNÞ xi 2 <d
�

� ; yi 2 �1; þ1f g
� �N

i¼ 1
ð3:12Þ

where, xi is the feature vector containing d number of features (d-dimensional), yi

is the corresponding class of xi or expected output value. For example, Class A can
be assigned the value of yi as ‘-1’ and Class B as ‘+1’. SVM classifies the above
mentioned data points for the two-class solution (Class A and B) by first plotting
the data points D into the feature space. Then, SVM constructs a hyperplane that
separates the data points of one class (i.e., Class A) from other class (i.e., Class B).

Figure 3.4 shows an illustration of SVM-based pattern classification between
two classes of data using three hyperplanes (H1, H2, and H3). It shows that there
are infinite number of ways to create a hyperplane. However, in SVM the goal is to
create an optimal hyperplane that creates the best distinction line between the two
classes of data. In Fig. 3.4, H1 does not separate the two classes of data in any way,
whereas, H2 and H3 do separate the two groups of data. However, H3 provides the
best separation between the two classes when compared with H2. Any hyperplane
can be described as set of points x satisfying:

w � x� b ¼ 0 ð3:13Þ
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where, vector w is a normal vector perpendicular to the hyperplane and b is the
bias value of the hyperplane. The offset of the hyperplane from the origin along the
normal vector w can be described by parameter b

wk k.

The goal in SVM is to maximize the margin or separation between the two
classes of data as far apart as possible while still separating the two groups of data.
Maximum-margin hyperplanes can be described by the follow equations:

w � x� b ¼ �1 (Class A) ð3:14Þ

w � x� b ¼ þ1 ðClass B) ð3:15Þ

Hence, each data point in both classes has to satisfy the following conditions:

w � xi � b� � 1 for Class A ð3:16Þ

or,

w � x� b� þ 1 for Class B ð3:17Þ

Figure 3.5 For an optimal classification solution, a maximum-margin hyper-
plane is solved using the mathematical programming solution by minimizing the

wk k and b parameters. In the case of a basic two-class SVM, the optimization can
be written as:

min
w; b

wk k ð3:18Þ

subject to: yiðw � xi � bÞ� þ 1 ; for any i ¼ 1; 2; . . .; N

The above optimization problem depends on wk k, which involves a square root;
hence, this solution is difficult to solve. However, if the term wk k is replaced with
1
2 wk k2, then the problem could be simplified and solved using the quadratic math-
ematical programming (QP) method. The above problem can now be rewritten as:

min
w;b

1
2

wk k2 ð3:19Þ

X2

X1

H3H1
H2

Class A

Class B

Fig. 3.4 Classification of a
set of two class data using
hyperplanes
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subject to: yiðw � xi � bÞ� þ 1; for any i ¼ 1; 2; . . .; N

The above optimization can be expressed in terms of Lagrange multipliers ai

as [25]:

min
w;b;a

1
2

wk k2�
X

N

i¼1

ai yi w � xi � bð Þ � 1½ �
( )

ð3:20Þ

This problem can now be solved using any standard quadratic programming
method. The solutions for w and b can be expressed in the following forms [25]:

w ¼
X

N

i¼1

aiyixi ð3:21Þ

b ¼ 1
NSV

X

NSV

i¼1

w � xi � yið Þ ð3:22Þ

where, vector xi is the support vector points that lie exactly on the margin
hyperplanes, and NSV is the total number of support vectors.

The above optimization problem can be further simplified by expressing it in
the Dual form. The classification rule in the unconstrained dual form reveals that
the maximum-margin hyperplane is only a function of the support vectors (training
points that lie on the two margins of the hyperplane). By substituting the normal

vector w ¼
PN

i ¼ 1 aiyixi into wk k2¼ w � w, the above SVM optimization problem
can be expressed in dual form as [26, 27]:

Class A

Class B

Fig. 3.5 Maximum-margin
hyperplane between two
classes of data
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max
ai

LðaÞ ¼
X

N

i¼1

ai �
1
2

X

i;j

aiajyiyjx
T
i xj ð3:23Þ

subject to:
for any i¼ 1; 2;...;n

ai� 0; and
X

N

i¼1

aiyi ¼ 0 ð3:24Þ

3.3.3 Soft-Margin Support Vector Machines

The SVM optimization solution presented in the previous section can be applied to
classify only linearly separable data consisting of two classes. However, in real-
life situations, due to the influence of noise, a training data set can often be
inseparable. To classify the inseparable data set with good accuracy, in 1995,
Vladimir Vapnik and Corinna Cortes [28] suggested a modified maximum-margin
idea that allows an inseparable data set to be classified with a good accuracy. The
improved form of the SVM optimization problem includes a non-negative
tolerance (slack) variable ni:

yiðw � xi � bÞ� 1� ni ; for i ¼ 1; 2; . . .;N ð3:25Þ

With the inclusion of the slack variable, a feasible solution always exists [29]. If
the value of the slack variable ni is between 0 and 1, for any training data xi, the
data is said to be correctly classified [29] (see Fig. 3.6). However, any data for
which the value of ni C 1, the data is said to be unclassified by the optimal
hyperplane [29].

Fig. 3.6 Improved SVM
classification using soft-
margin method [29]
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To obtain an optimal hyperplane, while reducing the number of unclassified
points is the goal of a feasible SVM-based optimization approach. This
optimization can be described as [27]:

min
w; b; n

Lðw; b; nÞ ¼ 1
2

wk k2þC
X

N

i¼1

np
i ð3:26Þ

subject to: yiðwTxi þ bÞ� 1� ni for i ¼ 1; 2; . . .;N;

Where, n = (n1,…, nN)T and C are margin parameters used as trade-off between
the maximization of the separation margin and minimization of the classification
error [29]. There are two variants of soft-margin SVM, namely L1 soft-margin
support vector machine and L2 soft-margin support vector machine [29]. The L1
SVM uses p = 1 and L2 SVM uses p = 2 for the above mentioned SVM
optimization problem [29]. This soft-margin SVM optimization problem can also
be expressed in terms of non-negative Lagrange multipliers ai and bi as [29]:

Lðw; b; n; a; bÞ ¼ 1
2

wk k2 þ C
X

N

i¼1

ni �
X

N

i¼1

aiðyiðwTxi þ bÞ � 1þ niÞ �
X

N

i¼1

bini

ð3:27Þ

3.3.4 m-Support Vector Machines

The m-Support Vector Machine [30] is an improved form of the soft-margin SVM
described in the previous section [26]. The soft-margin SVM described previously
are also called C-SVM [31]. The m-SVM [30] includes two additional cost factors m
and q [29]. The role of these two additional parameters is to improve the
classification accuracy. The optimization problem for m-SVM can be expressed as
[30, 32]:

min
w; b; n; q

1
2

wk k2 � mqþ 1
m

X

m

i¼1

ni ð3:28Þ

subject to: yiððw � xiÞ þ bÞ� q� ni; i ¼ 1; 2; . . .;m;

ni� 0; and q� 0

The above optimization problem can be expressed in the dual form using the
Lagrange multipliers as [32]:
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Lðw; n; b; q; a; b; dÞ ¼ 1
2

wk k2�mqþ 1
m

X

m

i¼1

ni

�
X

m

i¼1

ai yi w � xi þ bð Þ � qþ nið Þ þ bini � dqð Þ

ð3:29Þ

Some variants of v-SVM have been described in [31, 33, 34].

3.3.5 Nonlinear Support Vector Machines

The various forms of SVM classification and optimization methods presented so
far in this chapter are related to linearly separable or non-separable data sets. In
many real-life applications, the data set may not be linearly separable, especially
due to the effects of measurement errors and noise [35]. To accurately classify data
sets that are nonlinear, the training data sets are mapped onto higher (or infinite)
dimensional space called feature space (Hilbert Space or Inner Product Space).
The intuition of mapping data sets into higher dimensional space is that data can be
clearly separated and hence better classified in higher dimensional space as
illustrated in Fig. 3.7.

SVM optimization for the data sets that are not linearly separable can be carried
out simply by mapping each feature vector x with a mapping function such that
x 7!uðxÞ and then carrying out the SVM optimization described in the previous
sections [36]. For a set of training samples T ¼ x1; y1ð Þ; x2; y2ð Þ; . . .; xn; ynð Þf g;
where x is an d-dimensional feature vector, the mapping of the training data set
T is expressed in the feature space as:

uðTÞ ¼ uðx1Þ; y1ð Þ; uðx2Þ; y2ð Þ; . . .; uðxnÞ; ynð Þf g ð3:30Þ

Hyper-plane

Separation 
Margin (m)

Class A

Class B

Hyper -
plane

φ
Input Space Feature Space

Fig. 3.7 Mapping of nonlinearly separable data sets into higher dimensional feature space
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Hence, the decision function D(xk) for the prediction of the output can be given
as [35]:

DðxkÞ ¼ sign w � uðxkÞ þ b½ � ¼ sign
X

n

i ¼ 1

aiyiuðxiÞ � uðxkÞ þ b

 !

ð3:31Þ

3.3.6 Kernel Trick

Kernel Trick involves the use of a kernel function to map input features into higher
dimensional feature space. A kernel function can be expressed as [35]:

jðxi; xjÞ ¼ uðxiÞ � uðxjÞ ð3:32Þ

Any kernel function following Mercer’s conditions [25] represents an inner
product in feature space [35].

jðxi; xjÞ ¼
X

1

k

akukðxiÞukðxjÞ for, ak� 0 ð3:33Þ

and
ZZ

jðxi; xjÞgðxiÞgðxjÞdxidxj [ 0 ð3:34Þ

There are numerous kernel functions available to map data points from input
space into feature space. The four most popular kernel functions are listed below
[35, 37].

Linear Kernel [35]:

jðxi; xjÞ ¼ xi � xj ð3:35Þ

Polynomial Kernel [35, 38]:

jðxi; xjÞ ¼ ðcðxi � xjÞ þ rÞd; c [ 0 ð3:36Þ

Radial Basis Function (RBF) Kernel [38]:

jðxi; xjÞ ¼ expð�c xi � xj

�

�

�

�

2Þ; c[ 0 ð3:37Þ

Sigmoid Kernel [38]:

jðxi; xjÞ ¼ tanhðcðxi � xjÞ þ rÞ; c [ 0 ð3:38Þ

where, c, r, and d are kernel parameters.
The selection process for a kernel function suitable for a particular application

has been described in [39].
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Chapter 4
Methodology and Experimental Program

4.1 Overview

This chapter discusses the characteristics of the ultrasonic sensor signal obtained
from a fuel level sensor under dynamic conditions and describes a methodology to
be used to develop a fluid level measurement system that compensates for the
effects of a dynamic environment. This involves using an intelligent signal
classification approach based on support vector machines. This chapter also
describes the signal filtration functions that will be implemented to enhance the
performance of the SVM-based signal classification system.

4.2 Ultrasonics-Based Level Sensing

The output of ultrasonic sensors is normally a continuous voltage signal over
time. The voltage signal is the representation of the fluid level measured by the
sensor. The range, resolution, and the linearity of the output signal could be
different from one type of ultrasonic sensor to another. The sensor signal
representing the fluid level is illustrated in Fig. 4.1.

If L is the height of the tank, where the ultrasonic sensor has been mounted at
the top of the tank, and v is its represented level in voltage, assuming the sensor
response to be linear, the resolution can be given as:

Resolution ¼ DL

Dv
metre per volt ð4:1Þ

The ultrasonic sensor mounted at the top of the tank will detect the maximum
level when the time-of-flight of the ultrasonic echo will be least. At the
maximum level, the voltage output from the ultrasonic sensor will also be at
maximum. Likewise, the minimum level will be detected when the time-of-flight of
the ultrasonic echo will be the most.

J. Terzic et al., Ultrasonic Fluid Quantity Measurement
in Dynamic Vehicular Applications, DOI: 10.1007/978-3-319-00633-8_4,
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4.3 Sensor Response Under Slosh Conditions

Slosh waves will be produced in a tank filled with liquid when an external force is
applied to it. The ultrasonic sensor with short response time will produce a cor-
responding signal at the output, which will reflect the same waveform that was
exhibited in the tank. If the ultrasonic sensor can produce instantaneous readings
of the fluid level in the form of electrical voltage, a replica of these slosh waves
will be observed on the oscilloscope attached to the ultrasonic sensor. Figure 4.2
shows the output of the ultrasonic sensor reading that might be seen on an
oscilloscope under both static and dynamic conditions. Figure 4.2a shows that the
sensor response is fairly constant under static condition; Fig. 4.2b shows that the
sensor response produces a replica of the actual slosh waves.

As the fluid fluctuates (see Fig. 4.3), the sensor output produces a replica of the
slosh waves that contains the following two components:

• Oscillating wave, and
• Bias shift
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The frequency response of the oscillating slosh waves can be observed by
transforming the ultrasonic signal into the frequency domain. Fast Fourier Trans-
form (FFT) function can be used to obtain the frequency coefficients. The magni-
tude of these frequency coefficients and the median value (bias shift) can be used to
describe the slosh pattern that exists in the fluid container. These signal charac-
teristics can be processed through a support vector machine (SVM)-based classi-
fication system to eliminate the effects of dynamic slosh. Additionally, along with
the frequency coefficients and bias shift, temperature values could also be processed
through the SVM to eliminate their effects on signal measurement accuracy.

4.4 Design of Methodology

The observation and analysis of the slosh pattern produced under the effects of
acceleration in a closed container, instigated an approach that can eliminate the
sloshing effects, whereby accurate fluid level measurements would be possible in
dynamic environments. If the fluid quantity in a storage container remains con-
stant, the instantaneous fluid level in a dynamic environment can be defined as:

LðtÞ ¼ L0 � f ð4:2Þ

where L0 is the tank level under static conditions, and f is the unknown sloshing
function that depends on the acceleration effects exhibited on the tank, the existing
fluid level, and the tank geometry. The goal is focused on determining the existing
fluid level L0 using the sensor output L(t) and the function f.

The output of the fluid level sensor is observed to have a direct relationship with
the vehicle acceleration when observed in a running vehicle, as shown in Fig. 4.4.
The knowledge of the relationship between acceleration and the output L(t) can
eliminate the sloshing effects, however, with the knowledge of the sloshing
function f.

L0 ¼
LðtÞ

f
¼ constant ð4:3Þ

The unknown function f is solved by experimentation with the aid of an
SVM-based approach. An SVM model is constructed and trained with the actual
driving data obtained through several field trials. Figure 4.5 demonstrates the
method to be adopted to develop the accurate fluid level measurement system.
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For the ultrasonic transducer mounted at height levelref on top of the tank, the
instantaneous output of the ultrasonic level sensor at time t and temperature T can
be given as [1]:

Levelðt; TÞ ¼ levelref �
sðtÞ

2
vðTÞ ð4:4Þ

where s(t) is the time-of-flight at instant t of the ultrasonic echo, and v(T) is the speed
of ultrasonic echo at temperature T. The expression v(T) can be obtained using
Eq. (1.2).

In a dynamic environment, the term s(t) will exhibit variation that reflects an
inverted image of the slosh wave produced in the liquid tank. The term s(t) will be
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inverted since the ultrasonic sensor is facing down measuring time-of-flight of the
ultrasonic echo from the top of the tank. The expression Ds

Dt will vary over time in a

dynamic environment; however, under static conditions, the expression Ds
Dt will be

equal to zero. Figure 4.6 shows the variation in s(t) and the actual slosh wave
produced in the liquid tank.

The ultrasonic level sensor signal, denoted as s(t), is typically a voltage signal
in the range of 0.5–4.5 V, which represents the minimum and maximum of the
level range, respectively. A more detailed description of the methodology is
provided in Chap. 5. The sensor signal s(t) is sampled at 100 Hz. The sampled
signal is accumulated in a x9 second window frame (wi). The optimal value of x9
will be determined by experimentation as described in Chap. 5. After collecting
the sensor data over x9 seconds, the x9 second data is filtered using the investigated
filters. Then the signal features are extracted using the three feature extraction
methods FFT, DCT, and WT. The performance and influence of these three feature
extraction functions will be investigated to determine the optimal feature extrac-
tion method for the SVM-based fuel level measurement system. The coefficients
(coef) obtained from the feature extraction functions, the median value (med) of
the x9 –second ultrasonic sensor signal, and the temperature readings T are all
contained in a vector forming input features for the SVM model. The SVM input
vector xi can be represented as:

xi ¼ fcoef1; coef2; . . .; coefn;med; Tg ð4:5Þ
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4.5 Feature Selection and Reduction

Signal feature extraction, selection, and reduction play an important role in signal
classification systems. An introduction to feature extraction was given in Sect.
3.2.4. Improper format of input signals to the classifier can result in a poorly
constructed classification problem. Trunk [2] has demonstrated that some training
data can be detrimental to classification, especially if the data is highly correlated
[3]. Apart from the correlation of data, the size of input feature data is also
important in signal classification systems. An increase of the input feature
dimension ultimately causes a decrease in performance [4]. Hence, the correlation
of the input data and the number of input features will be investigated during the
development of the SVM-based classification system.

The process of choosing a subset of the features is referred as ‘feature selec-
tion’, and the process of finding a good combination of the features is known as
‘feature reduction’ [5]. The goal of feature selection and reduction in signal pre-
processing is to choose a subset of features or some combination of the input
features that will best represent the data [5]. According to Yom-Tov [5], finding
the best subset of features by testing all possible combinations is practically
impossible even when the number of input features is modest. For example, to test
all possible combinations of the input data with 100 input features will require
testing 1030 combinations [5].

According to Richards et al. [6], feature reduction can be effectively performed
by transforming the data to a new set of axes in which separability is higher in a
subset of the transformed features than in any subset of the original data [6].
Therefore, in the ultrasonic type fluid level system, the raw time-based level
signals will be converted into the frequency domain using the Fast Fourier
Transform (FFT) function described in Sect. 3.2.4. By carrying out the Fourier
Transformation, the raw signal contents that will be used as inputs will be rep-
resented by frequency coefficients. Figure 4.7 shows the example of the raw time-
domain signal from the ultrasonic sensor over 60 s, and the frequency response of
the same signal obtained using the FFT function. The frequency spectrum of the
raw sensor signal under the influence of slosh describes the fluctuations or slosh
frequencies in the fuel tank. Here in Fig. 4.7, the fuel tank was sliding linearly
back and forth at a fixed cycle of 0.8 Hz. The frequency spectrum shown in
Fig. 4.7 displays two large spikes at 0.4 and 0.8 Hz, which represent two har-
monics waves of the slosh.

According to Richards et al. [6], features which do not aid discrimination, by
contributing little to the separability of spectral classes, should be discarded.
Richards et al. [6] describe feature selection as the process in which the least
effective features are removed. Feature selection methods can be divided into three
main types [2]:
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1. Wrapper methods: The feature selection is performed around (and with) a given
classification algorithm. The classification algorithm is used for ranking
possible feature combinations.

2. Embedded methods: The feature selection is embedded within the classification
algorithm.

3. Filter methods: Features are selected for classification independently of the
classification algorithm.

In the proposed ultrasonic type fluid level measurement system, the filtration
method is used to perform feature selection because this is the method that is
independent of the classification algorithm.

After transforming the time-based sensor signal into the frequency spectrum,
the less relevant portion of frequencies mainly consisting of low-amplitude noise is
omitted. To determine the range of frequencies that may be exhibited in the fuel
tank, a 60 km test drive was carried out in a suburban area, where occasional stops
were made. Figure 4.8a shows the typical range of slosh frequencies observed in
the vehicular fuel tank using the ultrasonic type level sensor during a 60 km test
drive. A close view of the 0–2 Hz slosh frequency range is shown in Fig. 4.8b. By
using a low-pass filter, frequencies higher than the normal range of slosh frequency
(especially noise) can be removed.

Fig. 4.7 Feature extraction using FFT function a Raw signal at various Slosh. b FFT of the raw
sensor signal y(t)
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4.6 Signal Smoothing

In the signal smoothing process, the raw signal is filtered to remove the signal
noise by smoothening it with the three investigated methods: moving mean,
moving median, and wavelet transform. A raw signal over x9 -second is passed
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through the investigated filters, where x9 is the length of time in second of the
collected raw signal. The moving mean and moving median filters slide across the
raw signal and calculate the mean/median values in the neighboring sampled
points. If x is the sampled raw signal of N length, and w is size of the moving
window, then the filtered output y using mean and median can be obtained using
Eqs. (4.6) and (4.7), respectively. The width of the moving window w will be
determined by experimentation (Chap. 5). The sliding window (moving window)
function takes w samples of the raw signal and produces a mean or median value at
the output.

y½i� ¼ meanðx½i� 1�; x½i� 2�; . . .; x½i� w�Þ; w� i�N

y½i� ¼ meanðx½1�; x½2�; . . .; x½i�Þ; for 1� i\w
ð4:6Þ

y½i� ¼ medianðx½i� 1�; x½i� 2�; . . .; x½i� w�Þ; w� i�N

y½i� ¼ medianðx½1�; x½2�; . . .; x½i�Þ; for 1� i\w
ð4:7Þ

The value of N for a signal frame of x9 –second at 100 Hz is calculated as:

N ¼ 100 samples/s � x
^

s ¼ 100 x
^

samples ð4:8Þ

Figure 4.9 illustrates the moving mean and moving median filters when applied

to the raw signal data. As the moving window slides across the 20 second (x
^ ¼ 20)

long raw signal, mean/median functions are applied to the raw signal values within
the window range and a smooth signal is produced. The filtered versions of the raw
signal using both filters do not contain high-frequency noise.

Another filter investigated is the Wavelet Transform (WT) filter that analyzes
signals at different frequency bands by decomposing them into coarse information
and detailed information sets. The coarse information set contains the low
frequencies, whereas, the detailed information set contains the high frequencies of
the input signal. Only the low-frequency components, which reflect a smoothened
version of the raw signal are used, and the high-frequency components of the raw
signal, which usually contain noise, are eliminated. Hence, a smooth signal is
produced using the wavelet transform function, as shown in Fig. 4.10. The wavelet
transformation is processed through MATLAB using dwt [7] function with
Daubechies [8] Wavelet (db1).

Figure 4.10 shows the high-frequency signal (b) and the low-pass filtered signal
(c) when the raw sensor signal (a) is processed with the discrete wavelet transform
(DWT) function.

All filtered signals using the investigated filtration methods are transformed into
the frequency domain and the frequency coefficients are obtained, which are then
fed into the SVM-based signal processing system.
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4.7 Influential Factors Analysis

An analysis of the influential factors will be carried out before the development of
the SVM-based ultrasonic signal processing system. In the influential factors
analysis, the effects and interaction between the influential factors will be studied
by observing the response of the ultrasonic sensor. It was proposed in Chap. 2 that
the main factors influencing the accuracy of the measurement system are: slosh,
temperature, and contamination. Therefore, the results from the factors analysis
experiment will provide better measures of the magnitude of the effects that these
three influential factors may contribute to the response of the ultrasonic sensor
output. According to Dean et al. [9], it is more efficient to examine all possible
causes of variation simultaneously rather than one at a time. Therefore, all three
influential factors will be simultaneously analyzed by developing a two-level (2n)
factorial design experiment. Factorial experiments include all possible combina-
tions of factor–level in the experimental design [10]. Detailed information on the
factorial design is given in Sect. 5.5.2.
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Factorial experiments provide an opportunity to study not only the individual
effects of each factor but also their interactions [11]. The results obtained from the
factorial analysis experiment will be used to generate main effects plots and
interaction plots of the three main influential factors. Main effects plot provides
detailed information on the influence of each influential factor on the response of
the ultrasonic sensor output. The interaction plots provide details of interaction
that may be found between the influential factors. The main effects plots and
interaction plots will provide a better understanding of the impact the three
influential factors have on the ultrasonic sensor output. These plots will be gen-
erated with Minitab software [12]. According to Bass et al. [13], The Minitab
software suit is widely used in many corporations and universities [13]. Minitab is
a very sophisticated and easy to use software, which has also been adopted by most
Six Sigma practitioners as a preferred tool [14].

References

1. Pedersen TO, Karlsson N (1999) Time-of-flight ultrasonic displacement sensors. In: Webster
JG (ed) The measurement, instrumentation, and sensors handbook. CRC Press LLC, Boca
Raton, pp 6, 92–98

2. Blum A, Langley P (1997) Selection of relevant features and examples in machine learning.
Artif Intell 97:245–271

3. Bousquet O, von Luxburg U, Rätsch G Machine Learning Summer School (2004) Advanced
lectures on machine learning: ML Summer Schools 2003, Canberra, Australia, 2–14 Feb

0 2 4 6 8 10 12

(a
) R

aw
 In

pu
t

0 2 4 6 8 10 12

(b
) D

et
ai

le
d

0 2 4 6 8 10 12
Time (s)

(c
) A

pp
ro

xi
m

at
io

n

Fig. 4.10 Wavelet filter applied on the raw signal

4.7 Influential Factors Analysis 63



2003, Tübingen, Germany, 4–16 Aug 2003: revised lectures/Olivier Bousquet, Ulrike von
Luxburg, Gunnar Rätsch (eds). Springer Berlin; New York

4. van der Heijden F, Duin RPW, de Ridder D, Tax DMJ (2004) Feature extraction and
selection. classification, parameter estimation, and state estimation: an engineering approach
using MATLAB. Wiley, Chichester, pp 183–214

5. Yom-Tov E (2004) An introduction to pattern classification. In: Bousquet O, von Luxburg U,
Rätsch G, School, Machine Learning Summer (eds) Advanced lectures on machine learning:
ML Summer Schools 2003, Canberra, Australia, 2–14 Feb 2003, Tübingen, Germany, 4–16
August 2003: revised lectures: Springer Berlin, New York, pp 1–20

6. Richards JA, Jia X (2006) Feature reduction. Remote sensing digital image analysis: an
introduction, 4th edn. Springer, Berlin, pp 267–294

7. Misiti M, Misiti Y, Oppenheim G, Poggi J-M (2009) Wavelet toolbox 4—users guide.
MathWorks

8. Daubechies I (ed) (1992) Ten lectures on wavelets. Society for Industrial and Applied
Mathematics, Philadelphia

9. Dean A, Voss D (1999) Principles and techniques. Design and analysis of experiments.
Springer, New York, pp 1–5

10. Mason RL, Gunst RF, Hess JL (2003) Factorial experiments in completely randomized
designs. Statistical design and analysis of experiments: with applications to engineering and
science. Wiley-Interscience, Hoboken, pp 140–160

11. Das MN, Giri NC (1987) Factorial experiments. Design and analysis of experiments. Halsted
Press, New York, pp 98–159

12. MINITAB user’s guide 2: data analysis and quality tools. Minitab Inc., State College
13. Bass I, Lawton B, NetLibrary, Inc. (2009) Lean six sigma using SigmaXL and Minitab.

McGraw-Hill, New York
14. Bass I (2007) An overview of Minitab and Microsoft Excel. Six sigma statistics with Excel

and Minitab. McGraw-Hill, New York, pp 23–40

64 4 Methodology and Experimental Program



Chapter 5
Experimentation

5.1 Overview

The implementation of the Support Vector Machine (SVM)-based ultrasonic
signal classification system requires training samples of the system with actual
data under various dynamic conditions. A detailed discussion of the experimental
setup used for the research is provided in this section. There are three major
experiments performed in this research. All experiments are carried out using a
regular standard automobile fuel tank. The first experiment determines the influ-
ence of temperature, contamination, and sloshing factors. The second experiment
determines the suitability and performance of different SVM kernel functions.
Finally, extensive experimentation is carried out at a variety of different fuel levels
in the tank. The data obtained from the third experiment will be used to train the
SVM model having the Radial Basis Function (RBF), a widely used kernel
function, while also applying the various signal filtration methods, namely, moving
mean, moving median, and wavelet filters.

5.2 Methodology

These sets of experiments are performed in this research to study the effects of the
influential factors, in order to develop and enhance the performance of the SVM-
based fluid level measurement approach. The methodology used to run the
experiments and validation plan is shown in Table 5.1 (Fig. 5.1).

Table 5.1 shows the overview of the experimental setup for the development
and validation of the SVM-based fluid level measurement system. The experi-
ments are configured into three discrete sections, which are labeled as Experiment
Set A, Experiment Set B, and Experiment Set C. The overview and purpose of the
three parts of the experimental program are given below. The detailed description
of these three experiments will be provided later in this chapter.

J. Terzic et al., Ultrasonic Fluid Quantity Measurement
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Experiment Set A is performed to study the interaction and effects of the
influential factors, which were perceived in Chap. 2 to be: Slosh frequency,
Temperature, and Contamination. In order to fully comprehend the behavior of
the ultrasonic sensor in a dynamic environment, it is important to determine
the magnitude of the influence that the environmental factors contribute to the
response of the ultrasonic sensor in a dynamic environment. Experiment Set A is
designed with the Design of Experiments (DOE) methodology to observe main
effects plots and interaction plots of the influential factors. To set the slosh factor,
Experiment Set A is conducted on-site using a linear actuator (see Sect. 5.4.3).

Table 5.1 Methodology of experiments with test conditions, constants, and output parameters

Fluid
levels
tested

Test conditions Test output parameters

Experiment
Set A

40, 45,
50,
55 L

• Slosh Ultrasonic sensor response without SVM
• Temperature
• Contamination

Experiment
Set B

40, 45,
50,
55 L

• Slosh Ultrasonic sensor response to slosh and
temperature with different SVM
kernels

• Temperature
• Kernel functions (Linear,

Polynomial, RBF,
Sigmoid)

Experiment
Set C

5–9 L, • Slosh Ultrasonic sensor response to slosh with
RBF kernel and different filtration
functions

15, 20,
25,
30 L,

• RBF kernel

35–40 L, • Signal filters (Moving
mean, Moving Median,
Wavelet)

45–50 L
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The fuel tank filled with fluid is mounted on the linear actuator. The linear actuator
is controlled with a digital timer, which could be configured to generate a par-
ticular slosh frequency in the liquid container. A heater is used to set the tem-
perature factor. To observe the sensor response under contamination, Arizona dust
sample of varying quantities are mixed in the fluid. The detailed description of
Experiment Set A is given in Sect. 5.5.

Experiment Set B is performed to determine the most suitable SVM kernel
function from a set of commonly used kernels. To compare the performance of
different kernel functions under the influence of slosh, Experiment B is conducted
in similar fashion to the Experiment Set A. However, the influence of contami-
nation is ignored during Experiment Set B as the results from Experiment Set A
did not show any influence of contamination on the sensor output (discussed
Chap. 6). The slosh and temperature factors as demonstrated in Experiment Set A
results (see Sect. 6.2) are observed to be the prominent factors affecting the
accuracy of the measurement system. The primary focus of Experiment Set B is to
examine the performance of the SVM-based signal classification system under
sloshing and temperature varying conditions. The data obtained from Experiment
Set B is used to develop and validate four SVM models, each with a different
kernel function. The detailed description of Experiment Set B is given in Sect. 5.6.

Experiment Set C is carried out to understand the effectiveness of the SVM-
based signal classification system using the slosh test data obtained from a running
vehicle. The selection of the optimal parameters for the SVM-based system was
performed in this experiment. The influence of signal filtration operations on the
performance of the SVM-based system is also investigated. Signal filtration is
performed on the raw sensor signals to enhance the performance of the SVM
signal classification system. In contrast to Experiment Set A and Experiment Set
B, which are both performed onsite on an experimental rig containing a linear
actuator, the Experiment Set C is performed on the road during field trials to
examine the performance of the SVM-based fluid level measurement system under
actual driving conditions (i.e., dynamic environment). Extensive field trials are
carried out for over 20 different tank levels in the automotive fuel tank. The fluid
temperature and the slosh waves are generated within the fuel tank and recorded
during the experiment. The data obtained from the field trials are used to train four
SVM models incorporating a RBF kernel function but each using a different signal
processing filter. The detailed description of Experiment Set C is given in
Sect. 5.7.

5.3 Data Collection and Processing Methodology

The raw data obtained using experimentation from the ultrasonic type level sensor
is processed using the methodology illustrated in Fig. 5.2.

The output from the ultrasonic type fluid level sensor is in the form of an
analogous voltage signal. The amplitude of the sensor voltage signal denotes the
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level of fluid contained in the tank. The sensor signal voltage linearly ranges from
0 V (empty) to 5 V (full). A detailed description of the ultrasonic level sensor used
in the experiments is provided in Sect. 5.4.1. The level signal from the ultrasonic
sensor is sampled at 100 Hz using the Data Acquisition Card in conjunction with
the LabVIEW software program. The sampled signal is accumulated over x9
seconds, where x9 is the length of time of the sampled signal, and then the sampled
signal is processed through the SVM classifier. In Experiment Set C, where the
influence of signal filtration is examined, the accumulated sensor signal over x9
seconds is processed through a signal filtration function before processing the
signal data through the SVM-based signal processing system. Feature extraction is
performed on the signals prior to processing them through the SVM.

Statistical median function is used to calculate the middle value of the raw
sampled signals. The median function provides the middle value as opposed to the
mean function that provides average value. In Sect. 2.5.4, it was discussed that the
downside of averaging is that it produces significant error for a momentarily large
spike an abnormal data entry. Therefore, median value is used as the middle value
or the bias value (refer Sect. 4.3) of the fluctuating fluid level (slosh wave).

FFT, DCT, WT

Coefficients
Median
value

SVM
(Signal classification and recognition)

Ultrasonic Sensor Signal 
(Analogue)

LabVIEW
Sampling at 100Hz

-sec sampled signal

Target/Predicted Volume

Signal Filtration

Temperature
T

Fig. 5.2 Measurement
system’s signal processing
block diagram
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The frequency coefficients, the median value of the sampled signal, and the
temperature value from the temperature sensor are incorporated in the feature vector.
The signal feature vector is then used as input to the SVM-based signal processing
system for training and validation of the network. Signal processing and signal
classification are both carried out using MATLAB and LIBSVM [1] software.

5.4 Apparatus and Equipment Used in the Experimental
Program

The equipments used along with the assumptions made during the experiments are
described in this section.

5.4.1 Ultrasonic Level Sensor

All experiments are performed using the SSI Technologies Fluid-Trac 3-Wire
Level Sensor, which is shown in Fig. 5.3. Fluid-Trac 3 Wire Level Sensor is
suitable of use in a variety of different liquids including gasoline and diesel
(Table 5.2)

Fig. 5.3 Ultrasonic sensor used in the experiments

Table 5.2 Technical details
of the ultrasonic transducer
used in the experiments

Ultrasonic sensor specifications

Accuracy ±0.32 cm
Output 0.5–4.5 V (min–max)
Resolution 0.18 cm
Operating temperature -40 to 80 �C
Designed for gasoline and diesel liquids
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The output of the sensor is a continuous voltage signal in the range of
0.5–4.5 V. The sensor uses the three wire connector, where two wires are used to
power it and the third wire outputs the signal voltage.

5.4.2 Fuel Tank

The fuel tank used in all the experiments has a storage capacity of 70 L. The fuel
tank originally belonged to the utility vehicle (Ute). The tank can be approximated
as a rectangular cubicle with dimensions 34 9 34 9 81 cm. The ultrasonic sensor
is mounted on top of the tank. Figure 5.4 shows the fuel tank properly fitted on
linear actuator (refer to Sect. 5.4.3) (Fig. 5.5).

The fuel tank is filled with Exxsol D-40 Stoddard solvent. Exxsol is the brand
name of Exxon Mobil Corporation. Exxsol solvents are a series of dearomatized

Fig. 5.4 Utility tank used in
the experiments

Fig. 5.5 A close view of
ultrasonic sensor mounted on
the fuel tank
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aliphatic hydrocarbons [2], where typical Aromatic content is below 1 %. These
fluids maintain good solvency characteristics for many applications. Exxon
describes the Occupational Exposure Limit (OEL) of the Exxsol fluids as relatively
high, because of this advantage they often serve as replacements for more con-
ventional solvents that might not meet health or environmental regulations. Hea-
vier Exxsol D grades have boiling ranges between 140� and 310� C [3]. The
Exxsol D-40 has the same properties as gasoline fluids but it is relatively safe for
industrial usage. Therefore, Exxsol D-40 fluid is used in the experimentations. The
detailed specifications of the Exxsol D-40 solvent are provided in Appendix B.

5.4.3 Linear Actuator

The linear actuator used to run the slosh tests is shown in Figs. 5.6 and 5.7. The
figures show the actuator and the frame body on which the fuel tank is mounted.

The pneumatic actuator is run by compressed air to slide the tank back and
forth. The linear actuator is controlled by a Programmable Logic Controller (PLC)
Timing Unit, which is shown in Fig. 5.7. As the linear actuator moved back and
forth, slosh waves are created and observed in the fuel tank. The back and forward
strike of the actuator can be controlled by setting the timer value of the PLC
Timer. The PLC Timer actuates (fires) air pressure through the Actuator Controller
Cables (highlighted in Fig. 5.7). The fire timing can be easily set by using the
keypad located inside the PLC Timer Box.

Actuator

Fig. 5.6 Linear actuator used for creating slosh
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5.4.4 Heater

To observe the effects of temperature variations on the sensor response, the heating
chamber is used to heat up the fuel in some parts of the experiments.

5.4.5 Arizona Dust

Arizona dust is used as the impurity substance in experiments to test the perfor-
mance of the ultrasonic sensor under the influence of small dust particles. The
response of the ultrasonic sensor output is observed before and after the intro-
duction of Arizona dust samples.

5.4.6 Signal Acquisition Card

All signals from the ultrasonic sensor are acquired and stored on the computer
using the National Instruments Data Acquisition Card (DAQ card) and the Lab-
VIEW software. The signal acquisition board and the power source are shown in
the Figs. 5.8 and 5.9. The power supply box is sourced by the AC mains to provide
the 12 V DC output for the ultrasonic sensor.

PLC Timer

ActuatorActuator Controller 
Cables

Fig. 5.7 Linear actuator showing PLC timer and linear actuator
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DAQ Card connector

Signal Acquisition 
Board 

Signal Wires

Fig. 5.8 Signal acquisition board

Power supply box
Signal Acquisition 
Board 

DAQ Card connector
(PC Card or PCMCIA connector)

Fig. 5.9 Power supply used to power the ultrasonic sensor
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5.5 Experiment Set A: Study of the Influential Factors

5.5.1 Overview

The purpose of running Experiment Set A is to study the magnitude of the inter-
action and the effects of the influential factors that were perceived in Chap. 2 to be:
Slosh frequency, Temperature, and Contamination. In order to fully comprehend
the behavior of the ultrasonic sensor in a dynamic environment, it is important to
determine the magnitude of the influence that the environmental factors contribute
to the response of the ultrasonic sensor in this environment.

5.5.2 Factorial Design

Experiment Set A is performed to understand the interactions between the three
main influential factors and the magnitude of the effects that these factors have on
the ultrasonic sensor output. The experiment is designed with the Design of
Experiments (DOE) methodology. There are a wide variety of experimental
designs for conducting factorial experiments [4]. Completely randomized design is
one of the most straightforward designs to implement [4]. Mason et al. [5]
described the randomization design method as: ‘Randomization is a procedure
whereby factor–level combinations are (a) assigned to experimental units or (b)
assigned to a test sequence in such a way that every factor–level combination has
an equal chance of being assigned to any experimental unit or position in the test
sequence’[4].

The factorial design is developed in the randomized way using Minitab soft-
ware [6]. The high and low values of these factors are shown in Table 5.3. A full
factorial matrix of 23 factors with one replicate is shown in Table 5.4.

The response variable in these designs is the fluid level, or the sensor output in
voltage. Arizona dust is used as the contaminant in these experiments.

Table 5.3 High and low
values of the influencing
factors

Factors Low value High value Unit

1-slosh frequency 0.5 2 Hz
2-temperature 10 50 �C
3-contamination 0 150 g
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5.5.3 Experimental Setup

Experiment Set A is setup to implement the aforementioned factorial design. A
fuel tank with 50 L of Exxsol D-40 Stoddard solvent is firmly mounted on the
linear actuator, as described in Sect. 5.4.2. The ultrasonic sensor described in
Sect. 5.4.1 is mounted on top of the fuel tank. The sensor cable is connected to the
Data Acquisition Card (DAQ Card). LabVIEW software is then run and the
response of the sensor is obtained and stored. The ultrasonic sensor signal is
sampled at 10 Hz sampling frequency. An overview of the experiment setup is
illustrated in Fig. 5.10.

The experiment is run according to the run order shown in Table 5.4. The linear
actuator is used to create slosh waves in the fuel tank. The frequency of the slosh is
controlled by the Programmable Logic Controller (PLC) Timer described in 5.4.3.
For heating the fluid up to 50 �C, a heating chamber is used (refer Sect. 5.4.4).

Table 5.4 Experiment A:
full factorial matrix

Run order Slosh frequency
(Hz)

Temperature
(�C)

Contamination
(g)

1 2.0 10 0
2 0.5 50 150
3 0.5 50 0
4 2.0 10 150
5 2.0 50 0
6 0.5 10 150
7 0.5 10 0
8 2.0 50 150

Signal 
Acquisition 

card

PC Logs 
data using 
LabVIEW10 Hz sampled 

data

Sensor signal in 
voltage

Fuel Tank

Fuel

Actuator moves back and forth at set 
frequency to create slosh

Ultrasonic sensor

Slosh 
waves

Fig. 5.10 Overview of the
experimental setup for
Experiment Set A

5.5 Experiment Set A: Study of the Influential Factors 75



Each experiment order shown in Table 5.4 is run for 60 s and the response of the
ultrasonic sensor is recorded throughout the run period.

5.6 Experiment Set B: Kernel Functions Examination

5.6.1 Overview

Experiment B is performed to compare the performance of four SVM kernel
functions: linear, polynomial, RBF, and sigmoid. The data samples obtained from
this experiment are used to develop four separate SVM models, where the kernel
function of each model is one of the four investigated kernel functions. For sim-
plicity, only four volume levels are used to run the experiment. The influence of
contamination on the sensor output is observed in the results of Experiment Set A
to be very small; therefore, the influence of the contamination factor was ignored
in Experiment B. However, the effects of temperature changes indicate a signifi-
cant effect on the ultrasonic output and hence the temperature readings is observed
and recorded during this experiment (Fig. 5.11).

FFT

Median 
value

SAMPLE DATA

(VECTOR ix )

Ultrasonic Sensor Signal 
(Analogue)

Sampling (100Hz)

20-sec long sampled signal

Temperature 
Sensor

SVM CLASSIFICATION

Fig. 5.11 System flow
diagram for Experiment Set B
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5.6.2 Experimental Setup

The setup for these experiments is similar to the setup described for Experiment
Set A. The fuel tank is filled with Exxsol D-40 at four different tank volumes: 40,
45, 50, and 55 L. The ultrasonic sensor is fitted near the center of the tank. The
tank is firmly mounted onto the linear actuator. The actuator is controlled by a
pulse timer. The range of slosh frequency with very significant amplitude observed
during a normal drive (refer Sect. 4.5) is 0.0–2.0 Hz. Hence in this experiment, the
range of slosh frequency generated by the linear actuator is also fixed at
0.0–2.0 Hz. The slosh frequency or the cycle of linear actuator could be selected
from 0.0 to 2.0 Hz at an interval of 0.2 Hz. The complete factorial matrix is shown
in Table 5.5.

Figure 5.12 shows a block diagram of this experimental setup. The level signal
from the ultrasonic sensor is acquired by LabVIEW using a Data Acquisition Card
that is connected to the ultrasonic sensor. The ultrasonic signal indicating the fuel
level is sampled and recorded at 100 Hz.

Table 5.5 Full factorial matrix for Experiment Set B

Run
order

Slosh frequency
(Hz)

Tank volume
(L)

Run
order

Slosh frequency
(Hz)

Tank volume
(L)

1 0 40 23 0 50
2 0.2 40 24 0.2 50
3 0.4 40 25 0.4 50
4 0.6 40 26 0.6 50
5 0.8 40 27 0.8 50
6 1 40 28 1 50
7 1.2 40 29 1.2 50
8 1.4 40 30 1.4 50
9 1.6 40 31 1.6 50

10 1.8 40 32 1.8 50
11 2 40 33 2 50
12 0 45 34 0 55
13 0.2 45 35 0.2 55
14 0.4 45 36 0.4 55
15 0.6 45 37 0.6 55
16 0.8 45 38 0.8 55
17 1 45 39 1 55
18 1.2 45 40 1.2 55
19 1.4 45 41 1.4 55
20 1.6 45 42 1.6 55
21 1.8 45 43 1.8 55
22 2 45 44 2.0 55
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5.6.3 Parameters for the SVM Kernel Functions

5.6.3.1 Linear Kernel Parameters

The linear kernel function is given as [7]:

jðxi; xjÞ ¼ xi � xj ð5:1Þ

Table 5.6 lists all the parameters and their values that are required by the
LIBSVM [1] application to train the SVM-based signal processing system with
Linear kernel function.

5.6.3.2 Polynomial Kernel Parameters

The polynomial kernel function is obtained by substituting the kernel parameters
into Eq. (3.36) [7]:

jðxi; xjÞ ¼ ð0:5ðxi � xjÞ þ 0:3Þ3 ð5:2Þ

Signal 
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LabView100 Hz sampled 

data

Sensor signal in 
voltage

Slosh 
waves

Fuel

Actuator moving back and forth at a 
set frequency to create slosh

Ultrasonic 
Transducer

Fuel tank

Fig. 5.12 Experimental
setup for Experiment Set B

Table 5.6 LIBSVM
parameters for SVM model
using linear kernel function

Parameter Description Value

-s SVM type 1 (nu-SVM)
-t Kernel function 0 (linear)
-n m Parameter 0.5
-e n Epsilon (tolerance) 1e-5
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Table 5.7 lists all the parameters and their values that are required by the
LIBSVM application to train the SVM-based signal processing system with
polynomial kernel function.

5.6.3.3 Radial Basis Kernel Parameters

The RBF kernel function is obtained by substituting the kernel parameters into
Eq. (3.37) [7]:

jðxi; xjÞ ¼ exp �0:105 xi � xj

�

�

�

�

2
� �

ð5:3Þ

Table 5.8 lists all the parameters and their values that are required by the
LIBSVM application to train the SVM-based signal processing system with RBF
kernel function.

5.6.3.4 Sigmoid Kernel Parameters

The Sigmoid kernel function is obtained by substituting the kernel parameters into
Eq. (3.38) [7]:

jðxi; xjÞ ¼ tanhð0:05ðxi � xjÞ � 0:85Þ ð5:4Þ

Table 5.9 lists all the parameters and their values that are required by the
LIBSVM application to train the SVM-based signal processing system with Sig-
moid kernel function.

Table 5.7 LIBSVM
parameters for SVM model
using polynomial kernel
function

Parameter Description Value

-s SVM type 1 (nu-SVM)
-t Kernel function 1 (polynomial)
-g c Parameter (gamma) 0.5
-n m Parameter (nu) 0.2
-d d Parameter (degree) 3
-r r Parameter (coef0) 0.3
-e n Epsilon (tolerance) 1e-5

Table 5.8 LIBSVM
parameters for SVM model
using RBF

Parameter Description Value

-s SVM type 1 (nu-SVM)
-t Kernel function 2 (RBF)
-g c Parameter (gamma) 0.105
-n m Parameter (nu) 0.1
-e n Epsilon (tolerance) 1e-5
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5.7 Experiment Set C: Performance Estimation Using
Filtration

5.7.1 Overview

Experiment Set C is carried out to understand the effectiveness of using the SVM-
based approach in combination with selected signal smoothing methods on the
driven vehicle data. Several consecutive field trials are carried out to obtain
training and validation data from the ultrasonic sensor operating under the effects
of sloshing. First, appropriate configurations of the feature extraction functions and
the size of the input vector are determined by experimentation, which is coded as
C1. Second, the optimal configurations of the signal smoothing functions
(described in Sect. 4.6) and appropriate filter tap size are determined, which is
coded as C2. Finally, the most appropriate configuration of the SVM-based system
is used to compare the accuracy of the SVM-based measurement system with the
currently used averaging methods, which is coded as C3. Figure 5.13 shows an
overview of the experimental setup of Experiment C.

The level signal from the ultrasonic sensor is acquired using LabVIEW and a
Data Acquisition Card, which is connected to the ultrasonic sensor in the vehicle.
The ultrasonic sensor signal indicating the fuel level is sampled and recorded at
100 Hz. The sampled level signal is gathered over 20 s, which is the typical hold-
on time used in automotive vehicles for averaging the fuel level signal. This
collective signal over 20 s is then filtered through the three investigated filtration
methods. After filtration, feature extraction is performed on the filtered signals
using the MATLAB built-in Fast Fourier Transform (fft), Discrete Cosine Trans-
form (dct), and Discrete Wavelet Transform (dwt) functions described in
Sect. 3.2.4. The obtained coefficients (coef) from the transformation function, the
median (med) value of the raw signal, and the value of the ambient temperature
(T) in the tank, are stored in an input vector for training and classification of the
SVM-based signal processing system.

Table 5.9 LIBSVM
parameters for SVM model
using Sigmoid kernel
function

Parameter Description Value

-s SVM type 1 (nu-SVM)
-t Kernel function 3 (Sigmoid)
-g c Parameter (gamma) 0.05
-n m Parameter (nu) 0.70
-r r Parameter (coef0) -0.85
-e n Epsilon (tolerance) 1e-5
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5.7.2 RBF Kernel Function

Each investigated SVM signal processing model had different preprocessing
(input) configurations but they all share the same SVM parameters. The kernel
function selected for this experiment is RBF, which was observed in Experiment B
results to have a higher classification accuracy when compared with other kernel
functions. RBF kernel function also has fewer kernel parameters, which can speed
up the process to select the effective kernel parameter.

Table 5.10 lists all the parameters and their values that are required by the
LIBSVM application to train the SVM signal processing models using the RBF
kernel function. These parameters were originally based on the default parameters
suggested by the LIBSVM software. However, after several quick tests, the values
listed in Table 5.10 were found to be optimal for the training and classification of
the slosh signals.
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Fig. 5.13 Experimental setup for Experiment Set C

Table 5.10 Parameters of
the SVM models using the
RBF kernel function in
Experiment Set C

Parameter Description Value

-s SVM type 1 (nu-SVM)
-t Kernel function 2 (RBF)
-g c Parameter (gamma) 0.105
-n m Parameter (nu) 0.1
-e n Tolerance (epsilon) 1e-5
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5.7.3 Experimental Setup

A fuel tank is fitted with an ultrasonic sensor near the center of the tank. The tank
can be approximated as a rounded edge rectangle with dimensions
34 9 34 9 81 cm. The fuel tank is filled with fuel levels ranging from 5–50 L in
the experiment, which corresponds to 6–70 % of the tank capacity. The fuel tank is
mounted in latitudinal direction, where the longest length of the tank is in parallel
to the direction of the vehicle. Table 5.11 lists all the fuel levels investigated in the
experiment.

Each experiment is conducted by driving a vehicle containing the instrumented
fuel tank for 3 km in a suburban residential area, where occasional stops are made
at some road intersections. Figure 5.14 shows the typical speed and acceleration
curves observed during the experiment.

The experiment labeled as C1 includes the selection of appropriate parameter
values for the input window size (x9 ), feature extraction function, and the size of
the input features, a factorial table (Table 5.13) of all feasible test values is gen-
erated according to the test conditions listed in Table 5.12. Each test in Table 5.13
is evaluated using the SVM-based signal processing model and the ultrasonic
signal samples obtained from the field trials.

The coefficient sizes of 63 and 100 are chosen for the experiment because it was
determined in the feature reduction section (Sect. 4.5) using Fig. 4.8 that the range
of significant slosh frequency is 0–6.3 Hz. The range of slosh frequencies over
6.3–10 Hz has little magnitude but this range was also added in the section option
to observe the performance of the ultrasonic sensor-based signal processing system
over the whole 0–10 Hz range of slosh frequency. Coefficient size of 63 and 100
denote the slosh data that contain slosh frequencies of 0–6.3 and 0–10 Hz,
respectively.

The experiment labeled as C2 includes the selection of appropriate parameter
values for the smoothing function, feature extraction function, and the tap size of
the smoothing filter, a factorial table (Table 5.15) of all feasible test values is
generated according to the test conditions listed in Table 5.14. Each test in
Table 5.15 is also evaluated using SVM-based signal processing model and the
ultrasonic signal samples obtained from the field trials.

Table 5.11 List of tank volumes investigated in the experiment

Investigated tank levels

5 L, 6 L, 7 L, 8 L, 9 L,
15 L, 20 L, 25 L, 30 L,
35 L, 36 L, 37 L, 38 L, 39 L, 40 L,
45 L, 46 L, 47 L, 48 L, 49 L, 50 L
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Fig. 5.14 Typical speed and acceleration observed during the experiment

Table 5.12 Test conditions for the evaluation of SVM input configuration

Window size x9 (sec) Coefficient function Coefficient size

5, 7, 10, 14, 20 FFT, DCT, WT 63, 100

Table 5.13 Complete factorial table for the evaluation of SVM input configuration

Test
#

Window size
x9 (sec)

Coefficient
function

Coefficient
size

Test
#

Window size
x9 (sec)

Coefficient
function

Coefficient
size

1 5 FFT 63 16 10 DCT 100
2 5 FFT 100 17 10 WT 63
3 5 DCT 63 18 10 WT 100
4 5 DCT 100 19 14 FFT 63
5 5 WT 63 20 14 FFT 100
6 5 WT 100 21 14 DCT 63
7 7 FFT 63 22 14 DCT 100
8 7 FFT 100 23 14 WT 63
9 7 DCT 63 24 14 WT 100

10 7 DCT 100 25 20 FFT 63
11 7 WT 63 26 20 FFT 100
12 7 WT 100 27 20 DCT 63
13 10 FFT 63 28 20 DCT 100
14 10 FFT 100 29 20 WT 63
15 10 DCT 63 30 20 WT 100
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5.8 SVM Data Processing

Figure 5.15 shows the flowchart of the process used to train and validate the SVM
models.

The raw signals acquired from the ultrasonic sensor during the experiments are
stored in the LABVIEW file format. These raw signal files are then loaded up
using the MATLAB software and the filtration and feature extraction is performed.
The four investigated filtration functions, moving mean, moving median,

Table 5.14 Test conditions for the evaluation of optimal signal smoothing function
configurations

Coefficient function Signal smoothing function Filter tap size

FFT, DCT, WT Moving mean, moving median, wavelet filter 5, 10, 15

Table 5.15 Complete factorial table for the evaluation of optimal signal smoothing function
configurations

Test
#

Coefficient
function

Filter
function

Filter tap
size

Test
#

Coefficient
function

Filter
function

Filter tap
size

1 FFT Moving
mean

5 15 DCT Moving
median

15

2 FFT Moving
mean

10 16 DCT Wavelet 5

3 FFT Moving
mean

15 17 DCT Wavelet 10

4 FFT Moving
median

5 18 DCT Wavelet 15

5 FFT Moving
median

10 19 WT Moving
mean

5

6 FFT Moving
median

15 20 WT Moving
mean

10

7 FFT Wavelet 5 21 WT Moving
mean

15

8 FFT Wavelet 10 22 WT Moving
median

5

9 FFT Wavelet 15 23 WT Moving
median

10

10 DCT Moving
mean

5 24 WT Moving
median

15

11 DCT Moving
mean

10 25 WT Wavelet 5

12 DCT Moving
mean

15 26 WT Wavelet 10

13 DCT Moving
median

5 27 WT Wavelet 15

14 DCT Moving
median

10
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unfiltered, and wavelet filter, are applied on the raw signals using MATLAB. After
filtration, the feature extraction is performed using the MATLAB’s fft, dct, and dwt
functions. The coefficients (coef) obtained from the feature extraction functions
are stored in a vector array along with the median value (med) of the raw signals
and the temperature value (T). The vector array is then exported into the SVM data
file format.

Before the training of the SVM model, the feature vector stored in the SVM file
format is scaled between 0 and 1 using the svm-scale tool in the LIBSVM. The
scaling tool produces another file with the ‘.scale’ file extension. Thereafter, an
SVM model is created by using a svm-train tool. The svm-train tool is called with
the SVM parameters, which describes the type of SVM, and the kernel function
along with its variable values. After training, the SVM model is validated using the
LIBSVM svm-predict tool. The training and validation process is repeated a
number of times until the SVM parameters are close to the optimal values.

Load Training Samples

Filtration

Feature Extraction Feature Extraction

Filtration

Load Test Samples

Scaling Scaling
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SVM Validation
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Set C only
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LIBSVM file format

Store Features into 
LIBSVM file format

Fig. 5.15 Flowchart of the SVM model training and validation process
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The complete program code for each experiment has been provided in
Appendix D. The following lines shows the command used to scale, train, and
predict an SVM model that used Linear kernel function using the LIBSVM
software.

c:\test\[svm-scale.exe -l 0 -u 1 -s range traindata[
traindata.scale
c:\test\[svm-scale.exe -r range testdata_LINEAR[
testdata.scale
c:\test\[svm-train.exe -s 1 -t 0 -n 0.8 -e 1e-5 trainda-
ta.scale traindata.scale.model
c:\test\[svm-predict.exe testdata.scale traindata.
scale.model RESULT.txt

5.8.1 Raw Signal File

The ultrasonic sensor readings are sampled and stored in the ‘LabVIEW Mea-
surement’ file by the LabVIEW application. The raw signal file contained the raw
sensor readings and the timestamp details of the instant when the sample readings
are observed. Additionally, the LabVIEW Measurement file contains other details
relating to the LabVIEW software, such as application version, time and date,
username, and the details of the channel used to acquire the ultrasonic signal.

5.8.2 Signal Representation

The signal data is stored in files and folders that represent the conditions set in the
experimental runs. The folders are named by the fluid volumes and the raw-data
files are named by the slosh frequency or the set frequency of the linear actuator.
Additionally, there is an extra file for each raw-data file that contained the
experiment run configurations such as volume, slosh frequency, and temperature
values.

The raw signals are loaded up and preprocessing performed. The feature
coefficients (coef) are obtained using the investigated feature extraction functions
(fft, dct, wt) on MATLAB software. The magnitude of the coefficients of the raw
signal, the median value, and the temperature value are all bundled in a cell array
having the structure format as shown in Table 5.16.
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5.8.3 Filtration

The three investigated filters used in the analysis of the SVM system are developed
as subroutine programs using MATLAB. The moving mean and moving median
filters are developed using the equations (3.18) and (3.19), described in Sect. 4.6.
Whereas, the wavelet filter used in the analysis was already contained in the
Wavelet Toolbox [8] in MATLAB. The following commands are used in MAT-
LAB to filter a signal s with the moving window size of w (Table 5.17).

The MATLAB code for these filtration functions is contained in Appendix D.

5.8.4 Feature Extraction

Feature extraction is performed by the MATLAB built-in FFT function. To obtain
the magnitude of the frequency coefficients of the sampled signal s consisting of
L number of sample points, the following MATLAB commands can be used:

% perform fft on the input signal s
fff_coefficients = abs(fft(s));

% remove symmetry due to the complex numbered values
Signal_Features = fff_coefficients (1:L/2 ? 1)/L;

% reduce the number of coefficients to 63
Signal_Features = fff_coefficients (1:63);

Table 5.16 Cell-array containing details of the training signal features

Run

Index 1 2 …
1 Raw signal filename Raw signal filename …
2 Slosh frequency Slosh frequency …
3 Actual volume Actual volume …
4 Temperature Temperature …
5 Average raw value Average raw value …
6 [Input vector x] [Input vector x] …

Table 5.17 Call functions
to smoothen the input signals

Filter Filter call function

Moving mean AvgMean(s,w)

Moving median avgMedian(s,w)

Wavelet waveletfilter(s)
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Chapter 6
Results

6.1 Overview

This chapter provides the results obtained from the three sets of experiments
described in Chap. 5. The results showing the response of the ultrasonic sensor in a
dynamic environment without using the SVM-based signal processing system are
provided in Sect. 6.2. The ultrasonic sensor signals, the training samples, and
validation results for Experiment Sets B and C are given in Sects. 6.3 and 6.4,
respectively.

6.2 Experiment Set A

6.2.1 Main Effects Plot

The results obtained from Experiment Set A were used to present main effects
plots of the three factors that influence the accuracy of the level measurement
system. The importance of main effects and interaction plots was discussed in
Sect. 4.7.

The output of the ultrasonic sensor was recorded for each experiment trial
described in Sect. 5.5. The ultrasonic sensor signal sampled at 10 Hz was averaged
over 60 s to produce an averaged voltage that represented the fuel level. Table 6.1
shows the results obtained from Experiment Set A.

Figure 6.1 shows the cube plot for volume due to the effects of the three
influencing factors. The single-order regression equation for volume is approxi-
mated using Minitab as:

volume ¼ 52:6 � 4:25 slosh þ 0:148temperature þ 0:0011 contamination

ð6:1Þ

J. Terzic et al., Ultrasonic Fluid Quantity Measurement
in Dynamic Vehicular Applications, DOI: 10.1007/978-3-319-00633-8_6,
� Springer International Publishing Switzerland 2013
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The main effects plots showing the degree of influence caused by the three
influential factors: slosh, contamination, and temperature are shown in Figs. 6.2
and 6.3.

It can be observed that the fuel volume readings are influenced by the liquid
slosh and the temperature changes. However, the effects plot of contamination

Table 6.1 Average volume readings obtained in Experiment Set A

Run order Slosh frequency (Hz) Temperature (�C) Contamination (g) Average volume (L)

1 0.5 50 0 58.94
2 0.5 10 150 49.97
3 2 10 150 45.64
4 0.5 10 0 52.27
5 2 50 0 48.17
6 2 10 0 47.71
7 0.5 50 150 58.99
8 2 50 150 53.16

Fig. 6.1 Cube plot for
volume in Experiment Set A

Fig. 6.2 Effects plot of the
slosh factor
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shown in Fig. 6.4, indicates that dust contaminants in the fluid did not significantly
affect the ultrasonic sensor signal.

6.2.2 Interaction Plots

To observe the interaction between the influencing factors, results obtained from
Experiment Set A were used to generate the interaction plot. The interaction plot
shows that there is no interaction between contamination and the other two factors,
namely, slosh and temperature. However, the interaction plot also reveals that
there was some interaction between temperature and slosh.

6.2.3 Summary

The three influencing factors perceived to have influence on the level measurement
were the following:

Fig. 6.3 Effects plot of the
temperature factor

Fig. 6.4 Effects plot of the
contamination factor
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• Liquid Slosh,
• Temperature, and
• Contamination.

It can be seen from the main effect plots that the effects of slosh and temper-
ature were significant compared with the results for contamination. A reason for
this little effect of contamination on level measurement could be that the Arizona
Dust did not absorb or block the ultrasonic signals. Figure 6.5 showed the inter-
action plot of the influential factors. The interaction plot showed that there was no
interaction between contamination and the other two factor being slosh and tem-
perature. Hence, according to the observed results, the temperature and slosh
factors are independent of contamination. But there was some interaction observed
between temperature and slosh. As the temperature increased to 50 �C, the volume
signal was also observed to have increased, which is in accordance with the
Eq. 1.2 described in Chap. 1.

6.3 Experiment Set B

The training samples obtained from Experiment Set B at various tank volumes and
slosh frequencies were loaded and classified in terms of their frequency response
and their median value. Figure 6.6 shows the average fuel level data over 10 s
obtained at various initial volume levels and generated slosh frequencies with the
linear actuator. It can be seen that the average volume at various acceleration or
slosh levels is not constant.

Fig. 6.5 Interaction plots of the influencing factors
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6.3.1 Frequency Coefficients

The raw signals obtained from Experiment Set B were transformed into the fre-
quency domain using the MATLAB built-in fft function. Figure 6.7 shows the fre-
quency coefficients surface plot of the raw ultrasonic type fuel level sensor signals.

Four SVM-based signal processing models were investigated with four different
kernel functions and parameters. After training the four SVM models, the
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Fig. 6.6 Average volume of the tank measured over 10 s at selected slosh frequencies

Fig. 6.7 Frequency coefficients surface plot
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validation results for all SVM models exhibited more accurate level readings when
compared with the simple averaging method. The validation results for each
investigated kernel function using SVM are shown in the following figures. The
circles shown in the following graphs illustrate misclassification of the sample
signal at its particular slosh frequency.

6.3.2 Linear Kernel

Figure 6.8

6.3.3 Polynomial Kernel

Figure 6.9

6.3.4 RBF Kernel

Figure 6.10

6.3.5 Sigmoid Kernel

Figure 6.11
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Fig. 6.8 Validation results using SVM with linear kernel function
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6.3.6 Summary

The comparison of performance of the four investigated SVM kernel functions is
shown in the following tables. Table 6.2 shows the average volume calculated
from the validation results for each investigated SVM model. Table 6.3 shows the
error obtained at different fuel tank volumes.

Table 6.4 provides a summary of the performance of the four investigated SVM
kernels based on the classification accuracy.
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Fig. 6.9 Validation results using SVM with polynomial kernel function

Radial Basis Kernel Function
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Fig. 6.10 Validation results using SVM with RBF kernel function
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The overall results obtained from the four SVM kernel functions have shown
remarkable reduction in sloshing error, when compared with the results obtained
by simple averaging. Both sigmoid and linear kernel functions could correctly

Sigmoid Kernel Function
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Fig. 6.11 Validation results using SVM with sigmoid kernel function

Table 6.2 Calculated average volume for each kernel function

Kernel 40 L 45 L 50 L 55 L

Linear 40.0 44.5 48.6 55.0
Polynomial 40.5 45.0 49.1 54.5
RBF 40.0 45.0 49.1 54.5
Sigmoid 40.0 45.0 49.1 54.1

Table 6.3 Calculated average error for each kernel function

Kernel 40 L 45 L 50 L 55 L Average error (L)

Linear 0.0 0.5 1.4 0.0 0.5
Polynomial 0.5 0.0 0.9 0.5 0.5
RBF 0.0 0.0 0.9 0.5 0.3
Sigmoid 0.0 0.0 0.9 0.9 0.5

Table 6.4 Summary of
overall classification for each
kernel function

Kernel Misclassified Classification accuracy (%)

Linear 4 91
Polynomial 3 93
RBF 2 95
Sigmoid 5 89
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classified 86 % of signals. Polynomial function produced better results with 89 %
classification accuracy. The RBF function could correctly classify 93 % of signals,
which indicates it to be the best performed of the kernel functions (Fig. 6.12).

6.4 Experiment Set C

The training samples obtained from Experiment Set C were processed with
MATLAB using the methodology described in Sect. 5.3. The raw signals in this
experiment were filtered through different filtration functions before the signals
were trained by the SVM-based signal processing model. Twenty test drive trials
at different fuel levels were carried out in this experiment, where each drive trial
was conducted over a distance of 3 km. This section provides details on the raw
signals obtained from the ultrasonic sensor during the course of this experiment.
The frequency coefficients plot, the network weights coefficients, the validation
results, and the validation error plots for all drive trials (at different fuel quantity)
are contained in this section.

6.4.1 Raw Ultrasonic Sensor Signals

The ultrasonic sensor signals throughout each drive trial are shown in the figures
below. Each graph shows the trial data run for 280 s over the same drive route.
These graphs clearly show the slosh created in the fuel tank over the drive path.
The magnitude of slosh can be seen as varying for different tank volumes
(Figs. 6.13, 6.14, 6.15, 6.16, 6.17, 6.18, 6.19, 6.20, 6.21, 6.22).
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Fig. 6.12 Comparison of the
classification accuracy of
different kernel functions

6.3 Experiment Set B 97

http://dx.doi.org/10.1007/978-3-319-00633-8_5


Fig. 6.13 Raw ultrasonic sensor signals (49 and 50 L)

Fig. 6.14 Raw ultrasonic sensor signals (47 and 48 L)
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Fig. 6.15 Raw ultrasonic sensor signals (45 and 46 L)

Fig. 6.16 Raw ultrasonic sensor signals (39 and 40 L)
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Fig. 6.17 Raw ultrasonic sensor signals (37 and 38 L)

Fig. 6.18 Raw ultrasonic sensor signals (35 and 36 L)
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Fig. 6.19 Raw ultrasonic sensor signals (25 and 30 L)

Fig. 6.20 Raw ultrasonic sensor signals (9 and 20 L)
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Fig. 6.21 Raw ultrasonic sensor signals (7 and 8 L)

Fig. 6.22 Raw ultrasonic sensor signals (5 and 6 L)
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Fig. 6.23 Graph of the FFT coefficients obtained by using the training data

Fig. 6.24 Overall view of the observed raw signals and the actual fuel level
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6.4.2 Frequency Coefficients

Figure 6.23 shows the frequency coefficients of the unfiltered signals obtained
from the experiment using the MATLAB built-in fft function.

Feature reduction using filtration was described in Sect. 4.5. It was also
described in Sect. 4.5 using Fig. 4.8 that the range of significant slosh frequency is
0–6.3 Hz. In this experiment, a low-pass filter was used to filter out slosh fre-
quencies over 6.3 Hz. This was achieved to increase the network training speed
without incurring a performance penalty. The frequency coefficients, the median
value of the signals, and the temperature values were all bundled in an array of 64

Table 6.5 Results for the selection of optimal preprocessing configuration (Exp. C1)

Test
#

Window size
(x9 )

Coefficient
function

Coefficient
size

Average error (L) Standard deviation
(L) error

Mean Median SVM Mean Median SVM

1 5 FFT 63 2.89 2.92 0.81 1.53 1.53 0.62
2 5 FFT 100 2.89 2.92 0.99 1.53 1.53 0.70
3 5 DCT 63 2.89 2.92 0.90 1.53 1.53 0.66
4 5 DCT 100 2.89 2.92 0.98 1.53 1.53 0.80
5 5 WT 63 2.89 2.92 1.04 1.53 1.53 0.79
6 5 WT 100 2.89 2.92 1.04 1.53 1.53 0.79
7 7 FFT 63 2.75 2.76 0.78 1.50 1.50 0.64
8 7 FFT 100 2.75 2.76 0.95 1.50 1.50 0.72
9 7 DCT 63 2.75 2.76 0.83 1.50 1.50 0.63
10 7 DCT 100 2.75 2.76 1.02 1.50 1.50 0.83
11 7 WT 63 2.75 2.76 1.04 1.50 1.50 0.74
12 7 WT 100 2.75 2.76 0.93 1.50 1.50 0.73
13 10 FFT 63 2.59 2.60 0.75 1.51 1.51 0.62
14 10 FFT 100 2.59 2.60 0.93 1.51 1.51 0.61
15 10 DCT 63 2.59 2.60 0.89 1.51 1.51 0.56
16 10 DCT 100 2.59 2.60 0.84 1.51 1.51 0.59
17 10 WT 63 2.59 2.60 0.74 1.51 1.51 0.51
18 10 WT 100 2.59 2.60 0.74 1.51 1.51 0.51
19 14 FFT 63 2.36 2.26 0.65 1.45 1.37 0.64
20 14 FFT 100 2.36 2.26 0.79 1.45 1.37 0.63
21 14 DCT 63 2.36 2.26 1.08 1.45 1.37 0.84
22 14 DCT 100 2.36 2.26 1.02 1.45 1.37 0.71
23 14 WT 63 2.36 2.26 0.74 1.45 1.37 0.52
24 14 WT 100 2.36 2.26 0.71 1.45 1.37 0.52
25 20 FFT 63 2.17 2.04 0.75 1.51 1.40 0.74
26 20 FFT 100 2.17 2.04 0.86 1.51 1.40 0.80
27 20 DCT 63 2.17 2.04 1.21 1.51 1.40 1.39
28 20 DCT 100 2.17 2.04 0.85 1.51 1.40 0.76
29 20 WT 63 2.17 2.04 0.73 1.51 1.40 0.64
30 20 WT 100 2.17 2.04 0.68 1.51 1.40 0.59
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elements, which were then used to train and validate the SVM-based signal pro-
cessing system.

Figure 6.24 shows an overview of the slosh data in the vehicle over time. The
training samples and the corresponding target value or the actual value of the
initial fuel level in the tank are also shown in Fig. 6.24.
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Fig. 6.26 Standard deviation error plot—optimal SVM preprocessing estimation
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Fig. 6.25 Average error plot—optimal SVM preprocessing estimation
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When the actual volume of fuel in the tank is compared with the volume
obtained from the raw sensor signal, shown in Fig. 6.24, very large deviations in
the calculated volume are observed due to the effects of sloshing. It is apparent that
the amplitude of the sloshing is different at different initial volumes of fuel in the
tank.

6.4.3 C1 Selection of Optimal Preprocessing Parameters

Table 6.5 shows the results for the optimal preprocessing parameters evaluation
test. The preprocessing configuration list in the table for each test number was
applied on the raw ultrasonic sensor signals and then processed through the m-SVM
using LIBSVM software. The results obtained from each SVM test model are
compared with the results obtained with standard statistical averaging methods.

Table 6.6 Results for the selection of optimal signal smoothing parameters (Exp. C2)

Test # Coefficient
function

Filter
function

Filter
tap size

Average error (L) [m-SVM]

Lower
limit

Average Upper
limit

Standard
deviation

1 FFT Moving mean 5 0.08 0.63 1.18 0.55
2 FFT Moving mean 10 0.11 0.66 1.21 0.55
3 FFT Moving mean 15 0.13 0.73 1.33 0.60
4 FFT Moving median 5 0.13 0.66 1.18 0.52
5 FFT Moving median 10 0.14 0.69 1.24 0.55
6 FFT Moving median 15 0.10 0.67 1.24 0.57
7 FFT Wavelet 5 0.01 0.66 1.30 0.64
8 FFT Wavelet 10 0.01 0.66 1.30 0.64
9 FFT Wavelet 15 0.01 0.66 1.30 0.64
10 DCT Moving mean 5 0.24 0.98 1.71 0.74
11 DCT Moving mean 10 -0.07 0.95 1.97 1.02
12 DCT Moving mean 15 -0.10 0.87 1.83 0.97
13 DCT Moving median 5 0.28 0.93 1.58 0.65
14 DCT Moving median 10 0.18 0.94 1.70 0.76
15 DCT Moving median 15 -0.21 0.92 2.06 1.14
16 DCT Wavelet 5 0.16 1.01 1.86 0.85
17 DCT Wavelet 10 0.16 1.01 1.86 0.85
18 DCT Wavelet 15 0.16 1.01 1.86 0.85
19 WT Moving mean 5 0.20 0.74 1.27 0.54
20 WT Moving mean 10 0.20 0.73 1.25 0.53
21 WT Moving mean 15 0.20 0.73 1.26 0.53
22 WT Moving median 5 0.20 0.74 1.27 0.54
23 WT Moving median 10 0.19 0.72 1.26 0.53
24 WT Moving median 15 0.21 0.75 1.29 0.54
25 WT Wavelet 5 0.22 0.74 1.26 0.52
26 WT Wavelet 10 0.22 0.74 1.26 0.52
27 WT Wavelet 15 0.22 0.74 1.26 0.52
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Figures 6.25 and 6.26 show plots of the average and standard deviation error
results obtained from the optimal SVM preprocessing estimation test. In general,
both plots show significantly low error results for the SVM-based signal
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processing model when compared with the two currently used statistical averaging
methods (mean and median). Figure 6.25 indicates that the optimal configuration
for the SVM preprocessor is when it is configured with the parameters used in Test
#19, which uses a window size of 14 s (x9 = 14 s), Fast Fourier Transform
Function (FFT) as the feature extraction function and 63 number of frequency
coefficients. Figure 6.26 shows that the standard deviation error was the lowest for
Test #17–18 and #23–24, where all these four tests used Wavelet Transformation
(WT) as the feature extraction function. Based the on these observations, the
optimal configurations for the SVM preprocessor system include: Fast Fourier
Transform (FFT) and Wavelet Transform (WT) as the optimal feature extraction
functions, 63 number of signal coefficients, and the window size (x9 ) of 14 s. The
optimal configurations obtained in this test will be used to run the next test ‘C2
Selection of Optimal Signal Smoothing Parameters’. The results obtained using the
Discrete Cosine Transform (DCT) function generally indicated a larger error when
compared with the other two transformation functions (FFT and WT). However,
by incorporating the signal smoothing technique with the DCT transformation
function, the accuracy of the SVM-based signal processing system has the
potential to improve. Hence, DCT will also be examined along with the FFT and
WT functions in the next text ‘C2 Selection of Optimal Signal Smoothing
Parameters’.

6.4.4 C2 Selection of Optimal Signal Smoothing Parameters

The selection of optimal signal smoothing parameter evaluation test was run to
understand the significance and performance of signal smoothing technique in
signal preprocessing. Table 6.6 lists the benchmark results of using different signal

Frequency
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-SVM
Model

(RBF kernel)
Fuel 
Level

Ultrasonic 
Sensor

Fuel Tank

Coefficients (coef)

Windowing Feature Extraction

Data Logging using LabVIEW

(100 Hz sampling)

Median Value (med)

Temperature (T)

Signal smoothing

Fig. 6.28 Synthesized SVM-based measurement system model

108 6 Results



preprocessing approaches to the SVM-based signal processing system. A graph of
the figures list in this table is shown in Figure 6.27.

Figure 6.27 shows the influence of signal filtration on the SVM-based signal
processing system. The results shown in Fig. 6.27 indicate that the SVM-based
system provides the best results when it is configured with the configurations used
in Test #4. Test #4 was configured with the window size of 14 s (x9 = 14), FFT as
the feature extraction function, 63 number of coefficients, and moving median
function as the signal smoothing function with the filter tap size of 5. Figure 6.27
also indicates that the results obtained using FFT function generally had less errors
than the other transformation functions (WT and DCT). The DCT function indi-
cated a poor performance, when compared with FFT and WT. An interesting
feature noticed in the Fig. 6.27 was that the signal smoothing function had little
impact on the SVM-based system having the Wavelet Transform, as the results for

5.1L error

(a)

(b)

(c)

@49L

Fig. 6.29 Illustration of the evaluation of the SVM verification results
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WT were mainly consistent for each filter test. The configurations used in Test #4
will be used in the next test to observe the performance of the SVM-based signal
classification system at different tank volumes.

6.4.5 C3 Final Validation Results

A final model of the SVM-based signal process was synthesized based on the
results observed in the previous experiments. The optimal selection values of the
SVM preprocessor and the signal smoothing techniques were used to create a final
version of the SVM-based signal processing and classification model. The
configuration of the synthesised SVM model is shown in Fig. 6.28.

After training the final SVM model, the model was validated using the test
samples obtained from the second field trial. Fig. 6.29 shows the output results
obtained using different preprocessing filters. The output volume was calculated as
the overall average of each investigated tank volume. Field trial results for each
investigated tank volume are placed adjacent to each other. The time length of
each trial is indicated as 280 s. A closer look at the 49 litre trial is also shown in
Fig. 6.29. The raw signal illustrated in Fig. 6.29a was divided into 20 s long
signals, as shown Fig. 6.29b, which were then filtered and processed through the

Fig. 6.30 Network verification results for volumes 47–50 L
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Fig. 6.31 Network verification results for volumes 39–46 L

Fig. 6.32 Network verification results for volumes 35–38 L

6.4 Experiment Set C 111



Fig. 6.33 Network verification results for volumes 9–30 L

Fig. 6.34 Network verification results for volumes 5–8 L
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SVM-based signal processing system. The overall averaged volume in Fig. 6.29c
was calculated by averaging the SVM model outputs for each trial over 280 s
(Figs. 6.30, 6.31, 6.32, 6.33, 6.34).

6.4.6 Validation Errors for Each Investigated Tank Volume

Table 6.7 shows the volume figures (in litres) obtained using the statistical mean
and median functions, and the SVM predicted results using different preprocessing
filters.

Table 6.8 shows the relative average error figures for all investigated volumes
computed using the statistical averaging methods, and the SVM-based signal
classification method having different preprocessing filters.

Table 6.7 Validation results using statistical averaging methods and the SVM approach with
different preprocessing filters

Actual
volume

Statistical averaging Support vector machine

Moving mean*
(without SVM)

Moving median*
(without SVM)

m-SVM
(Unfiltered)

m-SVM
(Moving
mean)

m-SVM
(Moving
median)

m-SVM
(Wavelet
filter)

50 55.77 55.18 50.02 50.03 49.80 50.01
49 53.93 53.87 48.05 48.05 48.20 48.05
48 49.29 49.32 47.60 47.60 47.60 47.60
47 44.51 44.49 46.40 46.40 46.60 46.40
46 45.65 45.42 46.40 46.40 46.30 46.40
45 44.10 43.88 45.02 44.60 45.05 45.03
40 40.04 39.98 39.75 40.05 40.05 39.75
39 37.26 37.02 38.85 38.85 38.85 38.85
38 38.18 37.71 37.90 37.85 37.80 37.90
37 37.34 36.99 38.03 38.01 37.95 38.02
36 35.27 35.00 35.85 35.85 35.80 35.85
35 35.37 34.89 35.10 34.95 34.95 35.10
30 30.13 29.71 30.40 30.40 30.35 30.40
25 27.23 26.40 27.05 26.25 26.25 27.05
20 22.91 21.69 19.95 19.95 19.95 19.95
9 12.65 12.32 8.85 8.90 8.95 8.85
8 9.84 9.38 8.05 8.10 8.05 8.15
7 7.31 7.07 7.10 7.10 7.15 7.10
6 6.00 5.91 6.01 6.03 6.01 6.03
5 5.32 5.09 5.05 5.05 5.05 5.05

*Standard statistical averaging method
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Table 6.8 Relative average error using statistical averaging methods and SVM-based system
Actual
volume

Statistical averaging Support vector machines

Moving mean
(without SVM)
(%)

Moving median
(without SVM)
(%)

m SVM
(Unfiltered)

m SVM
(Moving
mean) (%)

m SVM
(Moving
median)

m SVM
(Wavelet
filter)

50 +11.5 +10.4 +0.0 +0.1 -0.4 +0.0
49 +10.1 +9.9 -1.9 -1.9 -1.6 -1.9
48 +2.7 +2.8 -0.8 -0.8 -0.8 -0.8
47 -5.3 -5.3 -1.3 -1.3 -0.9 -1.3
46 -0.8 -1.3 +0.9 +0.9 +0.7 +0.9
45 -2.0 -2.5 +0.0 -0.9 +0.1 +0.1
40 +0.1 -0.1 -0.6 +0.1 +0.1 -0.6
39 -4.5 -5.1 -0.4 -0.4 -0.4 -0.4
38 +0.5 -0.8 -0.3 -0.4 -0.5 -0.3
37 +0.9 +0.0 +2.8 +2.7 +2.6 +2.8
36 -2.0 -2.8 -0.4 -0.4 -0.6 -0.4
35 +1.1 -0.3 +0.3 -0.1 -0.1 +0.3
30 +0.4 -1.0 +1.3 +1.3 +1.2 +1.3
25 +8.9 +5.6 +8.2 +5.0 +5.0 +8.2
20 +14.5 +8.5 -0.3 -0.3 -0.3 -0.3
9 +40.6 +36.9 -1.7 -1.1 -0.6 -1.7
8 +22.9 +17.2 +0.6 +1.3 +0.6 +1.9
7 +4.5 +1.0 +1.4 +1.4 +2.1 +1.4
6 -0.1 -1.5 +0.2 +0.5 +0.2 +0.5
5 +6.4 +1.9 +1.0 +1.0 +1.0 +1.0
Abs.

Average
Error

7.0 % (1.53 L) 5.7 % (1.37 L) 1.2 % (0.35 L) 1.1 % (0.32 L) 1.0 % (0.29 L) 1.3 % (0.36 L)

Max.
Avg.
Error

40.6 % (5.77 L) 36.9 % (5.18 L) 8.2 % (2.05 L) 5.0 % (1.25 L) 5.0 % (1.25 L) 8.2 % (2.05 L)

0

1

2

3

4

5

6

7

5 6 7 8 9 20 25 30 35 36 37 38 39 40 45 46 47 48 49 50

Investigated Tank Volumes (L)

O
ve

ra
ll 

A
ve

ra
g

e 
E

rr
o

r 
(L

)

Moving Mean (without SVM)
Moving Median (without SVM)
SVM (Unfiltered)
SVM (Moving Mean)
SVM (Moving Median)
SVM (Wavelet filter)

Fig. 6.35 Graph of the average error produced at different investigated tank volumes
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6.4.7 Summary

A comparison of the accuracy of different processing techniques investigated in
the experiment is shown in Figs. 6.35 and 6.36. The overall results obtained from
the SVM-based signal processing system indicate significantly less error in fuel
volume measurement compared with the simple averaging methods under dynamic
conditions. The m-SVM model with the RBF kernel function and applied moving
median filter produced the most accurate results compared with the other methods.

Figure 6.35 shows the overall average error plot using the investigated filters at
different tank volumes. It shows that the SVM models with applied moving mean,
unfiltered, and wavelet filters produced little error, especially near the lower and
higher tank volumes, when compared with the simple statistical methods.

Figure 6.36 summarizes the errors obtained using the averaging method and the
three investigated preprocessing techniques.
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Chapter 7
Discussion

7.1 Overview

This chapter provides discussion on the selection and design of the SVM-based
signal processing system. The selection parameters used for the SVM-based sys-
tem and the results obtained from the experimentations, and the possible
improvements to the design of the SVM-based system are all discussed in this
section.

7.2 Support Vector Machine Configuration

The SVM-based fuel level measurement system designed and examined in this
research uses m-SVM type of support vector machine. It was discussed in Sect. 3.3
that m-SVM was the improved form of the existing C-type SVM (C-SVM). The
choice for selecting a particular kernel functions plays a crucial role in terms of the
SVM performance [1–3]. Hence, four commonly used types of kernel functions
were investigated using the samples obtained from the field trials (Exp. Set B). The
parameters for the SVM models (i.e., m, n) and the kernel functions (i.e., c, d, and
r) (described in Sect. 5.6.3) were selected by first using the default parameters
suggested by the LIBSVM software and then changing these parameters in several
quick trials using the cross-validation function in LIBSVM. Parameters for which
the classification accuracy was observed to be highest were used to conduct other
investigation trials for determining optimal preprocessor configuration and optimal
signal smoothing parameter. Results obtained from Experiment Set B indicated
that the Radial Basis Function (RBF) (average error of 0.3 L) was the most
feasible kernel function for the classification of the ultrasonic fuel level signals.
However, the results obtained from other kernel functions such as linear kernel,
polynomial kernel, and sigmoid kernel functions showed reasonably good
classification results with average error of 0.5 L (see Sect. 6.3.6). These results
using several SVM kernel functions showed good consistency in terms of the
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response of the SVM-based system to the ultrasonic sensor-based fuel level
measurement equipments.

Radial basis function (RBF) was observed to have an excellent classification
rate. It is comparatively easier to obtain the optimal parameter values with the
m-SVM models that use the RBF kernel function, since there are only a few
parameters that need to be adjusted. The matrix of possible SVM parameters
values is a lot smaller for the RBF kernel function compared with the polynomial
and sigmoid functions. Table 7.1 shows a list of parameters that are used by the
m-SVM for different kernel functions. To effectively train the m-SVM, the required
parameters values need to be adjusted in factorial way. Since RBF function only
requires two factors (m and c), it is quicker to train with the near optimum
parameter values.

7.3 Selection of Signal Preprocessing Parameters

To determine an appropriate configuration for the SVM-based fuel level mea-
surement system, it was important to ascertain the optimal parameters for the
signal preprocessing functional block. That is, to determine an appropriate feature
extraction function out of the three functions (FFT, DCT, and WT) described in
Sect. 3.2.4. Furthermore, the optimal size of the input window (x9 ), and the size of
the feature vector was important to be determined experimentally. For this
purpose, Experiment Sec C was conducted and the training and validation samples
obtained from the field trials were used to investigate the performance of the
SVM-based system based on the different types of feature extraction functions,
different sizes of the input window (x9 ), and different sizes of the feature vector.

The results obtained from Experiment C1 indicated that the optimal solution for
the signal preprocessor configuration is using the fast Fourier transform (FFT)
function as the feature extraction function, with windows size (x9 ) of 14 s and
feature vector size of 63 coefficients. The overall performance of each of these
parameters is shown in the following figures. The parameters that were found to be
most feasible are circled on the result figures below.

Figure 7.1 shows the average performance of several m-SVM models having
different sizes of coefficients investigated in Experiment Set C1. It is interesting to
note that the performance of the SVMs generally goes down as the size of the input
coefficients increases [4]. This fact was discussed in Sect. 3.2.4 and it also
confirms the findings of Trunk [5].

Table 7.1 Required parameters for different kernel functions

Kernel function Nu (m) Gamma (c) Coef0 (r) Degree (d)

Polynomial Uses Uses Uses Uses
Sigmoid Uses Uses Uses –
RBF Uses Uses – –
Linear Uses – – –
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Figure 7.2 shows the general performance of the three feature extraction
functions used in the SVM-based measurement system. The overall performance
of the SVM-based system using FFT, WT, and DCT has been observed to be
competitive.

Figure 7.3 shows the performance of the SVM-based measurement system
when implemented to have different window sizes (x9 ). A window size of 5 rep-
resents that the measurement system uses 5-s sampled data to process the output.
Likewise, a window size of 14 means that the measurement system uses 14-s
sampled data from the ultrasonic sensor to process and predict the output level.
The graph shown in Fig. 7.3 describes that there were reasonable effects of using
window size of different values. The performance of the SVM-based fuel level
measurement system having different window sizes is generally seen as consistent
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and superior to the two statistical averaging methods (mean and median). The
performance of the statistical averaging methods improves as the size of the input
window increases, which conforms to the fact that a signal averaged over longer
period will produce a more converged and accurate reading.

7.4 Selection of Signal Smoothing Parameters

To investigate the performance of the SVM-based measurement system, when
used with the signal smoothing capability, it was important to determine appro-
priate parameters for the signal smoothing configuration. That is, to determine an
appropriate signal smoothing (filter) function out of the three functions (moving
mean, moving median, and wavelet filter) described in Sect. 4.6. Furthermore, the
optimal size of the filter tap, and an appropriate feature extraction function was
important to be determined experimentally. For this purpose, Experiment Set C2
was conducted and the training and validation samples obtained from the field
trials were used to investigate the performance of the SVM-based system based on
the different types of signal smoothing functions, different feature extraction
functions, and different sizes of the filter tap.

The results obtained from Experiment Set C2 indicated that the optimal solution
for the signal preprocessor configuration is using the FFT function as the feature
extraction function, and moving median with tap size of 5 as the signal smoothing
function. The overall performance of each of these parameters is shown in the
following figures. The parameters that were found to be most suitable are circled
on the result figures below (Figs. 7.4 and 7.5).

Figure 7.6 shows the overall performance of SVM-based measurement system
incorporated with different feature extraction functions and signal smoothing
technique. Figure 7.6 shows a general improvement in the SVM-based fuel level
measurement system when incorporated with the signal smoothing technique. The
average performance of the feature extraction functions is shown in Fig. 7.2
(without signal smoothing feature) Fig. 7.6 (with signal smoothing) indicate that
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the performance of the SVM-based system has improved with the inclusion of the
signal smoothing technique. The overall average error for the FFT function
without the signal smoothing method was observed in Experiment C1 (Fig. 7.2) to
be 0.83 L, but with the inclusion of the signal smoothing method, it has reduced to
0.67 L. However, there were no major improvements in the performance of the
SVM-based system using the DCT function.
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Chapter 8
Conclusion and Future Work

8.1 Conclusion

The support vector machine (SVM)-based signal processing and classification
approach coupled with a single ultrasonic sensor have been used to accurately
determine the fuel level in an automotive fuel tank under dynamic conditions. A
thorough research review was conducted on the usage of ultrasonic sensors in
dynamic environments and the effective use and properties of the support vector
machines. Based on the findings of the research review, an ultrasonic sensor-based
measurement system using the support vector machine (SVM)-based signal pro-
cessing and classification was proposed to provide a robust and accurate fuel level
measurement system in a dynamic environment.

Extensive experiments were performed to determine an optimal configuration
for the proposed SVM-based fuel level measurement system. The selection of the
SVM parameters, the kernel parameters, and the signal preprocessing configura-
tions were all performed experimentally. To determine the performance of the
SVM-based fluid level measurement system, many field trials were carried out to
obtain a large amount of training and validation data for the training and validation
of the system. The raw ultrasonic sensor signals obtained from the experiments
data were observed to lead to large variations in the calculated fuel volume, when
the actual fuel in the tank had remained constant. This variation in the ultrasonic
output was caused by sloshing effects.

The overall results obtained from the SVM-based measurement system, when
configured to have the optimal configurations obtained by experimentations, were
observed to have remarkably higher accuracy in a dynamic environment when
compared with the existing statistical averaging methods in similar applications.
The SVM model applied with the moving median filter (with tap size of 5) pro-
duced a remarkably lower maximum average error of 1.25 l, when compared with
the statistical averaging methods moving mean and moving median that produced
a maximum average error of 5.8 and 5.2 l, respectively.

The increased accuracy in performance of the developed fuel level measure-
ment system in dynamic environments will provide more confidence to drivers
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regarding the actual amount of fuel indicated by the instrument panel. With an
accurate fuel level measurement system, the distance-to-empty figures can be
accurately computed. In particular, the SVM-based method is suitable for use in a
professional car racing where a vehicle is subjected to highly dynamic maneuvres.
Drivers of cars equipped with this measurement method can confidently drive
higher number of laps without fear of running out of fuel in situations where fuel
level in the tank is low.

8.2 Future Work

An ultrasonic sensor coupled with the support vector machine (SVM) approach to
signal processing will be used to address other influencing factors such as atmo-
spheric pressure and the tilt that causes the liquid to shift to one side. With the
rapid improvements in microprocessor technology, it will be possible to auto-
matically train the SVM model in real time, which will further increase the
effectiveness of the measurement system in dynamic environments.
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Appendix B
Exxsol D-40 Fluid Specification

The Table B.1 provides detailed specifications for the Exxsol D-40 type Stoddard
solvent used in the experimentations [127].

Table B.1 Exxsol D-40 fluid specifications

Property Units Typical values Test method

Distillation range �C ASTM D 86
IBP 164
DP 192

Flash point �C 48 ASTM D 56
Density @ 15 �C kg/dm3 0.772 ASTM D 4052
Viscosity @ 25 �C mm3/s 1.30 ASTM D 445
Evaporation rate (n-BuAc = 10Q) – 15 EMC-AP-F01
KB value – 32 ASTM D 1133
Aniline point �C 70 ASTM D 611
Aromatic content wt% 0.08 AM-S 140.31
Colour (Saybolt) – ?30 ASTM D 156
Bromine index mg/100g 15 ASTM D 2710
Surface tension @ 25 �C mN/m 24.7 EC-M-F02 (Wilhelmy Plate)
Refractive index @ 20 �C – 1.428 ASTM D 1218
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